
HCL Z and I Emulator for Windows (ENGLISH)

ii

Contents
Chapter 1. Release Notes..1

README..1
HCL Z and I Emulator for Windows Version 3.0
Readme... 1

More information... 4
More information..
Known Issues in HCL Z and I Emulator for
Windows..4
Frequently Asked Questions in ZIEWin
(FAQs)..5

Chapter 2. Product Documentation..............................6
Licensing...6

HCL ZIE License Manager................................. 6
Quick Beginnings... 18

About This Book...18
Introduction...36
Using Z and I Emulator for Windows.............. 45
Notices..128
Trademarks...130

Installation Guide...130
Introduction...130
Planning to Install Z and I Emulator for
Windows... 131
Installing Z and I Emulator for Windows.......136
Installing Z and I Emulator for Windows Using
an Initialization (response) File..................... 149
Administrative Installation.............................150
Maintenance Installation of Z and I Emulator
for Windows... 151
Remote Installation of Z and I Emulator for
Windows... 152
InstallShield Command-Line Parameters..... 153
Abbreviations Used in This Book.................. 156
Notices..156

Emulator User's Reference....................................158
General Information....................................... 161
Using Z and I Emulator for Windows 3270... 193
Using Z and I Emulator for Windows 5250... 244
Using Z and I Emulator for Windows VT....... 342
Troubleshooting... 363
Notices..367

Admin Guide...368
General Information....................................... 373
Advanced Configuration, Management, and
Operations...379
Building a Printer Definition Table (PDT)...... 410
iSeries, eServer i5, or System i5 Configuration
Examples.. 485

Alerts...493
Notices..496

Emulator Programming... 508
Introduction to Emulator APIs.......................509
Introduction to IBM Standard EHLLAPI,
IBM Enhanced EHLLAPI and WinHLLAPI
Programming..512
EHLLAPI Functions.. 536
WinHLLAPI Extension Functions...................678
PCSAPI Functions.. 690
Troubleshooting for Emulator
programming.. 718
Query Reply Data Structures Supported by
EHLLAPI.. 721
Differences from Communication Manager/2
EHLLAPI.. 730
Notices..734

Host Access Class Library....................................735
Introduction...736
Host Access Class Library C++.....................745
Host Access Class Library Automation
Objects.. 984
Host Access Class Library for Java............1155
Troubleshooting... 1155
Sendkeys Mnemonic Keywords.................. 1156
ECL Planes — Format and Content............. 1159
Notices..1166

Reference Materials.. 1168
Keyboard layout and mapping reference:
Contents..1168
Host code page reference...........................1216

Chapter 3. PDF Library.. 1267

ic_homepage/ZIEWin_SW_RQ.html
ic_homepage/ZIEWin_SW_RQ.html
ic_homepage/ZIEWin_SW_RQ.html
ic_homepage/ZIEWin_SW_RQ.html

Chapter 1. Release Notes

README

HCL Z and I Emulator for Windows Version 3.0 Readme
Read Me - Please!

This document contains information supplementary to the online help and the publications, it includes newly added

functions, hints, tips, restrictions, and corrections. Refer the Z and I Emulator for Windows Information Center for

other considerations when using Z and I Emulator for Windows Version 3.0, and for complete product documentation.

For information on installing HCL Z and I Emulator for Windows, for information about the new features added in this

version, refer to the Installation Guide and Quick Beginnings guide.

Names and license terms for third-party components are referenced in license.txt, which is located in the ZIE for

Windows installation directory or in the product installation image.

Thank you for choosing Z and I Emulator for Windows Version 3.0.

Table of Contents

• What's New on page 1

◦ Version 3.0 on page 1

• Z and I Emulator for Windows Information Center on page 2

• System Requirements on page 2

• Installation Instructions on page 2

• HCL Software Support on page 2

• ZIE for Windows Blogs on page 2

• Notices on page 2

What's New in ZIEWIN 3.0

Version 3.0

• New Code Signer Certificate on page 1

• Support for French Locale on page 2

• Removal of HCL Licensing Server Pre-requisite on page 2

• Fixes for Internal Defects on page 2

Return to Top on page 1

New Code Signer Certificate

The code signer certificate used to sign the previous versions of HCL Z and I Emulator for Windows software will

expire on April 20, 2024. In the current version, the HCL Z and I Emulator for Windows software is signed with a new

code signer certificate that is valid up to January 27, 2027.

1

HCL Z and I Emulator for Windows (ENGLISH)

2

This certificate is issued to "HCL America Inc." by "DigiCert SHA2 Assured ID Code Signing CA".

Return to Top on page 1

Support for French Locale

In this release, support for French locale is included in the MLS package.

Return to Top on page 1

Removal of HCL Licensing Server Pre-requisite

From this release onwards, configuration of the HCL Z and I Emulator for Windows with HCL Licensing Server (CLLS)

is not required to use the product.

For more information on configuring the Z and I Emulator for Windows, refer to HCL ZIE License Manager.

Return to Top on page 1

Fixes for APARs and Internal defects

This release contains fixes for APARs and internal defects.

Return to Top on page 1

Z and I Emulator for Windows Information Center

Find documentation and links to other resources at the Z and I Emulator for Windows Information Center.

Return to Top on page 1

System Requirements

For information about hardware and software requirements for installing Z and I Emulator for Windows, refer to the

System Requirements for Z and I Emulator for Windows.

Return to Top on page 1

Installation Instructions

For instructions on how to install Z and I Emulator for Windows, refer to the Installation Guide for ZIEWin.

Return to Top on page 1

HCL Software Support

For support information and managing product cases, refer to the HCL Software Customer Support Portal..

Return to Top on page 1

ZIE for Windows Blogs

For additional information on Z and I Emulator for Windows, read through the blogs and articles on 'Z and I Emulator

for Windows' available on the ZIE for Windows Blogs.

Return to Top on page 1

Notices

This information was developed for products and services offered in the U.S.

https://help.hcltechsw.com/zie/ziewin/3.0/help/Flexera/ZIE_License_Manager.html
https://help.hcltechsw.com/zie/ziewin/welcome/index.html
https://help.hcltechsw.com/zie/ziewin/3.0/ic_homepage/ZIEWin_SW_RQ.html
https://www.hcltech.com/software/support
https://blog.hcltechsw.com/zie-for-windows/

Chapter 1. Release Notes

HCL may not offer the products, services, or features discussed in this document in other countries. Consult your

local HCL representative for information on the products and services currently available in your area. Any reference

to an HCL product, program, or service is not intended to state or imply that only that HCL product, program, or

service may be used. Any functionally equivalent product, program, or service that does not infringe any HCL

intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the

operation of any non-HCL product, program, or service.

HCL may have patents or pending patent applications covering subject matter described in this document. The

furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing,

to:

• HCL

• 330 Potrero Ave.

• Sunnyvale, CA 94085

• USA

• Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made

to the information herein; these changes will be incorporated in new editions of the publication. HCL may make

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time

without notice.

Any references in this information to non-HCL websites are provided for convenience only and do not in any manner

serve as an endorsement of those websites. The materials at those websites are not part of the materials for this

HCL product and use of those websites is at your own risk.

HCL may use or distribute any of the information you supply in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

• HCL

• 330 Potrero Ave.

• Sunnyvale, CA 94085

• USA

• Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

3

HCL Z and I Emulator for Windows (ENGLISH)

4

The licensed program described in this document and all licensed material available for it are provided by HCL under

terms of the HCL Customer Agreement, HCL International Program License Agreement or any equivalent agreement

between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.

Information concerning non-HCL products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions on the

capabilities of non-HCL products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely

coincidental.

Trademark Acknowledgments

HCL, the HCL logo, and hcl.com are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other companies.

Return to Top on page 1

More information

Known Issues in HCL Z and I Emulator for Windows
This document provides the details about some of the known issues in HCL Z and I Emulator for Windows.

Problem

• In the French Operating System for ZIEWin version 3.0, a local user cannot perform Start/Stop/Restart

services.

Issue

• After installing Z and I Emulator for Windows version 3.0, the ZIEWinService options (Start/Stop/Restart) are

disabled for a local user account in the French Operating System.

Cause

• The local user does not have access to the ZIEWinService.

Resolving the Problem

• Not Applicable.

Chapter 1. Release Notes

Workaround

• Administrator user has permission to perform Start/Stop/Restart ZIEWinService.

Frequently Asked Questions in ZIEWin (FAQs)
This document answers some of the FAQs in Z and I Emulator for Windows.

Section-1: FAQs in ZIEWin v1 Refresh Pack update installer

1. QUESTION: What is the difference between a ‘Refresh Pack’ and ‘Refresh Pack Update Installer’?

ANSWER: Starting with version v1.1.1.0, HCL Z and I Emulator for Windows (ZIEWin) is shipped in two

forms, as ‘Refresh Pack’ and ‘Refresh Pack Update Installer’.

• Refresh Pack is a complete installer image of the ZIEWin product, which can be installed

independently. This does not require any previous version of the product.

• Refresh Pack Update Installer contains only the fixes developed after the release of ZIEWin v1.1.0.0

base version. Each update installer is cumulative in nature; in other words, a new update installer will

also contain fixes from the previous update installers. This requires ZIEWin v1.1.0.0 base version or

Refresh Pack installed.

2. QUESTION: Can I install ZIEWin v1.1.0.0 (Base version) over ZIEWin Refresh Pack Update Installer v1.1.1.0?

ANSWER: No, we advise not to do this. The v1.1.1.0 Refresh Pack Update Installer allows this downgrade

installation though.

If you have done this accidentally, uninstall both the v1.1.1.0 Refresh Pack Update Installer and ZIEWin

v1.1.0.0 (base version). Then proceed to install ZIEWin v1.1.0.0.

3. QUESTION: After installing ZIEWin v1.1.0.0, I have upgraded to ZIEWin Refresh Pack Update Installer

v1.1.1.0. Can I directly uninstall the base version?

ANSWER: No, the base version should not be uninstalled without uninstalling the Refresh Pack Update

Installer. If done accidentally, please uninstall the Refresh Pack Update Installer.

4. QUESTION: What happens when I install a newer ZIEWin Refresh Pack Update Installer over a previous

ZIEWin Refresh Pack Update Installer?

ANSWER: The ZIEWin Refresh Pack Update Installer will be upgraded to the newer version. Both, the ZIEWin

base version and the latest Refresh Pack Update Installer version are shown in Add or Remove Programs in

the Control Panel.

-

5

6

Chapter 2. Product Documentation

Licensing

HCL ZIE License Manager
Table of Contents

Introduction on page 6

Installation and Configuration of HCL ZIE License Manager Server on page 6

Using the HCL ZIE License Manager on page 10

Limitations of HCL ZIE License Manager on page 18

I. Introduction:

The License manager is a tool that facilitates effective software management between end users and software

vendors, thereby enabling organizations to track and document the usage of the company's software products. HCL

ZIE License Manager is a tool used to track the license information for Mainframe Terminal emulator products like

HCL ZIE for Windows.

The HCL ZIE License Manager can be configured for HCL ZIE for Windows version 1.0 & above.

The HCL ZIE License Manager (LM) tracks the license usage for ZIE for Windows, when it is installed and configured

with WebSphere Application Server (WAS), ZIEWin Embedded Server or Tomcat.

II. Installation and Configuration of HCL ZIE License Manager Server

Prerequisites for the Installation of License Manager:

• Application Server

Installation of HCL ZIE License Manager:

Follow the below procedure to install License Manager:

1. Download the zip file from Flexnet Operations.

2. Extract the zip file into a folder.

3. Install the .ear or .war file on the application server by following the deployment instructions for the respective

application server.

4. Enter the URL to access the License Manager Web application:

For example:

http://<appserver-address>:<port-num>/<context-root>/<License Logger>

where,

<appserver-address> : is the hostname or IP address of the server on which the license manager is installed,

Chapter 2. Product Documentation

<port-num> : is the port that is specified during the deployment of the application server.

<context-root> : is the location name that the Administrator can configure.

Steps to configure the License Manager:

1. Client-based configuration:

For ZIE for Web:

For all the client types (ZIEWeb Lite Client Launcher and Java Webstart client) add the following parameters to

the configuration file (config.properties), that is located in the ZIEWEB server publish directory.

• licenseserverurl = License Logger URL – <appserver>:<port>/<context-root>/LicenseLogger

• timeout= Logging request interval (in mins) after which the server marks the client as timed out if the

request is not sent. Minimum value is 5 and maximum value is 30.

• enableMacAddress = set true to enable mac address logging, default value is false.

• enableMachineName = set false to disable machine name logging, default value is true.

For example:

licenseserverurl=http://127.0.0.1:9080/LicenseManager/LicenseLogger

timeout=5

enableMacAddress=true

For ZIE for Windows:

For ZIE for Windows, the License Manager can be configured using the following methods:

• InstallShield Wizard / License Manager Settings

• Updating the pcswin.ini file

A. Configuring the License Manager through InstallShield Wizard / License Manager Settings

The License Manager settings can either be configured by providing the required server details in the

'InstallShield Wizard' at the time of ZIEWin installation or can be added/updated in the 'License Manager

Settings' section of the Advanced tab within the Preferences.

• License Manager Settings

License URL: Specifies the HTTP URL of the License Manager Server to which the HCL Z and I

Emulator for Windows session sends license parameters.

Example: " http://<Application Server Hostname or IP>:<Application Server Port>/LicenseLogger"

where,

◦ <Application Server Hostname or IP>: is the hostname or IP of the system where the

application and the License Manager are installed.

◦ <Application Server Port>: is the system's port where the application and the License

Manager are installed.

Interval: Specifies the time period in minutes at which the HCL Z and I Emulator for Windows session

sends license parameters. It is the request interval after which the server marks the client as timeout

7

HCL Z and I Emulator for Windows (ENGLISH)

8

if the request is not sent. Default and the minimum value is 5 minutes and the maximum value is 30

minutes.

Note: The License Manager Settings set by "Preferences" utility takes precedence over the

settings set through installation. If the installation is "user installation" where the application

data location is %appdata% in user directory the setting that are set in "Preferences" utility is

applicable only for the current user.

B. Configuring the License Manager by Updating the pscwin.ini file

Add the following parameter values to the pcswin.ini file, typically located in the License section of the file as

follows:

C:\Users\\AppData\Roaming\IBM\PersonalCommunications
Name: licenseserverurl
Value = http://<Application Server Hostname or IP>:<Application Server Port>/LicenseLogger
Interval = Logging request interval (in mins) after which the server marks the client as
timeout if the request is not sent. The minimum value is 5.

For Example:

[License]
URL=http://127.0.0.1:9080/LicenseManager/LicenseLogger
Interval=5

In an intranet environment, when a License Manager Server is configured with local Certificate Authorities,

if an error occurs while verifying the certificates received from the license manager, the HTTPS connectivity

from the ZIEWin client to the license manager may also fail.

The following keywords have been introduced into the pcswin.ini file to handle this:

[License]
IgnoreUnknownCA=Y
IgnoreInvalidCertCN=Y
IgnoreCertRevCheck=Y

• When IgnoreUnknownCA is set to Y, it allows an invalid certificate authority. This allows ZIEWin to

send License information even when the License Manager Server sends an untrusted CA. The setting

is recommended only under test environments. The default value of the keyword is set to N.

• When IgnoreInvalidCertCN is set to Y, it allows an invalid common name in a certificate; the server’s

name specified by the application does not match the common name in the certificate. The setting is

recommended only under test environments. The default value of the keyword is set to N.

• When IgnoreCertRevCheck is set to Y, it ignores certificate revocation problems. This allows ZIEWin

to send License information even when it cannot verify whether the host certificate is valid or revoked.

The setting is recommended only under test environments. The default value of the keyword is set to

N.

Note: The keywords are recommended only under test environments.

Chapter 2. Product Documentation

Also, the following keywords in the .ini file are provided to enable or disable HCL ZIE for Windows

emulator sessions from sending the MAC Address and machine name to the HCL License Manager

Server. The keywords are part of the License section of the pcswin.ini file.

[License]
enableMacAddress = N
enableMachineName = Y

When enableMacAddress is set to N, the license manager server log shows MAC_ADDRESS_DISABLED

under the MAC ADDRESS column. The default value of the keyword is set to N. When, enableMachineName

is set to N, the license manager server log shows MACHINE_NAME_DISABLED under the MACHINE NAME

column. The default value of the keyword is set to Y.

For Host Access Client Library (HACL):

For HACL applications, developers can set the License server URL and timeout values with the below session

parameters and statements:

p.put(Session.LICENSE_SERVER_URL,"http://<server-address>:<server-port>/<context-root>/LicenseLog
ger");

 p.put(Session.LICENSE_SERVER_TIME_OUT,"5");
 p.put(Session.
 LICENSE_SERVER_MAC_ADDRESS,"true");
 p.put(Session.
 LICENSE_SERVER_MACHINE_NAME,"false");

2. Configuration of Unique License Count

Administrators can mandate license uniqueness, based on different values, by modifying the

adminConfig.properties file in the License Manager installed directory.

For Example:

defineUniqueUser=systemusername;macaddress

Below are the available parameters that need to be modified to define uniqueness.

IP address: ip

System user name: systemusername

MAC address: macaddress

Machine name: machinename

9

HCL Z and I Emulator for Windows (ENGLISH)

10

Any combination of the above attributes can be used to define license uniqueness. If more than one

parameter value has to be configured, then each parameter should be separated by a semi colon (;).

Note:

• While re-defining a unique user with existing logs, provide a different installation location for

License Manager in the servlet parameters (or delete the existing License Manager folder) and

restart, to avoid errors during license count calculation.

• Restart the HCL ZIE License Manager, after re-defining the unique user.

3. Configuring the ZIE License Manager Servlet Parameters

Following is a list of parameters that can be used to configure the License Manager:

Property Value Description

ZIE_WIN_Enabled true/false Enable/ disable ZIE for Win

Directory_Location C:\\dir_location Directory Location for logs

Depending on the application server used to deploy the License Manager application, the path from which the

above properties can be initialized may change.

For WebSphere Application Server (WAS):

• Login to WebSphere Application Server.

• Go to Applications.

• Click the WebSphere enterprise applications under the Application Type.

• Click the License Manager .war file.

• Click the Initialize parameters for servlets link under the Web Module Properties section.

• Enter the required values.

• Save the changes.

For Embedded Server:

• Users can override the License Manager configuration by modifying the properties of

“lm_overrides.xml” in the conf directory under the lib directory of the product.

• Save the changes.

For Tomcat Server:

• Navigate to the application folder under the webapps directory of tomcat.

• Edit the web.xml file of the application.

• Save the changes.

III. Using the HCL ZIE License Manager

After the successful installation of the server module, Administrators can use the License Logger to monitor the client

login from the License Manager Admin console.

The console can be accessed by navigating to: http://appserver-address:port-num/<context-root>/

When prompted for a username and password, users may log in with the default username as admin and password

as password.

http://appserver-address:port-num/%3Ccontext-root%3E/

Chapter 2. Product Documentation

After logging in as a License Manager Admin, you can change the password by clicking on admin on the menu bar.

Refer to the Create New User and Change User Password sections below, for more information.

As a License Manager Administrator, you can perform the following tasks:

11

HCL Z and I Emulator for Windows (ENGLISH)

12

• Manage Users who can access the administrator console

• Configure the number of licenses

• Monitor the number of Users currently active

• Configure the log settings

• View or download log files

License Information:

• Total active licenses

Number of active concurrent licenses for ZIE for Web & ZIE for Windows combined.

License Count Statistics:

• Highest Concurrent License Count

The highest concurrent license count gives the maximum number of distinct users who have accessed the

product (ZIE for Web and ZIE for Windows) simultaneously, since the installation of License Manager.

Chapter 2. Product Documentation

• Highest Authorized License Count

The highest authorized license count gives the maximum number of authorized users who have accessed

either of the products (ZIE for Web and ZIE for Windows) on a day.

• Cumulative Authorized License Count

Cumulative Authorized License Count gives the total number of distinct authorized users who have accessed

either of the products (ZIE for Web and ZIE for Windows) till date, since the installation of License Manager.

• More

Clicking on the More option takes us to the License Summary Report for both the products combined.

By default, the report shows a daily summary of licenses for the individual products, ZIE for Web and ZIE for

Windows. The filter feature can be used to view the license usage for a specified date interval. It includes the

following information for each product:

◦ Highest Concurrent License Count (MM-DD-YYYY)

◦ Highest Authorized License Count (MM-DD-YYYY)

The tabular view shows the following license details for ZIE for Web and ZIE for Windows with time stamp.

◦ Highest Concurrent License Count

◦ Highest Authorized License Count

◦ Cumulative Authorized License Count

The admin can sort specific columns as required.

13

HCL Z and I Emulator for Windows (ENGLISH)

14

License Count Statistics specific for ZIE for Web and ZIE for Windows:

Chapter 2. Product Documentation

Each section/tab shows the following information for the corresponding product.

• Active Licenses

• Highest Concurrent License Count (Today)

• Highest Concurrent License Count

• Total Authorized Used License (Today)

• Highest Authorized License Count

• Cumulative Authorized License Count

Active Licenses

Active concurrent licenses for ZIE for Web / ZIE for Windows (for the active sessions). Admin can view the active

client details by clicking the highlighted Active Licenses link. Active clients report shows the below information about

all active clients at that time.

• IP Address

• System Username

• Machine Name

• MAC Address

• Sub-Client Type

• Check-In-Time

The Administrator can sort specific columns as required.

Highest Authorized License Count

Highest Authorized license count gives the maximum number of authorized license users accessing the product (ZIE

for Web / ZIE for Windows) on any day since the installation of License Manager.

Cumulative Authorized License Count

Cumulative Authorized license count of distinct authorized users since the installation of license Manager for the

product (ZIE for Web / ZIE for Windows).

License usage details:

License details report for the current day (ZIE for Web / ZIE for Windows).

Log level

This option is available on "License usage details" page.

Select the log level (from 1-LOW to 3-HIGH) to filter the number of entries to be logged. The default log level, which is

Level 3 (HIGH), logs all the entry parameters, including connection closed entry along with the periodic client check-

ins. All the other log levels (1 and 2) will log only the first client check-in and the connection closed entry.

Following are the parameters which are logged:

15

HCL Z and I Emulator for Windows (ENGLISH)

16

• IP Address of the client

• System User Name

• Machine Name

• MAC Address

• Client Type

• Status of connection

• Timestamp

Level 3: All Parameters

Level 2: Timestamp, IP, System User Name, Client Type, Sub-Client Type, Machine Name, Connection Status

Level 1: Timestamp, IP, System User Name, Client Type, Sub-Client Type, Connection Status

The license usage report containing Log level 3 (HIGH) with license usage information can be extracted by the Admin

into a .csv file (that can be opened as an Excel Workbook).

User Management:

To manage Users who can access the License Manager Admin console, click on Users on the menu bar.

Chapter 2. Product Documentation

Create a New User

To create a new user, follow the below steps:

• Go to the Users tab.

• Specify the Username (username is not case sensitive).

• Specify the required password (password length must be between 5 to 20 characters).

• Re-enter the password in the Confirm Password box.

• Click Submit .

Note: The Admin can create new users for the license manager.

Delete an Existing User

Under the Existing Users section, there is an option to delete the existing user by selecting the icon next to the

username.

To Reset the Password for an Existing User

If required, Admin can reset the password for a selected user to the default password (password), by clicking the icon

 next to the username in the existing users list.

To Change User Password

17

HCL Z and I Emulator for Windows (ENGLISH)

18

Users can change the current password, by hovering the mouse pointer over the Username field displayed on top of

the screen. After specifying the current and new password, click Submit.

IV. Limitations of HCL ZIE License Manager

National Translation is not available. Help files are currently available only in English.

Quick Beginnings

About This Book
This book describes how to install, configure, and start HCL Z and I Emulator for Windows. After you get Z and I

Emulator for Windows up and running and begin to perform various tasks, use the online help whenever you need

additional information. See Where to Find More Information on page 19 for information about online help, the Z

and I Emulator for Windows library, and related publications. .

This book is for users of:

• HCL Z and I Emulator for Windows, Version 3.0

• HCL Z and I Emulator for Windows iSeries, Version 3.0

See What's in the Package on page 18 for information regarding what is in the product package.

In this book, Windows® refers to Microsoft® Windows® 7, Windows® 8/8.1, Windows® 10, Windows® Server 2008,

and Windows® Server 2012. When information is applicable only to a specific operating system, this will be indicated

in the text.

What's in the Package
The Z and I Emulator for Windows Version 3.0 package contains HCL Z and I Emulator for Windows, Version 3.0,

which provides 5250, 3270, and VT emulation and connections to z/OS™, z/VM™, eServer™ i5, System i5™, iSeries™,

zSeries™ and ASCII host systems.

In addition to the products previously mentioned, the Z and I Emulator for Windows installation image contains the

following:

• Adobe Acrobat Reader, to enable you to read softcopy books available on the installation image

• Book files in PDF format

Note:

Chapter 2. Product Documentation

1. For each of the two basic packaging options, there are also separate installation images, depending

on:

Security Levels

Z and I Emulator for Windows is shipped at the 168-bit encryption level.

Where to Find More Information
The following sections discuss getting help when you are installing, configuring, or using Z and I Emulator for

Windows.

The Quick Beginnings book is also available online, in HTML form. You can access the book from the Help menu in

the Session Manager.

Information Center
You can find documentation and links to other resources at the Z and I Emulator for Windows Information Center, at

the following address:

https://help.hcltechsw.com/zie/ziewin/3.0/index.html

The Information Center contains reference material that is not found in this book, such as keyboard layouts and host

code page tables.

Online Help
The help facility describes how to install, configure, and use Z and I Emulator for Windows. Online help is very

extensive and includes information about every aspect of configuring and using Z and I Emulator for Windows. You

can use Z and I Emulator for Windows online help just as you use the online help for Windows®.

Use help to obtain information about:

• Menu choices

• Operation procedures

• Operations in windows

• Meanings of the terms displayed in windows

• Causes of errors and the corresponding actions to take

• Mouse-based operations

• Operation without a mouse

• Detailed explanations of specific terms

• Further technical information about Z and I Emulator for Windows

• Detailed explanations of operator information area (OIA) messages

19

https://help.hcltechsw.com/zie/ziewin/3.0/index.html

HCL Z and I Emulator for Windows (ENGLISH)

20

Z and I Emulator for Windows Library
The Z and I Emulator for Windows library includes the following publications:

• Installation Guide

• Quick Beginnings (this document)

• Emulator User's Reference

• Administrator's Guide and Reference

• Emulator Programming

• Host Access Class Library

• Host Access Class Library

• Configuration File Reference

In addition to the PDF documents, there are HTML documents provided with Z and I Emulator for Windows:

Quick Beginnings

The HTML form of Quick Beginnings contains the same information as the PDF version. The HTML files

are installed automatically and can be accessed from the Help menus in the Session Manager and .WS

session panels.

Contacting HCL
This section lists ways you can reach HCL in case you encounter a problem or concern with Z and I Emulator for

Windows. Depending on the nature of your problem or concern, we ask that you be prepared to provide the following

information to allow us to serve you better.

• The environment in which the problem occurs:

◦ Z and I Emulator for Windows configuration

▪ Z and I Emulator for Windows version and manufacturing refresh level

▪ The name of the workstation profile

◦ Workstation configuration

▪ The machine type and model, the system memory, the video adapter

▪ The communication adapter you are using

▪ Other adapters (especially communication adapters) installed

▪ The printer type and model

▪ Other devices installed, such as sound cards, modems, or fax machines

◦ Software configuration

▪ Windows® version and level

▪ Communication and device-driver version and level

▪ Other communication programs (such as Microsoft® or Microsoft® Data Link Control) that are

running and using resources

▪ Printer driver version and level

◦ Host configuration

▪ The upstream host connection and configuration

Chapter 2. Product Documentation

• Problem analysis information

◦ Symptoms

◦ Type of problem

◦ OIA messages or error messages (if any)

◦ Key factors related to the problem

If you have a technical problem, take the time to review and carry out the actions suggested here. Use your local

support personnel before contacting HCL. You can also check the Hints and Tips at the Z and I Emulator for Windows

support Web page for more information. Only persons with in-depth knowledge of the problem should contact HCL;

therefore, support personnel should act as the interface with HCL.

For information about problem analysis tools, refer to Emulators User's Reference for Z and I Emulator for Windows

Version 3.0. This reference also provides detailed, specific emulator information about printing, file and data transfer,

node operations, and other topics.

Managed ZIEWIN and Interoperablity
This section provides detailed information about Managed ZIEWin and Interoperabilty between HCL Z and I Emulator

for Windows and HCL Z and I Emulator for Web Clients.

HCL Z and I Emulator for Windows uses Session Manager Online dialog to provide easy access to workstation

profiles and batch files on the ZIE Server. With Session Manager Online users can create or start a single or multiple

sessions and or batch files. Users can create their own profile to the ZIE server and migrate existing files such as the

workstation profiles (*.WS) and batch files (*.BCH) that were stored on the ZIE Server.

This "How To" document aims to supplement additional detailed information in setting up Managed HCL Z and I

Emulator for Windows (ZIEWIN) as referenced below.

Steps to Install Using Managed:

Refer to Planning to Install Z and I Emulator for Windows on page 42

The steps provided in this document are applicable to all Windows 10 versions which are 64-bit OS level.

Prerequisites :

1. Download a copy of HCL Z and I Emulator for Windows 64-bit base package and HCL Z and I Emulator for

Windows RP1.zip

2. A HCL Z and I Emulator for Web server is required for the Session Manager Online to work.

3. Create a folder (e.g. MPZiewin) in the ZIEWEB published directory.

4. Unzip and dump the HCL Z and I Emulator for Windows RP1 contents in MPZiewin folder.

5. Right click the MPZiewin folder > Properties > Sharing > Advance Sharing > Put a check on Share this Folder.

6. Click OK then Close.

7. Repeat steps 5-6 with ZIEWEB folder.

8. Obtain the IP address of the ZIEWEB server and use it at step 2 below.

Follow the steps below in setting up Managed HCL Z and I Emulator for Windows (ZIEWIN):

21

HCL Z and I Emulator for Windows (ENGLISH)

22

1. There are two ways to input the ZIE Server configuration details. Choosing to go either way will have the same

results.

• During the ZIEWIN installation a new panel has been added.

• Preferences Manager - Click on Start > HCL Z and I Emulator for Windows > Preferences > Advanced

Chapter 2. Product Documentation

2. Enter the configuration parameters based on the information below:

• Web Server URL : The URL of the Web Server from where HCL Z and I Emulator for Windows fix pack

file will be downloaded for installation. Installer or fix pack will be installed on the system by "Start or

Configure Sessions - Online" program.>

• Config Server : URL of the Application Server/Embedded Server, on which interoperability module (.war

file) is deployed. It can be deployed on the HOD Embedded Server or on any configured Application

Server.

Example: http://< Application Server IP >/<Configured context root of the application>

For more details on WAR file deployment, refer to the technote <hyper-link>.

23

HCL Z and I Emulator for Windows (ENGLISH)

24

• Config Server Port : Port number of Application Server where interoperability module (.war file) is

deployed.

Example: 9080

3. Click OK.

4. Open File Explorer > This PC > Map network drive. Use the IP address of the Web Server along with the folder

where the HCL Z and I Emulator for Windows RP1.msi is located. E.g. \\192.168.56.102\MPZiewin

5. Click Save.

6. Repeat steps 4-5 with ZIEWEB folder. E.g. \\192.168.56.102\ZIEWEB

Note: This completes configuring Managed HCL Z and I Emulator for Windows (ZIEWIN).

7. To validate that the configuration is correct, create a new Username or use an Existing User in the Session

Manager Online. Click on Start > HCL Z and I Emulator for Windows > Start or Configure sessions - Online

Points to consider:

• When mapping the network drive ensure that client machine and ZIEWEB server is within the same network.

• The Session Manager Online checks for updates at startup. It is essential that HCL Z and I Emulator for

Windows RP1 is in the ZIEWEB published directory.

Interoperability between HCL Z and I Emulator for Windows and HCL Z and I
Emulator for Web Clients
The interoperability feature allows the ZIEWin users to use the ZIEWin sessions from other HCL terminal emulator

clients, such as ZIEWeb and ZIEWeb Client. ZIEWin users can use the “Session Manager Online” utility to store the

new sessions and migrate the existing sessions to ZIE server, these sessions are then converted to ZIEWeb Session

formats for the ZIEWeb and ZIEWeb Client usage.

Chapter 2. Product Documentation

Note: Interoperability feature is introduced in ZIEWin 2.1 version.

ZIEWin client communicates with the ZIE server over HTTP/HTTPS connectivity using JSON data format.

The interoperability feature is supported from ZIEWeb v2.1.0.0 & ZIEWeb Client v2.1.0.0 onwards and is applicable for

3270 Display, 5250 Display, 3270 Printer, 5250 Printer, and VT sessions.

Note: The session conversion happens only for ZIEWin to ZIEWeb sessions and not vice versa.

When the user stores the ZIEWin sessions using the “Session Manager Online” utility, they are converted to ZIEWeb

sessions before saving them to the ZIE server . After storing to the ZIE server , users can log in from ZIEWin, ZIEWeb,

or ZIEWeb Client to work with the stored ZIEWin sessions.

Using ZIEWin Sessions from ZIEWeb and ZIEWeb Client:

After the ZIEWin sessions are stored in the ZIE server , if any changes are made to the session definition from any of

the clients, it is saved in the ZIE server . These session changes will be available to ZIEWin users after the next login.

Below is the list of supported parameters as part of the Interoperability feature.

Table 1. List of Supported Parameters for Interoperability

ZIEWIN Parameter ZIEWEB Parameter

Primary Host Name or IP Address Destination Address

Primary Port Number Destination Port

Primary LU or Pool Name LU or Pool Name

Screen Size Screen Size

Host Code-Page Host Code-Page

Auto-reconnect Auto-reconnect

Backup 1 Host Name or IP Address Backup 1 Destination Address

Backup 2 Host Name or IP Address Backup 2 Destination Address

Backup 1 Port Number Backup 1 Destination Port

Backup 2 Port Number Backup 2 Destination Port

Backup 1 LU or Pool Name Backup 1 LU or Pool Name

Backup 2 LU or Pool Name Backup 2 LU or Pool Name

Enable Security Protocol

Workstation ID Workstation ID

Server Authentication Server Authentication

Message Queue Message Queue

Message Library Queue Library

Send Personal Certificate to Server if it is Requested Send a Certificate

Send Personal Certificate Trusted by Server Certificate Source

Send Personal Certificate Based on Key Usage Enable Key Usage

Machine Mode Terminal Type (VT session)

25

HCL Z and I Emulator for Windows (ENGLISH)

26

Table 1. List of Supported Parameters for Interoperability (continued)

ZIEWIN Parameter ZIEWEB Parameter

AutoWrap AutoWrap (VT session)

Note: Only the listed parameters will be modified from ZIEWeb / ZIEWeb Client for a ZIEWin profile. If any

other parameters are updated from ZIEWeb / ZIEWeb Client, there will not be any changes to the ZIEWin

session. Users should modify the ZIEWin sessions either from ZIEWin or ZIEWeb / ZIEWeb Client at a time

and should avoid simultaneous modifications from different clients.

Interoperability 2.1.0.0 Configuration Introduction:

ZIEWeb v3.0 (from v2.1.0.0 onwards) introduced interoperability between ZIEWin and ZIEWeb. This allowed ZIEWin

sessions to be accessed through ZIEWeb and ZIEWeb Client after the session definitions were uploaded to the ZIE

server .

Password provided during the user creation will be encrypted using AES 128-bit algorithm and will be sent to the

server through the HTTP/HTTPS protocol as Json object. UID is added to the WS and BCH profile files for unique

identification. Only Connection parameters are considered for the interoperability between ZIEWin and ZIEWeb Clients

and vice-versa.

After the ZIEWin sessions are converted and stored in the ZIE server , any changes made to the common parameters

from any of the clients will be saved on the ZIE server . These parameter changes will be available to ZIEWin users

after the next login.

Steps to install:

1. Install the ZIEWeb v3.0.

2. Install the ZIEWin v3.0

WAR File Configuration:

The interoperability executable (ZIEWeb_Interoperability.war) is available under the lib directory of the product.

For Embedded Web Server:

If the Embedded Web Server is used, by default Interoperability application is running on context root "interop”. If

the user needs to change the context root, add the following parameter to the configuration file (config.properties),

located in the ZIE server publish directory.

Example: InterOpContextPath=interop

The default ZIE server IP is 127.0.0.1 and the ZIE server port is 8999. If the user needs to connect to the ZIE server

located on a different machine, then override the interoperability configuration by modifying the properties of

“interop_overrides.xml” in the conf directory under the lib directory of the product.

Table 2. List of properties that can be used to configure the Interoperability

Property Value Description

ZIEWEB_SERVER_IP 127.0.0.1 ZIE server address

Chapter 2. Product Documentation

Table 2. List of properties that can be used to configure the Interoperability (continued)

Property Value Description

ZIEWEB_SERVER_PORT 8999 ZIEWEB Config Server port

Directory_Location C:\\dir_location Directory Location for logs

The user can utilize ZIEWeb_Interoperability.war file (available under the lib directory of the product) to deploy to

different application servers such as WAS/Tomcat.

For WebSphere Application Server (WAS):

1. Log in to WebSphere Application Server.

2. Go to Applications.

3. Click WebSphere enterprise applications under Application Type.

4. Select ZIEWeb_Interoperability.war file.

5. Click on Initialize parameters for servlets link under Web Module Properties section.

6. Enter the required values.

Supported Application Servers: Apache Tomcat and WAS.

Limitations

1. Only connection parameters are considered for interoperability between ZIEWin and ZIEWeb and vice-versa.

2. Session creation from ZIEWeb / ZIEWeb Client will not be converted to a ZIEWin session.

Known Issues

1. For stored ZIEWin sessions, changes to any session parameters (not only the listed parameters) from

ZIEWeb / ZIEWeb Client will be overridden or set to default when there is an update from “Session Manager

Online” (ZIEWin Client).

2. If there are simultaneous profile updates from any of the two clients, the most recent update will be saved as

the final copy in the ZIE server .

3. Modifications done in multiple sessions (add, delete sessions, or rename) from the ZIEWeb Clients do not

reflect in the ZIEWin Client.

4. Saving/renaming profiles with special characters (Ex: \ / : * ? " < > |.) in ZIEWeb/ ZIEWeb Clients will result in

unexpected behavior in the ZIEWin Client.

How to setup Managed HCL Z and I Emulator for Windows (ZIEWIN)

HCL Z and I Emulator for Windows uses Session Manager Online dialog to provide easy access to workstation

profiles and batch files on the ZIE Server. With Session Manager Online users can create or start a single or

multiple sessions and or batch files. Users can create their own profile to the ZIE server and migrate existing

files such as the workstation profiles (*.WS) and batch files (*.BCH) that were stored on the ZIE Server.

This "How To" document aims to supplement additional detailed information in setting up Managed HCL Z

and I Emulator for Windows (ZIEWIN) as referenced below.

Steps to Install Using Managed: Refer to Planning to Install Z and I Emulator for Windows on page 42

27

HCL Z and I Emulator for Windows (ENGLISH)

28

The steps provided in this document are applicable to all Windows 10 versions which are 64-bit OS level.

Prerequisites :

a. Download a copy of HCL Z and I Emulator for Windows 64-bit base package and HCL Z and I Emulator

for Windows RP1.zip

a. A HCL Z and I Emulator for Web server is required for the Session Manager Online to work.

b. Create a folder (e.g. MPZiewin) in the ZIEWEB published directory.

c. Unzip and dump the HCL Z and I Emulator for Windows RP1 contents in MPZiewin folder.

d. Right click the MPZiewin folder > Properties > Sharing > Advance Sharing > Put a check on Share this

Folder.

e. Click OK then Close.

f. Repeat steps 5-6 with ZIEWEB folder.

g. Obtain the IP address of the ZIEWEB server and use it at step 2 below.

Follow the steps below in setting up Managed HCL Z and I Emulator for Windows (ZIEWIN):

There are two ways to input the ZIE Server configuration details. Choosing to go either way will have the same

results.

• During the ZIEWIN installation a new panel has been added.

• Preferences Manager - Click on Start > HCL Z and I Emulator for Windows > Preferences > Advanced

Chapter 2. Product Documentation

a. Enter the configuration parameters based on the information below:

• Web Server URL : The URL of the Web Server from where HCL Z and I Emulator for Windows fix

pack file will be downloaded for installation. Installer or fix pack will be installed on the system

by "Start or Configure Sessions - Online" program.>

• Config Server : URL of the Application Server/Embedded Server, on which interoperability

module (.war file) is deployed. It can be deployed on the HOD Embedded Server or on any

configured Application Server.

Example: http://< Application Server IP >/<Configured context root of the application>

For more details on WAR file deployment, refer to the technote <hyper-link>.

29

HCL Z and I Emulator for Windows (ENGLISH)

30

• Config Server Port : Port number of Application Server where interoperability module (.war file)

is deployed.

Example: 9080

b. Click OK.

c. Open File Explorer > This PC > Map network drive. Use the IP address of the Web Server

along with the folder where the HCL Z and I Emulator for Windows RP1.msi is located. E.g. \

\192.168.56.102\MPZiewin

d. Click Save.

e. Repeat steps 4-5 with ZIEWEB folder. E.g. \\192.168.56.102\ZIEWEB

Note: This completes configuring Managed HCL Z and I Emulator for Windows (ZIEWIN).

f. To validate that the configuration is correct, create a new Username or use an Existing User in the

Session Manager Online. Click on Start > HCL Z and I Emulator for Windows > Start or Configure

sessions - Online

Points to consider:

• When mapping the network drive ensure that client machine and ZIEWEB server is within the same

network.

• The Session Manager Online checks for updates at startup. It is essential that HCL Z and I Emulator

for Windows RP1 is in the ZIEWEB published directory.

Interoperability between HCL Z and I Emulator for Windows and HCL Z and I
Emulator for Web Clients
The interoperability feature allows the ZIEWin users to use the ZIEWin sessions from other HCL terminal emulator

clients, such as ZIEWeb and ZIEWeb Client. ZIEWin users can use the “Session Manager Online” utility to store the

new sessions and migrate the existing sessions to ZIE server, these sessions are then converted to ZIEWeb Session

formats for the ZIEWeb and ZIEWeb Client usage.

Chapter 2. Product Documentation

Note: Interoperability feature is introduced in ZIEWin 2.1 version.

ZIEWin client communicates with the ZIE server over HTTP/HTTPS connectivity using JSON data format.

The interoperability feature is supported from ZIEWeb v2.1.0.0 & ZIEWeb Client v2.1.0.0 onwards and is applicable for

3270 Display, 5250 Display, 3270 Printer, 5250 Printer, and VT sessions.

Note: The session conversion happens only for ZIEWin to ZIEWeb sessions and not vice versa.

When the user stores the ZIEWin sessions using the “Session Manager Online” utility, they are converted to ZIEWeb

sessions before saving them to the ZIE server . After storing to the ZIE server , users can log in from ZIEWin, ZIEWeb,

or ZIEWeb Client to work with the stored ZIEWin sessions.

Using ZIEWin Sessions from ZIEWeb and ZIEWeb Client:

After the ZIEWin sessions are stored in the ZIE server , if any changes are made to the session definition from any of

the clients, it is saved in the ZIE server . These session changes will be available to ZIEWin users after the next login.

Below is the list of supported parameters as part of the Interoperability feature.

Table 3. List of Supported Parameters for Interoperability

ZIEWIN Parameter ZIEWEB Parameter

Primary Host Name or IP Address Destination Address

Primary Port Number Destination Port

Primary LU or Pool Name LU or Pool Name

Screen Size Screen Size

Host Code-Page Host Code-Page

Auto-reconnect Auto-reconnect

Backup 1 Host Name or IP Address Backup 1 Destination Address

Backup 2 Host Name or IP Address Backup 2 Destination Address

Backup 1 Port Number Backup 1 Destination Port

Backup 2 Port Number Backup 2 Destination Port

Backup 1 LU or Pool Name Backup 1 LU or Pool Name

Backup 2 LU or Pool Name Backup 2 LU or Pool Name

Enable Security Protocol

Workstation ID Workstation ID

Server Authentication Server Authentication

Message Queue Message Queue

Message Library Queue Library

Send Personal Certificate to Server if it is Requested Send a Certificate

Send Personal Certificate Trusted by Server Certificate Source

Send Personal Certificate Based on Key Usage Enable Key Usage

Machine Mode Terminal Type (VT session)

31

HCL Z and I Emulator for Windows (ENGLISH)

32

Table 3. List of Supported Parameters for Interoperability (continued)

ZIEWIN Parameter ZIEWEB Parameter

AutoWrap AutoWrap (VT session)

Note: Only the listed parameters will be modified from ZIEWeb / ZIEWeb Client for a ZIEWin profile. If any

other parameters are updated from ZIEWeb / ZIEWeb Client, there will not be any changes to the ZIEWin

session. Users should modify the ZIEWin sessions either from ZIEWin or ZIEWeb / ZIEWeb Client at a time

and should avoid simultaneous modifications from different clients.

Interoperability 3.0 Configuration Introduction:

ZIEWeb v3.0 (from v2.1.0.0 onwards) introduced interoperability between ZIEWin and ZIEWeb. This allowed ZIEWin

sessions to be accessed through ZIEWeb and ZIEWeb Client after the session definitions were uploaded to the ZIE

server .

Password provided during the user creation will be encrypted using AES 128-bit algorithm and will be sent to the

server through the HTTP/HTTPS protocol as Json object. UID is added to the WS and BCH profile files for unique

identification. Only Connection parameters are considered for the interoperability between ZIEWin and ZIEWeb Clients

and vice-versa.

After the ZIEWin sessions are converted and stored in the ZIE server , any changes made to the common parameters

from any of the clients will be saved on the ZIE server . These parameter changes will be available to ZIEWin users

after the next login.

Steps to install:

1. Install the ZIEWeb v3.0.

2. Install the ZIEWin v3.0.

WAR File Configuration:

The interoperability executable (ZIEWeb_Interoperability.war) is available under the lib directory of the product.

For Embedded Web Server:

If the Embedded Web Server is used, by default Interoperability application is running on context root "interop”. If

the user needs to change the context root, add the following parameter to the configuration file (config.properties),

located in the ZIE server publish directory.

Example: InterOpContextPath=interop

The default ZIE server IP is 127.0.0.1 and the ZIE server port is 8999. If the user needs to connect to the ZIE server

located on a different machine, then override the interoperability configuration by modifying the properties of

“interop_overrides.xml” in the conf directory under the lib directory of the product.

Table 4. List of properties that can be used to configure the Interoperability

Property Value Description

ZIEWEB_SERVER_IP 127.0.0.1 ZIE server address

Chapter 2. Product Documentation

Table 4. List of properties that can be used to configure the Interoperability (continued)

Property Value Description

ZIEWEB_SERVER_PORT 8999 ZIEWEB Config Server port

Directory_Location C:\\dir_location Directory Location for logs

The user can utilize ZIEWeb_Interoperability.war file (available under the lib directory of the product) to deploy to

different application servers such as WAS/Tomcat.

For WebSphere Application Server (WAS):

1. Log in to WebSphere Application Server.

2. Go to Applications.

3. Click WebSphere enterprise applications under Application Type.

4. Select ZIEWeb_Interoperability.war file.

5. Click on Initialize parameters for servlets link under Web Module Properties section.

6. Enter the required values.

Supported Application Servers: Apache Tomcat and WAS.

Limitations

1. Only connection parameters are considered for interoperability between ZIEWin and ZIEWeb and vice-versa.

2. Session creation from ZIEWeb / ZIEWeb Client will not be converted to a ZIEWin session.

Known Issues

1. For stored ZIEWin sessions, changes to any session parameters (not only the listed parameters) from

ZIEWeb / ZIEWeb Client will be overridden or set to default when there is an update from “Session Manager

Online” (ZIEWin Client).

2. If there are simultaneous profile updates from any of the two clients, the most recent update will be saved as

the final copy in the ZIE server .

3. Modifications done in multiple sessions (add, delete sessions, or rename) from the ZIEWeb Clients do not

reflect in the ZIEWin Client.

4. Saving/renaming profiles with special characters (Ex: \ / : * ? " < > |.) in ZIEWeb/ ZIEWeb Clients will result in

unexpected behavior in the ZIEWin Client.

How to setup Managed HCL Z and I Emulator for Windows (ZIEWIN)
HCL Z and I Emulator for Windows uses Session Manager Online dialog to provide easy access to workstation

profiles and batch files on the ZIE Server. With Session Manager Online users can create or start a single or multiple

sessions and or batch files. Users can create their own profile to the ZIE server and migrate existing files such as the

workstation profiles (*.WS) and batch files (*.BCH) that were stored on the ZIE Server.

This "How To" document aims to supplement additional detailed information in setting up Managed HCL Z and I

Emulator for Windows (ZIEWIN) as referenced below.

33

HCL Z and I Emulator for Windows (ENGLISH)

34

Steps to Install Using Managed:

Refer to Planning to Install Z and I Emulator for Windows on page 42

The steps provided in this document are applicable to all Windows 10 versions which are 64-bit OS level.

Prerequisites :

1. Download a copy of HCL Z and I Emulator for Windows 64-bit base package and HCL Z and I Emulator for

Windows RP1.zip

2. A HCL Z and I Emulator for Web server is required for the Session Manager Online to work.

3. Create a folder (e.g. MPZiewin) in the ZIEWEB published directory.

4. Unzip and dump the HCL Z and I Emulator for Windows RP1 contents in MPZiewin folder.

5. Right click the MPZiewin folder > Properties > Sharing > Advance Sharing > Put a check on Share this Folder.

6. Click OK then Close.

7. Repeat steps 5-6 with ZIEWEB folder.

8. Obtain the IP address of the ZIEWEB server and use it at step 2 below.

Follow the steps below in setting up Managed HCL Z and I Emulator for Windows (ZIEWIN):

1. There are two ways to input the ZIE Server configuration details. Choosing to go either way will have the same

results.

• During the ZIEWIN installation a new panel has been added.

Chapter 2. Product Documentation

• Preferences Manager - Click on Start > HCL Z and I Emulator for Windows > Preferences > Advanced

2. Enter the configuration parameters based on the information below:

• Web Server URL : The URL of the Web Server from where HCL Z and I Emulator for Windows fix pack

file will be downloaded for installation. Installer or fix pack will be installed on the system by "Start or

Configure Sessions - Online" program.>

• Config Server : URL of the Application Server/Embedded Server, on which interoperability module (.war

file) is deployed. It can be deployed on the HOD Embedded Server or on any configured Application

Server.

Example: http://< Application Server IP >/<Configured context root of the application>

35

HCL Z and I Emulator for Windows (ENGLISH)

36

For more details on WAR file deployment, refer to the technote <hyper-link>.

• Config Server Port : Port number of Application Server where interoperability module (.war file) is

deployed.

Example: 9080

3. Click OK.

4. Open File Explorer > This PC > Map network drive. Use the IP address of the Web Server along with the folder

where the HCL Z and I Emulator for Windows RP1.msi is located. E.g. \\192.168.56.102\MPZiewin

5. Click Save.

6. Repeat steps 4-5 with ZIEWEB folder. E.g. \\192.168.56.102\ZIEWEB

Note: This completes configuring Managed HCL Z and I Emulator for Windows (ZIEWIN).

7. To validate that the configuration is correct, create a new Username or use an Existing User in the Session

Manager Online. Click on Start > HCL Z and I Emulator for Windows > Start or Configure sessions - Online

Points to consider:

• When mapping the network drive ensure that client machine and ZIEWEB server is within the same network.

• The Session Manager Online checks for updates at startup. It is essential that HCL Z and I Emulator for

Windows RP1 is in the ZIEWEB published directory.

Introduction

Welcome to Z and I Emulator for Windows
Z and I Emulator for Windows brings the power of personal networking to your workstation by exploiting networking

capabilities to provide a variety of connectivity options supporting local area network (LAN) and wide area network

(WAN) environments. Whether it is for host terminal emulation, client/server applications, or connectivity, Z and I

Emulator for Windows offers a robust set of communication, networking, and administrative features.

Chapter 2. Product Documentation

Z and I Emulator for Windows is a full-function emulator. In addition to host terminal emulation, it provides these

useful features:

• File transfer

• Dynamic configuration

• An easy-to-use graphical interface

• Emulator APIs such as Emulator High-Level Language Programming Interface (EHLLAPI), Host Access Class

Library (HACL), and PCSAPI. For example, EHLLAPI is often used for automated operator applications which

read host screens and enter keystrokes without direct user intervention. Refer to Emulator Programming and

Host Access Class Library for details.

A variety of application programming interfaces (APIs) are supported by Z and I Emulator for Windows. You can

create applications that use the peer-to-peer client APIs, which are based on LU 6.2 and provided by Z and I Emulator

for Windows. These APIs let you simultaneously access and process information on peer workstations.

What's New in Z and I Emulator for Windows
For information on new functions and enhancements in Z and I Emulator for Windows Version 3.0, refer to https://

help.hcltechsw.com/zie/ziewin/3.0/doc/readme/readme.html.

Z and I Emulator for Windows Program Icons
When you have installed Z and I Emulator for Windows, the main functions that you can use are displayed as icons.

Icons are grouped in sub-folders of the HCL Z and I Emulator for Windows program folder.

A brief explanation of each function follows:

Start or Configure Sessions

iconsstart or configure sessionssessionsstart or configure sessions, iconSession ManagerUse this icon to bring up the Session Manager. This dialog allows you to start or configure sessions.

During configuration, you can specify the session type, screen size, LU number, graphics support, the

type of communication link and its parameters, as well as other information. You can save all this

information in a workstation profile. After saving, you can start the session by just clicking the session

icon. Authorized users can also create new batch files from this dialog

37

https://help.hcltechsw.com/zie/ziewin/3.0/doc/readme/readme.html
https://help.hcltechsw.com/zie/ziewin/3.0/doc/readme/readme.html

HCL Z and I Emulator for Windows (ENGLISH)

38

Start or Configure Sessions Online

iconsstart or configure sessions onlinesessionsstart or configure sessions online, iconSession Manager OnlineUse this icon to bring up the Session Manager Online. This dialog allows you to manage and use the

online sessions available on ZIE Server. This provides option for auto install of Z and I Emulator for

Windows available on ZIE Server.

Administrative and Problem Determination (PD) Aids

Information Bundler

iconsinformation bundlerinformation bundler, iconUse this icon to gather system files and specific trace and log files, as well as registry information,

such as the software installed or running on a machine. This can also be run from an active session by

clicking Actions → Launch → Information Bundler.

Log Viewer

iconslog viewerlog viewer, iconUse this icon to view, merge, and sort the Z and I Emulator for Windows message and trace logs. Z and

I Emulator for Windows logs errors and informational messages during initialization and operation. This

can also be run from an active session by selecting Actions → Launch → Log Viewer.

Migration Utility

iconsmigration utilitymigration utility, iconUse this icon to migrate your user-class and system-class files and desktop icons to Z and I Emulator

for Windows Version 3.0.

Trace Facility

iconstrace facilitytrace facility, icon Use this icon to turn trace functions on and off and to capture communication protocol information

that passes between your workstation and other host systems. You can use traces to resolve

communication problems. This can also be run from an active session by selecting Actions → Launch →

Trace Facility.

Chapter 2. Product Documentation

Utilities

Note

These programs are provided on an as-is basis without any warranty of any kind, including the warranties of

merchantability and fitness for a particular purpose which are expressly disclaimed.

iSeries Connection Configuration

Use this icon if you want to define connections to each iSeries™, eServer™ i5, or System i5™ host that will

use the data transfer function.

Convert Macro

macroconvertUse this icon to convert an existing Z and I Emulator for Windows macro to an XML or VBScript file.

Data Transfer (iSeries™ only)

Data TransfericonUse this icon to transfer data between a workstation and an iSeries™, eServer™ i5, or System i5™

database.

Multiple Sessions

Use this icon to create batch files (.BCH), which can specify multiple emulator sessions (workstation

profiles) or other supported Windows® programs that you want to start concurrently. You can create an

icon for each batch file and start the programs just by clicking the icon.

39

HCL Z and I Emulator for Windows (ENGLISH)

40

Preferences

Use this icon if you want to set up or change the user preferences, such as changing the user interface

language.

ZipPrint (3270 only)

printingZipPrintUse this icon to start the ZipPrint program, which allows you to print host system files or screens,

PROFS® notes, calendars, and documents, CMS files, and XEDIT workspaces. When started, ZipPrint

adds an item to the menu bar of the session window.ZipPrint

FTP Client

Use this icon to start the Z and I Emulator for Windows FTP client application, which allows files and

directories upload and download, and directory navigation of local and remote file systems running FTP

servers.

Z and I Emulator for Windows Sessions
The sessions that Z and I Emulator for Windows provides are logical connections enabling communication between

your workstation and a host system. The following session types are available:

Display session

Use your workstation as a display terminal connected to the host system.

Printer session

Use your workstation printer as a host system printer.types ofsessions

Client/server session

Establish connections that allow peer communications using CPI-C and APPC (LU 6.2).

Z and I Emulator for Windows Connections
Z and I Emulator for Windows supports a variety of connections to the following host systems. Following are the

icons you will encounter when you begin to configure an emulator session:

zSeries™

Chapter 2. Product Documentation

iSeries™

ASCII

zSeries Emulator Connections

Table 5. zSeries Emulator Connection Icons

Interface Attachment

LAN Telnet3270

VT-over-Telnet (TCP/IP)

COM port Telnet 3270

VT over Telnet (TCP/IP)

iSeries Emulator Connections

Table 6. iSeries Emulator Connection Icons

Interface Attachment

LAN Telnet5250 over TCP/IP

VT over Telnet

COM port

41

HCL Z and I Emulator for Windows (ENGLISH)

42

Table 6. iSeries Emulator Connection Icons (continued)

Interface Attachment

ASCII Emulator Connections (SBCS only)

Table 7. ASCII Emulator Connection Icons

Interface Attachment

LAN VT over Telnet (TCP/IP)

COM port VT over Telnet (TCP/IP)

Planning to Install Z and I Emulator for Windows
Z and I Emulator for Windows supports a wide range of workstations. There are hardware and software requirements,

as well as memory and storage requirements, to consider when planning the installation of Z and I Emulator for

Windows.

The following sections describe and list support for monitors, adapters, and keyboards.

For detailed instructions on installing Z and I Emulator for Windows, refer to Installation Guide.

For instructions to install the HCL ZIE License Manager, refer to Installation of HCL ZIE License Manager, and see the

topic Configuration of License Manager settings on page 121 to configure the ZIE License Manager for ZIEWin.

Workstation Hardware
Z and I Emulator for Windows supports workstations with the following hardware:

https://help.hcltechsw.com/zie/ziewin/3.0/doc/install/LM_install.html

Chapter 2. Product Documentation

Table 8. Workstation Hardware Support

System units The recommended system unit has an Intel Pentium® microprocessor and access

to a DVD-ROM drive.

A minimum of 180 MB of fixed drive space is required.

Display monitors All VGA resolution or above display monitors supported by Windows®.

Video adapters All VGA resolution or above video adapters supported by Windows®.

Keyboards • Enhanced keyboard (101-key, 102-key, 104-key)

• Space-saving keyboard

• Microsoft® Natural keyboard

Printers All printers supported by Windows® when a PDT file is not used. For more details

about printers supported in PDT mode, refer to Emulator User's Reference.

Communication adapters LAN, SDLC, COM Port, OEM, and Multiprotocol communication adapters.

Modems All asynchronous modems that use the Hayes AT® command set and are supported

by Windows®.

Synchronous (SDLC) modems attached to a multiprotocol adapter (MPA) or SDLC

adapter.

Workstation Memory Requirements
For Z and I Emulator for Windows the amount of memory you need depends on several factors, including the

operating system you are running on, the attachment type, number of sessions, and the use of programming

interfaces such as Emulator High-Level Language Application Programming Interface (EHLLAPI) and Dynamic Data

Exchange (DDE).

Host Requirements

Refer to Emulator User's Reference for information about hardware requirements for host systems.

For all supported Windows operating systems, Java Runtime Environment 1.8 is installed.

Application Data
Application Data is generally defined to be files that contain user preferences or configuration information; an

application may need some or all of these files to run properly. Z and I Emulator for Windows uses multiple

configuration files: User Class files can be stored individually by user profile, while System Class files are stored in a

common location.

Table 9: Application Data File Types on page 44 lists the classifications of some of the most common Z and I

Emulator for Windows file extensions.

43

HCL Z and I Emulator for Windows (ENGLISH)

44

Table 9. Application Data File Types

User Class System Class

Extension File Type Extension File Type

.ws Workstation Profile .mlg Default Message Log

.bch Multiple Sessions .trc Unformatted Trace

.ini Session Size and Location .tlg Formatted Trace

.pmp Popup Keypad Configuration .cfg FTP Client Configuration

.kmp Keyboard Configuration .pub Client/Host public key

.srl File Transfer List .dat FTP Client data file

.ndc iSeries™ Connection Configuration

.tto iSeries™ Data Transfer Request (Re

ceive)

.tfr iSeries™ Data Transfer Request

(Send)

.bar Toolbar Setup

.mac Macro

.mmp Mouse Setup

.xlt Translation Table

.cert Certificate

.der Binary DER

Application Data Locations
The location for Application Data is specified during installation of Z and I Emulator for Windows. The following

tables list the default Application Data locations, based on operating system.

If the [UserProfile]\Application Data location was selected at installation, the following profile paths are used:

Operating System User-Class Directory (Current User)1 System-Class Directory

Windows 7, Win

dows 8/8.1, Win

dows 10, Windows

Server 2008, Win

dows Server 2012

C:\Users\%USERNAME%\AppData\Roam

ing\HCL\Z and I Emulator for Windows

C:\ProgramData\HCL\Z and I Emulator for

Windows

1 The FTP Client configuration files are stored in the profile path mentioned above, under the FTP folder.

If the All Users\Application Data location was selected at installation, the following profile paths are used:

Chapter 2. Product Documentation

Operating System User-Class Directory (Current User)1 System-Class Directory

Windows 7, Win

dows 8/8.1, Win

dows 10, Windows

Server 2008, Win

dows Server 2012

C:\ProgramData\HCL\Z and I Emulator for

Windows

C:\ProgramData\HCL\Z and I Emulator for

Windows

1 The FTP Client configuration files are stored in the profile path mentioned above, under the FTP folder.

ZIEWin Trial Version
The ZIEWin Trial version package allows users to try and evaluate the product for up to 30 days. Trial version licenses

can be obtained to use this version. Alternatively, users can also use the "Disable License" option to to try the ZIEWIN

without licensing.

The ZIEWin trial version is supported in both English and Japanese languages.

To request a free trial version, users can visit the following link:

https://www.hcltechsw.com/mainframe-solutions/mainframe-solutions-free-trial?referrer=help.hcltechsw.com

Using Z and I Emulator for Windows

Configuring Sessions
Z and I Emulator for Windows saves emulator configuration information to a workstation profile (.WS). Depending

on your Z and I Emulator for Windows configuration, you might have a workstation profile only or both a workstation

profile and a configuration file. The workstation profile can be used later by other Z and I Emulator for Windows

sessions, or to restart this session.

LDAP

sessionsicons forYou can have an icon created for each workstation profile. Then you can select the session icon to establish

communication with the host system using the saved workstation profile.

Configuring for iSeries™, eServer™ i5, or System i5™

To connect to an iSeries™, eServer™ i5, or System i5™, specific configuration information in the

workstation profile must correspond to the information specified at the iSeries™, eServer™ i5, or System

i5™ system. Refer to the iSeries™, eServer™ i5, or System i5™ configuration examples in Emulator User's

Reference for more information about creating display, line, and controller descriptions on the iSeries™,

eServer™ i5, or System i5™ system.

If you want to configure multiple links, refer to Administrator's Guide and Reference.

45

https://www.hcltechsw.com/mainframe-solutions/mainframe-solutions-free-trial?referrer=help.hcltechsw.com

HCL Z and I Emulator for Windows (ENGLISH)

46

Creating a Configuration
To create a new session, use the following procedure:

1. From the Start menu, click Programs → HCL Z and I Emulator for Windows → Start or Configure Sessions.

2. From the Session Manager dialog, click New Session.

The Customize Communication window appears.

3. Select the type of host from the Type of Host drop-down list box.

4. Select the interface you will use from the Interface drop-down list box.

5. Select the attachment type you want to use from the Attachment drop-down list box.

6. Click Session Parameters to modify the session type (display or printer), host code page, and display/

graphics options.

The Session Parameters – 3270, 5250, or ASCII – Host window appears (depending on the host you selected

in step 3 on page 46). Click OK.

7. Click Link Parameters.

Enter the appropriate information for each page and click Next to continue. Click Finish when you are done.

Based on the attachment type that you have chosen, make your selections for the parameters in the window

displayed. Click Help or press F1 to display parameter details. Click OK when you are finished.

Note: If your host is configured to support Secure Sockets Layer (SSL) or Transport Security Layer

(TLS), then click the Security Setup tab. Refer to Administrator's Guide and Reference for details on

configuring session security.

8. Click the Host Definition tab to configure the Connection Options.

• Select Auto-reconnect to reestablish an interrupted connection.

• The Connection Timeout value tells Z and I Emulator for Windows how long it should wait for

connection to the host.

• The Try connecting to last configured host infinitely option is enabled by default. Clear this box if you

do not want Z and I Emulator for Windows to automatically and indefinitely wait for acknowledgement

for a connect request from the last correctly configured server/host.

• Select Telnet keep alive to send Telnet Keep Alive commands to the host.

• There are two keep alive mechanisms supported: NOP and TIMING-MARK. The Keep Alive Timeout

value specifies the interval between the keep-alive requests in seconds. The range of values is 30 to

99999 seconds.

• Select Bypass signon using Kerberos principal to enable Kerberos authentication. A ticket is

generated and passed to the iSeries™, eServer™ i5, or System i5™ host during TN5250 negotiation. This

option is only available for 5250 sessions.

Chapter 2. Product Documentation

Note: You must log into a Windows domain in order to use Kerberos authentication. Refer to

the relevant Microsoft documentation for specific details. Refer to Administrator's Guide and

Reference for details about express logon functions.

• Select Bypass signon using Password substitute to enable the user to bypass the iSeries login screen

by sending a SHA1 password substitute.

9. To set up printer association, click the Printer Association tab and do the following:

a. Select Associated Printer Session.

b. Enter the .WS file for the printer that is to be associated with the specific terminal. You can also click

Browse to locate the file.

You can also set the following options:

• Select the Start Associated Printer Minimized check box, if preferred. This option is unavailable until

an associated printer is selected.

• Select the Automatically close Associated Printer Session with this session check box, if preferred.

This option is unavailable until an associated printer is selected.

• Select Associated device name to associate the display session with any printer device that currently

exists on an iSeries™, eServer™ i5, or System i5™ host. This option is only available for 5250 sessions.

10. After configuring the session options, click OK in the Telnet tab panel.

11. Click OK on the Customize Communication window. The session is displayed automatically.

Save the workstation profile as described in Saving a Workstation Profile on page 48.

Creating an FTP configuration

1. Open the FTP client from Start Menu by clicking Start -> HCL Z and I Emulator for Windows -> Utilities -> FTP

Client.

2. Click Communication -> Configuration from the menu.

3. Choose the options in the Connect tab.

• Enter the host name or IP address of the FTP server.

• Set the required options from the Connection group box if the default values are to be changed.

4. Click the Logon tab.

• Enter the user name and password.

• Enter the Remote/Local Home Directory values so that once the connection is established, the client

will list these directories you specified.

5. Click the File Transfer tab and select the appropriate choice for the Transfer mode from the drop-down list.

Browse and select a Transfer List File if any.

6. Click the SSL tab to specify the security parameters for Secure FTP. SSL is optional and not enabled by

default.

• Check Enable Security to enable the SSL security.

• Select the Security provider for the connection.

47

HCL Z and I Emulator for Windows (ENGLISH)

48

• Enter the Channel Security parameters for the connection.

• Select the Client Authentication method from the two options.

7. Click the Runtime Preferences tab.

• Enter the action to be taken if target file exists during a file transfer.

• Startup Commands enables you to provide a comma-separated list of FTP Command(s) to be

executed after a successful connection.

• Pass Through Host Certificate Validation allows the FTP client to finish a successful handshake

bypassing the server certificate validation.

8. Click OK to close the configuration dialog.

9. Connect to the host by clicking Communication->Connect or the Connect button.

Environment variables in workstation profile
In the .WS profile, you can specify environment variables for the paths of the following Z and I Emulator for Windows

files:

• Bar files (.bar)

• Popup keypad files (.pmp)

• Mouse customization files (.mmp)

• Keyboard map files (.kmp)

The syntax is as follows:

[Toolbar]
BarFile=C:\%USERDIR%\disp.bar

[Poppad]
DefaultPoppad=C:\%PROFILEDIR%\test.pmp

[Mouse]
DefaultMouse=%ZIEWinPROFILE%\vtpf.mmp

[Keyboard}
DefaultKeyboard=C:\%USERFOLDER%UserMap.kmp

In the above examples, USERDIR, PROFILEDIR, ZIEWinPROFILE, and USERFOLDER are environment variables that you

specify. See the following example:

USERDIR = profile\toolbarfiles

Saving Configuration Information
This section describes how to save configuration information. The emulator workstation profile, and FTP Client

configuration information is stored in a .WS, and .CFG file respectively.

Chapter 2. Product Documentation

Saving a Workstation Profile
If you save your emulator configuration information, the session will have the same characteristics the next time you

start it. If you have an icon added to the Z and I Emulator for Windows folder, you can restart the session with the

saved configuration information by clicking this icon from the Start menu. You are automatically given the opportunity

to save your session information when you close a session. However, if you want to save the information at any time,

use the following procedure:

1. Select Save from the File menu in the session window.

The Save WorkStation Profile As window appears.

2. Type a file name (.WS) and then click OK. The name you enter will become the icon title unless you enter a

description. Note that you can choose the directory where this file is saved, but the default directory is the

application data directory specified during installation.

3. An icon associated with the profile will appear in the Session Manager.

Saving an FTP Client Configuration
You can save the FTP Client configuration in two ways:

• When exiting the FTP Client after you create or change a configuration in the FTP Client Session Configuration

panel, you are prompted to select whether to save changes, exit, or continue to work in the application. If

you select to save changes, type the file name and click Save. The default file type is .CFG and the default

directory is the application data directory specified during installation.

• You can save configuration changes by selecting File->Save or File->Save As.

Changing Configuration Information
You can change all of the configuration parameters in the workstation profile.

Changing a Workstation Profile
To change a workstation profile, use the following procedure:

1. If your session window is not active, select the icon corresponding to the workstation profile to be changed.

The session window appears.

2. Select Configure from the Communication menu.

The subsequent steps are the same as for creating a new configuration, beginning with step 3 on page 46.

3. After you have made your changes, the following message appears:

 Because you have changed the configuration,
 communication will be terminated if you
 proceed. Are you sure?

49

HCL Z and I Emulator for Windows (ENGLISH)

50

If you click OK, communication ends, but then you are reconnected using the new configuration information.

To save the changes in your workstation profile, click Save from the File menu in the session window and then

click Yes to replace the existing file. Otherwise, click No to save this information in a new configuration file.

Tip

Unless you have deselected Save on Exit in the Exit Options dialog by selecting Exit from the Settings menu, changes

are saved in the workstation profile automatically whenever you exit a session.

Starting and Stopping Emulator Sessions
This chapter describes how to start and stop single and multiple emulator sessions.

If you saved your emulator configuration information, as described in Saving Configuration Information on

page 48, it is stored in a workstation profile (*.WS), which should be displayed in the Session Manager.

Note: If you are a first-time user of Z and I Emulator for Windows, or there are no session icons in the Session

Manager, see Configuring Sessions on page 45 to create a configuration.

Session Manager
Z and I Emulator for Windows uses the Session Manager dialog to provide easy access to workstation profiles and

batch files. You can use the Session Manager to start a single or multiple sessions, and create a new session or batch

file.

Note: The Session Manager dialog only displays workstation profiles and batch files that are located in the

Application Data location that was specified during Z and I Emulator for Windows installation. See Application

Data on page 43 for more information about application data.

You can drag an icon from the Session Manager to the Windows® Start menu or to the desktop. Select one or more

sessions and drag with the right mouse button. A contextual menu appears when the icons are dropped, which gives

you the options for moving, copying, or creating a shortcut. If you drag an icon with the left mouse button held down,

the icon is moved to that location. If you drag an icon while pressing the Ctrl key and with the left mouse button held

down, the icon is copied to that location. If you drag an icon while pressing the Alt key and with the left mouse button

held down, a shortcut is created for the icon.

You should use the shortcut option whenever possible. Moving and copying will affect the location (and therefore

the function) of the profile. Specifically, when you copy a profile to the desktop instead of creating a shortcut, you

have actually created another profile. Any changes you make to the desktop profile will not be reflected in the original

profile (and vice versa). Also, the desktop profile is located in the desktop folder (not in the application data folder)

and will not appear in the Session Manager—the original version of the profile remains in the Session Manager.

Chapter 2. Product Documentation

Session Manager Options
Various Session Manager options are available from the pull-down menus and the right-click menu. For example, you

can customize the look of the displayed Session Manager information and import sessions or batch files into the Z

and I Emulator for Windows Application Data directory.

Session Manager Menu
The following options are available from the Session Manager menu.

File

Change Directory

The user run files that are stored in a directory other than the Z and I Emulator for

Windows Application Data directory.

Import

This option allows the user to copy sessions or batch files to the Z and I Emulator for

Windows Application Data directory. Afterwards, the imported files is displayed in the

Session Manager dialog.

View

Sessions

This option shows all valid workstation profiles that have the standard .WS extension and

are located in the Application Data directory.

Multiple Sessions

This option shows all valid batch files that are have the standard .BCH extension and are

located in the Application Data directory.

All File Extensions

This option shows all valid multiple sessions and workstation profiles that are located in

the Application Data directory, regardless of extension.

Hidden

This option shows files that have been previously hidden using the right-click menu

option. If this option is selected, hidden sessions are shown with black-and-white icons;

otherwise, they will not be displayed.

Large Icons

This option shows large session icons in the Session Manager.

Small Icons

This option shows small session icons in the Session Manager.

51

HCL Z and I Emulator for Windows (ENGLISH)

52

Details

The following session detail information is displayed in the panel columns. The columns

can be resized as needed.

• File Name

• File extension

• Type (session or batch file)

• Description (shows the information specified in the Description= field in the .WS

file)

• The following session information is not shown for batch files.

◦ Host Name

◦ Host Type (shows the host type specified in the Customize Communication

dialog during session configuration)

◦ Interface (shows the interface specified in the Customize Communication

dialog during session configuration)

◦ Attachment (shows the attachment specified in the Customize

Communication dialog during session configuration)

◦ Session Type (printer or display)

• Modified (indicates the last modification date/time of the file)

Refresh

If the user manually copy a session or batch file into the Application Data directory, the

user must refresh the Session Manager view in order to see the new files.

Package

Upgrade

The users can Upgrade to the latest RefreshPack via Session Manager (Online/Offline).

Rollback

The users can do the Rollback of installed RefreshPack via Session Manager (Online/Offline).

Detect and Repair

Detect and Repair might be automatically initiated if the Z and I Emulator for Windows installation is

corrupted. This function uses Windows Installer to repair damage to the installed product. The user may

be prompted for the installation source or image. User must be authorized in the System Policy to use

this option. See Detect and Repair for more information about this feature.

Right-Click Menu (Contextual)
The following options are available by right-clicking on one or more session.

Chapter 2. Product Documentation

Start

Starts the selected sessions

Delete

Deletes the selected sessions. You must have permission in the System Policy to delete any sessions

from the Session Manager.

Hide/Unhide

You can hide or unhide sessions using this option. To view hidden sessions, you must select View →

Hidden. Hidden sessions have black-and-white icons when displayed.

Modify

This option is only available when selecting one or more batch files—the batch files are brought up

in edit mode. You must have permission in the System Policy to modify batch files from the Session

Manager.

Session Manager Online
ZIEWin uses the ZIE service manager (referred to, as 'ZIE Server' going forward) to provide auto-upgrade capability

and centralized management of configuration files.

The Session Manager Online notifies users if any new version of Z and I Emulator for Windows is available online for

update on the configured Web Server.

After confirmation from the User, Z and I Emulator for Windows will be auto-upgraded to newer versions. Z and I

Emulator for Windows uses the Session Manager Online dialog to provide easy access to connect to the ZIE Server

and work with workstation profiles and batch files online. Users can configure the ZIE Server and work with their User

Profiles in the Online mode, but by default, are not allowed to create new user entries on the server, unless permitted

to do so, by a system administrator. To enable users to be able to create user entries, a ZIEWeb (Z and I Emulator for

Web) administrator must enable the “Allow users to create accounts" check box on the ZIE for Web Server, using the

ZIEWeb (Z and I Emulator for Web) Administration Console. The new users that are created are added to the "ZIEWin"

group on the ZIE Server.

The ZIE Server can either be configured by providing the required server details in the 'InstallShield Wizard' at the time

of ZIEWin installation itself, or can be added/updated in the 'ZIE Server Detail' section of the Advanced tab within the

Preferences. Users can migrate the Workstation profiles and batch files from Application Data location, upon login to

the ZIE Server. If the User chooses to migrate, the Workstation profiles, batch files and their dependent files available

on "Application Data" location get migrated

List of the supported files for online option are below:

• .ws (Workstation profile)

• .bch - (Multiple Sessions or Batch)

• .pmp (Popup-Keypad Configuration)

• .kmp (Keyboard Configuration)

53

HCL Z and I Emulator for Windows (ENGLISH)

54

• .bar (Toolbar Setup)

• .mmp (Mouse Setup)

• .xlt (Translation Table)

• .cmp (Color mapping configuration file)

Multiple instances of the Session Manager (offline) can be invoked at a time, but for Session Manager Online, only

one instance can be invoked at a time. An instance of Session Manager Online and Session Manager (offline) can

both be operated simultaneously.

First time configuration of the Online Session Manager :

When you select Start or Configure Sessions - Online for the first time from the Windows Start menu, the 'Z and I

Emulator for Windows: Online' panel is displayed with the following tabs :

• Create User :

The 'Create User' window containing the fields, 'User Name', 'Password' and 'Confirm Password' is displayed

to a user who launches the 'Z and I Emulator for Windows: Online' for the first time, to create a new User entry

on the Server. (The New User entry will be created only if the entered User name and Password matches the

required criteria. For more information about the criteria for valid user credentials, see the 'Quick Beginnings'

book by selecting it from the Help menu.) You can also click on 'Existing User' on the Create User page to use

an existing ID on the server, instead of creating a new User entry.

Note: After the successful creation of a user on the server and after migrating the user's profiles to the

server successfully, the 'Create User' tab will not appear again and the user will be directly taken to the

'Login' page, upon launching the 'Z and I Emulator for Windows: Online' subsequently.

• Login :

After creating a user, Login window appears with username and password fields for user to login. If user

wants to create a new user, user can go back to 'Create User' window by clicking on create-user link. User

can also change the password by checking the box of 'Change Password', while logging in. Once the login is

successful, user is directed to profile migration window.

• Profile Migration :

After a successful Login using an existing User Profile stored on the ZIE server, or upon the first time creation

of a new User profile and connecting to the ZIE server, the user is taken to the 'Profile Migration' tab which

gives the option to migrate (or upload) existing local user profiles (offline profiles) from the particular user's

client machine to the ZIE server. The profiles that are migrated will be listed on the ZIE server as a server copy

and can be retrieved for use thereafter, even if the offline copy of the profile is deleted from the client machine.

Session Manager - Online LOGIN Screen :

The Login Screen is the default page that opens whenever the Online Session Manager is launched, if a User is

already created on the server and the Profile migration is also completed successfully. A user can login to the Online

session manager using any of the User Profiles that were created on the ZIE server. The user can also change the

password by clicking on the check box for 'Change Password' on the Login page. If the user name or password

Chapter 2. Product Documentation

entered on the Login page are incorrect, the user gets prompted to either 'Re-try with different credentials' to Login

again, or, to 'Run offline', i.e, to close the Online Session Manager and launch the Offline Session Manager instead.

After successful logon, profiles will be retrieved from the ZIE server, and can be viewed in the sessions list.

Interoperability between ZIEWin and ZIEWeb clients:

ZIEWin v2.1introduced interoperability between ZIEWin and ZIEWeb (Host On-Demand) clients. This allows ZIEWin

sessions to be accessed through ZIEWeb and ZIEweb - Web Client products after the session definitions were

migrated (uploaded) to the ZIE server.

From v2.1 onwards, ZIEWin client communicates with the ZIE server over HTTP/HTTPS connectivity using JSON

data.

For Managed ZIEWin users configured with ZIE server of version lower than v2.0, a migration utility has been provided

along with ZIEWeb v2.0 server component, to migrate the ZIEWin session definitions stored on the ZIE server to the

new format. The migration is a pre-requisite for those who plan to migrate their ZIEWeb server to v2.0 and ZIEWin

client to v2.0 or higher.

Password provided during the user creation will be encrypted using AES 128-bit algorithm and sent to the server

through the HTTP/HTTPS protocol as a JSON object. UID is added to the WS and BCH profile files for the unique

identification. Only connection parameters are considered for the interoperability between ZIEWin and ZIEWeb clients

and vice-versa.

After the ZIEWin sessions are converted and stored in the ZIE server, any changes made to the common parameters

from any of the clients will be saved on the ZIE server. These parameter changes will be available to ZIEWinusers

after the next login.

For more information on ZIEWeb - ZIEWin interoperability and common parameters, refer to Interoperability between

HCL Z and I Emulator for Windows and HCL Z and I Emulator for Web Clients on page 30

Session Manager Online Options :

• Start

Select one or more sessions or batch files in the Online mode, and click this button to start.

• New Session

Click this button to bring up the Customize Communication panel in the Online mode.

• New Multiple Sessions

Click this button to bring up the Create/Modify Batch File pane in the Online mode. You must be authorized in

the System Policy to use this option.

• Logout

Click on this button to Logout from the Online Session Manager. It will prompt for a confirmation. When User

confirms the logout, all the active online sessions will be ended automatically without any more confirmation

for exit or Save. Session Manager Online's login screen will be displayed.

File menu options

55

HCL Z and I Emulator for Windows (ENGLISH)

56

• Upload

This option allows user to select and upload sessions or batch files to the ZIE server. Upload of user profile

file will also upload the dependent configuration files (like a .kmp file when associated with a .ws file etc)

available in the same directory.

• Download

This option allows users to Download the profile files or batch files from the ZIE Server to the selected

directory. Download of user profile file will also download the dependent configuration files (like a .kmp file

when associated with a .ws file etc).

• Exit

Clicking on Exit, will prompt for the confirmation, if user confirms the exit, the active online sessions will ended

and the application is closed.

View menu options

• Sessions

This option shows all valid workstation profiles that have the standard .WS extension and are available in the

ZIE Server.

• Multiple Sessions

This option shows all valid batch files that have the standard .BCH extension and are available in the ZIE

Server.

• Large Icons

This option shows large session icons in the Session Manager.

• Small Icons

This option shows small session icons in the Session Manager.

• Details

The following session detail information is displayed in the panel columns. The columns can be resized as

needed.

◦ File Name

◦ File Extension

◦ Type

Session or Batch file

◦ Description

Shows the information specified in the Description= field in the .WS file

◦ Host Name (not shown for batch files)

Shows the host name for a Telnet session. If the session is not Telnet, other relevant information is

shown (for example, the .ACG file name for SNA).

◦ Host Type (not shown for batch files)

Shows the host type specified in the Customize Communication dialog during session configuration

◦ Interface (not shown for batch files)

Chapter 2. Product Documentation

Shows the interface specified in the Customize Communication dialog during session configuration

◦ Attachment (not shown for batch files)

Shows the attachment specified in the Customize Communication dialog during session configuration

◦ Session Type (not shown for batch files)

Printer or Display

• All File Extensions

This option shows all valid multiple sessions and workstation profiles that are available in the ZIE Server,

regardless of extension.

• Hidden

This option shows files that have been previously hidden using the right-click menu option. If this option is

selected, hidden sessions are shown with black-and-white icons; otherwise, they will not be displayed.

• Refresh

This option refreshes the Session Manager view.

Detect and Repair

Detect and Repair might be automatically initiated if the Z and I Emulator for Windows installation has been

corrupted. This function uses Windows Installer to repair damage to the installed product; you may be prompted for

the installation source or image.

You must be authorized in the System Policy to use this option. See Detect and Repair on page 104 for more

information about this feature.

Right-click menu options (contextual)

• Start

Starts the selected sessions

• Delete

Deletes the selected sessions. You must have permission in the System Policy to delete any sessions from

the Session Manager.

• Hide/Unhide

You can hide or unhide sessions using this option. To view hidden sessions, you must select View > Hidden.

Hidden sessions have black-and-white icons when displayed.

• Modify

This option is only available when selecting one or more batch files; the batch files are brought up in edit

mode. You must have permission in the System Policy to modify batch files from the Session Manager.

Icon drag-and-drop options

You can drag an icon from the Session Manager to the Windows Start menu or to the desktop. Select the session(s)

and drag with the right mouse button. A contextual menu appears when the icons are dropped, which gives you the

options for moving, copying, or creating a shortcut.

57

HCL Z and I Emulator for Windows (ENGLISH)

58

If you drag an icon with the left mouse button held down, the icon is moved to that location. If you drag an icon while

pressing the CTRL key and with the left mouse button held down, the icon is copied to that location. If you drag an

icon while pressing the ALT key and with the left mouse button held down, a shortcut is created for the icon.

You should use the shortcut option whenever possible. Moving and copying will affect the location (and therefore

the function) of the profile. Specifically, when you copy a profile to the desktop instead of creating a shortcut, you

have actually created another profile. Any changes you make to the desktop profile will not be reflected in the original

profile (and vice versa). Also, the desktop profile is located in the desktop folder (not in the application data folder)

and will not appear in the Session Manager (the original version of the profile remains in the Session Manager).

Installer Enhancements
ZIEWin Installer panel

As part of Managed HCL Z and I Emulator for Windows (MZIEWin) feature, a panel is available in HCL

Z and I Emulator for Windows Installer, where a user provide the ZIE Server configuration details in the

installation panel.

Here are the configuration parameters,

1. Web Server Details : The URL of the Web Server from where HCL Z and I Emulator for Windows

fix pack file is downloaded for installation. Installer or fix pack is installed on the system by

"Start or Configure Sessions - Online" program.

2. Config Server : URL of the Application Server/Embedded Server, on which interoperability

module (.war file) is deployed. It can be deployed on the Embedded Server or on any configured

Application Server.

Example: http://< IP >/<Configured context root of the application>

3. Config Server Port : Port number of Application Server where interoperability module (.war file)

is deployed.

Example: 9080.

The ZIE server configuration is optional only, user can click Next to skip the configuration, and can

configure this through "Preferences" utility post installation. For more details regarding the Preferences,

see Preferences on page 119.

Auto-Update of HCL Z and I Emulator for Windows (ZIEWin):

ZIEWin supports automatic upgrade. ZIE administrators manage the upgradation of ZIEWin clients by

placing the upgrade configuration file in the Web Server, which has the information of recommended fix-

packs or refresh packs that are available on the Web Server. The Web Sever URL can be provided during

installation or can be configured via the "Preferences" utility.

When a User invokes the "Start or Configure Sessions - Online", the application checks if the installed

version of ZIEWin is lower than the recommended version. If the ZIEWin installed on the system is of

a lower version, the User gets a notification of the latest available ZIEWin version. The User can either

choose to upgrade or decline the upgrade option.

Chapter 2. Product Documentation

Note: The upgrade configuration file is unique for every refresh pack installer and is shipped

along with the Fixpack package.

For details regarding the Managed ZIEWin Configuration parameters and changes in Preferences, see

ZIE Server Details on page 123.

Starting Sessions
You can use the following methods to start sessions:

• Select a previously configured session icon from the Session Manager.

• Start from an existing session window.

• Specify a workstation profile name in the Run window.

• Enter the PCOMSTRT command in the Run window or MS-DOS prompt.

• Select an icon that has been previously dragged from the Session Manager.

• Start multiple sessions with a batch file.

Note: Connection status messages are displayed on a status bar at the bottom of your session window

during connection to the host.

Starting from the Start or Configure Sessions Icon

Select Programs → HCL Z and I Emulator for Windows → Start or Configure Sessions from the Start

menu. Select the desired session from the Session Manager dialog and click the Start button.

Starting from an Existing Session Window

Use the following methods to start from an existing session window:

Starting Another Session Using the Same Profile

Select Run the Same from the File menu. Another session starts, using the same profile.

Starting Another Session Using a Different Profile

1. Select Run Other from the File menu.

The Open Other Workstation Profile window appears.

2. Double-click the desired workstation profile in the File Name list.

3. Select OK.

Another session starts, using the profile specified in step 2 on page 59.

59

HCL Z and I Emulator for Windows (ENGLISH)

60

Starting a Different Type of Session from a Session Window

1. Select Open from the File menu.

2. Specify the desired workstation profile and then select OK.

The current session ends and then another session starts, using the selected

profile.

Starting Using a Command

To start a session, use the following procedure:

1. Start a DOS command prompt.

2. Enter the command

 PCOMSTRT /P=x:\AppData\my.WS

where my.WS is the workstation profile stored in the Application Data directory specified during

installation. This is the only required parameter.

Note: If multiple /p parameters are given, PCOMSTRT only uses the last one to start a

profile (.WS file).

For a complete description of parameters, refer to Administrator's Guide and Reference.

Another method for invoking Z and I Emulator for Windows using a command is with the command for

the PCSWS.EXE module (see Command line options for PCSWS.EXE on page 60).

Starting Multiple Sessions
If you installed the Multiple Sessions utility, you can use the batch program PCSWS.EXE, which runs batch files

(*.BCH), to start two or more workstation profiles at the same time. Z and I Emulator for Windows batch files can also

start other programs when you include their startup commands. This is especially useful if you always want to start

an application when you start a session. For example, you might want to start an application, such as ZipPrint, that

uses a Z and I Emulator for Windows API.

Note: You must have permission in the System Policy in order to create a new batch file.

If you created an icon for your batch file, double-click the icon in the Session Manager or select the icon and click the

Start button.

Command line options for PCSWS.EXE
You can use the following options when creating or modifying a batch file.

Chapter 2. Product Documentation

• batch filev optionv optionTo specify which view should be used during a session, add the command /V=myview, where myview is the

name of the previously saved view:

 C:\ZIEWin\PCSWS.EXE C:\AppData\LAN1.WS /V=myview

If the specified view does not exist, the command is ignored. See Managing Emulator Sessions on page 102

for information on how to save a view.

• batch fileq optionq optionTo suppress the HCL logo when you start one or more sessions, add the parameter /Q to the first command in

the batch file:

 C:\ZIEWin\PCSWS.EXE C:\AppData\TCPIP1.WS /Q

where C:\ZIEWin\ is the directory where you have Z and I Emulator for Windows installed, and C:\AppData\ is

the Application Data directory.

• i optionbatch filei optionTo start a session as an icon, not as a window, add the parameter /I to the command in the batch file:

 C:\ZIEWin\PCSWS.EXE C:\AppData\LAN1.WS /I

where C:\ZIEWin\ is the directory where you have Z and I Emulator for Windows installed, and C:\AppData\ is

the Application Data directory.

• batch fileh optionTo start a hidden session, not as an icon or a window, add the parameter /H to the command in the batch file:

 C:\ZIEWin\PCSWS.EXE C:\AppData\LAN1.WS /H

where C:\ZIEWin\ is the directory where you have Z and I Emulator for Windows installed, and C:\AppData\ is

the Application Data directory.

• s optionbatch files optionTo start a session with a specific short session ID (session letter), insert the parameter /S=m after PCSWS.EXE

in the batch file:

 C:\ZIEWin\PCSWS.EXE /S=m C:\AppData\LAN1.WS

where C:\ZIEWin\ is the directory where you have Z and I Emulator for Windows installed, m is the short

session ID, and C:\AppData\ is the Application Data directory.

• To start a macro after the session start, add the parameter /M to the command in the batch file:

 C:\ZIEWin\PCSWS.EXE C:\AppData\LAN1.WS /M=mymacro

where C:\ZIEWin\ is the directory where you have Z and I Emulator for Windows installed, C:\AppData\ is the

Application Data directory,

LAN1.WS

is the profile, and

mymacro

is the Z and I Emulator for Windows macro/script file name.

If the specified macro/script does not exist, there will be a pop up with "PCSKBD400- The file: <macro name>

is not a Z and I Emulator for Windows macro/script-file."

Note:

61

HCL Z and I Emulator for Windows (ENGLISH)

62

1. sessionsstarting specific session IDsessionsIDs forIf you use the /S option to assign A as the short session ID, you should use this option for all of the

sessions in the batch file. Otherwise, if another session starts first, it becomes the A Session and the

session with the /S=a option will not start because of the conflicting short session IDs. Another way to

prevent conflicts is to assign a character later in the alphabet for the short session ID.

2. Several parameters can be specified for controlling the particular characteristics for starting sessions;

the switch values are designated by a single character.

Creating a Batch File
To create a batch file, use the following procedure:

1. From the Session Manager dialog, click New Multiple Sessions. You can also start a new batch file from the

Windows® Start menu, using the HCL Z and I Emulator for Windows → Utilities → Multiple Sessions program.

The Create/Modify Batch File panel appears.

2. There are several methods for including profiles or programs in a batch file:

• Double-click the file names in the File Name list box.

• Drag and drop the file names (using the right mouse button) from the File Name box to Batch-File

Entries.

• Select a file name from the File Name list box and then select Add.

• Type the complete path and command file name in the batch files entries area.

• You can also use the Capture View button to capture multiple session windows into a view.

Z and I Emulator for Windows places the full path and command that is needed to run the workstation profile

or other program above the cursor line in the edit area. If there is no cursor, the command is added to the last

line.

To see the contents of the profile you added to the batch file, click it in the File Name list box and then click

View File or the magnifying glass.

Note: Some brief instructions appear at the top of Batch-File Entries; you need not remove them,

because they do not affect the running of the batch file.

3. Repeat step 2 on page 62 for each subsequent file to be added.

4. When you complete the edit, save the created batch file by selecting Save from the File menu.

The Save Batch File As window appears.

5. Enter a name for the batch file (*.BCH).

The name you enter is used as the icon title, unless you enter a description as well.

The following example is a batch file that runs four workstation profiles located in the Application Data directory, and

then runs MYAPP.EXE.

C:\dir\PCSWS.EXE C:\AppData\SLAN1.WS
C:\dir\PCSWS.EXE C:\AppData\SLAN2.WS

Chapter 2. Product Documentation

C:\dir\PCSWS.EXE C:\AppData\AS4Y1.WS
C:\dir\PCSWS.EXE C:\AppData\VT220.WS
C:\APPL\MYAPP.EXE

where C:\AppData is the Application Data directory specified during installation and dir is the installation directory.

Saving Multiple Session Views
You can use the Create/Modify Batch File panel to capture up to multiple session views. Simply size and position up

to Maximum session windows, which is configured in the Preferences and click the Capture View button. Name the

view and click Save View in the View Setup panel. You can save up to eight views. You may also delete previously

saved views from the drop-down list in the View Setup panel.

If a view is already being used when you click Capture View, that view is automatically used and you are not prompted

to save a new view.

Starting a Batch File
You can use one of the following methods to run a batch file:

• If you created an icon for your batch file, double-click the icon in the Session Manager or select the icon and

click the Start button.

• Run the batch file from the Run command line:

 [drive]:\[path]\PCSBAT.EXE [drive]:\[path]\xxxx.BCH /R

Note: To run a batch file, specify the /R option.

• Start the Multiple Sessions Utility.

1. Select Open from the File menu in the Create/Modify Batch File window.

2. Select the desired batch file and then select OK.

The contents of the batch file appears in the edit area.

3. Select Run from the Run menu.

Editing an Existing Batch File
To edit an existing batch file, do one of the following:

• Right-click on the icon in the Session Manager and choose Modify.

You can also use the following procedure:

1. Start the Multiple Sessions Utility from the Start menu. The Create/Modify Batch File window appears.

2. Select Open from the File menu. The Open Batch File window appears.

3. Select the batch file you want to edit and then select OK. The contents of the batch file you selected

appear in the edit area of the Create/Modify Batch File window.

• Edit the batch file. See step 2 on page 62 for more details.

• When you complete the edit, save your changes by selecting Save or Save As from the File menu.

63

HCL Z and I Emulator for Windows (ENGLISH)

64

◦ Select Save to save your changes in the existing file.

◦ Select Save As to save your changes in a new file and then continue with step 5 on page 62.

• Exit the Create/Modify window.

Starting Multiple Sessions without a Batch File
To start multiple sessions without a batch file, use the following procedure:

1. Start the Session Manager.

2. Select the icons for the sessions, then click the Start button. You can select icons using a drag selection box

or holding down the Ctrl key while selecting icons with the mouse.

3. After it connects to the host, select one of the following choices from the File menu:

• Run the Same to start another session with the same configuration.

• Run Other to start a session with a different configuration.

When the Open Other Workstation window appears, select the profile you want to start and then click

OK.

Automatically Starting Sessions
To start one or more sessions automatically, use the following procedure:

1. From the Start menu, select Settings → Taskbar.

2. Click the Start Menu Programs tab and then click Add.

3. Click Browse and then open the Application Data directory specified during installation.

4. Change the file type to All Files.

5. Double-click the session icon or the batch icon.

6. Click Next and then double-click the Startup folder.

7. Accept the icon name or type a new one.

8. Click Finish and then OK when you are done.

You can also drag an icon from the Session Manager to the Startup folder as a shortcut.

Stopping Sessions
To stop a session, click the X in the upper right corner or double-click the upper left corner of the session window, or

select Exit from the File menu.

To stop multiple sessions at the same time, select Exit All from the File menu. All emulator sessions end, and the

associated session windows are closed.

Sessions can also be stopped using a command:

Chapter 2. Product Documentation

1. Select Run or Programs → MS-DOS® Prompt from the Start menu.

2. Enter one of the following commands:

 PCOMSTOP /S=x
 PCOMSTOP /ALL

where x is the session letter of the particular session to be stopped; use ALL to stop all active sessions. There

are other parameters; for a complete description, refer to Emulator User's Reference.

Note: Stopping a Telnet session automatically closes an associated printer session, if that option was

selected when configuring the session. See Printer Session Association on page 68 for information on

how to automatically close an associated printer session.

Option to suppress confirmation message for pcomstop
When invoking pcomstop.exe from the command line, the NCE option can be used to suppress the exit confirmation

message, which is shown when one or all sessions.

Example:

PCOMSTOP /S=<session>|/ALL [/Q] [/C] [/NCE] [/?]

One of the following parameters must be specified:

• /S stops the session, while <session> is the letter of the session to be stopped

• /ALL stops all sessions

The following parameters are optional:

• /Q specifies quiet mode

• /C converts the output to Windows code page

• /NCE (No Confirm on Exit) stops one or all sessions (as defined by /S or /ALL) without confirmation, even if

the Confirm on Exit or Exit All options are set.

• /? displays help information

Stopping an emulator session without access to the tool bar
This method can help you to stop a session when security restrictions do not allow tool bar access.

To stop an emulator session without access to the tool bar, you can use the mouse or a keyboard shortcut to launch

pcomstop.exe. Use the following procedure to set up the pcomstop.exe shortcut:

1. Create a shortcut for pcomstop.exe on the desktop or wherever you need.

2. Right-click the shortcut to view the Properties window.

3. Click the Shortcut tab.

65

HCL Z and I Emulator for Windows (ENGLISH)

66

4. The executable name and path are in the Target input box. Append any required parameters to this path and

click OK. These parameters will be used when the pcomstop.exe file is launched. For example, if you want to

stop session A, modify the appended path:

"E:\Program Files\HCL\Z and I Emulator for Windows\pcomstop.exe" /s=a

Note: The /S or /ALL option is required to run pcomstop.exe. The /ALL option stops all sessions, while

the /S=x option stops a particular session (where x is the session letter).

5. In the Shortcut Key input box, type the key that you want to use as a shortcut (for example, X), and click OK.

You can then launch pcomstop.exe by the following methods:

• Mouse

• Double-click the modified shortcut

• Keyboard

Windows® always adds the Ctrl+Alt sequence to the shortcut key. For example, Ctrl+Alt+X becomes the shortcut for

invoking pcomstop.exe and closes the emulator session.

Using Emulator Sessions
This chapter describes how to use the printing, editing, and data transfer functions in an emulator session. It also

describes some of the choices in the emulator session Actions, Window, and Settings → Appearance menus.

Accessibility
Z and I Emulator for Windows provides functionality with assistive technology such as screen readers. Following are

some of the accessibility-related enhancements.

Sounds
Z and I Emulator for Windows supports the ShowSounds and SoundsSentry options available in the Windows®

Control Panel → Accessibility Options → Sound dialog. The ShowSounds option displays a string representing the

event that generated a sound in the status bar.

To mute all of the sounds generated by Z and I Emulator for Windows, select the Mute option in the Settings →

Appearance → Display Setup → Sound panel.

Screen Reader Assist
Users can configure a toggle key to enable Z and I Emulator for Windows to replace blank and null characters in

the input field with another character. This option enables screen readers to report the length of the field to visually

impaired users. Data sent to and from the host is not changed—only the screen display and the screen reader's

voicing of the display are affected. By default, this function is not enabled.

Chapter 2. Product Documentation

For 3270 and VT emulators, the default padding character is a blank. For 5250, the default replacement character is

an underscore. You can choose another character if you prefer.

During the emulation session, you can turn the screen reader assist on or off, as needed. To map the screen reader

toggle to a key, click Settings → Keyboard. Click Customize to access the keyboard setup dialog. Refer to the online

help for a complete list of available keyboard functions.

Expanded OIA
For an accessible version of the Operator Information Area (bottom line of the session), you can display the expanded

OIA window. Click View → Expanded OIA from the session menu bar. You can also select Show Expanded OIA from

the session's system menu. You can change the number of lines displayed in the expanded OIA in the Settings →

Appearance → Window Setup dialog.

To set focus to the expanded OIA so that a screen reader can read the values, you need to map a key to the function

OIA: Toggle focus to/from Expanded OIA. This key enables you to toggle focus back and forth between the session

window and the expanded OIA window. When you set focus to the expanded OIA window with a key, the focus in the

expanded OIA is always set to the first line. When you return to the session window, the cursor should be where it

was before you went into the expanded OIA window. Refer to the online help in the Settings → Keyboard → Customize

dialog, for more information about custom key mapping.

Popup Keypad
Even though most users use the popup keypad with a mouse, it is possible to customize and use the poppads with

the keyboard alone. To display (execute) a poppad without a mouse, you must map a few keys in the Settings →

Keyboard → Customize dialog.

The Display Poppad function shows the last poppad and puts keyboard focus on it. The functions Display Poppad

Pad 1, Display Poppad Pad 2, Display Poppad Pad 3, and Display Poppad Pad 4 display a specific poppad and put

keyboard focus on that pad. You can execute the button with current focus by pressing the space bar or the Enter key.

If you are using a sticky poppad, the poppad window remains open until you close it. A regular poppad exits when

you push one of the buttons. To get focus to a sticky pad without a mouse, you must map the Set Focus to Poppad

function to a key—this sets focus to the sticky poppad from the session window. Because you must use the Ctrl-Tab

key combination to get focus from the sticky poppad back to the session, mapping the Set Focus to Poppad function

to the Ctrl-Tab key combination is not advisable.

Quick Connect
You can connect a Telnet (3270/5250/ASCII) session quickly using the Quick Connect bar by configuring only Host,

Port and LU Name (3270)/Workstation Id (5250). The LU Name and Workstation ID are optional.

The Quick Connect bar is enabled only for Telnet sessions (both display and Printer). For non-Telnet Sessions, the

Quick Connect bar does not appear.

While using the Quick Connect bar, the other session parameters are taken from the active session, if any. If no

session is active, then all session parameters will be of default.

67

HCL Z and I Emulator for Windows (ENGLISH)

68

You can activate or deactivate the Quick Connect bar by clicking View -> Quick Connect Bar in the session window

menu.

Power Management
Z and I Emulator for Windows complies with Microsoft Windows Power Management requirements for handling sleep

events (stand by and hibernate). This support minimizes session interruptions due to network disconnections caused

by sleep on Windows 7 and later versions.

Refer to the Administrator's Guide and Reference for more information about Power Management.

Connected State
When Z and I Emulator for Windows is in the connected state and Windows 7 or later operating system indicates that

the user is available for interaction, Z and I Emulator for Windows prompts the user to grant permission to sleep.

You can specify a setting in the Preferences Manager that allows the system to standby or hibernate without

prompting. In default mode (unchecked), if there is at least one connected session, you will be prompted to allow the

system to standby or hibernate. If there are no connected sessions, Z and I Emulator for Windows allows the system

to standby or hibernate without prompting. See Standby/Hibernate on page 125.

Non-Connected State
When Z and I Emulator for Windows is not in the connected state, Windows 7 and later operating systems might

automatically sleep, without prompting the user for permission.

Critical Sleep
When Windows 7 and later operating system's resumes after an emergency suspension, Z and I Emulator for

Windows might display and log a warning message.

Printer Session Association
When you configure a 3270 or 5250 display session, Z and I Emulator for Windows lets you specify an associated

printer session.

Advantages of this association are as follows:

• If sessions are associated, the person who configures the client workstation does not have to know any

details about the printer session.

• When you start the display session, the associated printer session is started automatically.

When configuring a session, if you want the server to associate a printer with the session, do the following:

Chapter 2. Product Documentation

1. Click the Printer Association tab.

2. Select Associated Printer Session.

3. Enter the .WS file for the printer that is to be associated with the session. You can also click Browse to locate

the file.

You can also set the following options:

• Select the Start Associated Printer Minimized check box, if preferred. This option is unavailable until an

associated printer is selected.

• Select the Automatically close Associated Printer Session with this session check box, if preferred. This

option is unavailable until an associated printer is selected.

• Select Associated device name to associate the display session with any printer device that currently exists

on an iSeries™, eServer™ i5, or System i5™ host. This option is only available for 5250 sessions.

Note:

1. Stopping a Telnet session automatically closes an associated printer session, if that option was

selected when configuring the session.

2. If a 5250 printer session is associated with multiple 5250 display sessions, then the printer session

ends only when the last associated display session ends.

3. For a 5250 session, if the host name in the selected printer session profile differs from the values in

the display session profile, then the display session profile host name is used instead. The display

session values are not saved to the printer session profile.

Print Session Setup (3270 and 5250)
The Print Session Setup dialog enables you to customize the display options for a 3270 or 5250 printer session. This

dialog can be accessed by clicking Settings → Appearance → Print Session Setup. You can also add the Print Session

Setup dialog to the session tool bar.

The following customization options are available.

Show Text Information

You can specify the title and other information to be shown in the printer session display window. If this

option is not selected, no text information about the session is displayed.

Configuration Details

The following items can be included in the text information.

Connection Details

The following display options are based on the session status and the settings of the

Session Parameters → Advanced and Customize Communications dialog.

69

HCL Z and I Emulator for Windows (ENGLISH)

70

Connection Sta

tus

If this item is selected, Connected is displayed if the session is in

connected state. Disconnected is displayed if the session is not

connected.

Host Name Host name or the IP address for the connection.

Host Type Host system type to which the session is connected.

Interface Interface type selected in the Customize Communication dialog.

Attachment Physical and logical connection selected for the session.

WS Profile If the session is started from a saved workstation (.WS) profile, the

name of the profile is displayed. The field is blank if it is a newly

configured session.

Host Codepage Code page selected in the host Session Parameters configuration

panel.

Host Device Details

The following display options are based on the selected device and the settings of the

Session Parameters – 5250 Host > Advanced dialog. These options are available for 5250

sessions only.

Device Status If this item is selected, Started is displayed if the device is in ready

state. Stopped is displayed if the device is not in Ready state.

Workstation ID Device name for the session.

Message

Queue/Library

Message Queue and Message Library specified in the Session Para

meters → Advanced dialog

Host Font Host font selected in the Session Parameters → Advanced dialog

HPT If this item is selected, TRUE is displayed if Host Print Transform is

enabled. FALSE is displayed if HPT is not enabled.

HPT Printer

Model

If this item is selected, the Printer Model is displayed. If HPT is not

enabled, Not configured is displayed.

HPT Drawer 1 If this item is selected, the HPT Drawer 1 paper size is displayed. If

HPT is not enabled, Not configured is displayed.

HPT Drawer 2 If this item is selected, the HPT Drawer 2 paper size is displayed. If

HPT is not enabled, Not configured is displayed.

Envelope Hop

per

If this item is selected, the Envelope Hopper is displayed. If HPT is

not enabled, Not configured is displayed.

Customization

Object/Library

If this item is selected, the Customizing Object and Customizing

Library are displayed. If HPT is not enabled, Not configured is dis

played.

ASCII code

page 899

If this item is selected, TRUE or FALSE is displayed, depending on

whether ASCII Code Page 899 is enabled. If HPT is not enabled, Not

configured is displayed.

Chapter 2. Product Documentation

• Page Setup Details

The following display options are based on the workstation profile and the Page Setup dialog.

For 3270 sessions, the listed options are on the Text and Text Options tabs. For 5250 sessions,

the listed options are on the Orientation and Advanced Options tabs.

CPI/LPI

(3270 sessions on

ly)

Number of characters printed per inch and number of lines per inch.

MPL/MPP

(3270 sessions on

ly)

Maximum print line and maximum print position.

Font Name

(3270 sessions on

ly)

Device font of the printer device driver.

Margin – Left/Top Left and top margin values.

Drawer1 Drawer 1 orientation.

Drawer2 Drawer 2 orientation.

Bestfit Scaling If this item is selected, TRUE is displayed if Bestfit is enabled in the .WS

profile. If Bestfit is not enabled, FALSE is displayed.

Suppress Null

Lines

(3270 sessions on

ly)

If this item is selected, TRUE is displayed if Suppress Null Lines is en

abled. If Suppress Null Lines is not enabled, FALSE is displayed.

Nulls as Spaces

(3270 sessions on

ly)

If this item is selected, TRUE is displayed if Nulls as Spaces is enabled.

If Nulls as Spaces is not enabled, FALSE is displayed.

Ignore FF at First

PP

(3270 sessions on

ly)

If this item is selected, TRUE is displayed if Ignore FF at First PP is en

abled. If Ignore FF at First PP is not enabled, FALSE is displayed.

FF Takes PP if fol

lowed by Data

(3270 sessions on

ly)

If this item is selected, TRUE is displayed if FF Takes PP if followed

by Data is enabled. If FF Takes PP if followed by Data is not enabled,

FALSE is displayed.

CR at Max PP + 1

(3270 sessions on

ly)

If this item is selected, TRUE is displayed if CR at Max PP + 1 is en

abled. If CR at Max PP + 1 is not enabled, FALSE is displayed.

NL at Max PP + 1 If this item is selected, TRUE is displayed if NL at Max PP + 1 is en

abled. If NL at Max PP + 1 is not enabled, FALSE is displayed.

71

HCL Z and I Emulator for Windows (ENGLISH)

72

(3270 sessions on

ly)

FF - Any Position /

Column 1

(3270 sessions on

ly)

If this item is selected, TRUE is displayed if FF - Any Position / Column

1 is enabled. If FF - Any Position / Column 1 is not enabled, FALSE is

displayed.

Ignore color while

printing

(3270 & VT ses

sions only)

Select this option to ignore the colors in PS and print in black & white.

Replace FF by LF

(3270 and 5250

sessions only)

Select this option to replace a form feed by the number of lines entered

in the edit box.

Automatic Orienta

tion

If this item is selected, TRUE is displayed if automatic page orientation

is enabled. If automatic page orientation is not enabled, FALSE is dis

played.

Printer Font Code

page

The printer font code page used for printing on the workstation.

No CR between

Fields

If this item is selected, TRUE is displayed if No CR between Fields is en

abled. If No CR between Fields is not enabled, FALSE is displayed.

Bold as Normal If this item is selected, TRUE is displayed if Bold as Normal is enabled.

If Bold as Normal is not enabled, FALSE is displayed.

Use Raster Fonts If this item is selected, TRUE is displayed if Use Raster Fonts is en

abled. If Use Raster Fonts is not enabled, FALSE is displayed.

Show Wallpaper

You can specify a bitmap file as a background in the session window. You can use the default graphic or

another monochrome, 16-color, 256-color, or 24-bit file.

Print Status Dialog → Show Dialog

You can have a printer status dialog displayed along with the session window. This option is available

only for 5250 sessions.

Print Status Dialog → Contain in Session Window

You can display a printer status dialog that is tied to the session window. When the session window is

moved or minimized, the printer status dialog is moved with it. This option is available only for 5250

sessions.

Printing
You can use Z and I Emulator for Windows to print from display or printer sessions:

Chapter 2. Product Documentation

• From display sessions, you can print all (Print Screen) or part (Trim Print) of the screen of your session

window on a workstation printer.

To print only part of the session window, drag the mouse to create a trimming rectangle around the part of the

window you want to print and then select Print Screen from the File menu.

• With printer sessions, you can print files directly from a host system to a workstation printer. Refer to the

online help for more information.

Configure a printer session to designate a workstation printer as a system printer that will use either the

printer definition tables (PDTs) provided with Z and I Emulator for Windows or the Windows® printer drivers.

Refer to the online help for more information.

To print, the following methods apply:

• You can use Windows® printer drivers that you configure through the session File → Printer Setup menu.

• You can use printer definition tables (PDTs), which give greater control over the print data stream.

• For 5250 only: You can use Host Print Transform, where the host formats and builds the printer commands.

For more information about printing, refer to Emulator User's Reference.

Print Screen Collection functions
Using the Collect Screen function, you can add a capture of all or part of the screen to a collection of captures.

To add the current screen (or part of the screen) to the collection, click File → Print Screen Collection → Collect

Screen.

To print and purge all the collected screens, click File → Print Screen Collection → Print and Purge Collection.

To print and keep all the collected screens, click File → Print Screen Collection → Print and Keep Collection.

To preview the collected screen and select collected screens to be printed or purge, click File → Print Screen

Collection → Prpcess Collection.

All the collected screens can be deleted without printing by clicking File → Print Screen Collection → Purge Collection.

An individual screen or part of the collection cannot be deleted.

The File → Print Screen Collection → Print Collection on Exit option ensures that the collected screens are printed

before you close or disconnect the session. This option is enabled by default. To end the session without printing the

collected screen, clear the Print Collection on Exit option. All the collected screens are then deleted when you close or

disconnect the session.

Note: The Collect Screen feature works independently of the normal Print Screen function. You can still use

Print Screen to print individual screens, while collecting multiple screens.

You can add the Collect Screen and Print Collection functions to the toolbar, a popup keypad, or a custom keyboard

map. The settings in the Page Setup dialog are used (shared with the normal Print Screen function).

73

HCL Z and I Emulator for Windows (ENGLISH)

74

In PDT mode, there is an option available for printing more than one screen in a page. Refer to Administrator's Guide

and Reference for more information.

Collecting Print Jobs (5250 Printer Session)
You can collect 5250 print jobs and print them as a single job or in a group. The collected print jobs are stored in

a .SCS file.

You can set the following .WS profile keywords to specify the path and file name for the .SCS file.

[Printers]
SCSFile=<filename>.scs
SCSPath=<local path>

The functions associated with this feature are listed below. The functions can be mapped to the keyboard, popup

keypad, mouse button, or toolbar button.

• Collect Mode

When Collect Mode has been started, print jobs that have been sent are saved in the .SCS file. They are not

printed immediately.

• Print Collection

The print jobs that have been saved are sent to the printer as a single job.

• Purge Collection

The collected print jobs are deleted.

Refer to the online help for details about mapping the functions.

The CombineJobs profile keyword enables you to collect the jobs for printing, while maintaining them as individual

jobs (instead of one job in the .SCS file). Specify the .WS keyword as follows:

[Printers]
CombineJobs=N

If you set CombineJobs to N, the Print Collection function sends the separate, collected jobs to the printer. While in

Collect Mode, if the keyword is set to Y or is not specified, the print jobs are combined as a single job in the .SCS file.

Using the Windows Printer Driver
To set up your printer to use a Windows® printer driver:

1. Click File → Printer Setup in the session window.

The Printer Setup window lists the supported printers.

2. Select the printer driver to be used from the Printer list box. DEFAULT will cause the use of the Windows®

default printer.

Note:

Chapter 2. Product Documentation

a. The DEFAULT selection is shown when the .WS file specifies printer=DEFAULT in the [printers]

stanza.

b. When this selection is made, no message appears before the job is printed.

c. When a printer has been selected for a session, the name of that printer is displayed in the

status bar of the session window.

3. If desired, click on the check box to Show this dialog before every print.

4. Confirm that the Use PDT file check box is not selected and then select OK.

Z and I Emulator for Windows will now use the printer driver you selected, and the Printer Setup window is

closed.

Using Printer Definition Table (PDT) Files
Printer Definition Table files define the transfer of characters and control codes to a printer, and the printer output

format. If a PDT file is used, the Windows® printer driver is not used, and Z and I Emulator for Windows generates

print output based on printer control information defined in the PDT file.

Refer to Administrator's Guide and Reference for more information about PDT files.

To use PDT files:

1. Click File → Printer Setup in the session window.

The Printer Setup window appears.

2. Select the port to be used from the Printer list box.

Selected PDT files are available for the port selected here.

3. Select Setup and then specify the paper size of the selected printer driver.

4. Select the Use PDT file check box and then select Select PDT.

The Select PDT file window appears.

5. To use an existing PDT file, select a PDT file to be used and then select OK.

Using Host Print Transform (5250 only)
When configuring a 5250 printer session, the HPT mode may be selected. To use Host Print Transform (HPT), do the

following:

1. From the Session Parameters panel, click Advanced.

2. Select HPT Yes. You can then enter the following parameters:

• Printer Module

• Drawer 1, Drawer 2, and Envelope form names

• Code Page 899, Yes or No

• Customizing Object and Library (optional)

75

HCL Z and I Emulator for Windows (ENGLISH)

76

Image Print Transform
Z and I Emulator for Windows allows use of Image Print Transform in 5250 print sessions, when using Host

Print Transform. Refer to the most recent IBM® iSeries™, eServer™ i5, or System i5™ printing reference for more

information on this feature.

Page Setup
Z and I Emulator for Windows allows you to set Page Setup parameters, such as the maximum number of lines per

page, the maximum number of columns, and fonts. You can also add a header or footer to a page.

For detailed Page Setup information and instructions, refer to Emulator User's Reference.

Scalable (Truetype) APL Font Support on Printers
Because special APL characters are not provided for printers, the APL fonts provided for displays are used when APL

characters are printed. In some cases, APL characters are printed rather small. To print larger APL characters, you

should install the Z and I Emulator for Windows AICAPL font, using the Windows Control Panel → Font dialog.

ZipPrint (3270 Only)
ZipPrintCMS filePROFS note, calendar, document printing3270 session screenXEDIT workspaceprinting3270 session screenZipPrintCMS file

Use ZipPrint to print PROFS® notes, calendars, CMS files, XEDIT workspaces, and 3270 session screens.

Preparing to Use ZipPrint
Before you can use ZipPrint, DDE/EHLLAPI must be enabled for the sessions. To do this, click Settings → API and

refer to the online help for detailed instructions. DDE/EHLLAPI is enabled by default.

Note: By default, PROFS-oriented functions of ZipPrint are U.S. English PROFS®. You can customize ZipPrint

for other languages. Start ZipPrint before you start any display sessions.

Starting ZipPrint
Start ZipPrint before you start any display sessions. The ZipPrint menu is added to the menu bar of the specified

session window; then you can use it from the menu bar the same as with the other functions.

Start ZipPrint by selecting the ZipPrint icon in the Z and I Emulator for Windows program folder. This starts ZipPrint

for Session A only.

You can also start ZipPrint by placing it as the first command in a Z and I Emulator for Windows batch file.

Chapter 2. Product Documentation

For more information about ZipPrint, including information about using ZipPrint for additional emulator sessions,

search for ZipPrint in Help.

Using ZipPrint
Keep the following consideration in mind when using ZipPrint.

ZipPrint uses the Z and I Emulator for Windows File Transfer function to print VM/CMS notes and files. On slower

communication lines such as SDLC, Async (IIN), or when using a large packet or block size, you might experience a

file transfer timeout. If this happens, you should increase the timeout delay as follows:

1. Click Settings → Transfer in the session window.

2. Increase the timeout value to 150 seconds or longer.

Editing
You can edit the contents of your session window using the Windows® clipboard and the Edit menu.

Note: When using copy/cut functions, Z and I Emulator for Windows takes the entire contents from the

session window and places it on the clipboard. To copy or cut only marked sections from the session window,

you need to update the Cut/Copy options. To update the Cut/Copy options, do the following:

1. Click Settings → Edit.

2. From the Edit Options window, select the Cut/Copy tab.

3. From the Cut/Copy page, select the Only if a trim-rectangle is marked check box.

4. Close the Edit Options window.

Undo

Cancels the most recent Edit operation, except for Copy Link, and restores the contents of the session

window and the clipboard accordingly.

Cut

Copies the marked area into the clipboard and removes it from the display session window.

Copy

Copies (or duplicates) the marked area into the clipboard without removing it from the display session

window.

Copy Append

Copies the marked area into the clipboard without removing it from the display session window. If there

is already data in the clipboard, Copy Append adds the new data to it.

77

HCL Z and I Emulator for Windows (ENGLISH)

78

Copy As Image

Copies the marked area as a bitmap into the clipboard. If no area is marked, Copy As Image captures

the entire presentation space as bitmap.

Note: Undo functionality is not supported for Copy As Image.

Paste

Overlays the current contents of the clipboard into the session window, starting at the current cursor

position.

Paste Next

If not all data was pasted, Paste Next is enabled and the remaining clipboard data can be pasted.

Clear

Removes the marked area of the session window. The clipboard contents are not altered.

Copy Link

Supports the DDE Copy Link function. To start a link between Z and I Emulator for Windows and another

application program, mark an area of the session window, select Copy Link, and then select Paste Link

in the other application program.

Note: The command you should use for Paste Link or Paste Special depends on the application

program you are using.

Find

Find text in Presentation Space of a display session. The text found is highlighted on screen. The search

can be case sensitive or insensitive.

Send to Scratch Pad

Sends the selected contents of the Presentation Space into the Scratch Pad of the corresponding

session.

Unmark

Removes the clipping (or marking) rectangle. The session window and the clipboard contents are not

altered.

Select All

Marks the entire session window.

Edit Options

Chapter 2. Product Documentation

Paste Options
You can control how text is pasted before and after protected fields, and how tabulated text appears after it is pasted.

The following Paste functions are available.

Field Wrap

Check this box if you want pasted data that falls onto a protected field to move to the next unprotected

field. If you do not check this box, any data that falls onto an unprotected field is lost.

Line Wrap

Check this box to allow pasting of copied text across lines.

Don't Split Words

Check this box to avoid words being split across fields and lines. The text being pasted into fields is

split on word boundaries, which breaks the text and starts the new word in the next field. If one word is

being pasted into a field, but the field is not long enough to hold the word, then as much of the word as

possible is put into the field, and the rest of the word is carried on to the next field.

Note: If the Field Wrap or Line Wrap option is not enabled, the word break option is not available.

Paste to marked area

Check this box to restrict pasting to a marked area, if it exists. If the marked area doesn't exist, pasting

will take place at the current location.

Stop pasting when protected line encountered

Check this box to have the pasted text stop when it comes to a protected line on the emulator screen. If

you do not check this box, the paste continues.

Tab Character Processing

Advance to next tab stop

You can choose to align tabulated text at specified tab stops. For example, if you choose

Advance to next tab stop 4 column(s), your tabulated text is advanced to the column

position that is the next multiple of 4.

Replace with n space(s)

You can choose to replace tab stops with a certain number of spaces. For example, if you

choose replace with 3 spaces, each tab stop in your original text becomes 3 spaces.

The default setting is to replace each tab character with one space.

Paste data to fields

You can choose to have tabulated text placed in subsequent unprotected fields. With this

option, when a tab character is encountered, the following text data will be pasted into the

next unprotected field of the emulator session.

79

HCL Z and I Emulator for Windows (ENGLISH)

80

Note: This option is available only for 5250 sessions.

Cut/Copy Options
You can control the size of the copy area and how +/- signs behave with signed numeric fields (5250 only).

Only if a trim rectangle is marked

Select this box if you want to copy only the trim rectangle that has been marked on the session screen.

The default is to copy the entire screen if no rectangle is marked.

Autocopy

This option enables you to automatically copy the selected text to the clipboard. When an existing

selected area is moved to another screen area, the text inside the new selected area is automatically

copied to the clipboard.

Force Leading +/-

On a signed numeric field, the Force Leading +/- option will force the +/- sign to be at the beginning of

the field rather than at the end.

Note: This option is available only for 5250 sessions.

Trim Options
You can control the behavior of the trim rectangle.

Classic Box Style

This option allows you to draw a normal box like Trim Rectangle.

Trim Rectangle sizing handles

Check this box to add "handles" to the trim rectangle, allowing you to modify the size.

Trim Rectangle remains after edit function

This option keeps the trim rectangle active after completing the trim.

Expand Trim Rectangle during drag

This option causes the trim rectangle to step to character boundaries while it is being sized.

Use solid Trim Rectangle

This option changes the appearance of the trim rectangle. Instead of the standard outline boundary, the

trim area appears as a solid box.

Chapter 2. Product Documentation

Windows Style

This option allows you to make uneven selection in the PS. When this option is selected, solid Trim

rectangles without sizing handles are drawn by default.

Note: Undo functionality under the Edit menu is disabled for this functionality.

Editing by Linking to Windows Application Programs
Linking to Windows® application programs supporting Paste Link lets you paste session-window data to the

windows of those application programs. You can run Copy Link when DDE/EHLLAPI is usable.

Confirming the DDE/EHLLAPI Settings
To check whether DDE/EHLLAPI is currently set to usable status, do the following:

1. Click Settings → API.

2. Make sure the DDE/EHLLAPI check box is selected.

If the box is checked, DDE/EHLLAPI is set to usable status. Continue to step 4 on page 81.

3. enablingDDE/EHLLAPIIf the box is not checked:

a. Click the DDE/EHLLAPI check box and then click OK.

b. Stop and then start your session to enable the new settings.

4. If DDE/EHLLAPI was already set to usable status, select OK.

Using Copy Link and Paste Link

1. Mark the session window area for which Copy Link should be issued.

2. Select Copy Link from the Edit menu.

If the session window is already linked with an application program, Copy Link appears in gray and cannot be

selected. In this case, force the application program to end the linkage, or stop the application program. Then

you can select Copy Link.

3. Start the Windows® application program for the window to which an area should be copied.

4. Specify the location for which Paste Link should be run.

5. Issue Paste Link or Paste Special by using the menu for the application program.

The contents of the marked area are pasted into the specified location in the window of the application

program.

Copy Link is now completed.

81

HCL Z and I Emulator for Windows (ENGLISH)

82

When the contents of the marked area in the session window are updated during linking, the contents of the area

pasted to the window of the linked application program are also updated.

See the online help for more information about the Copy Link and Paste Link functions.

Copying Table Data to a Spreadsheet
You can use the Cut, Copy, Copy Link, or Copy Append choices in the Edit menu to copy data in the session window to

the window of a Windows® spreadsheet application program.

To use Copy, select the Paste or Paste Link choice in the application program window into which data is to be copied.

Data in the marked area can be copied in the following three data formats, depending on the format supported by the

spreadsheet for the window to which data is to be copied:

Sylk format

Data format for general-purpose spreadsheets, such as Multiplan

BIFF format

Data format for Microsoft® Excel

Wk3 format

Data format for Lotus® 1-2-3

Note: Whether application programs, such as Excel or Lotus® 1-2-3, also support these data formats in

subsequent versions depends on individual application program specifications.

copyinglines containing only operational signsmarked dataIndividual items of data in tables of the session window are divided automatically such that they are suitable for

spreadsheets, and they are copied into individual cells of tables in the application program.

Copying Marked Data without Dividing It into Cells
To paste data in the marked area per line, without dividing it into individual cells, add the following lines to the

workstation profile:

[Edit]
Sylk=N (If Sylk format data is not divided into cells)
Biff3=N (If Biff3 format data is not divided into cells)
Wk3=N (If Wk3 format data is not divided into cells)

Copying Lines Containing Only Operational Signs
If data in the marked area contains signs, such as +, -, =, or |, the signs are regarded as being ruled lines of the table.

Once they are removed, only numeric data is copied.

Chapter 2. Product Documentation

Table 10. Table

Data in Marked

Area

1 2 3 4

199060 -63 71+58

1991+6969 9080

199271 +8080-30

Table 11. Data Copied to Spreadsheet

1 2 3 4

1990 60 -63 71 58

1991 69 69 90 80

1992 71 80 80 -30

To copy these signs without replacing them with null characters, add the following lines to the workstation profile:

[Edit]
MaskGridCharacter=N

Copying Data in Cells As Text Data
Data in the marked area is treated as numeric data by default. Therefore, currency symbols, such as $, and

punctuation marks, such as commas, are removed before copying. To copy data containing such signs and marks as

text data rather than numeric data, add the following lines to the workstation profile:

[Edit]
ConvertToNumeric=N

Data in the marked area containing signs and marks is then copied as text data. In addition, all numeric data that

does not contain signs and marks is also copied as text data.

Transferring Files
Z and I Emulator for Windows enables the transfer of one or more files between a host system and workstation. You

can define file transfer options in advance to help you transfer a variety of files quickly and easily.

Note:

PCT400 was withdrawn from marketing 3/98.

With Z and I Emulator for Windows, you can perform the following file transfer functions:

Send files to the host system

Send files using the Send File to Host from the Actions menu; or by clicking the Send button on the tool

bar; or, when using 3270 sessions, the SEND command from the DOS prompt.

83

HCL Z and I Emulator for Windows (ENGLISH)

84

You can also send files by using an EHLLAPI or DDE application or a macro that invokes file transfer.

Receive files from the host system

Receive files using the Receive File from Host from the Actions menu; or by clicking the Receive button

on the tool bar; or, when using 3270 sessions, the RECEIVE command from the DOS prompt.

You can also receive files by using an EHLLAPI or DDE application or a macro that invokes file transfer.

Data Transfer

For 5250 sessions, click Transfer from the Appearance menu; then select Data Transfer on the property

page with the General tab. This causes the invoking of data transfer functionality when one of the above

actions is taken. If Data Transfer is not selected, normal file transfer is invoked.

Create, test, replace, and delete templates

Create a template to have Z and I Emulator for Windows automatically generate a workstation or host

file name and transfer type when you select a file to be sent or received.

Note: It is not possible to define a file transfer template with the long file name naming

convention.

Define transfer types

Define up to 16 transfer types for each host system. Text, binary, and append (except for CICS®) are

initially set as transfer types.

Select, create, and customize translation tables

Select translation tables to define which translation table is used during file transfer.

Import or export files (PC/3270 only)

Import/Export is an office system communication program and an application program run on the IBM®

Customer Information Control System (CICS®). The import/export function makes it possible to import

or export Final Form Text (FFT), Revisable Form Text (RFT), and PC documents.

When you export a file from the host, your workstation receives the file you exported and an interchange

document profile (IDP) file. Before you can import a file to your workstation, you need to create an IDP

file with transmission information.

Create interactive document profile (IDP) files (PC/3270 only)

An IDP file contains document header information, has the same name as the file to be transferred, and

has the extension .IDP.

To create an IDP file, select Transfer from the Appearance menu.

Chapter 2. Product Documentation

Note: When you transfer a file on a Telnet5250 session, you cannot transfer a file that includes FFEF. The

current version of the iSeries™, eServer™ i5, or System i5™ Telnet program misinterprets FFEF in the file as an

end-of-record marker.

ASCII Host Data Transfer
When you are transferring files between two computers, specific protocols must be followed. Files can be transferred

only when your PC uses the same protocol as the host. Z and I Emulator for Windows supports the XMODEM and

YMODEM public domain protocols.

For XMODEM, Z and I Emulator for Windows uses the XMODEM and XMODEM1K protocols. XMODEM is a block-

oriented, error checking protocol that is a single file, half duplex protocol. XMODEM1K is the same as XMODEM,

except that it uses larger 1024 byte (1K) packets.

The YMODEM protocol is similar to the XMODEM1K protocol in that it transfers data in 1K packets, but it also allows

multiple files to be sent in one transfer.

The YMODEMG protocol transfers multiple files like YMODEM, but performs no error detection or error correction. It

can be much faster than YMODEM, but requires an error-free data connection.

With Z and I Emulator for Windows, you can perform the following data transfer functions to or from ASCII hosts:

Send any type of files to the host system

Send files using the Transfer menu using XMODEM, YMODEM, XMODEM1K, or YMODEMG.

Receive files from the host system

Receive files using the Transfer menu and XMODEM, YMODEM, XMODEM1K, or YMODEMG.

Create, test, replace, and delete templates

Create a template to have Z and I Emulator for Windows automatically generate a workstation or host

file name and transfer type when you select a file to be sent or received.

Setting Up the Appearance of a Session Window
You can use the following functions to define the appearance of your session window. These options are in the

Settings → Appearance menu.

Display Setup

Customize a variety of characteristics, such as the cursor, pointer, rule line, and trimming styles,

graphics, sound, and color palette, in the display session.

Color Mapping

color mappingSet the colors used in session windows.

85

HCL Z and I Emulator for Windows (ENGLISH)

86

Font

fontsChoose the font to use for display session windows, the style, and whether it will be an automatic sizing

font or a fixed size font. If you use a fixed size font, you can also choose its size. The set of fonts from

which you can choose depends on the type of display you are using.

Note: You cannot change the font size when the session window is maximized.

Window Setup

windowsetupChange the appearance and title of the session window and change the session icon.

Sounds
Z and I Emulator for Windows enables customization of program sounds through the Windows Control Panel. You

can configure specific program sounds using sound files included with the Z and I Emulator for Windows product.

A Mute function can be used to silence all program sounds. This option is available from the Settings → Appearance →

Display Setup → Sound dialog.

Tool Bar Setup
The tool bar displays under the menu bar in your session window to allow quick access to the Z and I Emulator for

Windows functions, commands, and defined macros.

Use the tool bar pop-up menu to quickly and easily create, edit, and delete tool bar items, as well as to save and load

customized tool bars. When you customize the tool bar, you can change the order of items, add and delete items,

change the function, title, or graphic associated with any item, change the fonts, colors, and other tool bar visual style

elements. The settings are stored in a .BAR file.

To customize your tool bar, select Tool Bar → Tool Bar Style from the Settings menu, or display the Tool Bar pop-up

menu by clicking on the right mouse button while pointing at any part of the tool bar.

For information about customizing the tool bar, refer to the online help.

If you want to hide the tool bar, see Showing or Hiding the Menu Bar, Status Bar, or Tool Bar on page 86.

Showing or Hiding the Menu Bar, Status Bar, or Tool Bar
You can show or hide the menu bar, status bar, or tool bar. If the menu bar is displayed, enable or disable status bar or

tool bar from the session View menu. You can also do the following:

• Click the upper left corner of the session window to display the system menu.

◦ Hide Menu Bar appears when the menu bar is shown.

◦ Show Menu Bar appears when the menu bar is not shown.

◦ Hide Status Bar appears when the status bar is shown.

Chapter 2. Product Documentation

◦ Show Status Bar appears when the status bar is not shown.

◦ Hide Tool Bar appears when the tool bar is shown.

◦ Show Tool Bar appears when the tool bar is not shown.

◦ Show Expanded OIA appears when the expanded OIA is not shown.

◦ Hide Expanded OIA appears when the expanded OIA is shown.

◦ Hide Quick Connect Bar appears when the Quick Connect bar is shown.

◦ Show Quick Connect Bar appears when the Quick Connect bar is not shown.

• To hide the menu bar, status bar, tool bar, or expanded OIA, select Hide Menu Bar, Hide Status Bar, Hide Tool

Bar, Hide Expanded OIA, or Hide Quick Connect Bar.

• To show either the menu bar, status bar, tool bar, or expanded OIA, select Show Menu Bar, Show Status Bar,

Show Tool Bar, Show Expanded OIA, or Show Quick Connect Bar.

Window Setup
For some Windows® operating systems, if you clear the Maximized Style → With Title Bar option in the session

Settings → Appearance &rarrow; Windows Setup dialog, then the Minimize All Windows option on the Microsoft

Windows® taskbar may not have any effect. To minimize the window, press Alt-Space and click Minimize.

Customizing the Color Mapping using a configuration File
This feature enables users to apply the color mapping configuration to a session using a color mapping configuration

file (CMP). You can import, modify and save the color mapping configuration in a CMP file, and can also customize

the "Default" color mapping configuration for all the profiles using the default color mapping configuration file

(‘DefaultColorConfig.CMP’).

The colors of the various parts of the host-session window can be customized; each component has its own default

foreground and background colors, which are determined by the attributes (base or extended) sent to the screen by

the host application to which the session is connected.

Use the Category tree control to change a category, or place your mouse pointer on the section of the Presentation

Space screen you wish to change the color for and click the left mouse button. On the Color Mapping tab, this will set

the correct Category/Element, as well as the current colors for that field in the color pulldowns and the Sample text.

The color modification pulldowns give 16 basic colors, each with a name and a color preview. Click the right-hand

button to open up the standard Windows color palette, where you can further modify the colors.

How to Enable/Disable the creation of CMP
The ‘EnableCMP’ parameter in the Color section of pcswin.ini, can be set to ‘Y’ or ‘N’ respectively to enable or disable

the creation of Color Mapping files.

For Example:

87

HCL Z and I Emulator for Windows (ENGLISH)

88

[Colors]

EnableCMP=Y

When enabled, the Color mapping dialog will have four additional options in the ‘File' menu:

1. Open -> Imports the color mapping changes from the selected color mapping file (.CMP) to the current

session.

2. Save -> Saves the changes made by the User to the currently imported or the associated color mapping file.

3. Save as-> Copies the color mapping configuration set in the color mapping dialog to a new file.

4. Exit -> Exits the color mapping dialog.

This feature enables users to apply the color mapping configuration to a session using a color mapping configuration

file (CMP). You can import, modify and save the color mapping configuration in a CMP file, and can also customize

the "Default" color mapping configuration for all the profiles using the default color mapping configuration file

(‘DefaultColorConfig.CMP’).

The colors of the various parts of the host-session window can be customized; each component has its own default

foreground and background colors, which are determined by the attributes (base or extended) sent to the screen by

the host application to which the session is connected.

Use the Category tree control to change a category, or place your mouse pointer on the section of the Presentation

Space screen you wish to change the color for and click the left mouse button. On the Color Mapping tab, this will set

the correct Category/Element, as well as the current colors for that field in the color pulldowns and the Sample text.

The color modification pulldowns give 16 basic colors, each with a name and a color preview. Click the right-hand

button to open up the standard Windows color palette, where you can further modify the colors.

Default Color Settings
If a user has enabled this function and needs to apply the "Default" color mapping configuration to all sessions, the

'DefaultColorConfig.CMP' file should be saved to the ZIEWin Application Data folder (based on type of installation). To

make a new default color mapping configuration file, rename any "*.CMP" file to 'DefaultColorConfig.CMP'.

If a session does not have a Color Mapping file associated with it, the color mapping configuration from

'DefaultColorConfig.CMP' would be used by default. If the session already has a CMP file connected with it, the color

mapping configuration in the CMP file will override the 'DefaultColorConfig.CMP' configuration.

For Example:

If a user has a Color mapping file associated with their session profile's file then the color mapping file would take

priority over the 'DefaultColorConfig.CMP' file file in terms of keyword precedence.

Session Profile file name: ABC.WS

Color mapping file: ABC.CMP (associated with the session profile) has content as below:

[Colors]

BaseColorNormalUnprotected=24D830 000000

Chapter 2. Product Documentation

DefaultColorConfig.CMP have below contents:

BaseColorIntensifiedUnprotected=F01818 000000
BaseColorNormalUnprotected= F01818 F01818

The Session profile (ABC.WS) will read the value of BaseColorNormalUnprotected from the 'ABC.CMP' file and

BaseColorIntensifiedUnprotected from the 'DefaultColorConfig.CMP' file.

Note:

1. If this feature is enabled, the colors in Session Profile file will be ignored.

2. The "DefaultColorConfig.CMP" has colors that users can set for all their session profile files. This

could be different from the product default colors.

3. The "DefaultColorConfig.CMP" file needs to be created manually by the user. This does not get

created automatically by the system.

Migration of Color mapping content
When a User enables this feature and launches a session, the color mapping configuration from the Session profile

file (if it exists) is migrated once to the Color Mapping file.

Note: A single Color mapping file may be associated with several profile files. The color configuration of the

last migrated profile will be stored in the common color mapping file.

When a User disables this feature and launches a session, the color settings from the Color Mapping file are migrated

once to the Session profile file.

For Example:

Before Enabling this feature, the content in a Session profile has a Color section and a few colors customized in it:

Session Profile file name: ABC.WS

[Colors]

BaseColorNormalUnprotected=24D830 000000

After the user enable this feature, if there is no color mapping file associated with the session profile name then

a new color mapping file will be created with the same name as the session profile file and will copy the color

configuration to the newly created color mapping file.

File Name: ABC.CMP

BaseColorNormalUnprotected=24D830 000000

The Colors will not get deleted from the session profile name but it will be ignored.

89

HCL Z and I Emulator for Windows (ENGLISH)

90

Setting Up and Using the Assist Functions
The auxiliary functions described in this chapter let you operate the system more efficiently. Keyboard/Macro/Script

Function can be customized from the Actions menu. The other functions can be customized from the Edit menu.

Keyboard, Macro, and Script Functions
A Keyboard/Macro/Script Function command lets you run scripts, macros or Z and I Emulator for Windows-supplied

key functions without using the keyboard. Run the scripts, macros or key functions from the current cursor position in

the session window.

Scripting Functions
You can write, execute, record and terminate VBScripts in the emulator environment. These scripts have access to the

HACL automation API. The programming environment includes methods, class descriptions and properties. VBScript

is a subset of the Visual Basic® programming language.

Macro Functions
A macro is a sequence of key or mouse actions and host commands that you can perform with a single action, such

as a keystroke. Before you can use a macro function, you need to define it. For more information, see Macro/Script

Setup and Use on page 93.

Key Functions
Z and I Emulator for Windows provides many key functions that can be assigned to the keys on the keyboard, the

mouse buttons, or the buttons of the pop-up keypad. You can also use them to generate macros.

Hotspot Setup
A hotspot is an area of the session window on which you can double-click the left mouse button to perform a

command or function. You do not need to use the keyboard. For example, you can double-click a function key number

to perform the function.

Tip: Select Show hotspots to get three-dimensional (3D) hotspots; these only require a single click, and they

stand out on your screen.

You can define the following actions for a hotspot:

Chapter 2. Product Documentation

• Click on a URL to connect to a World Wide Web site.

• Simulate function keys.

• Play a macro that has the same name as the character string you select on the session window.

• Enter the selected string at the cursor position.

• Simulate the Enter key at the cursor position.

• For VT, simulate two sets of function keys, PF1 through PF4 and F6 through F20.

Using Hotspots

Note: You must have a mouse to use hotspots

To use a hotspot:

1. Move the mouse pointer to the hotspot displayed in the session window.

2. Double-click the left button of the mouse, except for 3D hotspots, which only require a single click.

Z and I Emulator for Windows determines whether you have specified a hotspot function that matches what

appears at the position of the mouse pointer. If so, it processes the hotspot. When two or more hotspots are

specified for a single character string, the first retrieved hotspot is processed.

Hotspots are retrieved in the following order:

a. Point-and-select (connect to Web site using URL)

b. PFnn, FPnn, Fnn, nn

c. Point-and-select (run the macro)

d. Point-and-select (enter the selected string)

e. Point-and-select (enter at the cursor position)

types ofhotspots

Keyboard Setup
Keyboard Setup

You can use Keyboard Setup to modify the function defined for each key on the keyboard, except some reserved keys.

You can define the following functions for the keys.

• Performing a key function

• Playing a macro

• Entering characters

Note: By default, the Enter function is assigned to the Ctrl key. To change this assignment or, if the Enter key

does not work properly, you need to customize your keyboard. For 3270 and 5250 sessions, you can use the

91

HCL Z and I Emulator for Windows (ENGLISH)

92

keyboard map files provided with Z and I Emulator for Windows. Refer to Emulator User's Reference for more

information about keyboard mapping and functions.

Keyboard File
When you specify a key, you can save the new keyboard layout in a file (.KMP). If you create two or more keyboard

files, you can alternate between them as required.

To assign a function to a key on the keyboard:

1. Select Keyboard from the Settings menu or click the map icon on the tool bar.

2. When the Keyboard Setup window appears, select Customize.

Note: Select Spain from the Language menu during keyboard setup if you want Catalan support.

3. Assign the key functions, referring to the online help for detailed instructions.

4. Save your changes and exit the Customize Keyboard window.

5. Select OK after completing the setup.

You can reset either the entire keyboard or specific keys to defaults:

• To reset the entire keyboard, set the current keyboard to Default in the Keyboard Setup window.

• To reset specific keys, select a key in the Customize Keyboard window and then select Default from the

Current Actions for Selected Key box.

Note: There are seven keys that you cannot redefine and they are gray or dimmed in Keyboard Setup; these

keys are: Alt, AltGr, Print Screen, Scroll Lock, CapsLock, NumLock, and Shift.

Customizing the VT Emulator Keyboard
If you are using a VT emulator session, you can represent ASCII control characters in the character strings that you

define for your customized keyboard.

Use the # character to represent the CTRL key, following it by any character from the following list (only upper-case

alphabetics are allowed):

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

Use ## to represent an actual #. For example, 123##45 represents 123#45.

If you follow # with any other character than those shown, you will get an error message:

PCSKBD160 - Unrecognized key-action: "character string

For example, the error for the string "#a is

PCSKBD160 - Unrecognized key-action: "#a

Chapter 2. Product Documentation

The set of control characters is as follows:

Character pair Control Notes

#@ Control-@ NULL

#A Control-A

through

#Z Control-Z

#[Control-[ESC

#\ Control-\

#] Control-]

#^ Control-^

#_ Control-_

Because the *.KMP file can be edited, there is a run time check to ensure that the character string is correct. If "###

is processed, then # will be displayed, followed by a beep to signify that the entire character string was not played. If

"123#a456 is processed, then 123 will be displayed, followed by a beep.

Macro/Script Setup and Use
A macro is a sequence of key or mouse actions and host commands that you can perform with a single action, such

as a keystroke. You can edit an existing macro or create a new macro by selecting Macro/Script from the Appearance

menu.

A script is a VBScript program that is a subset of the Visual Basic® programming language. For information on

VBScript, see the online help pages.

Using a Macro or Script
You can use a macro or script in various ways. Table 12: Macro Use Examples and Settings on page 93 lists

examples of how you can set up and then use macros and scripts.

Table 12. Macro Use Examples and Settings

If you want to... Do this...

Automatically play a macro or script when your session starts. Set an Auto-Start Macro/Script.

Play a macro or script while attached to a host application. Start Playing Macro/Script.

Play a macro or script with the keyboard or macro function. Use the Keyboard/Macro/Script Function.

Click on a hotspot to play a macro or script. Set a Hotspot.

Assign a macro or script to a pop-up keypad button. Customize the Pop-Up Keypad file.

Press the mouse button to play a macro. Customize a Mouse file.

Press a key on the keyboard to play a macro or script. Customize a Keyboard file.

93

HCL Z and I Emulator for Windows (ENGLISH)

94

Creating a Macro
You can create a macro manually or by recording some of your interactions with the host system, such as your logon

procedure.

MacrocreatingTo create a macro manually:

1. Macro/Script from the Appearance menu.

2. When the Macro/Script Setup window appears, select Customize.

3. When the Customize Macro/Script window appears, select File, then New, then Macro, and edit the macro.

You can type statements directly or select functions, characters, or even other macros, from the list of Key

Actions in the Select a Key-Action subpanel.

Refer to the online help for detailed information.

4. Click File, then Save to save the macro file.

Note:

1. Macros that are converted to XML are intended for use in ZIEWeb (Z and I Emulator for Web) and will

not function in Z and I Emulator for Windows emulation sessions. Use the ZIEWeb Macro Manager to

import a converted Z and I Emulator for Windows macro into ZIEWeb. These converted macros will

not appear in the list of available Z and I Emulator for Windows macros.

Macro Statements
You can use the following statements when you create a macro:

Key function

Use Z and I Emulator for Windows-supplied key functions

Macro

Define a macro within another macro but you cannot create a macro in a permanent loop where the first

macro is repeatedly called at the end of the macros.

Character

Use any characters in the Character list in the Customized Macro window.

Character string

Use character strings you can type from the keyboard. You must use a double quotation mark (“) at the

beginning of the character string.

Chapter 2. Product Documentation

Wait condition

Specify wait conditions to stop the process until the specified time has elapsed or the status satisfying

the specified condition occurs.

Tokens

You can use tokens, such as goto and run, to add logic.

Macro Loop Considerations
If you use a GOTO and a label in a macro to create a loop, you may experience unpredictable behavior if that loop

executes a large number (more than 1000) of iterations.

Creating a Script
You can create a script manually or by recording some of your interactions with the host system, such as your logon

procedure. Scripts, however, allow a higher level of programming control unavailable with macros.

To create a script:

1. Macro/Script from the Appearance menu.

2. When the Macro/Script Setup window appears, select Customize.

3. When the Customize Macro/Script window appears, select File, then New, then Script, and edit the script. The

Select a Key-Action subpanel, in gray, is not available for creating scripts.

Refer to the online help for detailed information.

4. Click File, then Save to save the script file.

Configuring a Macro or Script to Autostart
To configure a macro or script to autostart, do the following:

1. Click Settings → Macro/Script.

The Macro/Script Setup window appears.

2. Set a macro or script to autostart when your workstation starts.

3. Refer to the online help for detailed instructions and then select OK after completing your setup.

Auto-start macro support
To specify which macro should be started automatically after start of a session, add the PCSWS option /

M=<mymacro>, where <mymacro> is the name of the Z and I Emulator for Windows macro or script file. See the

following example:

C:\ZIEWin\PCSWS.EXE C:\AppData\LAN1.WS /M=mymacro

95

HCL Z and I Emulator for Windows (ENGLISH)

96

If the specified macro or script does not exist, the following error message will be returned:

PCSKBD400-

The file: <macro name> is not a Z and I Emulator for Windows macro/script-file

Configuring a Java Applet to Autostart
To run a Java applet automatically, you can add the function Run Applet to a macro. You can add this function to an

autostart macro, so that an applet can be run at session startup.

1. Click Settings → Macro/Script.

The Macro/Script Setup window appears.

2. Select Run Applet from the Function drop-down list and type the name of the class.

Refer to the online help for syntax and detailed instructions.

Note: The applet class specified must exist in the same directory path as the .WS file in which the macro is included.

Recording Macros or Scripts
To start macro or script recording, use the following procedure:

1. Click Start Recording Macro from the Actions menu.

2. Type the macro or VBScript name.

3. Select the record format.

If you are recording a macro format file for Express Logon, select the Enable check box and enter the Express

Logon Feature (ELF) Application ID.

4. Configure the other options and click OK.

Note: When recording a macro, the processing of a nondisplayable field is controlled by the setting of the

parameter HideNonDisplayDataOnRecord=Y in the [Keyboard] stanza of the .WS file. The hidden fields are

ignored during the recording session.

To cancel macro or script recording, click Actions → Cancel Recording Macro. The recording operation is canceled,

and the macro or script is not saved.

To pause macro or script recording, click Actions → Pause Recording Macro. The recording operation stops. To

restart recording, click Resume Recording Macro.

To end macro or script recording, click Actions → Stop Recording Macro. Recording ends and the macro is saved in

the specified file.

Chapter 2. Product Documentation

Playing Macros and Scripts
To play a macro or script, click Actions → Start Playing Macro/Script, select the macro or script, and click OK. The

selected macro starts to play.

stoppingmacro playingTo stop playing a macro or script , click Actions → Quit Playing Macro/Script. The macro or script stops playing.

Note: Z and I Emulator for Windows macro files more than 32KB in size cannot be played in the Z and I

Emulator for Windows emulator session. If you want to play a macro file that is greater than 32KB, you will

have to break the macro into multiple files.

Note: When playing a macro, the processing of a non-displayable field is controlled by the setting of the

parameter HideNonDisplayDataOnRecord=Y in the [Keyboard] stanza of the .WS file; setting this causes a

pop-up window to display, requiring your input. When this appears, type in the requested information and

press Enter to continue.

ThisMacroName support
The ThisMacroName property is used to enable a running script to obtain the name of the macro file that is running.

This is useful when writing a script that will be using the name of the macro file.

See the following example of ThisMacroName:

[ZIEWin SCRIPT HEADER]
LANGUAGE=VBSCRIPT
DESCRIPTION=Example of usage of property ThisMacroName
[ZIEWin SCRIPT SOURCE]
OPTION EXPLICIT
Dim sName, sHandle

REM App Main
Main

sub Main()
 'Initialize the session
 autECLConnMgr.autECLConnList.Refresh
 sName = autECLConnMgr.autECLConnList(1).Name
 sHandle = autECLConnMgr.autECLConnList(1).Handle

 'Connect to the current session
 autECLSession.SetConnectionByName(ThisSessionName)
 sName = autECLSession.Name
 sHandle = autECLSession.Handle

 MsgBox("The current session name :")
 MsgBox(ThisSessionName)
 MsgBox("The macro name is :")
 'Should pop up correct macro file name in the message box
 MsgBox(ThisMacroName)
end sub

97

HCL Z and I Emulator for Windows (ENGLISH)

98

Express Logon Feature
The Express Logon Feature (ELF) allows a Z and I Emulator for Windows TN3270E user to logon to a host application

without sending the user ID and password. This function is designed to be implemented only in certain circumstances

by administrators of Z and I Emulator for Windows. Refer to Administrator's Guide and Reference for detailed

information on implementation.

Recording an Express Logon Macro
To record an ELF macro, do the following:

1. Choose Actions from the WorkStation-window menu-bar.

The Actions pull-down menu appears.

2. Choose Start Recording Macro from the menu.

The Record Macro/Script As dialog-box is displayed.

3. Select the format of file to be recorded: VBScript or Plain text Macro, if you are recording an Express Logon

Feature macro.

4. Select the Record User Wait Time to be used. This affects only unconditional wait statements. There is no

change for the interval in conditional wait statements (interval with condition). For these statements the

interval is a time-out value, processing normally continues when the condition is satisfied. In most cases the

script will fail if the time-out value expires before the condition is satisfied.

• Actual- the default no change to existing function.

• None - unconditional wait statements will not be written to the macro/script file. You have to edit the

script and add any required unconditional wait statements where they are needed.

• Fixed - unconditional wait statements will be written to the macro/script file with a fixed wait time of

25 ms. You may edit the script file and either increase the time interval or remove the wait statement if

it not needed.

5. Type the name of the file in which you want to save the macro.

6. If you are recording an Express Logon Macro, select the Enable check box and enter the Express Logon

Feature (ELF) Application ID.

7. Click OK.

The Record operation starts. In the Actions menu, Start Recording Macro/Script is changed to Stop Recording

Macro/Script; Pause Recording Macro/Script and Cancel Recording Macro/Script are added.

8. Record the keystrokes.

• If, while you are recording, you choose Cancel Recording Macro/Script:

The Record operation is canceled and nothing is saved. Cancel Recording Macro/Script and Pause

Recording Macro/Script are removed from the pull-down list. Stop Recording Macro/Script is changed

to Start Recording Macro/Script.

• If, while you are recording, you choose Pause Recording Macro/Script:

https://www.ibm.com/docs/en/SSEQ5Y_15.0.0/info_docs/express2.html

Chapter 2. Product Documentation

The Record operation is paused and Pause Recording Macro/Script is changed to Resume Recording

Macro/Script.

• If you choose Resume Recording Macro/Script:

The Record operation is resumed and Resume Recording Macro/Script is changed to Pause Recording

Macro/Script.

9. When you want to end the recording, choose Stop Recording Macro/Script.

The Record operation stops and the macro is saved in the file you named. Stop Recording Macro/Script is

changed to Start Recording Macro/Script. Cancel Recording Macro/Script and Pause Recording Macro/Script

are removed from the list.

Verifying an Express Logon Feature Macro
You can visually inspect an existing Macro recording of a host application logon to verify that the UserID and

Password have been replaced by Express Logon Feature (ELF) tags. The procedure is as follows:

1. From the Action Bar, open the Macro file containing the recorded keystrokes by selecting Settings > Macro/

Script.

2. Select the Macro file to be inspected and then select Customize.

3. Verify that the UserID has been replaced with two tags: the ELF Application ID and the ELF UserID placeholder.

The Application ID tag consists of the following three words, each separated by a blank character: "elf",

"applid", and the identifier of the host application that will be logged onto. The UserID placeholder is)USR.ID(.

For example

"myUserID

should have been replaced with

")USR.ID(

4. Verify that the Password has been replaced with the ELF Password placeholder tag)PSS.WD(.

For example

"myPassword

should have been replaced with

")PSS.WD(

5. Verify below entry must be available

For Example:

• For Plain Text macro : elf applid TSOIPO1

• For VBSCript macro : autECLSession.SetELFApplID " TSOIPO1.

99

HCL Z and I Emulator for Windows (ENGLISH)

100

Updating an Existing Macro for Express Logon
You can manually update an existing Macro recording of a host application logon to use the Express Logon Feature

(ELF). The procedure is as follows:

1. From the Action Bar, open the Macro file containing the recorded keystrokes by selecting Settings > Macro/

Script.

2. Select the Macro file you just recorded and then select Customize.

3. Replace the UserID recorded in the Macro with two tags: the ELF Application ID and the ELF UserID

placeholder. The Application ID tag consists of three words, each separated by a blank character: "elf",

"applid", and the identifier of the host application that will be logged onto. The UserID placeholder is)USR.ID(.

For example, replace

"myUserID"

with

")USR.ID("

4. Replace the Password recorded in the Macro with the ELF Password placeholder tag)PSS.WD(.

For example, replace

"myPassword"

with

")PSS.WD("

5. Add below new entry to convert Normal macro into ELF macro:

For Example:

• For Plain Text macro : elf applid TSOIPO1

• For VBSCript macro : autECLSession.SetELFApplID " TSOIPO1".

Mouse Setup
The Mouse Setup command lets you allocate functions to the right and left buttons of the mouse; this enables you to

perform the following actions without having to use the keyboard:

• Running the Z and I Emulator for Windows-supplied key functions

• Running the user-defined macros

• Placing a character at the current cursor location

Chapter 2. Product Documentation

Mouse File
The user can save the functions defined for the mouse buttons in a mouse file (*.MMP). The user can create two or

more mouse files and switch between them as required.

To set up the mousesetting upthe mouseand assign functions to the mouse buttons:

1. Select Mouse from the Settings menu.

The current settings appear in the Mouse Setup window.

2. Set up the required items, referring to the online help for detailed instructions.

If the user want to create or edit a mouse file:

a. Select Customize.

b. When the Customize Mouse window appears, allocate functions to the right and left buttons of the

mouse. These appear in Current Action for Mouse Button.

c. Select the required functions from List of Key Actions.

d. Save your changes and then select OK.

3. Select OK.

The mouse setup is complete.

Mouse Wheel Functionality
Mouse wheel scroll up and scroll down is mapped to the “PF7” and “PF8” function key (aid key) respectively for 3270

host.

Mouse wheel scroll up and scroll down is mapped to the “Roll Down” and “Roll Up” function key (aid key) respectively

for 5250 host.

Using the mouse wheel scroll option, users can scroll up and down on the Mainframe green screen, in case if the host

data exceeds more than one screen.

Example: User can scroll on z/OS syslogs.

Pop-Up Keypad Setup
pop-up keypadsetup

The pop-up keypad is a small window in which some buttons are arranged. To display the pop-up keypad, put the

pointer anywhere in the session window and press the right mouse button.

You can allocate the following functions to these buttons:

• A standard key function provided by Z and I Emulator for Windows

• A user-specified macro

• A character entry

To perform these functions, you only need to click a button on the pop-up keypad with the left mouse button.

101

HCL Z and I Emulator for Windows (ENGLISH)

102

To view the description of a short-name key function or macro, click the right mouse button while pointing at one of

the function or macro names.

Pop-Up Keypad File
You can specify the number of buttons displayed in the pop-up keypad, the functions allocated to those buttons, and

colors of the buttons. You can save the specified pop-up keypad contents in a pop-up keypad file (also referred to as a

poppad file).

A pop-up keypad file (*.PMP) contains the information for the number of buttons displayed in the pop-up keypad, the

functions allocated to those buttons,poppad colorand color information. You can define which pop-up keypad file is allocated to

the pop-up keypad.

Using the Pop-Up Keypad
To use a pop-up keypad:

1. With the mouse pointer anywhere in the session window, click the right mouse button.

2. Select Pad 1, Pad 2, Pad 3, or Pad 4.

3. Click the required button in the pop-up keypad.

To set up the pop-up keypad:setting upthe pop-up keypad

1. Select Popup Keypad from the Settings menu.

2. When the Popup Keypad Setup window appears, set the required items, referring to the online help for detailed

instructions.

If you want to edit the pop-up keypad file, select Customize and then make your changes.

3. Select OK. The pop-up keypad you selected is ready for use.

Tab Setup (VT only)
Tab Setup allows you to define tab stops for your VT sessions.

Web Browser Setup
Web Browser Setup allows you to define a preferred web browser and to use it rather than the one that comes with

your operating system.

Chapter 2. Product Documentation

Managing Emulator Sessions
Z and I Emulator for Windows provides the following functions, in addition to those provided by Windows®, for those

who work with several open session windows simultaneously. These functions allow you to manage your session

windows easily and quickly. The Window menu has the following selections:

Jump

Use Jump to switch between the currently opened session windows.

You cannot use Jump to switch to a session window that is currently hidden. Instead, select Show

Session from the Window menu to display the session window on the screen. Then, select Jump.

Hide Session

Use Hide Session to stop displaying a visible session window.

You cannot hide all sessions. At least one session is always shown.

Show Session

Use Show Session to display a session window that was previously hidden with Hide Session.

Use the View menu to display a previously-saved arrangement of windows, or to save an arrangement of windows.

Z and I Emulator for Windows can save and restore the following information relating to the session window view:

• Position and size of each window

• Window status (standard, minimized, or maximized)

• Window font

You can save view information for up to eight windows.

Getting Help
For more information about managing session windows, refer to the online help:

1. Select Procedures from the Help menu.

2. When the help window appears, scroll down to Managing Workstation Windows®.

Select choices from that list for detailed information.

Online Emulator Session
Emulator sessions started from Session Manager online are displayed with “Online” Tag at end of Session Titles.

Dialogs where create/modify or delete opertations for the .ws (Workstation profile),.bch - (Multiple Sessions or

Batch),.pmp (Popup-Keypad Configuration).kmp (Keyboard Configuration).bar (Toolbar Setup), .mmp (Mouse

Setup) .xlt (Translation Table) are always online

103

HCL Z and I Emulator for Windows (ENGLISH)

104

Detect and Repair
The user use the Help → Detect and Repair function to check the Z and I Emulator for Windows product integrity.

The Detect and Repair operation performs a check on the installed Z and I Emulator for Windows files to determine

whether the installation has been damaged. A subsequent repair is performed, if necessary.

Note: The user must stop all active sessions before starting the Detect and Repair function.

Check Restore my shortcuts if the user want original shortcuts restored. If the user have modified shortcuts since the

original Z and I Emulator for Windows installation, the user might want to keep your shortcuts intact—in that case, do

not choose this option.

In order to use the Detect and Repair function, the user must be authorized in the System Policy. The user might be

prompted to provide the original Z and I Emulator for Windows installation source.

Z and I Emulator for Windows Detect and Repair is invoked from the Session Manager or from an emulator session

window. Windows Installer repair of the Z and I Emulator for Windows product is invoked from the Windows® Add/

Remove Programs function. Note the following differences in the operations.

Z and I Emulator for Windows Detect and Repair performs the following operations:

• Reinstalls a file if it is missing or corrupt, or if it is an older version.

• Rewrites all registry settings for the application in the LOCAL_MACHINE section of the registry.

• Rewrites all registry settings for the application in the CURRENT_USER section of the registry.

• Reinstalls all shortcuts (optional).

Alternatively, Windows Installer performs the following operations:

• Reinstalls a file if it is missing, or if it is an older version. Windows Installer does not check files for corruption.

• Rewrites all registry settings for the application in the LOCAL_MACHINE section of the registry.

• Rewrites all registry settings for the application in the CURRENT_USER section of the registry.

• Reinstalls all shortcuts. This function is not optional in Windows Installer.

Managed ZIEWIN and Interoperablity
This section provides detailed information about Managed ZIEWin and Interoperabilty between HCL Z and I Emulator

for Windows and HCL Z and I Emulator for Web Clients.

HCL Z and I Emulator for Windows uses Session Manager Online dialog to provide easy access to workstation

profiles and batch files on the ZIE Server. With Session Manager Online users can create or start a single or multiple

sessions and or batch files. Users can create their own profile to the ZIE server and migrate existing files such as the

workstation profiles (*.WS) and batch files (*.BCH) that were stored on the ZIE Server.

This "How To" document aims to supplement additional detailed information in setting up Managed HCL Z and I

Emulator for Windows (ZIEWIN) as referenced below.

Chapter 2. Product Documentation

Steps to Install Using Managed:

Refer to Planning to Install Z and I Emulator for Windows on page 42

The steps provided in this document are applicable to all Windows 10 versions which are 64-bit OS level.

Prerequisites :

1. Download a copy of HCL Z and I Emulator for Windows 64-bit base package and HCL Z and I Emulator for

Windows RP1.zip

2. A HCL Z and I Emulator for Web server is required for the Session Manager Online to work.

3. Create a folder (e.g. MPZiewin) in the ZIEWEB published directory.

4. Unzip and dump the HCL Z and I Emulator for Windows RP1 contents in MPZiewin folder.

5. Right click the MPZiewin folder > Properties > Sharing > Advance Sharing > Put a check on Share this Folder.

6. Click OK then Close.

7. Repeat steps 5-6 with ZIEWEB folder.

8. Obtain the IP address of the ZIEWEB server and use it at step 2 below.

Follow the steps below in setting up Managed HCL Z and I Emulator for Windows (ZIEWIN):

1. There are two ways to input the ZIE Server configuration details. Choosing to go either way will have the same

results.

• During the ZIEWIN installation a new panel has been added.

105

HCL Z and I Emulator for Windows (ENGLISH)

106

• Preferences Manager - Click on Start > HCL Z and I Emulator for Windows > Preferences > Advanced

2. Enter the configuration parameters based on the information below:

• Web Server URL : The URL of the Web Server from where HCL Z and I Emulator for Windows fix pack

file will be downloaded for installation. Installer or fix pack will be installed on the system by "Start or

Configure Sessions - Online" program.>

• Config Server : URL of the Application Server/Embedded Server, on which interoperability module (.war

file) is deployed. It can be deployed on the HOD Embedded Server or on any configured Application

Server.

Example: http://< Application Server IP >/<Configured context root of the application>

Chapter 2. Product Documentation

For more details on WAR file deployment, refer to the technote <hyper-link>.

• Config Server Port : Port number of Application Server where interoperability module (.war file) is

deployed.

Example: 9080

3. Click OK.

4. Open File Explorer > This PC > Map network drive. Use the IP address of the Web Server along with the folder

where the HCL Z and I Emulator for Windows RP1.msi is located. E.g. \\192.168.56.102\MPZiewin

5. Click Save.

6. Repeat steps 4-5 with ZIEWEB folder. E.g. \\192.168.56.102\ZIEWEB

Note: This completes configuring Managed HCL Z and I Emulator for Windows (ZIEWIN).

7. To validate that the configuration is correct, create a new Username or use an Existing User in the Session

Manager Online. Click on Start > HCL Z and I Emulator for Windows > Start or Configure sessions - Online

Points to consider:

• When mapping the network drive ensure that client machine and ZIEWEB server is within the same network.

• The Session Manager Online checks for updates at startup. It is essential that HCL Z and I Emulator for

Windows RP1 is in the ZIEWEB published directory.

Interoperability between HCL Z and I Emulator for Windows and HCL Z and I
Emulator for Web Clients
The interoperability feature allows the ZIEWin users to use the ZIEWin sessions from other HCL terminal emulator

clients, such as ZIEWeb and ZIEWeb Client. ZIEWin users can use the “Session Manager Online” utility to store the

new sessions and migrate the existing sessions to ZIE server, these sessions are then converted to ZIEWeb Session

formats for the ZIEWeb and ZIEWeb Client usage.

107

HCL Z and I Emulator for Windows (ENGLISH)

108

Note: Interoperability feature is introduced in ZIEWin 2.1 version.

ZIEWin client communicates with the ZIE server over HTTP/HTTPS connectivity using JSON data format.

The interoperability feature is supported from ZIEWeb v2.1.0.0 & ZIEWeb Client v2.1.0.0 onwards and is applicable for

3270 Display, 5250 Display, 3270 Printer, 5250 Printer, and VT sessions.

Note: The session conversion happens only for ZIEWin to ZIEWeb sessions and not vice versa.

When the user stores the ZIEWin sessions using the “Session Manager Online” utility, they are converted to ZIEWeb

sessions before saving them to the ZIE server . After storing to the ZIE server , users can log in from ZIEWin, ZIEWeb,

or ZIEWeb Client to work with the stored ZIEWin sessions.

Using ZIEWin Sessions from ZIEWeb and ZIEWeb Client:

After the ZIEWin sessions are stored in the ZIE server , if any changes are made to the session definition from any of

the clients, it is saved in the ZIE server . These session changes will be available to ZIEWin users after the next login.

Below is the list of supported parameters as part of the Interoperability feature.

Table 13. List of Supported Parameters for Interoperability

ZIEWIN Parameter ZIEWEB Parameter

Primary Host Name or IP Address Destination Address

Primary Port Number Destination Port

Primary LU or Pool Name LU or Pool Name

Screen Size Screen Size

Host Code-Page Host Code-Page

Auto-reconnect Auto-reconnect

Backup 1 Host Name or IP Address Backup 1 Destination Address

Backup 2 Host Name or IP Address Backup 2 Destination Address

Backup 1 Port Number Backup 1 Destination Port

Backup 2 Port Number Backup 2 Destination Port

Backup 1 LU or Pool Name Backup 1 LU or Pool Name

Backup 2 LU or Pool Name Backup 2 LU or Pool Name

Enable Security Protocol

Workstation ID Workstation ID

Server Authentication Server Authentication

Message Queue Message Queue

Message Library Queue Library

Send Personal Certificate to Server if it is Requested Send a Certificate

Send Personal Certificate Trusted by Server Certificate Source

Send Personal Certificate Based on Key Usage Enable Key Usage

Machine Mode Terminal Type (VT session)

Chapter 2. Product Documentation

Table 13. List of Supported Parameters for Interoperability (continued)

ZIEWIN Parameter ZIEWEB Parameter

AutoWrap AutoWrap (VT session)

Note: Only the listed parameters will be modified from ZIEWeb / ZIEWeb Client for a ZIEWin profile. If any

other parameters are updated from ZIEWeb / ZIEWeb Client, there will not be any changes to the ZIEWin

session. Users should modify the ZIEWin sessions either from ZIEWin or ZIEWeb / ZIEWeb Client at a time

and should avoid simultaneous modifications from different clients.

Interoperability 2.1.0.0 Configuration Introduction:

ZIEWeb v3.0 (from v2.1.0.0 onwards) introduced interoperability between ZIEWin and ZIEWeb. This allowed ZIEWin

sessions to be accessed through ZIEWeb and ZIEWeb Client after the session definitions were uploaded to the ZIE

server .

Password provided during the user creation will be encrypted using AES 128-bit algorithm and will be sent to the

server through the HTTP/HTTPS protocol as Json object. UID is added to the WS and BCH profile files for unique

identification. Only Connection parameters are considered for the interoperability between ZIEWin and ZIEWeb Clients

and vice-versa.

After the ZIEWin sessions are converted and stored in the ZIE server , any changes made to the common parameters

from any of the clients will be saved on the ZIE server . These parameter changes will be available to ZIEWin users

after the next login.

Steps to install:

1. Install the ZIEWeb v3.0.

2. Install the ZIEWin v3.0

WAR File Configuration:

The interoperability executable (ZIEWeb_Interoperability.war) is available under the lib directory of the product.

For Embedded Web Server:

If the Embedded Web Server is used, by default Interoperability application is running on context root "interop”. If

the user needs to change the context root, add the following parameter to the configuration file (config.properties),

located in the ZIE server publish directory.

Example: InterOpContextPath=interop

The default ZIE server IP is 127.0.0.1 and the ZIE server port is 8999. If the user needs to connect to the ZIE server

located on a different machine, then override the interoperability configuration by modifying the properties of

“interop_overrides.xml” in the conf directory under the lib directory of the product.

Table 14. List of properties that can be used to configure the Interoperability

Property Value Description

ZIEWEB_SERVER_IP 127.0.0.1 ZIE server address

109

HCL Z and I Emulator for Windows (ENGLISH)

110

Table 14. List of properties that can be used to configure the Interoperability (continued)

Property Value Description

ZIEWEB_SERVER_PORT 8999 ZIEWEB Config Server port

Directory_Location C:\\dir_location Directory Location for logs

The user can utilize ZIEWeb_Interoperability.war file (available under the lib directory of the product) to deploy to

different application servers such as WAS/Tomcat.

For WebSphere Application Server (WAS):

1. Log in to WebSphere Application Server.

2. Go to Applications.

3. Click WebSphere enterprise applications under Application Type.

4. Select ZIEWeb_Interoperability.war file.

5. Click on Initialize parameters for servlets link under Web Module Properties section.

6. Enter the required values.

Supported Application Servers: Apache Tomcat and WAS.

Limitations

1. Only connection parameters are considered for interoperability between ZIEWin and ZIEWeb and vice-versa.

2. Session creation from ZIEWeb / ZIEWeb Client will not be converted to a ZIEWin session.

Known Issues

1. For stored ZIEWin sessions, changes to any session parameters (not only the listed parameters) from

ZIEWeb / ZIEWeb Client will be overridden or set to default when there is an update from “Session Manager

Online” (ZIEWin Client).

2. If there are simultaneous profile updates from any of the two clients, the most recent update will be saved as

the final copy in the ZIE server .

3. Modifications done in multiple sessions (add, delete sessions, or rename) from the ZIEWeb Clients do not

reflect in the ZIEWin Client.

4. Saving/renaming profiles with special characters (Ex: \ / : * ? " < > |.) in ZIEWeb/ ZIEWeb Clients will result in

unexpected behavior in the ZIEWin Client.

How to setup Managed HCL Z and I Emulator for Windows (ZIEWIN)

HCL Z and I Emulator for Windows uses Session Manager Online dialog to provide easy access to workstation

profiles and batch files on the ZIE Server. With Session Manager Online users can create or start a single or

multiple sessions and or batch files. Users can create their own profile to the ZIE server and migrate existing

files such as the workstation profiles (*.WS) and batch files (*.BCH) that were stored on the ZIE Server.

This "How To" document aims to supplement additional detailed information in setting up Managed HCL Z

and I Emulator for Windows (ZIEWIN) as referenced below.

Steps to Install Using Managed: Refer to Planning to Install Z and I Emulator for Windows on page 42

Chapter 2. Product Documentation

The steps provided in this document are applicable to all Windows 10 versions which are 64-bit OS level.

Prerequisites :

a. Download a copy of HCL Z and I Emulator for Windows 64-bit base package and HCL Z and I Emulator

for Windows RP1.zip

a. A HCL Z and I Emulator for Web server is required for the Session Manager Online to work.

b. Create a folder (e.g. MPZiewin) in the ZIEWEB published directory.

c. Unzip and dump the HCL Z and I Emulator for Windows RP1 contents in MPZiewin folder.

d. Right click the MPZiewin folder > Properties > Sharing > Advance Sharing > Put a check on Share this

Folder.

e. Click OK then Close.

f. Repeat steps 5-6 with ZIEWEB folder.

g. Obtain the IP address of the ZIEWEB server and use it at step 2 below.

Follow the steps below in setting up Managed HCL Z and I Emulator for Windows (ZIEWIN):

There are two ways to input the ZIE Server configuration details. Choosing to go either way will have the same

results.

• During the ZIEWIN installation a new panel has been added.

• Preferences Manager - Click on Start > HCL Z and I Emulator for Windows > Preferences > Advanced

111

HCL Z and I Emulator for Windows (ENGLISH)

112

a. Enter the configuration parameters based on the information below:

• Web Server URL : The URL of the Web Server from where HCL Z and I Emulator for Windows fix

pack file will be downloaded for installation. Installer or fix pack will be installed on the system

by "Start or Configure Sessions - Online" program.>

• Config Server : URL of the Application Server/Embedded Server, on which interoperability

module (.war file) is deployed. It can be deployed on the HOD Embedded Server or on any

configured Application Server.

Example: http://< Application Server IP >/<Configured context root of the application>

For more details on WAR file deployment, refer to the technote <hyper-link>.

Chapter 2. Product Documentation

• Config Server Port : Port number of Application Server where interoperability module (.war file)

is deployed.

Example: 9080

b. Click OK.

c. Open File Explorer > This PC > Map network drive. Use the IP address of the Web Server

along with the folder where the HCL Z and I Emulator for Windows RP1.msi is located. E.g. \

\192.168.56.102\MPZiewin

d. Click Save.

e. Repeat steps 4-5 with ZIEWEB folder. E.g. \\192.168.56.102\ZIEWEB

Note: This completes configuring Managed HCL Z and I Emulator for Windows (ZIEWIN).

f. To validate that the configuration is correct, create a new Username or use an Existing User in the

Session Manager Online. Click on Start > HCL Z and I Emulator for Windows > Start or Configure

sessions - Online

Points to consider:

• When mapping the network drive ensure that client machine and ZIEWEB server is within the same

network.

• The Session Manager Online checks for updates at startup. It is essential that HCL Z and I Emulator

for Windows RP1 is in the ZIEWEB published directory.

Utilities
Z and I Emulator for Windows provides the following utilities:

32-bit ODBC Administrator

Allows you to add, configure, or delete an ODBC data source.

113

HCL Z and I Emulator for Windows (ENGLISH)

114

Scratch Pad

The Scratch Pad is a lightweight text editor with the capability of normal edit operations, such as cut,

copy and paste.

Note that Scratch Pad requires .NET Framework 3.5 or lower versions installed. The menu item is

grayed out in Windows 8 or 8.1 as .NET Framework 3.5 is not available by default on these operating

systems. Install .NET Framework 3.5 to resolve the problem.

Multiple Sessions

Provides the capability to run multiple host sessions using a single icon.

ZipPrint

Allows you to print PROFS® notes, calendars, CMS files, XEDIT workspaces, and 3270 session screens.

Convert Macro

Allows an existing Z and I Emulator for Windows Macro file to be converted to an XML or VBScript file.

Data Transfer

Transfers data from the iSeries™, eServer™ i5, or System i5™ to your workstation, or from your

workstation to the iSeries™, eServer™ i5, or System i5™ (record-level data transfer).

iSeries Connection Configuration

Define connections to each iSeries™, eServer™ i5, or System i5™ host that will use the data transfer

function.

Preferences

Configuration of certain advanced parameters.

PcsSound

The PcsSound utility, available under the product installation directory, allows you to:

• Assign labels to sound events.

• Associate sound files to sound events.

• Cleanup sound labels from the registry.

• Save the current sound scheme to a file.

• Restore a saved sound scheme.

Note: Saving and restoring a sound scheme will be useful while changing Windows themes.

32-Bit ODBC Administrator
ODBC is a programming interface that enables applications to access data in database management systems that

use Structured Query Language (SQL) as a data access standard.

Chapter 2. Product Documentation

Use the following steps to set up the Z and I Emulator for Windows ODBC data source:

1. Select the 32-bit ODBC Administrator icon from the Windows® Control Panel. The Data Sources window

appears.

2. Select IBM® DB2® ODBC Driver data source in the Data Sources (Drivers) list. Then click Finish.

3. Click Add Database. The Z and I Emulator for Windows Add Database SmartGuide appears to prompt you

through the set up.

4. Select the Manually Configure a Connection to a DB2® Database radio button.

5. Specify the information to set up the data source, by clicking Next.

6. When you are finished specifying the information, click Done.

7. You will be prompted to test the connection. To test the connection, click OK.

Note:

1. Z and I Emulator for Windows uses ODBC 32-bit drivers. Applications, such as Lotus® 1-2-3® included

in the Lotus® SmartSuite® 96 package, require a 16-bit driver and will not work with Z and I Emulator

for Windows. You should see your product vendor for a version that utilizes 32-bit ODBC drivers (Lotus

1-2-3® included in Lotus® SmartSuite® 97 for example).

Multiple Sessions
The Z and I Emulator for Windows Multiple Sessions Batch Program enables you to start several host sessions by

clicking a single icon; the necessary commands are specified in a batch file (.BCH). You can include in a batch file

other programs, which may communicate with a host session using the DDE or EHLLAPI interface.

ZipPrint
ZipPrint is a 3270 utility that enables you to print PROFS® notes, calendars, OV documents, CMS files, XEDIT

workspaces, and 3270 session screens. By default, it uses the Windows® printer currently set up for the host session,

but you can change it if you wish.

You do not have to install ZipPrint—you just start it. It adds itself to the menu bar of the sessions for which you define

it, so you can use it in the same way as any other menu bar function. You must start ZipPrint before you start a

session in which you want to use it.

ZipPrint needs the DDE/EHLLAPI, so you must make sure that this is enabled for the sessions for which you want to

use ZipPrint. (It is enabled by default, but you should check that it has not been turned off.)

For more information about ZipPrint, see ZipPrint (3270 Only) on page 76.

115

HCL Z and I Emulator for Windows (ENGLISH)

116

File Transfer Considerations
ZipPrint uses the Z and I Emulator for Windows file transfer function to print VM/CMS notes and files. In order for this

function to work correctly, you should use the VM/CMS host type for 3270 file transfer.

In the emulator session window, click Settings → Transfer. On the File Transfer Settings → General tab, select VM/

CMS from the Host Type drop-down list.

On slow communications lines, if you are using a large packet or block size, you may experience a file transfer

timeout. If you do, you should increase the timeout delay. To change the timeout delay, do the following:

1. From the session menu, click Settings → Transfer.

2. On the General tab, change the File Transfer Timeout to 150 seconds.

Convert Macro
The Convert Macro utility enables you to convert an existing Z and I Emulator for Windows Macro file to XML or a

VBScript file.

Note: Macros that are converted to XML are intended for use in ZIEWeb (Z and I Emulator for Web) and will

not function in Z and I Emulator for Windows emulation sessions. Use the ZIEWeb Macro Manager to import

a converted Z and I Emulator for Windows macro into ZIEWeb. These converted macros will not appear in the

list of available Z and I Emulator for Windows macros.

To use the conversion utility, click HCL Z and I Emulator for Windows → Utilities → Convert Macro.

To convert an existing macro to XML or a VBScript, do the following:

1. Select the name of an existing macro to be converted.

Note: The macro must exist in the application data directory specified during installation.

2. Select VBScript or XML as the type of macro to which to convert.

3. Click Convert.

4. Enter a name for the new XML file or VBScript or accept the generated name. The extension will be added

automatically.

Note: When saving a converted XML macro you can choose where you would like to save it. You

should not change the location of the converted VBScript macros.

5. Click Save.

6. Repeat the procedure to convert another macro, or click Close to end the application.

Chapter 2. Product Documentation

Data Transfer
Z and I Emulator for Windows Data Transfer enables you to transfer data between an iSeries™ system and your

workstation. To use the Data Transfer function, select the Data Transfer icon.

Transferring data is quite different from transferring files, which is described in Transferring Files on page 83.

Requirements
Before you can transfer data with Z and I Emulator for Windows:

• IBM® PC Support/400 (5738-PC1) must be installed on your iSeries™, eServer™ i5, or System i5™, unless

OS/400® Version 3 (or later) or i5/OS™ is installed.

Data Transfertypes ofThere are two types of data transfer, depending on the direction of the transfer.

Data sending

Data is transferred from your workstation to the iSeries™, eServer™ i5, or System i5™.sending data to the hostYou can transfer

data to any of the following destinations:

• Existing members in an existing iSeries™, eServer™ i5, or System i5™ physical file

• New members in an existing iSeries™, eServer™ i5, or System i5™ physical file

• New members in a new iSeries™, eServer™ i5, or System i5™ physical file

Note: You cannot transfer data from a workstation file to an iSeries™, eServer™ i5, or System i5™

logical file.

Data receiving

Data is transferred from the iSeries™, eServer™ i5, or System i5™ to your workstation.receiving data from the host

While receiving data from the host, you can specify the data to be received and where the data is to be

output.

Receivable data includes:

• An entire iSeries™, eServer™ i5, or System i5™ file

• Part of an iSeries™, eServer™ i5, or System i5™ file

• Data combined from several iSeries™, eServer™ i5, or System i5™ files

• Summary of record groups

Specify the following output destinations:

• Display

• Disk

• Printer

Also, you can specify the numeric value format.

117

HCL Z and I Emulator for Windows (ENGLISH)

118

For more information about data transfer, refer to Emulator User's Reference.

iSeries Connection Configuration Utility
The iSeries™ Connection Configuration Utility is used to define connections to each iSeries™, eServer™ i5, or System

i5™ host that will use the data transfer function. The connection definitions are saved in an .NDC file in ASCII format.

You can use this utility for TCP/IP connections.

For more information on Data Transfer see Data Transfer on page 116.

To use the utility, click Start → Programs → HCL Z and I Emulator for Windows → Utilities → iSeries Connection

Configuration; the resulting iSeries™, eServer™ i5, or System i5™ configuration screen has the following options:

Show IP Host Connections

Click this button to display and configure IP connections to the iSeries™, eServer™ i5, or System i5™

host.

Add

Click the type of connection and then click Add. Enter the Host name and Alias in the resulting dialog

box.

Modify

Select a host name from the connection list, and then click Modify to edit the Host name and the Alias

in the .NDC file.

Remove

Select a host name from the connection list, and click Remove to delete this connection definition from

the .NDC file.

Note: When disabling a connection, if you want to preserve the connection definition but disable

the connection, clear the checkbox next to the name in the connection list.

Global Parameters

Click this button to edit the Extension list and Cache size.

Extension List
The extension list parameter specifies the extension of a file on an iSeries™, eServer™ i5, or System i5™. You can

specify more than one extension parameter in the extension list. The code pages of files with the specified extensions

are translated from the EBCDIC code page to the ASCII code page when the file is transferred between the iSeries™,

eServer™ i5, or System i5™ and the client. Up to three characters are allowed. There are two special cases:

• A dot alone (.) indicates that data for files having no extension should be converted.

• The character pair .* indicates that data for all files should be converted.

Chapter 2. Product Documentation

Cache Size
The cache size parameter specifies the number of kilobytes of iSeries™, eServer™ i5, or System i5™ data that is

buffered in the read-ahead cache of the client. The default is 256 KB; the maximum is 4 MB. A value of zero requests

that no cache be used. iSeries™, eServer™ i5, or System i5™ data can be retrieved in amounts that are first cached

locally on the client. The client retrieves the data from the cache to populate the local device. This read-ahead caching

reduces the number of times the client has to access the iSeries™, eServer™ i5, or System i5™ to retrieve the data.

Preferences
The Preferences utility provides a method for changing configuration and setup items.

Note:

1. Preferences set with the Preferences Utility pertain to you whenever you log on to the same user ID on

the affected workstation; they apply to all of your sessions while you are logged on.

2. Preferences set using the session Edit menu apply to all sessions controlled by the workstation profile

created or changed while using a session—when that session profile is used again, the preferences

are applicable, regardless of the user ID at the time.

3. One of the capabilities of the Preferences Utility is to allow specification of a directory to be used for

storing your profiles; this allows full control of your environment.

To access the Preferences Utility, click Programs -> HCL Z and I Emulator for Windows -> Utilities -> Preferences

from the Windows Start menu. Select the Basic tab to change the preferences and select Advanced tab to change the

maximum number of emulator sessions and pass through host certification validation.

Basic

Emulator Profile File Location
If the All User application data directory location was selected during installation of Z and I Emulator for Windows,

you can specify the default location of workstation profiles.

Macro/Script Location
You can specify where emulator macro and script files are to be placed. This directory will be common to all sessions.

By default, macros are placed in the application data directory specified during the installation of Z and I Emulator for

Windows, and the macro/script location field value is blank.

119

HCL Z and I Emulator for Windows (ENGLISH)

120

User Interface Language
You can view the language of the installed package by selecting Help > About Z and I Emulator for Windows from the

session menu bar.

If your system was installed with multiple-language support, the Basic property page shows a section labeled

Select a default user interface language. If you click on the radio button for Z and I Emulator for Windows User

Interface Language Preference, it also shows a drop-down list box, with the language selected that is currently

being used; you can select any other language from the list, and that language will be used for the user interface

when you subsequently restart Z and I Emulator for Windows. Or you can click the radio button User Default from

Regional Settings if you want the language to be that specified in the Windows® settings. You can also click the radio

button Post a Language Selection Dialog for each process; this results in a pop-up dialog each time you start a new

application from the Z and I Emulator for Windows group of programs.

Note: You might receive a warning message, if the selected language is incompatible with your system's

current code page. You can ignore this, if you are planning to reboot your computer to select a new system

locale with a compatible code page.

Advanced

Maximum number of emulator sessions
Specify the maximum number of Telnet emulator sessions. It can be either 26 or 52 sessions. Default is 26 sessions.

Pass Through Host Certificate Validation
Choose whether to enable or disable the default certificate validation process during SSL/TLS handshake. Default is

enable the certification validation. Applicable only for Microsoft schannel provider.

Note: By default, schannel (MSCAPI) is responsible for validating the host certificate chain received during

SSL/TLS handshake. Schannel runs several checks on the received certificate chain, one of which verifies

that the signature affixed to the certificate is valid. The hash value computed on the certificate contents must

match the value that results from decrypting the signature field using the public component of the issuer. To

perform this operation, the user must own the public component of the issuer, either through some integrity-

assured channel or by extracting it from another (validated) certificate. The default certificate validation

process is exhaustive and runs several checks on the host certificate chain to successfully validate it. Enable

this option, the user must effectively suppress the default validation done by schannel and the identity of the

host would not be verified. As we are skipping the host certificate validation, the status bar is updated with

the following message: “Skip the certificate validation since pass-through host certificate validation option is

enabled.” Using this option is not recommended.

When the Host certificate is not added to the trusted root and “Pass-Through Host Certificate

Validation” is enabled, a pop-up is displayed. Users can suppress this pop-up by adding the

Chapter 2. Product Documentation

“SuppressPassThroughPopup=Y” keyword under the “[Security]” section in the pcswin.ini file. By default,

SuppressPassThroughPopup is disabled.

Configuration of License Manager settings
The License Manager settings can either be configured by providing the required server details in the ‘InstallShield

Wizard' at the time of ZIEWin installation itself, or can be added/updated in the ‘License Manager Settings' section of

the Advanced tab within the Preferences.

License Manager settings

• License URL :

Specifies the HTTP URL of the License Manager Server to which the HCL Z and I Emulator for Windows

session sends the license parameters. It is mandatory to configure this field to use the product. If this field is

not configured the emulator session initiation will be aborted.

For Example:

http://<appserver-address>:<port-num>/<context-root>/LicenseLogger

where,

◦ <appserver-address> is the hostname or IP address of the server on which the License Manager is

installed,

◦ <port-num> is the port that is specified during the deployment of the application server and,

◦ <context-root> is the location name that can be configured by the Administrator.

For more information on the Installation of HCL ZIE License Manager, refer to HCL ZIE License Manager on

page 6.

• Interval :

Specifies the time period in minutes, after which the HCL Z and I Emulator for Windows session sends the

license parameters. It is the request interval after which the server marks the client as timeout if the request is

not sent. The minimum value is 5 minutes (which is the default), and the maximum value is 30 minutes.

Note: The License Manager Settings set using the 'Preferences' utility takes precedence over the

values set during installation. If the installation is custom 'User Installation' where the application data

location is %appdata% in the User directory, the values set in the 'Preferences' utility is applicable only

for the current user.

1. Configure the License Manager Settings during the GUI installation of ZIEWin

The 'License Manager URL' and 'Interval' fields can be set during installation, in the 'License Manager Server

Details' panel. Users may skip the License Manager configuration at installation time and choose to configure

it after installation using the 'Preferences' utility.

121

HCL Z and I Emulator for Windows (ENGLISH)

122

Figure : License Manager Settings section in the ‘Preferences Manager' panel ZIEWin.

2. Configure the License Manager Settings using “Preferences” utility

The 'License URL' and 'Interval' fields can be set using the 'Preferences' utility, by entering values to the

respective fields under the 'License Manager Settings' in the 'Advanced' tab.

Chapter 2. Product Documentation

Figure : License Manager Settings section in the ‘Preferences Manager' panel ZIEWin.

ZIE Server Details
Configuration of ZIE Server details

The ZIE Server can either be configured by providing the required server details in the ‘InstallShield Wizard' at the time

of ZIEWin installation itself, or can be added/updated in the ‘ZIE Server Detail' section of the Advanced tab within the

Preferences.

• Web Server Details: The URL of the Web Server from where Z and I Emulator for Windows installer or fix

pack file will be downloaded for installation. Z and I Emulator for Windows prompts the user with a Pop-Up

message for an Auto-Upgrade, if a newer version of ZIEWin is available on the Web Server. Upon receiving a

confirmation from the user to upgrade, the latest version of installer or fix pack will be installed on the system

by Z and I Emulator for Windows Session Manager ONLINE.

• Config Server: URL of the Application Server/Embedded Server, on which interoperability module (.war file) is

deployed. It can be deployed on the Embedded Server or on any configured Application Server.

123

HCL Z and I Emulator for Windows (ENGLISH)

124

Example: http://< IP >/<Configured context root of the application>

For more information on ZIEWeb - ZIEWin interoperability and common parameters, refer to Interoperability

between HCL Z and I Emulator for Windows and HCL Z and I Emulator for Web Clients on page 30

• Config Server Port: Port number of Application Server where interoperability module (.war file) is deployed.

Example: 9080.

1. Configure the ZIE Server Settings during the GUI installation of ZIEWIN

During the installation in the “ZIE Server Details” install panel user can configure the “Web Server URL”, “Config

Server” and “Config Server Port” fields. User may skip configuration during the installation and can configure

using “Preferences” utility after installation.

Figure : ZIE Server Details section in the ‘InstallShield Wizard' of ZIEWin.

2. Configure the ZIE Server Settings using “Preferences” utility

In the “Preferences” utility, go to “Advanced” tab to find the section “ZIE Server Details”, user can configure the

fields “Web Server URL”, “Config Server” and “Config Server Port” here. Please refer to the figure below.

Chapter 2. Product Documentation

Figure : License Manager Server and ZIE Server Details section within the Advanced tab of

Preferences utility in ZIEWin.

Standby/Hibernate
Choose whether to prompt for acceptance when the system attempts to go to standby or hibernate (power saving)

mode. If you select Standby/Hibernate without prompting, Z and I Emulator for Windows allows the system to

standby or hibernate without prompting you, even if sessions are connected. By default, this option is clear.

See Power Management on page 68 for more information.

Z and I Emulator for Windows FTP client
The Z and I Emulator for Windows FTP client implements the client functionality specified by File Transfer Protocol

(FTP), which is the standard protocol for transferring files to and from remote machines running FTP servers. The

FTP client enables file and directory upload and download, and directory navigation of remote and local file systems.

The Z and I Emulator for Windows FTP client supports the following servers:

125

HCL Z and I Emulator for Windows (ENGLISH)

126

• UNIX

• iSeries (AS/400)

• Windows

• z/OS MVS

• VMS

The following limitations apply:

• Secure connections (SSL/TLS) are not supported.

• The local file list does not support listing multiple local or LAN-attached drives.

To view files on a different drive, type the drive letter of the drive you would like to view in the Directory field

and click Enter. The new drive is displayed in the local file list.

• Code page conversion for files is not supported.

• Directory transfer is not supported on systems that do not have directory structures similar to Windows and

UNIX. Such systems include the following:

◦ VM

◦ OS/390 or z/OS MVS services

◦ OpenVMS

◦ i5/OS and OS/400 Library File System

Command Line FTP
The command line FTP is used to achieve the FTP functionality over the command line. It is used to transfer files

using FTP to and from a host with a UNIX file system, using pcsftpcmd.exe. It can be invoked from the command line

using a set of parameters and switches. The functions supported by the executable are:

• Download a file

• Upload a file

• Delete a file (host side)

• Create a new directory (host side)

The necessary arguments for invoking the executable are:

hostname

This is the first argument and you need to specify the FTP server host name to which you want to

connect.

username / password

These are the second and third arguments, which specify the user credentials to access the given host.

operation

In this argument you can specify the operation that needs to be performed. Possible operations are:

Chapter 2. Product Documentation

• /d - This switch is used for downloading a file from the host to the client system. This switch

should be followed by the local directory where the file needs to be downloaded, a space and the

complete path of the host file along with the name of the file that needs to be downloaded.

• /u - This switch is used for uploading a file from the client system to the host server. This switch

should be followed by the complete path of the local directory along with the name of the file

that needs to be uploaded, a space and the host directory where the file needs to be uploaded.

• /FILE - This switch is used to specify that a set of FTP commands are contained in a separate

file and needs to be executed. This switch is followed by the complete path and the name of the

file that contains the batch commands.

• MKDR - This switch is used to create a new Directory at the host. This is followed by the name of

the directory to be created.

• DELE - This switch is used to delete a file from the host. This switch is followed by the complete

path along with the name of the file to be deleted.

The transfer mode is set to AUTOMATIC, that is, the executable automatically checks to see if the extension of the file

to be transferred is one of .log, .ini, .txt, .bat, .inf, in which case the mode is set to ASCII. For everything else it is set to

BINARY mode.

Use one of the following switches to invoke help:

• -?

• /?

• -HELP

The issue here is that the password would be in plain text, which would be a security concern which can be overcome

by requesting the customer to explicitly enter the password when the connection is being made.

The initial command line FTP being developed would entertain non-secure connections alone and would not support

secure connections. The command line FTP currently under development would support only Windows/Unix style file

systems. Other file systems would be supported in future releases.

If the user does not want to give the password in plain text along with the other parameters, a - can be entered in the

password field, and then run the command which asks for the user to input the password dynamically.

The command line FTP is currently available only in English language.

Messages
Online messages are displayed during Z and I Emulator for Windows sessions, but a message does not always mean

an error occurred. For example, a message might tell you that an operation is in progress or has been completed. A

message can also prompt you to wait for the completion of an operation.

Press F1 to display help for the messages that appear.

127

HCL Z and I Emulator for Windows (ENGLISH)

128

Security-Related Messages
Z and I Emulator for Windows optionally utilizes Transport Layer Security (TLS) or Secure Sockets Layer (SSL) to

establish sessions with servers; this might require input from you (for example, a password). Refer to Administrator's

Guide and Reference for details.

Functions Restricted by System Policies
If your workstation is centrally administered, you may be shown a warning or pop-up error message whenever you

attempt to use certain restricted functions. For example, if your ability to remap the keyboard is restricted, a message

would be displayed when you select Keyboard from the Settings menu.

Contact your system administrator for further guidance. For further information about the systems policies provided

with Z and I Emulator for Windows, refer to Administrator's Guide and Reference.

System Error Messages
If a page fault or similar system error message appears in a pop-up window, you can copy its contents into the

Windows® clipboard. Use the following procedure:

1. Click Details Command on the pop-up window.

2. Mark the text that you want to copy.

3. Right click the marked text and then click Copy.

4. Start an editor, such as Notepad, and click Edit → Paste.

5. Save the file in case an HCL service representative needs this information to diagnose your problem.

OIA Messages
Z and I Emulator for Windows displays messages in the operator information area (OIA) or in a pop-up window.

Messages from Z and I Emulator for Windows are displayed in the message window; messages from the host system

are displayed in the OIA of the session window.

The bottom line of the session window is the OIA. The OIA indicator indicates the status of Z and I Emulator for

Windows and information about the workstation, host system, and attachment method.

All of the OIA indicators, reminders, and messages are described in the online help.

Notices
This information was developed for products and services offered in the United States. HCL may not offer the

products, services, or features discussed in this information in other countries. Consult your local HCL representative

for information on the products and services currently available in your area. Any reference to an HCL product,

program, or service is not intended to state or imply that only that HCL product, program, or service may be used.

Any functionally equivalent product, program or service that does not infringe any HCL intellectual property right may

Chapter 2. Product Documentation

be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-HCL product,

program, or service.

HCL may have patents or pending patent applications covering subject matter described in this information. The

furnishing of this information does not give you any license to these patents. You can send license inquiries, in

writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you..

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the information. HCL may make

improvements and/or changes in the product(s) and/or program(s) described in this information at any time without

notice.

Any references in this information to non-HCL documentation or non-HCL Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those documents or Web sites. The materials for those

documents or Web sites are not part of the materials for this HCL product and use of those documents or Web sites

is at your own risk.

HCL may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this information and all licensed material available for it are provided by HCL

under terms of the HCL Customer Agreement, HCL International Programming License Agreement, or any equivalent

agreement between us.

129

HCL Z and I Emulator for Windows (ENGLISH)

130

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.licensing agreement

Information concerning non-HCL products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions on the

capabilities of non-HCL products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

Trademarks
HCL, the HCL logo, and hcl.com are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other companies.

Installation Guide

Introduction
Z and I Emulator for Windows provides 3270, 5250, and VT emulation, connecting to z/OS™, z/VM™, eServer™ i5,

iSeries™, System i5™, zSeries™, and ASCII systems.

Z and I Emulator for Windows uses Microsoft® Windows Installer technology for all installation procedures. This

book details how to successfully install and customize installation of Z and I Emulator for Windows using the

Windows Installer service. For more information on the Windows Installer service, see Microsoft Windows Installer

on page 136. For detailed information on the Z and I Emulator for Windows product functionality, refer to Quick

Beginnings.

The following sections discuss getting help when you are installing, configuring, or using Z and I Emulator for

Windows.

Information Center
You can find documentation and links to other resources at the Z and I Emulator for Windows Information Center, at

the following address:

https://help.hcltechsw.com/zie/ziewin/3.0/index.html

The Information Center contains reference material that is not found in this book, such as keyboard layouts and host

code page tables.

The Z and I Emulator for Windows Information Center provides information in English, Chinese (Simplified), Chinese

(Taiwan), Japanese and French.

https://help.hcltechsw.com/zie/ziewin/3.0/index.html

Chapter 2. Product Documentation

Planning to Install Z and I Emulator for Windows
This chapter describes the companion products provided with Z and I Emulator for Windows and topics that should

be considered before installing Z and I Emulator for Windows Version 3.0.

For instructions to install the HCL ZIE License Manager, refer to Installation of HCL ZIE License Manager on

page 148, and refer the topic Configuration of License Manager settings to configure the ZIE License Manager for

ZIEWin.

Downloading HCL Z and I Emulator for Windows
This section describes the procedure for downloading the HCL Z and I Emulator for Windows from the HCL Software

License & Download Portal.

Execute the following steps to download the Z and I Emulator for Windows:

1. Browse the https://hclsoftware.flexnetoperations.com/flexnet/operationsportal/logon.do URL.

2. The Login page appears.

3. Enter the authorized login credentials and click Login.

4. After successful login, the homepage appears.

131

https://help.hcltechsw.com/zie/ziewin/3.0/doc/qb/LM_config.html?hl=configuration%2Clicense%2Cmanager%2Csettings
https://hclsoftware.flexnetoperations.com/flexnet/operationsportal/logon.do

HCL Z and I Emulator for Windows (ENGLISH)

132

5. In the Downloads tab, click on the List Downloads option.

6. The Downloads page appears.

7. Select HCL Z & I Emulator (ZIE) from the list of products.

Chapter 2. Product Documentation

8. The Download Packages page appears.

9. Click on the required version/package under the Description column.

10. The Software Terms and Conditions page appears.

11. Read the terms and conditions carefully and click the I Agree button.

133

HCL Z and I Emulator for Windows (ENGLISH)

134

12. The Downloads page appears.

13. Click on the required file name under the File Name column to download the product.

Considerations Before Installing

Chapter 2. Product Documentation

Disk Space Requirements
Installation of Z and I Emulator for Windows to a drive other than the Windows® volume (the drive containing the

Windows® folder) may still require as much as 180 MBs of available free space on the Windows® volume. This is

due to the installation of files to the Windows® and system folders, as well as the caching of the Installer database

by the Windows Installer service, and the use of temporary disk space by the Windows Installer service during the

installation.

Migration Considerations
Z and I Emulator for Windows offers several migration options. To ensure that your session profiles, batch files,

and other configuration information are migrated so you can use them with Version 3.0, see Custom Installation on

page 140.

When migrating, you might be prompted to close all active Z and I Emulator for Windows sessions and actions.

Multi-Boot Environment Installation
If you want to install Z and I Emulator for Windows into a Z and I Emulator for Windows subdirectory that was

originally installed under another operating system, you must remove the previous version first. Failure to do this

may cause unpredictable results, including not being able to run Z and I Emulator for Windows from either operating

system.

Coexistence support

iSeries Access

Co-existence is restricted for other Emulators that are similar to ZIEWin. HCL Z and I Emulator for Windows cannot be

installed on a system where a similar product exists, and vice versa.

Coexistence support for iSeries Access PC5250 component is not provided. The iSeries Access PC5250 component

must be removed prior to installing Z and I Emulator for Windows.

Following are some of the coexistence scenarios for which Users get appropriate notification messages :

• Installation of HCL Z and I Emulator for Windows over a similar product displays the following message :

◦ "Installation of HCL ZIE for Windows cannot proceed further as a similar product is already installed on

the system."

• Installation of other emulators similar to ZIEWin over HCL Z and I Emulator for Windows displays the

following message :

◦ "Setup has found a previous version of a similar product already installed on this system. You must

uninstall the existing version before running setup again."

135

HCL Z and I Emulator for Windows (ENGLISH)

136

• Installation of HCL Z and I Emulator for Windows Refresh Pack Update Installer on a system, without having

the Base/Refresh pack version installed, displays the following message :

◦ "HCL Z and I Emulator for Windows RP** cannot continue as the Base version is not installed."

Windows x64 Platform Support
The x64-based versions of Microsoft Windows Server 2003, Microsoft Windows server 2008, Microsoft Windows 7,

Microsoft Windows 8 and Microsoft Windows 10 are optimized to run native 64-bit programs, but do not support 32-

bit drivers or 16-bit applications.

For these platforms, Z and I Emulator for Windows does not install the following features and libraries.

• 16-bit API support:

◦ Standard EHLLAPI 16-bit interface

◦ WinHLLAPI 16-bit interface

◦ PCSAPI 16-bit interface

Installing Z and I Emulator for Windows
Z and I Emulator for Windows provides the below installation options:

• Administrative installation, including installing or running from source, where source medium is a network

server. See Administrative Installation on page 150 for more information.

• Remote installation using Microsoft® Systems Management Server (SMS). See Remote Installation of Z and I

Emulator for Windows on page 152 for more information.

• Installation and Uninstallation of HCL Z and I Emulator for Windows must be done manually using setup.exe

or by using SCCM (Deployment tool). as the configuration and prerequisite checks will happen only with

setup.exe.

Z and I Emulator for Windows also offers the ability to customize the installation procedure. For information on

customizing with initialization file processing, including performing silent installations, see Installing Z and I Emulator

for Windows Using an Initialization (response) File on page 149.

. Typical and custom setups are described in this chapter, as well as silent installation options. Additionally, this

chapter provides an introduction to the Microsoft® Windows Installer service.

Microsoft® Windows Installer
Z and I Emulator for Windows utilizes the Windows Installer service. When the Z and I Emulator for Windows

installation image is first run, it examines the target system and, if necessary, automatically installs the proper version

of the Windows Installer service.

Setup.exe is the bootstrap loader that calls the Windows Installer service (msiexec.exe) and launches the installation

dialogs. For a detailed description of the Microsoft® Windows Installer service, refer to the Windows Installer SDK

Chapter 2. Product Documentation

available online at http://www.msdn.microsoft.com. For more information on setup.exe, see IPWI Command line

parameters on page 153.

Note: The following should be taken into account when installing Z and I Emulator for Windows:

• In some cases, installation of Windows Installer triggers a reboot of the system. If you are required

to reboot, upon subsequent startup you are taken immediately back to Windows Installer to continue

installation of Z and I Emulator for Windows.

• After Windows Installer has been successfully installed, if the installation of Z and I Emulator for

Windows fails or is cancelled by the user, Windows Installer rolls back all partially installed Z and I

Emulator for Windows files and returns the system to its original state.

• You must be a member of the Administrator's group to perform these installations.

• Before you begin installation, make sure all other applications are stopped. If you are reinstalling Z

and I Emulator for Windows or are upgrading Z and I Emulator for Windows, make sure that Z and I

Emulator for Windows is not running before you start setup.

Upgrading Z and I Emulator for Windows
The HCL Z and I Emulator for Windows supports upgrade installation if an older version exists in the system. The

upgrade works like a fresh installation; the existing version is uninstalled, and then upgrade installation is performed.

The application data created by the user in the previous installations gets retained after the upgrade.

The upgrade also supports different types of upgrade installation similar to a fresh installation.

• Administrative upgrade installation, including installing or running from source, where source medium is a

network server. Refer to Administrative Installation for more information.

• Remote upgrade installation using Microsoft® Systems Management Server (SMS). Refer to Remote

Installation of Z and I Emulator for Windows for more information.

Note: Execute the upgrade installation and uninstallation of the Z and I Emulator for Windows for

Windows manually using setup.exe or SCCM (Deployment tool), as the configuration and prerequisite

checks are performed only with setup.exe.

The HCL Z and I Emulator for Windows also offers the ability to customize the upgrade installation procedure. For

information on customizing with initialization file processing, including performing silent installations, see Installing Z

and I Emulator for Windows Using an Initialization (response) File.

Typical, custom setups and silent installation options available in the installation also apply to the upgrade

installation. The upgrade installation supports auto-migration as well. For more information, refer to Migration

Considerations.

137

https://help.hcltechsw.com/zie/ziewin/2.0/doc/install/admninst.html#admninst
https://help.hcltechsw.com/zie/ziewin/2.0/doc/install/remote.html#remote
https://help.hcltechsw.com/zie/ziewin/2.0/doc/install/remote.html#remote
https://help.hcltechsw.com/zie/ziewin/2.0/doc/install/customize.html#customize
https://help.hcltechsw.com/zie/ziewin/2.0/doc/install/customize.html#customize
https://help.hcltechsw.com/zie/ziewin/2.0/doc/install/migrate.html
https://help.hcltechsw.com/zie/ziewin/2.0/doc/install/migrate.html

HCL Z and I Emulator for Windows (ENGLISH)

138

Typical Installation
Typical installation selects all default features for installation. Features are defined as the specific functions of a

program. See Feature Selection on page 141 for a list of default features. You can customize Z and I Emulator for

Windows features by selecting the custom installation option (see Custom Installation on page 140).

To start a typical installation, click Next in the installation type panel. A panel appears, indicating that Z and I Emulator

for Windows is computing the disk space requirements.

Note: Once the installation has passed this point, you cannot change the installation type. You would then

need to cancel the installation on the Application Data panel, and begin a new installation.

To continue with the typical installation, use the following installation procedure.

1. The Application Data Location dialog opens. Select from the following application data location options:

• User's application data folder ([UserProfile]\Application Data)

• All users' common application data folder (All Users\Application Data)

• Classic private directory

Z and I Emulator for Windows uses multiple configuration files: user-class files can be stored individually by

user profile, while system-class files are stored in a common location. Refer to Quick Beginnings for more

information about user-class and system-class files and locations.

If the [UserProfile]\Application Data location is selected, the following profile paths are used:

Operating Sys

tem

User-Class Directory (Current User)3 System-Class Directory

Windows® Server

2003

C:\Documents and Settings\ %USER

NAME%\Application Data\HCL\ZIE for Win

dows

C:\Documents and Settings\All Users\Ap

plication Data\HCL\ZIE for Windows

Windows Vista,

Windows 7, Win

dows server

2008, Windows

10 x64

C:\Users\%USERNAME%\AppData\Roam

ing\HCL\ZIE for Windows

C:\ProgramData\HCL\ZIE for Windows

If the All Users\Application Data location is selected, the following profile paths are used:

Operating Sys

tem

User-Class Directory (Current User)3 System-Class Directory

Windows® Server

2003

C:\Documents and Settings\All Users\Ap

plication Data\HCL\ZIE for Windows

C:\Documents and Settings\All Users\Ap

plication Data\HCL\ZIE for Windows

Windows Vista,

Windows 7, Win

dows server

C:\ProgramData\HCL\ZIE for Windows C:\ProgramData\HCL\ZIE for Windows

Chapter 2. Product Documentation

Operating Sys

tem

User-Class Directory (Current User)3 System-Class Directory

2008, Windows

10 x64

If the classic Private directory location is selected, the following profile paths are used:

Operating Sys

tem

User-Class Directory (Current User)1, 2, 3 System-Class Directory

Windows® Serv

er 2003, Windows

Vista, Windows 7

& Windows Serv

er 2008, Windows

10 x64

C:\Program Files\HCL\ZIE for Win

dows\Private

C:\Program Files\HCL\ZIE for Win

dows\Private

1If the User Preference Manager (UPM) was set to a directory other than the default directory, Z and I Em

ulator for Windows will utilize that directory to store the user–class files. System–class files are always

stored in the Private directory.

2For the classic Private directory locations, C:\Program Files\HCL\ZIE for Windows is the drive where Z

and I Emulator for Windows is installed.

3The FTP Client configuration files are stored in the profile path mentioned the above, under the FTP fold

er.

Note: For installations on Windows x64 platforms, the directory path Program Files is replaced by

Program Files (x86).

After selecting your application data location, click Next to continue with the installation.

2. The Ready to Install the Program dialog opens. Click Back to change your previous settings, or click Cancel to

terminate the installation process. Click Install to continue with installation.

The typical setup uses the C:\Program Files\HCL\ZIE for Windows directory for program installation.

Note: If there is not enough disk space on the C: drive, you are prompted to choose the custom installation

setup type in order to choose an alternate installation destination.

After installation is complete, the Installation Complete dialog opens. Click Finish to exit the installation process.

After installation is complete, you are prompted to reboot the computer. You must reboot the computer before

configuration changes take effect and you can use Z and I Emulator for Windows.

Note:

139

HCL Z and I Emulator for Windows (ENGLISH)

140

1. Typical installs the most common features for the applicable emulators.

2. Typical does not include API sample programs.

Custom Installation
Though the default feature selection for a custom setup is the same as for a typical setup, a custom configuration

allows you to modify feature selection for your system. To continue with the custom installation setup:

1. Click the button to choose Custom setup type. Click Next to continue.

2. The English language product is automatically installed. Only the system default language locale and English

are default. Select any additional languages that you want to install. Click Next to continue. A panel appears,

indicating that Z and I Emulator for Windows is computing the disk space requirements.

Note: Once the installation has passed this point, you cannot change the installation type. You would

then need to cancel the installation on the Application Data panel, and begin a new installation.

3. The Custom setup dialog opens and asks you to select the program features that you want to install. Some

features have subfeatures available. To view the subfeatures for a particular feature, click the plus sign (+) to

the left of the feature name.

Included in the Custom Setup window are Feature Descriptions. You can view the description of any feature

by clicking on that feature and then reading the description section to the right of the feature selection tree.

The feature description gives basic information about each feature, as well as the disk space required for

installation. For more detailed information on disk space requirements for each feature, click the Disk Space

button. For a description of available features, see Feature Selection on page 141. For a description of

feature installation options, see Feature Installation Options on page 143.

4. From the Custom Setup dialog, you can change the directory where Z and I Emulator for Windows is installed.

Click the Change button to choose another installation directory.

5. After making your feature selection choices and confirming the installation directory, click Next to continue

with the installation.

Note: If there is not enough space on the destination drive, you are prompted to choose another

location.

6. The Application Data Location dialog opens. Select from the following application data location options:

• User's application data folder ([UserProfile]\Application Data)

• All users' common application data folder (All Users\Application Data)

• Classic private directory

See Typical Installation on page 137 for information on the profile paths used for each application data

location. For more information about the location of application data, including workstation profiles, refer to

Quick Beginnings. Click Next to continue.

Chapter 2. Product Documentation

7. migrationprocedureThe Automatic Migration Options dialog opens. By default, the Automatic Migration of Profiles box is

checked. If you clear this check box, no migration occurs. The migration choices that are available to you are

based on the information that you provided in the Application Data Location dialog. For information on the

Application Data Location dialog, see .

By default, the highest level of migration available for your application data location is selected. This is the

recommended level of migration for your configuration. You can proceed with the installation using the default

migration option, or you can choose another level of migration. For a description of the different levels of

migration available for each Application Data Location, see .

Click Next to continue with the installation.

8. The Ready to Install dialog opens. Click Install to complete the installation.

Feature Selection
The features and subfeatures available for Z and I Emulator for Windows are described in Table 15: Feature Selection

Tree Contents on page 141. This table also identifies which features are installed by default.

Note: In the custom setup window, if the icon to the left of the feature name is white, that feature and all of its

subfeatures will be installed. If the icon appears grey, that feature or one or more of its subfeatures will not be

installed.

Table 15. Feature Selection Tree Contents

Feature Description Subfeatures Available Default

3270 Emulation and

Services

Your workstation can emulate a

zSeries™ terminal (display, printer,

or both). The emulator APIs (such

as EHLAPPI, PCSAPI, DDE and)

and utilities (such as Multiple Ses

sions, Menu Bar, , and Zip Print) are

installed.

ZipPrint Yes

3270 Emulation and

Services

Your workstation can emulate an

TN3270, TN3270E terminal (display,

printer, or both). The emulator APIs

and utilities (such as Multiple Ses

sions, Menu Bar, and Data Transfer)

are installed.

ZipprintDefaultYes

5250 Emulation and

Services

Your workstation can emulate an

iSeries™, eServer™ i5, or System i5™

terminal (display, printer, or both).

The emulator APIs and utilities

Data Transfer

• iSeries™ Connection Config

uration

Yes

141

HCL Z and I Emulator for Windows (ENGLISH)

142

Table 15. Feature Selection Tree Contents (continued)

Feature Description Subfeatures Available Default

(such as Multiple Sessions, Menu

Bar, and Data Transfer) are installed.

VT Emulation Your workstation can emulate an

ASCII terminal. The emulator APIs

(such as Multiple Sessions, and

Menu Bar) are installed.

None Yes

Fonts Additional fonts are available, such

as special 3270.

Fonts listed in dialog Yes

Secure Sockets Layer Allows encryption and authentica

tion customization.

• MS CryptoAPI Security No

Administrative and

PD Aids

Diagnosis and update tools are in

cluded.

• Log Viewer

• Information Bundler

◦ Internet Service

Yes

Utilities Optional product utilities that can be

installed.

• Convert Macro

• Menu Bar Customization

Utility

• Multiple Sessions

• User Preferences

• FTP client

Yes

Emulator Program

ming APIs

APIs and sample programs. .NET Interops

• Register to GAC

• Interops Sample

Sample Programs for APIs

• Host Access Class Library

for C++

• Visual Basic

• Miscellaneous APIs

No

Note:

Chapter 2. Product Documentation

1. The .NET Interops Register to GAC option is only available if the installation program detects that

the .NET framework is present. However, the primary FTP client assembly will not be registered in the

GAC.

FTP Client requires .NET Framework v2.0 or higher to be installed on the system.

Feature Installation Options
Each feature and subfeature allows several installation options. To view the options available for each feature, click

on the drop down icon to the left of the feature name. Select the desired installation type by clicking on it in the drop

down menu. A description of each possible installation option follows:

• This feature will be installed to run from CD selects the feature to run from source where source medium is

the installation image at the local workstation. This option is only available for top-level features and installs

only the base files needed to run the feature.

Note: If you are installing from a network, this option instead displays as, This feature will be installed

to run from network. For more information on running from a network server, see Install to run from

network on page 151.

• This feature, and all subfeatures, will be installed to run from the CD selects the main feature and

all associated subfeatures to run from source where source medium is installation image at the local

workstation. This installation option installs only the base files needed to run the features.

Note: If you are installing from a network, this option instead displays as, This feature, and all

subfeatures, will be installed to run from the network. For more information on running from a

network server, see Install to run from network on page 151.

• This feature will be installed when required places a shortcut on the Z and I Emulator for Windows menu

allowing the feature to be installed when the shortcut is selected. This installation option is also called

advertisement.

• This feature will not be available deselects the feature for installation or advertisement.

Silent Installation
Z and I Emulator for Windows is installed silently by passing command-line parameters through setup.exe to the MSI

(Windows Installer database) package. When running a silent installation, the user does not provide input via dialogs

or see a progress bar during the installation process. Instead, installation occurs automatically using either a typical

configuration or a custom configuration created during initialization file processing.

143

HCL Z and I Emulator for Windows (ENGLISH)

144

Note: When migrating through silent installation, all active Z and I Emulator for Windows sessions and actions

will be closed without any prompting.

For details on initialization file processing, see Installing Z and I Emulator for Windows Using an Initialization

(response) File on page 149. For information on performing a silent installation using setup.exe command-line

parameters, see IPWI Command line parameters on page 153.

Auto-Upgrade for Standard Users
From 2.0 onwards, Auto-upgrade is enabled for Standard Users (Windows users who are not part of the

“Administrator” group). Upgrade and Rollback is performed from the “Package” menu from the Session Manager

(Online/Offline).

Z and I Emulator for WindowsService” manages the Auto-Upgrade or Rollback of Z and I Emulator for Windows, and it

can registered in the services during the Base Pack installation.

Steps to Rollback:

After the successful upgradation, to Rollback to the previous version, click “Rollback” menu item from

the “Package” menu from the Session Manager (Online/Offline).

Session Manager with disabled menu options

Chapter 2. Product Documentation

Steps to enable the Auto-Upgrade for a Standard User:

To enable the “Upgrade” and “Rollback” menu options for a Standard User, set the

“EnableUpdatePrivilege” keyword value as “YES” in the MZIEWIN.cnf configuration file.

Note: By default, the : "EnableUpdatePrivilege" value is set to NO.

Session Manager with disabled menu options

Note: By default, “Upgrade” and “Rollback” menu options are enabled.

Pre-requisite
The base version Z and I Emulator for Windows version 3.0 full Installer must be installed in the system prior to the

installation of higher version of RefreshPack update installer. The user must be Administrator to perform the Upgrade

and Rollback for the base version is less than version 3.0

145

HCL Z and I Emulator for Windows (ENGLISH)

146

Note: From 2.0 onwards, the Auto-upgrade feature allows Windows users who are not part of the

“Administrator” group (Standard User). A Standard User upgrade to the latest version with a base version of

3.0 or higher only.

Upgrade using ZIEWIN Refresh Pack Update Installer
Refresh Pack Update Installer is a light weight installer that contains only the fixes developed after the release of

ZIEWIN version 3.0 base version. Each update installer is cumulative in nature; in other words, a new update installer

also contain fixes from the previous update installers. This requires ZIEWIN version 3.0 base version or Refresh Pack

installed.

When the ZIEWin Refresh Pack Update Installer is upgraded, the “Add/Remove Programs” shows both the latest

Refresh Pack Update Installer version and ZIEWin base/refresh version.

As these Refresh Pack Update Installers are cumulative in nature, there will be only one Refresh Pack Update Installer

installed in the system. If there is a lower version of Refresh Pack Update Installer already installed in the system, this

update installer will uninstall the lower version before its installation.

If the Refresh Pack Update Installer is uninstalled manually, the ZIEWin version rolls back to its initial Base/Refresh

pack version.

To uninstall the ZIEWin, it is recommended to always uninstall the Refresh Pack Update Installer first, followed by the

base/Refresh pack version.

• Prerequisites on page 145

• Auto-Upgrade for Standard Users on page 144

• Steps to Install on page 147

• Steps to Install Manually on page 146

• Steps to Install Using the Start or Configure Sessions Online Utility on page 147

• Steps to Install Using Managed ZIEWIN on page 147

Steps to Install Manually
Find the following steps to install manually:

1. Ensure that Base or Refresh pack version is installed on the User's machine.

2. Extract the Refresh Pack Update installer zip to get the 'Z and I Emulator for Windows RP**.msi'.

3. Double click the 'Z and I Emulator for Windows RP**.msi' (The message, "Welcome to Installshield wizard for

Z and I Emulator for Windows RP**." is displayed).

4. Click Next, to go to the next panel.

5. Click Next, to proceed with the installation in the Ready to Install panel.

6. Click Install and then click Finish.

Chapter 2. Product Documentation

Steps to Install Using the Start or Configure Sessions Online Utility
Find the following steps to install Using the Start or Configure Sessions Online Utility:

1. Ensure that the Base/Refresh pack is installed on the user machine.

2. Extract the Refresh Pack Update installer zip to get the Z and I Emulator for Windows RP**.msi” and

MZIEWin.cnf' files.

3. The cnf is the upgrade configuration file that has the properties of refresh pack update installer.

4. Copy the Z and I Emulator for Windows RP**.msi' and MZIEWin.cnf' to the web server URL. This URL is

provided by the user during the installation of the base/refresh pack or can be configured via the 'Preferences'

utility.

5. Invoke the 'Start or Configure Sessions - Online' utility, if the installed version of ZIEWin is lower than the

Refresh pack update installer version then the user will be prompted to upgrade.

6. Click Yes to proceed with the upgrade.

Steps to Install
Find the below steps to install:

1. Extract the RefreshPack zip file to get RefreshPack update installer Z and I Emulator for Windows RPx.msi"

and configuration file MZIEWIN.cnf for version 3.0 which is higher than installed base version.

2. Double click Z and I Emulator for Windows RPx.msi. A message "Welcome to Installshield wizard for Z and I

Emulator for Windows RPx" is displayed.

3. Click Next, it redirects to the next panel.

4. Click Next to install in Ready to Install the program panel.

5. Click Install and then click Finish.

Steps to Install Using Managed ZIEWIN
Find the following steps to Intsall:

1. After the base version is installed, unzip the RefreshPack zip file to copy the Z and I Emulator for Windows

RPx.msi and MZIEWIN.cnf to the WebServerURL location provided.

Note: Please refer to the section Web Server Details under the topic, HACP Server Details in the Quick

Beginnings book.

2. From the ZIEWIN client, invoke the Start or Configure Sessions - Online. The user gets a notification about the

latest available ZIEWIN version. To upgrade, refer to the Auto-Update of Z and I Emulator for Windows.

3. Click Update. The application is closed and the installer is downloaded to install the RefreshPack.

147

HCL Z and I Emulator for Windows (ENGLISH)

148

4. From 2.0 onwards, Upgrade and Rollback, is performed from “Package” menu from Session Manager (Online/

Offline).

Note: Base version of 3.0 or higher version.

Configuration Involved
Find the following configuration involved:

• The Z and I Emulator for Windows RPs are Cumulative.

• Supports Japanese the language.

• Adds all the files required for the Refresh Pack, which includes all APARs, Bugs, and PMRs.

• When a user installs Z and I Emulator for Windows 3.0, the Base Pack Z and I Emulator for Windows

installation is auto-upgrade.

• The RefreshPack takes the backup of the base package files into a newly created folder BackupBase under

the installation directory and restores them back to RP1.

• The RefreshPack overwrites a registry key under HKEY_LOCAL_MACHINE\SOFTWARE\HCL\Z and I Emulator

for Windows\CurrentVersion\VersionNumber with RefreshPack version. The registry key is replaced back to

the base version after the uninstallation.

• The new registry key is also added for the restricting coexistence under HKEY_LOCAL_MACHINE\SOFTWARE

\HCL\Z and I Emulator for Windows\CurrentVersion\VersionNumber Value:- Fixpack_Version = 3.0.x and after

uninstallation, the key is removed.

• Uninstallation of 3.0.x is also possible without affecting 3.0 base version

• A new ARP Entry Z and I Emulator for Windows 3.0.x is added to the control panel in addition to Z and I

Emulator for Windows 3.0 and is removed after the uninstallation.

Installation of HCL ZIE License Manager
License manager is a tool that facilitates effective software management between end users and software vendors,

thereby enabling organization to track and document the usage of the company's software products.

HCL ZIE License Manager is the license control tool used to track the license information for Mainframe Terminal

+emulator products.

Steps to find the HCL ZIE License Manager installer files :

1. Download/copy the HCL_ZIE_for_Windows*.zip to the machine.

2. Extract the HCL_ZIE_for_Windows*.zip.

3. To locate the 'License Manager.war' and 'License Manager.ear' files, extract the mmls*.zip folder and navigate

to 'ZIE License Manager' sub-folder.

For more details on the Installation of HCL ZIE License Manager, see HCL ZIE License Manager on page 6.

To configure the ZIE License Manager for ZIEWin, see the topic Configuration of License Manager settings.

https://help.hcltechsw.com/zie/ziewin/3.0/doc/qb/LM_config.html?hl=configuration%2Clicense%2Cmanager%2Csettings

Chapter 2. Product Documentation

Installing Z and I Emulator for Windows Using an Initialization (response) File
Z and I Emulator for Windows provides an optional method of customization that allows property values and feature

installation choices made during one installation to be automatically applied during subsequent installations. The

initialization file (.ini) contains the properties and options for Windows Installer to use as initialization choices so that

subsequent installations do not require users to provide installation input using dialogs. Then, future installations can

be set to run silently using an initialization file.

Administrators create, save, and implement initialization files using command-line parameters. Z and I Emulator for

Windows provides four command-line parameters:

• SAVEINI

• ONLYINI

• USEINI

• REMOVEINI

Each parameter, with a corresponding usage description, is described in the following sections.

Two sample initialization files are included on the Z and I Emulator for Windows installation image. These sample

initialization files can be used during the installation if your workstation configuration matches the definitions in the

sample. Z and I Emulator for Windows includes the following sample .ini files:

• typical.ini installs a typical setup

• custom.ini installs a custom setup to a user-defined path

The samples are defined for a first-time installation of Z and I Emulator for Windows.

Note: To ensure successful initialization file processing, use all syntax examples exactly as described.

Silent Installation Using Initialization File Processing
In order to ensure that property values and feature installation options designated in the initialization file are not

overridden by users or to enhance the ease of installation, you can apply initialization files during silent installations.

To perform a silent installation using initialization file processing, type the following command:

E:\install\ZIEWin_pkgs\xxx\install\ZIEWin\setup.exe /s /v"/L*v
 \"%temp%\pcsinst.log\"
 USEINI=\"C:\Program Files\HCL\ZIE for Windows\ZIEWin.ini\" /qn"

where xxx is mls.

This process passes the silent installation command-line parameter (/qn) through setup.exe to the MSI package. For

more information about setup.exe command-line parameters, see IPWI Command line parameters on page 153.

This parameter can also be added to commands that use system variables instead of path names.

149

HCL Z and I Emulator for Windows (ENGLISH)

150

Administrative Installation
An administrative installation copies a source image of Z and I Emulator for Windows installation files onto a network

drive. The resulting location of this source image is called the installation point. After you complete an administrative

installation, any user connected to the network can install Z and I Emulator for Windows to their own workstation by

pointing to the installation point and running the setup. An administrative installation offers two installation choices

to users:

• Installation directly to their system from the network server

• Installation to run from the network server

To begin an administrative installation, disable the AutoPlay function on your system or simply close the Z and I

Emulator for Windows welcome window when it opens. With the installation image in the drive:

1. Open a command prompt and switch to the Z and I Emulator for Windows installation directory by typing

E:

where E: is the installation image drive.

2. At the command prompt, enter:

• cd ZIEWin_pkgs\mls\install\ZIEWin

for English.

3. From this directory, type

setup.exe /a

4. The Windows Installer welcome dialog for Z and I Emulator for Windows opens. Click Next to continue with

the installation.

5. The License Agreement dialog opens. Click the button to accept the terms of agreement. You can print the

license agreement by clicking Print. If you decline the license agreement, the installation process terminates.

Click Next to continue.

Note: Windows® administrators have the option to accept the license agreement on behalf of all

users. This allows users who install Z and I Emulator for Windows from the network server to skip the

license agreement window during installation.

6. The Network Location dialog opens. You can type the desired network installation point in the command line

or click Change to browse for a location.

7. Click Install to complete the installation process.

Note: To remove the source image of Z and I Emulator for Windows from your network server you must

manually delete the source image directory from the network location.

Chapter 2. Product Documentation

Installing from Network Server
After the administrative installation is complete, any user connected to the network can install Z and I Emulator for

Windows from the network server. To install from the network server:

1. Click Run... on the Windows® Start menu.

2. Type

X:\MyLocation\setup.exe

in the command line (where X: is your network server and MyLocation is the installation point designated in

the administrative installation) or click Browse to browse for the location on the network.

3. The Windows Installer welcome dialog opens. Proceed with the installation as described in .

Installing to Run from Source, Where Source Medium Is a Network Server
After the administrative installation is complete, any user connected to the network can install Z and I Emulator for

Windows to their workstation and designate any available features to run from source, where source medium is a

network server (see Feature Selection on page 141 for a description of available features). In this scenario, feature

shortcuts are placed on the Z and I Emulator for Windows menu. To install and run from the network server:

1. Click Run... on the Windows® Start menu.

2. Type

X:\MyLocation\setup.exe

in the command line (where X: is your network server and MyLocation is the installation point designated in

the administrative installation) or click Browse to browse for the location on the network.

3. The Windows Installer welcome dialog opens. Proceed with the installation as described in , selecting Custom

as your setup type.

4. In the Feature Selection dialog, click on the icon to the right of a desired feature to view its available

installation options.

5. To select the feature to run from the network server, click on one of the following two options:

• This feature will be installed to run from network to select a single feature to run from the network.

• This feature, and all subfeatures, will be installed to run from the network to select the feature and all

of its associated subfeatures to run from the network.

6. After making feature selection choices, proceed with the installation as described in Custom Installation on

page 140.

Note: If you choose to run from source, all subfeatures are available, regardless of which subfeatures were

selected or deselected using the feature tree.

151

HCL Z and I Emulator for Windows (ENGLISH)

152

Maintenance Installation of Z and I Emulator for Windows
After you have successfully installed Z and I Emulator for Windows on your system, users can perform maintenance

installations to their Z and I Emulator for Windows program. The maintenance installation utility has three functions:

• Modify allows users to change their feature selection options. For details on changing feature tree selections,

see Feature Selection on page 141.

• Repair analyzes the current configuration of Z and I Emulator for Windows and either repairs or reinstalls

damaged features.

• Remove allows users to remove Z and I Emulator for Windows from their system.

Note:

1. When removing Z and I Emulator for Windows from your system, you are given the option

to save the current program configuration for future installations of Z and I Emulator for

Windows. If you choose to save the current settings, when you reinstall Z and I Emulator for

Windows you are asked if you would like to use the previous settings to reinstall the product.

2. To remove a source image of Z and I Emulator for Windows created during an administrative

installation, you must manually delete the source image directory from the network drive.

When the Program Maintenance dialog opens, select Modify, Repair, or Remove and click Next.

Note: To successfully run maintenance installation, the Z and I Emulator for Windows installation image

must be available on either the installation image or on the network server. If you installed from a network

server, the installation image must still be present at the original network location. If the installation image

is not present, when you use the Modify or Remove utility to add features or to remove Z and I Emulator for

Windows from your system, you may receive one of the following error messages:

• The feature you are trying to use is on a installation image or other removable disk that is not

available.

• The feature you are trying to use is on a network resource that is not available.

To continue with maintenance installation you must either insert the installation image or browse the network

to find the new location of the installation image.

Remote Installation of Z and I Emulator for Windows
Z and I Emulator for Windows supports remote installation using either Tivoli® Software Distribution or Microsoft®

Systems Management Server (SMS) 2.0 Service Pack 2, or higher. Remote installation and uninstallation can be

performed in a normal mode (attended) or silent mode (unattended).

Chapter 2. Product Documentation

Remote Installation Using SMS
A remote installation using SMS consists of the following steps:

1. Perform an administrative installation to copy Z and I Emulator for Windows installation files to the network

(see Administrative Installation on page 150).

2. Create an SMS package containing the Z and I Emulator for Windows installation software.

3. Create an SMS job to distribute and install the software package.

Note: Z and I Emulator for Windows provides a sample SMS file, HCL Z and I Emulator for Windows.sms,

for use in creating the SMS package. You can also create your own SMS file. An SMS file is the same as a

Package Definition File (PDF) used in previous versions of Microsoft® SMS.

For detailed and up-to-date instructions on installing and deploying Z and I Emulator for Windows using SMS, refer to

the SMS product documentation provided at http://www.microsoft.com/smsmgmt.

Remote Installation Using Active Directory Group Policy
Z and I Emulator for Windows can be distributed automatically to client computers or users via Microsoft Active

Drirectory group policy.

For more information on how to distribute Z and I Emulator for Windows with Active Directory group policy, please

refer to the Microsoft Windows knowledge base article at http://support.microsoft.com/kb/816102.

InstallShield Command-Line Parameters
InstallShield uses setup.exe as the bootstrap loader to call the Microsoft® Windows Installer service. Setup.exe can

accept command-line parameters that allow you to perform administrative installations, run silent installations, and

complete other administrative tasks. Using the /v parameter, other parameters can also be passed through setup.exe

to the Windows Installer database (MSI package).

By default, setup.exe creates a verbose installation log with the file name pcsinst.log, and places it in the folder

named by the environment variable %temp%. This behavior is overridden when command-line arguments are passed to

the Windows® Installer using the /v parameter, as described in Parameter Descriptions on page 154.

Note: If %temp% points to a nonexistent folder and the /v flag is not used to override the default parameters

passed to the Windows® Installer, then setup.exe will fail.

Setup.exe accepts the command-line parameters listed in Table 16: InstallShield Command-Line Parameters on

page 154. Descriptions of each parameter are listed in Parameter Descriptions on page 154.

153

http://support.microsoft.com/kb/816102

HCL Z and I Emulator for Windows (ENGLISH)

154

Table 16. InstallShield Command-Line Parameters

Parameter Description

/v Passes parameters to MSI package.

/s Causes setup.exe to be silent.

/l Specifies the setup language.

/a Performs administrative installation.

/j Installs in advertise mode.

/x Performs setup uninstall.

/f Launches setup in repair mode.

/w Setup.exe waits for the installation to finish before exiting.

/qn A Windows® Installer MSI parameter that causes everything but setup.exe to be

silent. This sets the user interface level to zero.

Parameter Descriptions
Passing parameters to the MSI package

command-line parameterspassing to MSI package/v

The /v command-line parameter enables you to pass parameters supported by Windows Installer

through setup.exe to the MSI package. For example, you can create and save a verbose log file to a

location of your choice by passing the /L parameter through setup.exe to the MSI package. To create

the log file, type:

E:\ZIEWin_pkgs\xxx\setup.exe /v"/L*v\"%temp%\pcsinst.log\"

where:

• E: is your installation image drive.

• xxx is mls.

For more information on supported command-line parameters and specific usage examples, refer to the

Web site http://www.msdn.microsoft.com.

Note: The /v argument must be the last InstallShield parameter on the command line. Though

supported Windows Installer parameters may be passed through to the MSI package, no

InstallShield command-line parameters can follow the /v argument.

Running setup.exe silently

command-line parameterssilent installationsilent installationusing command-line parameters/s

To prevent setup.exe from displaying a progress bar, use the /s command-line parameter. To have setup

run silently with no dialogs, pass the Windows Installer /qn command-line parameter through setup.exe

using the /v parameter. Refer to Microsoft's documentation of command-line parameters for other /q

user interface options. To run a silent installation, type:

http://www.msdn.microsoft.com

Chapter 2. Product Documentation

E:\install\xxx\install\ZIEWin\setup.exe /s /v"/L*v
 \"%temp%\pcsinst.log\" /qn"

where:

• E: is your installation image drive.

• xxx is mls.

Note: You can pass an initialization file to the MSI package and run the installation silently using

the /s /v /qn parameters in the following command:

E:\install\xxx\install\ZIEWin\setup.exe /s /v" /L*v
 \"%temp%\pcsinst.log\"
USEINI=\"C:\ZIE for Windows\ZIEWin.ini\" /qn"

where xxx is mls.

To install silently from source, where source medium is a network server, use the /s /v /qn parameters

after pointing to the installation point in the command line.

To uninstall Z and I Emulator for Windows silently, use the /s parameter in conjunction with the /x

parameter as shown in the following example:

X:\install\ZIEWin\setup.exe /s /x

where X: is the location of the Z and I Emulator for Windows installation directory.

Specifying the setup language

command-line parameterslanguage setuplanguage, specifyingusing command-line parameters/l

The /l command-line parameter enables you to specify what language to use during setup by using the

appropriate decimal language identifier. For a list of language identifiers, see . For example, to change

the setup language to Czech, type:

E:\install\xxx\install\ZIEWin\setup.exe /l"1029"

Administrative installation

command-line parametersadministrative installationadministrative installationInstallShield command-line parametersinstallationadministrative installationInstallShield command-line parameters/a

Administrative installation installs a source image to the network server. This enables users with access

to the network to install Z and I Emulator for Windows directly from the network server.

Advertise mode

command-line parametersadvertise mode/j

Advertisement enables users to install features of Z and I Emulator for Windows when they need them

rather than during setup. Features that are available for installation are advertised with shortcuts on the

user's system for later installation.

Uninstall mode

command-line parametersuninstall modeuninstallationusing command-line parameters/x

Uninstall mode removes Z and I Emulator for Windows from your system.

155

HCL Z and I Emulator for Windows (ENGLISH)

156

Repair mode

command-line parametersrepair modemaintenance installationrepair using command-line parameters/f

Launching setup.exe in the repair mode checks the key file of every installed feature and reinstalls any

feature that is determined to be missing, corrupt, or an older version.

Abbreviations Used in This Book

API Application Programming Interface

CPI-C Common Programming Interface for Communications

EHLLAPI Emulator High Level Language Application Programming Interface

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

LAN Local Area Network

LSP LAN Support Program

MSI Windows Installer Database

MSP Windows Installer Patch

MST Windows Installer Transform

TCP/IP Transmission Control Protocol/Internet Protocol

WAN Wide Area Network

Notices
This information was developed for products and services offered in the United States. HCL may not offer the

products, services, or features discussed in this information in other countries. Consult your local HCL representative

for information on the products and services currently available in your area. Any reference to an HCL product,

program, or service is not intended to state or imply that only that HCL product, program, or service may be used.

Any functionally equivalent product, program or service that does not infringe any HCL intellectual property right may

be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-HCL product,

program, or service.

HCL may have patents or pending patent applications covering subject matter described in this information. The

furnishing of this information does not give you any license to these patents. You can send license inquiries, in

writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

Chapter 2. Product Documentation

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you..

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the information. HCL may make

improvements and/or changes in the product(s) and/or program(s) described in this information at any time without

notice.

Any references in this information to non-HCL documentation or non-HCL Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those documents or Web sites. The materials for those

documents or Web sites are not part of the materials for this HCL product and use of those documents or Web sites

is at your own risk.

HCL may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this information and all licensed material available for it are provided by HCL

under terms of the HCL Customer Agreement, HCL International Programming License Agreement, or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.licensing agreement

Information concerning non-HCL products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions on the

capabilities of non-HCL products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

157

HCL Z and I Emulator for Windows (ENGLISH)

158

Trademarks
HCL, the HCL logo, and hcl.com are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other companies.

Emulator User's Reference

About This Book
HCL Z and I Emulator for Windows reference books are comprised of this Emulator User's Reference and an

Administrator's Guide and Reference. This book is intended for users of Z and I Emulator for Windows.

Note:

1. PC/3270 refers to the 3270 portion of the combined package.

2. PC400 refers to the 5250 portion of the combined package.

3. Workstation refers to all supported personal computers.

4. Windows® refers to Windows® 7, Windows® 8/8.1, Windows® 10, Windows® Server 2008, and

Windows® Server 2012. When information applies only to a specific operating system, this is

indicated in the text.

Who Should Read This Book
This book is intended for the person who uses Z and I Emulator for Windows on a workstation to access hosts using

5250, 3270, or VT terminal emulation.

How to Use This Book
This book contains reference information that you might need to refer to when installing or operating Z and I Emulator

for Windows.

Z and I Emulator for Windows is designed to use various communication adapters and to work with other workstation

and host system software. Refer to the appropriate documentation for the products you use.

Command Syntax Symbols
Parentheses, brackets, ellipses, and slashes have the following meanings or uses:

()

Parentheses enclose operands that govern the action of certain command options.

Chapter 2. Product Documentation

[]

Brackets indicate an optional command argument. If you do not use the optional item, the program

selects a default.

...

Ellipsis after an argument indicates that you can repeat the preceding item any number of times.

/

For 3270, a slash must precede the Time Sharing Option Extensions (TSO/E) password. A slash must

also precede parameters of DOS commands entered from the command line. For 5250, a slash must

precede parameters of IBM® DOS commands entered from the command line.

\

A backslash is included as part of any directory name. An initial backslash indicates the first-level

directory, and an additional backslash is inserted in the directory name to indicate another level.

All directives, operands, and other syntax can be typed in either uppercase or lowercase, unless otherwise indicated.

Where to Find More Information
The following sections discuss getting help when you are installing, configuring, or using Z and I Emulator for

Windows.

Information Center
You can find documentation and links to other resources at the Z and I Emulator for Windows Information Center, at

the following address:

https://help.hcltechsw.com/zie/ziewin/3.0/index.html

The Information Center contains reference material that is not found in this book, such as keyboard layouts and host

code page tables.

The Z and I Emulator for Windows Information Center provides information in English.

Online Help
The help facility describes how to install, configure, and use Z and I Emulator for Windows. Online help is very

extensive and includes information about every aspect of configuring and using Z and I Emulator for Windows. You

can use Z and I Emulator for Windows online help just as you use the online help for Windows®.

Use help to obtain information about:

• Menu choices

• Operation procedures

• Operations in windows

• Meanings of the terms displayed in windows

159

https://help.hcltechsw.com/zie/ziewin/3.0/index.html

HCL Z and I Emulator for Windows (ENGLISH)

160

• Causes of errors and the corresponding actions to take

• Mouse-based operations

• Operation without a mouse

• Detailed explanations of specific terms

• Further technical information about Z and I Emulator for Windows

• Detailed explanations of operator information area (OIA) messages

Z and I Emulator for Windows Library
The Z and I Emulator for Windows library includes the following publications:

• Installation Guide

• Quick Beginnings

• Emulator User's Reference (this document)

• Administrator's Guide and Reference

• Emulator Programming

• Host Access Class Library

In addition to the PDF documents, there are HTML documents provided with Z and I Emulator for Windows:

Quick Beginnings

The HTML form of Quick Beginnings contains the same information as the PDF version. The HTML files

are installed automatically and can be accessed from the Help menus in the Session Manager and .WS

session panels.

Related Publications
For information about local area networks (LANs), refer to the following publications:

• IBM Local Area Network Technical Reference

• AS/400 Communications: Local Area Network (LAN) Guide Version 2

Contacting HCL
This section lists ways you can reach HCL in case you encounter a problem or concern with Z and I Emulator for

Windows. Depending on the nature of your problem or concern, we ask that you be prepared to provide the following

information to allow us to serve you better.

• The environment in which the problem occurs:

◦ Z and I Emulator for Windows configuration

▪ Z and I Emulator for Windows version and manufacturing refresh level

▪ The name of the workstation profile

◦ Workstation configuration

Chapter 2. Product Documentation

▪ The machine type and model, the system memory, the video adapter

▪ The communication adapter you are using

▪ Other adapters (especially communication adapters) installed

▪ The printer type and model

▪ Other devices installed, such as sound cards, modems, or fax machines

◦ Software configuration

▪ Windows® version and level

▪ Communication and device-driver version and level

▪ Other communication programs (such as Microsoft® Data Link Control) that are running and

using resources

▪ Printer driver version and level

◦ Host configuration

▪ The upstream host connection and configuration

◦ FTP client configuration

▪ The name of the FTP client configuration

▪ The trace files

• Problem analysis information

◦ Symptoms

◦ Type of problem

◦ OIA messages or error messages (if any)

◦ Key factors related to the problem

If you have a technical problem, take the time to review and carry out the actions suggested here. Use your local

support personnel before contacting HCL. You can also check the Hints and Tips at the Z and I Emulator for Windows

support Web page for more information. Only persons with in-depth knowledge of the problem should contact HCL;

therefore, support personnel should act as the interface with HCL.

Support Options
If you determine that you need to contact HCL, you can do any of the following:

• Access the Z and I Emulator for Windows Support page.

General Information

Z and I Emulator for Windows Highlights
Z and I Emulator for Windows brings the power of personal networking to your workstation by providing a variety of

connectivity options supporting local area network (LAN) and wide area network (WAN) environments. Whether you

need host terminal emulation, client/server applications, or connectivity, Z and I Emulator for Windows offers a robust

set of communications, networking, and administrative features.

161

HCL Z and I Emulator for Windows (ENGLISH)

162

Z and I Emulator for Windows is a full-function emulator package with an easy-to-use graphical interface, which

includes many useful features such as file transfer and dynamic configuration, and emulator APIs including the Host

Access Class Library.

Z and I Emulator for Windows provides the following functions:

• zSeries™ Connections

LAN

Telnet3270

VT-over-Telnet (TCP/IP)

COM port

Telnet 3270

VT-over-Telnet (TCP/IP)

• iSeries™ Connections

LAN

Telnet5250 over TCP/IP

VT over Telnet

• ASCII Emulator Connections

LAN

VT over Telnet

COM port

VT over Telnet

• Log Viewer

◦ View Message Log, Trace Log, and Merged Log files

◦ Summary and Detail views

◦ Set default Message Log size and location

◦ Filter and search Log files

◦ Message Log entries Help

• Trace Capability

◦ 3270/5250 emulator data

◦ Connectivity data, such as LAN

◦ User services data, such as node initialization

• Sample Programs

◦ Located in \Z and I Emulator for Windows\samples subdirectory

• Installation and Configuration

◦ Partial installation option

◦ Program sharing on a network server

Chapter 2. Product Documentation

◦ Automatic detection of installed communication adapters

◦ Dynamic change of communication configurations

◦ Automatic Dial Facility)

◦ Silent Installation

◦ Verification of ASCII configuration

• Host Session Function

◦ Up to 52 sessions

◦ Variable screen size and automatic font scaling

◦ Function settings (of the host code page, for example) for each session

• Host Graphics Support

◦ Built-in vector graphics support for GDDM® and other graphics applications

• File Transfer Function

◦ Easy operation through graphical user interface (GUI) windows

◦ Batch transfer of multiple files

◦ Concurrent file transfer through multiple sessions

◦ Background file transfer

◦ File transfer invocation by macro

◦ VT File Transfer (XModem and YModem)

• Edit (Cut and Paste) Function

You can use the clipboard to cut, copy, and paste a selected area. In addition, you can paste data in other

applications, such as spreadsheet programs, that support the PasteLink function.

◦ Support of spreadsheet data format (Sylk, BIFF3, Wk3 formats)

◦ Copy Append

◦ Paste Next

◦ Paste to Trim Rectangle

◦ Paste Stop at Protected Line

• Graphical User Interface (GUI)

◦ Customizable 3D iconic tool bar

◦ 3D-button hotspots

◦ Pop-up keypad

◦ Macro function, including record and play

◦ VBScripts, including record and play

◦ Keyboard-function setup and remapping

◦ Mouse-button-function setup and remapping

◦ Display setup (cursor type, graphics, sound, colors, for example)

◦ Automatic font size adjustment or fixed font size

◦ Window-appearance setup

◦ Menu-bar customization

◦ 3270 Light Pen emulation by using a mouse

◦ Status bar with history

◦ Page setup (Text and Graphics)

163

HCL Z and I Emulator for Windows (ENGLISH)

164

◦ Revised Configuration Dialog

◦ Online help

• Print Function

◦ Printer session (for PC/3270: SCS, LU 3)

◦ Graphics local print

◦ Printing with the Windows printer drivers

◦ Print function by printer definition table (PDT)

◦ Multiple host-print functions in multiple sessions

◦ PDF-to-PDT conversion tool

◦ PC400 print function by OS/400® and i5/OS™ Host Print Transform (HPT)

◦ PC400 printing supported by the iSeries™, eServer™ i5, and System i5™ Advanced Print Support Utility

• Programming Interfaces

◦ 32-bit Emulator High-Level Language Application Programming Interface (EHLLAPI)

◦ 32-bit Z and I Emulator for Windows API (PCSAPI)

◦ 32-bit Automation Object API

• PC400 Client Function

◦ Data transfer

◦ Text Assist

◦ Enhanced Programmable Terminal User Interface (ENPTUI)

Problem Analysis
This chapter describes the information that will help you analyze problems with Z and I Emulator for Windows, and

ways to report a problem to HCL. For detailed information about contacting HCL, refer to Quick Beginnings.

For information about Z and I Emulator for Windows and support, refer to the following Web site(s):

• The Z and I Emulator for Windows support page provides links to code fixes, tips, newsgroups, support

options, and services. To view this page or to submit a software defect report, go to the following Internet

address:

https://hclpnpsupport.hcltech.com/csm

Z and I Emulator for Windows provides several utilities to help you with problem analysis. They can be invoked by

clicking their icons from the Programs → HCL Z and I Emulator for Windows → Administrative and PD Aids subfolder

on the Windows® Start menu.

The following sections describe these utilities and how to use them.

Log Viewer
The Z and I Emulator for Windows log viewer utility enables you to view, merge, sort, search, and filter information

contained in message and trace logs. Use the log viewer during problem analysis to work with message and trace log

entries. The default name of the message log output file is PCSMSG.MLG; its file extension must be .MLG. The file

extension for trace logs must be .TLG.

Chapter 2. Product Documentation

To view message or trace logs:

1. From the Administrative and PD Aids subfolder, click Log Viewer; or, from an active session, click Actions →

Launch → Log Viewer.

2. From the list of logged messages, double-click a message to display the message text.

For more information about log viewer functions, refer to Administrator's Guide and Reference.

Trace Facility
The Z and I Emulator for Windows trace facility enables you to log trace information for certain Z and I Emulator for

Windows functions.

To start a trace, perform the following steps:

1. From the Administrative and PD Aids folder, click Trace Facility; or, from an active session, click Actions →

Launch → Trace Facility. The trace status on the title bar displays the current state:

Active

Trace data is being collected by the trace facility.

Inactive

No trace data is being collected.

2. From the main dialog box, click Set Up to set the desired trace system parameters.

3. Click OK to return to the main trace dialog box.

4. From the main trace dialog box, select the type of data you want to trace from the Function Name, Component

Name, and Trace Option list boxes.

Function Name

A specific set of Z and I Emulator for Windows features, such as 3270/5250 Emulator or User

Services.

Component Name

The name of a specific part of a function, such as API data (for the 5250 Emulator function) or

Node Initialization (for the User Services function).

Trace Options

The options associated with a particular component, such as EHLLAPI (for the API component)

or API trace (for the Node Initialization component).

5. Start tracing data by clicking Start, or apply changes to the trace options by clicking Apply.

6. Run the operation that you want to trace.

7. Optionally, stop the trace by clicking Stop.

8. Save the trace data to your hard disk by clicking Save.

9. Click Format to specify a formatted trace file name and to format the trace data. The Information Bundler

utility should be used immediately after the trace is complete to ensure that the correct information is

gathered.

165

HCL Z and I Emulator for Windows (ENGLISH)

166

Note: If you have changed the default path for the formatted trace file, the Information Bundler will not

find the trace information. Copy the trace files to the system-class application data directory.

10. Click OK.

11. Click Clear to clear the trace buffer where you saved a trace.

12. Use the log viewer to view the formatted trace log.

Enhanced trace buffers
Additional CSTrace buffers are provided, so that all trace records are captured during heavy trace loads.

Information Bundler
The Z and I Emulator for Windows Information Bundler utility gathers system files, trace and log files, and registry

information into a .ZIP file. This file can be sent to support personnel, using the Internet Service utility. The

Information Bundler should be executed immediately after the trace is complete to ensure that the correct

information is gathered.

Start Information Bundler using one of the following methods:

• Click Administrative and PD Aids → Information Bundler from the Z and I Emulator for Windows program

menu.

• In an active emulator session, click Actions → Launch → Information Bundler from the menu bar.

The X12345.ZIP file is created in the Z and I Emulator for Windows system-class application data directory. This

file contains system and Z and I Emulator for Windows information. Refer to the installation documentation for the

location of the system-class application data directory for each Windows® operating system.

NOTE : Information Bundler utility requires dotnet version 4.6.1 to work.

Considerations for Using Z and I Emulator for Windows Sessions
This chapter contains general hints and tips for using Z and I Emulator for Windows sessions. Supplementary

information other than the items described in this book are included in the Readme HTML file in the Z and I Emulator

for Windows directory.

Usage Notes for Sessions in OLE Documents

Changing Fonts
If you are using an In-Place embedded session, then changing the font face name, switching between automatic

sizing and fixed size, or changing the size for a fixed size font can result in an incorrect display on the screen. To

correct the display, adjust the size of the session object window slightly.

Chapter 2. Product Documentation

Initial Selection of Font
The initial font selection for a embedded or linked session is determined by its Session ID (a letter A - Z or a - z) just

like a regular session. Therefore, the initial font might change if other sessions are already active. Further, to prevent

In-Place embedded sessions from having adverse effects on subsequent sessions, font changes made during use of

In-Place embedded sessions are not saved.

WordPad
Z and I Emulator for Windows session objects created in Microsoft® WordPad documents by the drag-and-drop

method cannot be used after the document has been saved and closed. You should only create Z and I Emulator for

Windows objects in WordPad by using the Insert → Object menu option.

Some versions of Microsoft® Word and Microsoft® WordPad incorrectly save the state of embedded objects that

are displayed as icons. If you open a document that contains a Z and I Emulator for Windows session object that

was created to display as an icon, and the object is activated, then it might activate in-place, instead of as a separate

window.

WordPro
If you attempt to open a link to a Z and I Emulator for Windows session in a Lotus® WordPro document, WordPro

might give unpredictable results. You should only use embedded Z and I Emulator for Windows objects in WordPro

documents. You can use the Display as Icon option if a separate window is desired.

Updating Linked Files
Files that are linked into Word 97 or Excel 97 do not update automatically. You must manually save the linked file

before your edits are reflected in the container window.

Inactivity Timeout for Communication Links
The Inactivity Timeout automatically disconnects a link after it has been idle for a specified length of time. Its

purpose is to avoid excessive charges on dial-up links, such as switched-line connections . Inactivity Timeout is not

recommended for other types of connections.

To enable Inactivity Timeout, add the following statement to the PU section of your workstation profile (.WS file):

[PU]
InactiveTimeout=xxx

The value xxx, in the range 1 to 999, is the number of minutes a link remains connected when there is no activity over

it. The default value, InactiveTimeout=0, disables Inactivity Timeout.

167

HCL Z and I Emulator for Windows (ENGLISH)

168

Note: The Inactivity Timeout function monitors only attention keys (that is, the Enter, Clear, and PFx keys).

It is recommended that you set a comparably longer value for xxx if, for example, you expect to key in large

amounts of data on the screen before pressing the Enter key.

Environment Considerations
The following are environmental considerations for Z and I Emulator for Windows.

Virtual Memory
If you receive a message stating that the system is low on virtual memory, increase the size of the virtual memory

paging file. If you receive this message while trying to open new host sessions or starting a Z and I Emulator for

Windows function such as File Transfer, increase the amount of virtual memory.

Refer to the operating system documentation for instructions on how to increase the size of the paging file.

Emulator Session Icons
Emulator session icons that were not migrated during installation of Z and I Emulator for Windows Version 3.0 will not

function correctly if they were not created in the application data directory that was specified during installation. The

icons can be updated by using the File → Import option from the Session Manager. This option will not copy the prior

icons to the application data directory specified during installation; the icons must be moved manually

Disabling CDRA Tables
This release uses the standard IBM® CDRA translation tables when converting between ASCII and EBCDIC. From

some code page pairs, the standard tables differ from those that Z and I Emulator for Windows has used in the past.

For code pages that were supported in prior releases, you can configure Z and I Emulator for Windows to use the old

tables. A switch is available in PCSWIN.INI to disable the use of CDRA tables. This switch is located in the Translate

section and is named UseOnlyZIEWin. This switch takes a binary value and is defaulted to FALSE (except for Japan,

Korea, Taiwan, and PRC where it defaults to TRUE). For the code pages that are new to Version 3.0, you must use the

standard tables. Setting the switch will apply to all sessions, as well as data transfer and command line file transfer.

Printing
You can use Z and I Emulator for Windows to print from display or printer sessions. This chapter provides details

about printing and page setup options.

Setting Up the Printer
This section describes how to set up your printer with either a Windows® printer driver or a PDT file.

Chapter 2. Product Documentation

For an explanation of how to customize a PDT for PC/3270, see PDT Files (3270 and 5250) on page 178. For an

explanation of how to customize a PDT for PC400, refer to Administrator's Guide and Reference.

For information about print processing for PC400, see Print Processing on page 244. For information about print

processing for PC/3270, see Print Processing on page 205.

You can map a key sequence to bring up the Printer Setup dialog. There is no default key combination for this

function. See Default Key Function Assignments on page 182 for more information about keyboard functions.

Defining a Printer for a Session
To choose or change the Windows® printer driver to be used, follow these steps:

1. Click File → Printer Setup in the session window.

The Printer Setup window lists the available printers.

2. Select a printer from the list box. If desired, select the check box Show this dialog before every print.

Note: The Default selection causes the current Windows® default printer to be used.

3. Confirm that Use PDT is not selected.

Page Setup Parameters
You can set Page Setup parameters, such as the maximum number of lines per page, the maximum number of

columns, and fonts. These parameters are initially set to the defaults. Use this function to change specific control

items.

Note: When a PDT file is used, this function cannot be used.

To set or change setup items:

1. Select File → Page Setup from the menu bar of the session window.

The Page Setup window opens.

2. Select the tab that contains the parameters you want to change.

Note: To switch from the current settings back to the defaults, select Default.

3. When all the items have been set, click OK or Apply.

Text Parameters
You can set the following general parameters for 3270, 5250, and VT display sessions.

169

HCL Z and I Emulator for Windows (ENGLISH)

170

Table 17. Page Setup Parameters — Text Tab

Parameter Description

CPI Specifies the number of characters to be printed per inch. If CPI was not set previous

ly, a CPI value suitable for the font selected from the Font list box is assumed as the de

fault.

LPI Specifies the number of lines to be printed per inch. If LPI was not set previously, an LPI

value suitable for the font selected from the Font list box is assumed as the default.

Maximum Number of Lines

per Page

Specifies the maximum number of lines per page. A number in the range 1–255 can be

specified. The default is 66.

When you set this to a value other than the default, Z and I Emulator for Windows uses

it to scale the LPI and font to the best fit for the page.

Maximum Number of Char

acters per Line

Specifies the maximum number of characters per line. A number in the range 1–255

can be specified. The default is 132.

When you set this to a value other than the default, Z and I Emulator for Windows uses

it to scale the CPI and font to the best fit for the page.

Font Lists the fonts that can be used with the currently selected printer.

The fonts in brackets [] are device fonts specific to the printer driver. The other fonts

are graphics display interface (GDI) fonts printed in bit map formats.

Margins This option maps the text on the screen to the printed page size.

This option is disabled by default. It is available for the following sessions:

• 3270 display and printer

• VT display, including Printer Controller Mode

Top or Left Margin Specify the decimal number (either inches or centimeters, depending upon your loca

tion), which represents the offset that will be reserved as the margin.

Note: The value entered must represent the distance from the paper's edge.

However, most Print Drivers enforce a nonprintable border (area). The default

(original value shown) represents the Print Driver's enforced margin. Your input

value cannot be less than that value; if it is, the Driver's value is substituted for

your value. Some printers have an additional nonprintable border not represent

ed in the Driver's value.

Use best fit scaling This option maps the text on the screen to the printed page size. This option is disabled

by default. It is available for the following sessions:

• 3270 display and printer

• VT display, including Printer Controller Mode

Chapter 2. Product Documentation

Text Options Parameters
You can set the following parameters by selecting the Text Options tab.

Table 18. Page Setup Parameters — Text Options Tab

Group Options Setting

Print Options

These options are not available for the printer

session.

Suppress Null Lines Determines whether to delete lines con

taining only null or non-printable charac

ters (null or non-printable field charac

ters, and field attributes) or to print them

as null lines.

Selected

Null lines are not printed.

Not selected

Null lines are printed.

This option can be used when:

• The Print Screen command is

used

• The combination of bits 2 and 3

of the WCC is not 00

Print Nulls as spaces Determines whether to print NULL con

trol codes as null characters.

Selected

The codes are printed as

blanks.

Not selected

The codes are treated as

null characters.

This option can be used when:

• The Print Screen command is

used

Replace FF by LF Select this option to replace a form feed

by the number of lines entered in the edit

box. The default is unchecked.

171

HCL Z and I Emulator for Windows (ENGLISH)

172

Table 18. Page Setup Parameters — Text Options Tab

(continued)

Group Options Setting

Note: This option is only avail

able on TN3270/TN3270E and

TN5250.

Page Header and Footer Parameters
You create your own header and footer, and save up to five header and five footer configurations. Apply a saved

header or footer by selecting it from the drop-down list.

Note:

1. A custom header or footer is associated with the specific session. A newly configured session will not

have a header or footer.

2. If BestFit is enabled, the header and footer will be truncated at the Maximum Print Position (MPP), as

determined by the BestFit parameters. You can allow multiple lines to prevent truncation (from the

Advanced options).

To add items to a custom header or footer, do the following:

1. Select the desired alignment for the item (Left, Center, or Right).

2. Double-click on the item in the Choices box.

The item is added to the alignment box.

You can manually reorder the items in an alignment box. Remove an item by manually deleting it from the box.

You can set the following parameters by selecting the Header and Footer tab.

Table 19. Page Setup Parameters — Header and Footer Tab

Group Category Parameter

Customize Header

Customize Footer

General The following information can be added to a

header or footer:

• Date

• New Line

• Page Number

• PC Name

Chapter 2. Product Documentation

Table 19. Page Setup Parameters — Header and Footer Tab

(continued)

Group Category Parameter

• Time

• PC User Name

Host Information The following host details can be added to a

header or footer:

• 3270 Application Name (3270 ses

sions only)

• Host Name

• LU Name

• Workstation ID (5250 sessions only)

Session Information The following session details can be added

to a header or footer:

• Short ID

• Short Name

Advanced Options Multiple Lines The following customization options are

available:

• Allow multiple lines in header

• Allow multiple lines in footer

If the header or footer does not fit on a sin

gle line, then it will be truncated at the Max

imum Print Position. Select this option to

allow multiple lines on the header or footer

and prevent truncation.

Page Number The Always start from parameter specifies

the starting value for the page number to be

included in the header or footer.

By default, the page number begins at 1.

Graphics Parameters (3270)
From a Z and I Emulator for Windows 3270 session, you can set additional parameters by selecting the Graphics tab.

Table 20. Page Setup Parameters — Graphics Tab (3270)

Parameter Description

Scaling By default, the screen size (display resolution) is mapped to the printed page size (print

er resolution)—this is called BestFit. It is done automatically if you change either reso

173

HCL Z and I Emulator for Windows (ENGLISH)

174

Table 20. Page Setup Parameters — Graphics Tab (3270) (continued)

Parameter Description

lution (including changing printers). The /2, /3, and /4 values reduce the printed page

size.

Black-on-White Determines how the black pixels on the screen are printed.

Yes

Black pixels are printed as white pixels. Pixels other than black are printed

as black pixels when you use a monochrome printer. When you use a col

or printer, they are printed in the same color as on the screen.

No

Black pixels are printed in black. Pixels other than black are printed as

white pixels when you use a monochrome printer. When you use a color

printer, they are printed in the same color as on the screen.

Orientation Parameters (5250)
When you use a PC400 printer session, you can set the following additional parameters by clicking the Orientation

tab.

Table 21. Page Setup Parameters — Orientation Tab (PC400 Printer Session)

Group Parameter Description

Top Margin Bottom Margin is assumed to be equal to Top Mar

gin.

Margins

These margin settings are

used only if Use best fit scal

ing is selected.

Left Margin Right Margin is assumed to be equal to Left Margin.

Page Orientation

Changes the default page ori

entation to specify how to

print a document on the work

station printer. If the orien

tation is explicitly set by the

iSeries™, eServer™ i5, or Sys

tem i5™ page setup code, the

explicit orientation is used.

Use automatic page orientation If selected and the host does not explicitly set the

orientation, the best orientation based on the host

specified CPI, LPI, and page size will be used.

If not selected and the host does not explicitly set

the orientation the following drawer orientation will

be used.

Computer output reduction The document is printed in landscape. The font,

pitch, and margins are set to appropriate values to fit

on a page.

Drawer 1 orientation

The default page orientation

for the paper from drawer 1.
Portrait The document is printed in portrait.

Chapter 2. Product Documentation

Table 21. Page Setup Parameters — Orientation Tab (PC400 Printer Session)

(continued)

Group Parameter Description

Landscape The document is printed in landscape.

Computer output reduction The document is printed in landscape. The font,

pitch, and margins are set to appropriate values to fit

on a page

Portrait The document is printed in portrait.

Drawer 2 orientation

The default page orientation

for the paper from drawer 2.

Landscape The document is printed in landscape.

When you use a PC400 printer session, you can set the following additional parameters by clicking the Form Settings

tab. This option is available only when the printer and its driver support the change-source function.

Table 22. Page Setup Parameters — Form Settings Tab (PC400 Printer Session Only)

Parameter Description

Form Settings Specifies the form that should be selected when an application program specifies one

of the following paper sources:

• Drawer-one form

• Drawer-two form

• Envelope-hopper form

Before using this function, you must configure the paper trays and forms in the print

er-driver setup.

Table 23. Page Setup Parameters — Advanced Options Tab (PC400 Printer Session Only)

Option Item to be set

Printer Font Code Page Represents the code page being used for printing and displaying on the workstation.

No CR between fields Represents not sending a CR when printing other fields on the same line.

Print bold as normal Represents printing bold characters as not bold.

Display print status dialog Represents showing a dialog window that will display showing printer status.

Use raster fonts Represents allowing bitmap fonts for display and printing.

Display Sessions (3270 and 5250)
From display sessions, you can print all (Print Screen) or part (Trim Print) of the screen of your session window on a

workstation printer. Trim Print is not available for PC400 sessions. For more information, refer to Quick Beginnings or

the online help.

From a 3270 display session, you can also use the ZipPrint utility to print PROFS® notes, calendars, documents, CMS

files, XEDIT workspaces, and host-session screens. See the online help for more information.

175

HCL Z and I Emulator for Windows (ENGLISH)

176

Print Screen Collection
The Print Screen Collection functions are available for 3270 and 5250 display sessions. You can capture all or part of

the screen and add it to a collection of screen captures, and then print all the collected screen captures at the same

time.

Collect Screens
Using the File → Print Screen Collection → Collect Screen feature, you can add a capture of all or part of the screen to

a collection of captures.

To capture part of a screen, take the following steps:

1. Use the marking rectangle to mark an area of the screen.

2. Click File → Print Screen Collection → Collect Screen in the usual way. Z and I Emulator for Windows captures

the entire screen image (including the white marking rectangle) and adds the screen image to the list of

collected screen captures in the usual way, so that you can see the context of the area enclosed by the white

marking rectangle.

3. Print the screen image. Z and I Emulator for Windows prints only the area that lies inside the white marking

rectangle.

Note: The Collect Screens feature works independently of the normal Print Screen function. You can still use

Print Screen to print an individual screen, while collecting multiple screens.

Print and Purge Collection
Using the File → Print Screen Collection → Print and Purge Collection feature, you can send the collected print screens

to the printer. A status bar message indicates how many screens have been printed. The current Page Setup settings

are applied to the printed screens. All the collected screens are purged.

Print and Keep Collection
Using the File → Print Screen Collection → Print and Keep Collection feature, you can send the collected print screens

to the printer. A status bar message indicates how many screens have been printed. The current Page Setup settings

are applied to the printed screens. All the collected screens are available for reprint.

Process Collection
Using the File → Print Screen Collection → Process Collection feature, you can preview the collected screens and

select collected screens to be printed or purged.

On the Process Print Screen Collection window, you can perform the following tasks:

Chapter 2. Product Documentation

• Review the screens that have been collected.

• Select the check box next to one or more screens for processing.

• Print or delete selected screens.

• Scroll through the collected screens using the scroll bar.

• Click a collected screen to view a larger version of the screen.

Purge Collection
All the collected screens can be deleted without printing by clicking File → Print Screen Collection → Purge Collection.

A confirmation message will be displayed. Click Yes to purge the collected screens.

Print Collection on Exit
The File → Print Screen Collection → Print Collection on Exit option ensures that the collected screens are printed

before you close or disconnect the session. This option is enabled by default. To end the session without printing the

collected screen, clear the Print Collection on Exit option. All the collected screens are then deleted when you close

or disconnect the session.

When this option is disabled and you disconnect the session, a confirmation message will be displayed. Click Yes to

purge the collected screens on exit.

You can add the Collect Screens, Print and Purge Collection, Print and Keep Collection, Process Collection, Purge

Collection, and Print Collection on Exit functions to the toolbar, a popup keypad, a custom keyboard map, or a mouse

customization, using the Edit → Preferences menu in the session window. The settings in the Page Setup dialog are

used (shared with the normal Print Screen function).

In PDT mode, there is an option available for printing more than one screen on a page. Refer to Administrator's Guide

and Reference for more information.

Replace FF with LF in GDI Print Mode
In Multiple Print Screen functionality, 3270/5250 host screens can be collected and then released to the physical

printer. Each print screen that is collected is printed on a separate page, like individual print screens. However, in PDT

mode using the BEL command, the Form Feeds (between two screens) can be converted to specified number of Line

Feeds that is defined in the PDF/PDT file.

With this feature, the same functionality has been extended to GDI print mode, using the following workstation profile

keyword:

[Printers]
ReplaceFFbyLF=<Byte value>

The possible byte values are as follows:

Byte Value Action

00 No LF between screens

01 to 0xFE LFs between screens

0xFF FF after each screen

177

HCL Z and I Emulator for Windows (ENGLISH)

178

Byte Value Action

No key

word

Default (FF after each screen)

Printer Sessions (3270 and 5250)
From printer sessions, you can direct printing from a zSeries™, iSeries™, eServer™ i5, or System i5™ to a workstation

printer.

Note: When you use a host application which prints to your workstation's LPT1, you must first select the

printer in the Printer Setup dialog of the File menu.

Configure a printer session to designate a workstation printer as a system printer that will use either a Windows®

printer driver or a printer definition table (PDT) provided with Z and I Emulator for Windows.

• Use Windows® printer drivers for Z and I Emulator for Windows to print files based on printer setup

parameters, such as scaling, duplex options, and page orientation, that you define in Printer Setup.

• Use PDT files for Z and I Emulator for Windows to print files based on page setup information, such as control

codes and the printer output format, defined in the PDT. You can customize PDTs to define your own controls,

by editing the corresponding printer definition file (PDF) and converting it to a PDT.

PDT Files (3270 and 5250)
PDTs (printer definition tables) are compiled from PDFs (printer definition files). PDFs contain printer commands that

must be understood and supported by your printer.

The following are the basic printer languages:

PCL

Printer Control Language (Hewlett-Packard)

PPDS

ProPrinter Data Stream (IBM®)

ESC/P

Printer Control Language (Epson)

POSTSCRIPT

(No PDFs for this language)

Many printers support two or more of these languages. Most print drivers use a PJL (Printer Job Language) to switch

between languages and to perform other job control functions, such as setting the number of copies.

Chapter 2. Product Documentation

You do not need a PDF for each different printer model; with the increasing number of models, PDFs are named for

the printer language, not the printer model.

Older SBCS PDFs and PDTs are not shipped with Z and I Emulator for Windows, but are available at the product Web

site. If you already have modified PDFs, any PDF and PDTs other than those in Table 24: Old Printer Definition Files on

page 179 are retained during an install.

The End_Job statement in a PDF contains the printer commands that are sent to the printer at the end of each print

job. If the End_Job contains a character defined as form feed (FFF in the PDT), a form feed (FF) is sent to the printer.

It is not needed if the host application ends the job with the FF, as is commonly done. Some print drivers add the FF

if needed, and most print drivers ignore extra FFs. So the FFF usually is protection against the host application not

using a FF, and usually causes no problem. However, if you get an extra blank page, remove the FFF.

Table 24. Old Printer Definition Files

Printer Definition File (PDF) Name Remarks

ibm5577a (No FFF)

ibm5577b (No FFF)

lbp4

The supplied basic_ascii PDF does not contain any printer commands, which results in only ASCII text being sent to a

printer or file. An accompanying PDT is also shipped. This PDF is for SBCS only.

PFT Migration
You can migrate a PC Support/400 Workstation Feature Printer Function Table (PFT) to a PDF for PC400. Refer to

Administrator's Guide and Reference for more information.

Using PDT Files
To use a PDT file:

1. Click File → Printer Setup from the menu bar of the session window.

The Printer Setup window opens.

2. Click the printer to be used from the list box.

3. Click Setup; specify the paper size.

4. Click OK.

5. Select the Use PDT check box, then click Select PDT.

The Select PDT file window opens.

6. Do one of the following:

• To use an existing PDT, select the PDT file to be used; then click OK.

• To use a PDF that you have modified, you must first convert it to a PDT. To do so:

a. Click Convert PDF.

b. Select the PDF file to be converted from the list, then click Convert.

179

HCL Z and I Emulator for Windows (ENGLISH)

180

The window displays the result of the conversion. If there are any errors during the conversion,

they are listed in the window.

c. When you select Save List, the window list is saved in *.LST file in the PDFPDT subdirectory.

To close without saving the list, click Close.

After the file is converted, control returns to the Select PDT file window and the converted PDT

file appears in the list.

d. Select the PDT file; then click OK.

7. Click OK in the Printer Setup window.

Windows print driver for VT host printing
You can use the Windows print driver for VT host printing. This functionality adds to the existing PDT printing

capability.

Collecting Print Jobs (5250 Printer Session)
You can collect 5250 print jobs and print them as a single job or in a group. The collected print jobs are stored in

a .SCS file.

Note: This functionality is not supported in Host Print Transform mode.

You can set the following .WS profile keywords to specify the path and file name for the .SCS file.

[Printers]
SCSFile=<filename>.scs
SCSPath=<local path>

The functions associated with this feature are listed below. The functions can be mapped to the keyboard, popup

keypad, mouse button, or toolbar button.

• Collect Mode

When Collect Mode has been started, print jobs that have been sent are saved in the .SCS file. They are not

printed immediately.

• Print Collection

The print jobs that have been saved are sent to the printer as a single job.

• Purge Collection

The collected print jobs are deleted.

Refer to the online help for details about mapping the functions.

The CombineJobs profile keyword enables you to collect the jobs for printing, while maintaining them as individual

jobs (instead of one job in the .SCS file). Specify the .WS keyword as follows:

[Printers]
CombineJobs=N

Chapter 2. Product Documentation

If you set CombineJobs to N, the Print Collection function sends the separate, collected jobs to the printer. While in

Collect Mode, if the keyword is set to Y or is not specified, the print jobs are combined as a single job in the .SCS file.

Printing to Disk
If you are using a PDT, you can save a host print-job or the contents of the session window (Print Screen) to a

workstation file instead of printing it.

Two types of Print-to-Disk function are provided by Z and I Emulator for Windows:

Print-to-Disk Append

Appends multiple host print jobs or print screen jobs to a single workstation file.

Print-to-Disk Separate

Saves each host-print job or screen to a separate workstation file. You can specify the file name, but

the extension is automatically assigned as a decimal number from 000 to 999. If you delete a file, its

number will be re-used. When all 999 numbers have been used, the extension is automatically assigned

a decimal number from 1000 to 9999.

Note:

1. Print-to-Disk is not available for the Print-Graphics function.

2. Print-to-Disk can be used only when you use a printer definition table (PDT) file.

To set up Print-to-Disk:

1. Click File → Printer Setup from the menu bar in the session window.

The Printer Setup window lists the supported printers.

2. Select Print to Disk Append or Print to Disk Separate from the list box.

3. Click Select PDT.

The Select PDT file window opens.

4. Select a PDT file from the list; then click OK.

The Printer Setup window reopens.

5. Click Setup.

The Select Print-to-Disk File window opens.

6. Specify a file name, drive, and path; then click OK.

Note: If you specify the name of an existing file, subsequent print jobs are appended to the data in the

original file in the case of Print to Disk Append.

181

HCL Z and I Emulator for Windows (ENGLISH)

182

Workstation Profile Parameter for Code Page
Occasionally a font does not support the desired code page. The wrong characters may be printed within the specific

character set (Latin 2, for example). Z and I Emulator for Windows has a workstation profile parameter that allows the

program to use a different code page that is supported by the desired font.

You can use the PrinterFontCodePage parameter if the following conditions are met:

• You can specify the printer font code page with which the desired font is encoded.

• Z and I Emulator for Windows provides the translation table for the host code page and the printer font code

page.

However, because some Z and I Emulator for Windows releases might require manual adjustment of the workstation

profile, try using different fonts before altering the .ws file. Fonts are listed in the Z and I Emulator for Windows Page

Setup panel for all display sessions and 3270 host print sessions. For 5250 print sessions, the PCSPD.DAT file can be

manually changed to control the fonts used. The Courier New font should support most languages and corresponding

code pages.

To edit the .ws file, you must change the PrinterFontCodePage parameter to the value of the supported code page you

wish to use. This option must be put in the [Printers] section, and is case-sensitive. See the following example for the

proper parameter syntax. The parameter does not need to be placed immediately after the [Printers] section label.

[Printers]
PrinterFontCodePage=852

In this case, the desired font is encoded with code page 852. Z and I Emulator for Windows uses a different, existing

translation table to translate data from EBCDIC to 852, versus using the standard Windows® code page.

This option is on the Page Setup panel for Z and I Emulator for Windows 5250 print sessions.

Key Functions and Keyboard Setup
This chapter contains information about keyboard setup and customizing mapped key functions.

Default Key Function Assignments
This section lists the functions assigned, by default, to each key on your keyboard.

For more information about each function, refer to the Keyboard choice on the Help menu.

You can change the default key assignments to the following default function tables, by selecting Keyboard Setup

from the Assist menu.

When the Keyboard Setup window opens, select one of the following choices:

• 3270 for a 3270 keyboard layout

• 5250 for a 5250 keyboard layout

• 3270+5250 for a combined keyboard layout

• VT for a DEC VT220 keyboard layout

Chapter 2. Product Documentation

Z and I Emulator for Windows includes two .KMP keyboard map files that map the standard Win32 hotkeys for Cut,

Copy, and Paste. You can use these keyboard map files or add the key values to an existing map file. See Win32 Cut,

Copy, and Paste Hotkeys on page 192 for more information.

Setting the 3270 Keyboard Layout Default
To make the 3270 keyboard layout defaults available, do the following:

1. Click Preferences → Keyboard from the Edit menu. The Keyboard dialog box is displayed.

2. Select the Default radio button next to Current Keyboard.

3. Click OK.

Default Key Functions for a 3270 Layout
Table 25: Default Key Functions for a 3270 Layout on page 183 shows the default key functions for PC/3270. The

key used is the same for all the supported keyboard types. default key functionsPC/3270 package key functionsassignments key functionsdefault

Table 25. Default Key Functions for a 3270 Layout

Function of Key Key

APL Ctrl+F8

Attention Esc

Alternate Cursor Alt+F11

Backspace ◄─ (Backspace)

Back Tab Shift+─►|

Back Tab Word Alt+←

Break Break

Change Format Toggle Alt+F3

Change Screen Ctrl+PageUp

Clear Pause

Cursor Blink Ctrl+F10

Cursor Down ↓ or 2(pad)

Cursor Left ← or 4(pad)

Cursor Right → or 6(pad)

Cursor Select Ctrl+F9

Cursor Up ↑ or 8(pad)

Delete Character Delete or

.(pad)

Delete Word Ctrl+Delete or

Ctrl+.(pad)

Document Mode Toggle Alt+F1

183

HCL Z and I Emulator for Windows (ENGLISH)

184

Table 25. Default Key Functions for a 3270 Layout

(continued)

Function of Key Key

Dup Shift+Insert²

Edit Copy Ctrl+Insert

Edit Cut Shift+Delete

Edit Paste Shift+PageDown or

Ctrl+Shift+Insert

Edit Undo Alt+◄─ (Backspace)

End Field Pad End

Enter/Control Shift+Ctrl

Erase EOF End²

Erase Field Shift+End²

Erase Input Alt+End²

Fast Cursor Down Alt+↓ or

Alt+2(pad)

Fast Cursor Up Alt+↑ or

Alt+8(pad)

Field Mark Shift+Home²

Graphic Cursor Alt+F12

Highlighting Field Inherit Alt+3(pad)

Highlighting Reverse Alt+*(pad)

Highlighting Underscore Alt+6(pad)

Home Home or 7(pad)

Insert Insert or 0(pad)

Jump Next Alt+PageUp

Mark Down Shift+↓

Mark Left Shift+←

Mark Right Shift+→

Mark Up Shift+↑

Move Mark Down Ctrl+↓ or

Ctrl+2(pad)

Move Mark Left Ctrl+← or

Ctrl+4(pad)

Move Mark Right Ctrl+→ or

Ctrl+6(pad)

Move Mark Up Ctrl+↑ or

Ctrl+8(pad)

PA1 Alt+Insert²

Chapter 2. Product Documentation

Table 25. Default Key Functions for a 3270 Layout

(continued)

Function of Key Key

PA2 Alt+Home²

PA3 Shift+PageUp²

Pause Ctrl+F7

PF1 to PF12 F1 to F12

PF13 to PF24 Shift+F1 to F12

Play Ctrl+F6

Print (Local Copy) Not assigned

Quit (Device Cancel) Alt+Left Ctrl

Record Ctrl+F5

Reset/Control Left Ctrl

Response Time Monitor Ctrl+F11

Rule Ctrl+Home

Sys Request Shift+Esc

Tab Field ─►| or Shift+─►|(pad)

Tab Word Alt+→

Test Ctrl+PageDown

Word Wrap Toggle Alt+F2

²

Indicates the key on the main keyboard.

(pad)

Indicates a key on the numeric keypad.

Note: The Enhanced keyboard has some duplicated keys. The functions of the duplicated keys are the

same except when you specify a single key. For example, Del means any Delete key, whereas Pad Del

specifies only the Delete key on the numeric keypad.

Setting the 5250 Keyboard Layout Default
To make the 5250 keyboard layout defaults available, do the following:

1. Select Preferences → Keyboard from the Edit menu. The Keyboard dialog box is displayed.

2. Select the Default radio button next to Current Keyboard.

3. Click OK.

185

HCL Z and I Emulator for Windows (ENGLISH)

186

Default Key Functions for a 5250 Layout
Table 26: Default Key Functions for a 5250 Layout on page 186 shows the default key functions for iSeries™,

eServer™ i5, or System i5™. The key used is the same for all the supported keyboard types.

Note:

1. If you use iSeries™ from the combined package, see Default Key Functions for the Combined Package

on page 188.

2. The default key functions for a 5250 layout are not available by default. To make these functions

available, perform the procedures in Setting the 5250 Keyboard Layout Default on page 185.

Table 26. Default Key Functions for a 5250 Layout

Function of Key Key

Alternate Cursor Ctrl+F11

Attention Esc

Backspace ◄─ (Backspace)

Backtab Shift+─►|

Backtab Word Alt+←

Begin Bold* Ctrl+B

Begin of line* Ctrl+4(pad)

Begin Underscore* Ctrl+U

Bottom of Page* Ctrl+2(pad)

Carrier Return Ctrl+Enter or

Ctrl+-(pad) or

Ctrl++(pad)

Center Text* Ctrl+C

Clear Pause

Cursor Blink Ctrl+F10

Cursor Down ↓ or 2(pad)

Cursor Left ← or 4(pad)

Cursor Right → or 6(pad)

Cursor Up ↑ or 8(pad)

Delete Character Delete or .(pad)

Delete Word Ctrl+Delete or

Ctrl+.(pad)

Display Text Code Alt+Insert

Dup Shift+Insert

Edit Copy Ctrl+Insert

Chapter 2. Product Documentation

Table 26. Default Key Functions for a 5250 Layout

(continued)

Function of Key Key

Edit Cut Shift+Delete

Edit Paste Shift+PageDown or

Ctrl+Shift+Insert

Edit Undo Alt+◄─ (Backspace)

End Bold/Underscore* Ctrl+J

End of line* Ctrl+6(pad)

End of page* Ctrl+P

Enter/Control Right Ctrl

Erase EOF End or 1(pad)

Erase Input Alt+End

Fast Cursor Down Alt+↓ or

Alt+2(pad)

Fast Cursor Up Alt+↑ or

Alt+8(pad)

Field Exit Enter(pad) or

◄┘ (Enter)

Field Mark Shift+Home

Field Minus (-) -(pad)

Field Plus (+) +(pad)

Half Index Down* Ctrl+H

Half Index Up* Ctrl+Y

Help Alt+F1

Home Home or 7(pad)

Host Print Ctrl+Pause

Insert Insert or

0(pad)

Insert Symbol* Ctrl+A

Jump Next Alt+PageUp

Mark Down Shift+↓

Mark Left Shift+←

Mark Right Shift+→

Mark Up Shift+↑

Move Mark Down Ctrl+↓

Move Mark Left Ctrl+←

Move Mark Right Ctrl+→

Move Mark Up Ctrl+↑

187

HCL Z and I Emulator for Windows (ENGLISH)

188

Table 26. Default Key Functions for a 5250 Layout

(continued)

Function of Key Key

Next Column* Ctrl+D

Next Stop* Ctrl+N

Pause Ctrl+F7

PF1 to PF12 F1 to F12

PF13 to PF24 Shift+F1 to F12

Play Ctrl+F6

Quit Alt+Left Ctrl

Record Ctrl+F5

Required Backspace Ctrl+◄─ (Backspace)

Required Space* Ctrl+Space

Required Tab* Ctrl+─►|

Reset/Control Left Ctrl

Roll Down 9(pad) or PageUp

Roll Up 3(pad) or PageDown

Rule Ctrl+Home

Stop Code* Ctrl+S

System Request Shift+Esc

Tab Field ─►|

Tab Word Alt+→

Test Request Alt+Pause

Top of Page* Ctrl+8(pad)

Word Underscore* Ctrl+W

(pad)

Indicates a key on the numeric keypad.

*

Indicates a Text Assist Key (SBCS only).

Default Key Functions for the Combined Package
Table 27: Default Key Functions for the Combined Package on page 189 shows the default key functions for the

combined package. The key used is the same for all the supported keyboard types.

When you use the 3270+5250 keyboard layout, the key definitions for the 3270 and 5250 layouts are combined with

those listed here.

Chapter 2. Product Documentation

Table 27. Default Key Functions for the Combined Package

Function of Key Key

Change Screen Not assigned

Character Advance Shift+BackSpace

Help Not assigned

Host Print Not assigned

PA3 Not assigned

Roll Down PageUp

Roll Up PageDown

Printer Setup Not assigned

Setting the VT Keyboard Layout Default
To make the VT keyboard layout defaults available, do the following:

1. Click Preferences → Keyboard from the Edit menu. The Keyboard dialog box is displayed.

2. Select the Default radio button next to Current Keyboard.

3. Click OK.

Default Key Functions for the VT Emulator Layout
Table 28: Default Key Functions for a VT Emulator Layout on page 189 shows the default key functions for VT220,

VT100 and VT52. The key used is the same for all the supported keyboard types. The VT emulator keyboard gets

selected as the default only when the VT Component is selected in the installation path. key functionsdefaultassignments

Table 28. Default Key Functions for a VT Emulator Layout

Function of Key Key

Backspace ◄─ (Backspace)

Break Ctrl+Pause

CAN Ctrl+◄─ (Backspace)

Cursor Down ↓ or 2(pad)

Cursor Left ← or 4(pad)

Cursor Right → or 6(pad)

Cursor Up ↑ or 8(pad)

Edit Copy Ctrl+Insert

Edit Cut Shift+Delete

Edit Paste Shift+PageDown or

Ctrl+Shift+Insert

Edit Undo Alt+◄─ (Backspace)

ESC ESC

189

HCL Z and I Emulator for Windows (ENGLISH)

190

Table 28. Default Key Functions for a VT Emulator Layout

(continued)

Function of Key Key

Jump Next Alt+PageUp

New Line ◄┘ (Enter)

Mark Down Shift+↓

Mark Left Shift+←

Mark Right Shift+→

Mark Up Shift+↑

Move Mark Down Ctrl+↓ or

Ctrl+2(pad)

Move Mark Left Ctrl+← or

Ctrl+4(pad)

Move Mark Right Ctrl+→ or

Ctrl+6(pad)

Move Mark Up Ctrl+↑ or

Ctrl+8(pad)

PF6 to PF12 F6 to F12

PF13 to PF20 Shift+F1 to F8

Rule Ctrl+Home

Tab Field ─►| or Shift+─►|

VT Enter Shift+Enter(pad)

VT Find End² or

1(pad)

VT Hold Pause

VT Insert Insert or 0(pad)

VT Next Page Down² or

3(pad)

VT Numpad 0 to VT Numpad 9 Shift+0(pad) to

Shift+9(pad)

VT Numpad Comma Shift++(pad)

VT Numpad Minus -(pad) or Shift+-(pad)

VT Numpad Period Shift+.(pad)

VT PF1 to VT PF4 F1 to F4

VT Prev Page Up² or

9(pad)

VT Remove Delete or .(pad)

VT Select Home² or

7(pad)

VT User F6 to VT User F12 Ctrl+F6 to F12

Chapter 2. Product Documentation

Table 28. Default Key Functions for a VT Emulator Layout

(continued)

Function of Key Key

VT User F13 to VT User F20 Ctrl+Shift+F1 to F8

²

Indicates the key on the main keyboard.

(pad)

Indicates a key on the numeric keypad.

Note: The Enhanced keyboard has some duplicated keys. The functions of the duplicated keys are the

same except when you specify a single key. For example, Del means any Delete key, whereas Pad Del

specifies only the Delete key on the numeric keypad.

Keyboard Setup (3270 and 5250)

You can use Keyboard Setup to modify the function defined for each key on the keyboard, except some reserved keys.

You can define the following functions for the keys:

• Performing a key function

• Playing a macro

• Entering characters

Note: For 3270, the Enter function is assigned to the Ctrl key, by default. To change this assignment or, if you

are using a non-IBM compatible keyboard and the Enter key does not work properly, you need to customize

your keyboard. For 3270 and 5250 sessions, you can use the keyboard map files provided with Z and I

Emulator for Windows (see Win32 Cut, Copy, and Paste Hotkeys on page 192).

Keyboard File
keyboardfile

When you specify a key, you can save the new keyboard layout in a file (.KMP). If you create two or more keyboard

files, you can alternate between them as required.savingkeyboard layout

To assign a function to a key on the keyboard:

1. Click Preferences → Keyboard from the Edit menu or click the map icon on the tool bar.

2. When the Keyboard Setup window appears, select Customize.

Note: Select Spain from the Language menu during keyboard setup if you want Catalan support.

3. Assign the key functions, referring to the online help for detailed instructions.

191

HCL Z and I Emulator for Windows (ENGLISH)

192

4. Save your changes and exit the Customize Keyboard window.

5. Click OK after completing the setup.

You can reset either the entire keyboard or specific keys to defaults:

• To reset the entire keyboard, set the current keyboard to Default in the Keyboard Setup window.

• To reset specific keys, select a key in the Customize Keyboard window and then select Default from the

Current Actions for Selected Key box.

Note: You cannot redefine the following keys: Alt, AltGr, Print Screen, Scroll Lock, CapsLock, NumLock, and

Shift.

Win32 Cut, Copy, and Paste Hotkeys
Z and I Emulator for Windows includes two .KMP keyboard map files that map the standard Win32 hotkeys for Cut,

Copy, and Paste to Ctrl+X, Ctrl+C and Ctrl+V, respectively. You can use these keyboard map files or add the key values

to an existing map file.

For 5250 sessions, the .KMP file provided is pcswinkb5.kmp. The remapping is given in Table 29: Win32 Keyboard

Map Functions for a 5250 Layout on page 192.

Table 29. Win32 Keyboard Map Functions for a 5250 Layout

Function of Key Key

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Enter Enter

New Line Right Ctrl

The keys PF7 and PF8 remains mapped to Roll Up and Roll Down, respectively.

For 3270 sessions, the .KMP file provided is pcswinkb3.kmp. The remapping is given in Table 30: Win32 Keyboard

Map Functions for a 3270 Layout on page 192.

Table 30. Win32 Keyboard Map Functions for a 3270 Layout

Function of Key Key

Edit Cut Ctrl+X

Edit Copy Ctrl+C

Edit Paste Ctrl+V

Page Up PF7

Page Down PF8

Enter Enter

Chapter 2. Product Documentation

Table 30. Win32 Keyboard Map Functions for a 3270 Layout (continued)

Function of Key Key

New Line Right Ctrl

Using Z and I Emulator for Windows 3270

Considerations for Using PC/3270 Sessions
This chapter contains hints and tips for using PC/3270 sessions. Supplementary information other than the items

described in this book may be included in the Readme HTML file in the Z and I Emulator for Windows directory.

TN3270E Contention Resolution
Using the TN3270E function negotiation mechanism, Z and I Emulator for Windows negotiates with servers to

enable the CONTENTION-RESOLUTION function described in the IETF TN3270E Functional Extensions Internet-Draft

document. As with any other such negotiation, the server might accept or reject this function.

The CONTENTION-RESOLUTION function is supported only for display sessions.

Z and I Emulator for Windows negotiation for this function is enabled by default. It can be disabled by adding the

following keyword to the .WS profile.

[Telnet3270]
TN3270EContentionResolution=N

Host-Session Window Operations

Cursor Color
By default, PC/3270 draws the underline cursor in white. If the background color of the current field is white, the color

of the underline cursor automatically switches to black. PC/3270 draws the block and half-block cursors in the same

color as the current field, reversing the background and forground colors. This behavior is identical to a 327x terminal.

If you want to change the default cursor color assignment, modify the pcswin.ini file and add the CursorColor value to

the Session stanza, as follows:

[Session]
CursorColor=<red_value> <green_value> <blue_value>

Here, <red_value>, <green_value>, and <blue_value> are integers from 0 to 255 that specify the color intensity for each

color primitive respectively. The color values range from 0 0 0 for black to 255 255 255 for white. PC/3270 then draws

the underline cursor and the block cursors in this new color, mixing this new color with the existing screen colors

using an XORed (exclusive or) operation. The value 0 0 0 (black) is not recommended because XORing 0 0 0 with any

existing color results in the existing color, which makes the cursor invisible.

If you select a blinking cursor, it will always be drawn white, mixing the white with the existing screen colors using an

XORed operation. You cannot change the cursor color when it is blinking.

193

HCL Z and I Emulator for Windows (ENGLISH)

194

Note: Cursor blinking is disabled by default in Windows Terminal Services sessions and under virtualization

environments such as Citrix XenDesktop and Citrix XenApp. Refer to the appropriate vendor documentation to

enable cursor blinking.

Releasing Insert Mode with Attention Keys
As on a non-programmable terminal, you can release insert mode when you press an Attention key. If you want this to

happen, add this parameter to the [Keyboard] section of the workstation profile (*.WS):

[Keyboard]
ResetInsertByAttn=Y

Scroll Bar
If you choose Font from the Appearance menu in the host session window and choose Fixed Size from the Select

Display Font window, the entire operator information area might not appear on the screen. If you specify With Scroll

Bar, the OIA will not scroll. The session window size is restricted to be smaller than the screen size.

Scroll-Lock Key
When the Scroll Lock keyboard indicator is turned on, the cursor movement keys and the Page Up and Page Down

keys are used to scroll windows only when you specify With Scroll-Bar in the Window Setup window. If you specify

Without Scroll-Bar, you cannot use the Scroll Lock key, because the entire screen is displayed. For example, cursor-

movement keys do nothing in Scroll Lock mode.

Customizing a Display Translation Table
PC/3270 displays the host EBCDIC character using the workstation (ANSI) graphic symbol so that the character

defined by the zSeries™ EBCDIC host code page is displayed correctly using the same graphic symbol defined by

ANSI. However, you might need your original translation, because your host or workstation application is not designed

to use the standard translation.

You can use your original translation table if you refer to the following procedure as an example. Note that the data

integrity caused by the user-defined table is your responsibility.

The following procedure is an example of how to remap left and right brackets.

1. Terminate all running 3270 sessions

2. Modify the PC/3270 workstation profile (*.WS).

[Translation]
IBMDefaultView=N
DefaultView=C:\Z and I Emulator for Windows\PRIVATE\BRACKET.XLT

Chapter 2. Product Documentation

3. Create the display translation table file (.XLT). In this example, the following BRACKET.XLT file is created in the

Z and I Emulator for Windows private subdirectory.

[Profile]
id=XLT
Description=User-defined Display Translation Table

[Option]
Replace=Y

[SB Xlate]
; EBCDIC=ANSI
; The next line displays EBCDIC X'AD' as
; an ANSI X'5B' (left bracket)
AD=5B
; The next line displays EBCDIC X'BD' as
; an ANSI X'5D' (right bracket)
BD=5D

4. Create your own keyboard layout (.KMP) if you need to enter your new left and right brackets graphic symbols:

[Keyboard]
KEY27=ansi dd
KEY28=ansi a8

The information on the right should be lowercase characters. PC/3270 translates ANSI X'dd' into EBCDIC

X'ad'. It is displayed as [by the table created in step 3.

5. Click on the PC/3270 icon corresponding to the modified workstation profile.

Support for Long File Names
Like Windows®, Z and I Emulator for Windows supports long file names. You can give any name (up to 255

characters) to a file; you are not limited to eight characters with a three-character extension. You can use spaces in

the file name, but not the symbols /, \, :, *, ?, “, <, >, or |. In addition, the tilde (~) character should not be used in CMS or

MVS host file names.

File Transfer Function

Host File Name and Reserved Words
You should not use the following words as a VM file name or file type, as a MVS data set name, or as a CICS® file

name, because they are reserved for use as option commands:

• ASCII

• APPEND

• TIME

• CLEAR

• NOCLEAR

195

HCL Z and I Emulator for Windows (ENGLISH)

196

• SILENT

• QUIET

• PROGRESS

• BLANK

• CRLF

• BINARY

• NOCRLF

Changing the Packet Size When Import/Export Is Idle
When import/export is idle, select Preferences → Transfer from the Edit menu. When you change the packet size on

the Setup window, end import/export, and then rerun it.

Wait Option for Multiple File Transfer
If multiple file transfers do not succeed, insert the following statement into the [Transfer] section of your .WS file:

[Transfer]
wait=1000

This parameter causes a 1000 msec (1 sec) delay between file transfers. If this does not help, you might need to

increase the value again.

NOTRUNC and BLANK Options (SBCS Only)
If you want to add trailing blanks (spaces) to fill the logical record length for each record when downloading a text file,

use the following options in the Additional Options edit field of the Transfer-Type Definition window.

NOTRUNC : for VM/CMS (PTF# UR35492)

NOTRUNC : for MVS/TSO (PTF# UR34797)

BLANK : for CICS®

Setting the VTAM® PSERVIC Statement
File transfer problems can occur if extended attribute support has not been set on in the VTAM® PSERVIC

statement. For extended attribute support, set on the high order bit in PSERVIC byte1 (zero byte origin) as follows:

x'xx80xxxxxx...'.

Entry assist feature in 3270 display session
The Entry Assist (DOC mode) features enable easier editing of text documents. The Entry Assist features are available

only for 3270 display sessions.

Chapter 2. Product Documentation

Enabling DOC mode
Enabling DOC mode The Entry Assist features can be enabled by adding the keyword Docmode=Y to the .WS session

profile. Set Docmode=N to disable Entry Assist.

When Entry Assist is enabled, the DOC indicator is displayed in positions 67, 68, and 69 of the Operator Information

Area (OIA). Also, all the pasting functions on the Paste tab are ignored (see Pasting in DOC mode on page 199).

You can assign the mode toggle to a keyboard key or button in the Popup Keypad. The default key assignment for

DOC mode is Alt+F1.

Word wrap
You can enable this function by adding the keyword DocmodeWordWrap=Y to the .WS session profile. When DOC

mode is enabled, this function is enabled by default. When word wrap is enabled, the Word Wrap indicator is displayed

in position 71 in the OIA.

When word wrap is enabled, a word that is being typed at the right margin is moved in its entirety to the first

unprotected field in the next row, assuming that the unprotected field has enough left side blank space (spaces and

nulls) to contain the word. The vacated area on the previous row is filled with spaces. See the following examples.

When word wrap is disabled:

Look in the diction
ary, please.

When word wrap is enabled:

Look in the
dictionary, please.

If the unprotected field does not have sufficient blank space at the left, then the word is not moved (same as when

word wrap is disabled).

Start Column and End Column
You can set these values using the keywords DocmodeStartColumn=<value> and DocmodeEndColumn=<value> in

the .WS profile. These settings control the left and right margins while the session is in DOC mode. For example, you

can set the left margin to 10 and the right margin to 60. If insert mode is on, the following conditions apply:

• When you type a character at the right margin, the cursor returns to the left margin on the next row.

• Protected fields are skipped.

If insert mode is off, the following conditions apply:

• When you are typing data and a character is pushed beyond the right margin, the pushed character is wrapped

to the beginning of the next row.

• Protected fields are skipped.

When insert mode is enabled, the ^ character is displayed at position 52 in the OIA.

197

HCL Z and I Emulator for Windows (ENGLISH)

198

New Line key
If you press the key (default is Enter key) for New Line, the cursor skips to the first unprotected character position in

the next row (or in a subsequent row if necessary) that lies within the margins.

Tab stops
You can set tab stops values with the keyword DocmodeTabStops=<column1,column2,...> in the .WS profile. You can

set the tab stops by specifying the number of the columns that you want for the tab stops, separated by commas (for

example, 5,10,15,20,25).

When tab stops are set, pressing the Tab key causes the cursor to skip to one of the following, whichever comes first:

• The next tab stop in the same unprotected field on the same row. Note that tab stops cannot be defined

outside the left or right margin.

• The first character position in the next unprotected field on the same row, if that character position is within

the margins.

• The first character position in the next unprotected field in a subsequent row, if that character position is

within the margins.

The following conditions apply when using tab stops:

• Characters that are skipped over as the result of a tab key are not set to blanks.

• Characters that lie within an unprotected field and that the cursor skips over as the result of a tab key are not

set to blanks. However, nulls that the cursor skips over as the result of a tab key are set to blanks.

Nulls in an unprotected field straddling a margin
When the tab key causes the cursor to skip to the left margin of the next line, and an unprotected field straddles the

left margin, nulls that lie outside the left margin in the unprotected field are converted to spaces. However, when the

tab key causes the cursor to skip to the next line, and an unprotected field straddles the right margin of the preceding

line, nulls that lie outside the right margin in the unprotected field are not converted to spaces.

Enable audible End of Line signal
You can enable this function by adding the keyword DocmodeEndofLineSignal=Y to the .WS profile. The function

enables an audible signal when the cursor enters the column set for the End of Line signal column.

End of Line signal column
You can enable this function by adding the keyword DocmodeEndofLineSignalColumn=<value> to the .WS profile. You

can set the column value at which you want the End of Line signal to be sounded. You could type in a value that would

cause the audible signal to occur when the cursor approached the right margin. For example, if the right margin is 70,

you might set the End of Line signal column to 65.

Chapter 2. Product Documentation

Pasting in DOC mode
When DOC mode is enabled, all pasting functions on the Paste tab are ignored and pasting is done according to the

following rules.

If the cursor is within the margins:

• Start pasting characters at the cursor.

• Paste characters according to the same rules that are used when the user is typing characters.

• Follow the word wrapping rules if Word Wrap is enabled.

• Display the Too Much symbol in the OIA if the end of the last row is reached before all the data is pasted.

If the cursor is outside the right margin:

• Start pasting characters at the cursor.

• Paste characters into unprotected fields until the end of the row is reached.

• Start at the left margin of the next row and continue pasting according to the rules that apply when the cursor

is within the margins.

If the cursor is outside the left margin:

• Start pasting characters at the cursor.

• Paste characters into unprotected fields until the left margin is reached.

• Continue pasting according to the rules that apply when the cursor is within the margins.

Graphic Functions
This section provides information, restrictions, and considerations for graphic functions.

Graphics Protocols
Z and I Emulator for Windows allows you to use host graphics applications, such as GDDM® and others. Two types of

graphics are supported:

• Vector

• Programmed symbols

Two protocols are supported for vector graphics:

• Advanced

• Native

199

HCL Z and I Emulator for Windows (ENGLISH)

200

See Configuring Graphics in the online helps for a description of these protocols and to learn how to configure your

sessions for graphics.

The following functions are supported:

• Multiple mixed alphanumeric and graphics host sessions

• Use of standard OS/2® printing and plotting facilities

• Creation of PIF (Picture Interchange Format) files

• Clipping graphics data into the clipboard

Vector Graphics
Vector graphics are computer graphics in which display images are generated from display commands and

coordinate data. Z and I Emulator for Windows provides vector graphics support for the OS/2-Link (advanced) or the

3179G or GOCA (native) protocols. Choose the protocol that is appropriate for your host applications.

Advanced Protocol
Use the advanced protocol when you have GDDM® Version 2 Release 3 or later and are using any of the following

operating systems:

• MVS

• VSE

• VM/SP

• VM/XA SP™

Note: The advanced protocol is not supported by the CICS® pseudo-conversational mode with versions

of GDDM® earlier than Version 3, and not by IMS/VS at all. It is, however, supported by the CICS® pseudo-

conversational mode with GDDM® Version 3 Release 1 or later.

The advanced protocol is equivalent to that used by OS/2-Link, so it supports the same subsystems. However, no

download of code from the host system is required for Z and I Emulator for Windows because all the OS/2-Link

graphics modules are integrated into the program.

Native Protocol
Choose the native protocol when you intend to use older GDDM® versions or non-GDDM host-graphics applications,

such as those originally intended for use on 3270 nonprogrammable terminals as the 3179G, 3192G or 3472G. The

native protocol also allows IMS/VS users to display GDDM® graphics.

Chapter 2. Product Documentation

Programmed Symbols
Raster graphics are displayed with programmed symbols, which are downloaded to your workstation. Z and I

Emulator for Windows supports up to six sets (PSA through PSF) of triple-plane and multiple-color programmed

symbols.

Use programmed symbols as the graphics type when you intend to use host graphics applications originally written

for the 3279G terminal.

Graphics applications use one or both of these methods to display graphical screens. Z and I Emulator for Windows

allows you to enable or disable support for vector graphics and programmed symbols. Choose the type of support

that our host applications require.

Note: If you use the OS2-Link (advanced) protocol under the GDDM® program, do not choose programmed

symbols. Also, do not choose programmed symbols when you use the OS2-Link protocol with other

applications.

Enabling Programmed Symbol Sets
PC/3270 provides up to six sets of triple-plane programmed symbols, depending on the type of graphics support that

you choose. By default:

• Two sets (PSA and PSB) of single-plane programmed symbols are usable if you choose both programmed

symbols and vector graphics.

• Three sets (PSA, PSB, and PSE) of single-plane programmed symbols and three sets (PSC, PSD, and PSF) of

triple-plane programmed symbols are usable if you choose programmed symbols, but not vector graphics.

You can change the number of programmed-symbol sets and triple or single planes available for each programmed-

symbol set by editing the [3270] section of the workstation profile:

PSSPlanes=xxxxxx

Each x represents a number (0, 1, or 3) that indicates how many planes are to be available for each set; the first

column indicates the number of planes for PSA, the second column for PSB, and so on. For example, to enable six

triple-plane programmed symbol sets, enter the following:

PSSPlanes=333333

To enable two single-plane and two triple-plane sets, enter the following:

PSSPlanes=113300

201

HCL Z and I Emulator for Windows (ENGLISH)

202

How to Handle Errors Caused by Insufficient Memory
Graphic execution module PCSGRP.DLL uses a large amount of global memory for graphic drawing or printing. When

the workstation has insufficient installed memory, results might not be correct. For example, an area might not be

clearly shaded.

In this case, increase the amount of installed workstation memory by at least 1 MB. For host graphic printing, add 1

more megabyte.

Memory might have to be further extended depending on the host graphic application and printer driver used.

Drawing-Buffer Size
The drawing-buffer size varies depending on the contents set for Redraw of a graphic function.

To set Redraw, click Preferences → Appearance → Display Setup from the Edit menu in the session window. Select

Graphics from Category.

Selecting Host from the optional items of Redraw requires no buffer.

If you select Retained, the graphic execution module stores all redrawing data into a buffer. Such a buffer is called a

retained buffer. The buffer size varies depending on the complexity of the graphic data from an application program.

For example, a simple table has a buffer size of 10 KB to 20 KB, while a complicated graphic image has a buffer size

of 200 KB to 300 KB.

When you select Bitmap to set Redraw, the buffer size will be the same as the sum of the retained buffer size and

compatible bit map size:

(Height) x (Width) x (Number of planes) x (Bits/Pixel) / 8 bytes

For example, when you select a 7x12 font for a VGA 16-Color Display Model 2 (24x80), the bitmap size is:

(7x80) x (12x24) x 1 x 4 / 8 = 80 KB

When you select a 12x20 font for an IBM® PS/55 High-Resolution 256-Color Display Model 2, the bitmap size is:

(12x80) x (20x24) x 1 x 8 / 8 = 460 KB

Using Bitmaps for Drawing
The graphic execution module uses a bit map compatible with the display unit to draw an area instruction in overpaint

mode. An image instruction requires one plane bit map.

(Buffer for area) = (Area width) x (Area height) x (Number of planes) x (Bits/Pixel) / 8

(Image buffer) = (Image width) x (Image height) / 8

Chapter 2. Product Documentation

Print Buffer Size
The retained buffer must be used for printing. The retained buffer is the same size as that used for redrawing. This is

also applied when you specified Bit Map for Redraw on the Display Setup window.

If graphic printing is called in Bitmap mode, the graphic printing module generates a bitmap compatible with the

connected printer, draws an image on the bitmap, and transfers the bit image to the printer.

This operation is generally performed quickly. When memory is frequently swapped, the process slows down in

proportion to the number of swap operations. If a large bit map is not allocated, the graphic printing module prints a

graphic image normally using only the retained buffer.

Example:

Proprinter (240x144 DPI) character size:

Bitmap size = (240x8) x (144x11) x 1 x 1 / 8 = 380 KB

Example:

EPSON (ESC/P) (360x180 DPI color) character size:

Bitmap size = (360x8.5) x (180x11) x 3 x 1 / 8 = 2.3 MB

Note: With some printers, different printing results might be obtained in bitmap mode and non-bitmap mode.

If the desired results are not obtained, change the current bitmap mode. For example, specify non-bitmap

mode to print in bitmap mode.

Edit-Copy Buffer
An editing operation causes the graphic execution module to copy a bit map and DIBitmap to the clipboard. The bit

map is compatible with the display; DIBitmap is a 4-bit/pixel bit map.

Printer Fonts
The printer driver can handle two font sets, the device font and GDI font. The device font is a hardware font built into

the printer. The GDI fonts are System (without brackets) or other software fonts for Windows®.

When you select a font set for graphic printing from the Printer Control window, use the GDI fonts for the following

reasons:

• In bitmap mode, a GDI font can be used for printing. However, the device font cannot be used, because an

image cannot be drawn on a memory bit map when using the device font.

• In bitmap mode, the device font cannot be used for printing when OR and exclusive OR attributes are mixed.

203

HCL Z and I Emulator for Windows (ENGLISH)

204

Plotter
Because a plotter does not support a raster, the following restrictions are imposed on drawing. Use a plotter for

figures and tables that have mainly lines.

• No shading is supported.

• Some shading patterns cannot be distinguished.

• Image order drawing requires much time, and the final printout is of poor quality.

• The OR and exclusive OR are not correctly reflected.

Hole in Screen Caused by Clearing a Graphic Character
When a character overlaps a graphic image, the graphic image is cleared at the position where the character is to be

displayed. When you enter a null character or space having the transparent attribute at the position where a graphic

image is displayed, the graphic image in that character cell is not cleared.

If you select Host or Retained to set Redraw on the Display Setup window, when characters in a graphic image are

cleared, a hole appears in the graphic area. This is because these two modes do not have a bitmap image, and partial

redrawing cannot be performed on the screen.

If you select Bitmap mode as Redraw Graphics, you can find no hole on the graphic region by the application that

overrides any alphanumeric characters (as well as NULL and SPACE) on the graphic image.

To restore the screen, perform either of the following actions:

• Press the PA3 key to have the application program redraw the screen.

• Minimize and restore the graphic image retained in Retained mode, then redraw it or select Bitmap mode.

Note: When you change the setting of Redraw in the Display Setup window, the set contents are valid from the

next drawing.

Miscellaneous Restrictions for Graphic Functions
If advanced protocol is selected, graphic functions cannot be used in the IMS/VS and CICS® pseudo-conversational

mode with versions of GDDM® earlier than Version 3.

Considerations for Graphics Functions

Native-Graphics Datastream
If the host sends an Object Structured Field (Object Picture, Object Data, Object Control) with a zero value in the

length field, Z and I Emulator for Windows rejects it and displays PROG754.

Chapter 2. Product Documentation

Printout to LPT1
When you use a host application that prints to your PC's LPT1, you must first select the printer in the Printer Setup

dialog of the File menu.

Print Processing

Transferring Files
Z and I Emulator for Windows File Transfer enables you to transfer one or more files between a host system and

workstation at the same time. Transfer types and translation tables can be defined in advance.

You can perform the following file transfer functions:

• Send files to the host system

• Receive files from the host system

• Use lists of files

• Create templates to define file names and transfer types

• Define transfer types

• Set transfer options

• Modify translation tables

• Import or export files (PC/3270 CICS only)

• Create interactive document profile (IDP) files (PC/3270 CICS only)

• Transfer files via the XMODEM or YMODEM protocols

Note:

PCT400 was withdrawn from marketing 3/98.

Host Requirements
For PC/3270 File Transfer in SBCS mode, you need one or more of the following host file-transfer programs (referred

to as IND$FILE):

• IBM 3270-PC File Transfer Program, 5665-311 (MVS/TSO)

• IBM 3270-PC File Transfer Program, 5664-281 (VM/SP 2.1)

• IBM CICS/VS 3270-PC File Transfer Program, 5798-DQH (CICS/VS 1.5)

Sending Files to the Host System
To send a file from your workstation to the host system:

205

HCL Z and I Emulator for Windows (ENGLISH)

206

1. Sign on to the host system.

2. Click Send File to Host from the Actions menu of the session window. (You can also select the Send button

on the tool bar.)

The Send File to Host window opens.

3. To use a list file, click Open List. Select the list to be used for transfer. See Creating List Files on page 207

for details of how to create list files.

If you do not want to use a list file, proceed to the next step.

4. Type the name of the PC File to be sent to the host system, or click Browse to select the file. If a template is

provided for the file type you are transferring, the host file name and transfer type appear automatically.

5. Type the Host File Name. For MVS/TSO, you can click Browse to view the datasets and members on the host

(3270 only). Select the files to send, then click OK to add the files to the transfer list.

6. Select the Transfer Type.

7. Click Send.

The file is sent to the host system. The send status appears in the Send a File Status window.

Receiving Files from the Host System
To transfer a file from the host system to your workstation:

1. Sign on to the host system.

2. Click Receive File from Host from the Actions menu. (You can also select the Receive button from the tool

bar.)

The Receive File from Host window opens.

3. To use a list file, click Open List. Select the list to be used for transfer. See Creating List Files on page 207

for details of how to create list files.

If you do not want to use a list file, proceed to the next step.

4. Type the name of the Host File to be received. You can also specify the host file name as follows:

• Using the Clipboard button

If you have copied one or more host file names to the clipboard, you can click the Clipboard button and

paste the names into the transfer list. Select one or more of the pasted file names to be transferred

and click OK.

• Using the Browse button

For MVS/TSO, you can click Browse to view the datasets and members (3270 only). Select one or

more of the files to receive, then click OK to add the files to the transfer list.

If a template is provided for the file type you are transferring, the PC file name and transfer type appear

automatically.

5. Type the PC File Name or click Browse button to select a location for the file.

6. Select the Transfer Type.

Chapter 2. Product Documentation

7. Click Receive.

The receive status appears in the Receive a File Status window.

Using List Files
If the same files are transmitted frequently, you can create a list of the files and save it.

A list file can be used for both Send and Receive. The default list file extension is .SRL.

Creating List Files
To create a list file:

1. Select Receive File from Host from the Actions menu or Send File to Host from the Actions menu of the

session window; or click the Send or Receive buttons on the tool bar.

The corresponding window opens.

2. Select a file to be transferred from the Host-File Name or PC-File Name list box by pointing to the name of a

file to be selected. While holding down the Ctrl key, click the left mouse button.

The file name, its corresponding workstation or host file name (according to the available templates), and the

transfer type appear in the Transfer List part of the window.

Note: You can also click the Browse button (for sending files) or the Clipboard button (for receiving

files) to open the corresponding dialog box, which allows you to select files for transferring; when you

click OK, the selected files are shown in the Transfer List.

3. Click the Add to List button to include a selected file in the Transfer List.

4. After all desired files have been selected, click Save List.

The Save File-Transfer List File As window opens.

5. Enter or select a list name, and click OK.

Editing Lists
To edit the contents of a previously created list:

1. As explained in Sending Files to the Host System on page 205 and Receiving Files from the Host System on

page 206, display the Send File to Host or Receive File from Host window.

2. Select Open List.

The Open File-Transfer List File window opens.

3. Select the name corresponding to the list file to be edited, then click OK.

4. The contents of the selected list appear in the Send File to Host or Receive File from Host window.

5. Edit the contents of the list file.

207

HCL Z and I Emulator for Windows (ENGLISH)

208

Changing the contents of a list: Choose the file to be changed from the list, and overwrite the items to

be changed in the text box; then click the Update in List button.

Removing a file from the list: Choose the file to be removed, and click Remove from List.

Adding a file to the list: Double-click the file to be added from the list of host or workstation files.

6. Select Save List.

The Save File-Transfer List File As window opens.

7. Enter a name and then click OK.

Managing Templates
A template is a set of rules to be used by the workstation to automatically generate a workstation or host file name

and transfer type when you specify a file to be sent or received.

You can have up to 32 templates. They are automatically numbered from 1 to 32.

When you specify a file to be transferred, the workstation scans the templates, starting from template 1. It uses the

first matching template to generate a name for the transferred file and the transfer type.

To manage a template:

1. Click Receive File from Host from the Actions menu or Send File to Host from the Actions menu of the

session window; or click the Send or Receive buttons on the tool bar.

The Send File to Host or Receive File from Host window opens.

2. Select Template.

The Template window opens. The contents of the window depend on the connected host system.

Adding Templates
The list box for the Template window lists the currently stored templates.

To add a template:

1. Select any template from the list box.

The contents of the selected template appear under the list box.

2. Change the workstation or host file names or extensions by overwriting them; then select the transfer type.

(For details of the transfer types, see Defining Transfer Types on page 209.)

3. Click Add.

The window for determining where in the list to display the new template opens.

Chapter 2. Product Documentation

4. Select a template number and specify whether to display the new template before or after the template that

has that number. Click OK.

The new template is added to the list in the appropriate position.

Replacing and Deleting Templates
To change the contents of a currently stored template, or to delete a template:

1. Select the template to be changed or deleted.

The contents of the selected template appear under the list box.

2. To change the contents, overwrite the appropriate part and then click Replace.

To delete a template, click Delete.

The selected template is changed or deleted, and the contents of the template list box are changed.

Testing Templates
To test the contents of an added or changed template:

1. Select the template to be tested from the list box.

The number of the selected template appears in the Test Templates box in the lower part of the window.

2. Select or enter data for the following items:

Test Mode

Determine which mode is to be used for the test: the mode in which a file is transmitted from the

workstation to the host system (send), or the mode in which a file is transmitted from the host

system to the workstation (receive).

Templates

Determine which templates to test: only the template selected in step 1, or all registered

templates.

Source File

Enter the name of the file to be used for the test.

3. Click Test.

Target File indicates the name that has been generated by the template.

Note: Testing a template does not transfer a file.

209

HCL Z and I Emulator for Windows (ENGLISH)

210

Defining Transfer Types
Transfer types define the option information used for controlling file transfer. Up to 32 transfer types can be defined

for each host system. Text, binary, and append (excluding CICS) are the defaults.

To add or change transfer types:

1. Click Edit → Preferences → Transfer from the session window.

2. Click the tab for your host type or modem protocol.

The property page for the selected host or modem protocol opens. The items that appear depend on the

selected host system.

3. Enter transfer-type names in the Transfer Type box, or select them from the drop-down list.

4. Select or enter the required items (see Items to Be Specified on page 210).

To add or replace a transfer type, click Save. To delete a transfer type, click Delete.

5. A dialog box displays, asking for confirmation. Click OK.

Items to Be Specified
Choosing the appropriate property page enables you to set the items described in the following sections.

File Options
The file options that can be used depend on the type of the connected host system and the host code page selected

when the session was configured. Table 31: Mode Values for File Transfer Options on page 210 lists the mode

values for the file transfer options. Table 32: Transfer File Options on page 210 lists the transfer options.

Table 31. Mode Values for File Transfer Options

Mode Host Code Page

SBCS Others

Table 32: Transfer File Options on page 210 lists the options for PC/3270.

Table 32. Transfer File Options

File Option Host System Mode Conversion Details

ASCII VM/CMS

MVS/TSO

ICS

SBCS Converts codes as follows when a file is sent:

• Converts 1-byte workstation codes to EBCDIC codes

• Converts RS (hex 1E) and US (hex 1F) to SO (hex 0E) and

SI (hex 0F)

Converts codes as follows when a file is received:

• Converts EBCDIC codes to 1-byte workstation codes

Chapter 2. Product Documentation

Table 32. Transfer File Options (continued)

File Option Host System Mode Conversion Details

CRLF VM CMS

MVS/TSO

CICS

SBCS Converts codes as follows when a file is sent:

• Does not remove CRLF (hex 0D0A) from the end of each

line. The code is treated as a delimiter for each record.

• Removes EOF (hex 1A) from the end of the file.

Converts codes as follows when a file is received:

• Adds CRLF (hex 0D0A) to the end of each line.

• Adds EOF (hex 1A) to the end of the file. Removes EOF

from the existing file, and appends EOF to the end of the

added file when APPEND is specified.

APPEND VM/CMS

MVS/TSO

SBCS Appends the sent file to the existing host file. Appends the re

ceived file to the existing workstation file.

SRC OS/400

i5/OS

SBCS This option is good only for Send. When SRC is checked, the tar

get file is stored as a member of the physical source file. If the file

already exists on the Host system, this option is ignored.

Record Format
Valid only for VM/CMS and MVS/TSO when APPEND is not specified for file transmission. You can select any of the

following:

• Default

• Fixed (fixed length)

• Variable (variable length)

• Undefined (undefined mode for MVS/TSO only)

If you select the Default value, the record format is selected automatically by the host system.

Specifying Variable for VM file transfer enables host disk space to be used efficiently.

Logical Record Length (LRECL)
Valid only for VM/CMS and MVS/TSO when APPEND is not specified for file transmission.

Enter the logical record length to be used (host record byte count) in the LRECL text box. If Variable and Undefined

Mode are specified as the record format, the logical record length is the maximum record length within a file. The

maximum value is 32767.

211

HCL Z and I Emulator for Windows (ENGLISH)

212

The record length of a file sent from a workstation to the host system might exceed the logical record length specified

here. If so, the host file transfer program divides the file by the logical record length.

To send a file containing long records to the host system, specify a sufficiently long logical record length.

Because the record length of a workstation file exceeds the logical record length, a message does not appear

normally if each record is divided. To display a message, add the following specification to the [Transfer] item of the

workstation profile:

DisplayTruncateMessage = Y

TSO Allocation Parameter (MVS/TSO)
Valid only for MVS/TSO when APPEND is not specified for file transmission. The following items can be specified:

[Allocation Amounts]

 Primary

Enter the number of tracks or cylinders allocated to this file transfer.

 Secondary

If the primary allocation is not sufficient for the entire file transfer, enter additional storage capacity

allocated to the file transfer.

[Allocation Units]

 Tracks

Specify this parameter to allocate a host file by track. Ask your system manager whether to use tracks

or cylinders as the unit.

 Cylinders

Specify this parameter to allocate a host file in units of cylinders.

 AVblocks

Specify this parameter to allocate a host file in units of blocks.

[Block size]

This item is used only to create a new data set. Enter the block size of a new host data set, in bytes, in the text box. If

this item is omitted, the workstation assumes the value that appears in the Logical Record Length box. The maximum

value is 32767. If AVblocks is selected, the block size is the block size of the new data set.

Additional Options
You can enter the required host command options in the Additional Options text box.

Chapter 2. Product Documentation

Setting General Transfer Options
To set advanced options:

1. Click Edit → Preferences → Transfer from the session window.

The setup dialog is displayed.

2. Change the required settings on the property page labeled General.

3. Click OK.

The following sections contain information about the items which can be defined for file transfer options.

Host Type
You can specify from the drop-down list box the type of host (MVS/TSO, VM, or CICS) to which your workstation is

connected.

Host Command
You can specify host command to be called when file transfer starts. If nothing is entered in this text box, IND$FILE or

its equivalent for other countries is used for 3270 SBCS sessions.

Default PC Directory
You can specify the default directory that appears in the Send File to Host or Receive File From Host window. To

select the directory, click the Browse button.

Default Partitioned Data Set (MVS/TSO Only)
You can specify the MVS partitioned data set to be used as the default.

Default VM Disk (VM Only)
You can specify the VM disk to be used as the default.

PC Code Page
When a file is transferred, EBCDIC codes are converted to 1-byte workstation codes, and vice versa. A valid value is

automatically selected from among the following values for SBCS sessions: 437, 737, 806, 813, 819, 833, 850, 852,

854, 857, 858, 860, 861, 862, 863, 864, 865, 866, 869, 874, 912, 915, 916, 920, 921, 922, 1008, 1089, 1124, 1125, 1127,

1129, 1131, 1133, 1153, 1155, 1156, 1157, 1158, 1160, 1164, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, and

213

HCL Z and I Emulator for Windows (ENGLISH)

214

1258; —according to the host code page specified when the workstation is configured. For an explanation of how to

select host code pages, see the online help for the host code page.

Packet Size
The amount of memory (in bytes) used by the workstation for transmission and reception. If a large value is entered,

a file is transferred more quickly, but the memory overhead is larger. The default value is 12288. In the case of

Telnet3270, you can specify a packet size larger than 8000 bytes by adding the following line to the Telnet3270

stanza in your workstation profile:

SendBufferSize=nnnn

File-Transfer Timeout
You can define the time the workstation waits for a response from the host system (in seconds). If the host system

does not respond, the transfer is canceled, and an error message appears. A number in the range 20–65535 (or 0)

can be specified. The default is 60 seconds for ASCII sessions; for all others, it is 30 seconds. Specify an appropriate

value such that the error message does not appear too early. If you specify 0, a timeout is not set.

If a packet or block size is relatively large for low-speed lines, such as COM port lines, it is recommended that 150

seconds or greater be specified.

Extension for List-Files
You can change the default extension (.SRL) of file-transfer list files.

Clear Session Before Transfer
You can specify whether a Clear command is sent to the host system before a file is transferred. Choose any of these

option buttons:

Default

A Clear command is sent before a file is transferred (VM/CMS or CICS only).

Yes

A Clear command is sent for MVS also.

No

A Clear command is not sent for any host system.

Chapter 2. Product Documentation

Show Status Window
You can choose the method of displaying the file-transfer-progress status.

In Session

When file transfer starts, the status window opens. The name of the file being transferred and the

transfer progress appear.

In icon

When file transfer starts, the status icon appears on the screen. If the icon is restored, the status

window opens.

Setting Up the Translation Table
You can create or edit the translation table to be used for sending or receiving files.

Changing the Translation Table
To change the translation table:

1. Click Edit → Preferences → Transfer from the session window.

2. Click the Translation Table tab on the resulting window.

The Translation-Table Setup property page opens.

3. The table currently being used (default or the name of a user-defined table) is shown. Choose either Default or

User-Defined.

4. If you choose User-Defined, enter a translation-table name in the File Name text box, or select a name by

clicking Browse.

5. Click OK.

Customizing the Translation Table
You can create a user-specific translation table for transmission or reception, or you can edit an existing translation

table.

To create or edit a translation table:

1. On the Translation Tables property page, click Customize in the Upload or Download window.

The Customize Translation window opens.

If you chose Default or if you chose New from the File menu, the default values appear in the table.

Translation source codes

PC code-points when an upload translation table is edited. Host code-points when a download

translation table is edited.

215

HCL Z and I Emulator for Windows (ENGLISH)

216

Translation target codes

Host code-points when an upload translation table is edited. PC code-points when a download

translation table is edited.

2. Double-click the code to be changed in the table, and change the value in the entry field that subsequently

appears.

3. Click Save or Save As from the File menu.

4. If asked, enter a name in the Save Translation File As window and click OK.

5. Click Exit from the File menu of the Customize Translation window.

Import/Export (3270 CICS Only)
Import/Export is an office system communication program and an application program executed under the IBM

Customer Information Control System (CICS).

Clicking Import/Export loads a module into workstation memory. You can then start Import or Export from a menu on

the host screen.

When you export a document from the host, the workstation receives two files: one is the file itself, and the other is

the interchange document profile (IDP) file, which contains document header information.

When you Import a file to a host system, it must be accompanied by an IDP file of the same name. If the necessary

IDP file does not exist, you can create it as described in .

To transmit files using Import/Export:

1. Verify that the window of the host session is active and ready for file transfer.

2. Click Import/Export from the Actions menu of the session window.

The minimized Import/Export Status window opens.

3. Click Import or Export from the host application menu.

4. Specify the host and workstation file names of the file to be transferred. Run Import or Export.

When Import or Export starts, the Import/Export Status window is maximized.

After the file is transferred, the window is closed.

File Transfer Commands for PC/3270
You can send data files to and receive them from IBM host systems that are running:

CICS/MVS

Customer Information Control System running under MVS

CICS/VSE

CICS running under Virtual Storage Extended

Chapter 2. Product Documentation

MVS/TSO

Multiple Virtual Storage/Time Sharing Option

VM/CMS

Virtual Machine/Conversational Monitor System

For more information on using these commands, click Send File to Host from the Actions menu and File Transfer

from Command prompt in the help panel.

File Transfer Methods
You can transfer files in the following ways with PC/3270:

• By clicking Receive File from Host from the Actions menu or Send File to Host from the Actions menu of the

workstation window

• By using the SEND and RECEIVE commands at the DOS command prompt

• By using an EHLLAPI application that invokes file transfer

• By using a macro that has send or receive commands as macro statements

• By clicking the Send or Recv icon on the tool bar

Requirements and Restrictions
Install the file transfer program, IND$FILE, on your host system. Ask your system administrator for additional file

transfer procedures and precautions. An alternate host command name can be used by defining a DOS environment

variable IND_FILE in AUTOEXEC.BAT or in a particular DOS box. For example:

 SET IND_FILE = MYXFER

You should not use the following words as a VM file name or file type, as an MVS data set name, or as a CICS file

name, because they are reserved for use as option commands.

 ASCII, APPEND, TIME, CLEAR, NOCLEAR, SILENT, QUIET, PROGRESS,

 BLANK, CRLF, BINARY, NOCRLF

If you want to send to or receive from a subdirectory other than \Z and I Emulator for Windows, you must specify the

full path name.

Sending and Receiving Files from the DOS Command Prompt
The workstation is the point of reference for the SEND and RECEIVE commands: You send from the workstation to

the host and receive from the host to the workstation.

To send or receive a file:

217

HCL Z and I Emulator for Windows (ENGLISH)

218

1. Make sure you are logged on to your host.

2. Make sure the Ready message of the host system is displayed, except if you are transferring files through the

command option of the ISPF application.

Note: In the latter case, you must specify the NOCLEAR option for the file transfer command.

If your screen is blank, make sure that no applications are running and that your host session is not in a

holding state.

Note: If you receive any messages from host application programs while you are transferring files,

the transfer might not succeed. To prevent messages from interfering, enter the appropriate host

command to set messages off temporarily. When file transfer is finished, set messages on again.

3. Switch to your DOS window session or DOS full-screen session.

4. If you use a hard disk, make sure the SEND.EXE and RECEIVE.EXE files are in your current directory or in your

path. If you want to send to or receive from a subdirectory other than \Z and I Emulator for Windows, you must

specify the full path name.

5. Type the appropriate SEND or RECEIVE command at the DOS command prompt.

Details on the SEND and RECEIVE commands and their options are explained in the following sections.

Using the VM/CMS SEND Command
Use the following information when sending a file to VM/CMS:

Figure 1: VM/CMS SEND Command Syntax on page 218 shows the command and information that you must

provide. Enter it as shown (including parentheses). You can use either uppercase or lowercase letters.

Note:

1. ␢ means to insert a space. There must not be a space between h: and fn.

Figure 1. VM/CMS SEND Command Syntax

A

The workstation drive and path of the file to send.

Chapter 2. Product Documentation

B

The name of the workstation file to send.

C

Host session specifications for the file to be sent to the host.

h:

The short name of the session (which can be omitted if it is a)

fn

File name

ft

File type

fm

File mode

D

Optional changes made to the file during transfer. More than one option can be selected. Valid options

are:

• APPEND

• ASCII

• CLEAR

• CRLF

• LRECL n

• NOCLEAR

• PROGRESS

• QUIET

• RECFM x

• TIME(n)

The parts of the VM/CMS SEND command are:

SEND

The command.

d:

The name of the diskette or hard disk drive on which the file is located.

path

The path to the subdirectory that the file is in.

filename.ext

The name of the file to be sent, including the extension.

219

HCL Z and I Emulator for Windows (ENGLISH)

220

h:

The short name of the host session to which you want to send the file. The default is a:.

fn ft fm

The name the file is to have on your VM/CMS disk. You must specify the file name (fn) and file type (ft).

You can omit file mode (fm) if you want the file placed on your A-disk. You can create a new name or use

a name that is already on your disk. If you use a new name, the file that you send is added to your disk.

If you use the name of an existing file, the file that you send either replaces or is added to the old file.

(Refer to the description of the APPEND option.)

(options

 These options can be specified:

APPEND

Specifies that the file being sent is to be added to the end of an existing VM/CMS file. Omit

this option if you want the file to replace an existing file. You cannot specify the LRECL n or

RECFM x option if you use the APPEND option.

ASCII

Performs the following:

• Converts 1-byte workstation codes to EBCDIC codes.

CLEAR

Clears the workstation window at the beginning of the file transfer. CLEAR is the default.

CRLF

Specifies preserving of the carriage return and line feed codes. You need the ASCII and

CRLF options for text or source files that you want to view or edit, such as SCRIPT files.

You do not need them for binary files, such as programs.

LRECL n

Specifies the file’s record length. Include a record length only if you want the file to have

a record length on your VM/CMS disk other than 80. Replace n with the record length you

want. If you omit this option, the record length is set to 80 for fixed-length records or to a

maximum of 80 for variable-length records.

NOCLEAR

Suppresses the sending of a Clear command at the beginning of the file transfer.

PROGRESS

Shows a message indicating that the file transfer is in progress or has ended. Such

messages do not show the current transferred bytes.

Chapter 2. Product Documentation

QUIET

Does not show any messages.

RECFM x

Specifies the file record format. Use this parameter to specify variable-length or fixed-

length records in the file. Replace x with V for variable or F for fixed. By default, the file has

fixed-length records unless you specify the CRLF option; then the file has variable-length

records unless you specify otherwise.

TIME(n)

Specifies the length of time n, in units of 30 seconds, that the program waits for a

response from the host before it sends an error message. Replace n with an integer value

in the range from 0 through 2184. If you specify 0, timeout will not be set. The default is 1.

To avoid a premature error message, specify an adequate value. In cases of large packet

sizes, of large block sizes, or for slow communication lines (such as and COM port), 5

(150 seconds) is recommended. There should be no blank spaces is between TIME and

(n).

Command Syntax for Sending Files to VM/CMS
The following examples show the command syntax you can use to send files to a VM/CMS host. The parameters of

the SEND command can be combined into a single set of parentheses.

• To send a workstation file from your default drive and add it as a new file on your VM/CMS A-disk:

SEND pc.txt a:cmsfile script a (ASCII CRLF LRECL 72 RECFM V

Note: If you use a command that exceeds one line, do not press Enter when you fill that line; continue

typing your command.

This command sends a workstation file named PC.TXT from your default drive to your host in your host

session named a. You do not need to specify the workstation drive if the file you are sending is on the current

drive. The command creates a new file, named CMSFILE SCRIPT, on your A-disk. The records in the file can

vary in length up to 72 characters.

• To send a workstation file from your default drive to replace a file on your VM/CMS A-disk:

SEND pc.txt a:cmsfile script a (ASCII CRLF

This command sends a workstation file named PC.TXT from your default drive to your VM/CMS A-disk in

your host session named a. You do not need to name the workstation drive if the file you are sending is on the

default drive. The file replaces a SCRIPT file named CMSFILE. The new CMSFILE has the same record length

and format as the old CMSFILE.

If you do not have a file called CMSFILE SCRIPT on your A-disk, PC.TXT is added to your A-disk as a new file

called CMSFILE SCRIPT. The records in the file are 80 characters long and have fixed length.

• To send a binary workstation file from a drive other than your default drive:

221

HCL Z and I Emulator for Windows (ENGLISH)

222

SEND a:pc.exe c:cmsfile exebin b (recfm v

This command sends a workstation file named PC.EXE from a diskette in drive A to your VM/CMS B-disk in

your host session named c. It is a new file, or it replaces a file named CMSFILE.

When transferring a binary file, you must specify a variable record format (recfm v), otherwise, blank

characters are added to the file.

• To send a file from your hard disk and add it to the end of a file on your VM/CMS A-disk:

SEND c:pc.txt cmsfile script a (ASCII CRLF APPEND

This command sends a workstation file named PC.TXT from your hard disk to your host session. You do not

need to name the host session if you are sending to the a session. The file is added to the end of a script file

named CMSFILE on your VM/CMS A-disk.

• To send a file from a subdirectory on your hard disk to your VM/CMS A-disk:

SEND c:\sd1\pc.txt cmsfile script a (ASCII CRLF

This command sends a file named PC.TXT from subdirectory SD1 on your hard disk to your host session. It

replaces a SCRIPT file named CMSFILE on your VM/CMS A-disk.

Using the VM/CMS RECEIVE Command
Use the following information when receiving a file from VM/CMS:

Figure 2: VM/CMS RECEIVE Command Syntax on page 222 shows the command and information you must provide.

Enter it as shown (including parentheses), except that you can use either uppercase or lowercase letters.

Note:

1. ␢ means to insert a space. There must not be a space between h: and fn.

Figure 2. VM/CMS RECEIVE Command Syntax

A

The workstation drive and path of the file to be received.

B

The name of the workstation file to be received.

Chapter 2. Product Documentation

C

Host session specifications for the file to be received from the host.

h:

The short name of the session (which can be omitted if it is a)

fn

File name

ft

File type

fm

File mode

D

Optional changes made to the file during transfer. More than one option can be selected. Valid options

are:

• APPEND

• ASCII

• BLANK

• CLEAR

• CRLF

• NOCLEAR

• PROGRESS

• QUIET

• TIME(n)

The parts of the VM/CMS RECEIVE command are:

RECEIVE

The command.

d:

The name of the diskette or hard disk drive on which the file is to be received.

path

The path indicating the directory to which the file is to be stored.

filename.ext

The name of the workstation file, including the extension. Use a new name or one that already exists. If

you use a new name, the file that you receive is added to your diskette or hard disk. If you use the name

of an existing file, the file that you receive either replaces or supplements the existing file. (Refer to the

APPEND option.)

223

HCL Z and I Emulator for Windows (ENGLISH)

224

h:

The short name of the host session from which you want to get the file. The default is a:.

fn ft fm

The name of the file you want to receive from your VM/CMS disk. The file name fn is required.

(options

 These options can be specified:

APPEND

Specifies that the file being received is to be added to the end of an existing file. Omit this

part of the VM/CMS file that is received to replace an existing file.

ASCII

Performs the following:

• Converts EBCDIC codes to 1-byte workstation codes.

BLANK

This option is valid with the CRLF option. Use it to retain BLANK (x'40') at the end of each

line.

CRLF

Specifies the carriage return and line feed codes. You need ASCII and CRLF for text or

source files that you want to view or edit, such as SCRIPT files. You do not need them for

binary files, such as programs.

CLEAR

Clears the workstation window at the beginning of the file transfer.

NOCLEAR

Suppresses the sending of a Clear command at the beginning of the file transfer.

PROGRESS

Shows a message indicating that the file transfer is in progress or has ended. Such

messages do not show the current transferred bytes.

QUIET

Does not show any messages.

TIME(n)

Specifies the length of time, in units of 30 seconds, that the program waits for a response

from the host before it sends an error message. The value n is an integer value in the

range from 0 through 2184. If you specify 0, timeout is not set. The default is 1. To avoid

a premature error message, specify an adequate value. In cases of large packet sizes,

Chapter 2. Product Documentation

of large block sizes, or for slow communication lines (such as and COM port), 5 (150

seconds) is recommended. There should be no blank spaces between TIME and (n).

Command Syntax for Receiving Files from VM/CMS
The following examples show the command syntax you can use to receive files from a VM/CMS host. The

parameters of the RECEIVE command can be combined into a single set of parentheses.

• To receive a file from your VM/CMS A-disk to your default drive for a workstationsession:

RECEIVE pc.txt a:cmsfile script a (ASCII CRLF

This command sends a SCRIPT file CMSFILE from your VM/CMS A-disk in a host session named A to your

workstation session. It adds the file to your default drive (diskette or hard disk) with the name PC.TXT.

• To receive a file from your VM/CMS B-disk and replace a file on a drive other than your default:

RECEIVE a:pc.txt a:cmsfile script b (ASCII CRLF

This command sends a SCRIPT file named CMSFILE SCRIPT from your VM/CMS B-disk in a host session

named A to a drive other than the default for your PC session. It replaces a file named PC.TXT on a diskette in

drive A.

• To receive a file from your VM/CMS A-disk and add it to the end of a file on your hard disk:

RECEIVE c:pc.txt a:cmsfile script a (ASCII CRLF APPEND

This command sends a SCRIPT file named CMSFILE SCRIPT from your VM/CMS A-disk in a host session

named A to your workstation session. It adds the contents of CMSFILE to the end of a file named PC.TXT on

your hard disk.

• To receive a file from your VM/CMS A-disk and place it in a subdirectory on your default drive:

RECEIVE \sd1\pc.txt a:cmsfile script a (ASCII CRLF

This command sends a SCRIPT file named CMSFILE SCRIPT from your VM/CMS A-disk to your default drive.

It creates or replaces a file named PC.TXT in a subdirectory named \SD1.

Using the MVS/TSO SEND Command
Use the following information when entering the SEND command to the MVS/TSO host:

Figure 3: MVS/TSO SEND Command Syntax on page 226 shows the command and information you must provide.

Enter text as shown (including parentheses), except that you can use either uppercase or lowercase letters.

Note:

225

HCL Z and I Emulator for Windows (ENGLISH)

226

1. ␢ means to insert a space. There must not be a space between h: and fn.

Figure 3. MVS/TSO SEND Command Syntax

A

The workstation drive and path of the file to send.

B

The name of the workstation file to send.

C

The short name of the host session and the data set name of the file to send.

D

The member name if the file is in a partitioned data set.

E

The password of the data set if it has one.

F

Optional changes made to the file during transfer. More than one option can be specified. Valid options

are:

• APPEND

• ASCII

• BLKSIZE(n)

• CLEAR

• CRLF

• LRECL(n)

• NOCLEAR

You must use the NOCLEAR option when you are transferring files while in ISPF command mode

on the host.

• PROGRESS

Chapter 2. Product Documentation

• QUIET

• RECFM(x)

• SPACE(n[,n1]) unit

• TIME(n)

The parts of the MVS/TSO SEND command are:

SEND

The command.

d:

The name of the diskette or hard disk drive where the file is located.

path

The path indicating the directory where the file is located.

filename.ext

The name of the file to be sent. Include the extension if the file has one.

h:

The name of the MVS/TSO host session to which you want to send the file. You can omit this name if

you have only one host. If you have more than one host, this is the short name of the MVS/TSO host

session. The default short name is A.

data-set-name

The data set name that the file you send is to have on your MVS/TSO volume; this name is required.

Enclose the data set name with the member name in single quotation marks if you are using a fully

qualified data set name.

This option creates a new name or uses a data set name already on your TSO volume. If you use a new

name, the file that you send is added to your MVS/TSO volume. If you use the name of an existing data

set, the file you send either replaces or supplements the existing data set. Refer to the APPEND option.

(member-name)

The member name if the file is to be put into a partitioned data set. If you use member-name, you

cannot use LRECL(n), BLKSIZE(n), RECFM(x), and SPACE(n,[n1]) unit.

Note: If someone else is using the partitioned data set, you cannot send a file to your MVS/TSO

host.

/password

The password of the data set, if the data set has a password.

options

These options can be specified:

227

HCL Z and I Emulator for Windows (ENGLISH)

228

APPEND

Specifies that the file being sent is added to the end of an existing MVS/TSO data set.

Omit this option if you want the file to replace an existing MVS/TSO data set. You cannot

use LRECL(n), RECFM(x), SPACE(n[,n1]) unit, or BLKSIZE(n) options if you use the

APPEND option.

Note: This option is not valid when sending data to a member of a partitioned data

set.

ASCII

Performs the following:

• Converts 1-byte workstation codes to EBCDIC codes.

BLKSIZE(n)

Specifies the size of the blocks of data in a new data set on your MVS/TSO volume. This

part is optional. To set the block size for a new data set, replace n with the new size. If you

omit this option, the block size is determined in the following manner:

• If the record format is variable, the block size is 6233.

• If the record format is fixed, the block size is the largest multiple of the record

length that is less than 6233:

BLKSIZE = LRECL * (6233/LRECL)

If you use the (member-name) or APPEND option, do not use this option.

CLEAR

Clears the workstation window at the beginning of the file transfer.

CRLF

Specifies the global use of carriage return and line feed codes. You need to specify ASCII

and CRLF options for sending text or source files that you want to view or edit, such as

SCRIPT files. You do not need them for binary files.

LRECL(n)

Specifies the record length for a new data set on your MVS/TSO volume, where n is a

whole number from 1 through 32760 representing the number of characters per record.

If you want to set the record length for a new data set, replace n with the new length. If

you omit this option, the record length is set to 80 for fixed-length records and to 255 for

variable-length records. If you use the (member-name) or APPEND options, do not use this

option.

Chapter 2. Product Documentation

NOCLEAR

Suppresses the sending of a Clear command at the beginning of the file transfer. This

option is required for ISPF command mode.

PROGRESS

Shows a message indicating that the file transfer is in progress or has ended. Such

messages do not show the current transferred bytes.

QUIET

Does not show any messages.

RECFM(x)

Specifies the record format for a new data set on your MVS/TSO volume, where x = V, F, or

U. For variable-, fixed- or undefined-length records in the data set, replace the x with V, F, or

U, respectively.

If you omit this option, the record format of the host data set is determined by the setting

of the CRLF parameter: if you specify CRLF, the data set has variable-length records; if you

do not specify CRLF, it has fixed-length records. If you use the (member-name) or APPEND

options, do not use this option.

SPACE(n[,n1]) unit

Specifies an amount of space to be set aside for a new data set on your MVS/TSO volume.

To set aside a certain number of blocks, tracks, or cylinders for the new data set:

• Provide unit as the type of space you want (AVBLOCK, TRACKS, or CYLINDERS).

• Give n as the amount of space that you want the data set to occupy (in the unit of

measure you select).

• If the data set needs more space than you ask for with n, give n,n1 where n1 is the

size of additional space to be used only when necessary.

These values are similar to the values on the ALLOCATE command of MVS/TSO.

If you omit this option, you get space for one block. The length of the block is set by the

BLKSIZE(n) or LRECL(n) options. If you use the (member-name) or APPEND options, do not

use this option.

TIME(n)

Specifies the length of time, in units of 30 seconds, that the program waits for a response

from the host before it sends an error message. The value n is an integer value in the

range from 0 through 2184. If you specify 0, timeout is not set. The default is 1. To avoid

a premature error message, specify an adequate value. In cases of large packet sizes,

of large block sizes, or for slow communication lines (such as and COM port), 5 (150

seconds) is recommended. There should be no blank spaces between TIME and (n).

229

HCL Z and I Emulator for Windows (ENGLISH)

230

Command Syntax for Sending Files to MVS/TSO
The following examples show the command syntax you can use to send files from your workstation to an MVS/TSO

host:

• To send a file from your default drive to replace a file on the MVS/TSO host:

SEND pc.txt g:ds.script ASCII CRLF

This command sends a workstation file named PC.TXT from your default drive to your MVS/TSO host in a

host session named G. It creates or replaces a data set named DS.SCRIPT on your MVS/TSO volume.

• To send a file from a drive other than the default to your MVS/TSO host:

SEND a:pc.txt g:ds.script ASCII CRLF

This command sends a workstation file named PC.TXT from a diskette in drive A to your MVS/TSO host in a

host session named G. It replaces a data set named DS.SCRIPT on your MVS/TSO volume.

• To send a file from your default drive to your MVS/TSO host and add it to the end of an MVS/TSO data set:

SEND a:pc.txt g:ds.script ASCII CRLF APPEND

This command sends a workstation file named PC.TXT from a diskette in drive A to your MVS/TSO host in a

host session named G. It adds the file to the end of a data set named DS.SCRIPT on your MVS/TSO volume.

• To send a file to your MVS/TSO host and add it to the end of a data set that has a password:

SEND a:pc.txt g:ds.script/odyssey8 ASCII CRLF APPEND

This command sends a workstation file named PC.TXT from a diskette in drive A to your MVS/TSO host in a

host session named G. It adds the file to the end of a data set named DS.SCRIPT on your MVS/TSO volume.

This data set has a password of odyssey8.

• To send a file from a subdirectory on your hard disk to a partitioned data set on your MVS/TSO host:

SEND c:\sd1\pc.txt g:ds.script (m1) ASCII CRLF

This command sends a workstation file named PC.TXT from a subdirectory named \SD1 on your hard disk to

your MVS/TSO host in a host session named G. It creates or replaces a member named M1 in a partitioned

data set named DS.SCRIPT on your MVS/TSO volume.

• To send a file from your default drive and add it as a new data set on your MVS/TSO volume:

SEND pc.txt g:ds.script/aeneid20 ASCII CRLF LRECL(132)
 BLKSIZE(132) RECFM(V) SPACE(20,10) TRACKS

This command sends a workstation file named PC.TXT from your default drive to your MVS/TSO host. It adds

the file as a new data set named DS.SCRIPT on your MVS/TSO volume. A password of aeneid20 is assigned.

The records in the data set can vary in length up to 132 characters. Data blocks are the same length as the

records. Twenty tracks are set aside for this data set. If more tracks are needed, they are added in groups of

10.

Chapter 2. Product Documentation

Using the MVS/TSO RECEIVE Command
Use the following information when receiving a file from MVS/TSO:

Figure 4: MVS/TSO RECEIVE Command Syntax on page 231 shows the command and information you must

provide. Enter it as shown (including parentheses), except that you can use either uppercase or lowercase letters.

Note:

1. ␢ means to insert a space. There must not be a space between h: and fn.

Figure 4. MVS/TSO RECEIVE Command Syntax

A

The workstation drive and path to the directory where the file is to be stored.

B

The name of the workstation file to receive.

C

The short name of the host session, and the data set name of the file you are receiving.

D

The member name if the file is put in a partitioned data set.

E

The password of the data set, if any.

F

Optional changes made to the file during transfer. More than one option can be specified. Valid options

are:

• APPEND

• ASCII

231

HCL Z and I Emulator for Windows (ENGLISH)

232

• BLANK

• CRLF

• PROGRESS

• QUIET

• TIME(n)

The parts of the MVS/TSO RECEIVE commands are:

RECEIVE

The command.

d:

The name of the diskette or hard disk drive where the file is to be located. Use A:, B:, C:, D: through Z:.

This part is optional if the file is received on the current drive.

path

The subdirectory where you want the data set located. This part is optional.

filename.ext

The name the file is to have on your diskette or hard disk. Creates a new name or uses a name that is

already on your diskette or hard disk.

If you use a new name, the data set that you receive is added to your diskette or hard disk. If you use the

name of an existing file, the data set that you receive either replaces or supplements the existing file.

(Refer to the APPEND option on page APPEND on page 233.)

h:

The short name of the MVS/TSO session where the data set is located. If you have only one host, this

part is optional. Use this option if you have more than one host. The default short name is A.

data-set-name

The name of the data set or the partitioned data set that contains the member you want to send to your

workstation session. You must use the qualified name. Enclose the data set name with the member

name in single quotation marks if you are using a fully qualified data set name.

(member-name)

The member name of a partitioned data set to send to your workstation session. This part is optional.

Use it only if the data set is a member of a partitioned data set.

/password

The password of the data set. Use it only if the data set has a password.

(options

 These options can be specified:

Chapter 2. Product Documentation

APPEND

Adds the data set to the end of an existing file. Omit this part if you want the MVS/TSO

data set to replace an existing workstation file.

ASCII

Performs the following:

• Converts EBCDIC codes to 1-byte workstation codes.

BLANK

This option is valid with the option CRLF; it retains BLANK (hex 40) at the end of each line.

CRLF

Specifies the use of carriage return and line feed codes. You need ASCII and CRLF for text

or source files that you want to view or edit, such as SCRIPT files. You do not need them

for binary files.

PROGRESS

Shows a message indicating that the file transfer is in progress or has ended. Such

messages do not show the current transferred bytes.

QUIET

Does not show any messages.

TIME(n)

Specifies the length of time, in units of 30 seconds, the program waits for a response

from the host before it sends an error message. Replace n with an integer value in the

range from 0 through 2184. If you specify 0, timeout is not set. The default is 1. To avoid

a premature error message, specify an adequate value. In cases of large packet sizes,

of large block sizes, or for slow communication lines (such as and COM port), 5 (150

seconds) is recommended. There should be no blank spaces between TIME and (n).

Command Syntax for Receiving Files from MVS/TSO
The following examples show the command syntax you can use to receive files from your MVS/TSO host to your

workstation:

• To receive a data set from an MVS/TSO host to the default drive for your workstation session:

RECEIVE pc.txt g:ds.script ASCII CRLF

This command sends a data set named DS.SCRIPT from your MVS/TSO volume in a host session named G to

your OS/2 session. It creates or replaces the file on the default drive with the name PC.TXT.

• To receive a data set from an MVS/TSO host to a drive other than your default drive:

RECEIVE A:pc.txt g:ds.script ASCII CRLF

233

HCL Z and I Emulator for Windows (ENGLISH)

234

This command sends a data set named DS.SCRIPT from your MVS/TSO volume in a host session named G. It

replaces a file named PC.TXT on a diskette in drive A.

• To receive a data set from an MVS/TSO host and add it to a workstation file:

RECEIVE a:pc.txt g:ds.script ASCII CRLF APPEND

This command sends a data set named DS.SCRIPT from your MVS/TSO volume in a host session named G. It

adds the data set to the end of a file named PC.TXT on the diskette in drive A.

• To receive a data set from an MVS/TSO host and place it in a subdirectory on your hard disk:

RECEIVE c:\sd1\pc.txt ds.script ASCII CRLF

This command sends a data set named DS.SCRIPT from your MVS/TSO volume in a host session named G. It

creates or replaces a file named PC.TXT in a subdirectory named \SD1 on your hard disk.

• To receive a data set that has a password from an MVS/TSO host to your default drive:

RECEIVE A:pc.txt g:ds.script/odyssey8 ASCII CRLF APPEND

This command sends a data set named DS.SCRIPT from your MVS/TSO volume in a host session named

G. The data set has the password odyssey8. The data set is added to the end of a file named PC.TXT on the

diskette in drive A.

• To receive a member of a partitioned data set from an MVS/TSO host to your DOS session:

RECEIVE c:\sd1\pc.txt g:ds.script (m1) ASCII CRLF

This command sends a member named M1 from a partitioned data set named DS.SCRIPT in a host session

named G. The member is placed on your hard disk in a subdirectory named \SD1. It replaces or creates a file

named PC.TXT.

• To receive a member of a partitioned data set that has a password to your Windows session:

RECEIVE a:pc.txt g:ds.script (m2)/ili1 ASCII CRLF APPEND

This command sends a member named M2 from a partitioned data set named DS.SCRIPT in a host session

named G. The data set has a password of ili1. The member is added to a file named PC.TXT on the diskette in

drive A.

Using the CICS SEND Command

Please note the differences between the Z and I Emulator for Windows GUI and Command Line syntaxes. These two

syntaxes are not interchangeable.

Using CICS SEND with the Z and I Emulator for Windows GUI
Use the following information when sending a file to CICS using the Z and I Emulator for Windows graphical user

interface (GUI):

Figure 5: CICS SEND Z and I Emulator for Windows GUI Syntax on page 235 shows the command and information

you must provide. Enter it as shown (including parentheses), except that you can use either uppercase or lowercase

letters.

Chapter 2. Product Documentation

Note:

1. ␢ means to insert a space. There must not be a space between h: and fn.

Figure 5. CICS SEND Z and I Emulator for Windows GUI Syntax

A

The workstation drive and path of the file to send.

B

The name of the workstation file to send.

C

The short name of the host session, and the host file name of the file to send.

D

Optional changes made to the file during transfer. More than one option can be specified. Valid options

are:

• ASCII

• BINARY (for SBCS sessions)

• CLEAR

• CRLF

• NOCLEAR

• NOCRLF (for SBCS sessions)

• PROGRESS

• QUIET

• TIME(n)

Note: For SBCS sessions, the default options are ASCII and CRLF.

Using CICS SEND with the Z and I Emulator for Windows Command Line
Use the following information when sending a file to CICS using the Z and I Emulator for Windows command line:

235

HCL Z and I Emulator for Windows (ENGLISH)

236

Figure 6: CICS SEND Command Line Syntax on page 236 shows the command and information you must provide.

Enter it as shown (including parentheses), except that you can use either uppercase or lowercase letters.

Note:

1. ␢ means to insert a space. There must not be a space between h: and fn.

Figure 6. CICS SEND Command Line Syntax

A

The workstation drive and path of the file to send.

B

The name of the workstation file to send.

C

The short name of the host session (h:), the host file name (fn), and the file type (ft).

D

Optional changes made to the file during transfer. More than one option can be specified. Valid options

are:

• ASCII

• BINARY (for SBCS sessions)

• CLEAR

• CRLF

• NOCLEAR

• NOCRLF (for SBCS sessions)

• PROGRESS

• QUIET

• TIME(n)

Chapter 2. Product Documentation

Note: For SBCS sessions, the default options are ASCII and CRLF.

CICS SEND Command Description and Options
The parts of the CICS SEND command are:

SEND

The command.

d:

The name of the diskette or hard disk drive where the file is located.

path

The path to the subdirectory that the file is in.

filename.ext

The name of the file to be sent, including the extension.

h:

The short name of the host session where you want to send the file. If you have only one host, this part

is optional. The default is session A.

fn

The name the file is to have on your CICS disk. You must specify the file name. You can create a new

name or use a name that is already on the disk.

ft

The type of file in CICS. For use only with command line syntax, see Using CICS SEND with the Z and I

Emulator for Windows Command Line on page 235.

(options

 These options can be specified:

ASCII

Performs the following:

• Converts 1-byte workstation codes to EBCDIC codes.

The default is ASCII CRLF. You need these control terms for text or source files that you

want to view or edit, such as SCRIPT files. You do not need them for binary files.

Note:

237

HCL Z and I Emulator for Windows (ENGLISH)

238

1. CRLF and NOCRLF are mutually exclusive options.

2. BINARY and ASCII are mutually exclusive options.

3. The assumed defaults, if the optional parameters are omitted, are

CRLF ASCII.

BINARY

Specifies that the data in the file is binary data. The data can be encrypted, compiled

programs, or other data. It is not translated by the host file transfer program but copied

unaltered into a temporary storage queue.

This option is valid for SBCS sessions only.

CLEAR

Clears the workstation window at the beginning of the file transfer.

CRLF

Specifies carriage return and line feed codes in the text file.

NOCLEAR

Suppresses the sending of a Clear command at the beginning of file transfer. This option

is required for ISPF command mode.

NOCRLF

Specifies that the PC file does not consist of logical records delimited by carriage return

and line feed characters. No concatenation or splitting of records is performed by the CICS

file transfer program.

The file is written into a temporary storage using one item on the queue to represent each

inbound data buffer. The items on the CICS temporary storage queue can be of different

lengths, but none can be more than 32767 characters.

This option is valid for SBCS sessions only.

PROGRESS

Shows a message indicating that the file transfer is in progress or has ended. Such

messages do not show the current transferred bytes.

QUIET

Does not show any messages.

TIME(n)

Specifies the length of time, in units of 30 seconds, the program waits for a response

from the host before it sends an error message. Replace n with an integer value in the

range from 0 through 2184. If you specify 0, timeout is not set. The default is 1. To avoid a

premature error message, specify an adequate value. In cases of large packet sizes, large

Chapter 2. Product Documentation

block sizes, or for slow communication lines (such as and COM port), 5 (150 seconds) is

recommended. There should be no blank spaces between TIME and (n).

Command Syntax for Sending Files to CICS
The following examples show the command syntax you can use to send files from your workstation to your CICS

host.

• To send a workstation file from your default drive and add it as a new file on your CICS host:

SEND pc.txt a:cicsfile (ASCII CRLF)

Note: Enter the complete CICS SEND command on one line.

This command sends a workstation file named PC.TXT from your default drive on your workstation to your

host session A. You do not need to provide the workstation drive name if the file you are sending is on the

current drive. The command creates a new file named CICSFILE.

• To send a basic workstation file from a drive other than your default to replace a file on your CICS host:

SEND a:myprog.exe a:basprog

This command sends a workstation file named MYPROG.EXE from a diskette in drive A to your CICS host in

your host session named A. It is written to a file named BASPROG, replacing any existing file by that name in

host session A.

Using the CICS RECEIVE Command
Please note the differences between the Z and I Emulator for Windows GUI and Command Line syntaxes. These two

syntaxes are not interchangeable.

Using CICS RECEIVE with the Z and I Emulator for Windows GUI
Use the following information when receiving files from CICS using the Z and I Emulator for Windows GUI:

Figure 7: CICS RECEIVE Z and I Emulator for Windows GUI Syntax on page 240 shows the command and

information you must provide. Enter it as shown (including parentheses), except that you can use either uppercase or

lowercase.

Note:

239

HCL Z and I Emulator for Windows (ENGLISH)

240

1. ␢ means to insert a space. There must not be a space between h: and fn.

Figure 7. CICS RECEIVE Z and I Emulator for Windows GUI Syntax

A

The workstation drive and path where the file is to be received.

B

The name of the workstation file.

C

The short name of the host session (h:) from which you are receiving the file, and the host file name (fn).

D

Optional changes made to the file during transfer. More than one option can be specified. Valid options

are:

• ASCII

• BINARY (for SBCS sessions)

• BLANK

• CLEAR

• CRLF

• NOCLEAR

• NOCRLF (for SBCS sessions)

• PROGRESS

• QUIET

• TIME(n)

Note: The default options for SBCS sessions are ASCII and CRLF.

Using CICS RECEIVE with the Z and I Emulator for Windows Command Line
Use the following information when receiving files from CICS using the Z and I Emulator for Windows command line:

Figure 8: CICS RECEIVE Command Syntax on page 241 shows the command and information you must provide.

Enter it as shown (including parentheses), except that you can use either uppercase or lowercase.

Chapter 2. Product Documentation

Note:

1. ␢ means to insert a space. There must not be a space between h: and fn.

Figure 8. CICS RECEIVE Command Syntax

A

The workstation drive and path where the file is to be received.

B

The name of the workstation file.

C

The short name of the host session (h:) from which you are receiving the file, the host file name (fn), and

the file type (ft).

D

Optional changes made to the file during transfer. More than one option can be specified. Valid options

are:

• ASCII

• BINARY (for SBCS sessions)

• BLANK

• CLEAR

• CRLF

• NOCLEAR

• NOCRLF (for SBCS sessions)

• PROGRESS

• QUIET

• TIME(n)

241

HCL Z and I Emulator for Windows (ENGLISH)

242

Note: The default options for SBCS sessions are ASCII and CRLF.

CICS RECEIVE Description and Options
The parts of the CICS RECEIVE command are:

RECEIVE

The command.

d:

The name of the diskette or hard disk drive where the file is to be received.

path

The path to the subdirectory where the file is to be located.

filename.ext

The name of the workstation file, including the extension. You can create a new name or use a name

that is already on your workstation diskette or hard disk. If you use a new name, the file that you receive

is added to your diskette or hard disk. If you use the name of an existing file, the file that you receive

either replaces or supplements the existing file. Refer to the APPEND option.

h:

The short name of the CICS session where the data set is located. If you have only one host, this part is

optional. The default session is A.

fn

The name of the file you want to receive from your CICS host.

ft

The type of file in CICS. For use only with command line syntax, see Using CICS RECEIVE with the Z and

I Emulator for Windows Command Line on page 240.

(options

 These options can be specified:

ASCII

Performs the following:

• Converts EBCDIC codes to 1-byte workstation codes.

The default is ASCII CRLF. You need ASCII and CRLF control terms for text or source files

that you want to view or edit, such as SCRIPT files. You do not need them for binary files.

Note:

Chapter 2. Product Documentation

1. CRLF and NOCRLF are mutually exclusive options.

2. BINARY and ASCII are mutually exclusive options.

3. The assumed defaults, if the optional parameters are omitted, are

CRLF ASCII.

BINARY

The data in the file is binary data. The data can be encrypted data, compiled programs,

or other data. It is not translated by the host file transfer program but is copied without

changes into the workstation file.

This option is valid for SBCS sessions only.

BLANK

This option is valid only when used with the CRLF option; it retains BLANK (hex 40) at the

end of each line.

CLEAR

Clears the workstation window at the beginning of the file transfer.

CRLF

Specifies the use of the carriage return and line feed codes.

NOCLEAR

Suppresses the sending of a Clear command at the beginning of file transfer. This option

is required for ISPF command mode.

NOCRLF

Specifies that the host computer file does not consist of logical records. The items in the

temporary storage queue are sent in order and concatenated in your workstation into a

single string of data.

This option is valid for SBCS sessions only.

PROGRESS

Shows a message indicating that the file transfer is in progress or has ended. Such

messages do not show the current transferred bytes.

QUIET

Does not show any messages.

TIME(n)

Specifies the length of time, in units of 30 seconds, the program waits for a response

from the host before it sends an error message. Replace n with an integer value in the

range from 0 through 2184. If you specify 0, timeout is not set. The default is 1. To avoid

a premature error message, specify an adequate value. In cases of large packet sizes,

243

HCL Z and I Emulator for Windows (ENGLISH)

244

of large block sizes, or for slow communication lines (such as and COM port), 5 (150

seconds) is recommended. There should be no blank spaces between TIME and (n).

Command Syntax for Receiving Files from CICS
The following examples show the command syntax you can use to receive files from your CICS host to your

workstation.

• To receive a file from your CICS host to your default drive for a workstation session:

RECEIVE pc.txt A:cicsfile (ASCII CRLF)

This command sends a file named CICSFILE from your CICS host in session A to your workstation session. It

adds the file to your default drive (diskette or hard disk) with the name PC.TXT.

• To receive a basic file from your CICS host and replace a file on a drive other than your default:

RECEIVE a:myprog.exe a:myprog

This command sends a file named MYPROG from your CICS host in session A to a drive other than the default

for your workstation session. It replaces a file named MYPROG.EXE on a diskette in drive A.

Configuring File-Transfer Code Translation
When you transfer a file between the host and the workstation using the ASCII option, the host-system file-transfer

program performs translation from EBCDIC to ASCII or vice versa, according to the host and PC code pages specified

during PC/3270 configuration. However, you might want to use different translation from that supplied. For the

details, refer to Transferring Files on page 205.

Using Z and I Emulator for Windows 5250

Considerations for Using PC400 Sessions
This chapter contains hints and tips for using PC400 sessions. Supplementary information other than the items

described in this book is included in the Readme HTML file in the Z and I Emulator for Windows directory.

Scroll Bar
When you click Font from the Appearance menu in the host session window and select Fixed Size from the Select

Display Font window, the entire operator information area might not appear on the screen; the session-window size is

restricted to be smaller than the screen size. If you specify With Scroll Bar, the OIA will not scroll.

Print Processing
Following are some additional considerations when printing with PC400.

Chapter 2. Product Documentation

Printing Bar Codes
This function requires OS/400® Version 4.2 or i5/OS™.

CPI/LPI of Device Fonts
If the printer driver cannot print with device fonts associated with the user-specified CPI/LPI, the print output can be

generated with incorrect CPI/LPI values.

PCSERR999 Error Messages
Message PCSERR999 - Z and I Emulator for Windows internal error:module-name - xxxx might appear if there is

insufficient memory. If any print jobs are queued in the print manager, delete those print jobs.

Disconnect in Testrequest to iSeries, eServer i5, or System i5 on Telnet 5250
Executing a Testrequest function when connected to an iSeries™, eServer™ i5, or System i5™ might cause the session

to be disconnected. If you experience this problem, make sure that OS/400® APAR MA15053 has been applied on the

iSeries™, eServer™ i5, or System i5™.

iSeries, eServer i5, or System i5 Host Print Problem
If you attempt to use the host print function (mapped to CTRL-Pause by default) while viewing a spooled print file,

the ends of some of the lines might be wrapped incorrectly in the second generated spool file. This problem occurs

with both 24X80 and 27X132 display modes. This problem has been fixed by a PTF on OS/400®. The APAR number is

SA57195 and is available on PTF MF13596 for OS/400® V3R1.

Printable Area
Depending on the printer driver used, it might not be possible to use the entire surface of the paper for printing.

If the printing position is beyond the printable area, the page is automatically changed. When using a printer driver

that allows you to set the margins, specify the minimum margins, thus maximizing the printable area.

PDT Mode
Printing using a PDT file is restricted as follows:

• Only the fonts specific to the printer being used are supported.

• Graphics are printed using the Windows® printer driver selected in Printer Setting, regardless of the PDT

mode.

• Postscript printers are not supported. There are no PDF files for Postscript printers.

245

HCL Z and I Emulator for Windows (ENGLISH)

246

Setting the Code Page
The host code page, which is set in the Configuration panel, is used as the default. Use the Set Initial Condition (SIC)

command to set the host code page.

You can change the code page by using Set GCGID Through GCID (SCG) command or Set CGCS Through Local ID

(SCGL) command. The same code pages for the display session are available.

Data Transfer for PC400
This chapter explains file-description files and data conversions for the data transfer function. .

Data Transfer Function Overview
PC400 can transfer data between the host and workstation. The data transfer function can be invoked manually by

clicking the Data Transfer icon. The Data Transfer application is automatically invoked from a 5250 session when you

click Send File to Host from the Actions menu and Receive File from Host from the Actions menu. You can change

this default to invoke normal file transfer functions; to do so, click Preferences → Transfer from the Edit menu, then

click the Data Transfer radio button on the property page with the General tab.

Transferring data, described in this chapter, is quite different from transferring files, which is described in File Transfer

for PC400 on page 340. The main differences are listed in the following table.

Table 33. Data Transfer Summary

Type of Trans

fer

Products required

on an iSeries™, e

Server™ i5, or Sys

tem i5™ Access Method

Sending and re

ceiving unit

Type of con

nection to an

iSeries™, e

Server™ i5, or

System i5™

File Transfer Z and I Emulator

for Windows Tools

(PCT/400 see Trans

ferring Files on

page 331)

• Transfer menu in the session win

dow

• EHLLAPI application that invokes

File Transfer

• DDE application that invokes File

Transfer

• Playing a macro that invokes File

Transfer

• Clicking the Send or Receive button

on the tool bar

Entire file Display ses

sion

Chapter 2. Product Documentation

Table 33. Data Transfer Summary

(continued)

Type of Trans

fer

Products required

on an iSeries™, e

Server™ i5, or Sys

tem i5™ Access Method

Sending and re

ceiving unit

Type of con

nection to an

iSeries™, e

Server™ i5, or

System i5™

Data Transfer PC Support/400

V2R2 or V2R3,

OS/400® V3R1 or

later, or i5/OS™1

Data Transfer icon or File Transfer selec

tions from Actions menu

Field, record, or file

in a database

• TCP/IP

1OS/400® and i5/OS™ provide the host transaction program for Data Transfer.

Long Password Support
The Z and I Emulator for Windows Data Transfer utility supports 128-character case-sensitive passwords, when

connecting to an iSeries™, eServer™ i5, or System i5™ host running i5/OS™ or OS/400®, V5R1 or later. This

functionality is determined by the OS/400® or i5/OS™ system value QPWDLVL. Refer to the iSeries Security

Reference (SC41-5302) for details.

Transferring Files from an iSeries, eServer i5, or System i5 System to a Workstation
When using a workstation, you can retrieve and use data from the following file types on an iSeries™, eServer™ i5, or

System i5™:

• Physical database

• Logical database

• Distributed data management (DDM) DDM (distributed data management) distributed data management (DDM)

When retrieving files, you can do the following:

• Control which records (and which fields within a record) are retrieved

• Control the ordering of records and the ordering of fields within the record

• Select a subset of the records

• Group records into summary records

• Join two or more files

• Specify formats and separators of date and time fields

• Specify the decimal separator character

You can specify the following output destinations:

247

HCL Z and I Emulator for Windows (ENGLISH)

248

• Display

• Disk

• Printer

Transferring Files from a Workstation to an iSeries, eServer i5, or System i5
The PC→iSeries™ Transfer function enables the transfer of data from a workstation to an iSeries™, eServer™ i5, or

System i5™ physical file. Data can be transferred to any of the following destinations:

• Existing members in an existing iSeries™, eServer™ i5, or System i5™ physical file

• New members in an existing iSeries™, eServer™ i5, or System i5™ physical file

• New members in a new iSeries™, eServer™ i5, or System i5™ physical file

Note: Data cannot be transferred from a workstation file to an iSeries™, eServer™ i5, or System i5™ logical file.

Transferring Data to Existing Members in an Existing File
Note the following considerations when transferring data from a workstation to an existing iSeries™, eServer™ i5, or

System i5™ member.

• When data is transferred to an existing member, data in that member is replaced with that transferred from a

workstation.

• When iSeries™, eServer™ i5, or System i5™ members already contain data, a message appears, indicating that

the data in the existing members will be replaced with the data that is about to be transferred.

• Consider the effect of returning data that was previously transferred from the iSeries™, eServer™ i5, or System

i5™ (such as when an iSeries™, eServer™ i5, or System i5™ master file is updated on a workstation).

For example, you can transfer only the field subset of an iSeries™, eServer™ i5, or System i5™ file by issuing a

transfer request from the iSeries™, eServer™ i5, or System i5™ to a workstation. In this case, when returning

data from the workstation to the iSeries™, eServer™ i5, or System i5™, only the subset included in that iSeries™,

eServer™ i5, or System i5™ file can be transferred. Other fields that had been defined in the iSeries™, eServer™

i5, or System i5™ file but not transferred, are filled with blanks if they are character fields or, if they are numeric

fields, with zeros or the values specified at file creation.

Therefore, the data must be transferred to another iSeries™, eServer™ i5, or System i5™ file and the transferred

data must be embedded in the iSeries™, eServer™ i5, or System i5™ file by running the iSeries™, eServer™ i5,

or System i5™ application program. Follow this procedure to control the update processing for an iSeries™,

eServer™ i5, or System i5™ master file.

To prevent users from transferring data to a certain iSeries™, eServer™ i5, or System i5™ file, check that the

authority level for that file is defined correctly.

Chapter 2. Product Documentation

Transferring Data to New Members in an Existing File
You can transfer the data in a workstation file to new members in an existing iSeries™, eServer™ i5, or System i5™ file.

The transfer function automatically creates these members in the specified file in the specified library. New members

are created according to the file description in the existing file.

Be particularly careful when only the field subset of the iSeries™, eServer™ i5, or System i5™ file can be transferred

from the iSeries™, eServer™ i5, or System i5™ to a workstation by the previous transfer request. When data is returned

to the iSeries™, eServer™ i5, or System i5™, new members can receive only the subset defined in that iSeries™,

eServer™ i5, or System i5™ file. Other character fields that are defined, but not transferred are filled with blanks.

Numeric fields are filled with zeros or the valued specified at file creation. The date, time, and time-stamp fields use

iSeries™, eServer™ i5, or System i5™ default values.

Transferring Data to New Members in a New File
By using a transfer request from a workstation to the iSeries™, eServer™ i5, or System i5™ system, you can transfer

data to new members in a new iSeries™, eServer™ i5, or System i5™ file. This is one of the safest transfer methods,

because data already stored in theiSeries™, eServer™ i5, or System i5™ file is not replaced with that transferred from

the workstation.

There are two ways of transferring data to new members in a new iSeries™, eServer™ i5, or System i5™ file. The

method used depends on the data to be transferred.

• For data that is broken up into fields, correct conversion is achieved by transferring it in units of fields. Specify

use of the workstation file-description file at data transfer. In addition, specify data as the type of the eServer™

i5 or iSeries™ file.

When an iSeries™, eServer™ i5, or System i5™ file and its members are created, the transfer function must

access the description of the format of each field to be transferred in the iSeries™, eServer™ i5, or System i5™

file. You can get this description, called a field-reference file, from the iSeries™, eServer™ i5, or System i5™

file. To create an iSeries™, eServer™ i5, or System i5™ file and its members, specify the name of this iSeries™,

eServer™ i5, or System i5™ field reference file, as well as the parameters for the other files and members. Note

that only the fields to be transferred are defined in a new file.

• For data consisting only of text or source statement records, it is not necessary to break up the records

into fields. In addition, the workstation file-description file is not required to transfer data. In other words, an

iSeries™, eServer™ i5, or System i5™ physical source file is created.

Transferring Data to an iSeries, eServer i5, or System i5 Data File and Source File
You can transfer data to the following two types of iSeries™, eServer™ i5, or System i5™ physical files.

Physical data file

The members of a physical data file can contain numeric and character data of any iSeries™, eServer™

i5, or System i5™ data type. To transfer data to a physical data file, use the workstation file-description

249

HCL Z and I Emulator for Windows (ENGLISH)

250

file to define how data is stored in a workstation data file. Besides this definition, the file description of

the iSeries™, eServer™ i5, or System i5™ file is required to ensure correct conversion of the data.

When data is transferred to an existing iSeries™, eServer™ i5, or System i5™ file, the file description

becomes part of the iSeries™, eServer™ i5, or System i5™ file. When data is transferred to a new iSeries™,

eServer™ i5, or System i5™ file, the file description is included in the iSeries™, eServer™ i5, or System i5™

field-reference file.

Physical source file

Normally, a physical source file stores no data. It contains only text or source statements, as follows:

• The first part (field) of a source file always contains numbers indicating the order.

• The second part (field) of a source file always contains the date on which the file was created.

• The third part (field) of a source file contains the text of the file. This part can contain data

fields of character type or zoned type only. Physical source files provide the optimum means of

transferring text or source statements with a workstation.

Note the following considerations when transferring data to and from an iSeries™, eServer™ i5, or System i5™ physical

source file:

• To transfer text from the iSeries™, eServer™ i5, or System i5™ to a workstation, specify the name of the source

file and members in FROM. Specify an asterisk (*) in SELECT. This informs the iSeries™, eServer™ i5, or

System i5™ that only text is transferred from the source file, with the order number and date fields excluded.

• The iSeries™, eServer™ i5, or System i5™ text must be stored in the workstation code text file. Normally, a

workstation text editing program can be used to manipulate this workstation code text file.

• Specify that the file-description file is not to be stored for that workstation file. Because text is assumed to be

a record consisting only of character data, it is not necessary to define fields.

• To return text from a workstation file to an iSeries™, eServer™ i5, or System i5™ file, specify the type of the

workstation file containing the text. This is almost always workstation code text. Specification of the file-

description file is not required.

• To create a new iSeries™, eServer™ i5, or System i5™ file and its members, specify a valid record length.

This record length must be equal to the maximum record length of the workstation file, plus 12 bytes. This

is because the transfer function automatically creates the order number and date fields when the file is

transferred to the iSeries™, eServer™ i5, or System i5™ members. The order number and date fields together

occupy 12 bytes.

Preparing for Data Transfer
The following topics describe the software products required to transfer data and the points you must understand

before transferring data with PC400.

Chapter 2. Product Documentation

Required Software Products
To use Data Transfer, IBM® PC Support/400 (5738-PC1) must be installed on the iSeries™, eServer™ i5, or System i5™.

IBM® PC Support/400 is not required with OS/400® Version 3 or later, or with i5/OS™.

Before using the data transfer function, run the router of PC400 or PC Support/400.

Transfer Function
You can transfer only source programs, records, and the following information:

• Information organized for analysis

• Information used for decision making

• Information suited for computer processing

When using a spreadsheet, for example, you might want to use inventory data to create a cost analysis report. If there

is no way to copy the data into the workstation, you must print the data from the iSeries™, eServer™ i5, or System

i5™ and manually type it into a workstation file. With the transfer function, however, you can access the inventory

database directly, select only the data needed for the report, process the data as required, then complete the report

using that data.

You can also send data from the workstation to the host system for processing by iSeries™, eServer™ i5, or System

i5™application. When a remote user is authorized to access the iSeries™, eServer™ i5, or System i5™ directly, he or she

can access the created cost analysis report to compare with their results.

Figure 9: Data Transfer Example on page 251 outlines the joining of two files, transferring the information to the

workstation, and creating a report.

Figure 9. Data Transfer Example

To transfer data by using PC400, you must create a transfer request. A transfer request provides the necessary

information about the data you want to transfer.

Before creating a transfer request, you must have the answers to the following questions:

251

HCL Z and I Emulator for Windows (ENGLISH)

252

Where is the data located?

How much of the data do you want to transfer?

How should the data be sorted?

Where do you want data to be transferred?

When transferring data from the iSeries™, eServer™ i5, or System i5™ to a workstation, PC400 allows you to specify

which data is to be transferred and whether the data is to be displayed or written to a workstation file.

In addition, a transfer request can be saved to a workstation file, allowing you to easily perform the same transfer at a

later date. After a transfer request is saved, you can call the request to make changes or to run it again.

Data Transfer Program
PC400 data transfer is classified into two types, depending on the direction of the transfer:

• Transferring data from the workstation to the iSeries™, eServer™ i5, or System i5™ is called data sending.

• Transferring data from the iSeries™, eServer™ i5, or System i5™ to the workstation is called data receiving.

Data transfer can also be classified according to how the program is started, as follows:

• Data is transferred by interactively entering information such as what data is transferred from which file to

which file on the screen. In this case, the interactive screen for sending is called the PC→iSeries™ Transfer

window, and that for receiving is called the iSeries™→PC Transfer window.

• Data is transferred according to the information that has already been registered. The interactive screen is not

necessary. This is called the automatic transfer of data.

In both cases, data transfer is performed by PCSFT5.EXE on the workstation and by the PC Support/400 transfer

program on the iSeries™, eServer™ i5, or System i5™.

The Data Transfer icon is registered in the PC400 folder by installing PC400. Double-clicking on this icon displays the

iSeries™→PC Transfer window (for receiving). This icon includes:

 \Z and I Emulator for Windows\PCSFT5.EXE

The PC→iSeries™ Transfer window (for sending) opens when the registered contents are changed as follows:

 \Z and I Emulator for Windows\PCSFT5.EXE

The iSeries™→PC Transfer and PC→iSeries™ Transfer windows have a Switch to SEND button and Switch to RECEIVE

button, respectively. By clicking either of these buttons, the window for sending can be switched to the window for

receiving, and vice versa.

To perform automatic transfer, you must create transfer information, using the interactive screen window, and then

save the information. You can then perform data transfer automatically by specifying the file name in which the data

was saved.

For example, if you save transfer information to file TENSOU.TTO, contained in directory C:\Z and I Emulator for

Windows\PRIVATE, run automatic transfer as follows:

“C:\Z and I Emulator for Windows\PCSFT5.EXE” “C:\Z and I Emulator for Windows\PRIVATE\TENSOU.TTO”

Chapter 2. Product Documentation

When you save the transfer information, register it as an icon in the PC400 folder. You can then transfer data

automatically simply by double-clicking on this icon.

Data Concepts of the iSeries, eServer i5, or System i5 and Your Workstation
The basic components of data management are files, records, and fields. A file is an aggregate of records, referenced

by a single name. Each record in a file contains one or more items of correlated information. Each item of information

is called a field.

The iSeries™, eServer™ i5, or System i5™ and your workstation use different functions to store and group data, and to

set the format.

Workstation Files
To transfer data from a workstation to the iSeries™, eServer™ i5, or System i5™, the transfer function uses a special-

format workstation file, called a file-description file. Using this file, data is stored in a valid format and converted into a

valid type.

A file-description file identifies the format of a workstation data file and contains a description of the fields in the data

file. The file-description file also contains a name list of all the fields in the data file. This list reflects the order, as well

as the names, in which each field appears within the data file. In addition, this list includes a description of the data

type, length, and decimal position of each field. Using this information, the transfer function can recognize not only

how data has been modified but also where a certain field exists in a file record.

When data is transferred from the iSeries™, eServer™ i5, or System i5™ to a workstation, you can use the transfer

function to automatically create the file-description file. In this case, the information in the file-description file

depends on the file description in the iSeries™, eServer™ i5, or System i5™ file.

You must create a file-description file with the same name as the workstation data file to transfer a workstation data

file to the iSeries™, eServer™ i5, or System i5™.

Distributed Data Management (DDM) Files
Distributed data management (DDM) is one of the functions supported by iSeries™, eServer™ i5, and System i5™. This

function is used to access database files that are stored on remote iSeries™, eServer™ i5, and System i5™ systems.

To use the transfer function to access these database files, specify a DDM file name as the name of the iSeries™,

eServer™ i5, or System i5™ file to be transferred. Refer to DDM Guide for details of how to use DDM files.

iSeries, eServer i5, or System i5 Files
The following list provides a simple explanation of the requirements for transferring data between the iSeries™,

eServer™ i5, or System i5™ and a workstation.

253

HCL Z and I Emulator for Windows (ENGLISH)

254

Library

libraryThe iSeries™, eServer™ i5, or System i5™ library contains related objects that are used to generate

significant groups. For example, the objects might be all the programs and files related to credit sales

management. Using the library, you can group objects and find a desired file by name. The transfer

function uses the library to locate an iSeries™, eServer™ i5, or System i5™ file.

File

filejoiningdatabaseiSeriesphysicallogicallogical database filephysical database filedatabase fileiSeries™, eServer™ i5, or System i5™ files that you can manipulate consist of a file description and data

stored in the file. PC400 processes an iSeries™, eServer™ i5, or System i5™ file, called a database file.

The database file can be either a physical file or a logical file.

A physical file is a database file that contains data stored in records. It includes a description of the

record format in addition to the data itself.

A logical file is a database file, that you can use to access data stored in one or more physical files.

Logical files, like physical files, contain a file description. However, logical files do not contain any actual

data. Instead, you can access fields in one or more physical files by using the record format included in

the logical file description. When a logical file is transferred from the iSeries™, eServer™ i5, or System

i5™ to a workstation, data is obtained from one or more physical files. You need only specify a logical

file as the file to be transferred. The iSeries™, eServer™ i5, or System i5™ recognizes which physical file

contains the actual data to be transferred.

Note: Data cannot be transferred from a workstation to logical files.

Member

memberData records in a database file are grouped into several members. At least one member must be

included in one file.

When data is transferred to and from the iSeries™, eServer™ i5, or System i5™, actual data transfer is

done between file members. For example, a certain workstation file can be transferred to the iSeries™,

eServer™ i5, or System i5™. In this case, the file members become new members of a new or existing

iSeries™, eServer™ i5, or System i5™ file, or substitute for existing members in an existing iSeries™,

eServer™ i5, or System i5™ file.

Record format

record formatA record format describes the fields contained in a file record and the order in which these fields appear

in the record. Record formats are stored in the file description. Both physical and logical database files

can have one or more record formats.

Creating a Workstation-to-iSeries Transfer Request
To create a request for data transfer from a workstation to the iSeries™, eServer™ i5, or System i5™, do as follows.

Chapter 2. Product Documentation

1. Using the router session, establish attachment to the iSeries™, eServer™ i5, or System i5™ to which data is to

be transferred.

2. Click the Data Transfer icon.

3. When the iSeries™→PC Transfer window displays, select Switch to SEND. The display is switched to the

PC→iSeries™ Transfer window.

To choose additional settings, select Advanced.

4. Specify each item. See Items to Be Specified on page 255 for details.

Items to Be Specified
The following section explains the items that you specify in the PC→iSeries™ Transfer window.

FROM
PC file name

This item is always required. It specifies the name of the workstation file containing the data to be

transferred to the iSeries™, eServer™ i5, or System i5™. Specify this item using the following format.

(Items inside brackets [] can be omitted.)

[d:][path-name]file-name[.ext]

A list of workstation files can be displayed by selecting Browse. You can limit the number of names

listed. To limit the listing, specify a combination consisting of part of a file name and a global file name

character (* or ?) in the input area of the workstation file list. For example:

• When you click OK with /A: specified, the displayed listing contains the names of all files in the

current directory of the diskette inserted into drive A.

• When you click OK with A:\SUPPLY\ specified, the displayed listing contains the names of all

files under the SUPPLY path of the diskette inserted into drive A.

• When you click OK after specifying B:*.XLS, the displayed listing contains the names of all files

having extension XLS in the current directory of the diskette inserted into drive B.

TO
System name

This item is always required. When the router program is active, this item specifies the default system

name.

Library/File (Member)

This item is always required. It specifies the name of the iSeries™, eServer™ i5, or System i5™ physical

file that will receive the data to be transferred from the workstation. You can specify either an existing

file name or new file name.

Specify this item using the following format. (Items inside brackets [] can be omitted.)

255

HCL Z and I Emulator for Windows (ENGLISH)

256

[library-name/]file-name[(member-name[,record-format-name])]

library-name

This is the name of theiSeries™, eServer™ i5, or System i5™ library containing the iSeries™,

eServer™ i5, or System i5™ file to which data is to be transferred. If no library is specified,

*LIBL is used. To create a new file to receive transferred data, specify the library name.

When the input field is null and Browse is selected, the iSeries™, eServer™ i5, or System i5™

displays a list of all libraries defined in *USRLIBL of the iSeries™, eServer™ i5, or System

i5™ job library list. You can modify this list by changing the job description. Run a change

job description (CHGJOBD) command on the iSeries™, eServer™ i5, or System i5™.

file-name

This is the name of an iSeries™, eServer™ i5, or System i5™ physical database file. When

data is transferred to an existing file, the data in that file is replaced with the transferred

data. To create a new file to receive transferred data, specify a new file name of 1 to 10

characters.

To list the available files, do one of the following things:

• To list all files within all libraries defined in *USRLIBL of the iSeries™, eServer™ i5,

or System i5™ job library list, specify *USRLIBL followed by a slash (/), then select

Browse. If a slash (/) is not specified after the library name, the iSeries™, eServer™

i5, or System i5™ displays a list of library names rather than the file names.

• To list the names of the files in a certain library, specify the library name followed

by a slash (/), then select Browse. You can also specify a part of a file name

followed by an asterisk (*), then select Browse. The iSeries™, eServer™ i5, or

System i5™ lists all the files whose names begin with the specified character

string.

member-name

This is the name of a member in the specified iSeries™, eServer™ i5, or System i5™ file to

which data is to be transferred. If this member name is not specified, data is transferred to

the first member, *FIRST, in the iSeries™, eServer™ i5, or System i5™ file.

To transfer data to an existing file, specify the member name. The data within that file

member is replaced with the transferred data.

To create a new member in an existing file or in a new file, specify a new member name of

1 to 10 characters.

By selecting Browse with a file name specified, the names of the members in that file

are listed. When a left parenthesis, part of a member name, an asterisk (*), and a right

parenthesis are specified, in this order, and then Browse is selected, the iSeries™, eServer™

i5, or System i5™ can list all member names beginning with the specified character string.

Chapter 2. Product Documentation

record-format-name

This is the name of the record format in the specified iSeries™, eServer™ i5, or System i5™

file. The record format name need not be specified except when a physical file contains

more than one record format. Most physical files have only one record format. Before

specifying a record format name, a member name or *FIRST must be specified as the

member name.

When you transfer data to an existing file without specifying a record format name, it is

assumed that the file has only one record format (*ONLY). Therefore, that record format is

used.

When a new file is created with no record format name, QDFTFMT is used as the record

format name.

Note: A library name, file name, member name, and record format name can be specified using

up to 10 characters each. Each name must begin with one of the following characters: A to Z, ¥,

#, or @. For characters subsequent to the first, the numbers 0 to 9, underscores, and periods can

also be used.

Advanced Options
The following advanced options are available for PC→iSeries™ Transfer.

Use of File Description File
This item specifies whether a file-description file is used to transfer data to the iSeries™, eServer™ i5, or System i5™.

The file-description file is required to transfer a workstation file, containing the data to be transferred (and converted),

in fields. Such a workstation file can have either several fields or numeric data fields. To transfer a workstation file

containing text (character data) only, the file-description file is not required. For details on creating a file-description

file, see File-Description Files on page 296.

• Do not specify this item in the following case: a workstation file having only one field (for example, PC code

character) is specified in FROM, while the iSeries™, eServer™ i5, or System i5™ file is a physical source file

having the following record format.

 Field Type Length " " Decimal Places

Order number Zoned 6 2
Date Zoned 6 0
Data Character 1 to 4096
 or Open

Note: When fields contain character data or zoned data only, the data portion can be broken down

into several fields. The destination iSeries™, eServer™ i5, or System i5™ file contains the fields for

257

HCL Z and I Emulator for Windows (ENGLISH)

258

order number and date. The workstation file, however, does not. This method is recommended when

transferring text only between the iSeries™, eServer™ i5, or System i5™ and the workstation.

• Specify this item in all other cases. Two examples are:

◦ Data is transferred from a workstation file having more than one field.

◦ The iSeries™, eServer™ i5, or System i5™ file that receives the data is other than a physical source file

having the record format described above.

File Description File Name
This item appears only when item Use of File Description File is specified.

This item is always required. It specifies the name of the workstation file-description file that describes the data to be

transferred.

Upon transferring data from the iSeries™, eServer™ i5, or System i5™ to a workstation, a file-description file might have

been created.

A file-description file must be created when the data has not yet been transferred from the iSeries™, eServer™ i5, or

System i5™ to a workstation or when no file-description file exists.

PC File Type
This item appears only when Use of File Description File is not specified.

This item is always required. You must specify the type of the workstation file specified in the FROM field. The values

provided by the iSeries™, eServer™ i5, or System i5™ are recognized as workstation code text. If the file type of a data

file is not converted, the file can include nothing other than data that does not require conversion.

iSeries Object
This item is always required. It specifies whether the iSeries™, eServer™ i5, or System i5™ member to which data

is transferred is a new member or an existing member. When data is transferred to a new member, this item also

specifies whether the file to contain the new member is an existing file.

Create New Member

This item specifies that a new member, to which data is transferred, is created in an existing iSeries™,

eServer™ i5, or System i5™ file.

Note:

1. To create a new member, you must have the following authorities:

• *OBJOPR, *OBJMGT, and *ADD for the file that will include the new member

• *READ and *ADD for a library that will contain the file

Chapter 2. Product Documentation

See Security Descriptions (SC41-8083) for details of object authorities.

2. To create a member to add to a file, the transfer function uses the iSeries™, eServer™ i5,

or System i5™ default value for the add physical file member (ADDPFM) command.

When you specify this item, the following item must also be specified:

Member Text

This item is used to add an explanation of a new iSeries™, eServer™ i5, or System

i5™ member. This explanation helps remind you of the contents of the member. This

explanation appears, for example, when a list of all members in a file is requested (Browse

is selected). If this item is left blank, no explanation is added to the new iSeries™, eServer™

i5, or System i5™ member.

To specify an apostrophe (') in the explanation, enter two apostrophes (' ').

Create New Member in New File

This item specifies that a new member, to which data is to be transferred, is created in a new iSeries™,

eServer™ i5, or System i5™ file.

Note:

1. To create a new member in a new file, *READ and *ADD authorities are required for

the library that will contain that file. Authority to use the create physical file (CRTPF)

command of the iSeries™, eServer™ i5, or System i5™ is also required.

2. To create a new member in a new file, the transfer function uses the default value for

the create physical file (CRTPF) command of the iSeries™, eServer™ i5, or System i5™. It

does not, however, use the following values:

(MAXMBRS[*NOMAX]). This indicates that the file can contain up to 32,767

members.

(SIZE[*NOMAX]). This indicates that each member of the file can contain an

unlimited number of records.

When this item is specified, also specify the following item:

Member Text

This item is optional. It is used to add an explanation of a new iSeries™, eServer™ i5, or

System i5™ member. This explanation helps remind you of the contents of the member.

This explanation appears, for example, when a list of all the members in a file is requested

(Browse is selected). If this item is left blank, no explanation is added to the new iSeries™,

eServer™ i5, or System i5™ member.

To specify an apostrophe (') in the explanation, enter two apostrophes (' ').

259

HCL Z and I Emulator for Windows (ENGLISH)

260

iSeries File Type

This item is always required. It specifies the type of iSeries™, eServer™ i5, or System i5™

file and the members to be created (same type for both).

Specify one of the following things:

• To create an iSeries™, eServer™ i5, or System i5™ physical source file and its

members, specify Source. These members are created with two fields (order

number and date) added to the beginning of the data transferred from the

workstation file. A new iSeries™, eServer™ i5, or System i5™ source file and its

members have the following record format:

Field Type Length Decimal Places

Order number Zoned 6 2
Date Zoned 6 0
Data Character 1 to 32755
 or Open

Note that in an iSeries™, eServer™ i5, or System i5™ physical source file, each

record can be up to 32 755 bytes in length. But, the maximum size of a source file

created using the workstation-to-iSeries transfer function is 4,107 bytes. Also, this

file must include the order and date fields. Therefore, the maximum amount of

data that can be transferred is 4,096 bytes per record.

The data portions of members inherit the workstation file characteristics. In other

words, when a workstation file is a workstation code text file consisting of many

records containing text, the created data fields will be the same.

• To create aniSeries™, eServer™ i5, or System i5™ physical data file and its

members, specify Data. The file and members will contain only the data fields

described in the file-description file.

The value of the iSeries™ File Type is assumed to be Data when a file-description file is

used to transfer data. If a file-description file is not used for data transfer, the value of this

item is assumed to be Source.

Field Reference File Name

This item appears only when Use of File Description File is specified for the creation of a

new file.

When Use of File Description File is not specified, an iSeries™, eServer™ i5, or System i5™

physical source file is created. iSeries™ File Type and Field Reference File Name are not

displayed. Instead, Record Length opens.

This item is always required. A new iSeries™, eServer™ i5, or System i5™ file is created

using the field name in a file-description file and the field definitions in an iSeries™,

eServer™ i5, or System i5™ field-reference file.

Chapter 2. Product Documentation

The format of a field-reference file name is as follows. (Items inside brackets [] can be

omitted.)

[library-name/]file-name

library-name

This is the name of an iSeries™, eServer™ i5, or System i5™ library containing

a field-reference file. If this library name is not specified, *LIBL is assumed.

If you cannot find the desired library, selecting Browse displays a list of

all libraries in *USRLIBL of the iSeries™, eServer™ i5, or System i5™ job

library list. *USRLIBL of the library list can be changed by modifying the

job description by executing a CHGJOBD command on the eServer™ i5 or

iSeries™ processor.

file-name

This is the name of the iSeries™, eServer™ i5, or System i5™ physical

database file containing the field definitions. Always specify this file name.

When a library name is specified concurrently, use a slash (/) to delimit the

library name and file name. If the desired file cannot be found, enter the

library name and a slash, then select Browse. The system displays a list of

files in that library. To list all the files in the libraries defined in *USRLIBL of

theiSeries™, eServer™ i5, or System i5™ job library list, enter *USRLIBL/ then

select Browse.

If you enter part of a file name followed by an asterisk (*) and then select Browse, the

system displays a list of available file names, each beginning with the specified part of the

name.

For example, enter ARLIB/AR* in the Field Reference File Name item, then select Browse.

The system displays a list of all physical file names beginning with AR in library ARLIB.

Note: You must have *OBJOPR authority for the field-reference file to be specified.

To list certain files, you must also have *OBJOPR authority for those files.

Record Length

This item is always required. It specifies the record length of an iSeries™, eServer™ i5,

or System i5™ physical source file. When the data receiver is an iSeries™, eServer™ i5, or

System i5™ physical source file, the specified value must include the length of the order

number and date fields that are added to a workstation file at transfer (the total length of

these two fields is 12 bytes).

Authority

This item is always required. It specifies the authority level of a new iSeries™, eServer™ i5,

or System i5™ file.

Specify one of the following things:

261

HCL Z and I Emulator for Windows (ENGLISH)

262

• Read/Write. This enables other users to read from and write to the iSeries™,

eServer™ i5, or System i5™ file and allows the file name to be displayed in lists.

However, users cannot delete the file (*OBJOPR, *READ, *ADD, *OBJMGT, *UPD,

and *DLT authorities). If other users might be transferring data from a workstation

file to the iSeries™, eServer™ i5, or System i5™ file, specify Read/Write or All.

• Read. This enables other users to read from the iSeries™, eServer™ i5, or System

i5™ file, and allows the file name to be displayed in lists. However, other users can

neither write to the file nor delete it (*USE authority).

• All. This enables other users to read from and write to the iSeries™, eServer™ i5,

or System i5™ file as well as delete it. The file name is displayed in lists (*ALL

authority).

• None. This prevents other users (except for the system administrator) from writing

to or deleting the iSeries™, eServer™ i5, or System i5™ file. The file name does not

appear in lists (*EXCLUDE authority).

File Text

This item is optional. It is used to add an explanation of a new iSeries™, eServer™ i5, or

System i5™ file. This explanation helps remind the user of the contents of the file. This

explanation appears, for example, when a list of all files in a library is requested (Browse

is selected). If this item is left blank, no explanation is added to the new iSeries™, eServer™

i5, or System i5™ file.

To specify an apostrophe (') in the explanation, enter two apostrophes (' ').

Replace Existing Member

This item transfers data to an existing iSeries™, eServer™ i5, or System i5™ member, specified in the

Library/File (Member) item. The existing data in that iSeries™, eServer™ i5, or System i5™ member is

replaced with the transferred data.

Saving, Opening, Changing, and Executing a Transfer Request
The following section explains how to save, open, change, and execute, as a file, information (transfer request) on

data to be transferred.

Saving a Transfer Request
Save a transfer request when the request is likely to be executed repeatedly. This eliminates the need to create a

transfer request every time data is to be transferred. To save a transfer request, do as follows:

1. Specify the information needed for transfer, using the PC→iSeries™ Transfer window.

2. After specifying the necessary information, click Save or Save As from the File menu.

The Save Transfer Request File As window opens.

3. Specify each item, referring to the following explanation, then click OK.

Chapter 2. Product Documentation

File Name

Disk to which data is to be saved. Specify a file name or diskette file name. The default

extension is TFR. Extension TFR identifies a file as a transfer request file.

Description

This item can be used to add an additional explanation of a transfer request, as required. The

explanation can be up to 40 characters in length. This explanation is saved with the transfer

request, and displayed in the list of transfer request names. It is, therefore, useful for identifying

a transfer request.

4. The system asks whether the saved transfer request is to be registered in the PC400 folder.

When you click OK, the transfer request is registered as an icon. Subsequently selecting this icon transfers

data according to the contents of the registered data transfer request.

Opening and Changing a Saved Transfer Request
To open and change a saved transfer request, do as follows:

1. Display the PC→iSeries™ Transfer window.

2. Click Open from the File menu.

3. Specify the name of the file to be opened using the Open Transfer Request File window, then click OK.

The PC→iSeries™ Transfer window reopens, and the transfer request information, saved to the specified file,

appears for each item. This opens the saved transfer request.

4. Change the contents of the transfer request as necessary.

5. To save the changed contents, follow the procedure explained in Saving a Transfer Request on page 262.

Performing a Transfer Request
A transfer request can be performed in any of the following ways:

• By clicking the icon with which the transfer request has been registered

• By using the PC→iSeries™ Transfer window of the Data Transfer icon

Clicking the Icon with Which the Transfer Request Has Been Registered
This method can be used only when a transfer request has been saved as an icon by using the PC→iSeries™ Transfer

window.

Clicking the corresponding icon starts data transfer.

263

HCL Z and I Emulator for Windows (ENGLISH)

264

Using the PC→iSeries Transfer Window

1. Before executing a transfer request, operations such as creating, opening, and changing a transfer request

must be completed.

Note: When data is transferred from a workstation to an existing member in an iSeries™, eServer™ i5,

or System i5™ file, the transferred data replaces the existing data in that member.

2. Select Send from the PC→iSeries™ Transfer window.

Data transfer starts.

3. After the transfer has been completed, click Cancel or Exit from the File menu.

Conversion Errors That Can Occur during Transfer
Upon executing a transfer request, a file-description file (when specified) is read from the disk or diskette to be

processed. The iSeries™, eServer™ i5, or System i5™ and workstation exchange information, if the data is transferable.

The workstation transfers records, one at a time, from the file specified in FROM. Transferred records are converted

and stored in the iSeries™, eServer™ i5, or System i5™ member specified in TO.

During this conversion process, conversion errors might occur. For example, the values in a workstation file might

have to be rounded to fit the iSeries™, eServer™ i5, or System i5™ fields. Another example is the case where the record

length of a workstation file differs from that expected by the iSeries™, eServer™ i5, or System i5™.

If such an error occurs, an error message is issued with the number of the workstation file record for which the error

occurred and, sometimes, information about certain fields in that record.

If a severe error occurs, data transfer might stop. In such a case, stop the transfer request, correct the error, then rerun

the transfer request.

When the error is not so severe, you can request that the system continue transferring data. By doing so, even if

the same error occurs in another record, an error message does not appear and the transfer function automatically

continues executing the transfer request.

Creating an iSeries-to-Workstation Transfer Request
To create a transfer request to receive data from the host, do as follows:

1. Click the Data Transfer icon.

2. When the PC→iSeries™ Transfer window opens, select Switch to RECEIVE to switch the display to the

iSeries™→PC Transfer window.

For the additional settings, click the Advanced button.

3. Which items are to be specified by the user vary with the data type, as follows:

Chapter 2. Product Documentation

• Entire iSeries™, eServer™ i5, or System i5™ file

• Part of an iSeries™, eServer™ i5, or System i5™ file

• Data combined from several iSeries™, eServer™ i5, or System i5™ files

• Summary of record groups

Before specifying each item, while referring to Items to Be Specified on page 267, note the following points

regarding the data to be received.

Receiving an Entire iSeries, eServer i5, or System i5 File
This is the simplest way of transferring data from the iSeries™, eServer™ i5, or System i5™ to a workstation. All records

in a file and all the data in each record are transferred.

The FROM items are as follows:

System name

This item specifies the name of the system.

Library/File (Member)

This item specifies the name of the iSeries™, eServer™ i5, or System i5™ file.

SELECT

Specifying an asterisk (*) for this item indicates that all fields are to be transferred, or lists all the fields

in the iSeries™, eServer™ i5, or System i5™ file.

ORDER BY

This item is optional. It specifies how records are grouped. When this item is left blank, records are not

grouped (data is transferred in the same order it appears in the iSeries™, eServer™ i5, or System i5™ file).

Receiving Part of an iSeries, eServer i5, or System i5 File
Only part of an iSeries™, eServer™ i5, or System i5™ file is transferred to the workstation.

The FROM items are as follows:

System name

This item specifies the name of the system.

Library/File (Member)

This item specifies the name of the iSeries™, eServer™ i5, or System i5™ file.

SELECT

This item specifies a field to be transferred.

WHERE

This item specifies the requirements that must be satisfied before records can be selected for transfer.

265

HCL Z and I Emulator for Windows (ENGLISH)

266

ORDER BY

This item is optional. It specifies how records are grouped. When this item is left blank, records are not

grouped (data is transferred in the same order it appears in the iSeries™, eServer™ i5, or System i5™ file).

Receiving Data Combined from Several iSeries, eServer i5, or System i5 Files
The data to be transferred can be stored in two or more iSeries™, eServer™ i5, or System i5™ files. These files are

assumed to be related. Based on this relationship, they can be linked or joined, as if all the data existed in a single

file. The files can be transferred to the workstation after they have been joined. By using the iSeries™→PC Transfer

function, this “join and transfer” function can be performed in a single step.

The FROM items are as follows:

System name

This item specifies the name of the system.

Library/File (Member)

This item specifies the names of all iSeries™, eServer™ i5, or System i5™ files from which data is to be

transferred.

JOIN BY

This item specifies how to join or combine the data in each file.

SELECT

This item specifies a field to be transferred.

WHERE

This item specifies the requirements that must be satisfied before records can be selected for transfer.

ORDER BY

This item is optional. It specifies how records are grouped. When this item is left blank, records are not

grouped (data is transferred in the same order as it appears in the iSeries™, eServer™ i5, or System i5™

file).

Receiving a Summary of Record Groups
A summary record is a single record that includes information on each set of records grouped from one or more

iSeries™, eServer™ i5, or System i5™ files.

The FROM items are as follows:

System name

This item specifies the name of the system.

Library/File (Member)

This item specifies the names of all files from which data is to be transferred.

Chapter 2. Product Documentation

JOIN BY

This item is optional. It specifies the join conditions that must be satisfied before records can be joined.

GROUP BY

This item is optional. It must be specified only when the records of iSeries™, eServer™ i5, or System i5™

files are classified into several groups. To group all records into a single group, this item need not be

specified.

SELECT

Specifying this item creates a summary record. The field names specified in GROUP BY can be

specified.

WHERE

This item is optional. It specifies the requirements that each record to be grouped must satisfy. To

group all records, this item need not be specified.

HAVING

This item is optional. It specifies the summary record to be transferred. To transfer all summary records,

this item need not be specified.

ORDER BY

This item is optional. It specifies how summary records will be grouped. When this item is left blank,

records are not grouped (data is transferred in the same order as it appears in the iSeries™, eServer™ i5,

or System i5™ file).

Items to Be Specified
The following section explains the items to be specified using the iSeries™→PC Transfer window.

FROM

System name
This item specifies the name of the host system that contains the data to be received. When the router program is

active, this item specifies the default system name.

Library/File (Member)
This item is always required. It specifies the name or names of one or more files used to store data to be transferred.

Up to 32 file names can be specified. To specify several files, delimit them with commas and use JOIN BY, displayed

after all FROM items have been specified. Only the file name must be specified. Do not specify a comma as a part

of a file name. When the other optional items are not specified, they are assumed automatically. For example, the

library name, member name, and format name can be assumed to be *LIBL, *FIRST, and *ONLY, respectively. When the

cursor is on the input field of FROM, selecting Browse lists libraries, files, members, and formats.

267

HCL Z and I Emulator for Windows (ENGLISH)

268

Note: To transfer data from an iSeries™, eServer™ i5, or System i5™ physical file, you must have *USE authority

for that file. To transfer data from an iSeries™, eServer™ i5, or System i5™ logical file, you must have *OBJOPR

authority for that file and *READ authority for each subordinate file.

Specify file names as follows. (Items inside brackets [] can be omitted.) To specify several file names, delimit the

names with commas.

[library-name/]file-name[(member-name[,record-format-name])],
[library-name/]file-name[(member-name[,record-format-name])],...

library-name

This is the name of the iSeries™, eServer™ i5, or System i5™ library that contains the iSeries™, eServer™

i5, or System i5™ file to be transferred. This iSeries™, eServer™ i5, or System i5™ file contains the data to

be transferred from the iSeries™, eServer™ i5, or System i5™ to a workstation. If this library name is not

specified, *LIBL is assumed. If you cannot find the desired library, selecting Browse displays a list of all

libraries defined in *USRLIBL of the iSeries™, eServer™ i5, or System i5™ job library list. *USRLIBL of the

library list can be changed by modifying the job description by executing the CHGJOBD command on

the iSeries™, eServer™ i5, or System i5™.

file-name

This is the name of the iSeries™, eServer™ i5, or System i5™ physical file, logical file, or DDM file from

which data is transferred. This file name must always be specified. To specify a file name and library

name concurrently, delimit them with a slash (/). If you cannot find the desired file name, enter the

library name followed by a slash, then select Browse. The system then displays a list of files contained

in that library. To display a list of all the files in the libraries defined in *USRLIBL of the iSeries™, eServer™

i5, or System i5™ job library list, enter *USRLIBL/, then select Browse.

member-name

This is the name of the iSeries™, eServer™ i5, or System i5™ member containing the data to be

transferred, or *FIRST. If this member is not specified, the system assumes *FIRST, and the first member

of that file is used.

record-format-name

This is the name of the record format contained in the specified iSeries™, eServer™ i5, or System i5™

file, or *ONLY. Before specifying the record format name, specify the member name or *FIRST. If the

record format name is not specified, the system assumes *ONLY, and the only record format for that

file is used. To specify a record format name, delimit the record format name and member name with a

comma.

When the specified iSeries™, eServer™ i5, or System i5™ file has several record formats, a record format

name must be specified. If the file member name is not specified, a record format name cannot be

specified.

Note:

Chapter 2. Product Documentation

1. A library name, file name, file member name, and record format name can be specified using up to 10

characters for each. Each name must begin with A to Z, ¥, #, or @. For characters subsequent to the

first, 0 to 9, underscores, and periods can also be used.

2. When the FROM field remains blank or a comma is entered to specify the next file name, selecting

Browse displays a list of libraries defined in *USRLIBL of the iSeries™, eServer™ i5, or System i5™ job

library list.

3. Enter part of the file name, member name, or record format name, followed by an asterisk (*), then

select Browse. The system displays a list of names beginning with the specified characters.

For example, you might want to transfer data from file member ITEMMBR1 (first member) of file ITEMMAST in library

ITEMLIB. ITEMFMT is the only record format of this file. The specification will be as follows:

ITEMLIB/ITEMMAST(ITEMMBR1,ITEMFMT)

Alternatively, specify:

ITEMLIB/ITEMMAST

Receiving a Summary of Record Groups
The following information is necessary to receive summary records.

To transfer a summary record, do not leave this input area blank or specify an asterisk (*) (except when all the fields

of the file specified at the prompt are specified in GROUP BY). The field names specified in SELECT (except for those

specified in functions) must also have been specified in GROUP BY.

The functions and fields specified in SELECT return actual summary information for each group. Enter the field names

and functions in SELECT in the order in which they are to be displayed.

Note: Null values are not included in the functions. When an entire value is null, the function output is set to

null, except for COUNT. The COUNT output is 0.

The function format is as follows.

function (field-name)

This has the following meaning:

function

This is one of the following functions:

AVG

Transfers the average value of the specified fields for each record group. This function can

be used only for numeric fields.

MIN

Transfers the minimum or lowest value of the specified fields for each record group.

269

HCL Z and I Emulator for Windows (ENGLISH)

270

MAX

Transfers the maximum or highest value of the specified fields for each record group.

SUM

Transfers the total value of the specified fields for each record group. This function can be

used only for numeric fields.

COUNT

Transfers the total number of records that satisfy the WHERE condition for each record

group. Specify COUNT(*).

field-name

This is the field name defined with the record format specified in FROM.

Each function returns one value for each record group. In SELECT, several functions can be specified. To do so,

delimit the functions by commas, as follows:

SUPPNO, AVG(PRICE), MIN(PRICE), MAX(PRICE)

This indicates that the average, minimum, and maximum values for PRICE are calculated for each supplier after

SUPPNO has been selected. A summary record is transferred according to the function selection. Specify SUPPNO in

GROUP BY, because SUPPNO has not been used for the functions.

Advanced Options
The following advanced options are available for iSeries™→PC Transfer.

JOIN BY
When several files have been specified in FROM, specify JOIN BY. When only one file has been specified in FROM,

JOIN BY does not appear.

JOIN BY specifies how to link or join the records of the files specified in FROM. Each file specified in FROM must be

joined with at least one other file that has been specified in FROM.

Use JOIN BY to specify one or more join conditions. The join conditions indicate the similarity of two files. Therefore,

they indicate which records of one file are joined with those of another.

The join conditions are as follows:

field-name = field-name

Field name is the name of the field defined in the record format specified in FROM. The join conditions require two

field names, one for each file to be joined.

Field names must be delimited by one of these:

=

Equal

Chapter 2. Product Documentation

<> or ><

Not equal

>

Greater than

>=

Greater than or equal to

<

Less than

<=

Less than or equal to

When specifying fields in JOIN BY, observe the following rules.

• Join a numeric field to another numeric field. The field lengths and types do not have to be identical.

• Join a character field to another character field. The lengths do not have to be identical.

The field name to be specified might have been defined in the files specified in FROM. When such a field name is used

in the following items, prefix the field name with the file qualifier:

• JOIN BY

• GROUP BY

• SELECT

• WHERE

• HAVING

• ORDER BY

The file qualifier is the character T (uppercase or lowercase) followed by a one- or two-digit number. Use T1 for fields

defined with the first record format, T2 for fields defined with the second record format, and so on. Delimit the file

qualifier and field name with a period (.). See Receiving Records Using File Qualifiers on page 288 for details of the

file qualifiers.

If the field name of the file specified in FROM cannot be found, select Browse when the cursor is on the JOIN BY input

area. Then, a list of file qualifiers and field names of the files appears.

To join three or more files, or to join two files based on two or more common fields, two or more link conditions must

be used. To specify several join conditions, join the conditions with AND. For example:

T1.EMPNO = T2.EMPNO AND T2.EMPNO = T3.EMPNO

In this case, records having the same value as EMPNO are joined between the first and second files specified in

FROM. Then, such records are joined between the second and third files specified in FROM.

Up to 32 join conditions can be specified.

271

HCL Z and I Emulator for Windows (ENGLISH)

272

After JOIN BY is specified, each of SELECT, WHERE, and ORDER BY can be completed, by following the procedure

described earlier in this chapter. To browse a field name that has been defined in several files, prefix the field name

with a file qualifier.

GROUP BY
This item is required only to classify iSeries™, eServer™ i5, or System i5™ file records into several groups. When no

value is specified in GROUP BY, all the records are treated as a single group.

If GROUP BY is not displayed, select Group functions at the bottom right of the screen. Then, GROUP BY appears.

GROUP BY and HAVING are displayed concurrently. You can specify either, both, or neither.

When GROUP BY and HAVING are displayed but you do not want to specify either, select Remove Group functions.

The two items disappear.

To classify several records into groups, specify one or more fields to act as the base for grouping. Records are

grouped according to the field specified first, then by the field specified second, and so on. For example, suppose that

the following groupings are specified:

SHIFT, DEPTNO

In this example, the records are first grouped by SHIFT. Records belonging to a single group will subsequently have

the same value as SHIFT. Then, the records in each group are grouped by DEPTNO. When there is only one record

having a certain SHIFT value, the group has only one record.

Delimit field names with commas. Blanks can be specified to improve readability. Up to 50 field names can be

specified. These fields must have been defined in the record format defined in FROM.

If a field cannot be found, selecting Browse displays a list of all the fields contained in the record.

With GROUP BY specified, specify SELECT to transfer the summary record of each group.

SELECT
This item is always required. It specifies the field to be transferred or the function that indicates the type of summary

information to be transferred.

The field to be specified must have been defined in the record format specified in FROM.

To transfer all the fields in the specified record, specify an asterisk (*) in this input field. (Specifying an asterisk

causes all fields in the record to be transferred.)

Note: Up to 256 fields can be transferred. When more than 256 fields have been defined in a file, an asterisk

cannot be used. In this case, specify the names by selecting the fields to be transferred.

To transfer fields by selecting from a record, enter the field names in the order in which the fields are arranged. One or

more blanks can be placed between the field names to improve readability. However, the names must be delimited by

commas, as follows:

ITEMNO, QONHAND, PRIC

Chapter 2. Product Documentation

You can also specify:

ITEMNO,QONHAND,PRICE

When records are transferred from an iSeries™, eServer™ i5, or System i5™ source file, specifying an asterisk (*)

causes all fields in the file to be transferred, with the exception of the order number field and date field. (To transfer all

the fields, including the order number field and date field, specify all the field names, including each data field name.)

A field can be specified repeatedly as required. However, bear in mind that no more than 256 fields can be selected. A

list of field names can be displayed by selecting Browse.

WHERE
This item is optional. It specifies one or more conditions that records to be transferred must satisfy.

To transfer summary records, use this item to specify which records are to be grouped, then group the records. Using

this item, you can specify one or more conditions that the record must satisfy to belong to a certain group. When

WHERE is not specified, all records are grouped.

As the conditions, specify the test to be applied to the records in the specified file member. All the records in

the specified file member are tested for the conditions specified here. Only those records that pass this test are

transferred.

When WHERE is not specified, all records in the specified file member are transferred. conditions, specifying WHERE

The condition format is as follows:

field-name test value

field-name

This must be a field substring or field name defined in the record format.

Fields or constants can be manipulated by specifying a supported function, with the results being used

for comparison. The supported functions and usage are as follows:

SUBSTR

Returns the specified part of a character string. This function contains three parameters:

the field name, starting position, and length of the returned substring. The following

example returns the 20 characters starting from the 10th character of the FULLNAME

field:

SUBSTR(FULLNAME 10 20)

VALUE

Returns the first non-null value in the parameter list. (If all parameters are null, null is

returned.)

VALUE(DEPOSIT WITHDRAW BALANCE)

CURRENT

Returns DATE, TIME, TIMEZONE, or TIMESTAMP for the current system.

273

HCL Z and I Emulator for Windows (ENGLISH)

274

CURRENT(TIMEZONE)

DIGITS

Returns a character string representation of a numeric field.

DIGITS(EMPLOYEE#)

CHAR

Returns a character string representation of the date field, time field, or time-stamp

field. The second parameter is used to specify the format of the Systems Application

Architecture® (SAA®) of the string to be returned (supported values are USA, EUR, ISO, or

JIS).

CHAR(DATEHIRE USA)

DATE

Returns the date of the time-stamp field.

DATE(TIMECRTD)

TIME

Returns the time of the time-stamp field.

TIME(TIMECRTD)

TIMESTAMP

Returns the time-stamp, combining the date field and time field.

TIMESTAMP(DATESEND TIMESEND)

YEAR

Returns the year of the date field or time-stamp field.

YEAR(DATEHIRE)

MONTH

Returns the month of the date field or time-stamp field.

MONTH(DATEHIRE)

DAY

Returns the date of the date field or time-stamp field.

DAY(DATEHIRE)

DAYS

Returns the day of the year, counted from January 1, of the date field or time-stamp field.

DAYS(DATEHIRE)

HOUR

Returns the time of the time field or time-stamp field.

Chapter 2. Product Documentation

HOUR(TIMESEND)

MINUTE

Returns the minute of the time field or time-stamp field.

MINUTE(TIMESEND)

SECOND

Returns the second of the time field or time-stamp field.

SECOND(TIMESEND)

MICROSECOND

Returns the microsecond of the time field or time-stamp field.

MICROSECOND(TIMECRTD)

test

This is the comparison type to be applied to fields or functions.

The following tests can be used. One or more blanks can be placed before and after these tests.

Note: Values are searched according to the exact characters specified by the user. In other

words, when the user's specification consists only of uppercase characters, only uppercase

character strings are returned. Similarly, when the specification consists only lowercase

characters, only lowercase character strings are returned.

=

Equal

<> or ><

Not equal

>

Greater than

>=

Greater than or equal to

<

Less than

<=

Less than or equal to

LIKE

The field is similar to the specified value.

275

HCL Z and I Emulator for Windows (ENGLISH)

276

BETWEEN

The field is equal to one of two constants, or to a value between them.

IN

The field is the same as one of the values in the constant list.

IS

The field contains null values.

ISNOT

The field contains no null values.

Test usage is as follows:

Using the LIKE Test

LIKE testThe LIKE test checks the field specified with the field name for a character pattern

specified as a value. The field to be specified must be a character field.

The values to be tested must be character-string constants. This string can contain any

characters. A percent (%) character indicates a character string consisting of zero or more

characters. A 1-byte underscore (_) character indicates any single 1-byte character. A 2-

byte underscore (_) character indicates any single 2-byte character.

The following example explains how to use the LIKE test:

NAME LIKE '%ANNE%'

The previous example searches for names containing character string ANNE, such as

ANNE, ANNETTE, and SUZANNE.

The following example searches for names beginning with character string ANNE, such as

ANNE and ANNETTE.

NAME LIKE 'ANNE%'

The following example searches for names ending with character string ANNE, such as

ANNE and SUZANNE.

NAME LIKE '%ANNE'

The following example searches for all names whose second character is A.

NAME LIKE '_A%'

The following example searches for all last names beginning with character J.

LSTNAM LIKE 'J%'

This has the same effect as the following example:

SUBSTR (LSTNAM,1,1) = 'J'

When the pattern does not include a percent character (%), the length of the character

string must be identical to that of the field.

Chapter 2. Product Documentation

Using the BETWEEN Test

BETWEEN testThe BETWEEN test checks the fields specified in the field name for character strings or

numeric values that are equal to or between the specified constants. The values to be

tested must be two character-string constants or two numeric constants. The types of

these constants must be identical to that of the field name specified by the user. Delimit

the two constants with AND.

The following example searches for those records for which the price is between 50.35

and 75.3, inclusive:

PRICE BETWEEN 50.35 AND 75.3

The following example searches for those records for which the name begins with C:

NAME BETWEEN 'C' AND 'CZZZZZZZZZ'

The following example searches for those records for which the balance is between 0 and
5␠000.

BALDUE BETWEEN 0 AND 5000

This has the same meaning as the following expression.

BALDUE >= 0 AND BALDUE <= 5000

Note: Specify the values to be tested in the form of BETWEEN (minimum) AND

(maximum). For instance, BETWEEN 1 AND 10 is a valid specification. However,

BETWEEN 10 AND 1 returns no records.

Using the IN Test

IN testThe IN test checks the fields specified in the field name for the character strings or

numeric values in the list specified as the value. The value to be tested must be a list of

character-string constants or numeric constants. In addition, the types of these constants

must be identical to that of the specified field. Delimit the constants with blanks and

enclose them in parentheses. Up to 100 constants can be specified. The following

example shows how to use the IN test:

NAME IN ('SMITH' 'JONES' 'ANDERSON')

This example searches for those records for which the name is SMITH, JONES, or

ANDERSON.

The following example searches for the values in the STATE field for which the value is

other than NY, MN, or TX:

NOT STATE IN ('NY' 'MN' 'TX')

Note: Values are searched according to the exact characters specified by the

user. In other words, when the user's specification consists of only uppercase

characters, only uppercase character strings are returned. Similarly, when the

277

HCL Z and I Emulator for Windows (ENGLISH)

278

specification consists of only lowercase characters, only lowercase character

strings are returned.

Using the IS Test

IS testThe IS test checks the fields specified in the field name for null values.

The following example searches for those records for which the commission field

contains null values:

COMMISSIONS IS NULL

Using the ISNOT Test

ISNOT testThe ISNOT test checks the fields specified in the field name for non-null values.

The following example searches for those records for which the commission field does

not contain null values:

COMMISSIONS ISNOT NULL

In the test, logical AND and logical OR can be combined. When both AND and OR are

specified, AND comparison is performed first. Up to 50 conditions can be specified. For

example: testcombinationtestlogical AND and logical OR

MONTH=2 AND LOC='MIAMI' OR LOC='CHICAGO'

In this example, each record to be selected must satisfy the following condition:

MONTH=2 AND LOC='MIAMI'

or must satisfy the following condition:

LOC='CHICAGO'

This command can be modified by using parentheses. For example:

MONTH=2 AND (LOC='MIAMI' OR LOC='CHICAGO')

In this example, each record to be selected must satisfy the following condition:

MONTH=2

and it must satisfy the following condition:

LOC='MIAMI' OR LOC='CHICAGO'

NOT can also be used. The following example selects items where data is transferred not

only from those records in which the DEPT field is not equal to 470, but also from those

records for which the DEPT field is equal to 470 and, additionally, STATE is equal to NY.

NOT (DEPT = 470) OR (DEPT = 470 AND
 STATE = 'NY')

Comparison can start from a certain line and end at the next line. However, a field name

cannot start from a certain line and end at the next line. Field names must not exceed one

line.

When a value to be tested is a character string enclosed in quotation marks, the value can

start from a certain line and continue to the next line.

Chapter 2. Product Documentation

HAVING
This item is optional. It specifies which summary record is transferred.

Pay particular attention to the difference between HAVING and WHERE. WHERE operates on each record within

a certain group. HAVING, on the other hand, operates only on summary records (records that contain summary

information for each group).

With this item, you can specify one or more conditions that a summary record must satisfy prior to being transferred.

As the conditions, specify the tests that should be applied to the summary records. The specified test conditions

are applied to all summary records, only those summary records that pass the tests are transferred. To transfer all

summary records, leave the HAVING item blank.

The format of the conditions is as follows:

function (field-name) test value

This indicates:

function

This is a function supported for SELECT. See the description of SELECT in this section for details of

these functions.

field-name

This is the field defined by the record format specified in FROM. A field name is acceptable even when it

has not been specified in SELECT.

Test

This is the comparison type for functions. The types are listed below.

=

Equal to

<> or ><

Not equal

>

Greater than

>=

Greater than or equal to

<

Less than

<=

Less than or equal to

279

HCL Z and I Emulator for Windows (ENGLISH)

280

value

This is a function operating on certain fields or a constant. See WHERE on page 273 for details of

constants, expressions, and tests.

Note: A comma is treated as a decimal point. Therefore, do not separate numbers with

commas.

Test conditions can be combined by using logical AND or logical OR. When both AND and OR are

specified, AND comparison is performed first. Up to 50 tests can be specified. By using parentheses, the

operation order can be modified, or a description can be added to an operation. For example, you can

specify:

COUNT(*) >=2 AND MAX(PRICE) > 100

In this case, the following conditions are applied concurrently: groups to be transferred must contain

more than one record, and the summary records in such groups are transferred only when the maximum

price is greater than 100.

If the desired field cannot be found, selecting Browse displays a list of the names of all fields in the

record.

The type, length, digit, and number of decimal places of the value returned for each function are:

 Type Length Digit Decimal Places
SUM Packed 16 31 (Same as tested field)
AVG Packed 16 31 31 (Total of the digit
 and decimal places
 of the field)
COUNT Binary 4 10 0
MAX (Same as tested field)
MIN (Same as tested field)

ORDER BY
This item is optional. It specifies the order in which the requested records are grouped. When ORDER BY is not

specified, record transfer is not done according to a certain order.

Records are grouped according to the field specified first. Those records having the same value in each field specified

first are grouped by the field specified second, and so on. Records containing null values are grouped after all records

without null values have been grouped.

For example, you can specify:

DEPT,NAME,PHONE

In this case, records are first grouped according to DEPT. Then, the records having the same value for DEPT are

grouped by NAME. The records with the same DEPT and NAME values are finally grouped by PHONE.

When a field name is specified in ORDER BY, it must also have been specified in SELECT, or SELECT* must have been

specified.

Chapter 2. Product Documentation

Fields can be grouped in ascending or descending order. To do this, specify one blank after a field name then enter

ASC or DESC. The default value is ASC. For example, specify:

DEPT DESC, NAME ASC

This indicates that the DEPT fields are to be grouped in descending order, after which the NAME fields are to be

grouped in ascending (alphabetic) order.

Absolute values (ABS) can be specified for numeric fields. To do this, add a blank after a field name then enter ABS.

For those fields having negative values, the negative signs are ignored and the absolute values are used.

The total length of the fields to be specified must not exceed 120 digits.

Return Record at Missing Field Value
When joining records from several files, joining might fail because a record is missing. This item specifies whether

records with missing fields are transferred.

When you specify that records with missing fields are to be transferred, the alternative values for the missing fields

are transferred. These values are normally blanks for character fields and zeros for numeric fields.

When you do not specify transfer of records with missing fields, those records are not transferred.

Specify this item to transfer data records that have alternative values for missing fields.

Do not specify this item if data records that have alternative values for missing fields are not to be specified. In this

case, only those data records created from those records that exist in all files specified in FROM are transferred.

TO

Output device
This item specifies where received data is to be sent.

Display

The received data is displayed on the screen.

Disk

The received data is written to a workstation diskette or hard disk file.

Printer

The received data is printed on the printer.

When Disk is selected as the output device, also specify the following items.

PC file

This item specifies the name of the workstation disk file or diskette file to which the data is to be

written.

281

HCL Z and I Emulator for Windows (ENGLISH)

282

Replace old file

This item is always required. It specifies whether the records in the file specified by PC File are to be

replaced with the transferred records.

The default value is Replace old file.

Workstation file type

This item is always required. It specifies the type of the workstation disk file or diskette file to which the

transferred records are written.

The system default is PC code test.

Save transfer description

This item is always required. It specifies whether the workstation file description is written to a

workstation file. This file description describes the transferred data and it is required to subsequently

return data to the iSeries™, eServer™ i5, or System i5™.

The system default is Save.

Description file name

This item is always required. It appears only when Save Transfer Description is selected. The File

Description File Name specifies the name of the workstation disk file or diskette file to which the file

description is written.

This item automatically sets the desired file name. This file name is the same as that specified by the

user for TO, but to which extension .FDF has been added. Extension .FDF indicates that this file is a file-

description file.

The use of extension .FDF is recommended when using a unique file name. To specify a file name in this

item, use the same format as that in TO. (Items inside brackets [] can be omitted.)

[d:][path-name]file-name[.ext]

After Save File Description File is specified or a name is specified for File Description File Name, the

iSeries™→PC Transfer Request window reopens after the Return key is pressed. Using this screen, a

transfer request can be changed, saved, or executed.

Saving, Opening, Changing, and Executing a Transfer Request
The following section explains how to save, open, change, and execute, as a file, the information (transfer request) on

the data to be transferred.

Saving a Transfer Request
You should save a transfer request, especially when the request will be executed repeatedly. This eliminates the need

to create a transfer request every time a request is executed. To save a transfer request, do as follows:

Chapter 2. Product Documentation

1. Specify the information needed for transfer, using the iSeries™→PC Transfer window. See Creating an iSeries-

to-Workstation Transfer Request on page 264 for an explanation of how to specify the required data.

2. After specifying the necessary data, click Save or Save As from the File menu of the menu bar.

The Save Transfer Request File As window opens.

3. Specify each item, referring to the following explanation, then click OK.

File Name

Disk to which data is to be saved. Specify a file name or diskette file name. The default

extension is TTO. Extension TTO identifies a file as a transfer request file.

Description

This item can be used to add a short explanation of a transfer request, as required. The

explanation can be up to 40 characters in length. This explanation is saved with the transfer

request, and displayed in the list of transfer request names. It is useful, therefore, for identifying

a transfer request.

4. The system asks whether the saved transfer request is to be registered in the PC400 folder.

When you click OK, the transfer request is registered as an icon. Subsequently selecting this icon transfers

data according to the registered data transfer request.

Opening and Changing a Saved Transfer Request
To open and change a saved transfer request:

1. Display the iSeries™→PC Transfer window.

2. Select Open from the File menu.

The Open Transfer Request File window opens.

3. Specify the name of the file to be opened using the Open Transfer Request File window. Then click OK.

The iSeries™→PC Transfer window reopens, with the information specified for each item for the transfer

request displayed. This completes opening of the saved transfer request.

4. Change the contents, as necessary.

5. To save the changed contents, follow the procedure given in Saving a Transfer Request on page 282.

Executing a Transfer Request
You can execute a file transfer request in one of the following two ways:

• By selecting the icon with which the transfer request has been registered

• By using the iSeries™→PC Transfer window of the Data Transfer icon

283

HCL Z and I Emulator for Windows (ENGLISH)

284

Selecting the Icon with Which the Transfer Request Has Been Registered
This method can be used only when a transfer request has been saved as an icon by using the iSeries™→PC Transfer

window.

Data transfer starts as soon as you select the icon with which a transfer request has been registered.

Using the iSeries→PC Transfer Window

1. Before attempting to execute a transfer request, all operations such as creating, opening, and changing a

transfer request must have been completed.

Note: When data is transferred from a workstation to an existing member in an iSeries™, eServer™ i5,

or System i5™ file, the transferred data replaces the existing data in the member.

2. Select Receive from the iSeries™→PC Transfer window.

Data transfer starts.

3. After the transfer has been completed, click Cancel, or click Exit from the File menu.

Status during Transfer
Display can be specified as the output device, when the current transfer request is created or changed. This sends

the transferred record to the screen. On the screen, each record is displayed on one line.

Each field in a transferred record is converted from the iSeries™, eServer™ i5, or System i5™ data type to workstation

code.

Note: The workstation receives the iSeries™, eServer™ i5, or System i5™ records in order and then writes

them to a temporary file of the default directory in the default drive (usually, the directory in which PC400 is

installed). The maximum number of records that can be transferred is 4096 records, limited by the amount of

records that can be stored in free space of the default drive.

When Disk is selected as the output device, the following actions are performed:

1. The workstation file description is written to a workstation disk file or diskette file according to the Save File

Description File specification. (If Save File Description File has not been specified, this procedure is not

performed.)

2. The transferred records are written to a workstation disk file or diskette file.

Limited Usage of File Names and Field Names
For a transfer request from a workstation to the iSeries™, eServer™ i5, or System i5™, none of the following reserved

words can be specified as a file name or field name:

Chapter 2. Product Documentation

CRTFILE

CRTMBR

FILETEXT

FILETYPE

INTO

MBRTEXT

PUBAUT

RCDLEN

REFFILE

For a transfer request from the iSeries™, eServer™ i5, or System i5™ to a workstation, none of the following reserved

words can be used as a file name or field name:

ABS

AND

ASC

AVG

BETWEEN

BY

COLUMNS

COUNT

DESC

EXTRACT

FROM

GROUP

HAVING

IN

INNER

IS

ISNOT

LIKE

MAX

MIN

NOT

OPTIONS

OR

ORDER

PARTOUT

REPLACE

SELECT

SUBSTR

SUM

TABLES

WHERE

To use one of these reserved words as a file name or field name, use the reserved word in uppercase, enclosed in

quotation marks:

TO MYLIB/"INTO"

Examples of Transfer Requests for Receiving
This section provides examples of transfer requests for receiving. The contents of this section provide supplementary

information to help you better understand transfer requests for receiving.

This section describes how to transfer data from the iSeries™, eServer™ i5, or System i5™, based on the inventory

control file INVENTORY and supplier file SUPPLIERS.

The INVENTORY file contains information about the various parts in stock. Each part has a three-digit identification

number, PARTNUM. The INVENTORY file contains the names of parts (DESCRIPTION) and the quantity on hand

(QONHAND) for each part.

 File: INVENTORY
 Field name: PARTNUM DESCRIPTION QONHAND
 ------- ----------- -------

285

HCL Z and I Emulator for Windows (ENGLISH)

286

 Record 1: 209 CAM 50
 2: 221 BOLT 650
 3: 222 BOLT 1250
 4: 231 NUT 700
 5: 232 NUT 1100
 6: 207 GEAR 75
 7: 241 WASHER 6000
 8: 285 WHEEL 350
 9: 295 BELT 85

The SUPPLIERS file contains information about the suppliers of each part. Each supplier is identified by a two-digit

number, SUPPNO. The SUPPLIERS file contains the number of parts delivered (PARTNO), their prices (PRICE), times

of delivery (DELIVTIME), and ordered quantities (QONORDER). The parts listed in the SUPPLIERS file are the same as

those listed in the INVENTORY file.

 File: SUPPLIERS
 Field name: SUPPNO PARTNO PRICE DELIVTIME QONORDER
 ------ ------ ----- --------- --------
 Record 1: 51 221 .30 10 50
 2: 51 231 .10 10 0
 3: 53 222 .25 15 0
 4: 53 232 .10 15 200
 5: 53 241 .08 15 0
 6: 54 209 18.00 21 0
 7: 54 221 .10 30 150
 8: 54 231 .04 30 200
 9: 54 241 .02 30 200
 10: 57 285 21.00 14 0
 11: 57 295 8.50 21 24
 12: 61 221 .20 21 0
 13: 61 222 .20 21 200
 14: 61 241 .05 21 0
 15: 64 207 29.00 14 20
 16: 64 209 19.50 7 7

Receiving Part of an iSeries, eServer i5, or System i5 File
Specify the following items:

Library/File (Mem

ber)

INVENTORY

SELECT PARTNUM, QON

HAND

WHERE QONHAND < 100

ORDER BY PARTNUM

In this case, only part of the INVENTORY file is to be transferred. Specifically, only the part number (PARTNUM) and

quantity on hand (QONHAND) fields of the records for which the number of parts in stock is less than 100 (QONHAND

< 100) are transferred. Records are transferred in ascending order of parts numbers (PARTNUM).

The following data is transferred:

Chapter 2. Product Documentation

 Field: PARTNUM QONHAND
 ------- -------
 Record 1: 207 75
 2: 209 50
 3: 295 85

Receiving Records Joined from Several iSeries, eServer i5, or System i5 Files
Two iSeries™, eServer™ i5, or System i5™ files, INVENTORY and SUPPLIERS, are assumed. Note that both files contain

records including part number fields. The INVENTORY file contains inventory information about individual parts. The

SUPPLIERS file contains information about purchasing and ordering.

You might want to transfer information on part numbers, part names, and the prices of the parts to be ordered from

supplier 51. The desired fields are PARTNO (SUPPLIERS file), DESCRIPTION (INVENTORY file), and PRICE (SUPPLIERS

file).

By comparing the data in the INVENTORY file and the SUPPLIERS file, the user can determine that supplier 51

provides part numbers 221 and 231, called BOLT and NUT, respectively, and that their prices are 30 cents and 10

cents, respectively. The following table summarizes this information:

 Field: PARTNO DESCRIPTION PRICE
 ------ ----------- -----
 Record 1: 221 BOLT .30
 2: 231 NUT .10

The same results are available by joining the data in these two files by using the iSeries™→PC Transfer function. To

do this, specify both files (INVENTORY and SUPPLIERS) in the FROM item. For SELECT, specify which fields are to be

transferred (PARTNO, DESCRIPTION, and PRICE). For WHERE, specify which records are to be transferred (records for

which SUPPNO = 51).

Respecify the relationship between the two files in JOIN BY. From these results, the user can determine, by checking

the SUPPLIERS file, that part number 221 is delivered from supplier 51 at a cost of 30 cents. In addition, to determine

the part name, the user must check the INVENTORY file for part number 221 and its product name. In other words, the

user observes that data is joined from the records in both the SUPPLIERS file and the INVENTORY file and that those

records have the same part number. Therefore, to link the two records in these files, the records must have the same

part number.

In short, to obtain this information, specify:

Library/File (Mem

ber)

SUPPLIERS, INVENTORY

JOIN BY PARTNO = PARTNUM

SELECT PARTNO, DESCRIPTION,

PRICE

WHERE SUPPNO = 51

ORDER BY PARTNO

287

HCL Z and I Emulator for Windows (ENGLISH)

288

Receiving Records Using File Qualifiers
To join records from several iSeries™, eServer™ i5, or System i5™ files, fields of the same type must be joined.

For example, the part number fields in the INVENTORY and SUPPLIERS files can have the same name PARTNO. To

specify the desired PARTNO fields, you must specify which file contains those fields. To do so, file qualifiers are used.

A file qualifier is the character T (uppercase or lowercase) followed by a one- or two-digit number. Use a comma to

delimit the file qualifier and field name. In the previous example, prefix T1. and T2. to the PARTNO field names. T1.

indicates the first file of FROM, while T2. indicates the second.

To obtain the same information as in the previous example, specify:

Library/File (Mem

ber)

SUPPLIERS, INVENTORY

JOIN BY T1.PARTNO = T2.PARTNO

SELECT T1.PARTNO, DESCRIPTION,

PRICE

WHERE SUPPNO = 51

ORDER BY T1.PARTNO

T1.PARTNO indicates the PARTNO fields in the SUPPLIERS file, while T2.PARTNO indicates the PARTNO fields in the

INVENTORY file.

Qualifiers are not needed for the names of the DESCRIPTION, PRICE, and SUPPNO fields, because they exist in one

file only. However, the user can specify the following qualifiers for clarity:

T2.DESCRIPTION, T1.PRICE, T1.SUPPNO

The following examples of joining several iSeries™, eServer™ i5, or System i5™ files describe more sophisticated

techniques. You should now be familiar with the basics of how to join two files. For a more detailed explanation, refer

to the following sections.

Receiving with Field Missing Records Joined
The joining of records from several files could fail because one or more records is missing. For example, the record

containing part number 221 might not be found in the INVENTORY file. This means that the records that can be joined

to the 1st, 7th, and 12th records in the SUPPLIERS file do not exist in the INVENTORY file. In this case, the PARTNO

field and PRICE field for part number 221 can be determined, but the DESCRIPTION field cannot be determined. So,

the DESCRIPTION field is missing.

To transfer field missing records, use Return Record at Missing Field Value.

When Return Record at Missing Field Value has been specified, the default iSeries™, eServer™ i5, or System i5™

values are transferred instead of the missing field values. The default values for character fields are blanks, while

those for numeric fields are zeros. For example, if the INVENTORY file does not contain the part number 221 record,

the result of the previous example will be as follows:

 Field: PARTNO DESCRIPTION PRICE
 ------ ----------- -----

Chapter 2. Product Documentation

 Record 1: 221 .30
 2: 231 NUT .10

If Return Record at Missing Field Value has not been specified, the field missing records are not transferred. For

example, if the INVENTORY file does not contain the part number 221 record, the result of the previous example will

be as follows:

 Field: PARTNO DESCRIPTION PRICE
 ------ ----------- -----
 Record 1: 231 NUT .10

Receiving with Records in a Same File Joined
Records in the same file can be joined. In other words, a file can be repeatedly specified in FROM. For instance, data in

certain records can be compared using this function.

For example, the SUPPLIERS file shows that several suppliers provide the same part. The user might want to

know which supplier sets a price that is double, or greater than double, that of another. To transfer the necessary

information to a workstation, specify:

Library/File (Mem

ber)

SUPPLIERS, SUPPLIERS

JOIN BY T1.PARTNO = T2.PARTNO

SELECT T1.PARTNO, T1.SUPPNO, T1.PRICE, T2.SUPPNO,

T2.PRICE

WHERE T1.PRICE > 2 * T2.PRICE

ORDER BY T1.PARTNO

The same file has been specified in FROM twice. JOIN BY specifies that records having the same part number are

joined. This creates a joined record containing information about two suppliers of a single part. The user can spot

those records for which the price is double, or greater than double, that of another supplier.

Records in the SUPPLIERS file are compared, one by one, with all the records (including itself) in the SUPPLIERS file.

When the same part number is found, the two corresponding records are linked. This processing is performed for

each record in the SUPPLIERS file.

For each record, the first supplier's price is compared with the second supplier's price. When the first supplier's price

is double, or greater than double, that of the second, only the record containing the first supplier price is kept.

The final result is as follows:

 Field: T1.PARTNO T1.SUPPNO T1.PRICE T2.SUPPNO T2.PRICE
 --------- --------- -------- --------- --------
 Record 1: 221 51 .30 54 .10
 2: 231 51 .10 54 .04
 3: 241 53 .08 54 .02
 4: 241 61 .05 54 .02

289

HCL Z and I Emulator for Windows (ENGLISH)

290

Specifying Records To Be Included in a Group
You might want to limit which records will be included in a group. To do so, use WHERE. The following example

transfers the average and lowest prices of each part for those records for which the delivery time (DELIVTIME) is less

than 30 days.

Library/File (Mem

ber)

SUPPLIERS

GROUP BY PARTNO

SELECT PARTNO, AVG(PRICE),

MIN(PRICE)

WHERE DELIVTIME < 30

The result is as follows:

 Field: PARTNO AVG(PRICE) MIN(PRICE)
 ------ ---------- ----------
 Record 1: 221 .25 .20
 2: 231 .10 .10
 3: 222 .23 .20
 4: 232 .10 .10
 5: 241 .07 .05
 6: 209 18.75 18.00
 7: 285 21.00 21.00
 8: 295 8.50 8.50
 9: 207 29.00 29.00

Note that the conditions specified in WHERE are checked first, then the records that satisfy those conditions are

included in the group.

Specifying Summary Records To Be Transferred
In some cases, you might want to transfer only summary records that satisfy certain conditions. The use of HAVING

enables the selection of which summary records are to be transferred. WHERE is applied to certain records in a group,

while HAVING is applied only to summary records.

The following example transfers the highest and lowest prices for each part. However, the summary records to be

transferred are only those for which the highest price exceeds 10.00.

Library/File (Mem

ber)

SUPPLIERS

GROUP BY PARTNO

SELECT PARTNO, MAX(PRICE),

MIN(PRICE)

HAVING MAX(PRICE) > 10.00

The following table shows the result of removing unnecessary summary records by using HAVING

 Field: PARTNO MAX(PRICE) MIN(PRICE)
 ------ ---------- ----------

Chapter 2. Product Documentation

 Record 1: 209 19.50 18.00
 2: 285 21.00 21.00
 3: 207 29.00 29.00

One summary record for an entire file can be transferred. To do this, specify only the summary function in SELECT

and nothing in GROUP BY. As a result, an entire file can be recognized as one group, while one summary record can

be transferred for the group.

You can concurrently use the concept of summarizing groups and that of joining records from several files. To obtain

the desired results, do as follows:

1. Specify a file in FROM, and specify the join conditions to join the records in JOIN BY.

2. Specify the conditions in WHERE to remove unnecessary records.

3. Specify the fields used for grouping the remaining records in GROUP BY.

4. Specify the function in SELECT, then create summary records.

5. Specify the conditions in HAVING to remove unnecessary records.

6. Specify the items for grouping the final summary records in ORDER BY.

Functions Available from the Pull-Down Menu
The following section provides a simple explanation of the menu bar of the iSeries™→PC Transfer window and

PC→iSeries™ Transfer window.

File
Transfer request files can be processed.

Create

Creates a transfer request file

Open

Displays the contents of an existing transfer request file

Save, Save As

Save the current settings to the transfer request file being used or to a new transfer request file,

respectively

Exit

Terminates the operation started by selecting the Data Transfer icon

Setup (Only for iSeries→PC Transfer)

User Options
Time, date, and numeric value format for receiving can be specified.

291

HCL Z and I Emulator for Windows (ENGLISH)

292

Ignore Decimal Data Error

Specifies whether decimal data errors found in packed or zoned decimal fields upon executing

requests are to be ignored. Selecting Yes to ignore decimal data errors and using existing indices can

considerably reduce the time needed to execute a request. If this item is not specified, the transfer

request creates indices again and modifies any detected decimal data errors. This requires extra

processing time.

Time Format

Specifies a desired time format for fields of iSeries™, eServer™ i5, or System i5™ field type having a

selected time. If no time format is specified, the default value in the workstation's national information

file is used when the transfer request starts, and that in an existing transfer request is assumed when

the request is called again.

Supported time formats are as follows:

HMS

Hours, minutes, seconds (hh:mm:ss)

ISO

International Standard Organization (hh.mm.ss)

USA

USA Standard (hh:mm AM or PM)

EUR

IBM® European Standard (hh.mm.ss)

JIS

Japanese Industrial Standard (hh:mm:ss)

DDS

iSeries™, eServer™ i5, or System i5™ DDS (Format given by iSeries™, eServer™ i5, or System

i5™ file attribute)

DFT

iSeries™, eServer™ i5, or System i5™ default format (Host job default is used)

Time separator

Specifies enabled delimiters. The fields of the iSeries™, eServer™ i5, or System i5™ field type for the

selected time must be in a format that supports delimiters.

When no delimiters are specified, the default value in the workstation's national information file is used

when the transfer request starts, and that in an existing transfer request is assumed when the request is

called again.

Supported time delimiters are as follows:

Chapter 2. Product Documentation

Colon

(:)

Period

(.)

Comma

(,)

Blank

()

Null

(NULL) No Separator

Default value

(DFT) iSeries™, eServer™ i5, or System i5™ Default Separator

Date Format

Specifies the date format for fields of iSeries™, eServer™ i5, or System i5™ field type for the selected

date.

If this date format is not specified, the default value in the workstation's national information file is used.

Supported values are as follows:

MDY

Month, day, year (mm/dd/yy)

DMY

Day, month ,year (dd/mm/yy)

YMD

Year, month, day (yy/mm/dd)

JUL

Julian (yy/ddd)

ISO

International Standard Organization (yyyy-mm-dd)

USA

USA Standards (mm/dd/yyyy)

EUR

IBM® European Standard (dd.mm.yyyy)

293

HCL Z and I Emulator for Windows (ENGLISH)

294

JIS

Japanese Industrial Standard (yyyy-mm-dd)

DDS

iSeries™, eServer™ i5, or System i5™ DDS (Format given by iSeries™, eServer™ i5, or System

i5™ file attribute)

DFT

iSeries™, eServer™ i5, or System i5™ default format (Host job default is used)

Date separator

Specifies delimiters. The fields of the iSeries™, eServer™ i5, or System i5™ field type for the selected date

must be in a format that supports delimiters.

When no date delimiters are specified, the default value in the workstation's national information file is

used when the transfer request starts, and that in an existing transfer request is used when the request

is called again.

Supported date delimiters are as follows:

Slash

(/)

Dash

(-)

Period

(.)

Comma

(,)

Blank

()

Null

(Null) Delimiters are not used.

DFT

(DFT) iSeries™, eServer™ i5, or System i5™ default separator

Decimal separator

Specifies the decimal point character in an iSeries™, eServer™ i5, or System i5™ field whose type is

packed decimal or zoned decimal.

When decimal points are not specified, the default value in the workstation's national information file is

used when the transfer request starts, and that in an existing transfer request is used when the request

is called again.

Chapter 2. Product Documentation

Supported decimal point delimiters are as follows:

Period

(.)

Comma

(,)

DFT

(DFT) - Default decimal separator

Sort Sequence
Specifies which sort sequence should be used for this transfer request.

iSeries job default

Sort by the table identified on the iSeries™, eServer™ i5, or System i5™ as the job sort table.

Hexadecimal

Sort by the internal hexadecimal representation.

User specified table

Sort by the table identified by the user in a subsequent prompt.

Shared Weight Table

Sort by the shared weight table associated with the language named in a subsequent prompt.

Unique Weight Table

Sort by the shared unique table associated with the language named in a subsequent prompt.

Changing the sort sequence affects the order in which records appear only if the ORDER BY clause is being used. The

sort sequence affects all character comparisons that depend on the order of the alphabet. Such comparisons can

occur in the WHERE clause, the GROUP BY clause, the HAVING clause, the JOIN BY clause, the IN predicate, the LIKE

predicate, the BETWEEN predicate, the MAX function, and the MIN function. Comparison operations are =, <>, >, >=,

and >=.

Sort Sequence Table Name
Type the name of the sort sequence table that you want to use for this transfer request. The format of the table name

should be library/table. *LIBL and *CURLIB are allowed for the library name.

Translation Table
Translation tables for ASCII-to-EBCDIC translation or for EBCDIC-to-ASCII translation can be specified, created, and

customized.

Current Table

Specifies whether the default translation or the user-defined translation table is to be used.

295

HCL Z and I Emulator for Windows (ENGLISH)

296

Host Code Page

Specifies the host code page to be used for translation.

Workstation Code Page

Specifies the workstation code page to be used for translation.

File Name

Specifies the file name of the user-defined table to be used for translation.

• To list all files in your workstation, click Browse.

• To customize the translation table, click Customize.

Signon Options
When configuring a Data Transfer session, the user specify the following signon parameters:

Use Kerberos principal, no prompting

This function enables Kerberos authentication, using the ticket generated by the Windows user

credentials. This option is disabled by default.

Prompt as needed

The host prompt the user for signon information. For each host, the signon dialog is presented only

once during the transfer session.

The user enable or disable the “Kerberos Signon Options” using the “Kerberos auto-signon” check box provided in the

“Custom” installation UI. By default, “Kerberos auto-signon” is checked and “Kerberos Signon Options” is enabled.

The user disable the “Kerberos Signon Options” by unchecking the “Kerberos auto-signon” check box in the “Custom”

installation UI.

For the “Typical” installation, “Kerberos Signon Options” is enabled by default and there are no UI options to enable or

disable the “Kerberos Signon Options.”

Silent Installation

The user enable or disable the “Kerberos Signon Options” by setting the value of “KERBEROSSIGNON”

property in the custom.ini file.

By default, “Kerberos Signon Options” is enabled and “KERBEROSSIGNON” property is set to

“1” in the custom.ini file. The user disable the “Kerberos Signon Options” by setting the value of

“KERBEROSSIGNON” property to “0” in the custom.ini. The user must pass custom.ini as an input during

the reinstallation of Personal Communications.

Note: The user is not able to enable/disable the "Kerberos Signon Options" for the Refresh Pack Installer.

Chapter 2. Product Documentation

File-Description Files
A file-description file is a workstation file that contains all field descriptions of the data in the corresponding

workstation data file. Each field descriptor contains the field name, data type, and field length. There is one field

descriptor for each field in the workstation file.

A file-description file defines the following: explaining a file-description file

• The file type of the workstation file to be transferred. For an explanation of each file type, see Creating a File-

Description File on page 297.

• The field names and order of these fields in each data record.

• The data type of each field in the workstation file.

• The size and number of decimal places of each field.

The workstation files require field definitions when the files are transferred. The field definitions describe the file

as it exists on the workstation. These definitions contain data that is similar to the field definitions (DDS) required

by iSeries™, eServer™ i5, or System i5™ files. The data must be defined for both the iSeries™, eServer™ i5, or System

i5™ and the workstation files, because the field names from each file are needed to send the data to the iSeries™,

eServer™ i5, or System i5™ and the data in each file might be in different formats. DDS (data description specifications) data description specifications (DDS)

A file-description file is created on request during the transfer process of data from an iSeries™, eServer™ i5, or

System i5™ file to a workstation file. Therefore, you usually do not need to worry about the contents or the format of

the file-description file. However, if you transfer data that has not been previously transferred to the system, you must

create a file-description file.

Creating a File-Description File
You can create a file-description file using a workstation text editor. The file-description file must be an ASCII text file.

Therefore, each record must end with a carriage return (CR) character (hex 0D) followed by a line feed (LF) character

(hex 0A). All tab characters (hex 09) are treated as ASCII spaces. The last byte of the file must contain an end-of-

file (EOF) character (hex 1A). Workstation editors that create ASCII text files usually use these special character

designators, so normally you do not need to be concerned about them.

File-Description File Format
The format of the file-description file is as follows:

PCFDF [comment]
PCFT file-type-indicator [comment]
PCFO time-format,time-separator, date-format, date-separator, decimal-separator [comment]
PCFL field-name-1 data-type-1 length-1[/decimal-position-1][comment]
 .
 .
 .
PCFL field-name-n data-type-n length-n[/decimal-position-n][comment]
[* comment]

Items within brackets are optional. Use either uppercase or lowercase characters anywhere in the file.

297

HCL Z and I Emulator for Windows (ENGLISH)

298

PCFDF Entries
PCFDF is a keyword that identifies this file as a workstation file-description file. It must appear in the first line of the

file, starting in column 1. A comment is the only other entry allowed on the first line. If you type a comment, it must be

separated from the PCFDF keyword by a space.

PCFT Entries
PCFT is a keyword that identifies this record as containing the file type indicator. It is followed by an indicator

identifying the type of file in which the data is stored. It must appear only once, and must start in column 1, after the

PCFDF record and before any PCFL records. An optional comment can follow this file-type indicator if separated from

the indicator by at least one space.

Following is an example of a PCFT entry:

PCFT 4 BASIC RANDOM FILE

Table 34: File-Type Indicators on page 298 shows the valid file-type indicators.

Table 34. File-Type Indicators

Indicator File Type

1 ASCII text

2 DOS random

3 BASIC sequential

4 BASIC random

5 Data interchange format (DIF**)

6 No-conversion file

7 Reserved

8 DOS random type 2

9 BIFF format

PCFO Entry
The PCFO entry is optional. PCFO is a keyword that identifies this record as containing information about the date

and time formats, time stamp, and separator characters for applicable formats. It must appear only once and must

start in column 1, after the PCFT record and before any PCFL records. If there is no PCFO entry, the information or

characters assigned as defaults for the host system are used.

Table 35: Time Formats on page 299 shows the valid time formats.

Chapter 2. Product Documentation

Table 35. Time Formats

Indicator Format Name Time Format

1 HMS hh:mm:ss

2 ISO - International Standards Organization hh.mm.ss

3 USA - USA standard hh:mm AM or PM

4 EUR - European hh.mm.ss

5 JIS - Japanese Industrial Standard Christian

Era

hh:mm:ss

6 DDS Format given by iSeries™, eServer™ i5, or

System i5™ file attribute

7 DFT Host job default is used

* Unspecified Host job default is used

Table 36: Time Separators on page 299 shows the valid time separators.

Table 36. Time Separators

Indicator Separator

1 Colon (:)

2 Period (.)

3 Comma (,)

4 Blank ()

5 Null (N)

6 Default (D) (host job default)

* Unspecified (host job default)

Table 37: Date Formats on page 299 shows the valid date formats.

Table 37. Date Formats

Indicator Format Name Date Format

1 MDY mm/dd/yy

2 DMY dd/mm/yy

3 YMD yy/mm/dd

4 Julian yy/ddd

5 ISO yyyy-mm-dd

6 USA mm/dd/yyyy

7 EUR dd.mm.yyyy

8 JIS yyyy-mm-dd

9 DDS Format given by iSeries™, eServer™ i5, or

System i5™ file attribute

10 DFT Host job default is used

* Unspecified Host job default is used

299

HCL Z and I Emulator for Windows (ENGLISH)

300

Table 38: Date Separators on page 300 shows the valid date separators.

Table 38. Date Separators

Indicator Separator

1 Slash (/)

2 Dash (–)

3 Period (.)

4 Comma (,)

5 Blank ()

6 Null (N)

7 Default (D) (host job default)

* Unspecified (host job default used)

Table 39: Decimal Separators on page 300 shows the valid decimal separators.

Table 39. Decimal Separators

Indicator Separator

1 Period (.)

2 Comma (,)

* Unspecified (workstation default used)

Following is an example of a PCFO entry:

PCFO 1,1,1,1,1 OPTIONS SETTINGS

PCFL Entries
PCFL identifies a definition for a field. Enter a PCFL entry in the file-description file for each field in the data file. The

PCFL records must be in the same order as the fields they define in the data file.

Define as many as 256 PCFL records in the file-description file and start PCFL records in column 1. If you enter more

than 256 PCFL records, you receive an error message. You cannot continue a record on one line, and only the first 80

characters of a record are used.

Following is an example of a PCFL entry:

PCFL CUSTNAME 1 20 CUSTOMER NAME

Each PCFL entry contains the following things:

• The keyword, PCFL, starting in column 1 and followed by a space. This identifies the record as a field

description.

• The field name, followed by a space. This must match the name that exists in the field definitions on the

iSeries™, eServer™ i5, or System i5™ and can be from 1 to 10 characters.

Chapter 2. Product Documentation

• The indicator for the data type. Table 40: Data Type Indicators on page 301 shows the indicators that

represent the data type of the data in the field. Follow the specified indicator with a space.

• The size of the field (in bytes) as it is stored in the workstation file. The length specification can be from 1 to 4

characters.

Table 40. Data Type Indicators

Indicator Data Type

1 ASCII1

2 ASCII numeric

3 Hexadecimal

4 Binary

5 Zoned

6 Packed

7 BASIC integer

8 BASIC single-precision floating point

9 BASIC double-precision floating point

10 EBCDIC

11 EBCDIC zoned

12 EBCDIC packed
1

Includes date, time, and time stamp except for files that are not converted.

The data type indicator you enter must be valid for the file type entered earlier. Any other data

types are not valid and are diagnosed as errors during a data transfer to the iSeries™, eServer™ i5,

or System i5™.

Table 41: Valid SBCS Data Types for File Types on page 301 shows the valid single-byte character set (SBCS) data

types for each file.

Table 41. Valid SBCS Data Types for File Types

File Type Valid Data Type

ASCII text ASCII

ASCII

numeric

DOS random ASCII

Binary

Hexadecimal

ASCII Packed Zoned

BASIC sequential ASCII ASCII numeric

301

HCL Z and I Emulator for Windows (ENGLISH)

302

Table 41. Valid SBCS Data Types for File Types

(continued)

File Type Valid Data Type

BASIC random ASCII BASIC double-precision floating point BASIC integer BASIC sin

gle-precision floating point Hexadecimal

DIF ASCII ASCII numeric

No-conversion Binary EBCDIC EBCDIC packed EBCDIC zoned Hexadecimal

DOS random type 2 ASCII Binary Hexadecimal Packed Zoned

BIFF format ASCII ASCII numeric

Note: ASCII (SBCS) includes date, time, and time stamp types if converted. EBCDIC includes date, time,

and time stamp if not converted.

For numeric fields in BASIC sequential and DIF files, a size specification must be present. However, because the data

in these fields is of variable length, the data transfer function assumes a maximum length of 65 characters. This

length more than covers the largest possible exponential ASCII numeric value. The size specifications for character

fields must be the maximum size of any data item in that field.

Table 42: Allowable Data Length Limits for Personal Computer SBCS Data Types on page 302 shows the allowed

data length limits for each workstation data type. These are the maximum lengths you can specify for size in the

PCFL entry.

Table 42. Allowable Data Length Limits for Personal Computer SBCS Data Types

Personal Computer Data Type Data Length Limit (in Bytes)

ASCII 4093

ASCII numeric 33 (65 for DIF and BASIC sequential)

BASIC double-precision 8 (only allowed length)

BASIC integer 2 (only allowed length)

BASIC single-precision 4 (only allowed length)

Binary 4

EBCDIC 4093

Hexadecimal 2048

Packed decimal (ASCII and EBCDIC) 16

Zoned decimal (ASCII and EBCDIC) 31

Time

HMS 1

USA

ISO, EUR, and JIS 1

DDS, DFT

• 8

• 8

• 8

• 8 or 10 2

Chapter 2. Product Documentation

Table 42. Allowable Data Length Limits for Personal Computer SBCS Data Types

(continued)

Personal Computer Data Type Data Length Limit (in Bytes)

Date

MDY, DMY, YMD

Julian

ISO, EUR, JIS, USA (see note 1)

DDS, DFT

• 8

• 6 (only allowed length)

• 10

• 6, 8, or 10 2

Time stamp • 26

Notes:

1

These abbreviations appear in the time and date parameter sections.

HMS

Hours Minutes Seconds

EUR

IBM® European Standard

JIS

Japanese Industrial Standard Christian Era

ISO

International Standards Organization

2

The length is determined by the format defined in the host file for DDS, or from the

iSeries™, eServer™ i5, or System i5™ job default (DFT keyword).

Table 43: Allowable Data Length Limits for iSeries, eServer i5, or System i5 Data Types on page 303 shows the

allowed data length limits for each iSeries™, eServer™ i5, or System i5™ data type.

Table 43. Allowable Data Length Limits for iSeries™, eServer™ i5, or System i5™ Data Types

iSeries, eServer i5, or System i5 Data Type Data Length Limit in Bytes 1

Binary 2 or 4 (only allowed lengths)

EBCDIC 4096

Hexadecimal 2048

Packed decimal (EBCDIC) 16

Zoned decimal (EBCDIC) 31

303

HCL Z and I Emulator for Windows (ENGLISH)

304

Table 43. Allowable Data Length Limits for iSeries™, eServer™ i5, or System i5™ Data Types

(continued)

iSeries, eServer i5, or System i5 Data Type Data Length Limit in Bytes 1

Time

 HMS 8

 USA 8

 ISO, EUR, and JIS 8

 DDS, DFT 8 or 10 2

Date

 MDY, DMY, YMD 8

 Julian 6 (only allowed length)

 ISO, EUR, JIS, USA 10

 DDS, DFT 6, 8, or 10 2

Time stamp 26

Notes:

1

The data length limits for the workstation and the system data fields are different in some

cases. For these cases, the transfer function attempts to fit the workstation data into the

system field. If the data does not fit into the field, a message is displayed. Refer to Data

Conversions on page 305 for more details.

2

The length is determined by the format defined in the host file for DDS, or from the iSeries™,

eServer™ i5, or System i5™ job default (DFT keyword).

If there is a decimal position associated with the data in that field, place a forward slash (/) and then the number of

decimal positions after the length specification. There are no spaces between the length, slash, and decimal position

specifications.

The decimal position specification refers to the number of positions from the right-hand byte of the resulting decimal

number. Do not specify a decimal position for floating-point numbers unless the data type is one of the following

types:

• ASCII numeric

• Binary

• Packed

• Zoned

Chapter 2. Product Documentation

Note: The number of decimal positions in a field ranges from 0 to 9 or the maximum number of decimal digits

in this number, whichever is smaller. The data transfer function might round the number to fit it into the field.

Refer to Data Conversions on page 305 for more details.

Comment Entries
Enter comment lines anywhere in the file-description file, observing the following restrictions:

• The last element of the field-descriptor entry specification is a comment. This is an optional entry for your

information only, and must be separated from the size entry by a space. PCFL entries created by the data

transfer function (RTOPC) do not contain a comment field.

• Precede the comment with an asterisk (*) as the first nonspace character in the line.

• Do not exceed 80 characters in length.

• Do not make the comment the first record in the file-description file.

Following is an example of a comment:

* This is a comment

File-Description File Example
Following is an example of a file-description file for an inventory file:

PCFDF
PCFT 3 BASIC SEQUENTIAL FILE
* ITEM INVENTORY FILE
PCFO 1,1,1,2,1 OPTIONS SETTINGS
PCFL ITEMNO 2 8 ITEM NUMBER
PCFL ITEMDESC 1 20 DESCRIPTION OF ITEM
PCFL COLOR 1 8 COLOR
PCFL WEIGHT 2 7/2 ITEM WEIGHT
PCFL PRICE 2 7/2 PRICE PER ITEM
PCFL INSTOCK 2 6 ITEMS IN STOCK

Data Conversions
The data transfer function needs data conversions for transferring data from the system to the workstation, and

vice versa. For both types of transfers, the necessary conversion depends on the record size, the type of data being

transferred, the type of workstation file being used, the system data type, and, in some cases, the data length.

305

HCL Z and I Emulator for Windows (ENGLISH)

306

Record Size
Each transferred record contains data indicating whether each field contains a null value. There is a restriction on the

maximum data record that can be sent or received from the iSeries™, eServer™ i5, or System i5™ because of this data.

The following formula determines the maximum record length that can be transferred:

• 4096 - (number of fields in the record + 2) = (maximum record length)

Data Types
The data transfer function supports the following system data types:

• Date

• Time

• Time stamp

• Binary data

• Character data

• Hexadecimal data

• Packed decimal data

• Zoned decimal data

The data transfer function supports the following workstation data types:

• BASIC numeric data, including:

◦ Double-precision data

◦ Integer data

◦ Single-precision data

• Binary data

• Character data, including:

◦ ASCII

◦ EBCDIC

• Hexadecimal data

• Packed decimal data

• Zoned decimal data

• ASCII numeric data

Date, Time, and Time-Stamp Data Types
Date, time, and time-stamp values can be used in certain arithmetic and character operations and are compatible with

certain character constants, but they are neither characters nor numbers.

Chapter 2. Product Documentation

A date is a three-part value (year, month, and day) designating a point in time on the calendar. The range of the year

is 0001 to 9999. The range of the year for a non-SAA format is 1940 to 9999. The range of the month is 1 to 12. The

range of the day is 1 to x, where x depends on the month.

A time is a three-part value (hour, minute, and second) designating a time of day under a 24-hour clock. The range of

the hour is 0 to 24 and the range of the other values is 0 to 59.

A time stamp is a seven-part value (year, month, day, hour, minute, second, and microsecond) that designates a date

and time including the specified microseconds. The maximum length of the time stamp is a character string of 26.

Dates, times, and time stamps can be assigned to result fields. A valid character-string representation of a date can

be compared with a date field, or a valid character-string representation of a time can be compared with a time field.

BASIC Numeric Data

Double-Precision Data
Double-precision data is defined only for the workstation. The iSeries™, eServer™ i5, or System i5™ does not support

this data type. BASIC applications use double-precision data. This data type is a positive or negative number from

2.938735877055719 x 10-39 to 1.701411834604692 x 1038. Double-precision numbers are stored in 8 bytes, with 7

bytes representing the mantissa and 1 byte representing the exponent.

Integer Data
Integer data is defined only for the workstation. BASIC applications use integer data. Integer data is stored in 2 bytes

and represents a whole number from -32768 to 32767.

Single-Precision Data
Single-precision data is defined only for the workstation. The iSeries™, eServer™ i5, or System i5™ does not support

this data type. BASIC applications use single-precision data. This data type is a positive or negative number from

2.938736 x 10-39 to 1.701412 x 1038. Single-precision numbers are stored in 4 bytes, with 3 bytes representing the

mantissa and 1 byte representing the exponent and sign.

Binary Data
This data represents signed or unsigned numbers in twos complement form. Binary numbers of 1, 2, 3, or 4 bytes in

length are allowed on the workstation, but the iSeries™, eServer™ i5, or System i5™ allows only numbers 2 or 4 bytes in

length. The bit on the left side of the high-order bit determines the sign of the number (0 for positive, 1 for negative).

The system stores the data with the high-order byte on the left side of the field, whereas the workstation stores the

data with the high-order byte in the right-hand position of the field.

307

HCL Z and I Emulator for Windows (ENGLISH)

308

The decimal position, if specified by the file description, represents the number of decimal digits to the right of the

decimal point. The file description specifies the presence of a decimal position.

For example, the binary number 3BF5 is equivalent to the decimal number 15349, and the binary number FFB4 is

equivalent to the decimal number -76.

Character Data for SBCS
You can think of this data as a string of bits that represents particular characters and symbols.

The tables used to translate characters from ASCII to EBCDIC and from EBCDIC to ASCII contain the following kinds

of values:

• Values where the workstation ASCII characters and iSeries™, eServer™ i5, or System i5™ EBCDIC characters

match exactly

• Values where a substitute character is chosen for a character that cannot be translated

The data transfer function uses tables to translate data from ASCII to EBCDIC and EBCDIC to ASCII. You can change

these default tables using the translation table utility (TRTABLE).

Note: ASCII (SBCS) data includes date, time, and time stamp types if converted. EBCDIC data includes date,

time, and time stamp if not converted.

Hexadecimal Data
You can think of this data as a string of bits representing base 16 numbers. For example, you can represent hex 3D

with the following string of bits:

0011 1101

Packed Decimal Data
For both the iSeries™, eServer™ i5, or System i5™ and the workstation, each half-byte represents a value from 0

through 9. The hexadecimal value in the half-byte on the right side of the right-hand byte specifies the sign.

For the iSeries™, eServer™ i5, or System i5™, a value of hex B or hex D in this half-byte represents a negative number.

For DOS random files, only the last half-byte (the half-byte that contains the sign) is changed. For the sign half-byte,

the workstation uses hex 3 to indicate a positive number or hex B to indicate a negative number.

For example, X'0865431F' appears as X'08654313'.

For DOS random type-2 files, the last half-byte (the half-byte that contains the sign) is not changed. The sign

convention used on the workstation and on the host system is the same.

For example, X'0865431C' appears as X'0865431C'.

Chapter 2. Product Documentation

The decimal position, if specified, represents the number of decimal digits to the right of the decimal point. The

presence of a decimal position is specified in the file description.

Zoned Decimal Data
This data is represented in a form in which each byte corresponds to one decimal digit. Each of these bytes is stored

in character form. For example, the digit 7 is stored on the iSeries™, eServer™ i5, or System i5™ as F7, which is the

EBCDIC representation, and is stored on the workstation as 37, which is the ASCII representation.

The size of each digit is determined by its half-byte on the right side. Valid values for the half-bytes are decimal 0

through 9.

The sign in both the iSeries™, eServer™ i5, or System i5™ and workstation zoned decimal fields is specified by the

hexadecimal value in the left half-byte of the right byte of the field. For the iSeries™, eServer™ i5, or System i5™, a hex

B or hex D in this half-byte represents a negative number (for example, X'F6D2' represents -62).

For DOS random files, zoned decimal fields from the system change from EBCDIC to ASCII, as do character fields,

except that the sign half-byte in the workstation field is changed to a hex 3 to indicate a positive number or a hex B to

indicate a negative number.

For DOS random type-2 files, zoned decimal fields from the system change from EBCDIC to ASCII, as do character

fields, except that the sign half-byte in the workstation field is changed to a hex 3 to indicate a positive number or a

hex 7 to indicate a negative number.

The decimal position, if specified, represents the number of decimal digits to the right of the decimal point and is

specified by the file description.

ASCII Numeric Data
The data transfer function defines ASCII numeric data to represent any numeric value stored in ASCII format. This is

not a valid iSeries™, eServer™ i5, or System i5™ system data type. The number -123.45 in ASCII format is:

2D 31 32 33 2E 34 35

The decimal point and sign are stored explicitly for ASCII numeric data. The character on the left displays the sign

(space or plus (+) for positive, minus (-) for negative). Leading zeros to the left of the decimal point change to spaces.

The decimal point, if any, is added in the correct position.

BASIC sequential and DIF file types also support another form of ASCII numeric data called exponential numbers.

An exponential number is a decimal number followed by the letter E or D and a signed integer of two or three digits. E

represents a single-precision number and D represents a double-precision number. The exponent portion (E or D and

the integer) represents “times 10 to the power of the integer specified”.

For example, the number -1.0E+03 (representing -1.0 x 103 in ASCII numeric format) is:

2D 31 2E 30 45 2B 30 33

For example, the number 9.5D-15 (representing 9.5 x 10-15 in ASCII numeric format) is:

309

HCL Z and I Emulator for Windows (ENGLISH)

310

39 2E 35 44 2D 31 35

Personal Computer File Types
The following workstation file types are supported:

• ASCII text files

• BASIC random files

• BASIC sequential files

• DIF files

• BIFF files

• DOS random files

• DOS random type-2 files

• No-conversion files

ASCII Text Files
ASCII text files are normally used with programs that work with text (such as editors and print routines). The

characteristics of an ASCII text file are as follows:

• Records consist of ASCII characters.

• A carriage return character (hex 0D) and a line feed character (hex 0A) delimit each record from the next.

• Workstation records in an ASCII file can be variable in length due to truncation of trailing blanks at the end of

an iSeries™, eServer™ i5, or System i5™ record.

Transferring Data to ASCII Text Files
When you create an ASCII text file, the data coming from the iSeries™, eServer™ i5, or System i5™ changes as follows:

• Hexadecimal fields change to equivalent ASCII characters for each half-byte. For example, X'D3' expands to

ASCII 4433 and is written to the file. When displayed by an editor or printed, the string appears as D3.

• EBCDIC character fields change byte by byte and are mapped into ASCII characters as defined by the

translation tables.

• Date, time, and time-stamp data is mapped into ASCII characters as defined by the translation tables.

• Variable-length and null fields are converted to fixed lengths, and trailing blanks (for character, hexadecimal,

date, time, and time-stamp data) or zeros (for binary, zoned, and packed,) are added to the maximum length of

the field.

Note: Some nondisplayable EBCDIC characters are translated into ASCII control characters on the

workstation. If EBCDIC character fields contain nondisplayable data, you might get unexpected results

and your ASCII text file might appear to be corrupted.

Chapter 2. Product Documentation

For example, X'05' in an EBCDIC field is translated to an ASCII X'09', which is an ASCII control

character for horizontal tab. Most workstation text editors process this tab character so that the data

in your workstation text file appears to be shifted to the right when viewed.

One possible solution to this problem is to define these fields on the host system as hexadecimal

fields instead of character fields.

• Binary fields change to ASCII numeric. For example, X'FFD3' with no decimal position expands to ASCII

20202020202020202D3435. When displayed by an editor or printed, the string appears as -45.

Note: The length of the ASCII field depends on the length of the binary field.

A binary field on the iSeries™, eServer™ i5, or System i5™ is either 2 or 4 bytes long. The resulting ASCII field

length is from 6 to 11 bytes, including the sign. Another byte is added for a decimal point.

Table 44: Binary-to-ASCII Field Length Mapping on page 311 shows the mapping between binary field

lengths and their ASCII lengths.

Table 44. Binary-to-ASCII Field Length Mapping

Binary Length ASCII Length Value Range

2 6 -32768 to 32767

4 11 -2147483648 to 2147483647

• Zoned decimal fields are changed to ASCII numeric. For example, EBCDIC F0F0F9F5F2D6 with a field length

that indicates two digits to the right of the decimal point expands to ASCII 20202D39352E3236. When

displayed by an editor or printed, the string appears as -95.26. The resulting workstation field length is equal

to the length of the system field plus 1 for the sign and 1 for the decimal point, if specified.

• Packed decimal fields change to ASCII numeric. For example, X'871D' (no decimal point) changes to ASCII

2D383731. When displayed by an editor or printed, the string appears as -871.

Since two decimal digits are packed into 1 byte, the length of the resulting workstation field is equal to two

times the length of the iSeries™, eServer™ i5, or System i5™ field, plus 1 for the decimal point (if specified).

This length always includes the sign. A minus sign (-) indicates negative, and a space indicates positive.

Transferring Data from ASCII Text Files
When you transfer data from ASCII text files to system files, the data changes as follows:

• ASCII character data changes to EBCDIC character, date, time, or time-stamp data (based on the iSeries™,

eServer™ i5, or System i5™ field type) on a byte-to-byte basis, or to hexadecimal data by changing 2 ASCII

bytes into 1 hexadecimal byte.

• ASCII numeric data changes to iSeries™, eServer™ i5, or System i5™ binary, zoned decimal, or packed decimal

data, depending on the specified data type.

311

HCL Z and I Emulator for Windows (ENGLISH)

312

The field lengths on the iSeries™, eServer™ i5, or System i5™ and the workstation are different because of the

explicit way minus signs and decimal points are stored in ASCII numeric fields. Each field changes individually,

to ensure that the resulting field length matches the specifications for that field. The data transfer function

tries to fit the workstation data into the system field.

• For null-capable iSeries™, eServer™ i5, or System i5™ fields, null values (except date, time, and time stamp)

cannot be reliably detected and are not uploaded. For variable-length iSeries™, eServer™ i5, or System i5™

fields, trailing blanks are removed and the field is converted to the variable-length format.

Errors When Transferring Data from ASCII Text Files
When you transfer data from a workstation ASCII text file to an iSeries™, eServer™ i5, or System i5™ file, the following

errors can occur:

• A data field in the ASCII text file is too long for a field in the iSeries™-, eServer™ i5-, or System i5™-defined file.

In this case, the data is truncated. This occurs when the description file defines the character data as longer

than the field length specified for the system file.

If the data transfers to an EBCDIC field, this error occurs only if the extra bytes are not spaces.

If the data transfers to a hexadecimal field, this error occurs only if the extra bytes are not zeros. These extra

bytes are truncated so the data fits into the specified field.

• The value of numeric data is too large for the system field. The maximum value is used. This error occurs

when:

◦ Numeric data in the field does not fit into the specified number of bytes for the field.

◦ The decimal value of a numeric field contains more digits than were specified for the field.

The value of the field is set to the maximum value possible for the number of bytes and digits specified by the

iSeries™, eServer™ i5, or System i5™.

• Data in this field has too many decimal positions. The number is rounded. This error occurs when the number

of decimal positions in the field is greater than the number of decimal positions specified on the iSeries™,

eServer™ i5, or System i5™. These extra bytes are significant because the data rounds up if the first extraneous

digit is 5 or greater, and rounds down if it is less than 5.

• Data in this field is incorrect or does not match the data type. This error occurs when:

◦ Nonnumeric data is found in a field that the file descriptions defined as numeric. The transfer request

ends to prevent transferring incorrect data to the file.

◦ ASCII numeric data is found that does not match the format the file description specified. An

incorrectly positioned decimal point within the field could cause this error.

◦ A value other than X'30' through X'39', minus, plus, or decimal point is found. A duplicated decimal

point or minus is found. The transfer request ends to prevent transferring incorrect data to the file.

• Data for this field is missing. The default values are used. This error occurs when a data field is defined, but

the data is not in the file. This means that the end of the record is reached before all of the defined data is

found.

Chapter 2. Product Documentation

The field or fields for which data has been defined but not found then fill with default values and transfer to the

file. The default values are EBCDIC spaces for character fields, or zeros for numeric and hexadecimal fields.

To supply your own default values, use the default (DFT) keyword in the data description specifications (DDS)

for the file.

• Extra data is found at the end of this record. The extra data is not transferred. Data found at the end of this

record and not defined by the system data definitions or workstation file-description file is not transferred to

the system file, because no definitions exist to define the data and how it should change.

When you transfer data from an ASCII text file to an iSeries™, eServer™ i5, or System i5™ file without using a file-

description file, any extra data found past the record length specified for the file is not transferred.

BASIC Random Files
BASIC random files are the most general-purpose BASIC file type. They contain fixed-length records with:

• No delimiters between fields or records

• No end-of-file marks

Transferring Data to BASIC Random Files
When you create a BASIC random file, system data changes as follows:

• Hexadecimal fields do not change.

• Change from a system binary field depends on the field length:

◦ Fields of 2 bytes, with no decimal positions to the right of the decimal point, change to 2-byte BASIC

integer values. The only change is that the order of the bytes reverses.

◦ Fields of 2 bytes, with decimal positions to the right of the decimal point, change to BASIC single-

precision numbers.

◦ Fields of 4 bytes change to BASIC double-precision numbers.

• EBCDIC character, date, time, and time-stamp fields change byte by byte and are mapped into ASCII

characters as defined by the translation tables.

• Variable-length and null fields are converted to fixed lengths, and trailing blanks (for character, hexadecimal,

date, time, and time-stamp data) or zeros (for binary, zoned, and packed data) are added to the maximum

length of the field.

• Zoned decimal fields change into one of the following BASIC variables depending on the field length and the

number of decimal positions:

◦ Zoned decimal fields of 4 bytes or less with no positions to the right of the decimal point change to a

BASIC integer of an equivalent value.

A zoned decimal field of 4 bytes or less, but with a decimal point, falls into the following category.

313

HCL Z and I Emulator for Windows (ENGLISH)

314

◦ Zoned decimal fields up to 7 bytes (including those that did not fall into the previous category) change

to a BASIC single-precision number of an equivalent value.

◦ Zoned decimal fields greater than 7 bytes change to a BASIC double-precision number of an equivalent

value.

• Packed decimal fields change into one of the following BASIC variables depending on the length of the field:

◦ Packed decimal fields of 2 bytes or less with no positions to the right of the decimal point change to a

BASIC integer of an equivalent value.

A packed decimal field of 2 bytes or less, but with a decimal point, falls into the following category (up

to 4 bytes).

◦ Packed decimal fields of up to 4 bytes (including those that did not fall into the previous category)

change to a BASIC single-precision number of an equivalent value.

◦ Packed decimal fields greater than 4 bytes change to a BASIC double-precision number of an

equivalent value.

Note: Changes between binary, packed decimal, and zoned decimal numbers with decimal points are

not equivalent to their BASIC number counterparts, because BASIC uses a binary number format that

does not always change into exact decimal fractions.

Transferring Data from BASIC Random Files
When you transfer data from BASIC random files to system files, the data changes as follows:

• Hexadecimal fields transfer to the system file as unchanged hexadecimal data. The field lengths as stored on

the workstation should be the same as the field lengths as stored on the system.

• ASCII character, date, time, and time-stamp data changes to EBCDIC character data byte by byte.

• For null-capable iSeries™, eServer™ i5, or System i5™ fields, null values (except date, time, and time stamp)

cannot be reliably detected and are not uploaded. For variable-length iSeries™, eServer™ i5, or System i5™

fields, trailing blanks are removed and the field is converted to the variable-length format.

• Numeric fields from BASIC random files (BASIC integers, single-precision floating-point numbers, and double-

precision floating-point numbers) change to system binary data, zoned decimal data in EBCDIC format, or

packed decimal data in EBCDIC format.

Note: Because the change of floating-point numbers into decimal fractions is not always exact, each number

automatically changes into the most precise number possible with respect to the system field length. If you

want more precision, specify a larger system field size.

Errors When Transferring Data from BASIC Random Files
When you transfer data from a workstation BASIC random file to a system file, the following errors can occur:

Chapter 2. Product Documentation

• Data in this field is too short for the system field. The data is padded. This error occurs when the file contains

character or hexadecimal data shorter than the field length specified on the system. This error can occur if the

workstation field is defined as shorter than the system, or if the data in the last record of the file is too short.

Character fields are padded on the right with EBCDIC spaces, and hexadecimal fields are padded with zeros.

• Data in this field is too long for the system field. The data is truncated. This error occurs when the workstation

file-description file defines character or hexadecimal data as longer than the field length specified on the

system.

For character data, this error occurs only if the extra bytes are not spaces. For hexadecimal data, this error

occurs only if the extra bytes are not zeros. These extra bytes are then truncated so that the data fits into the

specified iSeries™, eServer™ i5, or System i5™ field.

• The value of numeric data is too large for the system field. The maximum number is used. This error occurs

when:

◦ Numeric data in the workstation field does not fit into the specified number of bytes for the system

field.

◦ The decimal value of a numeric field contains more digits than are specified for the system field.

• Data in this field has too many decimal positions. The number is rounded down to zero. In BASIC random

processing, this error occurs if the value of the number is too small to fit into the specified field.

For example, the number 0.00001 does not fit into a system zoned field specified as being 2 bytes in length

and 2 decimal positions to the right of the decimal point. In this example, the resulting value is zero.

• Data for this field is missing. The default values are used. This error occurs when a data field is defined, but

the data is not in the file. This means that the end of the file is reached before all of the defined data is found.

For BASIC random files, this error occurs only on the last record in the file, since there are no explicit record

delimiters.

When this error occurs, the field or fields for which data is defined, but not found, are filled with default values

and are transferred to the iSeries™, eServer™ i5, or System i5™ file. These default values are EBCDIC spaces for

character fields and zeros for numeric fields. DFT (default) keyword default (DFT) keyword DDS (data description specifications) data description specifications (DDS)

To supply your own default values, use the Default (DFT) keyword in the DDS for the file.

When you transfer data from a BASIC random file to an iSeries™, eServer™ i5, or System i5™ file, any data shorter than

the record length defined for the system file is padded with EBCDIC spaces.

Because there are no record delimiters in BASIC random files, this error can occur only on the last record of the file.

This probably indicates that the record length of the system file does not match the record length of the workstation

file.

BASIC Sequential Files
BASIC uses BASIC sequential files for sequential processing (for example, INPUT and WRITE statements). The fields

written are considered either character or numeric. Characteristics of BASIC sequential files are as follows:

315

HCL Z and I Emulator for Windows (ENGLISH)

316

• Both numeric and character fields are written as displayable characters. However, character strings are

distinguished from numeric strings by the ASCII double quotation marks (X'22') that surround them.

Therefore, character data in BASIC sequential files cannot contain ASCII double quotation marks, because

they are interpreted as the end of the character string.

• Fields are delimited by ASCII commas (X'2C'). Therefore, commas are not allowed as date, time, or decimal

separators.

• Each record is delimited from the next by a carriage return character (X'0D') and a line feed character (X'0A').

The end-of-file character is X'1A'.

• Records and fields are variable in length.

Transferring Data to BASIC Sequential Files
The following list describes how iSeries™, eServer™ i5, or System i5™ data created by a BASIC-sequential-file-defined

data definition changes:

• Hexadecimal fields change to equivalent ASCII characters for each half-byte. Double quotation marks

surround them.

For example, X'F3' expands to ASCII 22443322 and is written to the file.

• EBCDIC character, date, time, and time-stamp fields change byte by byte and are mapped into ASCII

characters as defined by the translation tables. ASCII double quotation marks are added before and after the

character string.

• Null fields are represented by the absence of the field (comma comma, or by a single comma if the null field is

the last field of the record).

• For null fields, successive commas in the file will result in a null value being sent to the iSeries™, eServer™ i5,

or System i5™ if the field is null-capable.

• In variable-length fields, if the iSeries™, eServer™ i5, or System i5™ field is variable length, the field is converted

to the iSeries™, eServer™ i5, or System i5™ variable-length format.

• Binary fields change to ASCII numeric. Leading zeros to the left of the decimal point and trailing zeros to the

right of the decimal point are removed.

For example, X'FFD3' appears as ASCII 2D3435. When displayed on an ASCII device, the string appears as -45.

• Zoned decimal fields change to ASCII numeric. Leading zeros to the left of the decimal point and trailing zeros

to the right of the decimal point are removed.

For example, EBCDIC F0F0F9F5F2D6 with a field length that indicates two digits to the right of the decimal

point expands to ASCII 2D39352E3236. The string appears as -95.26 when an editor displays it or it prints.

• Packed decimal fields change to ASCII numeric. Leading zeros to the left of the decimal point and trailing

zeros to the right of the decimal point are removed.

For example, X'871F' (no decimal point) changes to ASCII 383731. The string appears as 871 when an editor

displays it or it prints.

Chapter 2. Product Documentation

Transferring Data from BASIC Sequential Files
When you transfer data from BASIC sequential files to iSeries™, eServer™ i5, or System i5™ files, the data changes as

follows:

• ASCII character, date, time, and time-stamp data changes to EBCDIC character data on a byte by byte basis

and to hexadecimal by changing 2 ASCII bytes into 1 hexadecimal byte.

• ASCII numeric data translates to system binary, zoned decimal, or packed decimal data, depending on the

specified data type. The lengths of the system data and the workstation data might be different because

the minus signs and decimal points are stored in ASCII numeric fields, and leading and trailing spaces are

stripped away.

BASIC might create exponential numbers in these files. The data transfer function also changes these

numbers.

Each translated field is individually verified to ensure that the resulting field length matches the specifications

for that field. The data transfer function tries to fit the workstation data into the system field.

Errors When Transferring Data from BASIC Sequential Files
When you transfer data from a BASIC sequential file to a iSeries™-, eServer™ i5-, or System i5™-defined file, the

following errors can occur:

• Data in this field is too long for the iSeries™, eServer™ i5, or System i5™ field. The data is truncated. The file-

description file defines character data as longer than the field length specified for the file.

If the data transfers to an EBCDIC field, this error occurs only if the extra bytes are not spaces. If the data

transfers to a hexadecimal field, this error occurs only if the extra bytes are not zeros. These extra bytes are

truncated so that the data fits into the specified iSeries™, eServer™ i5, or System i5™ field.

• The value of numeric data is too large for the system field. The maximum value is used. This error occurs

when:

◦ Numeric data in the workstation field does not fit into the specified number of bytes for the system

field.

◦ The decimal value of a numeric field contains more digits than were specified for the system field.

The value of the field is set to the maximum value possible for the number of bytes and digits specified by the

iSeries™, eServer™ i5, or System i5™.

• Data in this field has too many decimal positions. The number is rounded. This error occurs when the number

of decimal positions in the workstation field is greater than the number of decimal positions specified on

the system. The extra bytes are significant, because the data is rounded up if the first extraneous digit is 5 or

greater, and is rounded down if it is less than 5.

• Data in this field is incorrect or does not match the workstation data type. This error occurs when a field

defined as numeric by the file description contains nonnumeric data. This could also result if a character or

hexadecimal field contains a numeric field, or if a numeric (zoned, packed, or binary) field contains a character

field.

317

HCL Z and I Emulator for Windows (ENGLISH)

318

When this error occurs, the transfer request ends to prevent transferring incorrect data to the system file.

• Data for this field is missing. The default values are used. This error occurs when a data field is defined, but

the data is not in the file. This means that the end of the record is reached before all of the defined data is

found.

When this error occurs, the field or fields for which data has been defined, but not found, are filled with default

values and transferred to the iSeries™, eServer™ i5, or System i5™ file. These default values are EBCDIC spaces

for character fields, or zeros for numeric fields.

To supply your own default values, use the default (DFT) keyword in the DDS for the file.

• Data in this field exceeds the workstation field size. The data is lost. This error occurs when extra data, not

defined by the file-description file, is found at the end of a character field. The extra bytes are truncated and

are not transferred to the system file.

• Extra data found at the end of the record. The extra data is not transferred. This error occurs when extra data

is found at the end of the record, and has not been defined by the system data definitions or workstation file-

description file. This extra data is not transferred to the system, because no definitions exist to define the data

and describe how it should change.

Data Interchange Format Files
Data Interchange Format (DIF) files represent data in rows and columns. DIF files contain character and numeric data

(positive and negative decimal numbers).

DIF is used for data interchange between spreadsheet programs and other application programs.

The data transfer function supports only the following two data types within DIF files:

• Character data: The data in a character cell (think of a cell as one field in one record) must be enclosed in

double quotation marks if there is an embedded space in the string. However, if the string begins with a

quotation mark, it must also end with a quotation mark.

• Numeric data: The numeric data supported by the data transfer function consists of a decimal number that

can contain a minus sign or a decimal point or both. The data transfer function also supports exponential

numeric data.

Transferring Data to DIF Files
When creating a DIF file, system data changes as follows:

• Hexadecimal fields change to equivalent ASCII characters for each half-byte. Double quotation marks

surround them.

• EBCDIC character, date, time, and time-stamp data changes byte by byte and is mapped into ASCII characters

as defined by the translation tables. ASCII double quotation marks are added before and after the character

string.

Chapter 2. Product Documentation

• Binary fields change to ASCII numeric. Leading zeros to the left of the decimal point, and trailing zeros to the

right of the decimal point, are removed.

• Zoned decimal fields change to ASCII numeric. Leading zeros to the left of the decimal point, and trailing

zeros to the right of the decimal point, are removed.

For example, EBCDIC F0F0F9F5F2D6 with a field length that indicates two digits to the right of the decimal

point expands to ASCII 2D39352E3236. When displayed or printed, the string appears as -95.26.

• Packed decimal fields change to ASCII numeric. Leading zeros to the left of the decimal point, and trailing

zeros to the right of the decimal point, are removed.

For example, X'871D' (no decimal point) changes to ASCII 2D383731. When displayed or printed, the string

appears as -871.

• If untranslatable data is found, the entire field becomes an error cell. An error cell results when untranslatable

data is found when a DIF file is created or when a not valid calculation is done using the DIF file with a

spreadsheet program.

Transferring Data from DIF Files
If an error cell is found when data is transferred from a DIF file to the iSeries™, eServer™ i5, or System i5™, one of the

following things can occur, depending on the type of data in the file:

• If the system field is a character (EBCDIC) field, it is filled with untranslatable characters (hexadecimal zeros)

and is transferred to the system. A message appears, telling you how many bytes of untranslatable data have

transferred.

• If the system field is a hexadecimal, zoned, packed, or binary field, you receive an error message telling you

that the data in this cell is incorrect, and that the data was not transferred to the system.

When you transfer data from a system file to a DIF file, the field names are placed in the first record and you can

consider them column headings. When you transfer DIF files back to the system, the first row must either be these

field names (exactly as they are defined on the system) or data. If the first row does not consist of field names, the file

is processed as if it contains only data.

No DIF header information is used when sending the file to the iSeries™, eServer™ i5, or System i5™. To correctly

transfer a DIF file to the system, ensure that the file is in the correct format (row and column). It is essential that the

field names, if present, make up the first row of data. The subsequent records make up the remaining rows of data.

Therefore, when you transfer the data to the iSeries™, eServer™ i5, or System i5™, the file must be saved in the same

format as originally created by the data transfer function.

When you transfer data from DIF files to iSeries™, eServer™ i5, or System i5™ files, the data changes as follows:

• ASCII character, date, time, and time-stamp data is changed to EBCDIC character data or to hexadecimal data.

ASCII-to-EBCDIC conversion is done byte by byte. ASCII-to-hexadecimal conversion is done by changing two

ASCII bytes to one hexadecimal byte.

• ASCII numeric data changes to system binary, zoned decimal, or packed decimal data, depending on the data

type the system specifies.

319

HCL Z and I Emulator for Windows (ENGLISH)

320

The lengths of the fields on the system and the workstation can be different, because of the explicit way

minus signs and decimal points are stored in ASCII numeric fields. This means that each field changes

individually, to ensure that the resulting field length matches the system specifications for that field. The data

transfer function tries to fit the workstation data into the system field.

• In null fields, a NULL DIF character field results in a null value being sent to the iSeries™, eServer™ i5, or System

i5™ field if the field is null-capable.

• If the iSeries™, eServer™ i5, or System i5™ field is variable-length, the field is converted to the iSeries™,

eServer™ i5, or System i5™ variable-length format.

Errors When Transferring Data from DIF Files
When you transfer data from a workstation DIF file to a system file with data definitions, the following errors can

occur:

• Data in this workstation file is not valid, or the version of this workstation file is not supported. The DIF file

does not follow the standard DIF format. Processing ends, and no more records are transferred.

• Data in this field is too long for the iSeries™, eServer™ i5, or System i5™ field. The data is truncated. The

workstation file-description file defines character or numeric data as longer than the field length specified for

the system file.

For character data, this error occurs only if the extra bytes are not spaces. For hexadecimal data, this error

occurs only if the extra bytes are not zeros. The extra bytes are truncated so that the data fits into the

specified iSeries™, eServer™ i5, or System i5™ field.

• The value of numeric data is too large for the system field. The maximum value is used. This error occurs

when:

◦ Numeric data in the workstation field does not fit into the specified number of bytes for the iSeries™,

eServer™ i5, or System i5™ field.

◦ The decimal value of a numeric field contains more digits than are specified for the system field.

The value of the field is set to the maximum value possible for the number of bytes and digits the system

specifies.

• Data in this field has too many decimal positions. The number is rounded. The number of decimal positions

in the workstation field is greater than the number of decimal positions specified on the system. The data is

rounded up if the first extraneous digit is 5 or greater, and is rounded down if it is less than 5.

• Data in this field is incorrect or does not match the workstation data type. One of the following things has

occurred:

◦ A numeric field contains nonnumeric data.

◦ A character or hexadecimal field contains a numeric field or a numeric (zoned, packed, or binary) field

contains a character field.

◦ An iSeries™, eServer™ i5, or System i5™ hexadecimal or numeric (zoned, packed, or binary) field

contains a DIF error cell.

When this error occurs, the transfer request ends to prevent the transfer of incorrect data to the system file.

Chapter 2. Product Documentation

• Data for this field is missing. This occurs when a data field is defined, but the data is not in the file. This

means that the end of the record is reached before all of the defined data is found. If the host field is null-

capable then a null is inserted; otherwise, the default values are used.

When this error occurs, the field or fields for which data is defined, but not found, are filled with default values

and are transferred to the system file. These default values are EBCDIC spaces for character fields, or zeros

for numeric fields.

To supply your own default values, use the Default (DFT) keyword in the DDS for the file.

• Data in this field exceeds the field size. The data is lost. This error occurs when extra data, not defined by

the file-description file, is found at the end of a character field. The extra bytes are truncated and are not

transferred to the system file.

• Extra data is found at the end of this record. The extra data is not transferred. This error occurs when there

is extra data at the end of the record, and the iSeries™, eServer™ i5, or System i5™ data definitions or file-

description file have not defined it. This extra data is not transferred to the system, because no definitions

exist to define the data and how it should change.

BIFF Files
The BIFF file format is used by Microsoft® Excel. In a BIFF file, data is expressed in lines and columns. A BIFF file

contains character and numeric data (both positive and negative decimal values).

BIFF format versions 4 and 8 are supported for 5250 Data Transfer. Both BIFF4 and BIFF8 support 256 columns,

which is the maximum for a Microsoft Excel worksheet. Documentation on both formats is freely available from the

Microsoft Web site.

BIFF4 handles data for Microsoft Excel V2, V3, and V4. The format supports a maximum of 16 384 rows.

BIFF8 is a superset of BIFF4 and stores data as an OLE compound document. BIFF8 handles data for Microsoft Excel

V5, V7 (Excel 95), V8 (Excel 97), and V9 (Excel 2000). The format supports a maximum of 65 536 rows.

The transfer facility supports only the following two data types for a BIFF file:

• Character data

• Numeric data

Transferring Data to BIFF Files
When a BIFF file is created, the system data is converted to equivalent Excel cell data.

If untranslatable data is found, the entire field is treated as an error cell.

Transferring Data from BIFF Files
If an error cell is found during data transfer from a BIFF file to the iSeries™, eServer™ i5, or System i5™, either of the

following things can occur depending on the data type of the file:

321

HCL Z and I Emulator for Windows (ENGLISH)

322

• If the system field is a character (EBCDIC) field, the error cell containing untranslatable characters

(hexadecimal zeros) is transferred to the system. A message indicating how many bytes of untranslatable

data were transferred is displayed.

• If the system field is a hexadecimal, zoned decimal, packed decimal, or binary field, an error message

indicating that the data in this cell is not valid and thus has not been transferred to the system is displayed.

When you transfer data from a system file to a BIFF file, the first record contains field names, which can be treated as

column headers.

To return a BIFF file to the system, the first line must contain these field names (as defined in the system) or data. If

the first line does not contain field names, the file is regarded as containing data only.

When a file is sent to the iSeries™, eServer™ i5, or System i5™, cell information (such as the character size and font

information) is ignored. This means that cell information is lost, even if the contents of a BIFF file that have been sent

to the iSeries™, eServer™ i5, or System i5™ are retransmitted to a workstation.

When you transfer data from a BIFF file to an iSeries™, eServer™ i5, or System i5™ file, the data is converted as follows:

• ASCII character cell data is converted to EBCDIC character data or hexadecimal data; 1-byte ASCII data is

converted to 1-byte EBCDIC data.

• ASCII numeric cell data is converted to a binary number, or a zoned or packed decimal number, depending on

the data type specified in the system.

When you transfer data from a BIFF file to the iSeries™, eServer™ i5, or System i5™, the following specific processing is

performed:

• When you transfer data to a BIFF file, the first record contains the names of the fields to be transferred, which

can be treated as column headers. To return a BIFF file to the iSeries™, eServer™ i5, or System i5™, the first line

must contain the same field names (as defined in the iSeries™, eServer™ i5, or System i5™) or data. If the first

line or the first set does not contain a character field that exactly matches the iSeries™, eServer™ i5, or System

i5™ field, the file is treated as being a file with no column headers, and only data is processed.

• When you transfer a BIFF file to the iSeries™, eServer™ i5, or System i5™, header information is not used.

• To ensure correct transfer of a BIFF file to the iSeries™, eServer™ i5, or System i5™, the file format must be

valid (lines and columns). Data for each set or line must correspond to one record in the iSeries™, eServer™ i5,

or System i5™ file.

Errors When Transferring Data from BIFF Files
When you transfer data from a BIFF file on a workstation to the system file with the data definition, the following

errors can occur:

Chapter 2. Product Documentation

• Data in this workstation file is not valid, or the version of this workstation file is not supported. The BIFF file

does not conform to the standard BIFF format. Processing terminates, and no more records are transferred.

• Data in this field is too long for the corresponding iSeries™, eServer™ i5, or System i5™ field. The data is

truncated. A file-description file defines character or numeric data that is longer than the field specified in the

system file.

◦ For conversion from ASCII to EBCDIC, this error occurs if a file-description file defines ASCII data that

is longer than the field specified on the iSeries™, eServer™ i5, or System i5™.

During conversion from ASCII to hexadecimal, this error will occur if a file-description file defines ASCII

data that is twice as long as the field specified on the iSeries™, eServer™ i5, or System i5™. This is

because 2-byte ASCII data is converted to one hexadecimal character.

◦ A truncation error only occurs if excess bytes are other than blanks (X'20') during conversion from

ASCII to EBCDIC, or other than zeros (X'30') during conversion from ASCII to hexadecimal. Truncating

these excess bytes enables data to fit into the specified iSeries™, eServer™ i5, or System i5™ fields.

• Numeric data is too long to fit into the corresponding iSeries™, eServer™ i5, or System i5™ field. The maximum

value is assumed. This error occurs under either of the following conditions:

◦ Numeric data in a workstation field is too long to fit into the number of bytes specified for the iSeries™,

eServer™ i5, or System i5™ field.

◦ The number of decimal digits in a numeric field exceeds the number of digits specified for the iSeries™,

eServer™ i5, or System i5™ field.

The field value is set to the maximum value that can be specified for the number of bytes, and that for the

number of digits, specified for the iSeries™, eServer™ i5, or System i5™.

• Data in this field contains too many decimal places. The data is rounded off. The number of decimal places

in a workstation field is greater than the number of decimal places specified for the system. If the first excess

digit is 5 or more, the data is rounded up. Otherwise, it is rounded down.

• Data in this field is not correct, or its type does not match the type of workstation data. One of the following

things has occurred:

◦ A numeric field contains other than numeric data.

◦ A character field or a hexadecimal field contains a number, or a numeric (zoned or packed decimal, or

binary) field contains characters.

◦ A hexadecimal field or a numeric (zoned or packed decimal, or binary) field for the iSeries™, eServer™

i5, or System i5™ contains a BIFF error cell.

If this error occurs, the transfer request terminates to avoid transferring incorrect data to the system file.

• Data for this field is missing. This error occurs if the data field is defined, but the file does not contain any

data. This means that the end of the record is reached before all defined data has been found.

If this error occurs (that is, if data is defined for one or more fields, but it is not found there) the fields

containing the default value are transferred to the system file. The default value is EBCDIC spaces for a

character field and zeros for a numeric field.

To specify a user-specific default value, use the default value (DFT) keyword in DDS for the file.

• Data in this field exceeds the size of a workstation field. Data is lost. This error occurs if excess data, not

defined in the workstation file-description file, is found at the end of the field. For character data, excess bytes

323

HCL Z and I Emulator for Windows (ENGLISH)

324

are truncated, and not transferred to the system file. For numeric data, the entire field is converted to zeros

and transferred to the system file.

• Excess data is found at the end of this record. The excess data is not transferred. This error occurs if such

excess data is not defined in the iSeries™, eServer™ i5, or System i5™ data definition or in the workstation

file-description file. This excess data is not transferred to the system, because the data and the conversion

method are not defined.

DOS Random Files
DOS random files are fixed-length files used by the DOS random read and write routines. The characteristics of DOS

random files are as follows:

• There are no end-of-record or end-of-file markers.

• Records are delimited by their constant length, relative positions in the file, and the total length of the file.

Note: DOS random and DOS random type-2 files are identical, except for the way in which the signs are

represented for packed decimal and zoned decimal numbers.

Transferring Data to DOS Random Files
When creating DOS random file data definitions, system data changes as follows:

• Binary fields on the iSeries™, eServer™ i5, or System i5™ and the workstation are represented as two-

complement numbers, so it is unnecessary to change individual bytes. The workstation uses the convention

of storing numeric values with the least significant byte in the left-hand byte position. The data transfer

function then reverses the order of the bytes in the binary fields.

For example, X'CEF3', coming from the system as a 2-byte binary number (representing the value -12557),

appears as X'F3CE'.

• EBCDIC character, date, time, and time-stamp data changes byte by byte and is mapped into ASCII characters

as defined by the translation tables.

• Variable-length and null fields are converted to fixed length, and trailing blanks (for character, hex, date, time,

and time stamp) or zeros (for binary, zoned, and packed) are added to the maximum length of the field.

• Hexadecimal fields do not change.

• Packed decimal fields do not change except for the last half-byte, which contains the sign. The workstation

uses X'3' to indicate a positive number and X'B' to indicate a negative number in the sign half-byte.

For example, X'0865431F' appears as X'08654313'.

• Zoned decimal fields from the system change from EBCDIC to ASCII, as do character fields, except that the

sign half-byte in the workstation changed field is X'3' to indicate a positive number and X'B' to indicate a

negative number.

For example, EBCDIC X'F0F1F2F5F2D6' appears as ASCII X'3031323532B6'.

Chapter 2. Product Documentation

Transferring Data from DOS Random Files
When you transfer data from DOS random files to iSeries™, eServer™ i5, or System i5™ files, the data changes as

follows:

• ASCII character, date, time, and time-stamp data changes to EBCDIC character data on a byte by byte basis.

• Binary fields in the workstation file are stored in an order reversed from what the system file expects. These

bytes reverse and transfer to the system file.

• Hexadecimal fields do not change. The field length on the system should be the same as the field length on

the workstation.

• For packed decimal fields, only the last half-byte (the byte that contains the sign) is changed. The host system

uses X'F' to indicate a positive number and X'D' to indicate a negative number for the sign half-byte.

For example, X'08654313' appears as X'0865431F'.

• Zoned decimal fields on the workstation change from ASCII to EBCDIC , as do character fields. The last half-

byte (the half-byte that contains the sign) in the workstation field is changed to X'F' to indicate a positive

number and X'D' to indicate a negative number.

For example, ASCII X'3031323532B6' appears as EBCDIC X'F0F1F2F5F2D6'.

• For null-capable iSeries™, eServer™ i5, or System i5™ fields, null values (except date, time, and time stamp)

cannot be reliably detected and are not uploaded. For variable-length iSeries™, eServer™ i5, or System i5™

fields, trailing blanks are removed, and the field is converted to the variable-length format.

Errors When Transferring Data from DOS Random Files
When you transfer data from a DOS random file to an iSeries™, eServer™ i5, or System i5™ file, the following errors can

occur:

• Data in this field is too short for the system field. The data is padded. This error occurs when the workstation

file contains character or hexadecimal data shorter than the specified field length. It also occurs if the length

of the workstation field is defined as less than the system field, or if the data in the last record of the file is too

short. Character fields are padded on the right with EBCDIC spaces. Hexadecimal fields are padded on the

right with zeros.

• Data in this field is too long for the system field. The data is truncated. This error occurs when the workstation

file-description file defines character or hexadecimal data as longer than the field length specified for the

system file.

For character data, this error occurs only if the extra bytes are not spaces. For hexadecimal data, this error

occurs only if the extra bytes are not zeros. These extra bytes are truncated so that the data fits into the

specified field.

• The value of numeric data is too large for the system field. The maximum value is used. This error occurs

when:

325

HCL Z and I Emulator for Windows (ENGLISH)

326

◦ Numeric data in the workstation field does not fit into the specified number of bytes for the iSeries™,

eServer™ i5, or System i5™ field.

◦ The decimal value of a numeric field contains more digits than were specified for the iSeries™,

eServer™ i5, or System i5™ field.

The value of the field is set to the maximum value possible for the number of bytes and digits specified by the

system.

• Data in this field has too many decimal positions. The number is rounded. This occurs when the number of

decimal positions in the workstation field is greater than the number of decimal positions specified on the

system. The extra bytes are significant, because the data rounds up if the first extraneous digit is 5 or greater,

and rounds down if it is less than 5.

• Data in this field is incorrect or does not match the workstation data type. This error occurs when nonnumeric

data appears in a field defined as numeric by the file descriptions. When this occurs, the transfer request ends

to prevent transferring incorrect data to the system file.

• Data for this field is missing. The default values are used. This error occurs when a data field is defined, but

the data is not in the file. This means that the end of the file is reached before all the defined data is found.

When this error occurs, the field or fields for which data has been defined, but not found, fill with default values

and transfer to the system file. Default values are EBCDIC spaces for character fields, or zeros for numeric

fields.

To supply your own default values, use the default (DFT) keyword in the DDS for the file.

When you transfer data from a DOS random file to a system file without data definitions, any data shorter than the

record length defined for the system file is padded with EBCDIC spaces.

Because DOS random files have no record delimiters, this error occurs only on the last record and probably indicates

that the record length of the system file does not match that of the workstation file.

DOS Random Type-2 Files
DOS random type-2 files are fixed-length files used by the DOS random read and write routines. The characteristics of

DOS random type-2 files are as follows:

• There are no end-of-record or end-of-file markers.

• Records are delimited by their constant length, relative positions in the file, and the total length of the file.

Note: This workstation file type is identical to the DOS random file type, except that the internal sign

representation for packed decimal and zoned decimal data types follow Systems Application Architecture®

(SAA®) standards. Some workstation applications, such as applications written in IBM® COBOL/2™

Chapter 2. Product Documentation

programming language, need to have the signs for packed decimal and zoned decimal data types represented

this way. Use the DOS random type-2 file type for those workstation applications.

Transferring Data to DOS Random Type-2 Files
When you create DOS random type-2 file data definitions, system data changes as follows:

• Binary fields on the iSeries™, eServer™ i5, or System i5™ and the workstation are represented as two

complement numbers, so it is unnecessary to change individual bytes. The workstation uses the convention

of storing numeric values with the least significant byte in the left-hand byte position. The data transfer

function then reverses the order of the bytes in binary fields.

For example, X'CEF3', coming from the system as a 2-byte binary number (representing the value -12557),

appears as X'F3CE'.

• EBCDIC character, date, time, and time-stamp fields change byte by byte and are mapped into ASCII

characters as defined by the translation tables.

• Variable-length and null fields are converted to fixed length, and trailing blanks (for character, hex, date, time,

and time stamp) or zeros (for binary, zoned, and packed) are added to the maximum length of the field.

• Hexadecimal fields do not change.

• Packed decimal fields do not change. The sign convention used on the workstation and on the host system is

the same.

For example, X'0865431C' appears as X'0865431C'.

• Zoned decimal fields from the system change from EBCDIC to ASCII, as do character fields. However, the sign

half-byte is changed to a 3 to indicate a positive number or a 7 to indicate a negative number when the data is

sent to the workstation.

For example, EBCDIC X'F0F1F2F5F2D6' appears as ASCII X'303132353276'.

Transferring Data from DOS Random Type-2 Files
When you transfer data from DOS random type-2 files to iSeries™, eServer™ i5, or System i5™ files, the data changes

as follows:

• ASCII character data, date, time, and time stamp data change to EBCDIC character data on a byte by byte

basis.

• Binary fields in the workstation file are stored in an order reversed from what the system file expects. These

bytes reverse and transfer to the system file.

• Hexadecimal fields do not change. The field length on the system should be the same as the field length on

the workstation.

• For packed decimal fields, the last half-byte (the half-byte that contains the sign) is not changed unless the

sign half-byte is less than X'A' (represented by values 0 through 9). If the sign half-byte is less than X'A', it is

changed to X'F' on the host system.

For example, X'865431D' appears as X'0865431D', but X'08654318' appears as X'0865431F'.

327

HCL Z and I Emulator for Windows (ENGLISH)

328

• Zoned decimal fields on the workstation change from ASCII to EBCDIC, as do character fields. However, the

sign half-byte is changed to an F to indicate a positive number or a D to indicate a negative number when the

data is sent to the host system.

For example, ASCII X'303132353276' appears as EBCDIC X'F0F1F2F5F2D6'.

• For null-capable iSeries™, eServer™ i5, or System i5™ fields, null values (except date, time, and time stamp)

cannot be reliably detected and are not uploaded. For variable-length iSeries™, eServer™ i5, or System i5™

fields, trailing blanks are removed and the field is converted to the variable-length format.

Errors When Transferring Data from DOS Random Type-2 Files
When you transfer data from a DOS random type-2 file to an iSeries™, eServer™ i5, or System i5™ file, the following

errors can occur:

• Data in this field is too short for the system field. The data is padded. This error occurs when the workstation

file contains character or hexadecimal data shorter than the specified field length. It also occurs if the length

of the workstation field is defined as less than the system field, or if the data in the last record of the file is too

short. Character fields are padded on the right with EBCDIC spaces. Hexadecimal fields are padded on the

right with zeros.

• Data in this field is too long for the system field. The data is truncated. This error occurs when the workstation

file-description file defines character or hexadecimal data as longer than the field length specified for the

system file.

For character data, this error occurs only if the extra bytes are not spaces. For hexadecimal data, this error

occurs only if the extra bytes are not zeros. These extra bytes are truncated so that the data fits into the

specified field.

• The value of numeric data is too large for the system field. The maximum value is used. This error occurs

when:

◦ Numeric data in the workstation field does not fit into the specified number of bytes for the iSeries™,

eServer™ i5, or System i5™ field.

◦ The decimal value of a numeric field contains more digits than were specified for the iSeries™,

eServer™ i5, or System i5™ field.

The value of the field is set to the maximum value possible for the number of bytes and digits specified by the

system.

• Data in this field has too many decimal positions. The number is rounded. This occurs when the number of

decimal positions in the workstation field is greater than the number of decimal positions specified on the

system. The extra bytes are significant, since the data rounds up if the first extraneous digit is 5 or greater, and

rounds down if it is less than 5.

• Data in this field is incorrect or does not match the workstation data type. This error occurs when nonnumeric

data appears in a field defined as numeric by the file descriptions. When this occurs, the transfer request ends

to prevent transferring incorrect data to the system file.

• Data for this field is missing. The default values are used. This error occurs when a data field is defined, but

the data is not in the file. This means that the end of the file is reached before all the defined data is found.

Chapter 2. Product Documentation

When this error occurs, the field or fields for which data has been defined, but not found, fill with default values

and transfer to the system file. Default values are EBCDIC spaces for character fields, or zeros for numeric

fields.

To supply your own default values, use the default (DFT) keyword in the DDS for the file.

When you transfer data from a DOS random type-2 file to a system file without data definitions, any data shorter than

the record length defined for the system file is padded with EBCDIC spaces.

Because DOS random type-2 files have no record delimiters, this error occurs only on the last record and probably

indicates that the record length of the system file does not match that of the workstation file.

No-Conversion Files
No-conversion files, defined by the data transfer function, consist of data that has not changed. For example, when

data transfers from the system to a workstation no-conversion file, the data transfers exactly as it is stored on the

iSeries™, eServer™ i5, or System i5™. Date, time, and time-stamp data transfers to EBCDIC character data on the

workstation.

Transferring Data to No-Conversion Files
When you transfer data from the iSeries™, eServer™ i5, or System i5™ to a no-conversion file, the data transfers exactly

as it is stored on the system.

Variable-length iSeries™, eServer™ i5, or System i5™ fields are converted to fixed-length fields, and trailing EBCDIC

blanks are added to the maximum length of the field.

Date, time, and time-stamp data is converted to EBCDIC character data.

Variable-length and null fields are converted to fixed length, and trailing EBCDIC blanks (for character, hex, date, time,

and time stamp) or EBCDIC zeros (for binary, zoned, and packed) are added to the maximum length of the field.

Transferring Data from No-Conversion Files
The data types that exist in a no-conversion file are EBCDIC system data types only. When a no-conversion file

transfers to the system, the data transfer function performs no data change or translation. Date, time, and time-stamp

data transfers to EBCDIC character data on the workstation.

However, the data transfer function verifies that all numeric data is in the correct EBCDIC format. If any numeric data

is found that is not in the correct EBCDIC format, that data and any remaining data does not transfer.

Errors When Transferring Data from No-Conversion Files
When you transfer data from a workstation no-conversion file to a system file, the following errors can occur:

329

HCL Z and I Emulator for Windows (ENGLISH)

330

• Data sizes are not equal. When you transfer no-conversion files, the length and decimal position specifications

for the system and the workstation must match exactly. If not, no records transfer.

• Data in this field is too short for system field. The data is padded. This error occurs when the workstation file

contains character or hexadecimal data shorter than the field length specified for the system file. This could

occur if the data in the last record of the file is too short. Character fields are padded on the right with EBCDIC

spaces. Hexadecimal fields are padded with zeros.

• Data in this field is incorrect or does not match the workstation data type. The transfer request ends to

prevent transferring incorrect data to the system file. This error occurs when a field defined by the file

descriptions as numeric contains nonnumeric data.

Note: The data is verified assuming that the data is in EBCDIC format. If you want to transfer data in

another format, do not use data definitions or file descriptions, and specify the record lengths defined

on the system and the workstation in the same way.

• Data for this field is missing. The default values are used. This error occurs when a data field has been

defined, but the data is not in the file. This error can occur only in the last record of the file, since no-

conversion files have no explicit record delimiters.

When this error occurs, the field or fields for which data has been defined but not found fill with default values

and transfer to the system file. These default values are EBCDIC spaces for character fields, or zeros for

numeric fields.

To supply your own default values, use the default (DFT) keyword in the DDS for the file.

iSeries, eServer i5, or System i5 System-to-PC Performance Considerations
Transferring data from the iSeries™, eServer™ i5, or System i5™ to the workstation depends on the following

performance considerations:

• The system workload.

• How many records have to be looked at to complete the transfer.

• If more than two files are joined. You need extra iSeries™, eServer™ i5, or System i5™ resources to join records

from more than one file.

• If GROUP BY fields are specified.

• If complicated WHERE or HAVING comparisons are specified.

These factors and others influence the time needed to determine which data should be transferred. For example, the

time needed to receive the first record of a transfer in which all the records are chosen is less than the time needed to

start transferring a smaller group of records based on complicated WHERE or HAVING values. However, transferring

all the records in a large file is sometimes impractical or unnecessary.

The iSeries-to-workstation data transfer function uses many functions within the iSeries™, eServer™ i5, or System

i5™ to determine the fastest method of selectively retrieving records. When it selects a smaller group of records

Chapter 2. Product Documentation

to transfer, the iSeries-to-workstation data transfer function uses the existing access paths whenever possible to

improve performance.

For the iSeries-to-workstation data transfer function to consider using an existing access path (logical file), the

access path must meet the following conditions:

• It must be defined to the data that transfers.

• It must have either *DELAY or *IMMED maintenance.

When you meet these conditions, you must then match the transfer request to the access path. The following

considerations might be helpful when you define your transfer request:

• The time it takes to select records based on WHERE clause values is less when the following things are true of

the WHERE field:

◦ It is compared with a constant.

◦ It is the first key field in an existing access path defined to the data to be transferred.

• A transfer request containing a GROUP BY or ORDER BY clause or both can work better if the key fields in the

access path are in the same order as specified on the GROUP BY or ORDER BY clauses.

• A transfer request containing a JOIN BY clause can work better when:

◦ An access path exists over the file that you are joining to.

◦ The field you are joining to is a primary key field in the access path.

◦ You are not returning records with missing fields.

Transferring Files
Z and I Emulator for Windows File Transfer enables you to transfer one or more files between a host system and

workstation at the same time. Transfer types and translation tables can be defined in advance.

You can perform the following file transfer functions:

• Send files to the host system

• Receive files from the host system

• Use lists of files

• Create templates to define file names and transfer types

• Define transfer types

• Set transfer options

• Modify translation tables

• Transfer files via the XMODEM or YMODEM protocols

Note:

PCT400 was withdrawn from marketing 3/98.

331

HCL Z and I Emulator for Windows (ENGLISH)

332

Host Requirements
For PC400 File Transfer in SBCS mode, you need one of the following host file-transfer programs (referred to as

APVAFILE):

• Z and I Emulator for Windows Tools/400 8mm Tape — 46H8350

• Z and I Emulator for Windows Tools/400 1/2 inch Tape — 85G9973

• Z and I Emulator for Windows Tools/400 1/4 inch Tape — 85G9969

Sending Files to the Host System
To send a file from your workstation to the host system:

1. Sign on to the host system.

2. Click Send File to Host from the Actions menu of the session window. (You can also select the Send button

on the tool bar.)

The Send File to Host window opens.

3. Specify the name of the workstation file to be sent to the host system by entering the name in the PC File text

box, or click the Browse button to open a dialog box for selecting the file.

4. Enter the name under which the file will be stored on the host; then enter or select the Transfer Type. If a

template is provided for the file type you are transferring, the host file name and the transfer type appear

automatically.

Using List Files: Select Open List; then select the list to be used for transfer. See Creating List Files on

page 333 for details of how to create list files.

5. Click Send.

The file is sent to the host system. The send status appears in the Send a File Status window.

Receiving Files from the Host System
To transfer a file from the host system to your workstation:

1. Sign on to the host system.

2. Click Receive File from Host from the Actions menu. (You can also select the Receive button from the tool

bar.)

The Receive File from Host window opens.

3. Specify the name of the host file to be received. Enter the name in the Host File text box, or specify it as

follows:

Chapter 2. Product Documentation

Using the Clipboard button: If you have copied one or more host file names to the clipboard, you can

paste the names into the transfer list; click the Clipboard button to open a dialog box for this. Select

one or more of the pasted file names to be transferred. Then click OK.

4. Enter or modify the suggested name under which the file will be stored on the workstation, and enter or select

the Transfer Type; or click the Browse button to open a dialog box for selecting a location for the file.

Using List Files: Select Open List, and select the list to be used for transfer. (See Creating List Files on

page 333 for an explanation of how to create list files.)

If a template is provided for the file type you are transferring, the workstation file name and the

generated transfer type appear automatically.

5. Click Receive.

The receive status appears in the Receive a File Status window.

Using List Files
If the same files are transmitted frequently, you can create a list of the files and save it.

A list file can be used for both Send and Receive. The default list file extension is .SRL.

Creating List Files
To create a list file:

1. Click Receive File from Host from the Actions menu or Send File to Host from the Actions menu of the

session window; or click the Send or Receive buttons on the tool bar.

The corresponding window opens.

2. Select a file to be transferred from the Host-File Name or PC-File Name list box by pointing to the name of a

file to be selected. While holding down the Ctrl key, click the left mouse button.

The file name, its corresponding workstation or host file name (according to the available templates), and the

transfer type appear in the Transfer List part of the window.

Note: You can also click the Browse button (for sending files) or the Clipboard button (for receiving

files) to open the corresponding dialog box, which allows you to select files for transferring; when you

click OK, the selected files are shown in the Transfer List.

3. Click the Add to List button to include a selected file in the Transfer List.

4. After all desired files have been selected, click Save List.

The Save File-Transfer List File As window opens.

5. Enter or select a list name, and click OK.

333

HCL Z and I Emulator for Windows (ENGLISH)

334

Editing Lists
To edit the contents of a previously created list:

1. As explained in Sending Files to the Host System on page 332 and Receiving Files from the Host System on

page 332, display the Send File to Host or Receive File from Host window.

2. Select Open List.

The Open File-Transfer List File window opens.

3. Select the name corresponding to the list file to be edited, then click OK.

4. The contents of the selected list appear in the Send File to Host or Receive File from Host window.

5. Edit the contents of the list file.

Changing the contents of a list: Choose the file to be changed from the list, and overwrite the items to

be changed in the text box; then click the Update in List button.

Removing a file from the list: Choose the file to be removed, and click Remove from List.

Adding a file to the list: Double-click the file to be added from the list of host or workstation files.

6. Select Save List.

The Save File-Transfer List File As window opens.

7. Enter a name and then click OK.

Managing Templates
A template is a set of rules to be used by the workstation to automatically generate a workstation or host file name

and transfer type when you specify a file to be sent or received.

You can have up to 32 templates. They are automatically numbered from 1 to 32.

When you specify a file to be transferred, the workstation scans the templates, starting from template 1. It uses the

first matching template to generate a name for the transferred file and the transfer type.

To manage a template:

1. Click Receive File from Host from the Actions menu or Send File to Host from the Actions menu of the

session window; or click the Send or Receive buttons on the tool bar.

The Send File to Host or Receive File from Host window opens.

2. Select Template.

The Template window opens. The contents of the window depend on the connected host system.

Chapter 2. Product Documentation

Adding Templates
The list box for the Template window lists the currently stored templates.

To add a template:

1. Select any template from the list box.

The contents of the selected template appear under the list box.

2. Change the workstation or host file names or extensions by overwriting them; then select the transfer type.

(For details of the transfer types, see Defining Transfer Types on page 336.)

3. Click Add.

The window for determining where in the list to display the new template opens.

4. Select a template number and specify whether to display the new template before or after the template that

has that number. Click OK.

The new template is added to the list in the appropriate position.

Replacing and Deleting Templates
To change the contents of a currently stored template, or to delete a template:

1. Select the template to be changed or deleted.

The contents of the selected template appear under the list box.

2. To change the contents, overwrite the appropriate part and then click Replace.

To delete a template, click Delete.

The selected template is changed or deleted, and the contents of the template list box are changed.

Testing Templates
To test the contents of an added or changed template:

1. Select the template to be tested from the list box.

The number of the selected template appears in the Test Templates box in the lower part of the window.

2. Select or enter data for the following items:

Test Mode

Determine which mode is to be used for the test: the mode in which a file is transmitted from the

workstation to the host system (send), or the mode in which a file is transmitted from the host

system to the workstation (receive).

Templates

Determine which templates to test: only the template selected in step 1, or all registered

templates.

335

HCL Z and I Emulator for Windows (ENGLISH)

336

Source File

Enter the name of the file to be used for the test.

3. Click Test.

Target File indicates the name that has been generated by the template.

Note: Testing a template does not transfer a file.

Defining Transfer Types
Transfer types define the option information used for controlling file transfer. Up to 32 transfer types can be defined

for each host system. Text, binary, and append (excluding CICS®) are the defaults.

To add or change transfer types:

1. Click Preferences → Transfer from the Edit menu of the session window.

2. Click the tab for your host type or modem protocol.

The property page for the selected host or modem protocol opens. The items that appear depend on the

selected host system.

3. Enter transfer-type names in the Transfer Type box, or select them from the drop-down list.

4. Select or enter the required items (see Items to Be Specified on page 336).

To add or replace a transfer type, click Save. To delete a transfer type, click Delete.

5. A dialog box displays, asking for confirmation. Click OK.

Items to Be Specified
Choosing the appropriate property page enables you to set the items described in the following sections.

File Options
The file options that can be used depend on the type of the connected host system and the host code page selected

when the session was configured. Table 45: Mode Values for File Transfer Options on page 336 lists the mode

values for the file transfer options. File Transfer for PC400 on page 340 lists transfer options.

Table 45. Mode Values for File Transfer Options

Mode Host Code Page

SBCS Others

Chapter 2. Product Documentation

Logical Record Length (LRECL)
Enter the logical record length to be used (host record byte count) in the LRECL text box. If Variable and Undefined

Mode are specified as the record format, the logical record length is the maximum record length within a file. The

maximum value is 32767.

The record length of a file sent from a workstation to the host system might exceed the logical record length specified

here. If so, the host file transfer program divides the file by the logical record length.

To send a file containing long records to the host system, specify a sufficiently long logical record length.

Because the record length of a workstation file exceeds the logical record length, a message does not appear

normally if each record is divided. To display a message, add the following specification to the [Transfer] item of the

workstation profile:

DisplayTruncateMessage = Y

Additional Options
The required host command options can be entered in the Additional Options text box.

Setting General Transfer Options
To set advanced options:

1. Select Preferences → Transfer from the Edit menu of the session window.

The setup dialog is displayed.

2. Change the required settings on the property page labeled General.

3. Click OK.

The following sections contain information about the items which can be defined for file transfer options.

Data Transfer
You can choose whether the Data Transfer function (see Data Transfer for PC400 on page 246) is to be used

instead of the normal file transfer function.

Host Command
You can specify host command to be called when file transfer starts. If nothing is entered in this text box, APVAFILE is

used for 5250 sessions.

337

HCL Z and I Emulator for Windows (ENGLISH)

338

Default PC Directory
You can specify the default directory that appears in the Send File to Host or Receive File From Host window. To

select the directory, click the Browse button.

Default Library
You can specify the iSeries™, eServer™ i5, or System i5™ library to be used as the default.

PC Code Page
When a file is transferred, EBCDIC codes are converted to 1-byte workstation codes, and vice versa. A valid value is

automatically selected from among the following values for SBCS sessions: 437, 737, 806, 813, 819, 833, 850, 852,

854, 857, 858, 860, 861, 862, 863, 864, 865, 866, 869, 874, 912, 915, 916, 920, 921, 922, 1008, 1089, 1124, 1125, 1127,

1129, 1131, 1133, 1153, 1155, 1156, 1157, 1158, 1160, 1164, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, and

1258; —according to the host code page specified when the workstation is configured. For an explanation of how to

select host code pages, see the online help for the host code page.

File-Transfer Timeout
You can define the time the workstation waits for a response from the host system (in seconds). If the host system

does not respond, the transfer is canceled, and an error message appears. A number in the range 20–65535 (or 0)

can be specified. The default timeout is 30 seconds. Specify an appropriate value such that the error message does

not appear too early. If you specify 0, a timeout is not set.

If a packet or block size is relatively large for low-speed lines, such as or COM port lines, it is recommended that 150

seconds or greater be specified.

Extension for List-Files
You can change the default extension (.SRL) of file-transfer list files.

Show Status Window
You can choose the method of displaying the file-transfer-progress status.

In Session

When file transfer starts, the status window opens. The name of the file being transferred and the

transfer progress appear.

Chapter 2. Product Documentation

In icon

When file transfer starts, the status icon appears on the screen. If the icon is restored, the status

window opens.

Setting Up the Translation Table
You can create or edit the translation table to be used for sending or receiving files.

Changing the Translation Table
To change the translation table:

1. Select Preferences → Transfer from the Edit menu of the session window.

2. Click the Translation Table tab on the resulting window.

The Translation-Table Setup property page opens.

3. The table currently being used (default or the name of a user-defined table) is shown. Choose either Default

or User-Defined.

4. If you choose User-Defined, enter a translation-table name in the File Name text box, or select a name by

clicking Browse.

5. Click OK.

Customizing the Translation Table
You can create a user-specific translation table for transmission or reception, or you can edit an existing translation

table.

To create or edit a translation table:

1. On the Translation Tables property page, click Customize in the Upload or Download window.

The Customize Translation window opens.

If you chose Default or if you chose New from the File menu, the default values appear in the table.

Translation source codes

PC code-points when an upload translation table is edited. Host code-points when a download

translation table is edited.

Translation target codes

Host code-points when an upload translation table is edited. PC code-points when a download

translation table is edited.

2. Double-click the code to be changed in the table, and change the value in the entry field that subsequently

appears.

3. Click Save or Save As from the File menu.

339

HCL Z and I Emulator for Windows (ENGLISH)

340

4. If asked, enter a name in the Save Translation File As window and click OK.

5. Click Exit from the File menu of the Customize Translation window.

File Transfer for PC400
File transfer is designed so that you can use it in the following cases:

• To store a workstation file on the iSeries™, eServer™ i5, or System i5™ for a backup

• To edit a source file of an iSeries™, eServer™ i5, or System i5™ program with a workstation editor, and send the

file edited on the workstation to the iSeries™, eServer™ i5, or System i5™.

• To distribute workstation documents and programs to the iSeries™, eServer™ i5, or System i5™ users

PC File Transfer with the CRLF Option
If the CRLF option is specified, the transfer program checks for new-line characters. If the record length is reached

before a new-line character is found, the record is divided at this point; one sentence of a workstation file will become

two or more records. Particularly, specify a sufficiently long record length when retransmitting a workstation file

containing 2-byte characters.

By default, the message records segmented. is not displayed. To display the message, do the following:

1. Look for the profile for the session you will use. Normally, this will be in the application data directory under

the name filename.WS (filename is a user-specified file name).

2. Use an editor to insert the following sentence into the [Transfer] section. If there is no [Transfer] section, first

enter [Transfer]. Be careful to enter it correctly.

[Transfer]
DisplayTruncateMessage=Y

The next time the session is started, this specification becomes active.

Transfer to a Physical Source File
An iSeries™, eServer™ i5, or System i5™ physical source file contains 12 bytes of information for each record as

internal information: 6 bytes are for a record number, the other 6 bytes are for a date. When you transfer a file from

a workstation using file transfer, the date field contains 000000. If the APPEND option is not specified, the record

number is incremented by 1, up to a maximum of 9999. Otherwise, it is incremented from the nearest integer, greater

than the number of the last record in the original file (for example, 24 for 23.1). If the number of records exceeds

9999, the next and all subsequent record numbers are 9999.

Use the source specifications input utility (SIU) to renumber records when saving the file after editing.

Chapter 2. Product Documentation

Transfer to a Physical File
A file, such as a PC program, that does not require the processing of the contents of an iSeries™, eServer™ i5, or

System i5™ file or the reading of data, should be transferred to a physical file with the BINARY transfer type. Because

data is not converted, if the data is subsequently retransmitted from the iSeries™, eServer™ i5, or System i5™ to a

workstation, the original workstation file can be re-created exactly. If the data is converted, however, data might not be

restored to its original form, depending on the contents of the conversion table.

For the maximum number of members (MAXMBRS), a physical file attribute, the default value is 1. When a physical

file is created during file transfer, MAXMBRS is 1.

When a file is transferred from a workstation to a physical file, the default file name xxxBIN is assumed (xxx is a

workstation file extension.) If you transfer more than one file, an error occurs when the second and subsequent files

are transferred: The TRANS58 file or member cannot be created. File transfer terminates. A file should be created

with the expected file attribute before it is transferred from a workstation to the iSeries™, eServer™ i5, or System i5™.

Using the DSPMBRLST Command
For file transfer from the iSeries™, eServer™ i5, or System i5™ to a workstation, the Paste function can be used. If

the name of the Library/File(Member) to be transferred is copied with the Copy function of the Edit menu, it can

be displayed as the host file candidate to be transferred on the transfer request screen by clicking Paste. This is

particularly convenient when transferring more than one file at a time.

Use the DSPMBRLST command to list iSeries™, eServer™ i5, or System i5™ files or members. The command format is

as follows:

DSPMBRLST LIB(lib-name) FILE(file-name)

LIB parameter

The LIB parameter contains the target library name. The default value is *USRLIBL. Extensive

specification, such as *ALL, * for generic name, is possible, but is time-consuming. iSeries™, eServer™ i5,

or System i5™ files or members are listed more efficiently if a specific name is specified.

FILE parameter

The FILE parameter contains the target file name. There is no default value. The parameter must be

specified. *ALL and * for generic name can be specified.

Executing this command lists Library/File(Member) on the screen. If they cannot be listed on one screen, MORE...

is displayed in the lower right corner of the screen. Use the next page or the preceding page key to scroll the screen.

Create a list for Paste with the Copy or the CopyAppend function of the Edit menu, as required.

Restrictions for Transferred File Size
A file that is more than 1 040 000 bytes cannot be transferred correctly.

341

HCL Z and I Emulator for Windows (ENGLISH)

342

Using Z and I Emulator for Windows VT

VT Emulation
For connection to ASCII hosts, Z and I Emulator for Windows provides the VT Emulator for VT340, VT100, and VT52

terminals. ASCII hosts commonly use these terminal control sequences as standards for session presentation,

and many ASCII-host application programs assume a VT-compatible terminal. VT emulation allows your personal

computer or workstation to operate as if it were a VT terminal. Software that is designed to operate a VT340, VT100,

or VT52 terminal should work correctly with the Z and I Emulator for Windows VT emulator.

Although the keyboard layout on VT terminals is similar to that of the personal computer, there are some exceptions.

See Default Key Functions for the VT Emulator Layout on page 189 for the default mapping of keys for VT

emulation.

For file transfer to and from ASCII hosts, using the XMODEM and YMODEM protocols, see Using XMODEM and

YMODEM on page 355.

VT connections to non-ASCII hosts, such as the IBM® zSeries™ are also possible if you have the appropriate

communication devices.

Configuring a VT Session
Use the Customize Communication → ASCII Host panel to select values for the parameters that define your ASCII

host session. There are two types of parameters: Session and Link.

Customizing the VT over Telnet Attachment

1. Click Communication from the WorkStation-window menu bar.

2. Click Configure from the Communication menu.

The Customize Communication window opens.

3. Select the ASCII host and then select the LAN or COM Port interface.

The available attachments appear.

4. Select VT over Telnet attachment.

5. Click Session Parameters.

The Session Parameters — ASCII Host window opens.

6. Set the Session Parameters (see Session Parameters on page 343).

7. Click Link Parameters.

The TelnetASCII window opens.

8. Enter the host name or IP address.

9. Optionally enter the port number, change the terminal ID, or select the Auto-reconnect check box.

10. Click OK until the Customize Communication window closes.

Customization is complete.

Chapter 2. Product Documentation

Session Parameters
These parameters correspond to setup choices on a VT340 terminal.

Online/Local

In the Online state, the emulator receives data from the host computer, and can send data to it. In the

Local state, data you enter on the keyboard appears on the screen, but is not sent to the host; data from

the host is held, and not presented on the screen until you change the state to Online.

Operating Mode

Select Char if the host does not echo the characters you type on your keyboard. The VT emulator

displays them as it sends them to the host.

Select Echo if the host echos your keyboard characters for display. The VT emulator displays them only

as they return from the host.

If you see doubled characters, you should select Echo instead of Char. Echo is the default.

Machine Mode

There are four machine modes. These are:

VT340 mode, with 7-bit controls

This is the default. This mode is recommended for most applications.

VT340 mode, with 8-bit controls

The emulator is set for an 8-bit environment with 8-bit controls.

VT100 mode

This mode is intended for situations requiring strict compatibility with the VT100 terminal.

In general, the VT340 7-bit mode is appropriate for applications that expect a VT100.

VT52 mode

This mode is only for applications designed for the VT52 terminal.

Screen Size

You can choose the number of rows and columns that the session screen displays. The choices are

• Rows: 24, 36, 48, 72, and 144

• Columns: 80 and 132

The defaults are 24 rows and 80 columns.

Type of Host Code-Page

The choices are for the host code page are National, PC, and Multinational. Multinational which selects

the 8–bit DEC Supplemental Graphic Character Set is the default. If you select National, then you must

select a country from the Host Code Page pull-down list. The PC option selects the PC Code Page 437.

343

HCL Z and I Emulator for Windows (ENGLISH)

344

ISO Latin 9 (ISO 8859-15) character set support for ASCII (VT) sessions

Support of the ISO Latin 9 (ISO 8859-15) character set is available for ASCII (VT) sessions.

Optional Parameters
These parameters correspond to setup choices on a VT340 terminal.

Reverse Screen Image

Check this box to reverse the foreground and background colors.

User Feature Lock

Check this box to lock the following functions so that the host cannot change them.

• Auto Repeat

• Keyboard Lock

• Reversed Screen Image

• Tab Stops

Auto Wrap

Check this box if you want the VT emulator to start a new line whenever the current row of characters

reaches the end of line.

Auto-Answer Back Message

Check this box if you want the VT emulator to send a message automatically to the host, once a

connection has been established.

Move Cursor on Mouse Click

Select this option if you want the cursor to move when you click the left mouse button in the session

window presentation space.

Answer Back Message

Enter the message, which is a maximum of 31 characters, to send to the host when communication is

established.

Conceal

If you check this box, your answerback message is not displayed in the configuration window. After you

conceal your message, the Conceal box has no effect, and the message remains concealed until it is

changed.

User Defined Key Lock

Check this box to lock user-defined keys. For example, you can select User Defined Key Lock and define

the values of the F6 to F20 keys. These keys are then locked with those values and cannot be redefined

by the host.

Chapter 2. Product Documentation

Transparent Mode

Check this box to cause the VT emulator to display control characters rather than interpreting them.

VT ID

The attributes of the selected model are sent to the host computer. Choose one of the following: VT100

ID, VT101 ID, VT102 ID, VT220 ID, VT240 ID, VT320 ID, or VT340 ID.

History Logging

When this option is enabled, text is logged into the VT history window as it scrolls off the screen from

the top margin row. The top and bottom margins are set when the host application defines the scrolling

region.

History Logging Buffer Size

Use this list to select one of the available sizes for the history log buffer. The choices are 16KB, 32KB,

64KB, 128KB, and 512KB. The default is 64KB.

History Logging – Enhanced

Data erased due to the Erase in Display command is scrolled into the history window. See Enhanced

History Logging on page 355 for more information.

Advanced ASCII Host
The Advanced button takes you to the Advanced ASCII Host dialog. The Advanced Options dialog contains all of

the configuration options needed for the Local editing feature of VT340 Emulation. The following list defines these

configuration options. Default settings are indicated in bold.

Graphics Cursor

Determines whether the graphics input cursor is shown when in graphics mode. Possible values are

Enabled or Disabled.

Sixel Scrolling

When this option is selected, a sixel graphics image scrolls to the next row when the last column is

reached. Possible values are Enabled or Disabled.

MacroGraph Reports

Controls the ability of the host to retrieve stored macro graph procedures. Possible values are Enabled

or Disabled.

Edit Mode

Selects whether local editing is available and the current mode of operation. Possible values are

Unavailable, Interactive, or Edit.

Erasure Mode

Determines which characters can be erased in edit mode. Possible values are Unprotected or All.

345

HCL Z and I Emulator for Windows (ENGLISH)

346

Edit Key

Determines how the VT340 emulation switches between interactive and edit mode. Possible values are

Immediate or Deferred.

Transmit

Determines how the VT340 emulation sends a block of data to the host system in edit mode. Possible

values are Immediate or Deferred.

Application Keys

Determines how the unshifted function keys F6 through F20 work in edit mode. Possible values are

Disabled, Immediate, Prefix, or Suffix.

Guarded Area

Determines whether protected characters can be sent to the host system. Possible values are All or

Selected.

Selected Area

Determines whether the VT340 emulation can send all characters or only selected characters to the

host system. Possible values are All or Selected.

Multiple Area

Determines whether VT340 emulation can send all selected areas on the page, or only the area selected

with the cursor. Possible values are Multiple or Single.

VT131 Transfer

When Line Transmit Mode is disabled, this feature selects an ANSI-style or VT131-style data

transmission. Possible values are ANSI or VT131. The size of the block depends on the Transfer

Termination Mode value.

EOL Characters

Allows you to select characters used to indicate the end of a line (EOL) in a data block. By default the

VT340 emulation sends a carriage return (CR). Up to six hexadecimal characters can be specified.

EOB Characters

Allows you to select characters used to indicate the end of a data block (EOB). This feature has no

default. Up to six hexadecimal characters can be specified.

Page Coupling

Determines whether to automatically display a new page when the cursor moves to a new page in page

memory. Possible values are Enabled or Disabled.

Line Transmit Mode

Allows you to send characters one line at a time to the host system. Possible values are Disabled or

Enabled.

Chapter 2. Product Documentation

Transfer Termination Mode

When Line Transmit Mode is disabled, this feature determines whether the VT340 emulation sends a

partial page or the scrolling region. Possible values are Enabled or Disabled.

Space Compression Mode

Determines how the VT340 emulation sends unused character fields and spaces in a data block.

Possible values are Disabled or Enabled.

Link Parameters
The Configure Links button take you to a panel for configuring the details of the connection to the ASCII host

computer. The panel you see depends upon the attachment type that you chose for your ASCII host. There are two

types:

• VT over Telnet

Configuring Links for VT over Telnet
The VT over Telnet attachment is an application that uses TCP/IP (Transmission Control Protocol/Internet Protocol)

and that enables remote logon to an ASCII host. TCP/IP provides connectivity functions for both local area networks

(LAN) and wide area networks (WAN) and includes the ability to route information between LANs and WANs. The

major TCP/IP networks—the Internet—use a standardized addressing procedure to ensure that IP addresses are

unique and that communication between enterprises is possible.

The VT over Telnet attachment for Z and I Emulator for Windows requires a TCP/IP stack that supports the

Windows® Sockets Version 1.1 interface. WSOCK32.DLL must be in the Windows® system directory or the current

path to provide the interface for the stack program and to support the Windows® Sockets V1.1 interface.

For the VT over Telnet attachment, you must define the following attachment parameters.

• Host Name or IP Address (mandatory)

• Port Number (optional)

• Terminal ID (optional)

• Auto-reconnect (optional)

Host Name or IP Address

Specify either the alphabetic name of the target host or its numeric IP address.

Host Name

The name of the target host is a string

Host IP Address

The IP address of the target host is in dotted-decimal notation—for example: 0.0.0.0

347

HCL Z and I Emulator for Windows (ENGLISH)

348

Port Number

Specify the decimal number of the target host's Telnet port. The default, 23, is the standard Telnet port.

Terminal ID

The VT emulator and the Telnet server use the terminal ID for negotiating an appropriate connection.

Ask your Telnet administrator for your host's correct terminal ID. When the default box is selected, the

default values are selected from the Machine Mode, as shown in the following table:

Machine Mode Default Terminal ID

VT340 DEC-VT220

VT100 DEC-VT100

VT52 DEC-VT52

ANSI ansi

Auto-reconnect

If the session is disconnected from the host, and if this box is selected, you will be re-connected

automatically.

The default is not selected.

Using A VT Session
Your Z and I Emulator for Windows VT session works as if you were using a VT340, VT100, or VT52 terminal. For

mainframe VT, iSeries™, eServer™ i5, or System i5™ connections, the protocol converters have defined VT keyboard

sequences, such as F1 or PA1.

The following tables are provided:

• Characters generated by VT Compose Key

• Characters displayed in transparent mode

• OIA line display messages

Refer to Administrator's Guide and Reference for default mapping of the VT340 keyboard to the PC keyboard, as used

by the Z and I Emulator for Windows VT emulator.

Compose Key
The VT emulator supports the VT340 compose key for generating special characters on the display. Before using the

compose key, define a key combination that represents it.

Using the compose key involves three separate actions:

Chapter 2. Product Documentation

1. Press and release the compose key.

2. Press and release the first character (see Table 46: Character Generation (Special Characters) on page 349).

3. Press and release the second character.

The first and second characters may be typed in either order, except when the table specifies that they must be

entered as shown,

Table 46: Character Generation (Special Characters) on page 349 shows the appearance and name of each

special character, the character pair that generates the character, and an indication whether the order of entering the

characters is significant.

Table 46. Character Generation (Special Characters)

Generated Character Compose Key, Plus This Pair

Appearance Description First Second Order

Á A acute A ' either

á a acute a ' either

Â A circumflex A ^ either

â a circumflex a ^ either

À A grave A ˋ either

à a grave a ˋ either

A * eitherÅ A ring

A ° either

a * eitherå a ring

a ° either

Ã A tilde A ~ either

ã a tilde a ~ either

Ä A umlaut A " either

ä a umlaut a " either

Æ AE ligature A E as shown

æ ae ligature a e as shown

´ apostrophe ' space either

a a either@ at sign

A A either

\ backslash / / either

\ backslash / < either

Ç C cedilla C , either

ç c cedilla c , either

c / either

C / either

¢ cent sign

c | either

349

HCL Z and I Emulator for Windows (ENGLISH)

350

Table 46. Character Generation (Special Characters)

(continued)

Generated Character Compose Key, Plus This Pair

Appearance Description First Second Order

C | either

^ circumflex accent ^ space either

} close brace) - either

] close bracket)) either

» close French quote > > either

a a either@ commercial at

A A either

c o either

C O either

c 0 either

© copyright mark

C 0 either

0 ^ either

° space either

° degree sign

space either

É E acute E ' either

é e acute e ' either

Ê E circumflex E ^ either

ê e circumflex e ^ either

È E grave E ˋ either

è e grave e ˋ either

Ë E umlaut E " either

ë e umlaut e " either

a _ eithera feminine ordinal indicator

A _ either

½ fraction one-half 1 2 as shown

¼ fraction one-quarter 1 4 as shown

ß German ess-tset s s either

/ u as shownµ Greek mu

/ U as shown

» guillemets, closing > > either

« guillemets, opening < < either

Í I acute I ' either

í i acute i ' either

Î I circumflex I ^ either

Chapter 2. Product Documentation

Table 46. Character Generation (Special Characters)

(continued)

Generated Character Compose Key, Plus This Pair

Appearance Description First Second Order

î i circumflex i ^ either

Ì I grave I ˋ either

ì i grave i ˋ either

Ï I umlaut I " either

ï i umlaut i " either

¡ inverted exclamation ! ! either

¿ inverted question mark ? ? either

o _ eithero masculine ordinal indicator

O _ either

/ u as shownµ micro sign

/ U as shown

• middle dot . ^ either

Ñ N tilde N ~ either

ñ n tilde n ~ either

number sign + + either

Ó O acute O ' either

ó o acute o ' either

Ô O circumflex O ^ either

ô o circumflex o ^ either

Ò O grave O ˋ either

ò o grave o ˋ either

Ø O slash O / either

ø o slash o / either

Õ O tilde O ~ either

õ o tilde o ~ either

Ö O umlaut O " either

ö o umlaut o " either

Œ OE ligature O E as shown

351

HCL Z and I Emulator for Windows (ENGLISH)

352

Table 46. Character Generation (Special Characters)

(continued)

Generated Character Compose Key, Plus This Pair

Appearance Description First Second Order

œ oe ligature o e as shown

{ open brace (- either

[open bracket ((either

« open French quote < < either

¶ paragraph sign p ! either

± plus-or-minus sign + - either

l - either

L - either

l = either

£ pound sterling sign

L = either

" quotation mark " space either

s o either

S O either

s ! either

S ! either

s 0 either

§ section sign

S 0 either

' single quote ' space either

ß ss German s s either

¹ superscript 1 1 ^ either

² superscript 2 2 ^ either

³ superscript 3 3 ^ either

~ tilde ~ space either

Ú U acute U ' either

ú u acute u ' either

Û U circumflex U ^ either

û u circumflex u ^ either

Ù U grave U ˋ either

ù u grave u ˋ either

Ü U umlaut U " either

ü u umlaut u " either

| vertical line / ^ either

Ÿ Y umlaut Y " either

Chapter 2. Product Documentation

Table 46. Character Generation (Special Characters)

(continued)

Generated Character Compose Key, Plus This Pair

Appearance Description First Second Order

ÿ y umlaut y " either

y - either

Y - either

y = either

¥ yen sign

Y = either

Transparent Mode
Table 47: Character Generation (Transparent Mode) on page 353 shows the symbol displayed for each character

and control code when the VT emulator is in transparent mode. The characters at AA and BA are the feminine and

masculine ordinals, respectively. The characters at 1E, 1F, 80, and 9E are underlined, although they may not appear

underlined on the output.

Table 47. Character Generation (Transparent

Mode)

0x1x2x3x4x5x6x7x8x9xAxBxCxDxExFx

x0 @ P 0 @ P p p Ÿ ° À Ð à ð

x1 A Q ! 1 A Q a q a q ¡ ± Á Ñ á ñ

x2 B R " 2 B R b r b r ¢ ² Â Ò â ò

x3 C S # 3 C S c s c s £ ³ Ã Ó ã ó

x4 D T $ 4 D T d t d t ¤ ´ Ä Ô ä ô

x5 E U % 5 E U e u e u ¥ µ Å Õ å õ

x6 F V & 6 F V f v f v ¦ ¶ Æ Ö æ ö

x7 G W ' 7 G W g w g w § • Ç × ç ÷

353

HCL Z and I Emulator for Windows (ENGLISH)

354

Table 47. Character Generation (Transparent

Mode) (continued)

0x1x2x3x4x5x6x7x8x9xAxBxCxDxExFx

x8 H X (8 H X h x h x ¨ ¸ È Ø è ø

x9 I Y) 9 I Y i y i y © ¹ É Ù é ù

xAJ Z * : J Z j z j z a o Ê Ú ê ú

xBK [+ ; K [k { k { « » Ë Û ë û

xCL \ , < L \ l | l | ¬ ¼ Ì Ü ì ü

xDM] - = M] n } m } - ½ Í Ý í ý

xE N ^ . > N ^ m n ¾ Î Þ î þ

xF O _ / ? O _ n Œ o œ ‾ ¿ Ï ß ï ÿ

OIA Line Display Messages
During VT emulation, messages unique to VT can appear in certain columns of the OIA line. These columns display

only VT messages, and do not display any of the messages that would appear there in 3270 or 5250 mode. Table 48:

OIA Line Display Messages (VT only) on page 354 shows the meaning of each VT-specific message. Columns that

are not mentioned in the table show messages common to all Z and I Emulator for Windows modes.

Table 48. OIA Line Display Messages (VT only)

Columns Message Meaning

VT340 7 Machine mode is VT340, seven-bit control.

VT340 8 Machine mode is VT340, eight-bit control.

VT100 Machine mode is VT100.

VT52 Machine mode is VT52.

1 through 7

VTANSI Machine mode is VTANSI.

9 through 12 LOCK Keyboard is locked.

30 through 39 OVERSTRIKE New characters replace the character at the cursor po

sition in Local Edit mode.

INSERT New characters move characters in page memory to the

right in Local Edit mode.

61 through 64 HOLD Screen is in hold mode.

66 through 69 EDIT Local Edit mode is enabled.

71 through 72 Pn (n=1 through 6) Current page number.

Chapter 2. Product Documentation

History Logging
You can use the Windows® scroll bar control to view history data from the current VT session. When configuring

the session, select the History Logging option and specify the size of the log (see Configuring a VT Session on

page 342).

When history logging is enabled, text is logged into the VT history window as it scrolls off the screen from the top

margin row. The top and bottom margins are set when the host application defines the scrolling region, using the

DECSTBM command sequence ((ESC [Pn ; Pn r)).

Enhanced History Logging
When the host application sends the Erase in Display (ED) command sequence to erase a portion of the emulator

screen, the contents can be logged into the VT history window before being erased. To enable this functionality, select

the History Logging – Enhanced option, when configuring the VT session parameters.

The format of the host application ED command is ESC [Ps J, where Ps is one of the following values:

0

Erases the screen contents from the cursor position to the end of the screen. This is the default setting.

1

Erases the screen contents from the beginning of the screen up to and including the cursor position.

2

Erases the entire screen contents.

When the ED command setting is 0 or 1, and History Logging – Enhanced is enabled, then the portion of the screen

that is about to be erased will be logged into the history window before being erased. When the parameter value is 2,

the entire screen contents are logged into the history window before being erased, regardless of whether enhanced

history logging is enabled.

ASCII Host File Transfer

Setting Preferences
You can set up your Workstation to perform file transfers; some preferences need to be set first, as described in this

section. Other facilities to simplify handling of transfers are also described.

Using XMODEM and YMODEM
Z and I Emulator for Windows allows you to transfer files to and from ASCII hosts that support the XMODEM and

YMODEM protocols. In order to use XMODEM or YMODEM, you must have established a connection to an ASCII host.

355

HCL Z and I Emulator for Windows (ENGLISH)

356

Choosing a Protocol
You have four choices for protocols. The one you select will depend upon the protocols supported by your ASCII host

and by your particular requirements. The following table shows the capabilities of the protocols:

Downloading Uploading

Single File Multiple Files Single File Multiple Files

XMODEM Yes No Yes No

XMODEM1K Yes No Yes No

YMODEM Yes Yes Yes Yes

YMODEMG Yes Yes Yes Yes

XMODEM

The XMODEM protocol is a single-file half-duplex protocol that performs error checking. Data is

transmitted in 128-byte packets. Error checking, either by CRC or by checksum, occurs automatically.

The Z and I Emulator for Windows implementation of XMODEM first tries CRC. If the sender fails to

acknowledge the first three requests for CRC, XMODEM shifts to the checksum mode.

XMODEM1K

The XMODEM1K protocol is the same as XMODEM, except that it always uses CRC and has a larger

packet size of 1024 bytes. Because some hosts are not able to handle the 1024-byte packets, there is a

need for both XMODEM and XMODEM1K

YMODEM

The YMODEM protocol is similar to XMODEM, but it allows you to send multiple files in a single transfer.

You may use a set of unique file names, or you may specify groups of files.

YMODEMG

The YMODEMG protocol is the same as YMODEM, supporting multiple files, but it does not supply error

checking. It assumes that the data always transfers correctly, and is only for use with error-correcting

modems. For large amounts of data it can achieve much greater throughput than YMODEM because it

does not wait for packet acknowledgment.

XMODEM and XMODEM1K
To use XMODEM, click Edit → Preference → Transfer in your Z and I Emulator for Windows session. The Transfer

Preferences window appears. Select the XMODEM or XMODEM1K protocol, and optionally click on the tab for the

selected modem protocol to define the Transfer Type or to change advanced settings.

When receiving a file, in the Receive File from Host dialog box, enter the file name in the PC File field or select a

personal computer file name from the drop-down listbox. The transfer type is automatically generated according to

the templates.

Chapter 2. Product Documentation

YMODEM and YMODEMG
To use YMODEM, click Edit → Preference → Transfer in your Z and I Emulator for Windows session. The Transfer

Preferences window appears. Select the YMODEM or YMODEMG protocol, and optionally click on the tab for the

selected modem protocol to define the Transfer Type or to change advanced settings.

When receiving a file, you cannot select the personal computer file name, but you can change the default transfer

type, the drive, and the directory, if necessary.

File-Transfer Timeout
You can define the time the workstation waits for a response from the host system (in seconds). If the host system

does not respond, the transfer is canceled, and an error message appears. A number in the range 20–65535 (or

0) can be specified. The default is 60 seconds for ASCII sessions. Specify an appropriate value such that the error

message does not appear too early. If you specify 0, a timeout is not set.

If a packet or block size is relatively large for low-speed lines, such as COM port lines, it is recommended that 150

seconds or greater be specified.

Extension for List-Files
You can change the default extension (.SRL) of file-transfer list files.

Show Status Window
You can choose the method of displaying the file-transfer-progress status.

In Session

When file transfer starts, the status window appears. The name of the file being transferred and the

transfer progress appear.

In Icon

When file transfer starts, the status icon appears on the screen. If the icon is restored, the status

window appears.

Defining Transfer Types
Transfer types define the option information used for controlling file transfer. Up to 32 transfer types can be defined

for each host system. The original default types are: delete (deletes a file on abort), over (overwrites existing files)

and none (does not delete on abort, and does not overwrite).

To add or change transfer types:

357

HCL Z and I Emulator for Windows (ENGLISH)

358

1. Click Edit → Preference → Transfer.

2. Click the tab for the modem protocol you have selected. The items that appear depend on the selected host

system.

3. Enter transfer-type names in the Transfer-Type text box, or select them from the drop-down list.

4. To add or replace a transfer type, click Save. To delete a transfer type, click Delete.

5. Depending on the transfer type, select one of the following file receive options:

Delete File on Abort

With this option, if a file transfer is aborted then the incompletely received file is automatically

deleted.

Overwrite Existing File

With this option, any existing file with the same name as the incoming file is overwritten.

If you do not select this option, then a new name is given to the incoming file, according to the

following scheme:

Existing file: EXAMPLE.TXT

First contender becomes: EXAMPLE.TX1

Second contender: EXAMPLE.TX2

Tenth contender: EXAMPLE.T10

Hundredth contender: EXAMPLE.100

999th contender: EXAMPLE.999

6. Click OK.

ASCII Host File TransferDefining Transfer TypesExplanation of Items to Be DefinedThese options are independent of each other.

File Transfer Templates
For sending ASCII files, Z and I Emulator for Windows automatically generates Host file names and transfer types. For

receiving ASCII files via XMODEM and XMODEM1K, Z and I Emulator for Windows generates a transfer type. In both

situations, templates define the rules for file name and transfer type generation.

Defining Templates
The templates are common for all sessions and are used for both sending and receiving files. For ASCII host file

transfer, you can define up to three templates for each protocol.

To display the templates panels, click the Templates button in the Send File to Host or Receive File from Host panel.

You can add, delete, or replace templates; you can also test templates to see how Z and I Emulator for Windows

generates the target file name and transfer type.

When defining templates, you can use * (asterisk) for the global searching of file names; for example, *.EXE for all

files that have a file name extension of EXE.

Chapter 2. Product Documentation

Automatic Generation of File Names
The templates are numbered from 1 to 32; when Z and I Emulator for Windows generates file names, the templates

are searched, starting from 1, and the first template that matches is used.

Example of ASCII Protocol Template
The following example shows the use of templates for ASCII host file transfer. When sending files, Z and I Emulator

for Windows automatically generates a host file name from a personal computer file name, and vice versa. It also

generates a transfer type. When receiving files, Z and I Emulator for Windows automatically generates only transfer

types, and only for the XMODEM and XMODEM1K protocols.

For more information about templates, refer to Administrator's Guide and Reference.

ASCII Host File TransferExample of ASCII Protocol TemplateTemplates DefinedFollowing are the definitions of the three default templates. The template is selected from the available choices by

matching the name of the file being transmitted or received against each template's file specifications.

Template Number Wildcard specification for

PC File

Wildcard specification for

host File

Type

1 *.exe *.* delete

2 *.txt *.* over

3 *.* *.* none

Send Example: If you enter program.exe, Z and I Emulator for Windows selects template 1, and displays program.exe

delete in the list box.

Receive Example: (XMODEM AND XMODEM1K only) If you enter program.exe, Z and I Emulator for Windows selects

template 1, and displays program.exe delete in the list box.

Working with Lists of Files
For transferring a group of files it is convenient to use a list. A list makes it easier to transfer the same groups of

files frequently, with a single command. Even if you are transferring a group of files only once, a list can help prevent

errors. A list of files is itself a file.

You can transfer multiple files at once by using the send/receive list; it is accessible from the Send Files to Host or

Receive Files from Host windows. For either window, the files selected are displayed in a Transfer List. This list can

be saved, and later retrieved and modified. For instructions on selecting a file, see Receiving Files from an ASCII Host

on page 361 and Sending Files to an ASCII Host on page 362.

File Name Extension for List Files
By default, send/receive list files have a file name extension of .SRL. You can change this default on the property page

with the General tab, by clicking Preferences → Transfer from the Edit menu.

359

HCL Z and I Emulator for Windows (ENGLISH)

360

Note: Z and I Emulator for Windows does not recognize a file as a send/receive list file unless its name has

the specified extension.

Remove From List
By clicking the Remove button, you can delete the selected file from a send/receive list.

Open List File
If you click the Open List button, the Open File-Transfer List File dialog box appears, allowing you to manipulate the

file names in the list.

Save List File
If you click the Save button, the Save File-Transfer List File As dialog-box appears and you can save the list of files.

Changing a List of Files
You can make changes to a list of files to be transferred:

Change the Personal Computer or Host File Name
When you select a file to send or receive, Z and I Emulator for Windows automatically generates a host or personal

computer file name by using templates. To change the generated file name, just type over it.

Note: When receiving a file from an ASCII host, you specify the host file name on the host system.

For receiving files, you can select a personal computer file from the dialog obtained by clicking the Browse button.

Note: The browse function is not available when receiving files from an ASCII host; it is available when

sending files, but only when using the YMODEM or YMODEMG protocols.

Delete File Names From List
To delete a file from the list, select it from the list and click the Remove button.

Chapter 2. Product Documentation

Add More File Names To List
To add more files to the list, select a file in the PC File list box with Ctrl + left mouse-button, or type a file name in the

PC File entry field and press Enter.

Receiving Files from an ASCII Host
Receive File From Host allows you to receive files from a host system to your personal computer; with one command,

you can receive a single file or several. If you often receive the same list of files, you can save the list of file names

and receive all the files with one command.

For ASCII host file transfer, the host system must support one of two protocols, XMODEM or YMODEM.

Selecting a Workstation Directory
To receive files to a workstation directory, you can key in the directory information or click the Browse button to open

the Browse dialog and select the directory; this can be done as part of setting preferences (setting the Default PC

Directory field) or at the time of the file transfer.

Selecting Files to Receive
For ASCII host file transfer, select the file to receive on the host system.

Follow these steps to receive one or more files from an ASCII host:

1. Prepare the host system. The exact method of preparation, including selection of file names, depends on the

kind of host system to which you are connected. Contact your host-system administrator for details.

Note: The host system must support one of two protocols: XMODEM or YMODEM.

2. Click Edit → Preference → Transfer to display the Transfer Preferences window. Select the type of protocol you

want to use from the drop-down list box on the property page with the General tab.

3. In the Default PC Directory field, type the workstation directory where the file or files should be sent; or, click

the Browse button to open a dialog and select the directory.

4. To change the transfer parameter defaults for the protocol you selected, click the tab to display the property

page for the selected modem protocol.

5. When all preferences have been set, click OK.

6. Click Receive File from Host from the Actions menu. The Receive File from Host window appears.

7. For XMODEM and XMODEM1K, click the Browse button to open a dialog and select a personal computer file

name or names, or enter the names in the PC File entry field. The transfer type is automatically generated and

appears in the Transfer Type entry-field.

361

HCL Z and I Emulator for Windows (ENGLISH)

362

8. For YMODEM and YMODEMG, select the transfer type and click the Browse button to open a dialog and

change the directory, if you desire.

9. Click the Receive button to display the Receive Files Status window and start the transfer.

Sending Files to an ASCII Host
Send file to host allows you to send files from your personal computer to the host system; with one command, you

can send a single file or several files. If you often send the same list of files, you can save the list of file names, and

subsequently send all the files with one command.

Note: This is supported using the YMODEM and YMODEMG protocols only.

Selecting Files to Send
There are several ways to select files to send:

Basic Methods
Type a file name in the PC File field and press Tab; a host file name and a transfer type are generated automatically

according to the templates.

Select files from the dialog obtained by clicking the Browse button.

Select from a Send/Receive List
If you have saved a list of file names in a send/receive list, click the Open List button and select the list you want to

use; the file names saved in the list appear.

Note: For ASCII host file transfer, you can use the send/receive list only with the YMODEM and YMODEMG

protocols (not with XMODEM or XMODEM1K).

Advanced Method
The Browse window, obtained by clicking the Browse button, displays all the files in the current directory; you can

display only certain types of files if you want to.

For example, if the directory has many files and you want to display only files that have the extension .DOC, you

can type *.doc in the PC File field and click the Browse button; the resulting dialog shows only files that have the

extension .DOC.

Chapter 2. Product Documentation

Changing the Host File Name or the Transfer Type
When you select a file to send, Z and I Emulator for Windows automatically generates a host file name and selects a

transfer type from the default templates. You can change the file name by typing over the text in the Host File field;

you can change the transfer type by selecting a different one from the Transfer Type drop-down list.

Saving a List of Files to Send
If you frequently send the same set of files, it is a good idea to save the names in a list, called a send/receive list.

Note: For ASCII host file transfer, you can use the send/receive list only with the YMODEM or YMODEMG

protocols (not with XMODEM or XMODEM1K).

Sending a List of Files
Select the list, then click the Send button.

PC Code Page
When a file is transferred, EBCDIC codes are converted to 1-byte workstation codes, and vice versa. A valid value is

automatically selected from among the following values for SBCS sessions: 437, 737, 806, 813, 819, 833, 850, 852,

854, 857, 858, 860, 861, 862, 863, 864, 865, 866, 869, 874, 912, 915, 916, 920, 921, 922, 1008, 1089, 1124, 1125, 1127,

1129, 1131, 1133, 1153, 1155, 1156, 1157, 1158, 1160, 1164, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, and

1258; —according to the host code page specified when the workstation is configured. For an explanation of how to

select host code pages, see the online help for the host code page.

Troubleshooting

Troubleshooting tips

1. Connecting to z/OS console via Z and I Emulator for Windows 62x160 screen size
results in error IEE938I

Problem

IEE936I CONSOLE HHSP0141 INITIALIZATION ERROR - RC:01 - 3277-2 IS ASSUMED is logged by z/OS

console when using HCL Z and I Emulator for Windows version 6.0.2 with a 62x160 screen size.

363

HCL Z and I Emulator for Windows (ENGLISH)

364

Cause

z/OS console connection is being made through the OSA-ICC telnet server. This server does not support

the Terminal Type of IBM-DYNAMIC.

APAR IC71220 changed the default Terminal Type string passed to the telnet server for screen sizes

greater than 27x132.

Resolution

To use 62x160 screen size display sessions with OSA-ICC telnet servers, take the following steps:

1. Edit the WS session profile.

2. Add the following statements under the Telnet3270 stanza to force HCL Z and I Emulator for

Windows to use the original default string:

[Telnet3270]
TerminalTypeString=IBM-3278-2-E

2. Z and I Emulator for Windows TCP/IP Data Transfer fails with terminated transfer
function

Problem

TCP/IP Data Transfer might fail with the error "Transfer function will be terminated". This message

provides a checklist for iSeries or AS/400 host requirements.

Resolution

To resolve this problem, take the following steps to check the status of the iSeriesTM or AS/400® host

requirements:

1. Confirm that the iSeries or AS/400 host has the following required licensed program(s) installed

(type GO LICPGM and select Option 10 - Display Installed Licensed Programs:):

For V5Rx:
5722TC1 *BASE iSeries TCP/IP Connectivity Utilities/400
5722SS1 Option 12 OS/400 ® - Host Servers

For V4R5:
5769TC1 *BASE TCP/IP Connectivity Utilities for AS/400
5769SS1 Option 12 OS/400 - Host Servers

2. Verify that you have a Relational Database entry for YOURSYSTEM at REMOTE Location =

*LOCAL (issue the command WRKRDBDIRE to "Work with Relational Database Directory

Entries"):

RELATIONAL DATABASE : YOURSYSTEMNAME
REMOTE LOCATION:
REMOTE LOCATION : *LOCAL
TEXT :

3. Verify that user ID QUSER is enabled (issue the following command for profile QUSER):

WRKUSRPRF USRPRF(QUSER)

Chapter 2. Product Documentation

4. Verify that TCP/IP is active, using the following command (This is required before any TCP/IP

processing):

START TCP/IP (STRTCP) COMMAND

5. If you have not already done so, issue the following "Start Host Server" command:

STRHOSTSVR SERVER(*ALL)
RQDPCL(*TCP)

The following sets of instructions are to verify that the required server daemon and prestart server jobs

are active for DDM, Database, and File Transfer functions.

1. For DDM, take the following steps:

a. Verify that the DDM daemon is active. Use WRKACTJOB to find the QRWTLSTN job under

QSYSWRK. This daemon is automatically started when the STRTCP command is run, if

the AUTOSTART parameter is set to *YES on the CHGDDMTCPA command <F4>. If the

daemon does not start when the STRTCP command is run, you can start the daemon by

issuing the following command:

STRTCPSVR SERVER(*DDM)

Note: If the DDM daemon still fails to start with error message CPF3E30, refer to

APAR SA81267.

b. Verify that the DDM prestart server jobs are active. Use WRKACTJOB to find the server

jobs named QRWTSRVR. For V5R2 and newer releases, the prestart jobs run in the

QUSRWRK subsystem, but can be configured to run under other subsystems. They are

automatically started with the subsystem. If these jobs are not active, you can issue the

start prestart job command STRPJ <F4>. For host versions prior to V5R2, these jobs runs

in the QSYSWRK subsystem.

2. For Database, take the following steps:

a. Verify that the subsystem for the Database server daemon is active. The subsystem is

QSERVER, and the daemon job is named QZDASRVSD.

b. Verify that the Database prestart server jobs are active. For V5R1 and newer releases,

the prestart jobs are QZDASOINIT and QZDASSINIT. Both jobs run in the QUSRWRK

subsystem, but can be configured to run under other subsystems. As with the DDM

prestart jobs, these jobs are automatically started with the subsystem, but if they are not

active, they can be started with the STRPJ command.

c. If port 8478 is not active, end and restart the Database server job QZDASRVSD using the

following commands:

ENDHOSTSVR *DATABASE
STRHOSTSVR *DATABASE

3. For File Transfer, take the following steps:

365

HCL Z and I Emulator for Windows (ENGLISH)

366

a. Verify that the subsystem for the transfer function server is active. The subsystem is

QSERVER, and the daemon job is named QZDASRVSD.

b. Verify that the transfer function prestart server jobs are active. The prestart job is

QTFPJTCP. This job runs in the QSERVER subsystem.

3. Z and I Emulator for Windows Telnet connection timeout with error 657
Problem

Keyword for Telnet timeout.

Resolution

Z and I Emulator for Windows uses non-blocking sockets when connecting to a remote system. By

default, Z and I Emulator for Windows waits for 3 seconds to establish the socket connection. When

accessing remote terminals over a dialup network, this default wait time might not be sufficient and

could lead to a connection failure and return the error 657.

The default time can be changed by adding the following keyword to the Telnet3270 or Telnet5250

stanza of the workstation profile:

[Telnet3270]
InactiveTimeout=xx

The value xx is the time in seconds and can take any positive numerical values.

4. PCSXFER041 timeout during Z and I Emulator for Windows file transfer TSO
session

Problem

Three situations might cause a timeout at the Z and I Emulator for Windows client and a solution is

provided for each case.

Cause

Resolution

CUT mode transfer

By default, Z and I Emulator for Windows uses DFT mode for transfers to and from a TSO host. When

using Dial to connect to TSO, the host might be configured to do the transfer in CUT mode, while Z and I

Emulator for Windows is still in DFT mode.

You can modify the workstation profile that you use to dial the TSO session. To manually change the

DFT/CUT setting, add the following case-sensitive line to the Transfer stanza of the workstation file:

[Transfer]
CUTprotocol=Y

You can also change the LU description on the zSeries host. Change the VTAM BIND image so that the

Write Structured Field query support bit is set in the PSERVIC. Refer to the VTAM documentation for

more information.

Chapter 2. Product Documentation

Using \FT trigger in SuperSession Manager

If you encounter the timeout problem when using Supersession, you can use the \FT trigger before

logon. This can be applied on an individual user and session basis.

The \FT trigger invokes the file transfer script KLSXFER, which enables query passthru. It also inhibits

immediate broadcasts and session locking.

Document mode and Word Wrap mode

If Document mode or Word Wrap mode is enabled, the file transfer will fail. If you have a key mapped

to toggle this feature on or off, turn it off before initiating the file transfer. If you want to disable this

feature, change the following case-sensitive line in the ENTRYASSIST stanza of the workstation file:

[ENTRYASSIST]
DocmodeWordWrap=N

Notices
This information was developed for products and services offered in the United States. HCL may not offer the

products, services, or features discussed in this information in other countries. Consult your local HCL representative

for information on the products and services currently available in your area. Any reference to an HCL product,

program, or service is not intended to state or imply that only that HCL product, program, or service may be used.

Any functionally equivalent product, program or service that does not infringe any HCL intellectual property right may

be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-HCL product,

program, or service.

HCL may have patents or pending patent applications covering subject matter described in this information. The

furnishing of this information does not give you any license to these patents. You can send license inquiries, in

writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you..

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the information. HCL may make

improvements and/or changes in the product(s) and/or program(s) described in this information at any time without

notice.

Any references in this information to non-HCL documentation or non-HCL Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those documents or Web sites. The materials for those

367

HCL Z and I Emulator for Windows (ENGLISH)

368

documents or Web sites are not part of the materials for this HCL product and use of those documents or Web sites

is at your own risk.

HCL may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this information and all licensed material available for it are provided by HCL

under terms of the HCL Customer Agreement, HCL International Programming License Agreement, or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.licensing agreement

Information concerning non-HCL products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions on the

capabilities of non-HCL products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

Trademarks
HCL, the HCL logo, and hcl.com are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other companies.

Admin Guide
Contents
HCL Z and I Emulator for Windows (ENGLISH)
Chapter 4. Release Notes...1

README...1

Chapter 2. Product Documentation

HCL Z and I Emulator for Windows Version 3.0 Readme... 1
More information..4

More information..
Known Issues in HCL Z and I Emulator for Windows... 4
Frequently Asked Questions in ZIEWin (FAQs).. 5

Chapter 5. Product Documentation.. 6
Licensing... 6

HCL ZIE License Manager... 6
Quick Beginnings..18

About This Book... 18
Introduction... 36
Using Z and I Emulator for Windows..45
Notices...128
Trademarks... 130

Installation Guide... 130
Introduction... 130
Planning to Install Z and I Emulator for Windows...131
Installing Z and I Emulator for Windows..136
Installing Z and I Emulator for Windows Using an Initialization (response) File... 149
Administrative Installation... 150
Maintenance Installation of Z and I Emulator for Windows... 151
Remote Installation of Z and I Emulator for Windows...152
InstallShield Command-Line Parameters... 153
Abbreviations Used in This Book.. 156
Notices...156

Emulator User's Reference.. 158
General Information..161
Using Z and I Emulator for Windows 3270.. 193
Using Z and I Emulator for Windows 5250.. 244
Using Z and I Emulator for Windows VT..342
Troubleshooting.. 363
Notices...367

Admin Guide... 368
General Information..373
Advanced Configuration, Management, and Operations...379
Building a Printer Definition Table (PDT)..410
iSeries, eServer i5, or System i5 Configuration Examples...485
Alerts..493
Notices...496

Emulator Programming..508
Introduction to Emulator APIs...509
Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming..................512
EHLLAPI Functions...536
WinHLLAPI Extension Functions...678
PCSAPI Functions...690
Troubleshooting for Emulator programming..718
Query Reply Data Structures Supported by EHLLAPI.. 721

369

ic_homepage/ZIEWin_SW_RQ.html
ic_homepage/ZIEWin_SW_RQ.html
ic_homepage/ZIEWin_SW_RQ.html
ic_homepage/ZIEWin_SW_RQ.html

HCL Z and I Emulator for Windows (ENGLISH)

370

Differences from Communication Manager/2 EHLLAPI... 730
Notices...734

Host Access Class Library.. 735
Introduction... 736
Host Access Class Library C++...745
Host Access Class Library Automation Objects..984
Host Access Class Library for Java... 1155
Troubleshooting.. 1155
Sendkeys Mnemonic Keywords.. 1156
ECL Planes — Format and Content.. 1159
Notices.. 1166

Reference Materials... 1168
Keyboard layout and mapping reference: Contents.. 1168
Host code page reference... 1216

Chapter 6. PDF Library... 1267

About This Book
HCL Z and I Emulator for Windows reference books are comprised of this Administrator's Guide and Reference and an

Emulator User's Reference. These volumes provide information for using HCL Z and I Emulator for Windows operating

systems (hereafter called PC400).

Note:

1. PC/3270 refers to the 3270 portion of the combined package.

2. Workstation refers to all supported personal computers.

3. Windows® refers to Windows® 8, Windows® 8.1, Windows® 10, Windows® 10 x64 and Windows®

Server 2008. When information is applies only to a specific operating systems, this is indicated in the

text.

Who Should Read This Book
This book is intended for administrators of Z and I Emulator for Windows.

How to Use This Book
This book contains reference information that you might need to refer to when installing or operating Z and I Emulator

for Windows.

Z and I Emulator for Windows is designed to use various communication adapters and to work with other workstation

and host system software. Refer to the appropriate documentation for the products you use.

Command Syntax Symbols
Parentheses, brackets, ellipses, and slashes have the following meanings or uses:

Chapter 2. Product Documentation

()

Parentheses enclose operands that govern the action of certain command options.

[]

Brackets indicate an optional command argument. If you do not use the optional item, the program

selects a default.

...

Ellipsis after an argument indicates that you can repeat the preceding item any number of times.

/

For 3270, a slash must precede the Time Sharing Option Extensions (TSO/E) password. A slash must

also precede parameters of DOS commands entered from the command line. For 5250, a slash must

precede parameters of IBM® DOS commands entered from the command line.

\

A backslash is included as part of any directory name. An initial backslash indicates the first-level

directory, and an additional backslash is inserted in the directory name to indicate another level.

All directives, operands, and other syntax can be typed in either uppercase or lowercase, unless otherwise indicated.

Where to Find More Information
The following sections discuss getting help when you are installing, configuring, or using Z and I Emulator for

Windows.

Information Center
You can find documentation and links to other resources at the Z and I Emulator for Windows Information Center, at

the following address:

https://help.hcltechsw.com/zie/ziewin/3.0/index.html

The Z and I Emulator for Windows Information Center provides information in English.

Online Help
The help facility describes how to install, configure, and use Z and I Emulator for Windows. Online help is very

extensive and includes information about every aspect of configuring and using Z and I Emulator for Windows.

Use help to obtain the following information:

• Menu choices

• Operation procedures

• Operations in windows

• Meanings of the terms displayed in windows

• Causes of errors and the corresponding actions to take

371

https://help.hcltechsw.com/zie/ziewin/3.0/index.html

HCL Z and I Emulator for Windows (ENGLISH)

372

• Mouse-based operations

• Operation without a mouse

• Detailed explanations of specific terms

• Further technical information about Z and I Emulator for Windows

• Detailed explanations of operator information area (OIA) messages

To display online help, select choices from the Help menu or press F1.

You can use Z and I Emulator for Windows online help just as you use the online help for Windows®.

Messages and Alerts
Online messages are displayed by Z and I Emulator for Windows, but a message does not always mean an error

occurred. For example, a message might tell you that an operation is in progress or has been completed. A message

can also prompt you to wait for the completion of an operation.

Messages That Appear in Pop-Up Windows
While using Z and I Emulator for Windows, you may see messages appear in popup windows, but not necessarily as a

direct result of your actions. These messages can appear for a number of reasons, outlined in the following sections.

System-Fault Messages
If a message does appear in a pop-up window, you can paste its contents into the Windows® clipboard. To do this:

1. Click Details on the pop-up window.

2. Mark the text that you want to copy.

3. Click the marked text with the right mouse button and then click Copy.

4. Start an editor, such as Notepad, and click Paste from the Edit menu.

5. Save the file in case an IBM® Service Representative needs this information to diagnose your problem.

Security-Related Messages
Z and I Emulator for Windows optionally utilizes Secure Sockets Layer (SSL) or Transport Layer Security (TLS) to

establish sessions with servers; this may require input from you (for example, a password). See Configuring and

Using Security for Z and I Emulator for Windows on page 395 for details.

System-Policy-Related Messages
Your Z and I Emulator for Windows workstation configuration can be controlled centrally using facilities for managing

system policies. See System Policy Support on page 391 for details.

Chapter 2. Product Documentation

OIA Messages

Z and I Emulator for Windows displays messages in the operator information area (OIA) or in a pop-up window.

Messages from Z and I Emulator for Windows are displayed in the message window; messages from the host system

regarding the condition of the session are displayed in the OIA of the session window.

The OIA is the bottom line of the session window. An OIA message indicates the status of Z and I Emulator for

Windows as well as information about the workstation, host system, and attachment method.

All of the OIA indicators, reminders, and messages are described in the online help. To view this information:

1. Click Index from the Help menu.

2. Select The operator information area messages.

To look up a specific OIA message, select Search. When the Search window appears, type the letters that

appear in the OIA. For example, MACH or PROG. If a lightning bolt appears, type COMM.

3. Double-click the index entry that matches your search.

4. Scroll through the window until you find the number that appears in your OIA.

Alerts
Alerts may be generated which correspond to specific Z and I Emulator for Windows messages. See Alerts on

page 493 for more information.

Z and I Emulator for Windows Library
The Z and I Emulator for Windows library includes the following publications:

• CD-ROM Guide to Installation

• Quick Beginnings

• Emulator User's Reference

• Administrator's Guide and Reference

• Emulator Programming

• Host Access Class Library

In addition to the printed books, there are HTML documents provided with Z and I Emulator for Windows:

Host Access Class Library for Java

This HTML document describes how to write an ActiveX/OLE 2.0–compliant application to use Z and I

Emulator for Windows as an embedded object.

General Information

373

HCL Z and I Emulator for Windows (ENGLISH)

374

Z and I Emulator for Windows Highlights
Z and I Emulator for Windows brings the power of personal networking to your workstation by providing a variety of

connectivity options supporting local area network (LAN) and wide area network (WAN) environments. Whether you

need host terminal emulation, client/server applications, or connectivity, Z and I Emulator for Windows offers a robust

set of communications, networking, and administrative features.

Z and I Emulator for Windows is a full-function emulator package with an easy-to-use graphical interface, which

includes many useful features such as file transfer and dynamic configuration, and emulator APIs including the IBM®

Host Access Class Library.

Z and I Emulator for WindowsfunctionsZ and I Emulator for Windows provides the following functions:

• zSeries Connections

LAN

Telnet3270

VT-over-Telnet (TCP/IP)

• iSeries™ Connections

LAN

Telnet5250 over TCP/IP

VT over Telnet

COM port

VT over Telnet

Telnet 5250

• ASCII Emulator Connections

LAN

VT over Telnet

COM port

VT over Telnet

• Client/Server Connections

LAN

COM port

• Log Viewer

◦ View Message Log, Trace Log, and Merged Log files

◦ Summary and Detail views

◦ Set default Message Log size and location

Chapter 2. Product Documentation

◦ Filter and search Log files

◦ Message Log entries Help

• Trace Capability

◦ 3270/5250 emulator data

◦ Connectivity data, such as LAN

◦ User services data, such as node initialization

• Sample Programs

◦ Located in \ZIE for Windows\samples subdirectory

• Installation and Configuration

◦ Partial installation option

◦ Program sharing on a network server

◦ Automatic detection of installed communication adapters

◦ Dynamic change of communication configurations

◦ Silent Installation

◦ Verification of ASCII configuration

• Host Session Function

◦ Up to 52 sessions

◦ Variable screen size and automatic font scaling

◦ Function settings (of the host code page, for example) for each session

• Host Graphics Support

◦ Built-in vector graphics support for GDDM® and other graphics applications

• File Transfer Function

◦ Easy operation through graphical user interface (GUI) windows

◦ Batch transfer of multiple files

◦ Concurrent file transfer through multiple sessions

◦ Background file transfer

◦ File transfer invocation by macro

◦ OfficeVision/MVS™ Import/Export functions

◦ VT File Transfer (XModem and YModem)

• Edit (Cut and Paste) Function

You can use the clipboard to cut, copy, and paste a selected areaIn addition, you can paste data in other

applications, such as spreadsheet programs, that support the PasteLink function.

◦ Support of spreadsheet data format (Sylk, Biff3, Wk3 formats)

◦ Copy Append

◦ Paste Next

◦ Paste to Trim Rectangle

◦ Paste Stop at Protected Line

• Graphical User Interface (GUI)

◦ Customizable 3D iconic tool bar

◦ 3D-button hotspots

◦ Pop-up keypad

◦ Macro function, including record and play

375

HCL Z and I Emulator for Windows (ENGLISH)

376

◦ VBScripts, including record and play

◦ Keyboard-function setup and remapping

◦ Mouse-button-function setup and remapping

◦ Display setup (cursor type, graphics, sound, colors, for example)

◦ Automatic font size adjustment or fixed font size

◦ Window-appearance setup

◦ Menu-bar customization

◦ 3270 Light Pen emulation by using a mouse

◦ Status bar with history

◦ Page Setup

◦ Revised Configuration Dialog

◦ Online help

• Print Function

◦ Printer session (for PC/3270:)

◦ Graphics local print

◦ Printing with the Windows printer drivers

◦ Print function by printer definition table (PDT)

◦ Multiple host-print functions in multiple sessions

◦ PDF-to-PDT conversion tool

◦ PC400 print function by OS/400® and i5/OS® Host Print Transform (HPT)

◦ PC400 printing supported by the iSeries™, eServer™ i5, and System i5® Advanced Print Support Utility

◦ ZipPrint

• Programming Interfaces

◦ 16/32-bit Emulator High-Level Language Application Programming Interface (EHLLAPI)

◦ 16/32-bit Dynamic Data Exchange (DDE)

◦ 32-bit Node Operations Facility (NOF)

◦ 16/32-bit Z and I Emulator for Windows API (PCSAPI)

◦ 32-bit Common Programming Interface for Communications (CPI-C)

◦ 32-bit Automation Object API

◦ 32-bit ActiveX/OLE 2.0

◦ ActiveX® Controls

• PC400 Client Function

◦ Data transfer

◦ PC Organizer

◦ Text Assist

◦ Enhanced Programmable Terminal User Interface (ENPTUI)

Problem Analysis
This chapter describes the information that will help you analyze problems with Z and I Emulator for Windows, and

ways to report a problem to HCL. For detailed information about contacting HCL, refer to Quick Beginnings.

Chapter 2. Product Documentation

For information about Z and I Emulator for Windows and support, refer to the following Web sites:

• The HCL Software home page provides access to general product information, and download services. To

view this page, go to the following Internet address:

https://www.hcltech.com/software

• The HCL Z and I Emulator for Windows support page provides links to code fixes, tips, newsgroups, support

options, and services. To view this page or to submit a software defect report, go to the following Internet

address:

https://hclpnpsupport.hcltech.com/csm

Z and I Emulator for Windows provides several utilities to help you with problem analysis. They can be invoked by

selecting their icons from the Programs → HCL Z and I Emulator for Windows → Administrative and PD Aids subfolder

on the Windows® Start menu.

The following sections describe these utilities and how to use them.

Log Viewer
The Z and I Emulator for Windows log viewer utility enables you to view, merge, sort, search, and filter information

contained in message and trace logs. Use the log viewer during problem analysis to work with message and trace

log entries. The default name of the message log output file is PCSMSG.MLG; its file extension must be .mlg. The file

extension for trace logs must be .tlg.

To view message or trace logs:

1. From the Administrative and PD Aids subfolder, click Log Viewer; or, from an active session, click Launch →

Log Viewer from the Actions menu.

2. From the list of logged messages, double-click a message to display the message text.

Note: Only one message log is created per machine. In simultaneous user environments such as WTS, all

user messages are logged into that single instance of the log file. See Using Windows Terminal Services on

page 402 for more information about terminal services.

For more information about log viewer functions, see Log Viewer Functions on page 408.

Trace Facility
The Z and I Emulator for Windows trace facility enables you to log trace information for certain Z and I Emulator for

Windows functions.

To start a trace, perform the following steps:

377

HCL Z and I Emulator for Windows (ENGLISH)

378

1. From the Administrative and PD Aids folder, click Trace Facility; or, from an active session, select Launch →

Trace Facility from the Actions menu. The trace status on the title bar displays the current state:

Active

Trace data is being collected by the trace facility.

Inactive

No trace data is being collected.

2. From the main dialog box, click Set Up to set the desired trace system parameters.

3. Click OK to return to the main trace dialog box.

4. From the main trace dialog box, select the type of data you want to trace from the Function Name, Component

Name, and Trace Option list boxes.

Function Name

A specific set of Z and I Emulator for Windows features, such as 3270/5250 Emulator or User

Services.

Component Name

The name of a specific part of a function, such as API data (for the 3270/5250 Emulator

function) or Node Initialization (for the User Services function).

Trace Options

The options associated with a particular component, such as EHLLAPI (for the API component)

or API trace (for the Node Initialization component).

5. Start tracing data by clicking Start, or apply changes to the trace options by clicking Apply.

6. Run the operation that you want to trace.

7. Optionally, stop the trace by clicking Stop.

8. Save the trace data to your hard disk by clicking Save.

9. Click Format to specify a formatted trace file name and to format the trace data. The Information Bundler

utility should be used immediately after the trace is complete to ensure that the correct information is

gathered.

Note: If you have changed the default path setting for the formatted trace file, the Information Bundler

will not find the trace information. Copy the trace files to the system-class application data directory.

10. Click OK.

11. Click Clear to clear the trace buffer where you saved a trace.

12. Use the log viewer to view the formatted trace log.

Note: Trace facility can capture only the application level (Ring 3) tracing, when logged on WTS environment,

where the conso session ID is non-zero. If you want to trace the kernel level tracing (Ring 0), use the

command line tracing options.

Chapter 2. Product Documentation

Information Bundler
The Z and I Emulator for Windows Information Bundler utility gathers system files, trace and log files, and registry

information into a .ZIP file. This file can be sent to support personnel, using the Internet Service utility. The

Information Bundler should be executed immediately after the trace is complete to ensure that the correct

information is gathered.

Start Information Bundler using one of the following methods:

• Click Administrative and PD Aids → Information Bundler from the Z and I Emulator for Windows program

menu.

• In an active emulator session, click Actions → Launch → Information Bundler from the menu bar.

The X12345.ZIP file is created in the Z and I Emulator for Windows system-class application data directory. This

file contains system and Z and I Emulator for Windows information. Refer to the installation documentation for the

location of the system-class application data directory for each Windows® operating system.

NOTE : Information Bundler utility requires dotnet version 4.6.1 to work.

Advanced Configuration, Management, and Operations

Advanced Configuration
This chapter describes facilities useful for deploying Z and I Emulator for Windows in large networks. Some of

these facilities are handled by features of Z and I Emulator for Windows itself, while others are provided by external

products, augmented with facilities provided by Z and I Emulator for Windows.

Configuration Files
The following sections describe the advanced configurations that you can make with the built-in files of Z and I

Emulator for Windows. Advanced configurations enable you to easily configure and distribute common keywords and

parameters to your client base, and include the following:

• Initial Configuration Definitions

• Configuration with Template and Update Files

Initial Configuration Definitions
Z and I Emulator for Windows enables network administrators to create an initial configuration definitions file that

contains common configuration definitions for their clients. By using an initial configurations file, the administrator

can distribute preconfigured definitions and have them automatically preloaded whenever a new configuration is

created on a client.

The first step is to create a configuration using Start or Configure Sessions, or an ASCII editor. For detailed

information on configuring sessions, refer to Quick Beginnings.

379

HCL Z and I Emulator for Windows (ENGLISH)

380

After you create the configurations file, rename the file to the appropriate reserved name. For workstation profiles

(*.WS), the file name is PCSINIT.WS$.

After you rename the files, they can be distributed to client workstations. Put the files in the configuration files

directory. The definitions in the files will be preloaded whenever a user creates a new configuration.

Note: The initial configuration file does not override parameter defaults for new definitions in new

configurations, but preloads complete definitions into new configurations. Users can modify these definitions

to get custom parameter values; however, the original initial configuration file remains unchanged.

Configuration File and Emulator Profile Directories
The default directory for configuration files is specified during installation. Configuration files can be used for all users

or a specific user. Refer to CD-ROM Guide to Installation for details on specifying the initial default directory.

By default, Z and I Emulator for Windows searches for emulator profiles in the configuration files directory. You can

use the User Preference Manager utility to indicate a different location for profiles.

Using Template and Update Files
When creating configurations for a large number of clients to implement, you can create a template configuration

file that represents the common configuration elements for all clients. Using an update file with only those changes

necessary for each client, you can distribute the template and update file and merge the two to create the target

configuration.

The Z and I Emulator for Windows Server template and update files enable you to create or modify a configuration

using an ASCII editor. You can configure all of the Z and I Emulator for Windows configuration keywords and

parameters with update files.

Template files can ease the mass distribution of configurations to remote clients. A template file can specify the

keywords which are common to several clients. For example, if you have multiple clients to configure, many of the

keywords will be identical. You can create a template configuration file that reflects those common keywords.

You can use update files to add, modify, or delete keywords in a template file. The original template configuration file

is left unchanged. An update file is merged into a template file by specifying the INCLUDE keyword at the end of the

template file. For example, if an update file is named myconfig.chg, the last line of the template file that will use the

update file is INCLUDE=myconfig.chg. When the template file and the update file are merged, you can give the resulting

configuration file a name with the .ACG extension that distinguishes it from other .ACG files.

Key Fields
The key field is the parameter in a keyword that names the keyword and uniquely identifies it from other keywords of

the same type.

Some keywords do not have key fields because they can only be specified once in a configuration file. An example of

a keyword that can only be specified once is the NODE keyword.

Chapter 2. Product Documentation

Adding Keywords to a Template File
When using an update file to add a new keyword definition, you must provide the entire keyword. The key field must

be provided along with a unique value. If any subfields are omitted from the keyword, the defaults for those fields are

used. For example, to add a MODE keyword to the configuration, the update file might contain the following keyword:

MODE=(
 MODE_NAME=MYMODE
 COS_NAME=#INTER
 CRYPTOGRAPHY=NONE
 DEFAULT_RU_SIZE=1
 MAX_NEGOTIABLE_SESSION_LIMIT=128
 MAX_RU_SIZE_UPPER_BOUND=4096
 MIN_CONWINNERS_SOURCE=15
)

The content of the update file assumes that a MODE keyword with the parameter of MODE_NAME=MYMODE does

not exist in the template. If it does, the parameters will be updated with the values provided in the update file.

If the MODE_NAME parameter is omitted from the update file, an error will occur during the configuration verification

because the MODE_NAME parameter cannot be uniquely identified. Not all parameters available for the MODE

keyword are specified in the update file. The remaining parameters use the defaults as specified in Configuration File

Reference. The resulting addition to the configuration will look like this:

MODE=(
 MODE_NAME=MYMODE
 AUTO_ACT=0
 COMPRESSION=PROHIBITED
 COS_NAME=#INTER
 CRYPTOGRAPHY=NONE
 DEFAULT_RU_SIZE=1
 MAX_NEGOTIABLE_SESSION_LIMIT=128
 MAX_RU_SIZE_UPPER_BOUND=4096
 MIN_CONWINNERS_SOURCE=15
 PLU_MODE_SESSION_LIMIT=32
 RECEIVE_PACING_WINDOW=1
)

Modifying a Keyword in a Template File
When using the update file to modify an existing keyword definition, the original keyword should exist in the template

file. If it does not exist in the template file, the update file adds an entry to the new configuration. You must specify

the key parameter in the update file to identify the target keyword. Only those parameters specified in the update file

keyword are updated in the template file's keyword. Parameters not specified in the update file are left unchanged. For

example, if the following MODE keyword is in the template file:

MODE=(
 MODE_NAME=#INTER
 AUTO_ACT=0
 COMPRESSION=PROHIBITED
 COS_NAME=#INTER
 CRYPTOGRAPHY=NONE
 DEFAULT_RU_SIZE=1
 MAX_NEGOTIABLE_SESSION_LIMIT=256

381

HCL Z and I Emulator for Windows (ENGLISH)

382

 MAX_RU_SIZE_UPPER_BOUND=4096
 MIN_CONWINNERS_SOURCE=128
 PLU_MODE_SESSION_LIMIT=256
 RECEIVE_PACING_WINDOW=20
)

and the following keyword is specified in the update file:

MODE=(
 MODE_NAME=#INTER
 AUTO_ACT=10
)

the resulting configuration would have the following MODE keyword definition:

MODE=(
 MODE_NAME=#INTER
 AUTO_ACT=10
 COMPRESSION=PROHIBITED
 COS_NAME=#INTER
 CRYPTOGRAPHY=NONE
 DEFAULT_RU_SIZE=1
 MAX_NEGOTIABLE_SESSION_LIMIT=256
 MAX_RU_SIZE_UPPER_BOUND=4096
 MIN_CONWINNERS_SOURCE=128
 PLU_MODE_SESSION_LIMIT=256
 RECEIVE_PACING_WINDOW=20
)

Deleting a Keyword from a Template File
When using the update file to delete a keyword from the template, you must specify the key parameter and value

that identify the keyword, along with the keyword DELETE. For example, if the template file specifies the following

keyword:

MODE=(
 MODE_NAME=#INTER
 AUTO_ACT=0
 COMPRESSION=PROHIBITED
 COS_NAME=#INTER
 CRYPTOGRAPHY=NONE
 DEFAULT_RU_SIZE=1
 MAX_NEGOTIABLE_SESSION_LIMIT=256
 MAX_RU_SIZE_UPPER_BOUND=4096
 MIN_CONWINNERS_SOURCE=128
 PLU_MODE_SESSION_LIMIT=256
 RECEIVE_PACING_WINDOW=20
)

and the response file contains the following keyword:

MODE=(
 MODE_NAME=#INTER
 DELETE
)

the resulting configuration does not contain the #INTER mode definition.

Chapter 2. Product Documentation

The DELETE keyword can appear after a parameter=value specification or on a line by itself, either preceding or

following the parameter. For example, the following uses of the DELETE keyword are valid:

MODE=(
 MODE_NAME=#INTER
 DELETE
)
MODE=(
 DELETE
 MODE_NAME=#INTER
)

The DELETE keyword cannot appear in front of a parameter=value specification on the same line. For example, the

following uses of the DELETE keyword are not valid:

MODE=(
 DELETE MODE_NAME=#INTER
)

MODE=(
 MODE_NAME=#INTER DELETE
)

To delete all keywords of a particular type, or to delete one keyword that does not have a key field, only the keyword

and the DELETE keyword are necessary. For example,

MODE=(
 DELETE
)

Automatic Device Name Generation (5250 Only)
The Telnet 5250 client function can generate a new and non-arbitrary DEVice NAME (DEVNAME) for a session without

requiring per-session profile (.WS) customization or a user exit.

You can use keywords and special characters in the WorkStationID (WID) field (in the [5250] stanza of the

Workstation profile) to cause some or all of the following information to be substituted into the DEVice NAME value

that is sent to the TN5250 server:

• Computer name or user name

• Short session ID

• Session type ID

• Collision avoidance ID

When specified, the Collision Avoidance ID enables the generation of a new DEVice NAME if the Telnet server rejects

a submitted name (which can occur when the old name is already in use on the iSeries™, eServer™ i5, or System

i5™). The ability to have a variety of names generated allows multiple sessions to the same iSeries™, eServer™ i5, or

System i5™ from one or more clients using just one WorkStation Profile (.WS) file. The definition of the existing .WS

file parameter WorkStationID in the [5250] stanza is extended to accomplish this.

383

HCL Z and I Emulator for Windows (ENGLISH)

384

Substitution Characters
You can use special substitution characters in the WID field to control the placement of the generated information

into the DEVNAME field. One substitution character is used in the WID for each generated character. This reserves

space in the DEVNAME for each generated character and indicates where each generated character is to be placed.

The three special substitution characters are:

Short Session ID

(value range: A-Z or a-z) The special character signifying this in the WID is the asterisk (*).

Example:

If the WorkstationID is configured as 123* and the short ID of the first session is A, then the device

names generated for the first three sessions will be 123A, 123B, and 123C.

Session Type ID

(possible values: S for diSplay or P for Printer) The special character signifying this in the WID is the

percent sign (%).

Example: If the Workstation ID is configured as %123* and the session type is Printer, then the

first three device names generated would be P123A, P123B, and P123C.

Collision Avoidance ID

(value range: 1-9, A-Z or a-z) The Collision Avoidance ID (CAID) is used by the device name collision

(DNC) function (see Device Name Collision Processing on page 385) to generate a new DEVice

NAME when the old name is rejected by the Telnet server as already being in use. The special character

signifying this in the WID is the equals sign (=).

Example: If the Workstation ID is configured as %ABC=, the session type is Display, and the device

name SABC1 is already in use on the iSeries™, eServer™ i5, or System i5™, then the first generated

device name (SABC1) will be rejected by the server, but the second name (SABC2) will be

accepted.

Client Naming Function
If you specify a Client Naming (CN) substitution keyword in the Workstation ID (WID) field, then an external name is

retrieved and used when generating the DEVice NAME.

The CN keywords are prefixed with the ampersand character (&), followed by a five character identifier. Two keywords

are supported:

&COMPN

Windows® COMPuter Name for the client

Chapter 2. Product Documentation

&USERN

USER Name specified during logon to the Windows® computer where the emulator executes

A name whose length exceeds the space remaining in the 10 character long DEVNAME field will have that excess

trimmed from the left side by default. Excess characters can alternatively be trimmed from the right side by prefixing

the CN keyword with a plus sign (+) character (for example, +&COMPN).

Note:

1. If the specified name cannot be obtained, then the message Unable to get the local "x" name

(where "x" is COMPN or USERN) is displayed in the status bar.

2. If a client naming keyword is specified in the WID, then characters other than those defined for this

feature are ignored.

3. A numeric character in the first position of a DEVNAME is invalid, and may be converted by the

iSeries™, eServer™ i5, or System i5™ to the pound (or number) character (#).

Example A: If the Workstation ID is &COMPN* and the name of the local computer is clientaccess1, then the

device names generated for the first three sessions would be ntaccess1A, ntaccess1B, and ntaccess1C.

Example B: If the Workstation ID is +&COMPN*% and the name of the USER logon for the local computer is

clientaccess1, then the device names generated for the first three sessions would be clientaccA, clientaccB,

and clientaccC.

Device Name Collision Processing
Device name collision occurs when a Telnet client sends the Telnet server a virtual device name, but that device name

is already in use on the server. When this occurs, the Telnet server sends a request to the client asking it to send a

different DEVNAME.

Device name collision (DNC) processing handles requests from the server for a different DEVNAME. If the collision

avoidance ID (CAID) substitution character is present in the WID, the CAID is incremented and sent as part of the new

DEVNAME to the server.

If the server requests a different DEVNAME and the CAID is not present in the WID, then the error message

Device Name "x" is invalid or already in use on the server is displayed on the status bar and the session is

disconnected.

Commands for Emulator Functions
Z and I Emulator for Windows provides the following commands for managing Z and I Emulator for Windows

sessions:

385

HCL Z and I Emulator for Windows (ENGLISH)

386

PCOMSTRT

Start a Z and I Emulator for Windows session

PCOMSTOP

Stop a Z and I Emulator for Windows session

PCOMQRY

Query Z and I Emulator for Windows sessions

Returns: DOS Error level is set for use when this command is invoked by a program. When the command is directly

entered, a message is displayed indicating the session is stopping.

Configure OneDrive
OneDrive is a Microsoft Cloud service that provides access to all your Z and I Emulator for Windows configuration

files from anywhere. It also stores and protects your files and allows you to share them with other users. When a user

uses a different account with OneDrive, all the configured files get synced with the OneDrive user account.

User can also configure OneDrive with Z and I Emulator for Windows profile directory, Macro directory and Tool Bar

icons directory. For more details, refer to below sections.

Configure Profile Directory with OneDrive

A user can configure profile directory with OneDrive either during Z and I Emulator for Windows installation using

%OneDrive% variable or after installation through Preference Utility.

Execute the following steps to configure OneDrive while installing Z and I Emulator for Windows:

Note: Make sure that the user is configured with OneDrive and able to access %OneDrive% configured path.

1. Set %OneDrive% as profile directory during installation.

2. Select all users “Custom Application Data Folder” option and give the variable path.

Chapter 2. Product Documentation

3. After successful configuration, a user can load all session files from OneDrive.

Execute the following steps to migrate the files to OneDrive after installing Z and I Emulator for Windows:

Note: Make sure that AppDataLocation registry is set to 1.

Registry path: Computer\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\Personal Communications

\CurrentVersion\Install Summary

387

HCL Z and I Emulator for Windows (ENGLISH)

388

1. Open the Preference Utility.

2. Enter the %OneDrive% variable path under Enter location for emulator profile files field and click OK.

3. After successful configuration, a user can load all session files from OneDrive.

Configure Z and I Emulator for Windows Tool bar icons Directory with OneDrive

User can configure the “preferences” and load the customize icon/bitmap from “OneDrive”. Set the Keyword which

needs be added under pcswin.ini as follows:

1. Open the pcswin.ini file.

2. Under the [ToolBar] section, set the IconPath to OneDrive path.

Once user configures the above keyword in pcswin.in, the tool bar files (*.bar) use the OneDrive path to load all the

custom icons ignoring the local custom tool bar icon file path. The icon files are looked up in “IconPath” location with

its name. If the file is not found, the user is informed with a message box and loads the default icon.

Configure Macro Directory with OneDrive

User can configure the preference and load the macros from “OneDrive”. Set the Keyword which needs be added

under pcswin.ini as follows:

1. Open the pcswin.ini file.

2. Under the [Macro] section, set the DIR to OneDrive path.

Chapter 2. Product Documentation

Note: User can configure the same under “Enter location for common Macro/scripts” through Preference

Utility.

Limitations:

1. The given %onedrive% variable path will be expanded to full path in Preferences for a user. The variable path

is stored in the following directory.

Computer\HKEY_CURRENT_USER\SOFTWARE\HCL\ZIE for Windows\CurrentVersion\Preferences

2. All configuration files associated with session files can use the variable path, any change in session will

rewrite the session file with full path.

389

HCL Z and I Emulator for Windows (ENGLISH)

390

Start a Z and I Emulator for Windows Session
The command PCOMSTRT has the following parameters:

/p

Name of workstation profile to start (required). The syntax is /p=workstation-profile. You can specify the

workstation profile as either the path (drive, directory, and file name) or just the file name, in which case

the location of the workstation profile file is the user-class application data directory.

Note: If multiple /p parameters are given, PCOMSTRT only uses the last one to start a profile

(.WS file).

/s

Session letter of the session to start. The syntax is /s=session-letter. This is optional. If omitted, the first

available session letter is used.

/w

Session window startup state. The syntax is /w={0|1|2|3}.

0

Hidden

1

Normal (default)

2

Minimized

3

Maximized

/q

Quiet mode. In quiet mode, PCOMSTRT does not write any messages to stdout.

/nowait

Do not wait for session to start. The /nowait option tells PCOMSTRT to complete execution without

waiting until the emulator session is started. There is no /wait option; the default is to wait until the

session is started.

/?

Displays help information.

Returns: DOS Error level is set for use when this command is invoked by a program. When the command is directly

entered, a message indicating the session is starting is displayed.

Chapter 2. Product Documentation

Stop a Z and I Emulator for Windows Session
The command PCOMSTOP has the following parameters:

/s

Session letter of session to stop. The syntax is /s=session-letter. This is optional. If omitted, the first

available session letter is used.

/all

Stops all sessions

/NCE

Stops all or specific session without confirmation, even if the confirmation on exit or exit all option are

set.

/q

Quiet mode. In quiet mode, PCOMSTOP does not write any messages to stdout.

/?

Displays help information.

Query Z and I Emulator for Windows Sessions
The command PCOMQRY has the following parameters:

/s

Session letter of session to query, The syntax is /s=session-letter. This is optional. If omitted, the first

available session letter is used.

/all

Queries all sessions.

/q

Quiet mode. In quiet mode, PCOMQRY does not write any messages to stdout.

/nowait

Do not wait for session to query. The /nowait option tells PCOMQRY to complete execution without

waiting until the emulator session is queried. There is no /wait option; the default is to wait until the

session is queried.

/?

Displays help information.

System Policy Support
System policies allow the user to control the actions that a user is permitted to perform.

391

HCL Z and I Emulator for Windows (ENGLISH)

392

Any application or component can define a policy. The policy appears in the administrator user interface; information

that the user sets about the policy migrates to the local computer's registry. The application or component that

defines a policy must check the registry to enforce its policy.

We provide support for both.ADM and.ADMX policy template files. These template files allow the users to enforce

policy restrictions on various features—these files are package under the Docs-Admin-Aids.

Using ADM File Format:

1. Categories, policies, and parts are described in a policy template (*.ADM) file. The Microsoft Resource Kit

includes three policy template files: WINNT.ADM, COMMON.ADM, and WINDOWS.ADM. Applications or

components can also provide their own policy template files.

Note: Z and I Emulator for Windows supplies a policy template for each language currently supported.

For example, the policy template for the US English language is named ENUPOL.ADM and the policy

template for the French language is named FRAPOL.ADM.

2. The user run the policy editor, which reads one or more policy templates and lists the available categories and

policies. The user set up the desired policies, and the policy editor uses registry functions to save the work

to a policy (*.POL) file. A group policy editor is provided with Windows®. Documentation about the use of

Microsoft® policy editors is found at http://www.microsoft.com.

3. After the user logs on (and user profiles are reconciled if they are enabled), the policy downloader determines

where to find the file on the network, opens the policy file, and merges the appropriate computer, user, and

user group policies into the local registry.

Using ADMX File Format:

ADMX file is a Windows Group Policy settings XML-based file that serves as a replacement for the older ADM file

type. ADMX files were introduced in Windows Vista and Windows Server 2008 and are referred to as “Administrative

Template XML-Based files”.

Z and I Emulator for Windows provides a policy template files (***pol.ADMX and ***pol.ADML) for each language.

The templates are on the Docs-Admin-Aids in the admin directory. The admin users configure the desired policies to

enforce policy restrictions on various features.

ADMX files must be copied under the “C:\Windows\PolicyDefinitions”. To import Z and I Emulator for Windows policy

***pol.ADMX template files, copy them to the “PolicyDefinitions” folder.

Each ADMX has a corresponding language ADML policy template file and must be copied under the respective

language folder under “PolicyDefinitions”.

For example: For US English language, please copy the enupol.ADML files under

“en-US” is the subfolder under “PolicyDefinitions”.

Run the windows group policy editor which reads the imported ADMX/ADML file and a new entry of “HCL Z and I

Emulator for Windows” is populated under the “Administrative Templates”.

The users can navigate to the “HCL Z and I Emulator for Windows” policy categories and modify configuration

settings. Find the following Group Policy options:

Chapter 2. Product Documentation

• Not Configured: This option does not enforce the policy restriction.

• Enabled: This option does not enforce the policy restriction.

• Disabled: This option enforces the policy restriction.

Note: When using the group policy editor provided with Windows 2000, the Not Configured setting allows the

same permission or access to features as the Enabled setting. HCL Z and I Emulator for Windows provides its

policy template file (PCSPOL.ADM).

It contains one category of type USER. Within the HCL Z and I Emulator for Windows category are the

following policies:

• Configuration: Contains policy information related to configuration.

• Execution: Contains policy information related to the execution.

• Installation: Contains policy information related to removing HCL Z and I Emulator for Windows.

• View: Contains policy information related to changing the session window view.

Disable Licensing:

This policy controls the user's ability to disable the licensing.

The group policy editor has the following options to enforce “Disable Licensing”:

• Not Configured: This option does not enforce the policy restriction for “Disable Licensing”.

• Enabled: This option enforces the policy restriction for “Disable Licensing”.

• Disabled: This option does not enforce the policy restriction for “Disable Licensing”.

Note: If a user enforces the “Disable Licensing” through the group policy editor, it won’t allow a user to

enable “Disable Licensing” through Preference Manager.

Execution Policy
This category contains policy information related to execution.

Dynamic Menu Modification

This policy controls whether or not DDE applications executed by the user are permitted to dynamically

add themselves to the menu of an active session.

Java™ Applet

This policy controls the user's ability to execute Java™ applets from the Actions → Run Java™ Applet

menu.

Macro Play/Record

This policy controls the user's ability to play and record macros.

393

HCL Z and I Emulator for Windows (ENGLISH)

394

The “Not Configured” and “Disabled” options under the “Policy Editor” it does not impose any policy

restriction.

The Macro Play/Record drop-down list has the following options:

No Access

The user has no access to macros; that is, the user cannot play or record macros. This is

the most restrictive level of control.

Play

The user can play macros.

Record

The user can play and record macros.

Start Session
This policy controls the user's ability to minimize an emulator session window.

Minimize Session

This policy controls the user's ability to minimize an emulator session window.

Maximize Session

This policy controls the user's ability to maximize an emulator session window.

Close Session

This policy controls the user's ability to close an emulator session window.

Delete Session

This policy controls the user's ability to delete an emulator session from the Session Manager window.

Product Update
This policy controls the user's ability to start the Product Update Tool.

Detect and Repair
This policy controls the user's ability to utilize the Help Detect and Repair function.

File Transfer
This policy controls the user's ability to send or receive files from the host.

Chapter 2. Product Documentation

Installation Policy
This category contains policy information related to installing or removing Z and I Emulator for Windows.

Uninstall

This policy controls the user's ability to uninstall HCL Z and I Emulator for Windows.

View Policy
This category contains policy information related to changing the session window.

Menu Bar

This policy controls whether the user can view the menu bar.

Select Disable to hide the menu bar. The Not Configured or Enabled settings retain the menu bar in the

session window.

Tool Bar

This policy controls whether the user can view the tool bar.

Select Disable to hide the tool bar. The Not Configured or Enabled settings retain the tool bar in the

session window.

Status Bar

This policy controls whether the user can view the status bar.

Select Disable to hide the status bar. The Not Configured or Enabled settings retain the status bar in the

session window.

Expanded OIA

This policy controls whether the user can view the expanded OIA.

Select Disable to hide the status bar. The Not Configured or Enabled settings retain the expanded OIA in

the session window.

Quick Connect Bar

This policy controls whether the user can view the Quick Connect Bar. Select Disable to hide the Quick

Connect Bar. The Not Configured or Enabled settings retain the Quick Connect Bar in the session

window.

Configuring and Using Security for Z and I Emulator for Windows
Z and I Emulator for Windows provides session security using Microsoft CryptoAPI (MSCAPI). These packages

enable use of the Transport Layer Security (TLS) security protocols.

The configuration information in this chapter usually applies to TLS. See Using Transport Layer Security on

page 401 for more information.

395

HCL Z and I Emulator for Windows (ENGLISH)

396

You can display information about the security aspects of your session by clicking Communication → Security

Information from the session menu bar. This provides details about the certificates exchanged during TLS

negotiations between client and server.

A TLS session is established in the following sequence:

1. The client and the server exchange hello messages to negotiate the encryption algorithm and hashing

function (for message integrity) to be used for the session.

2. The client requests an X.509 certificate from the server to verify the identity of the server. Optionally, the

server can request a certificate from the client (known as Client Authentication).

The digital signature of the certificate authority (CA) is authenticated using a published root certificate of the

issuing CA. The client automatically decrypts certain information on the presented certificate using a public

key on the CA's root certificate. This step is successful only when the presented certificate was encrypted

using a well-guarded, unique, and corresponding private key, known only to the CA. This process can detect

(and reject) intentional alterations (forgeries) and the rare garbling that can occur over data circuits. Z and I

Emulator for Windows also allows users to use self-signed certificates for this purpose.

3. Once the certificate-issuer authentication step succeeds, the client and server negotiate for an encryption

key to be used during the ensuing data exchange session. The client randomly generates a set of keys to be

used for encryption. The keys are encrypted with the server's public key and are securely communicated to the

server.

When a secure connection is established, a padlock icon is displayed in the Z and I Emulator for Windows status bar.

Depending on the level of encryption, the icon is accompanied by a number (0, 40, 56, 128, 168, 256). If the session is

not TLS-based, the icon shows as unlocked.

Certificates
Security is controlled by digital certificates that act as electronic ID cards. The purpose of a certificate is to

assure a program or a user that it is safe to allow the proposed connection and (if encryption is involved) to

provide the necessary encryption/decryption keys. They are usually issued by Certificate Authorities (CAs), which

are organizations that are trusted by the industry as a whole and who are in the business of issuing of Internet

certificates. A CA's certificate, which is also known as a root certificate, includes the CA's signature and a validity

period, among other things.

Encryption and authentication are performed by means of a pair of keys, one public and one private. The public key is

embedded in a certificate, known as a site or server certificate. The certificate contains several items of information,

including the name of the Certificate Authority (CA) that issued the certificate, the name and public key of the server

or client, the CA's signature, and the date and serial number of the certificate. The private key is created when you

create a self-signed certificate or a CA certificate request and is used to decrypt messages from clients.

Managing Certificates in the Microsoft Certificate Stores
In order to connect secure sessions using the Microsoft CryptoAPI (MSCAPI) security package, the appropriate

certificates must exist in the Microsoft Certificate Stores. To connect to a secure host, the root certificate of the host

Chapter 2. Product Documentation

certificate's verification chain must be in the Trusted Root Certification Authorities store. To connect a secure client

authentication session, the client certificate must be in the Personal store.

To add, remove, and view certificates in the Microsoft Certificate Stores, select Internet Options in the Windows

Control Panel. On the Content tab, click Certificates. The tabs represent the different Microsoft Certificates Stores.

Each tab shows the certificates that exist within each store.

To add a certificate to a store, click Import; the Certificate Import wizard helps you import certificates from a file. The

Import wizard can import certificates from several types of certificate files, including the ARM, DER, and P12 formats

that can be extracted or exported from the Certificate Management utility.

Configuring and Using Secure Sockets Layer
The purpose of basing communications on TLS is to provide privacy and integrity during communication over an

unsecured TCP/IP connection between a client and a target server. This section briefly describes how to configure the

Z and I Emulator for Windows client to use this mode.

Preparation for TLS Communication
There is a division of labor for TLS configuration tasks. The configurations of the client and the server are coordinated

to achieve the required compatibility. The following sections describe the preparation tasks required for client

configuration and server configuration.

Client Configuration
The following elements must be configured on the client side to enable TLS:

• Security must be enabled in order to operate in TLS mode. A client operating in TLS mode cannot establish

a connection with a server that is operating in ordinary Telnet mode. Likewise, a client operating in ordinary

Telnet mode cannot establish a connection with a server operating in TLS mode. See Configuring Z and I

Emulator for Windows Session Security on page 398 for information about enabling security.

• Select Send Personal Certificate to Server if Requested on the Security Setup property page for client

authentication. If this option is not selected, only server-side authentication is performed. If the server

requests a client certificate and this option is not selected, there will be no active connection. See Opening a

Key Database and Adding a Root Certificate for details.

To add, remove, and view certificates in the Microsoft Certificate Stores, select Internet Options in the Windows

Control Panel. On the Content tab, click Certificates. The tabs represent the different Microsoft Certificates Stores.

Each tab shows the certificates that exist within each store.

Establishing a Secure Session
Upon establishing a preliminary connection with a target server, the Z and I Emulator for Windows client is presented

a certificate by that server; if you have enabled client certificate authentication, your certificate is likewise presented

397

HCL Z and I Emulator for Windows (ENGLISH)

398

to the server. The digital signature of the CA is authenticated using a published root certificate of the issuing CA.

The client automatically decrypts certain information on the presented certificate using a public key on the CA's root

certificate. This step is successful only when the presented certificate was encrypted using a well-guarded, unique,

and corresponding private key, known only to the CA. This process can detect (and reject) intentional alterations

(forgeries) and the rare garbling that can occur over data circuits.

Z and I Emulator for Windows also allows users to use self-signed certificates for this purpose.

Note:

Once this certificate-issuer authentication step succeeds, the client and server negotiate to agree on an encryption

key to be used during the ensuing data exchange session.

Configuring Z and I Emulator for Windows Session Security
Whether you are configuring a TN3270, TN5250, or VT session, the underlying protocol must be TCP/IP. Use the

following procedure to enable security:

1. Start a workstation profile from the Session Manager; or, from an active session, click Configure from the

Communication menu. When the dialog box opens, click Configure.

2. In the Customize Communication panel, choose the appropriate Type of Host, Interface, and Attachment

values for the desired Telnet host.

3. Click Link Parameters.

4. On the Host Definition property page, do the following:

a. Specify the normal host name and LU parameters under Primary.

b. Specify the Port Number under Primary. It is likely that it will not be the default port value for Telnet.

The administrator of the destination server might have set up a specific port number to handle TLS/

SSL service.

5. On the Security Setup property page, check Enable Security.

For server authentication only, no additional setup is required. For client authentication, proceed to the next

step.

6. For 3270 sessions, select the Telnet-negotiated option to have Z and I Emulator for Windows negotiate

security with the Telnet 3270 server. See Negotiated Telnet Security on page 402 for details. If Enable

Security is unchecked, the Telnet-negotiated option cannot be selected.

7. On the Security Setup property page, select the Microsoft CryptoAPI (MSCAPI) security package.

Note: To avoid the need of manually adding host certificate into the Microsoft Certificate Store, refer

to Pass Through Certificate Validation.

8. To protect against security vulnerability in RC4 stream cipher, the FIPS (Federal Information Processing

Standard) mode has been made mandatory.

For MSCAPI, refer to the vedor documentation for the latest information.

Chapter 2. Product Documentation

Note: Follow the below steps to enable AES support with MSCAPI on Windows® 8, Windows® 8.1,

Windows® 10, Windows® Server 2008, and Windows® Server 2012.

a. From an administrator account, open Group Policy Editor (gpedit.msc).

b. Choose Computer Configuration->Administrative Templates->Network->SSL Configuration

Settings.

c. Open SSL Cipher Suite Order and select Enabled.

d. Alter the cipher order as per you organization's needs, save the changes, and REBOOT the

system for the above changes to apply.

It is important to note that the client can only present the server a prioritized cipher list. The host has

the final say on what gets selected as the cipher for the session. When choosing an algorithm with a

specific a bit length, one important consideration is to remember that encryption and decryption are

CPU intensive operations which take time depending upon the key size. In almost all cases, a 128-bit

key is more than sufficient to protect the information you are exchanging over your telnet connections.

9. Enable Check for Server Name and Certificate Name Match to have the session authenticate the server

by matching the server name to the host or server certificate name. The server and certificate names must

match exactly. For MSCAPI sessions, if the certificate name and server name do not match, an error is

returned.

10. In the Client Authentication group box, you determine when and how the client certificate will be chosen for

sending to the server.

If you want to enable client authentication and have the personal client certificate from the key database file

sent to the server when requested, check Send Personal Certificate to Server if Requested.

Send Personal Certificate Trusted by Server

Select this option if you do not want to be prompted to select a personal client certificate from a

key database file. Z and I Emulator for Windows will send the personal client certificate trusted

by the server.

Send Personal Certificate based on Key Usage

Use this option to select one or more key usages. Click Key Usage to select the defined Object

ID (OID) key usages. Go to the Extended Key Usage panel to add a new OID and description to

the list.

At authentication time, Z and I Emulator for Windows chooses certificates for client

authentication, based on the key usage that you select. If a certificate's Enhanced Key Usage

attribute contains one or more of the OIDs that you specify, the certificate is eligible for use.

If no eligible certificates are found, the authentication fails. If one eligible certificate is found, it is

automatically used. If two or more eligible certificates are found, you will be prompted to select

a personal client certificate.

399

HCL Z and I Emulator for Windows (ENGLISH)

400

Select or Prompt for Personal Client Certificate

Use this option if you want to choose the personal client certificate. You will be prompted to

select a personal client certificate during session establishment, when the server requests the

client certificate.

To preselect a personal client certificate during configuration, click Select now and choose the

Personal Certificate Label.

Pass Through Host Certificate Validation

Use this option to disable the default certificate validation process during TLS handshake.

Applicable only for Microsoft schannel provider.

Note: By default, schannel (MSCAPI) is responsible for validating the host certificate

chain received during TLS handshake. Schannel runs several checks on the received

certificate chain one of which is verifying that the signature affixed to the certificate

valid, that is, the hash value computed on the certificate contents matches the value

that results from decrypting the signature field using the public component of the issuer.

In order to perform this operation, the user must possess the public component of

the iss either through some integrity-assured channel, or by extracting it from another

(validated) certificate. The default certificate valid process is exhaustive and runs

several checks on the host certificate chain in order to successfully validate it. By

enabling this option the user would effectively suppress the default validation done

by schannel and the identity of the host is not verified. The use of this option is not

recommended.

Problem Determination
Following is some information to help you avoid problems that might be related to TLS configuration.

• With server-side authentication, the common name in the sever's certificate is always compared to the name

you type in the Host Name field on the client. These names must match exactly. You cannot:

◦ Type the IP address in one place and the host name in the other

◦ Type wrt05306 in one place and WTR5306 in the other

Note: This information is available only from the target server administrator.

• Make sure that TLS is enabled on both the Z and I Emulator for Windows client and the TLS server.

• Makes sure that the port number in the Advanced configuration panel on the client matches the port number

defined in the server.

• For each different server using a self-signed certificate, you must add a copy of each of the server certificates

to your keyring.

Chapter 2. Product Documentation

• Be sure there is a root certificate of the proper class to correspond with the class and issuer of the certificate

on the server.

• Make sure that the password to your key database has not expired.

Note: Notify your server administrator of any problems prior to contacting HCL Service.

Using Transport Layer Security
Z and I Emulator for Windows allows you to negotiate the Transport Layer Security 1.0 protocol. The TLS protocol is

based on the SSL protocol. TLS differs from SSL mainly in the initial handshake protocol for establishing client/server

authentication and encryption. TLS also allows you to use FIPS (Federal Information Processing Standard) mode.

Although TLS and SSL do not operate with each other, TLS provides a mechanism by which a TLS 1.0 implementation

can revert to SSLv3.

The TLS protocol uses public-key and symmetric-key cryptographic technology. Public-key cryptography uses a pair

of keys, one public and one private. Information encrypted with one key can only be decrypted with the other key. For

example, information encrypted with the public key can be decrypted only with the private key. Each server's public

key is published, while the private key is confidential. To send a secure message to the server, the client encrypts the

message by using the server's public key. When the server receives the message, it decrypts the message with its

private key.

Symmetric-key cryptography uses the same key to encrypt and decrypt messages. The client randomly generates a

symmetric key to be used for encrypting all session data. The key is then encrypted with the server's public key and

sent to the server.

TLS provides three basic security services:

Message privacy

Achieved through a combination of public-key and symmetric-key encryption. All traffic between a client

and a server is encrypted using a key and an encryption algorithm negotiated during session setup.

Message integrity

Ensures that session traffic does not change while in route to its final destination. TLS and SSL use a

combination of public/private keys and hash functions to ensure message integrity.

Mutual authentication

Exchange of identification through public-key certificates. The client and server identities are encoded in

public-key certificates, which contain the following components:

• Subject's distinguished name

• Issuer's distinguished name

• Subject's public key

• Issuer's signature

401

HCL Z and I Emulator for Windows (ENGLISH)

402

• Validity period

• Serial number

Negotiated Telnet Security
Typically, a secure channel is established before the Telnet 3270 server and client negotiate for a session. For Z and

I Emulator for Windows 3270 sessions, you can use negotiated Telnet security. This option enables Z and I Emulator

for Windows to establish security with the Telnet 3270 server during the Telnet negotiation. The security protocol

used is TLS 1.0, TLS 1.1, and TLS 1.2.

If you select the Telnet-negotiated option on the Security Setup panel, the Telnet connection is established. Z and I

Emulator for Windows then uses the TLS-based Telnet Security protocol (as defined by IETF) to negotiate the TLS

security. If the connection is successful, a status message is returned.

This support is only applicable with a Telnet server which supports the TLS-based Telnet Security protocol. By

default, this option is not enabled.

Using Windows Terminal Services
Windows® Terminal Services (WTS) is a feature that allows more than one user to log onto a Windows machine. This

functionality is also referred to as simultaneous user environments or terminal services.

Users can logon to the Windows® machine from the console (the screen attached to the Windows® machine) or

from a remote desktop client.

On Windows® 8, Windows® 8.1, and Windows® 10, more than one user can logon at the console, although only one

of the logged-on users will be able to see his desktop at any time. This terminal services function is called fast user

switching.

Citrix MetaFrame allows administrators to configure their WTS servers to run individual applications, and to configure

each user to run different applications on different servers. Thus, instead logging on to a WTS server, a user launches

preconfigured applications from his Citrix environment running on their client machine. Citrix then logs onto the

appropriate WTS server and runs the application. When the user closes the application, Citrix shuts down the

application, waits for all processes that were started by the application to terminate, and then logs off from the WTS

server.

Note:

Chapter 2. Product Documentation

1. A message file log is not maintained for each WTS logon session. Only one message log file is

maintained for the WTS server.

2. When Z and I Emulator for Windows is used in a WTS environment, the maximum of 52 sessions (A-Z

or a-z) applies to each WTS logon session. There is not a limit of 52sessions per WTS server.

Session IDs
In simultaneous user environments such as WTS, each time a user logs on, that specific logon session is assigned a

session ID. When a user logs on at the console, that session is assigned the session ID 0 (zero)—this is also called the

server console session. When a user logs on from a remote desktop, the assigned session IDs begin with session 1.

Trace Facility
For simultaneous user environments such as WTS, the Connectivity functions are only available for users logged in

as session 0.

Each user can run his own trace facility, which gives information from that user's specific WTS logon session.

However, there are trace options that enable tracing from device drivers, which are not associated with any specific

WTS logon session. Thus, those options only appear on the trace facility that is started in the WTS console session

(session 0).

Azure Virtual Desktop
Microsoft Azure, often referred to as Azure, is a cloud computing service operated by Microsoft for application

management via Microsoft-managed data centres.

“Azure Virtual Desktop” (Windows Virtual Desktop) is a desktop and app virtualization service that runs on the cloud.

Virtual machines (VMs) for multiple users and desktops get hosted on the Azure platform in an Azure Virtual Desktop

environment. Organizations can use Azure Virtual Desktop service to deliver virtual applications and desktops to their

employees via Azure’s cloud infrastructure.

Azure Virtual Desktop provides an application virtualization to any personal device with internet connection.

We can provide right access controls to the users and devices with Azure Active Directory Conditional access. On

providing the access, users can launch any Azure Virtual Desktop client to connect to their published Windows

applications.

Z and I Emulator for Windows supports the Windows Virtual Desktop. ZIEWin application can be published as a

windows application using the WVD setup and we can access all the features of ZIEWin.

For more information on Azure Virtual Desktop : https://docs.microsoft.com/en-us/azure/virtual-desktop/overview.

Express Logon

403

https://docs.microsoft.com/en-us/azure/virtual-desktop/overview

HCL Z and I Emulator for Windows (ENGLISH)

404

Bypass Signon Using Password Substitute (5250)
This option enables the user to bypass iSeries™ login screen by sending a SHA1 password substitute.

Note: This option works only when the QPWDLVL system value at the iSeries™ is either 2 or 3. A change to

this system value takes effect at the next IPL. To see the current and pending password level values, use

the Display Security Attributes (DSPSECA) command. The QRMTSIGN system value, which specifies how the

system handles remote sign-on requests, als needs to be set to *VERIFY.

The credentials are encrypted and saved in the current user's registry hive on the local computer. The user

is prompted for a password in case the password stored in the registry is no longer valid. The newly entered

password shall be stored in the registry and used for subsequent bypass logins.

Users can update the existing password in the registry or add a new password by using Update registry with

bypass login credentials... menu item present in the Actions menu. This option is used whenever an user

changes the password on the host; for example, at the time of password expiry.

If bypass login is enabled, ZIEWin prompts the user for a password in case the password stored in the registry

is incorrect. The newly entered password is to be stored in the registry and used for subsequent bypass

logins.

Also, there is a new menu option added to Actions menu called Update registry with bypass login

credentials..., which allows users to update the existing password in the registry or add a new password

corresponding to a particular hostname or IP address.

In case the password stored in the registry is expired and bypass login is enabled and the user logs in, the

password change screen displays so that the user can set a new password.

When the user change the password successfully (registry still contains the old or expired password) , log

out, disconnect, and try bypass login again, the old or expired password is still taken from the registry and

used for the bypass login. Due to the invalidity of the old password from the registry, the login fails for the first

time and ZIEWin prompts the user for new password. When the user enter the new password that has been

created before reglogin, the correct password is to be stored in the registry and ZIEWin reconnects using the

new password.

Kerberos Services Ticket Auto-Signon
For 5250 emulator sessions, the Bypass signon using Kerberos principal option enables Kerberos authentication.

• If the “Kerberos auto-signon” is disabled during the “Custom” installation, “Bypass signon using Kerberos

principal” is disabled.

• If the “Kerberos auto-signon” is enabled during the “Custom” installation, “Bypass signon using Kerberos

principal” is enabled.

A ticket is generated and passed to the iSeries™, eServer™ i5, or System i5™ host during TN5250 negotiation.

Chapter 2. Product Documentation

If the ticket is valid, authentication is completed and the user is logged onto the host. If authentication fails, a host

login screen get displayed.

Note: The user must log into a Windows™ domain in order to use Kerberos authentication. Refer to the

relevant Microsoft™ documentation for specific details.

For the Data Transfer utility, the user can set the Use Kerberos principal, no prompting option (from Setup → Signon

Options).

• If the “Kerberos auto-signon” is disabled during the “Custom” installation, “Use Kerberos principal, no

prompting” is not listed in the signon options of the Data Transfer utility.

• If the “Kerberos auto-signon” is enabled during the “Custom” installation, “Use Kerberos principal, no

prompting” is listed in the signon options of the Data Transfer utility.

This function enables Kerberos authentication, using the ticket generated by the Windows™ user credentials.

Certificate Express Logon
Certificate Express Logon (formerly known as Express Logon Feature or ELF) enables a Z and I Emulator for Windows

Telnet 3270 user to securely logon to a host application without sending the User ID and password. One advantage of

using this function is that it reduces the time you spend maintaining host user IDs and passwords. It also reduces the

number of user IDs and passwords that the users have to remember.

To use Certificate Express Logon, the host session must be configured for SSL and client authentication. This means

the client must have a valid client certificate. The SSL connection must be made to one of the supported Telnet 3270

servers.

Using Certificate Express Logon
When starting a session using Certificate Express Logon, Z and I Emulator for Windows establishes an SSL client

authentication session with the Telnet 3270 server. During the logon process, a macro with the Certificate Express

Logon information is played. Once the session is established, Z and I Emulator for Windows sends the application

ID for the application that the user is accessing to the Telnet 3270 server. This information is contained in the logon

macro. The Telnet 3270 server uses certificate information from the SSL connection and the application ID received

from Z and I Emulator for Windows, and requests the user ID and passticket (a temporary password) from the host

access control program (such as RACF®).

Z and I Emulator for Windows uses the macro function to put predefined substitute strings in the user ID and

password fields. The Telnet 3270 server substitutes the user ID and passticket in the appropriate place in the 3270

datastream. The logon is completed.

After a Certificate Express Logon macro is recorded, it can be distributed to multiple users for playback without

further modification.

405

HCL Z and I Emulator for Windows (ENGLISH)

406

Preparing to Configure Certificate Express Logon
Before you configure an Certificate Express Logon macro, you need to have the following information.

• Host application name

Name of the host application the user is logging onto. For example, the name entered on the USSMSG10

screen.

• Host access application ID

This name must match the RACF® PTKTDATA (Passticket Data Profile) application name that is configured

on the OS/390® (V2R10 or later) or z/OS™ host. This name could be the same as the application name

that the user is logging onto (for example, the name on USSMSG10). When creating PTKTDATA profiles for

applications such as TSO, the application name portion of the profile will most likely not be the same. For

example, RACF® requires that the application ID portion of the profile name be TSO+SID. Refer to OS/390

V2R10.0 SecureWay Security Server RACF Security Administrator's Guide or z/OS V1R1.0 SecureWay

Security Server RACF Security Administrator's Guide to determine the correct profile naming.

• User ID and password for the application that you are logging on to.

During macro recording, the actual user ID and password are used. They are not recorded in the macro; only

the predefined substitute strings are recorded in the macro. The Telnet 3270 server replaces the predefined

substitute strings with the actual user ID and password during the logon process.

• Client Security Certificate

The security certificate for the client must be stored in RACF® using the RACF® RACDCERT command.

◦ For information about using digital certificates with RACF®, refer to the following books:

▪ For OS/390®, refer to OS/390 V2R10.0 SecureWay Security Server RACF Security

Administrator's Guide and OS/390 V2R10.0 SecureWay Security Server RACF Command

Language Reference.

▪ For z/OS™, refer to z/OS V1R1.0 SecureWay Security Server RACF Security Administrator's

Guide and z/OS V1R1.0 SecureWay Security Server RACF Command Language Reference.

◦ For information about configuring DCAS to use RACF® certificates, refer to the following books:

▪ For OS/390®, refer to OS/390 V2R10.0 IBM Communication Server IP Migration.

▪ For z/OS™, refer to z/OS V1R1.0 IBM Communication Server IP Migration.

Configuring Certificate Express Logon

Recording the Macro
You must record a macro for each host application that you want to access. You cannot log on to multiple

applications with one macro. You do not have to configure SSL, and client authentication is not required on the telnet

servers and OS/390® or z/OS™ before recording the logon macro, but you must do this before you can play the

macro.

Chapter 2. Product Documentation

Manual Configuration of a Certificate Express Logon Macro
You can manually configure an existing Macro format file for Certificate Express Logon use. The procedure is as

follows:

1. From the Action Bar, open the macro file containing the recorded keystrokes by selecting Edit → Preferences →

Macro/Script.

2. Select the macro file you just recorded and then select Customize.

3. Replace the UserID recorded in the macro with two tags: the Certificate Express Logon Application ID and the

UserID placeholder. The Application ID tag consists of three words, each separated by a blank character: elf,

applid, and the identifier of the host application that will be logged onto. The UserID placeholder is)USR.ID(.

For example, replace "myUserID with ")USR.ID(.

4. Replace the Password recorded in the macro with the Certificate Express Logon Password placeholder tag

)PSS.WD(.

For example, replace "myPassword with ")PSS.WD(.

Limitations of the Logon Macro

• Automatic insertion of the user ID and password placeholders into the recorded macro requires that the

password be typed into the first non-display input field. The user ID is assumed to have been entered just prior

to the password. The Modified Data Tag attribute of each formatted input field is assumed to be ON only when

the field has been modified by the operator.

• There is a short delay while the Telnet 3270 server acquires the passticket from the host access control

facility. The amount of time is probably less than the usual delay incurred when the user enters a user ID and

password. However, the user can see the macro proceed through the screens during the logon process.

• Logon Express recording requires that the host program uses 3270 field attributes to define the password field

on the screen.

Problem Determination
If the client logon fails and displays the messages)USR.ID(NOT IN CP DIRECTORY, INVALID USERID,)USR.ID(,

PASSWORD NOT AUTHORIZED or any similar messages, check the Telnet 3270 server log for details.

Possible reasons for failures are:

• The application ID defined in the macro is not valid.

• The Telnet 3270 server could not connect to DCAS. The host might be down.

• The client certificate is not defined in RACF® or it is not valid.

• The passticket has expired and could not be used to log on.

• The Telnet 3270 server completed scanning of data stream without replacing the user ID or password.

• The Telnet 3270 server or the host does not support Certificate Express Logon.

407

HCL Z and I Emulator for Windows (ENGLISH)

408

Log Viewer Functions
The Z and I Emulator for Windows log viewer utility enables you to view, merge, sort, search, and filter information

contained in message and trace logs. You can use the viewer during problem determination to work with message

and trace log entries. The default name of the message log output file is PCSMSG.MLG; its file extension must

be .MLG. The file extension for trace logs must be .TLG. Note that the Help per Message Log Item functionality is

available only for message logs.

Viewing Message and Trace Logs
To view message or trace logs:

1. From the Administrative and PD Aids folder, click Log Viewer; or, from an active session window, click Actions

→ Launch → Log Viewer.

2. From the list of logged messages, click on one of the details on the log entry in the bottom pane.

Note: If the logger device driver determines that the product kernel driver-generated log is full and cannot log

a message, it will create an entry in the Windows® log. The information logged may include which log failed,

as well as the location and reason for the failure. message logger device driver

Changing Message Log Size and Location
The Z and I Emulator for Windows log viewer utility allows you to modify the size and location of message log files,

and change the name of the default message log file. The size of a log file is counted in kilobytes and can range from

a minimum of 4Kb to a maximum limited only by available hard disk space.

To modify the location and size of the log:

1. From the Log Viewer main menu, click Options and then click Configure Message Log Settings... A

Windows® common dialog box is displayed.

2. From the dialog box, browse the directory structure and choose the destination directory and file name for the

message log.

3. Using the spin control counter field, use the up and down arrows to increase or decrease the log file size (in

kilobytes).

4. Select OK to save settings and exit the window.

Chapter 2. Product Documentation

Merging Message and Trace Logs
The Z and I Emulator for Windows log viewer utility allows you to open and merge message and trace log entries in

the same log viewer window. You can merge any combination of message and trace log files.

• .MLG into .TLG

• .TLG into .TLG

• .TLG into .MLG

• .MLG into .MLG

To merge message and trace log files:

1. From the Log Viewer window, select the message or trace log file window where the files will be merged.

2. Click the File menu, then click Merge and choose a file to be merged.

Sorting Message and Trace Logs
The Z and I Emulator for Windows log viewer utility allows you to sort message and log files in ascending and

descending order. To sort files in ascending order, click the column header one time, or right mouse click the data.

Click the column header, or right mouse click the data a second time to sort in descending order.

Message and logs can also be sorted by selecting the data to be sorted, and right mouse clicking to display the pop-

up menu. Click Sort.

Searching Z and I Emulator for Windows Logs
To search the log files, click Edit → Find on the Main menu.

Type your search string in the provided box. You can refine your search by checking the Match case check box if your

search is to be case-specific. If you want to limit your search to only complete words, select the Match whole word

only check box.

Clicking Find Next takes you to the next instance where your search string appears highlighted in the log.

Clicking Cancel will stop the search.

Filtering Z and I Emulator for Windows Logs
Messages can be filtered by component only. Traces can be filtered by component, by process ID, and by thread ID.

To filter the message or trace record list, do the following:

1. Decide what you want to filter by. For example, in the message log, you may want to filter your view so that it

contains only messages issued by a particular component. (Filtering by component is the default.)

2. Click the left mouse button to highlight the item that has the value that you want to filter by.

409

HCL Z and I Emulator for Windows (ENGLISH)

410

3. Right click in the appropriate column list area.

4. Click Filter In, Filter Out or Sort.

Filter In allows only those items selected to be in the resulting view. Filter Out removes the selected items

from the resulting view. Sort allows you to sort entries in ascending or descending order based upon the entry

selected. This function works much like sorting by column header. Filters are cumulative, so you can filter the

results of your first filter.

To restore your original view, click View and then Refresh, or you can press F5.

Building a Printer Definition Table (PDT)

Building a Printer Definition Table (PDT) for PC/3270
This chapter, in combination with Building a Printer Definition Table (PDT) for PC400 on page 418, explains how

to customize a printer definition table (PDT file) for PC/3270. Building a Printer Definition Table (PDT) for PC400 on

page 418 contains basic information about creating and changing PDTs; this chapter contains specific information

about creating PC/3270 PDTs. PDTs for PC/3270 and PC400 differ only slightly; if you use a common PDT (used

for both PC/3270 and PC400), the additional statements for PC400 are ignored for PC/3270 processing. Similarly,

statements unique to PC/3270 are ignored for PC400 processing.

ASCII_PASSTHRU? and EBCDIC_PASSTHRU?
The ASCII_PASSTHRU? and EBCDIC_PASSTHRU? PDF statements are new options available for PC/3270. See

Transparent Print Capability on page 423 for details.

Supplemental Explanation of PDF Statements for PC/3270
The following PDF statements have functions that differ from those for PC400. All statements are listed in Field

Names of Printer Definition Files on page 436.

MAXIMUM_PAGE_LENGTH

Printed lines per page. If you change this value, you must change the value in the

SET_PAGE_LENGTH=SFL value statement (see Session parameters on page 421) to be the same.

MAXIMUM_PRINT_POSITION

Printed characters per line.

COMPRESS_LINE_SPACING?

Whether blank or null lines are to be printed if all characters on that line are nulls (for LU 3 only).

FORM_FEED_ANY_POSITION?

Whether a form feed is to be valid in any position. If NO, a form feed will be valid only in the following

positions:

Chapter 2. Product Documentation

• First print-position of the buffer

• After a valid new line operation

• First print-position of a line

OVERRIDE_FORMATTED_PRINT?

Whether nulls are to be printed as blanks.

INTERV_REQ_TIMER

This statement is ignored.

INTERV_TIMER_ON_PE_ONLY?

This statement is ignored.

RESELECT_TIME_EXCPT_5204

This statement is ignored.

ESC/P_LINE_FEED?

If YES, the line feed (LF) function is emulated when the line feed command is received. This is useful

when you do not want a line feed accompanied by a carriage return (CR) on a printer using the ESC/P

printer language. If NO, the value defined in the LINE_FEED statement is sent to the printer.

IGNORE_FORM_FEED_AT_FIRST_POS?

If YES, the form feed (FF) function is ignored at the first position (for LU 2, LU 3) or at the beginning of

the print job (for LU 1 sessions). Using this option eliminates extra blank pages at the beginning of each

print job.

FORM_FEED_TAKES_POSITION?

If YES, the form feed (FF) function is effective if followed by data (LU 2, LU 3 only).

ZENKAKU_SPACE

The size (adjustment unit) of a user-defined character and a HANKAKU character. This value cannot be

changed.

SBCS_FONT_LOAD

Registration of a HANKAKU GAIJI. This value cannot be changed.

SET_LOCAL_FONT

Set a font set of user-defined characters. Remove it when user-defined characters are not loaded to a

printer.

RESET_LOCAL_FONT

Reset a font set of user-defined characters. Remove it when user-defined characters are not loaded to a

printer.

ATTRIBUTE_GRID_LINE

Set to grid-line print. This value cannot be changed.

411

HCL Z and I Emulator for Windows (ENGLISH)

412

START_DOUBLE_WIDTH_CHARACTER

Set a double-width character.

END_DOUBLE_WIDTH_CHARACTER

Reset a double-width character.

Note:

1. When using IBM5577.PDF, change FORM_FEED=EJC to FORM_FEED in the file when a continuous

form job does not feed correctly.

SCS TAB Setting
A PC/3270 printer session LU type 1 can accept any number of tab positions, and the host printer session can send

any number of tabs to the printer session. However, the workstation printer you are using might support fewer tab

positions than the host application sets; for example, the IBM® Proprinter supports 27 tab positions.

If the number of tab positions that the host application sets exceeds the maximum number of positions that the

printer supports, your printed output will not look as you expect it to. You can avoid this situation by modifying the

PDF file and reconfiguring PC/3270 as follows:

1. Modify the SET_HORIZONTAL_TABS statement as follows:

SET_HORIZONTAL_TABS=number

2. Save the file under a new name.

3. Convert the PDF file (with the procedure described in Building a Printer Definition Table (PDT) for PC400 on

page 418).

4. Select the new PDT file created in Step 2 on page 412.

Printer Color Mixing
Some printers, such as the IBM® 5182, compose certain colors by mixing colors. Colors are mixed by printing the text

in one color and then printing over the same text in another color on a second pass.

PC/3270 will compose a color if the color is not defined in the printer definition table of a color printer that is capable

of mixing colors. Therefore, if you are using a printer that composes some colors by mixing two colors, leave the

definition of the composed colors blank in the printer definition file. Only the composite colors defined in Table 49:

Color Mixes on page 413 are created by double-printing the primary colors.

Chapter 2. Product Documentation

Table 49. Color Mixes

Composite ColorPrimary Colors

Red yellow, magen

ta

Green yellow, cyan

Blue magenta, cyan

For example, to create red, you must define yellow and magenta. The primary colors must be defined in the printer

definition table.

Printer Session Data Stream Support

3270 Data Stream
The 3270 data stream is a buffer-oriented data stream. The print data is formatted as if it were going to be displayed

on a screen. The host system sends commands to format the presentation space. These commands can change the

presentation space in any location at any time. Once the host system completes formatting the presentation space, it

issues a START PRINT command and the presentation space is printed as accurately as the printer hardware allows.

Table 50: 3270 Data Stream Commands on page 413 lists the commands that can be sent in the 3270 data stream.

Table 50. 3270 Data Stream

Commands

CommandMeaning

W Write

EW Erase/Write

EWA Erase/Write Alternate

RB Read Buffer

RM Read Modified

RMA Read Modified All

EAU Erase All Unprotect

ed

WSF Write Structured

Field

Table 51: 3270 Data Stream Orders on page 414 lists the orders that can be sent in the 3270 data stream.

413

HCL Z and I Emulator for Windows (ENGLISH)

414

Table 51. 3270 Data Stream Orders

Or

der Meaning

SBA Start Buffer Address

SF Start Field

IC Insert Cursor

PT Program Tab

RA Repeat to Address

EUA Erase Unprotected to Ad

dress

SFE Start Field Extended

SA Set Attribute

MF Modify Field

The last three orders in the preceding table manage the color, extended highlighting, and programmed symbols

attributes for fields and individual characters. The programmed symbols attribute is not supported by PC/3270.

In addition to the commands and orders in the two preceding tables, there are special printer formatting control

codes that can be included in the 3270 data stream.

The following table lists the control codes that can be sent in the 3270 data stream.

Table 52. 3270 Data Stream Format Control Codes

CodeDescription

NL New Line control code moves the print position to the left margin and down one line.

CR Carriage Return control code moves the print position to the left margin.

EM End of Message control code ends the print operation.

FF Form Feed control code moves the print position to the left margin at the top of the next

page.

Note: NL, CR, and EM are valid only if a line-length format specified by the WCC is not used. The FF code is

valid in any buffer position.

PC/3270 printer support interprets each 3270 attribute and printer control code and translates them into a sequence

of one or more workstation printer control codes. For more information about the 3270 data stream, refer to IBM

3270 Information Display Data Stream Programmer’s Reference.

Delimiting Print Jobs
Many print jobs can be sent over a single PC/3270 printer session. PC/3270 allows multiple sessions and

applications to share a single workstation printer on a between-jobs basis. PC/3270 needs to know when each

Chapter 2. Product Documentation

print job starts and ends so that printers can be shared properly and begin and end job strings can be sent at the

appropriate times. The emulator recognizes a number of different methods of delimiting print jobs:

By Session

PC/3270 printer support assumes, by default, that all print jobs are delimited by sessions. That is, in

the absence of all other indicators, PC/3270 assumes that a print job begins when a printer session is

started and ends when it is reset.

Time-Out Interval

On DFT sessions, print jobs can be delimited by a user-specified timeout interval. A print job on a DFT

printer session begins when the first host-outbound data for that job is received, and ends when no

host-outbound data is received for a period of time exceeding the user-specified DFT timeout interval.

For PC/3270, this interval is specified during configuration.

Structured Fields

The host can use structured fields to indicate to the device that a new file is beginning or that the

current file is completed. PC/3270 delimits print jobs with Begin of File and End of File structured

fields (SF) to perform host-directed printing. Structured fields are described in Structured Fields on

page 415.

Structured Fields
The host uses Begin of File and End of File structured fields to indicate to a device that a file is beginning or ending.

Begin/End of File Query Reply
The Begin/End of File query reply indicates that a device supports Begin of File and End of File to delineate print jobs.

The PC/3270 sends a query reply, as shown in Table 53: Begin/End of File Query Reply Format on page 415, to the

host in response to a Read Partition General query.

Table 53. Begin/End of File Query Reply

Format

ByteContents Description

0–1 X'0005' The length of this structure

2 X'81' Query reply

3 QCODE X'9F'Begin/End of File

4 FLAGS Reserved; must be set to 0’s

Begin/End of File Structured Fields
Begin/End of File structured fields are accepted on either LU 1 or LU 3 sessions. Table 54: Begin/End of File

Structured Field Format on page 416 shows the format of the Begin/End of File structured fields.

415

HCL Z and I Emulator for Windows (ENGLISH)

416

Table 54. Begin/End of File Structured Field Format

Byte Bit Contents Description

0–1 X'0007' The length of this structure

2–3 X'0F85' Begin/End of File

4 PID Partition ID

5

0–1

2–7

FLAG1¹ B'00' B'01' B'10'

B'11'

Reserved

End of File is being sent

Begin of File is being sent

Reserved

Reserved

6 FLAG2 Reserved; must be set to 0’s.

:

¹This byte indicates whether Begin of File or End of File is being sent

Processing Begin or End of File Structured Fields
When the Begin or End of File structured fields are used with brackets or timeout intervals, the Begin or End of File

SFs take precedence over the brackets or timeout intervals in determining when a print job begins or ends. See the

following examples:

• Begin or End of File structured fields overriding brackets:

Begin Bracket, Begin of File Structured Field, ...Data...,
End Bracket

The device will wait indefinitely until the End of File structured field is received before ending the print job.

• Begin or End of File structured fields overriding timeout intervals:

Begin of File structured fields, ...Data..., pause > timeout value

The device will wait indefinitely until the End of File structured fields is received before ending the print job.

• Inconsistent use of Begin or End of File structured fields and brackets:

Begin Bracket, ...Data1...,
Begin of File Structured Fields,...Data2..,
End of File Structured Fields, ...Data3...,
End Bracket

When you use the Begin of File and End of File structured fields inconsistently with brackets, the results are

unpredictable. In the preceding example, the device might process Data1, Data2, and Data3 as separate jobs

or combine two or more of them into one file.

For predictable results, each data block must be enclosed by a Begin of File structured field and an End of File

structured field. The following example shows three print jobs all delimited by Begin or End of File structured fields:

Chapter 2. Product Documentation

Begin Bracket, Begin of File Structured Field, ...Data1...,
End of File Structured Field,(job1)
Begin of File Structured Field, ...Data2..., End of File Structured Field, (job2)
Begin of File Structured Field, ...Data3..., End of File Structured Field,
End Bracket(job3)

PC/3270 always keeps track of brackets and timeout intervals. After the emulator receives a Begin of File structured

field, it takes no action on Begin Brackets, End Brackets, or timeout until it receives an End of File structured field.

After a valid End of File SF is processed, the emulator defaults to delimiting jobs by brackets or timeout intervals until

it receives the next Begin of File structured field.

Begin or End of File Structured Field Error Conditions
PC/3270 does not accept transmission of data belonging to two separate print jobs in the same chain. To be

accepted by the emulator, Begin of File structured fields must be the first structured field of a chain and End of File

structured fields must be the last structured field of a chain.

PC/3270 rejects transmission in the following instances:

• The emulator receives an End of File structured field without first receiving a Begin of File structured field.

• The emulator receives a second Begin of File structured field without receiving an intervening End of File

structured field.

• The emulator receives a Begin of File structured field that is not the first structured field following a write

structured field command (LU 2, LU 3) or a Function Management Header 1 (LU 1 sessions).

• The emulator receives an End of File structured field that is not the last structured field following a write

structured field command (LU 2, LU 3) or a Function Management Header 1 (LU 1 sessions).

Processing SCS Data Streams
When processing an SCS data stream, PC/3270 treats Begin or End of File structured fields as follows:

• A Begin of File structured field indicates that all SCS data in the same transmission until an End of File

structured field is received is part of a new print job.

• An End of File structured field indicates that any SCS data received in the same chain as the End of File

structured field is the last data of the current print job.

Processing 3270 Data Streams
When processing a 3270 data stream, PC/3270 treats Begin or End of File structured fields as follows:

• A Begin of File structured field indicates that the next presentation space print (initiated by a write type

command with the start print bit turned on in the write control character) is the first in a print job.

• An End of File structured field indicates that the last presentation space print was the last of the current print

job. The emulator immediately sends a terminate string to the printer to close the printer session.

417

HCL Z and I Emulator for Windows (ENGLISH)

418

If PC/3270 receives a Begin of File structured field and an End of File structured field without at least one

presentation space separating them, it ignores the structured fields.

Building a Printer Definition Table (PDT) for PC400
This chapter explains how to create and change the printer definition table (PDT file) used for PC400. Building a

Printer Definition Table (PDT) for PC/3270 on page 410 contains specific information about creating PC/3270

PDTs. PDTs for PC/3270 and PC400 differ only slightly; if you use a common PDT (used for both PC/3270 and

PC400), the additional statements for PC400 are ignored for PC/3270 processing. Similarly, statements unique to

PC/3270 are ignored for PC400 processing.

The PDT file is created by converting the printer definition file (PDF file). The PDF and PDT define the transmission

of characters and control codes to the printer and the format of printer output. To change an existing PDF (the

recommended method) or create a new one, use a text editor that can produce or update an ASCII file.

Using the Printer Definition Table (PDT) File
To use the PDT file:

1. Select File from the menu bar of the workstation window.

2. Select Printer Setup from the File menu.

The Printer Setup window appears.

3. Select the Use PDT file check box and Select PDT.

The Select PDT file window appears.

To build the PDT file (required only if the PDF has been changed or created):

1. Select Convert PDF. Select the PDF file to be converted from the list in the Convert PDF to PDT window; then

select Convert. The PDF File Converter window appears. After the file has been converted, click on Close, then

click Close in the Convert PDF to PDT window.

2. Click OK in the Select PDT file window.

3. Click OK on the Printer Setup window.

After printer setup is complete, the Printer Setup window is closed.

Printer Definition File (PDF File) Format
A PDF contains 3 main sections:

Chapter 2. Product Documentation

• Macro definitions

• Formatting controls

• Character definitions using EBCDIC_xx keywords

Macro Definitions
This section of a PDF contains user-defined macros. A macro is a single mnemonic that stands for a control code or

a sequence of control codes. A mnemonic simplifies defining control sequences for PC printers and makes it easier

to read the information in the PDF.

The following table shows the structure of a macro definition statement. A macro definition is composed of four

parts:

1 2 3 4

name EQU PC Printer Control Codes Comments

For example:

 FFF EQU 0C /* Form Feed */

The first part is the user-defined mnemonic or macro name. This name must be exactly three characters long and

must not begin with a number. It is helpful to define a meaningful mnemonic, such as P17 for 17.1 pitch.

The second part, EQU, stands for equate and must be coded as EQU.

The third part is the hexadecimal control code, which is specific to a PC printer. Each PC printer manufacturer can

define different control codes for the same printer function. For example, the IBM® 4019 LaserPrinter uses control

codes defined by the IBM® Personal Printer Data Stream (PPDS). Hewlett-Packard printers use control codes defined

by the Hewlett-Packard Printer Control Language (PCL). These control codes are usually defined in the manual that

comes with the printer.

Some PC printer manuals describe control sequences as a string of ASCII symbols, such as ESC J 1 K: others use

hexadecimal numbers, such as 1B 57 01; while others use decimal values, such as 27 28 1. The printer definition table

compiler accepts any of these formats.

The control codes in the macro definitions section can be any of the following:

• Single characters that are interpreted as their ASCII value

• Two-digit numbers that are interpreted as hexadecimal values

• Three-digit numbers that are interpreted as decimal values

If you leave the control code section blank or if you delete it, the character or control code is interpreted as a null

string. If a character or control code is defined more than once in the file, the last definition is used.

The fourth part is the comment section. The symbols /* indicate the beginning of a comment and the symbols */

indicate the end of a comment. Comments can be coded at any point in the printer definition file and are ignored by

the printer definition table compiler.

The following is an example macro definition statements that are specific to the IBM® 4019 LaserPrinter.

419

HCL Z and I Emulator for Windows (ENGLISH)

420

LFF EQU 0A /* Line Feed */
VTB EQU 0B /* Vertical Tab */
FFF EQU 0C /* Form Feed */
CRR EQU 0D /* Carriage Return */
P05 EQU 1B 57 01 /* 5 Pitch-Characters/inch */
P10 EQU 12 /* 10 Pitch-Characters/inch */
CDW EQU 1B 57 00 /* Cancel Double Wide contin. */
P17 EQU 12 0F /* 17.1 Pitch-Character/inch */
LL8 EQU 1B 41 09 1B 32 /* Set line length 8 lines/inch*/
P12 EQU 1B 3A /* 12 Pitch-characters/inch */
RES EQU 1B 5B 4B 07 00 05 31 01 A4 00 00 90
 /* The above macro resets the */
 /* printer using the factory */
 /* defaults. See the IBM Laser*/
 /* Printer Technical Reference */
 /* manual. */

To illustrate how macros are coded, consider this example. To have the host print job printed in double-wide

characters, you must know what control code turns on double-wide printing on your PC printer. On the IBM® 4019

LaserPrinter, the control code to turn on double-wide printing is X'1B5701'. This would be coded as:

BDW EQU 1B 57 01

where BDW stands for Begin Double Wide.

This alone would not cause 3270 host print to send this control to the printer. The mnemonic would have to be

included in a control code statement, such as START_JOB which is described in the control codes section of the file.

Note: The IBM® 4019 LaserPrinter printer definition file that comes with HCL Z and I Emulator for Windows

already has this control code defined as the P05 macro. See line 9 of the sample IBM® 4019 LaserPrinter

Macro Definition Statements (IBM4019.PDF File Contents on page 424).

Macro Name Examples
The following are example mnemonics or macros. The control codes are for the IBM® 4019 LaserPrinter:

 LND EQU 1B 26 6C 31 4F /* LANDSCAPE */
 POR EQU 1B 26 6C 30 4F /* PORTRAIT */
 P12 EQU 1B 28 73 31 32 2E 30 30 48 /* PITCH_12.00 */
 T10 EQU 1B 28 73 31 30 2E 30 56 /* POINT_10.0 */
 LTR EQU 1B 26 6C 32 41 /* LETT_PAPER */
 G66 EQU 1B 26 6C 36 36 50 /* PG_LENGTH_66 */

Formatting Controls
The controls section of a PDF contains the following:

• Session parameters

• Control codes

• Color specifications

• Highlight specifications

Chapter 2. Product Documentation

Session parameters
MAXIMUM_PAGE_LENGTH, MAXIMUM_PRINT_POSITION, and SET_PAGE_LENGTH

The parameter to the left of the equal sign is a keyword and must be coded exactly as shown. The keyword is used to

define a statement. The values to the right of the equal sign are macros or control codes. Because the values to the

right of the equal sign can be both macros and control codes, they will sometimes be referred to as parameters.

The MAXIMUM_PAGE_LENGTH, MAXIMUM_PRINT_POSITION, and SET_PAGE_LENGTH parameters specify the

dimensions of the output job. The number specified in the MAXIMUM_PAGE_LENGTH parameter is used in the

SET_PAGE_LENGTH parameter and is substituted for the value keyword. In other words, if SET_PAGE_LENGTH and

MAXIMUM_PAGE_LENGTH are coded as follows:

 MAXIMUM_PAGE_LENGTH=066 /* Printed lines per page */
 SET_PAGE_LENGTH=SFL 066

The results would be:

SET_PAGE_LENGTH=SFL 066

Because SFL is coded as X'1B 43' in the macro section, the actual control code that would be sent to the printer to set

the maximum page length is:

X'1B 43 42'

where X'42' is decimal 66.

Note: Setting MPL=255 causes suppression of form feeds (FFs).

Control Codes
The control codes section of a PDF is used by the PDT function to determine what specific PC printer control code is

to be sent to the PC printer when an SCS control code is received. Some of the statements used by Communications

Manager are shown in the following example.

START_JOB=SEL CDW CDL CUL CDS CP8 CS2
END_JOB=CAT CDW CDL CUL CDS CP4 FFF
SET_PAGE_LENGTH=SFL value
SET_VARIABLE_LINE_DENSITY=ESC A value ESC 2
SET_10_CHARACTERS_PER_INCH=P10

Note: The above example lines come from the IBM® 4019 LaserPrinter PDF.

START_JOB and END_JOB

The control codes associated with START_JOB are sent at the start of each host print job. It is best to set all printer

options to a known or desired state at the beginning of each host print job. The PC printer changes its state or

changes the options selected only when instructed to do so by control codes. Therefore, the previous PC application

could have left the printer in portrait mode with a Courier font selected, and unless your job changed them, these

would be the printer options used.

421

HCL Z and I Emulator for Windows (ENGLISH)

422

Even though the START_JOB and END_JOB control codes are the ones shipped with the IBM4019.PDF, many users

change them to be more like the ones below:

 START_JOB=RES P12 LL8
 END_JOB=RES

In this example, the RES, P12 and LL8 macros are used on the START_JOB statement (these macros are defined in

IBM4019.PDF File Contents on page 424). This translates into the following control codes being sent to the printer

at the beginning of your print job:

X'1B 5B 4B 07 00 05 31 01 A4 00 00 90 1B 3A 1B 41 09 1B 32'

This sequence of control codes:

• Resets the printer to the IBM® PPDS factory default settings (RES)

• Begins printing in 12 pitch (P12)

• Begins printing at 8 lines per inch (LL8)

The END-JOB statement sends the following control code to the printer at the end of your job:

X'1B 5B 4B 07 00 05 31 01 A4 00 00 90'

This control code resets the printer to IBM® PPDS factory default settings (RES).

SET_VARIABLE_LINE_DENSITY

The SET_VARIABLE_LINE_DENSITY statement is used in combination with the panel where you can select the number

of lines per inch (LPI), which can be either 6 or 8.

The PDT process uses whatever is selected in the lines per inch field, and substitutes this number for the

value keyword in the SET_VARIABLE_LINE_DENSITY parameter. In other words, if lines per inch is set to 8, the

SET_VARIABLE_LINE_DENSITY parameter is

SET_VARIABLE_LINE_DENSITY=ESC A 09 ESC 2

where the 09 comes from 72/8. The number of typographic points in 1 inch is 42; thus a value of 12 points would

indicate six lines to an inch.

The control code that is sent to the printer to set the line density is:

X'1B 41 09 1B 32'
SET_10_CHARACTERS_PER_INCH

On most printers, the default pitch is 10 characters per inch. In most PDTs, Z and I Emulator for Windows uses this

same convention and sends the control code found on the SET_10_CHARACTERS_PER_INCH statement. This is

usually coded in the PDF as:

SET_10_CHARACTERS_PER_INCH=P10

where P10 is coded in the macro definition section as:

P10 EQU 12

Chapter 2. Product Documentation

Printing More than One Screen on a Page
If you want to print two or more screens per page, use the BEL command in the PDF to specify the number of blank

lines to insert (instead of a Form Feed between two successive screens). You must coordinate this modification with

the usage of the LPI and MPL parameters in the PDF (see Field Names of Printer Definition Files on page 436).

Note: This specific use of the BEL command is applicable only for printing screens using the Print Screen

Collection function.

Setting the value BEL=FF will send a Form Feed, while the value BEL=00 does not insert a Form Feed or a Line Feed.

Values between 00 and FF send that number of blank lines between successive screens. For example, BEL=02 inserts

two blank lines between two successive screens. Thus, more than one screen can be printed on a single page.

Transparent Print Capability

ASCII_PASSTHRU? Keyword Support
If you add the following line to your PDF, Z and I Emulator for Windows will send host data without any translation:

 ASCII_PASSTHRU? = YES

This option is for special host applications that generate PC printer control codes directly.

Even if ASCII_PASSTHRU? is set, control codes defined START_JOB and END_JOB are sent to the printer at the start

and the end of a print job respectively. To remove those commands, you need to rebuild the PDT file after removing

the PDF keyword definitions for START_JOB and END_JOB.

If ASCII_PASSTHRU? is set, all character definition lines, for example, EBCDIC_xx, are ignored.

If both ASCII_PASSTHRU? and EBCDIC_PASSTHRU? are set, ASCII_PASSTHRU? has priority.

EBCDIC_PASSTHRU? Keyword Support
If you add the following line to your PDF, Z and I Emulator for Windows will ignore all SCS commands and send data

to the printer after EBCDIC-to-ASCII translation:

 EBCDIC_PASSTHRU? = YES

For example, the default EBCDIC-ASCII translation table used for U.S. English host code page 037 is as follows:

 Hex | 0 1 2 3 4 5 6 7 8 9 A B C D E F
 -----+--
 0 | 2020 2020 2020 2020 2020 2020 2020 2020
 10 | 2020 2020 2020 2020 2020 2020 2020 2020
 20 | 2020 2020 2020 2020 2020 2020 2020 2020
 30 | 2020 2020 2020 2020 2020 2020 2020 2020
 40 | 20FF 8384 85A0 C686 87A4 BD2E 3C28 2B7C
 50 | 2682 8889 8AA1 8C8B 8DE1 2124 2A29 3BAA
 60 | 2D2F B68E B7B5 C78F 80A5 DD2C 255F 3E3F
 70 | 9B90 D2D3 D4D6 D7D8 DE60 3A23 4027 3D22

423

HCL Z and I Emulator for Windows (ENGLISH)

424

 80 | 9D61 6263 6465 6667 6869 AEAF D0EC E7F1
 90 | F86A 6B6C 6D6E 6F70 7172 A6A7 91F7 92CF
 A0 | E67E 7374 7576 7778 797A ADA8 D1ED E8A9
 B0 | 5E9C BEFA B8F5 F4AC ABF3 5B5D EEF9 EF9E
 C0 | 7B41 4243 4445 4647 4849 F093 9495 A2E4
 D0 | 7D4A 4B4C 4D4E 4F50 5152 FB96 8197 A398
 E0 | 5CF6 5354 5556 5758 595A FDE2 99E3 E0E5
 F0 | 3031 3233 3435 3637 3839 FCEA 9AEB E9FF

You can modify this code page using EBCDIC_xx keywords. Note that the EBCDIC_PASSTHRU? line precedes any

EBCDIC_xx lines in your PDF file because Z and I Emulator for Windows reinitializes the EBCDIC-to-ASCII translation

table when it finds that EBCDIC_PASSTHRU? is set.

Even if EBCDIC_PASSTHRU? is set, control codes defined START_JOB and END_JOB are sent to the printer at the start

and the end of a print job respectively. To remove those commands, you need to rebuild the PDT file after removing

PDF keyword definitions for START_JOB and END_JOB.

Printer Definition Tables
Standard printer definition table file names are of the form IBMnnnnn.PDT, and PDT's ASCII-to-ASCII character

definitions are of the form PRNnnnnn.PDT, where nnnnn is a machine type. See character definition descriptions for

more details.

See the help panel or the specific 5250, 3270, or VT emulator user's reference for a list of the PDT files provided by Z

and I Emulator for Windows.

The PDT files contained in the PC400 installation diskette can be used as is. However, you might want to do special

formatting by changing the definitions of some fields. To do so, copy an existing PDF file, modify it, and then convert

it to a new PDT file.

Example PDF files are shown in "Example Printer Definition Files". Do not attempt to change the statements in a field

for which modification is specifically prohibited. If you use a PDT file created from a changed PDF file, the results of

printing cannot be guaranteed.

Example Printer Definition Files
The following examples are annotated versions of printer definition files for the IBM® LaserPrinter 4019 (for SBCS

sessions). These are examples only; the actual files may differ.

IBM4019.PDF File Contents
/**/
/* */
/* PRINTER SESSION DEFINITION FILE FOR: LaserPrinter 4019/4019-E */
/* */
/**/
/**/
/* Macro Definitions */
/* Define values here that will be used commonly throughout your */
/* definitions. Then use the left hand side of the equate as you */
/* define your characters and control strings. The printer compiler */

Chapter 2. Product Documentation

/* will substitute the right hand side of the equate for each */
/* occurrence of the left hand side throughout the file. */
/* */
/* Macro names must be at least three characters long and may not */
/* begin with a number. */
/* */
/* Format */
/* A Macro Name is associated with a value or string of values by the */
/* EQU statement. The right hand side of an EQU statement must be a */
/* string of zero or more two digit hexadecimal numbers. If a macro */
/* definition is more than one line long, you may extend it to the */
/* next line by ending the first line with a comma. In this manner */
/* you may define a macro which is many lines long by terminating each*/
/* line except the last with a comma. No macro names are allowed on */
/* right hand side. */
/**/
BEGIN_MACROS
/* The following values are standard for most printers. Check your */
/* printer manual to verify that these are correct for your printer */
NUL EQU 00 /* Nul character */
BEL EQU 07 /* Beeper */
BAK EQU 08 /* Back Space */
TAB EQU 09 /* Tab */
LFF EQU 0A /* Line Feed */
VTB EQU 0B /* Vertical Tab */
FFF EQU 0C /* Form Feed */
CRR EQU 0D /* Carriage Return */
P05 EQU 1B 57 01 /* 5 Pitch-Characters/inch */
 /* Same as Double Wide */
SEL EQU 11 /* Select Printer */
P10 EQU 12 /* 10 Pitch-Characters/inch */
CDW EQU 1B 57 00 /* Cancel Double Wide contin. */
CDL EQU 14 /* Cancel Double Wide line */
ESC EQU 1B /* Escape */
CAN EQU 18 /* Cancel Data */
SPA EQU 20 /* Space */
P17 EQU 12 0F /* 17.1 Pitch-Characters/inch */
CS2 EQU 1B 36 /* Select Character Set 2 */
CS1 EQU 1B 37 /* Select Character Set 1 */
P12 EQU 1B 3A /* 12 Pitch-characters/inch */
SVT EQU 1B 42 /* Set Vertical Tabs */
SFL EQU 1B 43 00 /* Set Form Length */
SHT EQU 1B 44 /* Set Horizontal Tabs */
SDS EQU 1B 47 /* Start Double Strike */
CDS EQU 1B 48 /* Cancel Double Strike */
SSP EQU 1B 4E /* Set skip perforation */
CSP EQU 1B 4F /* Cancel skip perforation */
CAT EQU 1B 52 /* Cancel all tabs Clears VT */
 /* and sets HT every 8 position */
CSS EQU 1B 54 /* Cancel Subscript or Superscript */
SSO EQU 1B 53 00 /* Set Superscript over */
SSU EQU 1B 53 01 /* Set Subscript under */
SUL EQU 1B 2D 01 /* Start Underline */
CUL EQU 1B 2D 00 /* Cancel Underline */
SCP EQU 1B 5B 54 04 00 00 00 /* ESC T - select code page */
CP8 EQU 1B 5B 54 04 00 00 00 03 52 /* select code page 850 */
CP4 EQU 1B 5B 54 04 00 00 00 01 B5 /* select code page 437 */
LL2 EQU 1B 41 24 1B 32 /* Setline length 2 lines/inch */

425

HCL Z and I Emulator for Windows (ENGLISH)

426

LL3 EQU 1B 41 18 1B 32 /* Setline length 3 lines/inch */
LL4 EQU 1B 41 12 1B 32 /* Setline length 4 lines/inch */
LL6 EQU 1B 41 0C 1B 32 /* Set line length 6 lines/inch */
LL8 EQU 1B 41 09 1B 32 /* Set line length 8 lines/inch */
LL0 EQU 1B 41 07 1B 32 /* Set line length 10 lines/inch */
 /* actually 7/72 inch */
SD1 EQU 1B 5B 46 05 00 00 01 01 00 00 /* Select Drawer 1 */
SD2 EQU 1B 5B 46 05 00 00 01 02 00 00 /* Select Drawer 2 */
ENV EQU 1B 5B 46 05 00 00 02 00 00 00 /* Select Envelope */
FRM EQU 1B 64 /* Forward Relative Movement */
VLF EQU 1B 4A /* Vertical Line Feed 1/216 inch units */
SPO EQU 1B 6B /* Set Portrait Orientation */
SLO EQU 1B 6C /* Set Landscape Orientation */
SFG EQU 1B 5B 49 08 00 /* Set Font Global */
END_MACROS
/* Session Parameters */
/* These parameters determine the way in which output will be */
/* formatted for your printer. */
/* Numeric Parameters */
/* These parameters should be defined with a two digit hex number */
/* or a three digit decimal number. The range of the number is zero */
/* to 255 (decimal). */
MAXIMUM_PAGE_LENGTH=066 /* Printed lines per page */
MAXIMUM_PRINT_POSITION=080 /* Printed characters per line */
INTERV_REQ_TIMER=001
RESELECT_TIME_EXCPT_5204=001
INTERV_TIMER_ON_PE_ONLY?=NO
HORIZONTAL_PEL=120
VERTICAL_PEL=216
LINE_SPACING_RATIO=072
PAGE_LENGTH_TYPE?=INCH /* SET_PAGE_LENGTH "value" is */
 /* values */
/* YES/NO Parameters */
/* These parameters should be defined with either "YES" or "NO" on the*/
/* right hand side of the '=' */
COMPRESS_LINE_SPACING?=NO /* Should blank or null lines */
 /* be printed? */
FORM_FEED_ANY_POSITION?=YES /* Should the form feed be */
 /* valid in any position? */
OVERRIDE_FORMATTED_PRINT?=YES /* Should nulls be printed as */
 /* blanks? */
AUTO_NEWLINE_AT_MAX_POS?=NO
/* Control Codes */
/* These definitions tell the emulator what control strings to send to*/
/* your printer to issue control commands. */
/* */
/* Format */
/* The name of the control command should always be at the beginning */
/* of a line followed by a '=' and then a definition string. */
/* A Definition String is any combination of macro names, hexadecimal */
/* numbers, and characters separated by blanks. A macro must have */
/* previously defined in the macro definitions section above. A */
/* hexadecimal number must be two digits (0,..,F) long. and a */
/* character must be preceded and followed by a blank. If a */
/* definition string will not fit on a line, it may be continued */
/* as many lines as you wish by ending each line except the last with */
/* a comma; ','. You made add any comments you wish to by including*/
/* them between a slash* and a *slash where slash is the symbol /. */

Chapter 2. Product Documentation

/* START_JOB is the control string which will be sent to your printer */
/* at the beginning of each print job. */
START_JOB=SEL CDW CDL CUL CDS CP8 CS2
/* END_JOB is the string which will be sent to your printer at the end*/
/* of each print job. */
END_JOB=CAT CDW CDL CUL CDS CP4 FFF
BACKSPACE=BAK
BEL=BEL
CARRIAGE_RETURN=CRR
NEW_LINE=CRR LFF
LINE_FEED=LFF
FORM_FEED=FFF
HORIZONTAL_TAB=TAB
VERTICAL_TAB=VTB
START_SUBSCRIPT=SSU
END_SUBSCRIPT=CSS
START_SUPERSCRIPT=SSO
END_SUPERSCRIPT=CSS
DUP=*
FIELD_MARK=;
/* The following commands specify control codes for which most PC */
/* printers require command strings which contain a variable value */
/* or values somewhere in the middle of the string. */
/* Place the word "value(s)" in the position of your definition */
/* string where the Z and I Emulator for Windows 5250 should fill in */
/* the hexadecimal value(s) indicated. */
/* For example, on the IBM Proprinter, the SET_HORIZONTAL_TABS */
/* definition is: */
/* SET_HORIZONTAL_TABS=ESC D values NUL */
SET_HORIZONTAL_TABS=SHT values NUL /* "values" are the tab stops */
 /* in column numbers */
SET_VERTICAL_TABS=SVT values NUL /* "values" are the tab stops */
 /* in line numbers */
SET_HORIZONTAL_MARGINS=
SET_PAGE_LENGTH=SFL value /* "value"=inch of the page */
SET_AUTO_PERFORATION_SKIP=SSP value
 /* "value"=number of lines to */
 /* skip over the perforation */
 /* between pages. Used to set */
 /* top and bottom margins. */
SET_VARIABLE_LINE_DENSITY=ESC A value ESC 2
 /* "value"=number of points. */
 /* A point is */
 /* 1/(LINE_SPACING_RATIO) inch.*/
SET_CHARACTER_SET=
/*SET_CHARACTER_SET=ESC I NULL selects the normal font */
/*SET_CHARACTER_SET=ESC I 02 selects the NLQ (near letter quality) */
/*SET_CHARACTER_SET=ESC I 04 selects the normal downloaded font */
/*SET_CHARACTER_SET=ESC I 06 selects the NLQ downloaded font */
/*SET_CHARACTER_SET=CS1 selects the Character set 1 */
/*SET_CHARACTER_SET=CS2 selects the Character set 2 */

/* These control codes set the printer lines per inch and characters */
/* per inch to fixed amounts. */
/* If your printer does not support setting the line density in points*/
/* then you can enter control strings for the following commands. */
/* When Z and I Emulator for Windows 5250 gets a command from the host to */

427

HCL Z and I Emulator for Windows (ENGLISH)

428

/* set the lines per inch, it will round it to the closest line per */
/* inch setting that you provide. Note that if you provide a command */
/* for the SET_VARIABLE_LINE_DENSITY command above that it will be */
/* used and any control strings you provide for the set lines per inch*/
/* commands below will not be used. */

SET_2_LINES_PER_INCH=LL2
SET_3_LINES_PER_INCH=LL3
SET_4_LINES_PER_INCH=LL4
SET_6_LINES_PER_INCH=LL6
SET_8_LINES_PER_INCH=LL8
SET_10_LINES_PER_INCH=LL0 /* 7/72 inch or 9/96 inch */
SET_10_CHARACTERS_PER_INCH=P10
SET_12_CHARACTERS_PER_INCH=P12
SET_13_CHARACTERS_PER_INCH= /* */
SET_15_CHARACTERS_PER_INCH= /* The proprinter does not */
 /* support 15 pitch except in */
 /* graphic mode */
SET_17_CHARACTERS_PER_INCH=P17 /* Condensed mode */
SET_20_CHARACTERS_PER_INCH=
START_DOUBLE_WIDTH_CHARACTERS=P05
END_DOUBLE_WIDTH_CHARACTERS=CDW

/* These control codes are used to select the source drawer number */
/* when your printer has the dual drawer sheetfeed option. */
SELECT_DRAWER1=SD1
SELECT_DRAWER2=SD2
SELECT_DRAWER3=
SELECT_ENVELOPE=ENV /* Envelope */

/* These control codes select the print mode (quality of print). */
SELECT_DRAFT_QUALITY=
SELECT_LETTER_QUALITY=
SELECT_ENHANCED_QUALITY=
SELECT_SETUP_QUALITY=

/* These control codes */
SET_DUPLEX=
SET_DUPLEX_TUMBLE=
RESET_DUPLEX=

/* These control codes set page orientation */
SET_PORTRAIT_ORIENT=SPO
SET_LANDSCAPELEFT_ORIENT=SLO
SET_PORTRAITUPDWN_ORIENT=SPO
SET_LANDSCAPERGHT_ORIENT=SLO

/* These control codes move the print position (Horizontal/Vertical) */
FORWARD_HORIZONTAL_SKIP=FRM word-value(LH)
FORWARD_VERTICAL_STEP_FEED=VLF byte-value

/* These control codes select the printer font via global font ID */
SET_FONT_GLOBAL=
SET_GFID_0003=SFG 00 03 00 90 01 01 03 52 CDW /* OCR-B.10 */
SET_GFID_0005=SFG 00 05 00 90 01 01 03 52 CDW /* Orator.10 */
SET_GFID_0011=SFG 00 0B 00 90 01 01 03 52 CDW /* Courier.10 */
SET_GFID_0012=SFG 00 0C 00 90 01 01 03 52 CDW /* Prestige.10 */
SET_GFID_0013=SFG 00 0B 00 90 01 01 03 52 CDW /* Artisan.10 */

Chapter 2. Product Documentation

SET_GFID_0018=SFG 00 12 00 90 01 01 03 52 CDW /* Courier.Italic.10 */
SET_GFID_0019=SFG 00 13 00 90 01 01 03 52 CDW /* OCR-A.10 */
SET_GFID_0020=SFG 00 14 00 90 01 01 03 52 CDW /* Pica.10 */
SET_GFID_0030=SFG 00 1E 00 90 01 01 03 52 CDW /* Math-Symbol.10 */
SET_GFID_0038=SFG 00 26 00 90 01 01 03 52 CDW /* Orator.Bold.10 */
SET_GFID_0039=SFG 00 27 00 90 01 01 03 52 CDW /* Gothic.Bold.10 */
SET_GFID_0040=SFG 00 28 00 90 01 01 03 52 CDW /* Gothic-Text.10 */
SET_GFID_0041=SFG 00 29 00 90 01 01 03 52 CDW /* Roman-text.10 */
SET_GFID_0042=SFG 00 2A 00 90 01 01 03 52 CDW /* Serif-text.10 */
SET_GFID_0043=SFG 00 2B 00 90 01 01 03 52 CDW /* Serif-text.Italic.10*/
SET_GFID_0044=SFG 00 2C 00 90 01 01 03 52 CDW /* Katakana-gothic.10 */
SET_GFID_0045=SFG 00 2D 00 90 01 01 03 52 CDW /* APL.10 */
SET_GFID_0046=SFG 00 2E 00 90 01 01 03 52 CDW /* Courier.Bold.10 */
SET_GFID_0050=SFG 00 32 00 90 01 01 03 52 CDW /* Shalom.10 */
SET_GFID_0066=SFG 00 42 00 78 01 01 03 52 CDW /* Gothic-text.12 */
SET_GFID_0068=SFG 00 44 00 78 01 01 03 52 CDW /* Gothic-text.Italic.12*/
SET_GFID_0069=SFG 00 45 00 78 01 01 03 52 CDW /* Gothic.Bold.12 */
SET_GFID_0070=SFG 00 46 00 78 01 01 03 52 CDW /* Serif-text.12 */
SET_GFID_0071=SFG 00 47 00 78 01 01 03 52 CDW /* Serif-text.Italic.12*/
SET_GFID_0072=SFG 00 48 00 78 01 01 03 52 CDW /* Serif.Bold.12 */
SET_GFID_0080=SFG 00 73 00 78 01 01 03 52 CDW /* Math-Symbol.12 */
SET_GFID_0084=SFG 00 54 00 78 01 01 03 52 CDW /* Script.12 */
SET_GFID_0085=SFG 00 55 00 78 01 01 03 52 CDW /* Courier.12 */
SET_GFID_0086=SFG 00 56 00 78 01 01 03 52 CDW /* Prestige.12 */
SET_GFID_0087=SFG 00 57 00 78 01 01 03 52 CDW /* Letter-gothic.12 */
SET_GFID_0091=SFG 00 70 00 78 01 01 03 52 CDW /* Light.Italic.12 */
SET_GFID_0107=SFG 00 55 00 78 01 01 03 52 CDW /* Courier.12 */
SET_GFID_0110=SFG 00 6E 00 78 01 01 03 52 CDW /* Letter-Gothic.Bold.12*/
SET_GFID_0111=SFG 00 6F 00 78 01 01 03 52 CDW /* Prestige-Elite.Bold.12*/
SET_GFID_0112=SFG 00 70 00 78 01 01 03 52 CDW /* Prestige.Italic.12 */
SET_GFID_0115=SFG 00 73 00 78 01 01 03 52 CDW /* Math-Symbol.12 */
SET_GFID_0155=SFG 00 9B 00 78 02 01 03 52 CDW /* Boldface.Italic.PSM*/
SET_GFID_0158=SFG 00 9E 00 78 02 01 03 52 CDW /* Modern.PSM */
SET_GFID_0159=SFG 00 9F 00 78 02 01 03 52 CDW /* Document.PSM */
SET_GFID_0160=SFG 00 A0 00 78 02 01 03 52 CDW /* Essay.PSM */
SET_GFID_0162=SFG 00 A2 00 78 02 01 03 52 CDW /* Essay.Italic.PSM */
SET_GFID_0163=SFG 00 A3 00 78 02 01 03 52 CDW /* Essay.Bold.PSM */
SET_GFID_0168=SFG 00 A8 00 78 02 01 03 52 CDW /* Barak.PSM */
SET_GFID_0173=SFG 00 AD 00 78 02 01 03 52 CDW /* Essay.Light.PSM */
SET_GFID_0175=SFG 00 AF 00 78 02 01 03 52 CDW /* Document.PSM */
SET_GFID_0176=SFG 00 B0 00 78 02 01 03 52 CDW /* Boldface.PSM */
SET_GFID_0177=SFG 00 9B 00 78 02 01 03 52 CDW /* Boldface.Italic.PSM*/
SET_GFID_0193=SFG 00 73 00 78 01 01 03 52 CDW /* Math-Symbol.12 */
SET_GFID_0198=SFG 00 1E 00 90 01 01 03 52 CDW /* Math-Symbol.10 */
SET_GFID_0204=SFG 00 CC 00 6C 01 01 03 52 CDW /* Gothic-text.13 */
SET_GFID_0221=SFG 00 DD 00 60 01 01 03 52 CDW /* Prestige.15 */
SET_GFID_0222=SFG 00 E6 00 60 01 01 03 52 CDW /* Gothic-text.15 */
SET_GFID_0223=SFG 00 DF 00 60 01 01 03 52 CDW /* Courier.15 */
SET_GFID_0225=SFG 00 E1 00 60 01 01 03 52 CDW /* Math-symbol.15 */
SET_GFID_0229=SFG 00 E5 00 60 01 01 03 52 CDW /* Serif-text.15 */
SET_GFID_0230=SFG 00 E6 00 60 01 01 03 52 CDW /* Gothic-text.15 */
SET_GFID_0245=SFG 00 2E 00 90 01 01 03 52 P05 /* Courier.Bold.5 */
SET_GFID_0252=SFG 00 FC 00 54 01 01 03 52 CDW /* Courier.15 */
SET_GFID_0253=SFG 00 FD 00 54 01 01 03 52 CDW /* Courier.Bold.17 */
SET_GFID_0254=SFG 00 FE 00 55 01 01 03 52 CDW /* Courier.17 */
SET_GFID_0280=SFG 01 18 00 48 01 01 03 52 CDW /* APL.20 */
SET_GFID_0281=SFG 01 19 00 48 01 01 03 52 CDW /* Gothic-text.20 */
SET_GFID_0290=SFG 01 22 00 36 01 01 03 52 CDW /* Gothic-text.27 */

429

HCL Z and I Emulator for Windows (ENGLISH)

430

SET_GFID_0751=SFG 11 37 00 A0 01 03 03 52 CDW /* Sonoran-serif.8pt */
SET_GFID_1051=SFG 11 37 00 C8 01 03 03 52 CDW /* Sonoran-serif.10pt */
SET_GFID_1053=SFG 11 4B 00 C8 01 03 03 52 CDW /* Sonoran-serif.bold.10pt*/
SET_GFID_1056=SFG 11 B7 00 C8 01 03 03 52 CDW /* Sonoran-serif.italic.10pt*/
SET_GFID_1351=SFG 11 37 00 F0 01 03 03 52 CDW /* Sonoran-serif.12pt */
SET_GFID_1653=SFG 11 4B 01 40 01 03 03 52 CDW /* Sonoran-serif.Bold.16pt*/
SET_GFID_2103=SFG 11 4B 01 E0 01 03 03 52 CDW /* Sonoran-serif.Bold.24pt*/

/* Color Specifications */
START_COLOR_BLUE=
END_COLOR_BLUE=
START_COLOR_GREEN=
END_COLOR_GREEN=
START_COLOR_CYAN=
END_COLOR_CYAN=
START_COLOR_RED=
END_COLOR_RED=
START_COLOR_MAGENTA=
END_COLOR_MAGENTA=
START_COLOR_YELLOW=
END_COLOR_YELLOW=
START_COLOR_BLACK=
END_COLOR_BLACK=
START_COLOR_WHITE=
END_COLOR_WHITE=

/* Highlight Specifications */
/* These definitions will determine how things which are sent by the */
/* host to be displayed or printed as underlined, reverse video, or */
/* blinking will be highlighted on your printer. */

START_HIGHLIGHT_INTENSE=SDS /* This is double strike */
END_HIGHLIGHT_INTENSE=CDS
START_HIGHLIGHT_UNDERLINE=SUL
END_HIGHLIGHT_UNDERLINE=CUL
START_HIGHLIGHT_REVERSE_VIDEO=
END_HIGHLIGHT_REVERSE_VIDEO=
START_HIGHLIGHT_BLINK=
END_HIGHLIGHT_BLINK=

/* Character Definitions */
SPACE=SPA
EXCLAMATION_POINT=21
QUOTATION_MARKS=22
NUMBER_SIGN=23
DOLLAR_SIGN=24
PERCENT_SIGN=25
AMPERSAND=26
APOSTROPHE=27
LEFT_PARENTHESIS=28
RIGHT_PARENTHESIS=29
ASTERISK=2A
PLUS_SIGN=2B
COMMA=2C
HYPHEN=2D
PERIOD=2E
SLASH=2F
ZERO=0

Chapter 2. Product Documentation

ONE=1
TWO=2
THREE=3
FOUR=4
FIVE=5
SIX=6
SEVEN=7
EIGHT=8
NINE=9
COLON=3A
SEMICOLON=3B
LESS_THAN_SIGN=3C
EQUAL_SIGN=3D
GREATER_THAN_SIGN=3E
QUESTION_MARK=3F
AT_SIGN=40
A_CAPITAL=A
B_CAPITAL=B
C_CAPITAL=C
D_CAPITAL=D
E_CAPITAL=E
F_CAPITAL=F
G_CAPITAL=G
H_CAPITAL=H
I_CAPITAL=I
J_CAPITAL=J
K_CAPITAL=K
L_CAPITAL=L
M_CAPITAL=M
N_CAPITAL=N
O_CAPITAL=O
P_CAPITAL=P
Q_CAPITAL=Q
R_CAPITAL=R
S_CAPITAL=S
T_CAPITAL=T
U_CAPITAL=U
V_CAPITAL=V
W_CAPITAL=W
X_CAPITAL=X
Y_CAPITAL=Y
Z_CAPITAL=Z
LEFT_BRACKET=5B
BACKSLASH=5C
RIGHT_BRACKET=5D
CIRCUMFLEX_ACCENT=5E
UNDERLINE=5F
GRAVE_ACCENT=60
A_SMALL=a
B_SMALL=b
C_SMALL=c
D_SMALL=d
E_SMALL=e
F_SMALL=f
G_SMALL=g
H_SMALL=h
I_SMALL=i
J_SMALL=j

431

HCL Z and I Emulator for Windows (ENGLISH)

432

K_SMALL=k
L_SMALL=l
M_SMALL=m
N_SMALL=n
O_SMALL=o
P_SMALL=p
Q_SMALL=q
R_SMALL=r
S_SMALL=s
T_SMALL=t
U_SMALL=u
V_SMALL=v
W_SMALL=w
X_SMALL=x
Y_SMALL=y
Z_SMALL=z
LEFT_BRACE=7B
VERTICAL_BAR=7C
RIGHT_BRACE=7D
TILDE_ACCENT=7E
C_CEDILLA_CAPITAL=80
U_DIAERESIS_SMALL=81
E_ACUTE_SMALL=82
A_CIRCUMFLEX_SMALL=83
A_DIAERESIS_SMALL=84
A_GRAVE_SMALL=85
A_OVERCIRCLE_SMALL=86
C_CEDILLA_SMALL=87
E_CIRCUMFLEX_SMALL=88
E_DIAERESIS_SMALL=89
E_GRAVE_SMALL=8A
I_DIAERESIS_SMALL=8B
I_CIRCUMFLEX_SMALL=8C
I_GRAVE_SMALL=8D
A_DIAERESIS_CAPITAL=8E
A_OVERCIRCLE_CAPITAL=8F
E_ACUTE_CAPITAL=90
AE_DIPTHONG_SMALL=91
AE_DIPTHONG_CAPITAL=92
O_CIRCUMFLEX_SMALL=93
O_DIAERESIS_SMALL=94
O_GRAVE_SMALL=95
U_CIRCUMFLEX_SMALL=96
U_GRAVE_SMALL=97
Y_DIAERESIS_SMALL=98
O_DIAERESIS_CAPITAL=99
U_DIAERESIS_CAPITAL=9A
O_SLASH_SMALL=9B
POUND_SIGN=9C
O_SLASH_CAPITAL=9D
MULTIPLY_SIGN=9E
A_ACUTE_SMALL=A0
I_ACUTE_SMALL=A1
O_ACUTE_SMALL=A2
U_ACUTE_SMALL=A3
N_TILDE_SMALL=A4
N_TILDE_CAPITAL=A5
ORDINAL_INDICATOR_FEMININE=A6

Chapter 2. Product Documentation

ORDINAL_INDICATOR_MASCULINE=A7
QUESTION_MARK_INVERTED=A8
REGISTERED_TRADEMARK_SYMBOL=A9
LOGICAL_NOT=AA
ONE_HALF=AB
ONE_QUARTER=AC
EXCLAMATION_POINT_INVERTED=AD
LEFT_ANGLE_QUOTES=AE
RIGHT_ANGLE_QUOTES=AF
A_ACUTE_CAPITAL=B5
A_CIRCUMFLEX_CAPITAL=B6
A_GRAVE_CAPITAL=B7
COPYRIGHT_SYMBOL=B8
CENT_SIGN=BD
YEN_SIGN=BE
A_TILDE_SMALL=C6
A_TILDE_CAPITAL=C7
INTERNATIONAL_CURRENCY_SYMBOL=CF
ETH_ICELANDIC_SMALL=D0
ETH_ICELANDIC_CAPITAL=D1
E_CIRCUMFLEX_CAPITAL=D2
E_DIAERESIS_CAPITAL=D3
E_GRAVE_CAPITAL=D4
I_DOTLESS_SMALL=D5
I_ACUTE_CAPITAL=D6
I_CIRCUMFLEX_CAPITAL=D7
I_DIAERESIS_CAPITAL=D8
VERTICAL_LINE_BROKEN=DD
I_GRAVE_CAPITAL=DE
O_ACUTE_CAPITAL=E0
SHARP_S_SMALL=E1
O_CIRCUMFLEX_CAPITAL=E2
O_GRAVE_CAPITAL=E3
O_TILDE_SMALL=E4
O_TILDE_CAPITAL=E5
MICRO_SYMBOL=E6
THORN_ICELANDIC_SMALL=E7
THORN_ICELANDIC_CAPITAL=E8
U_ACUTE_CAPITAL=E9
U_CIRCUMFLEX_CAPITAL=EA
U_GRAVE_CAPITAL=EB
Y_ACUTE_SMALL=EC
Y_ACUTE_CAPITAL=ED
OVERLINE=EE
ACUTE_ACCENT=EF
SYLLABLE_HYPHEN=F0
PLUS_OR_MINUS_SIGN=F1
THREE_QUARTERS=F3
PARAGRAPH_SYMBOL=F4
SECTION_SYMBOL=F5
DIVIDE_SIGN=F6
CEDILLA=F7
DEGREE_SYMBOL=F8
DIAERESIS=F9
MIDDLE_DOT_ACCENT=FA
ONE_SUPERSCRIPT=FB
THREE_SUPERSCRIPT=FC
TWO_SUPERSCRIPT=FD

433

HCL Z and I Emulator for Windows (ENGLISH)

434

REQUIRED_SPACE=SPA
/**/
/* PC5250 Internal Data Area. */
/* Do not change these statements. */
/**/
TOP_MARGIN=
LEFT_MARGIN=
DYNAMIC_START_JOB=00 00 00 00 00 00 00 00 00 00 00
DYNAMIC_END_JOB=00 00
DYNAMIC_SET_PAGE_LENGTH=00 00 00
PRINTER_ID=40 19
/* End of Definition File */

IBM5577.PDF File Contents
/**/
/* PDF FILE (PRINTER DEFINITION FILE) FOR: PS/55 Printer */
/**/
BEGIN_MACROS
NUL EQU 00
BEL EQU 07
BAK EQU 08
TAB EQU 09
LFF EQU 0A
VTB EQU 0B
FFF EQU 0C
CRR EQU 0D
SEL EQU 11
DC3 EQU 13
ESC EQU 1B
CAN EQU 18
SPA EQU 20
P10 EQU 1B 7E 02 00 01 32
P12 EQU 1B 7E 02 00 01 3C
P13 EQU 1B 7E 02 00 01 43
P15 EQU 1B 7E 02 00 01 4B
SDW EQU 1B 7E 0E 00 01 09
EDW EQU 1B 7E 0E 00 01 0A
SVT EQU 1B 7E 19
SHT EQU 1B 7E 18
CSS EQU 1B 7E 0E 00 01 0F
SSO EQU 1B 7E 0E 00 01 0D
SSU EQU 1B 7E 0E 00 01 0E
SUL EQU 1B 7E 11 00 01 01
CUL EQU 1B 7E 11 00 01 00
LL2 EQU 1B 7E 03 00 01 14
LL3 EQU 1B 7E 03 00 01 1E
LL4 EQU 1B 7E 03 00 01 28
LL6 EQU 1B 7E 03 00 01 3C
LL7 EQU 1B 7E 03 00 01 4B
LL8 EQU 1B 7E 03 00 01 50
SPL EQU 1B 7E 04 00 03 00
INZ EQU 1B 7E 01 00 00
EJC EQU 1B 7E 0E 00 01 06
END_MACROS
/**/
/* Session Parameters */
/**/

Chapter 2. Product Documentation

MAXIMUM_PAGE_LENGTH=066
MAXIMUM_PRINT_POSITION=132
DEFAULT_CPI?=010
DEFAULT_LPI?=006
COMPRESS_LINE_SPACING?=NO
FORM_FEED_ANY_POSITION?=YES
OVERRIDE_FORMATTED_PRINT?=YES
HORIZONTAL_PEL=180
VERTICAL_PEL=120
UNITS_OF_DRAW_LINE=
KANJI_CODE?=SHIFT_JIS
ZENKAKU_SPACE=
PAGE_LENGTH_TYPE?=6INCH
/**/
/* Control Codes */
/**/
START_JOB=INZ SEL LL6 P10
END_JOB=INZ
BACKSPACE=BAK
BEL=BEL
CARRIAGE_RETURN=CRR
NEW_LINE=CRR LFF
LINE_FEED=LFF
FORM_FEED=EJC
HORIZONTAL_TAB=TAB
VERTICAL_TAB=VTB
DESELECT=DC3
START_SUBSCRIPT=SSU
END_SUBSCRIPT=CSS
START_SUPERSCRIPT=SSO
END_SUPERSCRIPT=CSS
DUP=*
FIELD_MARK=;
SET_HORIZONTAL_TABS=SHT length(HL)-values
SET_VERTICAL_TABS=SVT length(HL)-values
SET_HORIZONTAL_MARGINS=
SET_PAGE_LENGTH=SPL word-value(HL)
SET_2_LINES_PER_INCH=LL2
SET_3_LINES_PER_INCH=LL3
SET_4_LINES_PER_INCH=LL4
SET_6_LINES_PER_INCH=LL6
SET_7.5_LINES_PER_INCH=LL7
SET_8_LINES_PER_INCH=LL8
SET_10_CHARACTERS_PER_INCH=P10
SET_12_CHARACTERS_PER_INCH=P12
SET_13.4_CHARACTERS_PER_INCH=P13
SET_15_CHARACTERS_PER_INCH=P15
START_DOUBLE_WIDTH_CHARACTERS=SDW
END_DOUBLE_WIDTH_CHARACTERS=EDW
IMAGE_TRANSMISSION=1B 25 31 length(HL)-images
FORWARD_HORIZONTAL_SKIP=1B 25 33 word-value(HL)
FORWARD_VERTICAL_STEP_FEED=1B 25 35 word-value(HL)
SET_FONT_SIZE=1B 7E 20 00 03 word-value(HL) 02
SET_TATEGAKI_MODE=1B 7E 0E 00 01 0B
RESET_TATEGAKI_MODE=1B 7E 0E 00 01 0C
SBCS_FONT_LOAD=1B 7E 81 00 28 F0 40 00 18 byte-values F0 40
SELECT_DRAWER=
SET_LOCAL_FONT=

435

HCL Z and I Emulator for Windows (ENGLISH)

436

RESET_LOCAL_FONT=
ABS_HORIZONTAL_COLUMN_SKIP=1B 7E 1C 00 02 00 byte-value
REL_HOR_COLUMN_SKIP_TO_RIGHT=1B 7E 1C 00 02 01 byte-value
SET_SOLID_LINE_TYPE=
SET_DOTTED_LINE_TYPE=
SET_LINE_WIDTH_THIN=
SET_LINE_WIDTH_BOLD=
DRAW_LINE=
KANJI_ON=
KANJI_OFF=
ATTRIBUTE_GRID_LINE=1B 7E 16 length(HL)-values
/**/
/* Highlight Specifications */
/**/
START_HIGHLIGHT_INTENSE=ESC 7E 0E 00 01 17
END_HIGHLIGHT_INTENSE=ESC 7E 0E 00 01 18
START_HIGHLIGHT_UNDERLINE=1B 7E 11 00 01 01
END_HIGHLIGHT_UNDERLINE=1B 7E 11 00 01 00
/**/
/* Internal Data Area. */
/* Do not change these statement. */
/**/
TOP_MARGIN=
LEFT_MARGIN=
DYNAMIC_START_JOB=00 00 00 00 00 00 00 00 00 00 00
DYNAMIC_END_JOB=00 00
DYNAMIC_SET_PAGE_LENGTH=00 00 00
PRINTER_ID=55 77
/* End of Definition File */

Field Names of Printer Definition Files
Table 55: Field Names of PDF Files on page 436 lists the field names of the printer definition files (PDF files) and

their meanings:

Table 55. Field Names of PDF Files

Field Name Meaning Remarks

MAXIMUM_

PAGE_LENGTH

Default MPL Default is 66

MAXIMUM_

PRINT_

POSITION

Default MPP Default is 132

DEFAULT_CPI? Default CPI Default is 10

DEFAULT_LPI? Default LPI Default is 6

COMPRESS_

LINE_S

PACING?

Specifies whether to print a line con

taining only space characters or non

print characters.

Chapter 2. Product Documentation

Table 55. Field Names of PDF Files (continued)

Field Name Meaning Remarks

FORM_

FEED_ANY_

POSITION?

Specifies whether to validate the FF

control code on the first line.

Do not change this field.

OVERRIDE_

FORMATTED_

PRINT?

Specifies whether to print NULL char

acters as blanks.

Do not change this field.

HORIZONTAL_

PEL

FORWARD_HORIZONTAL_SKIP

length unit

VERTICAL_PEL FORWARD_VERTICAL_SKIP length

unit

IMAGE_HORI

ZONTAL_PEL

IMAGE_TRANSMISSION horizontal

length unit

IMAGE_VERTI

CAL_PEL

IMAGE_TRANSMISSION vertical

length unit

LINE_S

PACING_RATIO

SET_VARIABLE_LINE_DENSITY

length unit

PAGE_

LENGTH_TYPE?

SET_PAGE _LENGTH page length pa

rameter type

FIRST_LEFT_

POSITION

Distance from left paper edge

FIRST_TOP_

POSITION

Distance from top paper edge

DRAWER1_

ORIENTATION

Default page orientation for drawer 1 Default is COR

DRAWER2_

ORIENTATION

Default page orientation for drawer 2 Default is COR

AUTOMATIC_

ORIENTATION

Specifies whether to calculate the

page orientation.

START_JOB Printer control code sent to a printer

to start printing

If the control code specifying LPI/CPI is defined, also change

DEFAULT_CPI, DEFAULT_LPI.

END_JOB Printer control code sent to a printer

when printing ends

BACKSPACE Backspace control code

BEL Bell control code Specifies the number of blank lines to send in Print Screen

Collection mode

CARRIAGE_RE

TURN

Carriage return control code

NEW_LINE New line (CR/LF) control code

437

HCL Z and I Emulator for Windows (ENGLISH)

438

Table 55. Field Names of PDF Files (continued)

Field Name Meaning Remarks

LINE_FEED New line control code

FORM_FEED Form feed (FF) control code

HORIZONTAL_

TAB

Horizontal tab control code

VERTICAL_TAB Vertical tab control code

DESELECT Device control 3 control code

START_

SUBSCRIPT

Subscript character specification

END_

SUBSCRIPT

Subscript character specification re

lease

START_SU

PERSCRIPT

Superscript character specification

END_SU

PERSCRIPT

Superscript character specification

release

DUP Character used for printing DUP

codes

FIELD_MARK Character used for printing FIELD

MARK characters

SET_HORIZON

TAL_TABS

Horizontal tab setup Do not change this field.

SET_VERTI

CAL_TABS

Vertical tab setup Do not change this field.

SET_HORIZON

TAL_MARGINS

Right and left margin setup Do not change this field.

SET_PAGE_

LENGTH

Page length setup Assign the unit used for the defined control code page length

to the PAGE_LENGTH_TYPE field. When single sheets are to

be used, delete this field.

SET_

VARIABLE_

LINE_DENSITY

Line density setup Assign the unit used for the control code length defined to

LINE_SPACING_RATIO field.

SET_2_LINES_

PER_INCH

New line pitch (2LPI) setup

SET_3_LINES_

PER_INCH

New line pitch (3LPI) setup

SET_4_LINES_

PER_INCH

New line pitch (4LPI) setup

SET_6_LINES_

PER_INCH

New line pitch (6LPI) setup

Chapter 2. Product Documentation

Table 55. Field Names of PDF Files (continued)

Field Name Meaning Remarks

SET_8_LINES_

PER_INCH

New line pitch (8LPI) setup

SET_10_

LINES_PER_

INCH

New line pitch (10LPI) setup

SET_10_CHAR

ACTERS_PER_

INCH

Character pitch (10CPI) setup

SET_12_CHAR

ACTERS_PER_

INCH

Character pitch (12CPI) setup

SET_13_CHAR

ACTERS_PER_

INCH

Character pitch (13CPI) setup

SET_15_CHAR

ACTERS_PER_

INCH

Character pitch (15CPI) setup

SET_17_CHAR

ACTERS_PER_

INCH

Character pitch (17CPI) setup

SET_20_CHAR

ACTERS_PER_

INCH

Character pitch (20CPI) setup

IMAGE_

TRANSMISSION

Image data setup (vertical 24-dot im

age)

SELECT_DRAW

ER1

Page tray (Primary) setup

SELECT_DRAW

ER2

Page tray (Alternate) setup

SELECT_ENVE

LOPE

Envelope tray setup

SELECT_

DRAFT_QUALI

TY

Draft print quality setup

SELECT_LET

TER_QUALITY

Letter print quality setup

439

HCL Z and I Emulator for Windows (ENGLISH)

440

Table 55. Field Names of PDF Files (continued)

Field Name Meaning Remarks

SELECT_EN

HANCED_

QUALITY

Enhanced print quality setup

SET_DUPLEX Duplex printing setup

SET_DUPLEX_

TUMBLE

Duplex (tumble) printing setup

RESET_DUPLEX Duplex printing release

SET_POR

TRAIT_ORIENT

Page orientation (Normal portrait (up

right)) setup

SET_LANDS

CAPELEFT_

ORIENT

Page orientation (Landscape left

(270 degree clockwise rotation of

text)) setup

SET_PORTRAI

TUPDWN_

ORIENT

Page orientation (Portrait upside

down (180 degree clockwise rotation

of text)) setup

SET_LANDS

CAPERGHT_

ORIENT

Page orientation (Landscape right

(90 degree clockwise rotation of

text)) setup

FORWARD_

HORIZONTAL_

SKIP

Variable skip (relative position/dot

unit)

Assign the unit of the defined control code length to the HORI

ZONTAL_PEL field.

FORWARD_

VERTICAL_

STEP_FEED

Variable line feed (relative posi

tion/dot unit)

Assign the unit of the defined control code length to the

VERTICAL_PEL field.

SET_FONT_

GLOBAL

Global font ID setup Do not change this field.

SET_GFID_0003 GFID 3 (OCR-B) setup

SET_GFID_0005 GFID 5 (Orator) setup

SET_GFID_0011 GFID 11 (Courier 10) setup

SET_GFID_0012 GFID 12 (Prestige Pica) setup

SET_GFID_0013 GFID 13 (Artisan 10) setup

SET_GFID_0018 GFID 18 (Courier Italic 10) setup

SET_GFID_0019 GFID 19 (OCR-A) setup

SET_GFID_0020 GFID 20 (Pica) setup

SET_GFID_0030 GFID 30 (Math Symbol 10) setup

SET_GFID_0038 GFID 38 (Orator Bold) setup

SET_GFID_0039 GFID 39 (Gothic Bold 10) setup

SET_GFID_0040 GFID 40 (Gothic Text 10) setup

Chapter 2. Product Documentation

Table 55. Field Names of PDF Files (continued)

Field Name Meaning Remarks

SET_GFID_0041 GFID 41 (Roman Text 10) setup

SET_GFID_0042 GFID 42 (Serif Text 10) setup

SET_GFID_0043 GFID 43 (Serif Italic 10) setup

SET_GFID_0044 GFID 44 (Katakana 10) setup

SET_GFID_0045 GFID 45 (APL 10) setup

SET_GFID_0046 GFID 46 (Courier Bold 10) setup

SET_GFID_0050 GFID 50 (Shalom 10) setup

SET_GFID_0066 GFID 66 (Gothic Text 12) setup

SET_GFID_0068 GFID 68 (Gothic Italic 12) setup

SET_GFID_0069 GFID 69 (Gothic Bold 12) setup

SET_GFID_0070 GFID 70 (Serif Text 12) setup

SET_GFID_0071 GFID 71 (Serif Italic 12) setup

SET_GFID_0072 GFID 72 (Serif Bold 12) setup

SET_GFID_0080 GFID 80 (Math Symbol 12) setup

SET_GFID_0084 GFID 84 (Script 12) setup

SET_GFID_0085 GFID 85 (Courier 12) setup

SET_GFID_0086 GFID 86 (Prestige Elite) setup

SET_GFID_0087 GFID 87 (Letter Gothic 12) setup

SET_GFID_0091 GFID 91 (Light Italic 12) setup

SET_GFID_0110 GFID 110 (Letter Gothic Bold 12) set

up

SET_GFID_0111 GFID 111 (Prestige Elite Bold) setup

SET_GFID_0112 GFID 112 (Prestige Elite Italic) setup

SET_GFID_0115 GFID 115 (Math Symbol 12) setup

SET_GFID_0155 GFID 155 (Boldface Italic) setup

SET_GFID_0158 GFID 158 (Modern) setup

SET_GFID_0159 GFID 159 (Boldface) setup

SET_GFID_0160 GFID 160 (Essay) setup

SET_GFID_0162 GFID 162 (Essay Italic) setup

SET_GFID_0163 GFID 163 (Essay Bold) setup

SET_GFID_0168 GFID 168 (Barak PSM) setup

SET_GFID_0173 GFID 173 (Essay Light) setup

SET_GFID_0175 GFID 175 (Document) setup

SET_GFID_0176 GFID 176 (Boldface) setup

SET_GFID_0177 GFID 177 (Boldface Italic) setup

SET_GFID_0193 GFID 193 (Math Symbol 12) setup

SET_GFID_0198 GFID 198 (Math Symbol 10) setup

441

HCL Z and I Emulator for Windows (ENGLISH)

442

Table 55. Field Names of PDF Files (continued)

Field Name Meaning Remarks

SET_GFID_0204 GFID 204 (Gothic Text 13) setup

SET_GFID_0221 GFID 221 (Prestige 15) setup

SET_GFID_0222 GFID 222 (Gothic Text 15) setup

SET_GFID_0223 GFID 223 (Courier 15) setup

SET_GFID_0225 GFID 225 (Math Symbol 15) setup

SET_GFID_0229 GFID 229 (Serif Text 15) setup

SET_GFID_0230 GFID 230 (Gothic Text 15) setup

SET_GFID_0245 GFID 245 (Courier Bold 5) setup

SET_GFID_0252 GFID 252 (Courier 17) setup

SET_GFID_0253 GFID 253 (Courier Bold 17) setup

SET_GFID_0254 GFID 254 (Courier 17 (sub/super))

setup

SET_GFID_0280 GFID 280 (APL 20) setup

SET_GFID_0281 GFID 281 (Gothic Text 20) setup

SET_GFID_0290 GFID 290 (Gothic Text 27) setup

SET_GFID_0751 GFID 751 (Sonoran-Serif 8-pt Roman

Medium) setup

SET_GFID_1051 GFID 1051 (Sonoran-Serif 10-pt Ro

man Medium) setup

SET_GFID_1053 GFID 1053 (Sonoran-Serif 10-pt Ro

man Bold) setup

SET_GFID_1056 GFID 1056 (Sonoran-Serif 10-pt Italic

Medium) setup

SET_GFID_1351 GFID 1351 (Sonoran-Serif 12-pt Ro

man Medium) setup

SET_GFID_1653 GFID 1653 (Sonoran-Serif 16-pt Ro

man Bold) setup

SET_GFID_2103 GFID 2103 (Sonoran-Serif 24-pt Ro

man Bold) setup

START_HIGH

LIGHT_IN

TENSE

Highlight printing setup

END_HIGH

LIGHT_IN

TENSE

Highlight printing release

START_HIGH

LIGHT_UNDER

LINE

Underline setup

Chapter 2. Product Documentation

Table 55. Field Names of PDF Files (continued)

Field Name Meaning Remarks

END_HIGH

LIGHT_UNDER

LINE

Underline release

TOP_MARGIN Default top margin Do not change this field.

LEFT_MARGIN Default left margin Do not change this field.

DYNAMIC_S

TART_JOB

Printer control code sent to a printer

to start printing (internal use)

Do not change this field.

DYNAMIC_

END_JOB

Printer control code sent to a printer

to stop printing (internal use)

Do not change this field.

DYNAMIC_

SET_PAGE_

LENGTH

Page length setup control code sent

to a printer at the start of printing (in

ternal use)

Do not change this field.

PRINTER_ID Printer ID Do not change this field.

ZENKAKU_S

PACE

The size (adjustment unit) of a user-

defined character and a HANKAKU

character

Do not change this field.

SBCS_FONT_

LOAD

Registration of a HANKAKU GAIJI Do not change this field.

SET_LOCAL_

FONT

Set a font set of user-defined charac

ters

Remove this field when user-defined characters are not loaded

to a printer.

RESET_LO

CAL_FONT

Reset a font set of user-defined char

acters

Remove this field when user-defined characters are not loaded

to a printer.

ATTRIBUTE_

GRID_LINE

Grid-line print Do not change this field.

START_DOU

BLE_WIDTH_

CHARACTER

Set a double-width character

END_DOUBLE_

WIDTH_CHAR

ACTER

Reset a double-width character

Note:

1. When using IBM5577.PDF, change FORM_FEED=EJC to FORM_FEED in the file when a continuous

form job does not feed correctly.

The following table lists the session parameter field names and their effective values:

443

HCL Z and I Emulator for Windows (ENGLISH)

444

Table 56. Effective Values for PDF File Field Names

Field Name Effective Value

MAXIMUM_PAGE_LENGTH 001 to 255

MAXIMUM_PRINT_POSITION 001 to 255

DEFAULT_CPI? 010/012/015

DEFAULT_LPI? 004/006/008

COMPRESS_LINE_SPACING? YES/NO

FORM_FEED_ANY_POSITION? YES/NO

OVERRIDE_FORMATTED_PRINT? YES/NO

HORIZONTAL_PEL FORWARD_HORIZONTAL_SKIP length unit

VERTICAL_PEL FORWARD_VERTICAL_ STEP_FEED length unit

IMAGE_HORIZONTAL_PEL IMAGE_TRANSMISSION horizontal unit

IMAGE_VERTICAL_PEL IMAGE_TRANSMISSION vertical unit

LINE_SPACING_RATIO SET_VARIABLE_LINE_DENSITY length unit

PAGE_LENGTH_TYPE? LINE/INCH/6INCH*

FIRST_LEFT_POSITION 000 to 1440 in units of 1/1440 inch

FIRST_TOP_POSITION 000 to 1440 in units of 1/1440 inch

DRAWER1_ORIENTATION LANDSCAPE/PORTRAIT/COR

DRAWER2_ORIENTATION LANDSCAPE/PORTRAIT/COR

AUTOMATIC_ORIENTATION YES/NO

* 6/INCH indicates that page length should be specified in units of 1/6 inch.

Note:

1. If one of the desired CPI/LPI settings is not exactly supported by the printer, set the nearest value. The

results of printing might not be as desired.

2. If the units used to specify the control code length defined in FORWARD_HORIZONTAL _SKIP

and FORWARD_VERTICAL _STEP_FEED are not the same as the units used to specify the

HORIZONTAL_PEL and VERTICAL_PEL, the desired output will not be obtained.

3. If the units used to specify the control code length defined in SET_VARIABLE_LINE_DENSITY are

not the same as the units used to specify the LINE_SPACING_RATIO, the desired output will not be

obtained.

4. When FIRST_LEFT_POSITION and FIRST_TOP_POSITION are specified, their values are regarded as

specifying the unprintable area in the page of the printer. These values are included in the top margin

and the left margin specified by the iSeries™, eServer™ i5, or System i5™ printer control code.

Chapter 2. Product Documentation

Symbols of Printer Definition Files
The following table lists the symbols that are defined for printer definition files.

Table 57. Printer Symbol Definitions

Field Name Symbol

SPACE

EXCLAMATION_POINT !

QUOTATION_MARKS "

NUMBER_SIGN #

DOLLAR_SIGN $

PERCENT_SIGN %

AMPERSAND &

APOSTROPHE '

LEFT_PARENTHESIS (

RIGHT_PARENTHESIS)

ASTERISK *

PLUS_SIGN +

COMMA ,

HYPHEN -

PERIOD .

SLASH /

ZERO 0

ONE 1

TWO 2

THREE 3

FOUR 4

FIVE 5

SIX 6

SEVEN 7

EIGHT 8

NINE 9

COLON :

SEMICOLON ;

LESS_THAN_SIGN <

EQUAL_SIGN =

GREATER_THAN_SIGN >

QUESTION_MARK ?

AT_SIGN @

A_CAPITAL A

445

HCL Z and I Emulator for Windows (ENGLISH)

446

Table 57. Printer Symbol Definitions

(continued)

Field Name Symbol

B_CAPITAL B

C_CAPITAL C

D_CAPITAL D

E_CAPITAL E

F_CAPITAL F

G_CAPITAL G

H_CAPITAL H

I_CAPITAL I

J_CAPITAL J

K_CAPITAL K

L_CAPITAL L

M_CAPITAL M

N_CAPITAL N

O_CAPITAL O

P_CAPITAL P

Q_CAPITAL Q

R_CAPITAL R

S_CAPITAL S

T_CAPITAL T

U_CAPITAL U

V_CAPITAL V

W_CAPITAL W

X_CAPITAL X

Y_CAPITAL Y

Z_CAPITAL Z

LEFT_BRACKET [

BACKSLASH \

RIGHT_BRACKET]

CIRCUMFLEX_ACCENT ^

UNDERLINE _

GRAVE_ACCENT

A_SMALL a

B_SMALL b

C_SMALL c

Chapter 2. Product Documentation

Table 57. Printer Symbol Definitions

(continued)

Field Name Symbol

D_SMALL d

E_SMALL e

F_SMALL f

G_SMALL g

H_SMALL h

I_SMALL i

J_SMALL j

K_SMALL k

L_SMALL l

M_SMALL m

N_SMALL n

O_SMALL o

P_SMALL p

Q_SMALL q

R_SMALL r

S_SMALL s

T_SMALL t

U_SMALL u

V_SMALL v

W_SMALL w

X_SMALL x

Y_SMALL y

Z_SMALL z

LEFT_BRACE {

VERTICAL_BAR │

RIGHT_BRACE }

TILDE_ACCENT ~

C_CEDILLA_CAPITAL Ç

U_DIAERESIS_SMALL ü

E_ACUTE_SMALL é

A_CIRCUMFLEX_SMALL â

A_DIAERESIS_SMALL ä

A_GRAVE_SMALL à

A_OVERCIRCLE_SMALL å

C_CEDILLA_SMALL ç

E_CIRCUMFLEX_SMALL ê

447

HCL Z and I Emulator for Windows (ENGLISH)

448

Table 57. Printer Symbol Definitions

(continued)

Field Name Symbol

E_DIAERESIS_SMALL ë

E_GRAVE_SMALL è

I_DIAERESIS_SMALL ï

I_CIRCUMFLEX_SMALL î

I_GRAVE_SMALL ì

A_DIAERESIS_CAPITAL Ä

A_OVERCIRCLE_CAPITAL Å

E_ACUTE_CAPITAL É

AE_DIPTHONG_SMALL æ

AE_DIPTHONG_CAPITAL Æ

O_CIRCUMFLEX_SMALL ô

O_DIAERESIS_SMALL ö

O_GRAVE_SMALL ò

U_CIRCUMFLEX_SMALL û

U_GRAVE_SMALL ù

Y_DIAERESIS_SMALL ÿ

O_DIAERESIS_CAPITAL Ö

U_DIAERESIS_CAPITAL Ü

O_SLASH_SMALL ø

POUND_SIGN £

O_SLASH_CAPITAL Ø

MULTIPLY_SIGN ×

A_ACUTE_SMALL á

I_ACUTE_SMALL í

O_ACUTE_SMALL ó

U_ACUTE_SMALL ú

N_TILDE_SMALL ñ

N_TILDE_CAPITAL Ñ

ORDINAL_INDICATOR_FEMININE a

ORDINAL_INDICATOR_MASCULINE o

QUESTION_MARK_INVERTED

REGISTERED_TRADEMARK_SYMBOL ®

LOGICAL_NOT ¬

ONE_HALF ½

Chapter 2. Product Documentation

Table 57. Printer Symbol Definitions

(continued)

Field Name Symbol

ONE_QUARTER ¼

EXCLAMATION_POINT_INVERTED ¡

LEFT_ANGLE_QUOTES «

RIGHT_ANGLE_QUOTES »

A_ACUTE_CAPITAL Á

A_CIRCUMFLEX_CAPITAL Â

A_GRAVE_CAPITAL À

COPYRIGHT_SYMBOL ©

CENT_SIGN ¢

YEN_SIGN ¥

A_TILDE_SMALL ã

A_TILDE_CAPITAL Ã

E_CIRCUMFLEX_CAPITAL Ê

E_DIAERESIS_CAPITAL Ë

I_ACUTE_CAPITAL Í

I_CIRCUMFLEX_CAPITAL Î

I_DIAERESIS_CAPITAL Ï

VERTICAL_LINE_BROKEN

I_GRAVE_CAPITAL Ì

O_ACUTE_CAPITAL Ó

O_CIRCUMFLEX_CAPITAL Ô

O_GRAVE_CAPITAL Ò

O_TILDE_SMALL õ

O_TILDE_CAPITAL Õ

MICRO_SYMBOL

U_ACUTE_CAPITAL Ú

U_CIRCUMFLEX_CAPITAL Û

U_GRAVE_CAPITAL Ù

ACUTE_ACCENT ´

SYLLABLE_HYPHEN -

PLUS_OR_MINUS_SIGN ±

THREE_QUARTERS ¾

449

HCL Z and I Emulator for Windows (ENGLISH)

450

Table 57. Printer Symbol Definitions

(continued)

Field Name Symbol

PARAGRAPH_SYMBOL ¶

SECTION_SYMBOL §

DIVIDE_SIGN ÷

DEGREE_SYMBOL °

ONE_SUPERSCRIPT ¹

THREE_SUPERSCRIPT ³

TWO_SUPERSCRIPT ²

REQUIRED_SPACE

INTERNATIONAL_CURRENCY_SYM

BOL

¤

ETH_ICELANDIC_SMALL ð

ETH_ICELANDIC_CAPITAL Ð

SHARP_S_SMALL ß

THORN_ICELANDIC_SMALL þ

THORN_ICELANDIC_CAPITAL Þ

Y_ACUTE_SMALL ý

Y_ACUTE_CAPITAL Ý

OVERLINE

CEDILLA ¸

DIAERESIS ‥

MIDDLE_DOT_ACCENT .

Using Printer Control Codes
This section explains the String (SCS) control codes, or Final Form Text: Document Content Architecture (FFT DCA).

For details of iSeries™, eServer™ i5, or System i5™ printer control codes, refer to AS/400 Guide to Programming for

Printing.

This table matches the iSeries™, eServer™ i5, or System i5™ table of fonts. PC400 builds a PC spool file with the

selected font in it. The printer driver picks up the spool file and the font and sends it to the printer where the expected

font is used. Refer to Printer Device Programming for additional information on other useful tables.

The following factors can produce unexpected results:

Chapter 2. Product Documentation

• Not all fonts are available on a PC or printer device.

If the font that was selected from the table and incorporated into the spool file cannot be found on a PC or

on a printer, the printer driver determines how to present the data on a printer. For example, HP printer drivers

have the following order of considerations:

◦ HP Font Priority Considerations:

1. Symbol Set

2. Spacing

3. Pitch

4. Height

5. Style

6. Stroke Weight

7. Typeface Family

8. Resolution

9. Orientation

◦ Location: printer ROM, SIMM module ROM, cartridge ROM, printer RAM

Priority of locations:

1. Soft font (lowest ID first)

2. Cartridge Font

3. SIMM Font

4. Internal Font

◦ 600 dpi has priority over 300 dpi

To avoid this uncertainty, it is recommended that you update the table so that only the fonts that are available

in the given environment are used.

• NLS

The iSeries™, eServer™ i5, or System i5™ font has NLS characters in it, which are not part of a corresponding

PC font. The IBM-supplied table does not support character sets other than ANSI, although it provides a field

for them. In this case, PC400 builds a PC spool file with a font that doesn't recognize NLS.

To fix the problem, it is recommended that you either change the font names in the table to the NLS enabled

on a PC/printer, or if the font has the same name as the one in the table, update a Character Set value.

• After you decide to scale a printout which may be a result of CORig or BesFitting, you usually decrease the

distance horizontally as well as vertically between characters. This can result in overlapping. PC400 attempts

to adjust the given character size to a new one. A problem may occur when a font defined in the table is not

a scalable font. Like GFID011, the most heavily used iSeries™, eServer™ i5, or System i5™ font is mapped

to Courier. Courier is a non-scalable font which has only a limited number of character box sizes. To avoid

possible problems it is recommended that you use Courier New instead, which is a scalable TTF font.

Printer Control Code Format
Some printer control codes perform single, specific functions by themselves, while others perform multiple functions

according to the parameters specified after the control code.

451

HCL Z and I Emulator for Windows (ENGLISH)

452

A printer control code with parameters has the following format:

Control

Code Count

Para

meter 1

Parame

ter 2...

1 or 2 bytes 1 byte 1 or 2 bytes 1 or 2 bytes

A count consists of 1 byte, and indicates the length of the parameters (including the count) after the control code, in

bytes. For example, a count and two 1-byte parameters is shown as X'03', because the count itself is included. Some

control codes, such as the Printing Position (PP) control code, do not have counts.

A parameter can be 1 or 2 bytes in length. The number of bytes depends on the control codes. Not all control codes

have parameters.

Note: In this manual, counts and parameters that are actually processed in binary are all expressed in

hexadecimal (0–F) to improve readability.

Parameter Definition of Printer Control Codes
Some printer control codes require that parameters be specified. Pay particular attention when defining a parameter

because how this is done depends on the parameter type. If the definition method for another type is used, the

desired output will not be obtained.

The following table lists printer control code parameter types and their meanings:

Table 58. Printer Control Code Parameter Types

Parameter Type Meaning

byte-value One-byte parameter.

byte-values Multibyte parameter.

 Used if operands are fixed.

word-value(HL) One-word parameter (higher and lower bytes).

word-value(LH) One-word parameter (lower and higher bytes).

length(HL)-values Multibyte parameter requiring operands.

 An operand consists of a higher and lower byte.

 Used if operands are variable.

length(LH)-values Multibyte parameter requiring operands.

 An operand consists of a lower and higher byte.

 Used if operands are variable.

length(HL)-images Image data requiring operands.

 An operand consists of a higher and lower byte.

length(LH)-images Image data requiring operands.

 An operand consists of a lower and higher byte.

decimal-characters Decimal characters parameter.

Chapter 2. Product Documentation

Supported Control Codes
Z and I Emulator for Windows supports all control codes for the 3812 printer.

Programming Notes
This section briefly explains how a printer reacts if a partial control code is received, or if an incomplete control code

is sent.

If the transmission of a control code is interrupted, the printer waits for the remaining part of the code. If the data

stream (the series of data units and control codes) sent after the interruption is consistent with the data stream

sent before the interruption, (that is, if one complete printer control code is restored by chaining), the control code is

processed as is.

If the two parts of the data stream are inconsistent, an error occurs. A negative response to an

“Invalid Printer Parameter” is sent to the host system, or treated as a no-op (no operation; ignored because of a

meaningless code). Detailed information is not sent to the host system if an error occurs in a control code. After

programming, the data stream must be checked thoroughly by repeating the printing test.

Restrictions and Notes for iSeries, eServer i5, or System i5 Commands and Printer
Setup
This section provides supplementary notes and explains restrictions for printing.

Printer Control Codes

Table 59. Printer Control Codes

Printer Control Code If Use PDT file is Selected:

If a Windows® Printer Driver is

Used:

Select the GFID for the valid character distance (CD) parameter as shown

in Table 60: SCD Parameter Values on page 454.

SCD — Set the Character Density

If the specified font is not supported,

a substitution is provided. For exam

ple, when 15 CPI font is specified but

the font is not supported, the sup

ported 17 CPI font is substituted.

See How to Determine PC400 Font

on page 455.

SFG — Set Font ID through GFID Recognizable GFIDs are restricted. (See Field Names of Printer Definition

Files on page 436.) If the specified GFID is not supported and it is out

of the range from 154 through 200, the closest font width from the fonts

shown in Table 61: Commonly Used SFG GFID Values on page 454 is

substituted.

453

HCL Z and I Emulator for Windows (ENGLISH)

454

Table 59. Printer Control Codes

(continued)

Printer Control Code If Use PDT file is Selected:

If a Windows® Printer Driver is

Used:

If the specified GFID is not supported and it is between 154 and 200, the

following font is substituted: Font name: Document; GFID value:175.

See How to Determine PC400 Font

on page 455.

BUS — Begin Underscore The selected font might not support

the underscore.

BES — Begin Emphasis The selected font might not support

the emphasis.

STO — Set Text Orientation The page orientation can be changed

to portrait or landscape. The direc

tion, which is up, down, left, or right

on the paper, depends on the Mi

crosoft® Windows® printer driver. If

the page orientation is changed, the

current paper is ejected.

Table 60. SCD Parameter Values

CD Parameter Character Pitch (normal) GFID Value (COR)

000A 10 CPI 13 CPI 204

000B Proportional 13 CPI 175

000C 12 CPI 15 CPI 86

000F 15 CPI 20 CPI 230

00FF 10 CPI 13 CPI 204

The following table lists only the most commonly used GFIDs. See Table 62: iSeries, eServer i5, or System i5 Font

Parameters on page 455 for the complete list.

Table 61. Commonly Used SFG GFID Values

Font Name GFID value

Courier Bold 5 245

Courier 10 11

Prestige Elite 12 86

Gothic-text 13 204

Gothic-text 15 230

Courier 17 252

Gothic-text 20 281

Gothic-text 27 290

Chapter 2. Product Documentation

When you use the Windows® printer driver, the spooler must be on.

How to Determine PC400 Font
When a print job is created on iSeries™, eServer™ i5, or System i5™, a certain font, identified by font ID (GFID), is

associated with it. Such a font can be specified by the following parameters:

• Font family

• Pitch and family

• Character set

• Width

• Height

• Weight

• Style

System fonts are available with all print drivers, and more flexible device fonts are unique to each printer and printer

driver. These fonts are also more fixed as to CPI, weight, code pages, and other criteria that can preclude use of it

when matching to the host specified needs.

There are problems associated with mapping an iSeries™, eServer™ i5, or System i5™ font to a PC font. When your PC

has all of the fonts that you need, use the following table to determine the best font to use.

Table 62. iSeries, eServer i5, or System i5 Font Parameters

Entry ID Font Family GFID Pitch &

Family

Character

Set

Width Height Weight Style

GFID0003 OCR-B 3 49 0 144 240 400 0

GFID0005 Orator 5 49 0 144 240 400 0

GFID0011 Courier 11 49 0 144 240 400 0

GFID0012 Prestige 12 49 0 144 240 400 0

GFID0013 Artisan 13 49 0 144 240 400 0

GFID0018 Courier Italic 18 49 0 144 240 400 255

GFID0019 OCR-A 19 49 0 144 240 400 0

GFID0020 Pica 20 49 0 144 240 400 0

GFID0030 Symbol 30 49 2 144 240 400 0

GFID0038 Orator 38 49 0 144 240 400 0

GFID0039 Gothic 39 49 0 144 240 800 0

GFID0040 Gothic 40 49 0 144 240 800 0

GFID0041 Roman 41 49 0 144 240 400 0

GFID0042 Serif 42 49 0 144 240 400 0

GFID0043 Serif 43 49 0 144 240 400 255

GFID0044 Katakana 44 49 0 144 240 400 0

455

HCL Z and I Emulator for Windows (ENGLISH)

456

Table 62. iSeries, eServer i5, or System i5 Font Parameters

(continued)

Entry ID Font Family GFID Pitch &

Family

Character

Set

Width Height Weight Style

GFID0045 APL 45 49 0 144 240 400 0

GFID0046 Courier Bold 46 49 0 144 240 800 0

GFID0050 Shalom 50 49 0 144 240 400 0

GFID0066 Gothic 66 49 0 144 240 400 0

GFID0068 Gothic 68 49 0 120 240 400 255

GFID0069 Gothic 69 49 0 120 240 800 0

GFID0070 Serif 70 49 0 120 240 400 0

GFID0071 Serif 71 49 0 120 240 400 255

GFID0072 Serif 72 49 0 120 240 800 0

GFID0080 Symbol 80 49 2 120 240 400 0

GFID0084 Script 84 49 0 120 240 400 0

GFID0085 Courier 85 49 0 120 240 400 0

GFID0086 Prestige 86 49 0 120 240 400 0

GFID0087 Letter-Goth

ic

87 49 0 120 240 400 0

GFID0091 Light 91 49 0 120 240 400 255

GFID0107 Courier 107 49 0 120 240 400 0

GFID0110 Letter-Goth

ic

110 49 0 120 240 800 0

GFID0111 Prestige 111 49 0 120 240 800 0

GFID0112 Prestige 112 49 0 120 240 400 255

GFID0115 Symbol 115 49 2 120 240 400 0

GFID0155 Boldface 155 18 0 120 240 400 0

GFID0158 Document 158 18 0 120 240 400 0

GFID0159 Boldface 159 18 0 120 240 800 0

GFID0160 Essay 160 34 0 120 240 800 0

GFID0162 Essay 162 34 0 120 240 800 255

GFID0163 Essay 163 34 0 120 240 800 0

GFID0168 Barak 168 18 0 120 240 400 0

GFID0173 Essay 173 34 0 120 240 400 0

GFID0175 Document 175 18 0 120 240 400 0

GFID0176 Boldface 176 18 0 120 240 800 0

GFID0177 Boldface 177 18 0 120 240 800 255

GFID0193 Symbol 193 49 2 120 240 400 0

GFID0198 Symbol 198 49 2 144 240 400 0

Chapter 2. Product Documentation

Table 62. iSeries, eServer i5, or System i5 Font Parameters

(continued)

Entry ID Font Family GFID Pitch &

Family

Character

Set

Width Height Weight Style

GFID0204 Gothic 204 49 0 108 210 400 0

GFID0221 Prestige 221 49 0 96 210 400 0

GFID0222 Gothic 222 49 0 96 210 400 0

GFID0223 Courier 223 49 0 96 210 400 0

GFID0225 Symbol 225 49 2 96 240 400 0

GFID0229 Serif 229 49 0 96 210 400 0

GFID0230 Gothic 230 49 0 96 210 400 0

GFID0245 Courier Bold 245 49 0 288 240 800 0

GFID0252 Courier 252 49 0 84 240 400 0

GFID0253 Courier Bold 253 49 0 84 240 800 0

GFID0254 Courier 254 49 0 84 120 400 0

GFID0280 APL 280 49 0 72 120 400 0

GFID0281 Gothic 281 49 0 72 120 400 0

GFID0290 Gothic 290 49 0 54 120 400 0

GFID0751 Sono

ran-serif

751 18 0 54 162 400 0

GFID1051 Sono

ran-serif

1051 18 0 66 198 400 0

GFID1053 Sono

ran-serif

1053 18 0 66 198 800 0

GFID1056 Sono

ran-serif

1056 18 0 66 198 400 255

GFID1351 Sono

ran-serif

1351 18 0 84 240 400 0

GFID1653 Sono

ran-serif

1653 18 0 108 312 800 0

GFID2103 Sono

ran-serif

2103 18 0 162 480 800 0

Note:

1. Default GFID from host is 011, we use Courier 10 CPI.

2. A print driver will change the font to its default if you ask for a font name that it does not recognize.

Some drivers recognize Gothic, but the DeskJet drivers do not.

457

HCL Z and I Emulator for Windows (ENGLISH)

458

Table 62. iSeries, eServer i5, or System i5 Font Parameters

(continued)

Entry ID Font Family GFID Pitch &

Family

Character

Set

Width Height Weight Style

3. Most print drivers default to Courier New, instead of Courier. So Courier switched to Courier New

works, but Gothic switched to Courier New changes the font family. Preferably, you should explicitly

select Courier New.

4. Special fonts like CourHEB and GRCOUR869 (for Greek) has required them to be added to PCSPD.DAT

to work. Note if the operating system properly or fully supports a language, that font could be the de

fault font instead of Courier New.

Avoiding iSeries System Dump
If you are running OS/400® Version 3 Release 1, and you attempt to perform a Telnet 5250 mode host print operation,

you may experience an iSeries™ system dump under certain conditions. To prevent this from occurring you should

apply PTF SF35327 on OS/400®.

PFT Migration Utility
The PFT migration utility converts the printer function table (PFT) for the PC Support/400 workstation feature to a

printer definition file (PDF) for PC400.

This section describes the operator interface of the PFT migration utility.

For details about PFT, refer to AS/400 PC Support: DOS and OS/2 Technical Reference.

Using the PFT Migration Utility
The file name of the PFT Migration Utility program is PCSPFC.EXE. It is a Windows® application, and you can execute

it by doing the following:

1. Double-click the program name using the Windows® Explorer utility.

2. Specify the program name (and parameters) in the Windows® Run utility as follows:

 PCSPFC [[drive:] [path] PFT-file-name[.extension]]

If no parameter is specified, PCSPFC.EXE displays the Convert PFT to PDF dialog box.

If you omit a drive name and a directory name, PCSPFC.EXE uses the current drive and the current

directory. If you omit an extension, PCSPFC.EXE adds .PFT to the PFT file name.

3. When you execute the PFT Migration Utility, the Convert PFT to PDF dialog box appears. On the Convert PFT

to PDF dialog box, select a PFT file from the list box or type a specific PFT file name, and click OK. The PFT

Migration Utility starts the conversion and displays the PFT File Converter dialog box to show the conversion

status.

Chapter 2. Product Documentation

After the conversion, if you click Save List on the PFT File Converter dialog box, conversion messages in the dialog

box are saved into a list file. The list file is created in the same directory and with the same name as the PFT file,

except the extension. The extension of the list file is .LS2.

If the conversion was completed successfully, you can click Convert PDF to PDT from the PFT File Converter dialog

box to convert the PDF file to a PDT file. You can also create a PDT file by selecting Printer Setup from the File pull-

down menu as explained in Using the Printer Definition Table (PDT) File on page 418.

Migration Considerations
When the base PDF file already exists, the converted PDF fields are appended to the end of the base PDF file. The

name of the base PDF file is decided as follows:

Table 63. PDF File Name

PFT File NameBase PDF File Name

xxxxxxxx.PFT xxxxxxxx.PDF

xxxxx.MNL MNLxxxxx.PDF

zzzxxxxx.MNL* zzzxxxxx.PDF*

: * “zzz” is not “IBM”.

Even if the same fields are already defined in the PDF file, the appended fields are effective because the last definition

is always effective in a PDF file.

If the base PDF file does not exist in the directory, the PFT Migration Utilitycreates a new PDF file that has only the

converted fields from the PFT file. In this case, you should append this file to an appropriate base file manually,

because the fields converted from the PFT file do not cover all of the necessary PDF fields.

Therefore, it is recommended that you prepare both the PFT file and its base PDF file in the same directory before the

conversion.

Details of Migration
This section describes how the PFT Migration Utility migrates the printer function table (PFT) to the printer definition

file (PDF).

Migration from the Printer Function Table
The following table shows the target fields of the PDF for the data in the PFT.

459

HCL Z and I Emulator for Windows (ENGLISH)

460

Table 64. Migration from the Printer Function Table to the Printer Definition File

PDF Field Name

PFT Field Name Description

INITIALIZATION AND RESET

Initialization

START_JOB=Initialization

When the data is defined in the Initialization field of PFT, the data is appended to

the string START_JOB=.

Filename

NoneFilename

This field is ignored.

Reset

END_JOB=Reset

When the data is defined in the Reset field of PFT, the data is appended to the

string END_JOB=.

VERTICAL LINE SPACING

6 lines per inch

SET_6_LINES_PER_INCH=6 lines per inch

When the data is defined in the 6 lines per inch field of PFT, the data is appended

to the string SET_6_LINES_PER_INCH=.

8 lines per inch

SET_8_LINES_PER_INCH=8 lines per inch

When the data is defined in the 8 lines per inch field of PFT,

the data is appended to the string SET_8_LINES_PER_INCH=.

Variable line spacing

SET_VARIABLE_DENSITY=Control Sequence

When the data is defined in the control sequence field of the PFT for the variable

line spacing, the data is appended to the string SET_VARIABLE_DENSITY=. The

parameter n in the control sequence is replaced with the PDF parameter type.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

LINE_SPACING_RATIO=X/Y

When the data is defined in the X/Y field of the PFT for the variable line spacing,

the value Y/X is appended to the string LINE_SPACING_RATIO= as three-digit or

four-digit numbers to indicate the decimal number. For example, when Y/X is 72,

the 072 is appended to the string LINE_SPACING_RATIO= and LINE_SPACING_

RATIO=072 is written to the output file. When the value is greater than 255, the four-

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

digit number is migrated. When the value is less than 255, the three-digit number

is migrated.

Indexing Functions

START_SUPERSCRIPT=Begin Superscript

When the data is defined in the Begin Superscript field and End Superscript field

of the PFT for the indexing functions, the data is appended to the string START_

SUPERSCRIPT=. If the data for the End Superscript is not defined, the data for the

Begin Superscript is ignored.

END_SUPERSCRIPT=End Superscript

When the data is defined in the End Superscript field and Begin Superscript field

of the PFT for the indexing functions, the data is appended to the string END_SU

PERSCRIPT=. If the data for the Begin Superscript is not defined, the data for the

End Superscript is ignored.

START_SUBSCRIPT=Begin Subscript

When the data is defined in the Begin Subscript field and End Subscript field of

the PFT for the indexing functions, the data is appended to the string START_

SUBSCRIPT=. If the data for the End Subscript is not defined, the data for the Be

gin Subscript is ignored.

END_SUBSCRIPT=End Subscript

When the data is defined in the End Subscript field and Begin Subscript field of the

PFT for the indexing functions, the data is appended to the string END_SUBSCRIP

T=. If the data for the Begin Subscript is not defined, the data for the End Sub

script is ignored.

START_SUPERSCRIPT= END_SUBSCRIPT=Reverse 1/2 Index

The data is appended to the START_SUPERSCRIPT= for all of the following condi

tions:

• When the data is not defined in the Begin Superscript field in the PFT or

when the data is not defined in the End Superscript field in the PFT.

• When the data is defined in the Reverse 1/2 index and Forward 1/2 index

field in the PFT.

The data is appended to END_SUBSCRIPT= for all of the following conditions:

461

HCL Z and I Emulator for Windows (ENGLISH)

462

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

• When the data is not defined in the Begin Subscript field in the PFT or

when the data is not defined in the End Subscript field in the PFT.

• When the data is defined in the Reverse 1/2 index and Forward 1/2 index

field in the PFT.

END_SUPERSCRIPT= START_SUBSCRIPT=Forward 1/2 Index

The data is appended to END_SUPERSCRIPT= for all of the following conditions:

• When the data is not defined in Begin Superscript field in the PFT or when

the data is not defined in End Superscript field in the PFT.

• When the data is defined in the Reverse 1/2 index and Forward 1/2 index

field in the PFT.

The data is appended to START_SUBSCRIPT= for all of the following conditions:

• When the data is not defined in the Begin Subscript field in the PFT or

when the data is not defined in the End Subscript field in the PFT.

• When the data is defined in the Reverse 1/2 index and Forward 1/2 index

field in the PFT.

NoneReverse Index

This field is ignored.

HORIZONTAL LINE SPACING

5 pitch

None5 pitch

This field is ignored.

8.55 pitch

None8.55 pitch

This field is ignored.

10 pitch

SET_10_CHARACTERS_PER_INCH=10 pitch

When the data is defined in the 10 pitch field of the PFT for the horizontal char

acter spacing, the data is appended to the string SET_10_CHARACTERS_PER_

INCH=.

12 pitch

SET_12_CHARACTERS_PER_INCH=12 pitch

When the data is defined in the 12 pitch field of the PFT for the horizontal char

acter spacing, the data is appended to the string SET_12_CHARACTERS_PER_

INCH=.

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

15 pitch

SET_15_CHARACTERS_PER_INCH=15 pitch

When the data is defined in the 15 pitch field of the PFT for the horizontal char

acter spacing, the data is appended to the string SET_15_CHARACTERS_PER_

INCH=.

17.1 pitch

SET_17_CHARACTERS_PER_INCH=17.1 pitch

When the data is defined in the 17.1 pitch field of the PFT for the horizontal char

acter spacing, the data is appended to the string SET_17_CHARACTERS_PER_

INCH=.

Horizontal Motion Index

NoneControl Sequence

This field is ignored.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

NoneX/Y

This field is ignored.

HORIZONTAL RELATIVE MOVEMENT

Forward Relative Movement

FORWARD_HORIZONTAL_SKIP=Control Sequence

When the data is defined in the Forward Relative Movement field of PFT, the data

is appended to the string FORWARD_HORIZONTAL_SKIP=. The parameter n in the

control sequence is replaced with the PDF parameter type.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

HORIZONTAL_PEL=X/Y

When the data is defined in the X/Y field of the PFT for the forward relative move

ment, the value Y/X is appended to the string HORIZONTAL_PEL= as three-digit or

four-digit number to indicate the decimal number. For example, when Y/X is 120,

120 is appended to the string HORIZONTAL_PEL= and HORIZONTAL_PEL=120 is writ

ten to the output file. When the value is greater than 255, the four-digit number is

migrated. When the value is less than 255, the three-digit number is migrated.

463

HCL Z and I Emulator for Windows (ENGLISH)

464

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

Backward Relative Movement

NoneControl Sequence

This field is ignored.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

NoneX/Y

This field is ignored.

HIGHLIGHTING

Begin Emphasis

START_HIGHLIGHT_INTENSE=Begin Emphasis

When the data is defined in the Begin Emphasis of PFT, the data is appended to

the string START_HIGHLIGHT_INTENSE=.

End Emphasis

END_HIGHLIGHT_INTENSE=End Emphasis

When the data is defined in the End Emphasis of PFT, the data is appended to the

string END_HIGHLIGHT_INTENSE=.

Begin Underline

START_HIGHLIGHT_UNDERLINE=Begin Underline

When the data is defined in the Begin Underline of PFT, the data is appended to

the string START_HIGHLIGHT_UNDERLINE=.

End Underline

END_HIGHLIGHT_UNDERLINE=End Underline

When the data is defined in the End Underline of PFT, the data is appended to the

string END_HIGHLIGHT_UNDERLINE=.

Begin Quality Print

NoneBegin Quality Print

This field is ignored.

End Quality Print

NoneEnd Quality Print

This field is ignored.

PAPER HANDLING

Bottom Tray Feed

Bottom Tray Feed SELECT_DRAWER2=

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

If the data is defined in some fields for LANDSCAPE PAPER HANDLING, the

PFT Migration Utility assumes that this control sequence includes the control

of the portrait orientation. For this, the PFT Migration Utility divides this control

sequence into two parts and migrates the control sequence for the drawer se

lect and paper feed. The control sequence of the portrait orientation is migrat

ed to SET_PORTRAIT_ORIENT=. If no data is defined in any fields for LANDS

CAPE PAPER HANDLING, the PFT Migration Utility migrates this control sequence

to the SELECT_DRAWER2=. (See Definition of PAPER HANDLING Migration on

page 481.)

Top Tray Feed

SELECT_DRAWER1=Top Tray Feed

If the data is defined in some fields for LANDSCAPE PAPER HANDLING, the

PFT Migration Utility assumes that this control sequence includes the control

of the portrait orientation. For this, the PFT Migration Utility divides this control

sequence into two parts and migrates the control sequence for the drawer se

lect and paper feed. The control sequence of the portrait orientation is migrat

ed to SET_PORTRAIT_ORIENT=. If no data is defined in any fields for LANDS

CAPE PAPER HANDLING, the PFT Migration Utility migrates this control se

quence to SELECT_DRAWER1=. (See Definition of PAPER HANDLING Migration on

page 481.)

Envelope Feed

SELECT_ENVELOPE=Envelope Feed

If the data is defined in some fields for LANDSCAPE PAPER HANDLING, the

PFT Migration Utility assumes that this control sequence includes the control

of the portrait orientation. For this, the PFT Migration Utility divides this control

sequence into two parts and migrates the control sequence for the drawer se

lect and paper feed. The control sequence of the portrait orientation is migrat

ed to SET_PORTRAIT_ORIENT=. If no data is defined in any fields for LANDS

CAPE PAPER HANDLING, the PFT Migration Utility migrates this control se

quence to SELECT_ENVELOPE=. (See Definition of PAPER HANDLING Migration

on page 481.)

Manual Feed

SELECT_DRAWER3=Manual Feed

If the data is defined in some fields for LANDSCAPE PAPER HANDLING, the

PFT Migration Utility assumes that this control sequence includes the control

of the portrait orientation. For this, the PFT Migration Utility divides this control

465

HCL Z and I Emulator for Windows (ENGLISH)

466

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

sequence into two parts and migrates the control sequence for the drawer se

lect and paper feed. The control sequence of the portrait orientation is migrat

ed to SET_PORTRAIT_ORIENT=. If no data is defined in any fields for LANDS

CAPE PAPER HANDLING, the PFT Migration Utility migrates this control se

quence to SELECT_DRAWER3=. (See Definition of PAPER HANDLING Migration on

page 481.)

Continuous Feed

NoneContinuous Feed

This field is ignored.

Ignore Paper End Sensor

NoneIgnore Paper End Sensor

This field is ignored.

Enable Paper End Sensor

NoneEnable Paper End Sensor

This field is ignored.

Eject Automatic Cut Sheet

NoneEject automatic Cut Sheet

This field is ignored.

Eject Manual Cut Sheet

NoneEject Manual Cut Sheet

This field is ignored.

Collate

NoneCollate

This field is ignored.

PAPER POSITIONING

Continuous Forms

NoneDist. from Top Paper Edge

This field is ignored.

NoneDist. from Left Paper Edge

This field is ignored.

NoneLocation of First Print Column

This field is ignored.

Manual Feed

NoneDist. from Top Paper Edge

This field is ignored.

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

NoneDist. from Left Paper Edge

This field is ignored.

NoneLocation of First Print Column

This field is ignored.

Automatic Feed

NoneDist. from Top Paper Edge

This field is ignored.

NoneDist. from Left Paper Edge

This field is ignored.

NoneLocation of First Print Column

This field is ignored.

SET PAGE LENGTH (INCHES)

PAGE_LENGTH_TYPE?=INCH SET_PAGE_LENGTH=Control Sequence

When the data is defined in the control sequence for SET PAGE LENGTH (INCHES)

and if any of the data is not defined in the control sequence for SET PAGE

LENGTH (LINES), this field is migrated.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

NoneX/Y

This field is ignored.

NoneTop Margin Size

This field is ignored.

NoneBottom Margin Size

This field is ignored.

SET PAGE LENGTH (LINES)

PAGE_LENGTH_TYPE?=LINE SET_PAGE_LENGTH=Control Sequence

When the length is defined in the control sequence for SET PAGE LENGTH

(LINES), this field is migrated.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

X/Y None

467

HCL Z and I Emulator for Windows (ENGLISH)

468

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

This field is ignored.

NoneTop Margin Size

This field is ignored.

NoneBottom Margin Size

This field is ignored.

SET LEFT MARGIN (INCHES)

NoneControl Sequence

This field is ignored.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

NoneX/Y

This field is ignored.

SET LEFT MARGIN (COLUMNS)

SET_HORIZONTAL_MARGIN=Control Sequence

When the data is defined in the control sequence field for SET LEFT MARGIN

(COLUMNS), this field is migrated.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

CARRIER RETURN/LINE FEED

Continuous Forms

CARRIAGE_RETURN=Carrier Return (Continuous

Forms) This field is migrated for the following cases:

• Case 1

◦ The data is defined in the Carrier Return field for the Continuous

Forms.

◦ Any of the data in the Carrier Return field is not defined for the

Manual Feed and Automatic Feed.

• Case 2

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

◦ The data is defined in the Carrier Return field for the Continuous

Forms.

◦ The same data is defined in the Carrier Return field for the Manual

Feed.

◦ Any of the data in the Carrier Return field is not defined for the Au

tomatic Feed.

• Case 3

◦ The data is defined in the Carrier Return field for the Continuous

Forms.

◦ The same data is defined in the Carrier Return field for the Auto

matic Feed.

◦ Any of the data in the Carrier Return field is not defined for the

Manual Feed.

• Case 4

◦ The data is defined in the Carrier Return field for the Continuous

Forms.

◦ The same data is defined in the Carrier Return field for the Auto

matic Feed and Manual Feed.

LINE_FEED=Line Feed (Continuous Forms)

This field is migrated for the following cases:

• Case 1

◦ The data is defined in the Line Feed field for the Continuous

Forms.

◦ Any of the data in the Line Feed Line field is not defined for the

Manual Feed and Automatic Feed.

• Case 2

◦ The data is defined in the Line Feed field for the Continuous

Forms.

◦ The same data is defined in the Line Feed field for the Manual

Feed.

◦ Any data is not defined in the Line Feed field for the Automatic

Feed.

• Case 3

469

HCL Z and I Emulator for Windows (ENGLISH)

470

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

◦ The data is defined in the Line Feed field for the Continuous

Forms.

◦ The same data is defined in the Line Feed field for the Automatic

Feed.

◦ Any data is not defined in the Line Feed field for the Manual Feed.

• Case 4

◦ The data is defined in the Line Feed field for the Continuous

Forms.

◦ The same data is defined in the Line Feed field for the Automatic

Feed and Manual Feed.

Manual Feed

CARRIAGE_RETURN=Carrier Return (Manual Feed)

This field is migrated for the following cases:

• Case 1

◦ The data is defined in the Line Feed field for the Manual Feed.

◦ Any of the data in the Line Feed Line field is not defined for the

Continuous Forms and Automatic Feed.

• Case 2

◦ The data is defined in the Line Feed field for the Manual Feed.

◦ The same data is defined in the Line Feed field for the Continuous

Forms.

◦ Any data is not defined in the Line Feed field for the Automatic

Feed.

• Case 3

◦ The data is defined in the Line Feed field for the Manual Feed.

◦ The same data is defined in the Line Feed field for the Automatic

Feed.

◦ Any data is not defined in the Line Feed field for the Continuous

Forms.

• Case 4

◦ The data is defined in the Line Feed field for the Manual Feed.

◦ The same data is defined in the Line Feed field for the Automatic

Feed and Continuous Forms.

LINE_FEED=Line Feed (Manual Feed)

This field is migrated for the following cases:

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

• Case 1

◦ The data is defined in the Line Feed field for the Manual Feed.

◦ Any of the data in the Line Feed Line field is not defined for the

Continuous Forms and Automatic Feed.

• Case 2

◦ The data is defined in the Line Feed field for the Manual Feed.

◦ The same data is defined in the Line Feed field for the Continuous

Forms.

◦ Any data is not defined in the Line Feed field for the Automatic

Feed.

• Case 3

◦ The data is defined in the Line Feed field for the Manual Feed.

◦ The same data is defined in the Line Feed field for the Automatic

Feed.

◦ Any data is not defined in the Line Feed field for the Continuous

Forms.

• Case 4

◦ The data is defined in the Line Feed field for the Manual Feed.

◦ The same data is defined in the Line Feed field for the Automatic

Feed and Continuous Forms.

Automatic Feed

CARRIAGE_RETURN=Carrier Return (Automatic

Feed) This field is migrated for the following cases:

• Case 1

◦ The data is defined in the Carrier Return field for the Automatic

Feed.

◦ Any of the data in the Carrier Return field is not defined for the

Continuous Feed and Manual Feed.

• Case 2

◦ The data is defined in the Carrier Return field for the Automatic

Feed.

◦ The same data is defined in the Carrier Return field for the Continu

ous Forms.

◦ Any of the data in the Carrier Return field is not defined for the

Manual Feed.

• Case 3

471

HCL Z and I Emulator for Windows (ENGLISH)

472

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

◦ The data is defined in the Carrier Return field for the Automatic

Feed.

◦ The same data is defined in the Carrier Return field for the Manual

Feed.

◦ Any of the data in the Carrier Return field is not defined for the

Continuous Forms.

• Case 4

◦ The data is defined in the Carrier Return field for the Automatic

Feed.

◦ The same data is defined in the Carrier Return field for the Manual

Feed and Continuous Forms.

LINE_FEED=Line Feed (Automatic Feed)

This field is migrated for the following cases:

• Case 1

◦ The data is defined in the Line Feed field for the Automatic Feed.

◦ Any of the data in the Line Feed Line field is not defined for the

Continuous Forms and Manual Feed.

• Case 2

◦ The data is defined in the Line Feed field for the Automatic Feed.

◦ The same data is defined in the Line Feed field for the Continuous

Forms.

◦ Any data is not defined in the Line Feed field for the Manual Feed.

• Case 3

◦ The data is defined in the Line Feed field for the Automatic Feed.

◦ The same data is defined in the Line Feed field for the Manual

Feed.

◦ Any data is not defined in the Line Feed field for the Continuous

Forms.

• Case 4

◦ When the data is defined in the Line Feed field for the Automatic

Feed.

◦ The same data is defined in the Line Feed field for the Manual

Feed and Continuous Forms.

MULTIPLE COPIES

Print without Clearing Page from

Top Tray None

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

This field is ignored.

NoneBottom Tray

This field is ignored.

NoneEnvelope Tray

This field is ignored.

NoneManual Tray

This field is ignored.

NoneClear Page Buffer

This field is ignored.

Multiple Copies Variable Control

NoneControl Sequence

This field is ignored.

NoneMaximum

This field is ignored.

NoneOffset

This field is ignored.

LANDSCAPE PAPER HANDLING

Bottom Tray Feed

SET_LANDSCAPELEFT_ORIENT=Bottom Tray Feed

If the data is defined in some fields for LANDSCAPE PAPER HANDLING, the PFT

Migration Utility assumes that this control sequence includes the control se

quence for the landscape orientation. For this, the PFT Migration Utility divides the

control sequence into two parts. The control sequence for the drawer select and

paper feed is ignored because this control sequence is migrated when the data

for PAPER HANDLING is processed. The control sequence for landscape orien

tation is migrated to SET_LANDSCAPE_ORIENT=. (See Definition of PAPER HAN

DLING Migration on page 481.)

Top Tray Feed

SET_LANDSCAPELEFT_ORIENT=Top Tray Feed

If the data is defined in some fields for LANDSCAPE PAPER HANDLING, the PFT

Migration Utility assumes that this control sequence includes the control se

quence for the landscape orientation. For this, the PFT Migration Utility divides the

control sequence into two parts. The control sequence for the drawer select and

paper feed is ignored because this control sequence is migrated when the data

for PAPER HANDLING is processed. The control sequence for landscape orien

473

HCL Z and I Emulator for Windows (ENGLISH)

474

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

tation is migrated to SET_LANDSCAPE_ORIENT=. (See Definition of PAPER HAN

DLING Migration on page 481.)

Envelope Feed

SET_LANDSCAPELEFT_ORIENT=Envelope Feed

If the data is defined in some fields for LANDSCAPE PAPER HANDLING, the PFT

Migration Utility assumes that this control sequence includes the control se

quence for the landscape orientation. For this, the PFT Migration Utility divides the

control sequence into two parts. The control sequence for the drawer select and

paper feed is ignored because this control sequence is migrated when the data

for PAPER HANDLING is processed. The control sequence for landscape orien

tation is migrated to SET_LANDSCAPE_ORIENT=. (See Definition of PAPER HAN

DLING Migration on page 481.)

Manual Feed

SET_LANDSCAPELEFT_ORIENT=Manual Feed

If the data is defined in some fields for LANDSCAPE PAPER HANDLING, the PFT

Migration Utility assumes that this control sequence includes the control se

quence for the landscape orientation. For this, the PFT Migration Utility divides the

control sequence into two parts. The control sequence for the drawer select and

paper feed is ignored because this control sequence is migrated when the data

for PAPER HANDLING is processed. The control sequence for landscape orien

tation is migrated to SET_LANDSCAPE_ORIENT=. (See Definition of PAPER HAN

DLING Migration on page 481.)

TYPESTYLE DEFINITION

Default Typestyle Definition

NonePC Character Set

This field is ignored.

NoneInitial Control Sequence

This field is ignored.

NoneEnding Control Sequence

This field is ignored.

Individual Typestyle Definition

SET_GFID_Typestyle number

This number is appended as a four-digit number after the string SET_GFID_. For

example, when the typestyle number 9 is defined, 0009 is appended after the string

SET_GFID_ and SET_GFID_0009= is migrated. And the numbers supported by

PC400 are migrated. The numbers not supported by PC400 are ignored.

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

NonePC Character Set

This field is ignored.

SET_GFID_xxxx=Initial Control Sequence

This control sequence is appended after the string SET_GFID_xxxx=, where xxxx is

the four-digit number defined in the typestyle number field.

NoneEnding Control Sequence

This field is ignored.

NoneCharacters

This field is ignored.

NoneInitial Control Sequence

This field is ignored.

NoneEnding Control Sequence

This field is ignored.

NoneSymbols

This field is ignored.

NoneInitial Control Sequence

This field is ignored.

NoneEnding Control Sequence

This field is ignored.

Group Typestyle Definition

NoneGroup Identifier

This field is ignored.

NoneGroup Identifier Comment

This field is ignored.

SET_GFID_Typestyle number

This number is appended as a four-digit number after the string SET_GFID_. For

example, when the typestyle numbers 1, 2, 3, and 4 are defined, 0001, 0002, 0003,

and 0004 are appended after the string SET_GFID_ and SET_GFID_0001=, SET_

GFID_0002=, SET_GFID_0003=, and SET_GFID_0004= are migrated because the

PC400 does not have the group typestyle definition. The typestyle numbers that

are not supported by the PC400 are not migrated.

NonePC Character Set

This field is ignored.

Initial Control Sequence SET_GFID_xxxx=

475

HCL Z and I Emulator for Windows (ENGLISH)

476

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

This control sequence is appended after the string SET_GFID_xxxx=, where xxxx is

the four-digit number defined in the typestyle number field.

NoneEnding Control Sequence

This field is ignored.

NoneCharacters

This field is ignored.

NoneInitial Control Sequence

This field is ignored.

NoneEnding Control Sequence

This field is ignored.

NoneSymbols

This field is ignored.

NoneInitial Control Sequence

This field is ignored.

NoneEnding Control Sequence

This field is ignored.

Character Set Number

NoneCharacter Set Number

This field is ignored.

SLOT SELECTION

Slot 1 Sequence

NoneSlot 1 Sequence

This field is ignored.

Slot 2 Sequence

NoneSlot 2 Sequence

This field is ignored.

Slot 3 Sequence

NoneSlot 3 Sequence

This field is ignored.

Stop Sequence

NoneStop Sequence

This field is ignored.

USER DEFINED CONTROL

Parameters of SET ENVELOP SIZE Command

Control Number: 984 None

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

This field is ignored.

NoneControl Sequence

This field is ignored.

NoneControl Sequence File Name

This field is ignored.

ESC Sequence of SET ENVELOP SIZE Command

NoneControl Number: 985

This field is ignored.

NoneControl Sequence

This field is ignored.

NoneControl Sequence File Name

This field is ignored.

Parameters of SET PAGE SIZE Command

NoneControl Number: 986

This field is ignored.

NoneControl Sequence

This field is ignored.

NoneControl Sequence File Name

This field is ignored.

ESC Sequence of SET PAGE SIZE Command

NoneControl Number: 987

This field is ignored.

NoneControl Sequence

This field is ignored.

NoneControl Sequence File Name

This field is ignored.

Printer Data Stream

NoneControl Number: 988

This field is ignored.

SET_FONT_GLOBAL=1B 5B 49 word-value(LH) word-value(HL) word-value(HL)

byte-value word-value(HL)

Control Sequence

When 04 is defined in this field, SET_FONT_GLOBAL=1B 5B 49 … word-value(HL)

is migrated. When the other value is defined, this field is ignored. 04 means IBM®

Personal Printer Data Stream Level 2 or higher. When the migration is done for

477

HCL Z and I Emulator for Windows (ENGLISH)

478

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

PAPER HANDLING, use this information. (See Definition of PAPER HANDLING Mi

gration on page 481.)

NoneControl Sequence File Name

This field is ignored.

Duplex long edge

NoneControl Number: 989

This field is ignored.

SET_DUPLEX=Control Sequence

When the data is defined in the control sequence for the duplex long edge, the da

ta is appended to the string SET_DUPLEX=.

NoneControl Sequence File Name

This field is ignored.

Duplex short edge

NoneControl Number: 990

This field is ignored.

SET_DUPLEX_TUMBLE=Control Sequence

When the data is defined in the control sequence for the duplex short edge, the

data is appended to the string SET_DUPLEX_TUMBLE=.

NoneControl Sequence File Name

This field is ignored.

Simplex

NoneControl Number: 991

This field is ignored.

RESET_DUPLEX=Control Sequence

When the data is defined in the control sequence for the simplex, the data is ap

pended to the string RESET_DUPLEX=.

NoneControl Sequence File Name

This field is ignored.

Jog the output tray

NoneControl Number: 992

This field is ignored.

NoneControl Sequence

This field is ignored.

NoneControl Sequence File Name

This field is ignored.

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

Normal portrait orientation

NoneControl Number: 993

This field is ignored.

SET_PORTRAIT_ORIENT=Control Sequence

When the data is defined in the control field for the normal portrait orientation, the

data is appended to the string SET_PORTRAIT_ORIENT=.

NoneControl Sequence File Name

This field is ignored.

Landscape left

NoneControl Number: 994

This field is ignored.

SET_LANDSCAPELEFT_ORIENT=Control Sequence

When the data is defined in the control field for the landscape left, the data is ap

pended to the string SET_LANDSCAPELEFT_ORIENT=.

NoneControl Sequence File Name

This field is ignored.

Portrait upside down orientation

NoneControl Number: 995

This field is ignored.

SET_PORTRAITUPDWN_ORIENT=Control Sequence

When the data is defined in the control field for the portrait upside down orienta

tion, the data is appended to the string SET_PORTRAITUPDWN_ORIENT=.

NoneControl Sequence File Name

This field is ignored.

Landscape right

NoneControl Number: 996

This field is ignored.

SET_LANDSCAPERGHT_ORIENT=Control Sequence

When the data is defined in the control field for the landscape right, the data is ap

pended to the string SET_LANDSCAPERGHT_ORIENT=.

NoneControl Sequence File Name

This field is ignored.

COR in 10 pitch

NoneControl Number: 997

This field is ignored.

479

HCL Z and I Emulator for Windows (ENGLISH)

480

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

NoneControl Sequence

This field is ignored.

NoneControl Sequence File Name

This field is ignored.

COR in 12 pitch

NoneControl Number: 998

This field is ignored.

NoneControl Sequence

This field is ignored.

NoneControl Sequence File Name

This field is ignored.

COR in 15 pitch

NoneControl Number: 999

This field is ignored.

NoneControl Sequence

This field is ignored.

NoneControl Sequence File Name

This field is ignored.

FUNCTION SELECTION TEST RESPONSES

NoneSuperscript

/Subscript This data is ignored.

NoneUnderline

This data is ignored.

NoneEmphasis (Bold)

This data is ignored.

NoneForm Feed

This data is ignored.

BACKSPACE=Back Space

This field is migrated when you type YES or NO in response to the prompt during

the Backspace Function Selection Test.

NoneMid-line pitch change

This data is ignored.

NoneHorizontal Character spacing

This data is ignored.

First character position None

Chapter 2. Product Documentation

Table 64. Migration from the Printer Function Table to the Printer Definition File

(continued)

PDF Field Name

PFT Field Name Description

This data is ignored.

NonePSM

This data is ignored.

NoneCursor Draw

This data is ignored.

Note: When you migrate IBM3812.PFT and IBM3812.MNL, the following fields are added to IBM3812.PDF:

• FORWARD_VERTICAL_STEP_FEED=1B 5B 43 03 00 E3 word-value(LH)

• VERTICAL_PEL=240

Definition of PAPER HANDLING Migration
The PFT Migration Utility migrates the data for PAPER HANDLING and LANDSCAPE PAPER HANDLING as follows:

1. The PFT Migration Utility checks whether the LANDSCAPE PAPER HANDLING controls are defined.

2. If the LANDSCAPE PAPER HANDLING controls are defined, the PFT Migration Utility assumes that the PAPER

HANDLING control sequences include controls to set the page orientation to portrait. Each LANDSCAPE

PAPER HANDLING control sequence has the controls to set the page orientation to landscape in addition to

the tray select and feed controls.

3. If the LANDSCAPE PAPER HANDLING controls are not defined, the PAPER HANDLING controls do not have

the controls to set the page orientation to portrait. If a personal printer supports normal portrait, landscape

left, portrait upside down, and landscape right orientation, the page orientation controls are defined in the

appropriate user-defined controls.

If the LANDSCAPE PAPER HANDLING controls are not defined
When the PAPER HANDLING controls are not defined, the controls are migrated as follows:

481

HCL Z and I Emulator for Windows (ENGLISH)

482

If the LANDSCAPE PAPER HANDLING controls are defined
When the PAPER HANDLING controls are defined, these controls have the controls to set the page orientation to

portrait. The LANDSCAPE PAPER HANDLING controls have the controls to set the page orientation to landscape. The

PFT Migration Utility migrates the controls as follows:

• CASE 1

Since both of the fields are not defined, no data is migrated.

Example: No data is migrated to SELECT_DRAWER2= under the following conditions. For this example,

SELECT_DRAWER2= is not written in the output file.

◦ No data is defined in the bottom tray select and feed for PAPER HANDLING.

◦ No data is defined in the bottom tray select and feed for LANDSCAPE PAPER HANDLING.

• CASE 2

Since no data is defined in the field for PAPER HANDLING, the PFT Migration Utility cannot compare the data

in the corresponding field with the data for LANDSCAPE PAPER HANDLING. The data for LANDSCAPE PAPER

HANDLING is migrated to the drawer selection field of PDF regardless, including control of the landscape

orientation.

Chapter 2. Product Documentation

Example: The control of the top tray select and feed for LANDSCAPE PAPER HANDLING is migrated to

SELECT_DRAWER1= under the following conditions.

◦ No data is defined in the top tray select and feed for PAPER HANDLING.

◦ The control is defined in the top tray select and feed for LANDSCAPE PAPER HANDLING.

• CASE 3

Since no data is defined in the field for LANDSCAPE PAPER HANDLING, the PFT Migration Utility cannot

compare the data in the corresponding field with the data for PAPER HANDLING. The data for PAPER

HANDLING is migrated to the drawer selection field of PDF regardless, including the control of the portrait

orientation.

Example: The control of the manual select and feed for PAPER HANDLING is migrated to SELECT_DRAWER3=

under the following conditions.

◦ The control is defined in the manual select and feed for PAPER HANDLING.

◦ No data is defined in the top tray select and feed for LANDSCAPE PAPER HANDLING.

• CASE 4

Since the length is different, no data is migrated.

Example: No data is migrated to SELECT_DRAWER2= under the following conditions. For this example,

SELECT_DRAWER2= is not written in the output file.

◦ The data is defined in the bottom tray select and feed for PAPER HANDLING and the length is 8.

◦ The data is defined in the bottom tray select and feed for LANDSCAPE PAPER HANDLING and the

length is 10.

• CASE 5

The PFT Migration Utility compares the data for PAPER HANDLING with the data for LANDSCAPE PAPER

HANDLING as follows:

◦ If a different value is found in the data, search the control backward for the escape character X'1B'.

◦ If the escape character is found in the middle of the control, divide the control into two parts. The

PFT Migration Utility assumes that the first part is the control for the tray select and feed, and the

second part is the control for the page orientation. The PFT Migration Utility migrates the first part of

the PAPER HANDLING control into the tray select and feed, the second part of the PAPER HANDLING

control into the SET_PORTRAIT_ORIENT=, and the second part of the LANDSCAPE PAPER HANDLING

control into SET_LANDSCAPELEFT_ORIENT=.

◦ If the escape character is found at the top of the control and 03 (= HP PCL) is defined in the user-

defined control 988, the PFT Migration Utility assumes that the controls are combined. For this, the

control begins with the escape character and the two shared characters. For this, the PFT Migration

Utility assumes that the last character of the first part is a lowercase letter and converts it to an

uppercase letter to indicate that it is a terminating character.

The PFT Migration Utility divides the controls into the two parts as follows:

483

HCL Z and I Emulator for Windows (ENGLISH)

484

◦ If the escape character is found, but the data stream is not HP PCL, the PFT Migration Utility displays

the error message to indicate that the PFT Migration Utility cannot migrate the data.

◦ If the escape character is not found, the PFT Migration Utility displays the error message to indicate

that the PFT Migration Utility cannot migrate the data.

◦ If a different value is not found, the same control is defined for PAPER HANDLING and LANDSCAPE

PAPER HANDLING.

The PFT Migration Utility migrates the data in the following order:

1. Top Tray Select and Feed

2. Bottom Tray Select and Feed

3. Manual Select and Feed

4. Envelope Tray Select and Feed

The migration stops for the page orientation, SET_PORTRAIT_ORIENT= and SET_LANDSCAPELEFT_ORIENT=, when

the controls for the page orientation are found. For example, the controls for the page orientation are found when

the data is migrated for the Bottom Tray Select and Feed. The PFT Migration Utility does not care about the page

orientation when migrating the data Manual Select and Feed, and Envelop Tray Select and Feed.

Chapter 2. Product Documentation

Troubleshooting
There are a number of self-help information resources and tools to help you troubleshoot problems. When you have

any problem when using the product, you can perform the following tasks:I

• Refer to the release information for your product for known issues, workarounds, and troubleshooting

information.

• Check if a download or fix is available to resolve your problem.

• Search the available knowledge bases to see if the resolution to your problem is already documented.

• If you still need help, contact HCL Software Support and report your problem.

iSeries, eServer i5, or System i5 Configuration Examples
To connect to an iSeries™, eServer™ i5, or System i5™, you need to specify configuration information in the

workstation profile that accurately corresponds to the information specified in the iSeries™, eServer™ i5, or System i5™

(referred to as the device description).

For example, the LAN attachment via IEEE 802.2 in the following figure shows how the configuration information

specified in the workstation profile corresponds to the configuration information in the iSeries™, eServer™ i5, or

System i5™.

485

HCL Z and I Emulator for Windows (ENGLISH)

486

Figure 10. LAN Attachment via IEEE 802.2

iSeries Device Description
To configure 5250 display or printer sessions, the following values must be set in the iSeries™ device description:

Display Session

iSeries Device Description 24 x 80 27 x 132 Printer Session

Device category *DSP *DSP *PRT

Device class *VRT *VRT *VRT

Device type 3197 3477 3812

Device model C1 FC 1

Keyboard language type USB+ USB+ -

Character identify code 697 037+ 697 037+ -
+ For SBCS, depends on the host code page selection.

Chapter 2. Product Documentation

5250 Sessions through One Link
If you want all your 5250 sessions to connect through one link to an iSeries™, eServer™ i5, or System i5™, use the

same PC Location Name and the same Link Parameters for all the sessions.

Tip

Enter DSPNETA from a 5250 session to display iSeries™, eServer™ i5, or System i5™ network attributes.

System i5, iSeries, eServer i5, or System Mode Description
PC400 initially uses mode description QPCSUPP on the iSeries™, eServer™ i5, or System i5™. If the PC Support/400

program or iSeries™ Access is installed on the iSeries™, eServer™ i5, or System i5™, QPCSUPP need not be created. If

mode description QPCSUPP does not exist on the iSeries™, eServer™ i5, or System i5™, create the mode description:

1. Enter the following command on the command line of the main menu of the iSeries™, eServer™ i5, or System

i5™:

 CRTMODD

The Creating Mode Description panel appears.

 Creating Mode Description (CRTMODD)

Type the selected items, and push the Enter key.

Mode Description................. Name
Maximum Session.................. 8 1-512
Maximum number of interaction.... 8 1-512
Number of Local Control Sessions. 4 0-512
Number of Pre-joined Sessions.... 0 0-512
Inbound Pacing Value............. 7 0-63
Outbound Pacing Value............ 7 0-63
Maximum Length of Request Unit... *CALC 241-16384, *CALC
Text Description *BLANK

 End
 F3=Exit F4=Prompt F5=Reshow F10=Add parameter F12= Cancel
 F13=How to use this panel F24=More key

2. Type the necessary values in each field, according to the following table.

Field Name Input Value

Mode description QPCSUPP

Maximum session 64

Maximum number of interactions 64

Number of local control sessions 0

Number of pre-joined sessions 0

Inbound pacing value 7

Outbound pacing value 7

Maximum length of request unit *CALC

487

HCL Z and I Emulator for Windows (ENGLISH)

488

Field Name Input Value

Text description This field is optional

3. After you type all the values, press the Enter key.

This completes the creation of the mode description QPCSUPP.

iSeries, eServer i5, or System i5 Device Description for Asynchronous Attachment
Example
If you want to use an asynchronous dial attachment, the iSeries™, eServer™ i5, or System i5™ requires that you specify

configuration parameters for the controller/line/devices to be used.

The following sample is a typical configuration on the iSeries™, eServer™ i5, or System i5™ for an asynchronous dialed

connection through an ASCII Workstation Controller.

1. Enter the following command on the command line of the iSeries™, eServer™ i5, or System i5™ main menu:

 WRKCFGSTS *CTL CTL03

where CTL03 is the name of your controller.

The Work with Configuration Status panel appears.

 Work with Configuration Status

 Position to _____________ Starting characters

 Type options, press Enter
 1=Vary on 2=Vary off 5=Work with job 8=Work with description
 9-Display mode status ...

 Opt Description Status -------------Job--------------
 8_ CTL03 ACTIVE
 __ ADLCTST VARY ON PENDING
 __ ASYNC VARY ON PENDING
 __ ASYNCD VARY ON PENDING
 __ EZASYNC VARY ON PENDING
 __ ASYNCP0 VARY ON PENDING
 __ ASYNRTR ACTIVE

 BOTTOM
 Parameters or command
 ===>

 F3=Exit F4=Prompt F12=Cancel F23=More options F24=More keys

2. Enter 8 in the Opt field to work with the controller description for CTL03.

The Work with Controller Descriptions panel appears.

Chapter 2. Product Documentation

 Work with Controller Descriptions

 Position to _____________ Starting characters

 Type options, press Enter
 2=Change 3=Copy 4=Delete 5=Display 6=Print 7=Rename
 8=Work with status 9=Retrieve source 12=Print device addresses

 Opt Controller Type Text
 2_ CTL03 6141 CREATED BY AUTO-CONFIGURATION

 BOTTOM
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel
 F14=Work with status

3. Enter 2 in the Opt field to change the controller description for CTL03.

The Change Controller Description panel appears.

 Change Ctl Desc (local WS) (CHGCTLLWS)

 Controller Description : CTL03
 Option : *BASIC
 Category of controller : *LWS

 Controller type : 6141
 Controller model : 1
 Resource name : CTL03
 TDLC line : QTDL429000
 Online at IPL : *YES
 Auto-configuration controller . . : *YES
 Text : CREATED BY AUTO-CONFIGURATION
 Device wait timer : 10

 Press Enter to continue.
 ===>
 BOTTOM
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

4. Type the values in each field, according to the following table.

Field Name Input Value

Controller description CTL03

Resource name CTL03

Online at IPL *YES

Device wait timer 10

Auto-configuration controller *YES

Text description This field is optional

The Work with Controller Descriptions panel appears.

489

HCL Z and I Emulator for Windows (ENGLISH)

490

 Work with Controller Descriptions

 Position to _____________ Starting characters

 Type options, press Enter
 2=Change 3=Copy 4=Delete 5=Display 6=Print 7=Rename
 8=Work with status 9=Retrieve source 12=Print device addresses

 Opt Controller Type Text
 8_ CTL03 6141 Created by auto-configuration

 BOTTOM
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel
 F14=Work with status

5. Enter 8 in the Opt field to work with the configuration status.

The Work with Configuration Status panel appears.

 Work with Configuration Status

 Position to _____________ Starting characters

 Type options, press Enter
 1=Vary on 2=Vary off 5=Work with job 8=Work with description
 9-Display mode status ...

 Opt Description Status -------------Job--------------
 __ CTL03 ACTIVE
 __ ADLCTST VARY ON PENDING
 __ ASYNCPERTH VARY ON PENDING
 __ ASYNCD VARY ON PENDING
 __ EZASYNC VARY ON PENDING
 __ ASYNCP0 VARY ON PENDING
 8_ ASYNRTR ACTIVE

 BOTTOM
 Parameters or command
 ===>

 F3=Exit F4=Prompt F12=Cancel F23=More options F24=More keys

6. Enter 8 in the Opt field next to ASYNRTR to work with the display device description.

The Work with Device Descriptions panel appears.

Chapter 2. Product Documentation

 Work with Device Descriptions

 Position to _____________ Starting characters

 Type options, press Enter
 2=Change 3=Copy 4=Delete 5=Display 6=Print 7=Rename
 8=Work with status 9=Retrieve source

 Opt Controller Type Text
 2_ ASYNRTR 5150 FOR PC400

 BOTTOM
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel
 F14=Work with status

7. Enter 2 in the Opt field to change the device description.

The Change Device Description panel appears.

 Change Device Desc (Display) (CHGDEVDSP)

 Type choices, press Enter.

 Device description > ASYNRTR Name
 Port number 4 0-17, *SAME
 Switch setting 0 0-6, *SAME
 Online at IPL *YES *SAME, *YES, *NO
 Keyboard language type USI *SAME, *SYSVAL, *NONE, AGB...

Character identifier:
 Graphic character set *KBDTYPE 1-32767, *KBDTYPE, *SYSVAL...
 Code page 1-32767
 Allow blinking cursor *YES *SAME, *YES, *NO
 Print device *SYSVAL Name, *SAME, *SYSVAL
 Output queue *DEV Name, *SAME, *DEV
 Library Name, *LIBL, *CURLIB
 Printer file QSYSPRT Name, *SAME
 Library *LIBL Name, *LIBL, *CURLIB
 More...
 Press Enter to continue.
 ===>
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys

This completes the creation of the controller and display device descriptions for an asynchronous dial

attachment.

iSeries, eServer i5, or System i5 VT Asynchronous Attachment Example
The following sample is a typical configuration on the iSeries™, eServer™ i5, or System i5™ for a VT asynchronous

dialed connection through an ASCII Workstation Controller. For more details on iSeries™, eServer™ i5, or System i5™

for VT asynchronous attachments, refer to AS/400 ASCII Workstation Reference.

1. Enter the following command on the command line of the iSeries™, eServer™ i5, or System i5™ main menu:

 CRTDEVDSP

491

HCL Z and I Emulator for Windows (ENGLISH)

492

The Create Device Description panel appears, in a first and second screen, as shown for the configuration of

a VT100 device in the following screens. When filling in the panel, make sure that the name of the attached

controller (arbitrarily shown as CTL05 here) matches the name of the twinaxial controller configured on your

iSeries™, eServer™ i5, or System i5™.

 Create Device Desc (Display) (CRTDEVDSP)

 Type choices, press Enter.

 Device description > VT100 Name
 Device class > *LCL *LCL, *RMT, *VRT, *SNPT
 Device type > V100 3101, 3151, 3161, 3162...
 Device model > *ASCII 0, 1, 2, 4, 5, 12, 23 ...
 Emulated twinaxial device . . . > *TYPE 3196A2, 3197D2, *TYPE
 Port number > 1 0-17
 Emulating ASCII device > *NO *NO, *YES
 Physical attachment > *MODEM *DIRECT, *PTT, *MODEM...
 Online at IPL > *YES *YES, *NO
 Attached controller > CTL05 Name
 Keyboard language type > USB *SYSVAL, AGB, AGI, ALI...
 Inactivity timer > *NOMAX 1-30, *ATTACH, *NOMAX...
 Line speed > 19200 *TYPE, *CALC, 150, 300...
 Word length > 8 *TYPE, *CALC, 7, 8
 Type of parity > *NONE *TYPE, *CALC, *EVEN, *ODD...
 Stop bits > 2 *TYPE, 1, 2
 More...
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys

 Create Device Desc (Display) (CRTDEVDSP)

 Type choices, press Enter.

 Text 'description' > 'dec vt100 device description test'

 Additional Parameters
 Character identifier:
 Graphic character set > *KBDTYPE 1-32767, *SYSVAL, *KBDTYPE
 Code page 1-32767
 Print device > *SYSVAL Name, *SYSVAL
 Output queue > *DEV Name, *DEV
 Library Name, *LIBL, *CURLIB
 Printer file > QSYSPRT Name
 Library > *LIBL Name, *LIBL, *CURLIB

 Bottom
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys

2. For a similar configuration for a VT220:

Use the same command, CRTDEVDSP, on the command line of the iSeries™, eServer™ i5, or System i5™ main

menu. Again, the same kind of panels appear. You must make sure that the name of the attached controller

matches the name of the twinaxial controller configured on your iSeries™, eServer™ i5, or System i5™.

Chapter 2. Product Documentation

 Create Device Desc (Display) (CRTDEVDSP)

Type choices, press Enter.

Device description VT220 Name
Device class > *LCL *LCL, *RMT, *VRT, *SNPT
Device type > V220 3101, 3151, 3161, 3162...
Device model > *ASCII 0, 1, 2, 4, 5, 12, 23
Emulated twinaxial device . . . > *TYPE 3196A2, 3197D2, *TYPE
Port number > 2 0-17
Emulating ASCII device > *NO *NO, *YES
Physical attachment > *MODEM *DIRECT, *PTT, *MODEM...
Online at IPL > *YES *YES, *NO
Attached controller > CTL05 Name
Keyboard language type > USB *SYSVAL, AGB, AGI, ALI...
Inactivity timer > *NOMAX 1-30, *ATTACH, *NOMAX...
Line speed > 19200 *TYPE, *CALC, 150, 300...
Word length > 8 *TYPE, *CALC, 7, 8
Type of parity > *NONE *TYPE, *CALC, *EVEN, *ODD...
Stop bits > 1 *TYPE, 1, 2
 More...
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

 Create Device Desc (Display) (CRTDEVDSP)

 Type choices, press Enter.

 Text 'description' > 'dec vt220 device description test'

 Additional Parameters

 Character identifier:
 Graphic character set > *KBDTYPE 1-32767, *SYSVAL, *KBDTYPE
 Code page 1-32767
 Print device > *SYSVAL Name, *SYSVAL
 Output queue > *DEV Name, *DEV
 Library Name, *LIBL, *CURLIB
 Printer file > QSYSPRT Name
 Library > *LIBL Name, *LIBL, *CURLIB

 Bottom
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys

Alerts
Alerts are generated by components of Z and I Emulator for Windows; corresponding messages are logged in the

message log and can be viewed with the Z and I Emulator for Windows log viewer utility. Refer to the information

about log viewer functions in the User's Reference for the specific emulator type for more information.

Note that some alerts can be caused by different situations. Each situation may generate a different message. Other

alerts are informational and do not generate specific messages in the log, although messages about problems

relating to the situation that generated the alert may be logged.

 Alert ID number Messages logged

APPN

 X'034A6F0B' PCS4066E
 PCS4068E

493

HCL Z and I Emulator for Windows (ENGLISH)

494

 PCS4093E
 X'0DF28A14' PCS4065E
 PCS4066E
 PCS4068E
 PCS4069E
 PCS4070E
 X'170F7710' No specific message
 X'21745F28' No specific message
 X'2313A399' PCS4364A
 PCS4365A
 PCS4379A
 X'32CDF4E2' PCS4073E
 X'47302521' No specific message
 X'6D27D125' PCS4066E
 PCS4068E
 X'7599A7D8' No specific message
 X'769022F0' PCS4504E
 X'9DCD7CCA' PCS4275E
 PCS4280E
 PCS4282E
 PCS4283A
 PCS4284E
 PCS4304E
 PCS4305E
 PCS4310A
 PCS4311E
 PCS4312E
 X'9E452D9C' PCS4593A
 X'A89646AA' PCS4275E
 PCS4280E
 PCS4282E
 PCS4283A
 PCS4284E
 PCS4304E
 PCS4305E
 PCS4310A
 PCS4311E
 PCS4312E
 X'B558D310' PCS4324E
 PCS4342E
 PCS4347E
 X'C781E91E' No specific message
 X'EBAA3C4F' PCS4593A
 X'EBEE390E' PCS4063E
 PCS4064E
 PCS4066E
 PCS4067E
 PCS4068E
 PCS4071A
 PCS4091E
 PCS4092E
 PCS4094E
 PCS4123E
 PCS4124E
 PCS4125E
 X'F52A0C01' PCS4061E
 PCS4062E
 X'FE1C42EB' No specific message

Chapter 2. Product Documentation

LLC2 SAP

 X'016E5F4E' PCS1066A
 PCS1054A
 X'3BA03B6D' PCS1066A
 PCS1005E
 X'55BF3E1C' PCS1066A
 PCS1054A
 X'A676B230' PCS1066A
 PCS1005E
 X'CAF3C58A' PCS1066A
 PCS1054A
 X'D2E24978' PCS1066A
 PCS1005E
 X'D615A61E' PCS1066A
 PCS1054A
 X'EB1D6ABB' PCS1066A
 PCS1005E
 X'EB61E14F' PCS1066A
 PCS1005E

LLC2 Link Station

 X'216D1033' PCS1065A
 PCS1003E
 X'25AC0D84' PCS1065A
 PCS1004E
 X'28EF2B5D' PCS1065A
 PCS1001E
 PCS1004E
 PCS1006E
 X'5B8F5BA7' PCS1065A
 PCS1050A
 X'83D91642' PCS1065A
 PCS1000E
 X'87180BF5' PCS1065A
 PCS1000E
 X'8A5B2D2C' PCS1065A
 PCS1000E
 X'8E9A309B' PCS1065A
 PCS1000E
 X'E65B0B7F' PCS1065A

pDLC

 Alert ID number Messages logged Alert type Alert description

 X'0E499026' PCS8607 01 3300
 X'0F935B3E' PCS8603 01 3300
 X'21C346F0' PCS8619 01 3300
 X'25025B47' PCS8620 01 3300
 X'28417D9E' PCS8617 01 3300
 X'2C806029' PCS8618 01 3300
 X'4227687B' PCS8610 01 3300
 X'6C6E2505' PCS8604 01 8000
 PCS8612
 X'7EA9C871' PCS8608 01 3300
 X'8CEC6B74' PCS8609 01 3300

495

HCL Z and I Emulator for Windows (ENGLISH)

496

 X'AB218ADF' PCS8700 01 3300
 X'BB5C288E' PCS8600 01 3300
 X'C16E9922' PCS8615 01 3300
 X'C5AF8495' PCS8616 01 3300
 X'C8ECA24C' PCS8613 01 3300
 X'CC2DBFFB' PCS8614 01 3300
 X'D3F9C6D8' PCS8611 01 3300
 X'EBB67B65' PCS8606 01 3300

Notices
This information was developed for products and services offered in the United States. HCL may not offer the

products, services, or features discussed in this information in other countries. Consult your local HCL representative

for information on the products and services currently available in your area. Any reference to an HCL product,

program, or service is not intended to state or imply that only that HCL product, program, or service may be used.

Any functionally equivalent product, program or service that does not infringe any HCL intellectual property right may

be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-HCL product,

program, or service.

HCL may have patents or pending patent applications covering subject matter described in this information. The

furnishing of this information does not give you any license to these patents. You can send license inquiries, in

writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you..

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the information. HCL may make

improvements and/or changes in the product(s) and/or program(s) described in this information at any time without

notice.

Any references in this information to non-HCL documentation or non-HCL Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those documents or Web sites. The materials for those

documents or Web sites are not part of the materials for this HCL product and use of those documents or Web sites

is at your own risk.

HCL may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Chapter 2. Product Documentation

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this information and all licensed material available for it are provided by HCL

under terms of the HCL Customer Agreement, HCL International Programming License Agreement, or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.licensing agreement

Information concerning non-HCL products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions on the

capabilities of non-HCL products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

Trademarks
HCL, the HCL logo, and hcl.com are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other companies.

497

Index
Numerics
01, Connect Presentation Space 546
02, Disconnect Presentation Space 581
03, Send Key 593, 634, 660, 668
04, Wait 667
05, Copy Presentation Space 564
06, Search Presentation Space 631, 668
07, Query Cursor Location 607
08, Copy Presentation Space to String 569
09, Set Session Parameters 643
10, Query Sessions 614
101, Connect Window Services 547
Connect Window Services (101) 547
102, Disconnect Window Service 582
103, Query Window Coordinates 618
104, Window Status 668
105, Change Switch List LT Name 542
106, Change PS Window Name 541
11, Reserve 627
110, Start Playing Macro 663
12, Release 626, 627
13, Copy OIA 555
14, Query Field Attribute 608
15, Copy String to Presentation Space 575
16/32 bit considerations 530
18, Pause 600, 666
20, Query System 616
21, Reset System 627, 628, 643
22, Query Session Status 612
23, Start Host Notification 600, 611, 657
24, Query Host Update 601, 611, 666
25, Stop Host Notification 665
30, Search Field 629, 668
31, Find Field Position 552, 587
32-Bit ODBC Administrator 114
32-bit presentation space IDs 518
32, Find Field Length 552, 585
3270 data stream (printing) 413
33, Copy String to Field 573
34, Copy Field to String 551
35, Copy Presentation Space to
Clipboard 576
36, Paste Clipboard to Presentation
Space 578
40, Set Cursor 642
41, Start Close Intercept 653
42, Query Close Intercept 604
43, Stop Close Intercept 664
45, Query Additional Field Attribute 603
50, Start Keystroke Intercept 660
51, Get Key 589, 602, 660
52, Post Intercept Status 601, 660
5250
automatic device name generation 383
53, Stop Keystroke Intercept 666
61, Lock PMSVC API 598
90, Send File 632
91, Receive File 624
99, Convert Position or Convert RowCol 548

A
adapters
attachments 45
administrative installation
install from network server 150
install to run from network server 151
InstallShield command-line parameters 155
overview and procedure 150
alerts 373

Allocate Communications Buffer (123) 539
applet 96
Application Data
file types 43
locations 43
ASCII emulator 42
ASCII Host File Transfer 355
Changing a List of Files 360
Add More File Names to List 360
Change the personal computer or Host File
Name 360
Delete File Names From List 360
Defining Transfer Types 357
Explanation of Items to Be Defined 358
Example of ASCII Protocol Template 359
Templates Defined 359
File Transfer Templates 358
Automatic Generation of File-Names 359
Defining Templates 358
Receiving Files From an ASCII Host 361
Receiving Files to a Workstation Directory 361
Saving the List of Files
File-Name Extension for List Files 359
Open List File 360
Remove From List 360
Save List File 360
Selecting Files to Receive 361
Selecting Files to Send 362
Advanced Method 362
Basic Methods 362
Select From a Send/Receive List 362
Send File to Host 362
Changing the Host-File Name or the Transfer-
Type 363
Saving a List of Files to Send 363
Sending a List of Files 363
Using XMODEM and YMODEM 355
Choosing a Protocol 355
XMODEM and XMODEM1K 356
YMODEM and YMODEMG 356
ASCII Mnemonics
general 526
get key (51) function 527
send key (3) function 528
ASCII text files 310
Assist Functions
hotspots 90
keyboard 90
Keyboard Setup 91
macro 90
macro/script 93
script 90
setup 90
asynchronous attachment
eServer i5 device description 488
iSeries device description 488
System i5 device description 488
Asynchronous Functions, WinHLLAPI 678
ATTRB 646
attribute bytes 551, 551, 564, 569,
573, 576, 646
autECLConnList
class description 987
methods
Collection Element Methods 991
FindConnectionByHandle 991
FindConnectionByName 992
Refresh 991
StartCommunication 993
StopCommunication 993

properties
APIEnabled 990
CodePage 989
CommStarted 989
ConnType 988
Count 987
Handle 988
Name 988
overview 987
Ready 990
Started 989
autECLConnMgr
class description 994
events
event processing example 1000
NotifyStartError 999
NotifyStartEvent 998
NotifyStartStop 999
overview 998
methods
RegisterStartEvent 995
StartConnection 996
StopConnection 997
UnRegisterStartEvent 995
properties, autECLConnList 995
autECLFieldList
class description 1000
methods
Collection Element Methods 1006
FindFieldByRowCol 1007
FindFieldByText 1008
GetText 1009
overview 1006
Refresh 1007
SetText 1010
properties
Count 1001
Display 1006
EndCol 1003
EndRow 1002
HighIntensity 1005
Length 1003
Modified 1004
Numeric 1005
overview 1001
PenDetectable 1005
Protected 1004
StartCol 1002
StartRow 1002
autECLOIA
class description 1011
events
event processing example 1028
NotifyCommError 1027
NotifyCommEvent 1027
NotifyCommStop 1028
overview 1027
methods
CancelWaits 1026
overview 1019
RegisterCommEvent 1020
SetConnectionByHandle 1021
SetConnectionByName 1021
StartCommunication 1022
StopCommunication 1023
UnregisterCommEvent 1020
WaitForAppAvailable 1025
WaitForInputReady 1024
WaitForSystemAvailable 1024
WaitForTransition 1026

498

properties
Alphanumeric 1012
APIEnabled 1018
APL 1012
CapsLock 1014
CodePage 1017
CommErrorReminder 1015
CommStarted 1018
ConnType 1017
Handle 1016
Hiragana 1013
InputInhibited 1015
InsertMode 1014
Katakana 1013
MessageWaiting 1015
Name 1016
Numeric 1014
NumLock 1019
overview 1011
Ready 1019
Started 1017
UpperShift 1013
autECLPageSettings
class description 1126
methods 1135
RestoreTextDefaults 1135
SetConnectionByHandle 1136
SetConnectionByName 1136
properties 1127
APIEnabled 1134
CodePage 1132
CommStarted 1133
ConnType 1132
CPI 1128
FaceName 1130
FontCPI 1128
FontLPI 1129
Handle 1131
LPI 1129
MaxCharsPerLine 1131
MaxLinesPerPage 1130
Name 1131
Ready 1134
Started 1133
autECLPrinterSettings
class description 1137
methods 1146
SetConnectionByHandle 1153
SetConnectionByName 1152
SetPDTMode 1147
SetPrtToDskAppend 1148
SetPrtToDskSeparate 1149
SetSpecificPrinter 1150
SetWinDefaultPrinter 1151
properties 1138
APIEnabled 1145
CodePage 1144
CommStarted 1145
ConnType 1143
Handle 1143
Name 1143
PDTFile 1139
PDTMode 1139
Printer 1140
PrintMode 1140
PromptDialogOption 1142
PrtToDskAppendFile 1141
PrtToDskSeparateFile 1142
Ready 1146
Started 1144
autECLPS
class description 1029
events

event processing example 1067
NotifyCommError 1066
NotifyCommEvent 1065
NotifyCommStop 1067
NotifyKeyError 1065
NotifyKeysEvent 1064
NotifyKeyStop 1066
NotifyPsError 1065
NotifyPSEvent 1063
NotifyPSStop 1066
overview 1063
methods
CopyText 1044
GetText 1043
GetTextRect 1046
overview 1034
PasteText 1045
RegisterCommEvent 1036
RegisterKeyEvent 1036
RegisterPSEvent 1036
SearchText 1041
SendKeys 1041
SetConnectionByHandle 1039
SetConnectionByName 1038
SetCursorPos 1040
SetText 1044
StarMacro 1050
StartCommunication 1048
StopCommunication 1049
UnregisterCommEvent 1038
UnregisterKeyEvent 1037
UnregisterPSEvent 1037
properties
APIEnabled 1033
autECLFieldList 1030
CodePage 1032
CommStarted 1033
ConnType 1032
CursorPosCol 1031
CursorPosRow 1031
Handle 1032
Name 1031
NumCols 1030
NumRows 1030
overview 1029
Ready 1034
Started 1033
wait functions
CancelWaits 1063
Wait 1050
WaitForAttrib 1058
WaitForCursor 1051
WaitForScreen 1061
WaitForString 1053
WaitForStringInRect 1055
WaitWhileAttrib 1059
WaitWhileCursor 1052
WaitWhileScreen 1062
WaitWhileString 1054
WaitWhileStringInRect 1056
autECLScreenDesc
class description 1069
methods
AddAttrib 1069
AddCursorPos 1070
AddNumFields 1071
AddNumInputFields 1072
AddOIAInhibitStatus 1073
AddString 1074
AddStringInRect 1075
Clear 1076
overview 1069
autECLScreenReco

class description 1077
events
event processing example 1082
NotifyRecoError 1081
NotifyRecoEvent 1080
NotifyRecoStop 1081
overview 1080
methods
AddPS 1077
IsMatch 1078
overview 1077
RegisterScreen 1079
RemovePS 1079
UnreigsterScreen 1080
autECLSession
class description 1083
events
event processing example 1095
NotifyCommError 1095
NotifyCommEvent 1094
NotifyCommStop 1095
overview 1094
methods
overview 1089
RegisterCommEvent 1090
RegisterSessionEvent 1089
SetConnectionByHandle 1092
SetConnectionByName 1091
StartCommunication 1093
StopCommunication 1093
UnregisterCommEvent 1091
UnregisterSessionEvent 1090
properties
APIEnabled 1086
autECLOIA object 1087
autECLPageSettings object 1088
autECLPrinterSettings object 1088
autECLPS object 1087
autECLWinMetrics object 1088
autECLXfer object 1087
CodePage 1085
CommStarted 1086
ConnType 1084
Handle 1084
Name 1084
overview 1083
Ready 1086
Started 1085
autECLWinMetrics
class description 1096
events
event processing example 1111
NotifyCommError 1111
NotifyCommEvent 1110
NotifyCommStop 1111
overview 1110
methods
GetWindowRect 1107, 1107
overview 1105
RegisterCommEvent 1105
SetConnectionByHandle 1107, 1107
SetConnectionByName 1106, 1106
SetWindowRect 1108, 1108
StartCommunication 1109
StopCommunication 1109
UnregisterCommEvent 1105
properties
Active 1100
APIEnabled 1104
CodePage 1103
CommStarted 1103
ConnType 1102
Handle 1102

499

Height 1099
Maximized 1101
Minimized 1100
Name 1101
overview 1097
Ready 1104
Restored 1101
Started 1103
Visible 1099
Width 1098
WindowTitle 1097
Xpos 1098
Ypos 1098
autECLXfer
class description 1112
events
event processing example 1124
NotifyCommError 1123
NotifyCommEvent 1122
NotifyCommStop 1123
overview 1122
methods
overview 1116
ReceiveFile 1120
RegisterCommEvent 1116
SendFile 1118
SetConnectionByHandle 1118
SetConnectionByName 1117
StartCommunication 1121
StopCommunication 1122
UnregisterCommEvent 1117
properties
APIEnabled 1115
CodePage 1114
CommStarted 1114
ConnType 1113
Handle 1113
Name 1113
overview 1112
Ready 1115
Started 1114
automatically starting sessions 64
automation 533
AUTORESET 648
autostart
applet 96
macro 95
autSystem
class description 1124
methods
overview 1124
Shell 1124

B
BASIC random files 313
BASIC sequential files 315
batch file
editing 63
h option 61
i option 61
q option 61
s option 61
using 60
v option 61
beep 602
BETWEEN test 277
BIFF files 321
BLANK 650
Blocking Routines 688
Building C++ ECL Programs
description 748
Microsoft Visual C++ 749

C

call (input) parameters
general 536
calls, prerequisite 536
Cancel File Transfer (92) 540
Certificate Express Logon
configuring 406
preparing to configure 405
problem determination 407
using 405
Change PS Window Name (106) 541
Change Switch List LT Name (105) 542
changing
configuration files 49
workstation profiles 49
changing the packet size 196
character, escape 527, 591, 635, 648
characters, ASCII 526
Citrix 402
CMP 87
Collect Screen
Print Collection on Exit 73, 176
Purge Collection 73, 176
color mapping 85
customization 87
default color mapping 88
enable/disable color mapping 87
migration 89
ColorPlane 1162
command-line parameters
administrative installation 155
advertise mode 155
InstallShield, setup.exe 153
language setup 155
passing to MSI package 154
repair mode 156
silent installation 154
uninstall mode 155
Windows Installer service 149
commands
MVS/TSO receive 230
MVS/TSO send 225
communication services functions
Receive File (91) 624
Send File (90) 632
compiler, printer table
description of 410
explanation 418
printer color mixing 412
printer definition file format 436
compiling and linking 517, 517
conditions, specifying WHERE 273
configuration
advanced configuration 379
changing 49
workstation profiles 49
eServer i5 examples 485
iSeries examples 485
saving 48
workstation profiles 48
System i5 examples 485
Connect for Structured Fields (120) 544
Connect Presentation Space (1)
functions where not required 547
general 546
interaction with disconnect 519
Connect Window Services (101) 547
Connections
ASCII emulator 42
icons 40
iSeries emulator 41
zSeries emulator 41
Convert Macro 116

Convert Position or Convert RowCol
(99) 548
Copy Field to String (34) 533, 551
copy functions
Copy Field to String (34) 551
Copy OIA (13) 555
Copy Presentation Space (5) 564
Copy Presentation Space to String (8) 569
Copy String to Field (33) 573
Copy String to Presentation Space (15) 575
Copy OIA (13) 532, 555
Copy Presentation Space (5) 564
Copy Presentation Space to Clipboard
(35) 576
Copy Presentation Space to String (8) 532,
569
Copy String to Field (33) 533, 573
Copy String to Presentation Space (15) 575
copying
data in cells as text data 83
lines containing only operational signs 82
marked data 82
Copying
table data to spreadsheet 82
creating a transfer request
receiving data from the host 264
critical sections 510
cursor color 193
cursor movement 532
customization
initialization file processing 149
transform files 149
customizing a display translation table 194
Cut/Copy
Copy signed numeric fields 80
Force Leading +/- 80
Only if a trim rectangle is marked 80

D
data conversions 305
data types 306
ASCII numeric 309
binary 307
character 308
double-precision 307
hexadecimal 308
integer 307
packed decimal 308
single-precision 307
zoned decimal 309
record size 305
workstation file types 310
data description specifications (DDS) 297, 315
data interchange format files (DIF) 318
data stream support, printer
3270 413
data structures 514
data transfer 205, 337
default library 338
default partitioned data set 213
default PC directory 213, 337
general options 212, 337
host command 213, 337
host type 213
packet size 214
PC code page 213, 338
VM disk 213
Data Transfer
icon 39
types of 117
Data Transfer for PC400
Data Conversions 305

500

Examples of Transfer Requests for
Receiving 285
File-Description Files 296
iSeries System-to-Personal Computer
Performance Considerations 330
Limited Usage of File Names and Field
Names 284
Menu Functions Available 291
data transfer function 246
Data Transfer utility 116
data types 306
ASCII numeric 309
binary 307
character 308
double-precision 307
hexadecimal 308
integer 307
packed decimal 308
single-precision 307
zoned decimal 309
database file 254
DDE/EHLLAPI 81
DDM
transfer function 253
DDM (distributed data management) 247
DDS (data description specifications) 297, 315
debugging 528
default (DFT) keyword 315
default key functions 185
combined package 188
PC/3270 package 183
default library 338
delimiting print jobs 414
desktop 59
device services functions
Get Key (51) 589
Post Intercept Status (52) 601
Release (12) 626
Reserve (11) 627
Start Keystroke Intercept (50) 660
Stop Keystroke Intercept (53) 666
DFT (default) keyword 315
directory, default
Receive File 626
Disconnect from Structured Fields
(121) 580
Disconnect Presentation Space (2)
general 581
interaction with connect 519
Disconnect Window Service (102) 582
distributed data management
file concept 253
distributed data management (DDM) 247
DOS random files 324
DOS random type-2 files 326
drawing-buffer size 202
dynamic link method 517

E
EAB 649
ECL Concepts
Addressing 741
Connections, Handles and Names 738
ECL Container Objects 739
ECL List Objects 739
Error Handling 740
Events 740
Sessions 739
ECL Planes 1159
ECLBase
class description 749
methods
ConvertHandle2ShortName 750

ConvertPos 753
ConvertShortName2Handle 751
ConvertTypeToString 752
GetVersion 750
overview 750
ECLCommNotify
class description 784
derivation 785
methods
NotifyError 788
NotifyEvent 788
NotifyStop 789
overview 788
ECLConnection
class description 754
derivation 755
methods
ECLConnection Constructor 755
ECLConnection Destructor 756
GetCodePage 757
GetConnType 759
GetEncryptionLevel 761
GetHandle 758
GetName 760
IsAPIEnabled 765
IsCommStarted 764
IsReady 765
IsStarted 763
overview 755
RegisterCommEvent 768
StartCommunication 766
StopCommunication 767
UnregisterCommEvent 769
ECLConnList
class description 769
derivation 770
methods
ECLConnList Constructor 770
ECLConnList Destructor 771
FindConnection 774
GetCount 775
GetFirstConnection 772
GetNextConnection 773
overview 770
Refresh 776
ECLConnMgr
class description 777
derivation 777
methods
ECLConnMgr Constructor 778
ECLConnMgr Deconstructor 779
GetConnList 779
overview 777
RegisterStartEvent 783
StartConnection 780
StopConnection 782
UnregisterStartEvent 784
ECLErr
class description 789
derivation 790
methods
GetMsgNumber 790
GetMsgText 792
GetReasonCode 791
overview 790
ECLField
class description 793
derivation 793
methods
GetAttribute 809
GetEnd 800
GetEndCol 802
GetEndRow 801

GetLength 803
GetScreen 804
GetStart 796
GetStartCol 798
GetStartRow 797
IsDisplay 807
IsHighIntensity 807
IsModified 807
IsNumeric 807
IsPenDetectable 807
IsProtected 807
overview 795
SetText 806
ECLFieldList
class description 810
derivation 811
methods
FindField 816
GetFieldCount 812
GetFirstField 813
GetNextField 814
overview 811
Refresh 811
properties 811
ECLKeyNotify
class description 818
derivation 819
methods
NotifyError 822
NotifyEvent 821
NotifyStop 823
overview 821
ECLListener
class description 823
derivation 823
ECLOIA
class description 823
derivation 824
methods
ECLOIA Constructor 824
GetStatusFlags 835
InputInhibited 834
IsAlphanumeric 826
IsAPL 826
IsCapsLock 829
IsCommErrorReminder 830
IsInsertMode 829
IsMessageWaiting 831
IsNumeric 828
IsUpperShift 827
overview 824
RegisterOIAEvent 836
UnregiterOIAEvent 836
wait functions
WaitForAppAvailable 833
WaitForInputReady 832
WaitForSystemAvailable 832
WaitForTransition 833
ECLOIANotify
class description 837
derivation 837
methods
NotifyError 838
NotifyEvent 838
NotifyStop 839
overview 838
ECLPageSettings
class description 956
derivation 957
methods 958
ECLPageSettings Constructor 958
GetCPI 960
GetFontFaceName 964

501

GetLPI 962
GetMaxCharsPerLine 967
GetMaxLinesPerPage 966
IsFontCPI 961
IsFontLPI 963
RestoreDefaults 968
SetCPI 959
SetFontFaceName 964
SetFontSize 965
SetLPI 962
SetMaxCharsPerLine 967
SetMaxLinesPerPage 966
properties 957
usage notes 957
ECLPrinterSettings
class description 969
derivation 969
methods 970
ECLPrinterSettings Constructor 970
GetPDTFile 973
GetPrinterName 981
GetPrintMode 975
GetPrtToDskAppendFile 977
GetPrtToDskSeparateFile 979
IsPDTMode 974
IsPromptDialogEnabled 983
SetPDTMode 971
SetPromptDialog 983
SetPrtToDskAppend 976
SetPrtToDskSeparate 978
SetSpecificPrinter 980
SetWinDefaultPrinter 981
properties 969
usage notes 969
ECLPS
class description 840
derivation 840
methods
ConvertPosToCol 868
ConvertPosToRow 867
ConvertPosToRowCol 864
ConvertRowColToPos 865
CopyText 862
ECLPS Constructor 843
ECLPS Destructor 844
GetCursorPos 848
GetCursorPosCol 850
GetCursorPosRow 850
GetFieldList 871
GetHostCodePage 845
GetOSCodePage 845
GetPCCodePage 844
GetScreen 856
GetScreenRect 858
GetSize 846
GetSizeCols 848
GetSizeRows 847
overview 840
PasteText 863
RegisterKeyEvent 869
RegisterPSEvent 883
SearchText 854
SendKeys 852
SetCursorPos 851
SetText 860
StartMacro 884
UnregisterKeyEvent 870
UnregisterPSEvent 884
properties 840
ECLPSEvent
class description 885
derivation 886
methods

GetEnd 888
GetEndCol 889
GetEndRow 889
GetPS 886
GetStart 887
GetStartCol 889
GetStartRow 888
GetType 887
overview 886
ECLPSListener
class description 890
derivation 890
methods
NotifyError 892
NotifyEvent 891
NotifyStop 892
overview 891
ECLPSNotify
class description 893
derivation 893
methods
NotifyError 895
NotifyEvent 894
NotifyStop 895
overview 894
ECLRecoNotify
class description 896
derivation 896
methods
ECLNotify Deconstructor 897
ECLRecoNotify Constructor 897
NotifyError 899
NotifyEvent 897
NotifyStop 898
overview 896
ECLScreenDesc
class description 899
derivation 899
methods
AddAttrib 901
AddCursorPos 902
AddNumFields 903
AddNumInputFields 904
AddOIAInhibitStatus 905
AddString 905
AddStringInRect 906
Clear 908
ECLScreenDesc Constructor 900
ECLScreenDesc Destructor 901
overview 900
ECLScreenReco Class 908
ECLSession
class description 914
derivation 914
methods
ECLSession Constructor 915
ECLSession Destructor 916
GetOIA 917
GetPageSettings 920
GetPrinterSettings 921
GetPS 916
GetWinMetrics 919
GetXfer 918
overview 914
RegisterUpdateEvent 922
UnregisterUpdateEvent 922
ECLStartNotify
class description 922
derivation 923
methods
NotifyError 926
NotifyEvent 925
NotifyStop 926

overview 925
ECLUpdateNotify
class description 927
ECLWinMetrics
class description 927
derivation 927
methods
Active 944
ECLWinMetrics Constructor 928
ECLWinMetrics Destructor 929
GetHeight 938
GetWidth 936
GetWindowRect 940
GetWindowTitle 930
GetXpos 932
GetYpos 934
IsMaximized 947
IsMinimized 946
IsRestored 949
IsVisible 943
overview 928
SetActive 945
SetHeight 939
SetMaximized 948
SetMinimized 946
SetRestored 950
SetVisible 943
SetWidth 937
SetWindowRect 941
SetWindowTitle 931
SetXpos 933
SetYpos 935
ECLXfer
class description 950
derivation 950
methods
ECLXfer Constructor 951
ECLXfer Destructor 952
overview 951
ReceiveFile 955
SendFile 953
Edit keys
intercepting 583
edit-copy buffer 203
Editing
Copy Link 81
functions 77
linking to Windows application programs 81
options
Cut/Copy 78
Paste 78
Paste Link 81
EditKey Intercept 583
EHLLAPI
functions 536
summary 537
EHLLAPI call format 513
EHLLAPI Overviews
IBM Enhanced EHLLAPI vs. IBM Standard
EHLLAPI 513
IBM Standard EHLLAPI 512
WinHLLAPI 513
WinHLLAPI vs. IBM Standard EHLLAPI 513
EHLLAPI programming overview 512
EHLLAPI return codes 515
ELLHAPI, migrating from
Events 744
Execution/Language Interface 742
Features 742
Presentation Space Models 744
PS Connect/Disconnect, Multithreading 745
SendKey Interface 744
Session IDs 743

502

enabling
DDE/EHLLAPI 81
EOT 645
errors caused by insufficient memory 201
ESC 648
escape character 527, 591, 635, 648
eServer i5
5250 sessions through one link 486
configuration examples 485
device description 488
system mode description 487
existing batch file 63
explaining a file-description file 297
Express Logon Feature
macro 98
extended attribute support 196
ExtendedFieldPlane 1164
extension for list-files 357

F
feature installation options 143
feature selection 141
field-formatted PS 552, 629
field-related functions
Copy Field to String (34) 551
Copy String to Field (33) 573
Find Field Length (32) 585
Find Field Position (31) 587
Query Additional Field Attribute (45) 603
Query Field Attribute (14) 608
Search Field (30) 629
FieldPlane 1159
fields, host
input protected 634
numeric only 634
file
database 254
iSeries 254
joining 254
logical 254
physical 254
file transfer 205, 331, 533
Clear command 214
code translation 244
commands, PC/3270 216
CRLF option 340
default library 338
default partitioned data set 213
default PC directory 213, 337
DOS commands 217
DSPMBRLST command 341
general options 212, 337
host command 213, 337
host type 213
import/export 216
IND$FILE 217
list files 207, 333
list-files 214, 338
logical record length (LRECL) 211, 336
managing templates 208, 334
MVS/TSO 225, 230
packet size 214
PC code page 213, 338
physical file 340
physical source file 340
receiving files from the host system 206, 332
record format 211
restrictions 341
sending files to the host system 205, 332
status window 214, 338
timeout 214, 338
transfer types 209, 336
translation table 215, 339

TSO allocation parameter (MVS/TSO) 212
VM disk 213
file transfer functions
Receive File (91) 624
Send File (90) 632
File Transfer, ASCII Host 355
file transfer, PC400 340
file-description file 253, 296
file-description file entries 296
comment lines 305
example 305
format 297
PCFDF 298
PCFL 300
PCFO 298
PCFT 298
file-transfer timeout 357
files
configuration 379
template 380
update 380
Files
transfer 83
ASCII host data transfer 85
Find Field Length (32) 552, 585
Find Field Position (31) 552, 587
fonts 86
FPAUSE 646
Free Communications Buffer (124) 588
function calls
call (input) parameters 536
notes on using the function 537
page layout conventions 536
prerequisite calls 536
return (output) parameters 537
use of 536

G
Get Key (51) 526, 589, 602, 660
Get Request Completion (125) 593
graphic protocol
advanced protocol 200
native protocol 200
graphics protocols 199

H
Hints and Tips
Usage Notes for Sessions in OLE
Documents 166
hole in screen caused by clearing a graphic
character 204
host automation scenarios 531
host command 213, 337
host fields
input protected 634
numeric only 634
host type 213
host-connected presentation space 519
host-directed print 413
Hotspots 90

I
i option 61
IBM Support Center 616
icons
information bundler 38
log viewer 38
migration utility 38
start or configure sessions 37
start or configure sessions online 38
trace facility 38
import/export 196
IN test 277
IND$FILE 217

Information Bundler 166, 378
information bundler, icon 38
Information, Where to Find More
Alerts, Messages and 372
Messages and Alerts 372
initialization file processing
general 149
silent installation 149
Initialization/Termination Functions 686
input protected fields 634
installation
administrative installation
InstallShield command-line parameters 155
overview and procedure 150
custom 140
customization 149
feature installation options 143
feature selection 141
initialization file processing 149
install from network server 150
install to run from network server 151
maintenance installation
modify 151
remove 151
repair 151
remote
using SMS 152
using Tivoli 152
silent 143
typical 137
Installation
hardware requirements 42, 43
installation, remote
using SMS 152
using Tivoli 152
introduction to EHLLAPI programming 512
introduction to Emulator APIs
Emulator High Level Language API
(EHLLAPI) 509
Z and I Emulator for Windows Session API
(PCSAPI) 510
IPAUSE 646
IS test 278
iSeries
5250 sessions through one link 486
configuration examples 485
device description 488
system mode description 487
iSeries emulator 41
iSeries files 253
ISNOT test 278

J
Java applet 96
Java, Host Access Class Library 1155

K
key functions
assignments 183, 189
default 183, 189
Win32 edit hotkeys 192
keyboard
file 191
functions 185
Keyboard
functions 90
keyboard enhancement 535
keyboard mnemonics
general 525
tables 636
Keyboard Setup 91
keyboard file 92
modifying layout 92
keyboard, session 525

503

keystroke filtering 534
keystroke interception, Get Key (51) 590
keywords 1156

L
language, specifying
using command-line parameters 155
languages 513
library 254
licensing agreement 130, 157, 368, 497,
735, 1167
LIKE test 276
Linking
description 517
Dynamic Link Method 517
Lock Presentation Space API (60) 596
Lock Window Services API (61) 598
locking presentation space 524
log viewer 377
Log Viewer Functions 408
Changing Message Log Size and Location 408
Filtering 409
Merging Message and Trace Logs 408
Searching 409
Sorting Message and Trace Logs 409
Viewing Message and Trace Logs 408
log viewer utility 408
log viewer, icon 38
logical database file 254
logical record length (LRECL) 211, 336
long file names 195
LWAIT 648, 668

M
macro
convert 39
Express Logon Feature 98
Macro
creating 94
Express Logon Feature 96
functions 90
playing 96
recording 96
setup 93
autostart 95
statements 94
using 93
maintenance installation
modify 151
remove 151
repair 151
repair using command-line parameters 156
member 254
memory allocation 515
Menu bar
setup 86
message
merging 408
sorting 409
viewing 408
message logger device driver 408
messages
alerts 373
OIA 372
system fault 372
Messages 127
OIA 128
security 127
system error 128
Microsoft Systems Management Server
(SMS), remote installation 152
Migrating from EHLLAPI
Events 744
Execution/Language Interface 742

Features 742
Presentation Space Models 744
PS Connect/Disconnect, Multithreading 745
SendKey Interface 744
Session IDs 743
migration
general 135
procedure 141
migration utility, icon 38
mnemonic 1156
mnemonics
ASCII 526
for Send Key 525
keyboard, tables 636
shift key 526
mouse
file 100
setup 100
Multiple Sessions
batch program 115
Multithreading 518
MVS/TSO
receive 230
send 225

N
no-conversion files 329
NOATTRB 646
NOBLANK 650
NOEAB 649
NOQUIET 646
NORESET 648
notices 496
NOXLATE 650
NULLATTRB 646
numeric only fields 634
NWAIT 648, 668

O
objects, automation
autECLConnList 987
autECLConnMgr 994
autECLFieldList 1000
autECLOIA 1011
autECLPageSettings 1088
autECLPrinterSettings 1088
autECLPS 1029
autECLScreenDesc 1069
autECLScreenReco 1077
autECLSession 1083
autECLWinMetrics 1096
autECLXfer 1112
autSystem 1124
description 984
objects, C++
description 745
ECLBase 749
ECLCommNotify 785
ECLConnection 755
ECLConnList 769
ECLConnMgr 777
ECLErr 790
ECLField 793
ECLFieldList 810
ECLKeyNotify 818
ECLListener 823
ECLOIA 824
ECLOIANotify 837
ECLPS 840
ECLPSEvent 885
ECLPSListener 890
ECLPSNotify 893
ECLRecoNotify 896
ECLScreenDesc 899

ECLScreenReco 908
ECLSession 914
ECLStartNotify 922
ECLXfer 950
OIA 555, 668
online emulator session 103
online help 19, 159, 371
operating systems, multi-boot 135
Operator Information Area
See “OIA.” 555
operator services functions
Pause (18) 600
Query Host Update (24) 611
Query Session Status (22) 612
Query Sessions (10) 614
Query System (20) 616
Reset System (21) 628
Send Key (3) 634
Set Session Parameters (9) 643
Start Host Notification (23) 657
Stop Host Notification (25) 665
Wait (4) 667
options 652

P
packet size 214
Page Setup 76, 169
parameters
call 536
partitioned data set 213
Paste
options
Paste 78
Tab character processing 78
Wrap 78
Paste Clipboard to Presentation Space
(36) 578
path, default
Receive File 626
Send File 634
Pause (18) 532, 600, 666
PC code page 213, 338, 363
PC/3270 Sessions, Considerations for the Use
of
File Transfer Function 195
Graphic Functions 199
Support for Long File Names 195
PCFDF entries 298
PCFL entries 300
PCFO entry 298
PCFT entries 298
PCSAPI
general 690
how to use 690
pcsConnectSession 691
pcsDisconnectSession 692
pcsGetPageSettings 700
pcsGetPrinterSettings 708
pcsQueryConnectionInfo 692
pcsQueryEmulatorStatus 694
pcsQuerySessionList 694
pcsQueryWorkstationProfile 696
pcsRestorePageDefaults 703
pcsSetLinkTimeout 697
pcsSetPageSettings 704
pcsSetPrinterSettings 713
pcsStartSession 698
pcsStopSession 699
pcsDisconnectSession 692
PCSERR999 error messages 245
PCSPTC program 410, 418
pcsQueryConnectionInfo 692
pcsQueryEmulatorStatus 694

504

pcsQuerySessionList 694
pcsQueryWorkstationProfile 696
pcsStartSession 698
pcsStopSession 699
PCSWS.EXE
options 60
PDF 178
PDT files 178, 179
using 75
PDT mode 245
physical database file 254
plotter 203
pop-up keypad 102
(poppad) file 102
setup 101
poppad color 102
Post Intercept Status (52) 536, 601, 660
Preferences 119
prerequisite calls, general 536
presentation services functions
Connect Presentation Space (1) 546
Copy Field to String (34) 551
Copy OIA (13) 555
Copy Presentation Space (5) 564
Copy Presentation Space to String (8) 569
Copy String to Field (33) 573
Copy String to Presentation Space (15) 575
Disconnect Presentation Space (2) 581
Find Field Length (32) 585
Find Field Position (31) 587
Get Request Completion (125) 593
Lock Presentation space API (60) 596
Query Additional Field Attribute (45) 603
Query Cursor Location (7) 607
Query Field Attribute (14) 608
Search Field (30) 629
Search Presentation Space (6) 631
Set Cursor (40) 642
presentation space
character table 557
cursor movement 532
Enhanced 32-bit interface 518
field-formatted 551, 552, 573, 585,
587, 629, 629
host-connected 519
how specified 519
identifier
blank specifier 521
function 519
how processed 520
letter specifier 521
null specifier 521
processing for functions not requiring
connect 520
processing for functions requiring
connect 520
OIA 555
types 519
presentation space names
declaring 519
maximum number of 519
valid names 519
presentation spaces 518
print buffer size 202
Print Collection 73
Print screen 72
Print Screen Collection
Print Collection on Exit 73, 176
Purge Collection 73, 176
Print Session Setup 69
printable area 245
printer association 68
printer color mixing 412

printer control codes 450
printer data stream support
3270 413
Printer definition
file 75
table 75
printer definition file 178
printer definition files
examples 424
field names 436
symbols 444
printer definition table 178
3270
data stream support 413
delimiting print jobs 414
overview 410
PDF statements 410
printer color mixing 412
SCS TAB setting 412
structured fields 415
PC400
example files 424
PDF file format 418
transparent print capability 423
using PDF file 418
printer function table migration utility 458
printer setup 168
printing 68
3270 session screen 76
APL Font Support 76
code page 181
Collect Screen
Print Collection on Exit 176
Purge Collection 176
display sessions 175
Host Print Transform 75
Image Print Transform 76
multiple print screen 176
Page Setup 76
Page Setup parameters 169
PDT files 75
PDT Files 178
Print Screen Collection
Print Collection on Exit 176
Purge Collection 176
Printer session 75, 76
printer sessions 178
PrinterFontCodePage parameter 181
printing to disk 181
Scalable Font 76
setup 168
translation table 181
Truetype Font 76
Windows printer driver 74
ZipPrint 40, 76
CMS file 76
Printing 168
Collect Screen
Print Collection on Exit 73
Purge Collection 73
description 72
multiple print screen 73
Print Collection 73
Print Screen Collection
Print Collection on Exit 73
Purge Collection 73
printing to disk 181
problem analysis
Information Bundler 166, 378
log viewer 377
trace facility 377
programmed symbol sets, enabling 201
programmed symbols 200

PSERVIC 196
PSID handling
functions not requiring connect 520
functions requiring connect 520

Q
q option 61
Query Additional Field Attribute (45) 603,
603
Query Close Intercept (42) 604
Query Communication Event (81) 606
Query Communications Buffer Size
(122) 605
Query Cursor Location (7) 607
Query Field Attribute (14) 608, 608
Query Host Update (24) 601, 611, 657,
666
Query Reply Data Structures Supported by
EHLLAPI
Architecture Query Reply 729
general 721
IBM Auxiliary Device Query Reply
Direct Access Self-Defining Parameter 726
general 725
PCLK Protocol Controls Self-Defining
Parameter 727
Product-Defined Query Reply
Direct Access Self-Defining Parameter 728,
730
general 727
Optional Parameters 727
The DDM Query Reply
Base DDM Query Reply Formats 723
DDM Application Name Self-Defining
Parameter 722
general 722
PCLK protocol controls Self-Defining
Parameter 723
Query Session Status (22) 612
Query Sessions (10) 614
Query System (20) 616
Query Window Coordinates (103) 618
QUIET 646

R
Read Structured Fields (126) 619
RECEIVE command 217
Receive File (91)
default path for target file 626
general 533, 624, 625, 648
RECEIVE.EXE location 625
receiving data from the host 117
record format 211, 254
record length limit 305
record size
record length limit 305
related publications 160
Release (12) 533, 626, 627
releasing insert mode 194
remote installation
using Launchpad 153
using SMS 152
using Tivoli 152
request, transfer 253
Reserve (11) 533, 626, 627
reserved word 284
Reset System (21) 627, 627, 628, 643
return (output) parameters, general 537
run from source
installation image 143
network server 151

S
s option 61

505

sample program, a simple EHLLAPI 528
sample programs 511
saving
keyboard layout 191
saving a transfer request 262
Script
creating 95
functions 90
playing 96
recording 96
setup 93
using 93
scroll bar 194, 244
scroll-lock key 194
Search Field (30) 629, 668
search functions 531
Search Field (30) 629
Search Presentation Space (6) 631
Search Presentation Space (6) 532, 631,
668
security
configuring
client 397
configuring SSL 397
problem determination 400
TLS 401
using SSL 397
SEND command 217
Send File (90)
default path for target file 634
general 533, 632, 648
SEND.EXE location 633
Send Key (3) 526, 593, 634, 660,
668
sending data to the host 117
sending keystrokes 532
mnemonics 525
Send Key (3) 634
Sendkeys mnemonic keywords 1156
service 616
session keyboard 525
Session Manager 37, 45, 50
options 51
session manager online
pcsfm 53
Session Manager Online 38
sessions 103
automatically starting 64
configuring 45, 45
exiting 64
icons 50
icons for 45
IDs for 62
managing 102
multiple 60
querying 391
start or configure sessions online, icon 38
start or configure sessions, icon 37
starting 50, 59, 389
starting specific session ID 62
stopping 64, 390
tool bar 86
menu bar 86
status bar 86
using 66
window 50
window appearance 85
Set Cursor (40) 642
Set Session Parameters (9)
general 635, 643
List of affected functions 643
string specification 645
Valid Input 645, 652

setting up
the mouse 101
the pop-up keypad 102
setup.exe 153
shift key mnemonics 526
show status window 357
silent installation
general 143
initialization file processing 149
using command-line parameters 154
size of presentation spaces 519
source code syntax 530
source file
transferring data to 249
specifying strings 576, 578, 579
SRCHALL 646
SRCHBKWD 646
SRCHFROM 646
SRCHFRWD 646
SSL 397
stack size 510
Start Close Intercept (41) 653
Start Communication Notification (80) 655
Start Host Notification (23) 600, 611,
646, 657, 666
Start Keystroke Intercept (50) 660
Start Playing Macro (110) 663
starting
configuration setup 45
Status bar
setup 86
Stop Close Intercept (43) 664
Stop Communication Notification (82) 665
Stop Host Notification (25) 665
Stop Keystroke Intercept (53) 666
Stop Keystroke Intercept (53), you can call
the 536
stopping
macro playing 97
STREOT 645
string interception, Get Key (51) 590
string specification
session options 645
STRLEN 645
System i5
5250 sessions through one link 486
configuration examples 485
device description 488
system mode description 487
system policy support
execution policy 393
file transfer 394
installation policy 394
view policy 395

T
templates
file transfer 208, 334
terminal services 402
test
combination 278
logical AND and logical OR 278
TextPlane 1159
TIMEOUT 647
TLS 401
Tool bar
setup 86, 86
Tool Bar 386
trace
merging 408
sorting 409
viewing 408
trace facility 377

trace facility, icon 38
trademarks 130, 368, 735
Transfer
files 83
ASCII host data transfer 85
transfer function 251
transfer options 212, 337
data transfer 337
transfer request
definition 253
transfer requests for receiving (example) 285
transferring data to the host 248
Trim
options 80
Trim print 72
TWAIT 648, 668
types of
hotspots 91
sessions 40
types of presentation spaces 518

U
uninstallation
using command-line parameters 155
using maintenance installation 151
using API header files 510
using bitmaps for drawing 202
Utilities
32-Bit ODBC Administrator 114
Convert Macro 116
Data Transfer 116
Multiple Sessions
batch program 115
overview 113
Preferences 119
ZipPrint 115

V
v option 61
vector graphics 200
View menu
Hide Session 102
Jump 102
Show Session 102
VM disk 213
VT Emulation 348
Configuring 342
Configuring Links for VT over Telnet 347
Link Parameters 347
Optional Parameters 344
Session Parameters 343
Using a VT Session
Compose Key 348
OIA Line Display Messages 354
Transparent Mode 353

W
Wait (4) 532, 635, 667
window
setup 86
window services functions
Change PS Window Name (106) 541
Change Switch List LT Name (105) 542
Lock Window Services API (61) 598
Window Status (104) 668
Windows printer driver 74
WinHLLAPI Extension Functions
Asynchronous Functions
general 678
WinHLLAPIAsync 678
WinHLLAPICancelAsyncRequest 686
Blocking Routines
general 688
WinHLLAPICancelBlockingCall 690

506

WinHLLAPIIsBlocking 688
WinHLLAPISetBlockingHook 688
WinHLLAPIUnhookBlockingHook 689
general 686
Initialization/Termination Functions
general 686
WinHLLAPI Cleanup 687
WinHLLAPI Startup 687
Summary 678
workstation profile 48
Write Structured Fields (127) 673
WTS 402

X
XLATE 650

Z
Z and I Emulator for Windows
connections 40
functions 374
icons 37
library 19, 373
problem analysis
log viewer 377
trace facility 377
program folder 37
sessions
Client/server 40
Display 40
Printer 40
ZipPrint 40, 115
3270 session screen 76
CMS file 76
PROFS note, calendar, document printing 76
XEDIT workspace 76
zSeries emulator 41

507

HCL Z and I Emulator for Windows (ENGLISH)

508

Emulator Programming

About This Book
This book provides necessary programming information for you to use the HCL Z and I Emulator for Windows

Emulator High-Level Language Application Program Interface (EHLLAPI), and Z and I Emulator for Windows Session

API (PCSAPI), and. The Host Access Class Library is described in Host Access Class Library.

EHLLAPI/PCSAPI is used with Z and I Emulator for Windows to provide a way for users and programmers to access

the host presentation space with a set of functions that can be called from an application program running in a

workstation session.

In this book, Windows refers to Windows® 7, Windows® 8/8.1, Windows® 10, Windows® Server 2008, and

Windows® Server 2012. When information is relevant only to a specific operating system, this will be indicated in the

text.

Who Should Read This Book
This book is intended for programmers who write application programs that use the APIs documented in this book.

A working knowledge of Windows® is assumed. For information about Windows®, refer to the list of publications

under Where To Find More Information on page 508.

The programmer must also be familiar with connecting to a host system from a terminal or from a workstation with

terminal emulation software.

This book assumes you are familiar with the language and the compiler that you are using. For information on how

to write, compile, or link-edit programs, refer to Where To Find More Information on page 508 for the appropriate

references for the specific language you are using.

Where To Find More Information
The Z and I Emulator for Windows library includes the following publications:

• Installation Guide

• Quick Beginnings

• Emulator User's Reference

• Administrator's Guide and Reference

• Emulator Programming

• Client/Server Communications Programming

• System Management Programming

• Host Access Class Library

• Configuration File Reference

In addition to the printed books, there are Hypertext Markup Language (HTML) documents provided with Z and I

Emulator for Windows:

Chapter 2. Product Documentation

Host Access Class Library

The HACL Java HTML files describe how to write an ActiveX/OLE 2.0-compliant application to

use Z and I Emulator for Windows as an embedded object. These files can be accessed from

the Docs_Admin_Aids zipped folder delivered along with Z and I Emulator for Windows product

documentation in the following path : ZIEWin_3.0_Docs_Admin_Aids.zip\publications\en_US\doc\hacl

Following is a list of related publications:

• IBM 3270 Information Display System Data Stream Programmer's Reference, GA23-0059

• IBM 5250 Information Display System Functions Reference Manual, SA21-9247

Notation
A table at the beginning of each section explains API functions in EHLLAPI Functions on page 536, PCSAPI

Functions on page 690, and WinHLLAPI Extension Functions on page 678. It shows whether a function is

supported for the products that provide the function described in the section. Yes means it is supported for a host

type, and No means not supported. For example, the following table indicates that a function is available for 3270 and

VT sessions but not for 5250 sessions.

3270 5250 VT

Yes No Yes

Introduction to Emulator APIs
The IBM® Z and I Emulator for Windows product supplies several application programming interfaces (APIs). Each

interface has a specific set of functions and may be used for different purposes. Choose the programming interface

that best matches the functional requirements of your application. Some applications may use more than one

interface to achieve the desired results. The programming interfaces are:

• Emulator High Level Language API (EHLLAPI): introduction to Emulator APIsEmulator High Level Language API (EHLLAPI) This interface provides functions to access emulator

"presentation space" data such as characters on the host screen. It also provides functions for sending

keystrokes to the host, intercepting user-entered keystrokes, querying the status of the host session,

uploading and downloading files, and other functions. This interface is often used for automated operator

applications which read host screens and enter keystrokes without direct user intervention. See EHLLAPI

Functions on page 536.

◦ IBM® Standard HLLAPI Support: This is a standard programming interface which allows

programmatic access to a host emulator session. See Introduction to IBM Standard EHLLAPI, IBM

Enhanced EHLLAPI and WinHLLAPI Programming on page 512.

◦ IBM® Enhanced HLLAPI Support: This interface is based on the IBM® Standard HLLAPI interface. It

provides all of the existing functionality but uses modified data structures. See Introduction to IBM

Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming on page 512.

509

HCL Z and I Emulator for Windows (ENGLISH)

510

◦ Windows® High Level Language API (WinHLLAPI): This interface provides much of the same

functionality of IBM® Standard EHLLAPI and adds some extensions that take advantage of the

Windows® environment. See Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and

WinHLLAPI Programming on page 512.

• Any 32-bit APIs which accept\return Window Handles and pointers might not work correctly with HCL ZIEWin

due to difference in pointer\handle sizes between x86 and x64 platforms.

For Example:

"Data String" parameter returned in byte numbers (9-12) in API Start Communication Notification (80) might

be truncated on x64 platform.

• Z and I Emulator for Windows Session API (PCSAPI): This introduction to Emulator APIsZ and I Emulator for Windows Session API (PCSAPI) interface is used to start, stop, and control

emulator sessions and settings. See PCSAPI Functions on page 690.

For Z and I Emulator for Windows Version 3.0, functions have been added to allow control and retrieval

of page and printer settings. See Page Setup Functions on page 699 and Printer Setup Functions on

page 708.

• HCL Z and I Emulator for Windows Host Access Class Library (ECL): ECL is a set of objects that allow

application programmers and scripting language writers to access host applications easily and quickly. Z

and I Emulator for Windows supports three different ECL layers (C++ objects, ActiveAutomation (OLE), and

LotusScript Extension (LSX)). Refer to Host Access Class Library (HACL) for more details.

Using API Header Files
The application program should include operating system header files before including API header files. For example:

 #include <windows.h> // Windows main header
 #include "pcsapi.h" // ZIEWin PCSAPI header
 ...

Critical Sections
Use critical sections (EnterCriticalSection function) carefully when your program calls emulator APIs. Do not make

emulator API calls within a critical section. If one thread of an application establishes a critical section and another

thread is within an emulator API call, the call is suspended until you exit from the critical section.

During processing of an API call, all signals (except numeric coprocessor signals) are delayed until the call completes

or until the call needs to wait for incoming data. Also, TerminateProcess issued from another process is held until the

application completes an API call it might be processing.

Stack Size
Emulator APIs use the calling program's stack when they are executed. The operating system, the application, and the

API all require stack space for dynamic variables and function parameters. At least 8196 bytes (8K) of stack space

Chapter 2. Product Documentation

should be available at the time of an API call. It is the responsibility of the application program to ensure sufficient

stack space is available for the API.

Windows x64 Platform Support
The x64-based versions of Microsoft® Windows® Server 2008 and Microsoft® Windows® 8/8.1/10 x64 Edition are

optimized to run native 64-bit programs, but do not support 32-bit drivers or 16-bit applications.

For these platforms, Z and I Emulator for Windows does not install the following libraries.

• 16-bit API support:

◦ Standard EHLLAPI 16-bit interface

◦ WinHLLAPI 16-bit interface

◦ PCSAPI 16-bit interface

Sample Programs
Several sample programs are provided, each of which illustrates the use of one of the Z and I Emulator for Windows

APIs. If you choose to install the sample programs, they will be installed in the \SAMPLES directory.

Note: International Business Machines Corporation provides these files as is, without warranty of any kind,

either express or implied, including, but not limited to, the implied warranties of merchantability or fitness for

a particular purpose.

The sample program files include source and supporting files for the following Z and I Emulator for Windows APIs:

• Emulator High-Level Language Programming Interface (EHLLAPI)

• PCSAPI Functions

The following files are installed in the \SAMPLES directory.

Table 65. Sample Program Subdirectories

File Name Description

DDE_C.H DDE include file

EHLAPI32.H IBM® standard 32-bit EHLLAPI include file

WHLLAPI.H WinHLLAPI 16-bit include file

HAPI_C.H EHLLAPI include file

PCSAPI.H PCSAPI include file

PCSCALLS.LIB Import library for standard interface

PCSCAL32.LIB Import library for enhanced interface

EHLAPI32.LIB Import library for IBM® Standard 32-bit EHLLAPI interface

WHLLAPI.LIB Import library for WinHLLAPI 16-bit interface

511

HCL Z and I Emulator for Windows (ENGLISH)

512

Table 65. Sample Program Subdirectories (continued)

File Name Description

WHLAPI32.LIB Import library for WinHLLAPI 32-bit interface

The following subdirectories are created in the \SAMPLES directory.

Table 66. Sample Program Subdirectories

File Name Description

ECL The sample\ecl\cpp folder contains all files related HACL CPP sample.

The sample\ecl\vb folder contains all files related to HACL VB.Net sample.

HLLSMP Shows how to use EHLLAPI to request a keystroke and log on to a VM system.(X86).

It supports the logon, pastetext and sendkey functionalities. Refer to the hllsmp\

Readme.txt for the details on using the above-mentioned functionalities with hllsmp.exe.

(X64).

Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI
Programming
This chapter provides information needed to incorporate IBM® Standard EHLLAPI (16- and 32-bit), WinHLLAPI

(16- and 32-bit), and IBM® Enhanced 32-bit EHLLAPI (EHLAPI32) functions into applications written in a high

level language. It provides details on call format, memory allocation considerations, initializing the interfaces,

and compiling and linking applications. Also included is a short sample EHLLAPI program and the compile/link

instructions used to build it. Finally, a set of possible uses for the EHLLAPI interface (scenarios) is described.

An EHLLAPI application is any application program which uses the EHLLAPI interface to access the host 3270/5250/

VT presentation space. The presentation space includes the visible emulator character data, fields and attribute data,

keystroke data, and other information.

EHLLAPI Overviews
Following are overviews for HLLAPI programming interfaces.

IBM Standard EHLLAPI
EHLLAPI OverviewsIBM Standard EHLLAPIEHLLAPI is a standard programming interface which allows programmatic access to a host emulator session.

Functions are provided for reading host screen data (such as the characters and attributes), for sending keystrokes,

and performing other emulator-related functions.

The EHLLAPI interface is a single call-point interface. There is a single callable API through which all EHLLAPI

functions are requested. On each call to the interface the application provides a function number which identifies the

function requested, a pointer to a data buffer, a pointer to the length of the data buffer, and a pointer to a return code

(see EHLLAPI Call Format on page 513).

Chapter 2. Product Documentation

WinHLLAPI
EHLLAPI OverviewsWinHLLAPIWinHLLAPI is based on the familiar EHLLAPI.API. It encompasses all of the existing functionality and adds

extensions that take advantage of the Windows® message driven environment. Users of the HCL Z and I Emulator for

Windows EHLLAPI interface will notice no functional difference unless they incorporate the WinHLLAPI extensions.

The WinHLLAPI extension functions and any functions that deviate from the EHLLAPI form are described in

WinHLLAPI Extension Functions on page 678. For information on common functions, refer to EHLLAPI Functions

on page 536.

WinHLLAPI and IBM® Standard EHLLAPI
EHLLAPI OverviewsWinHLLAPI vs. IBM Standard EHLLAPIThe entry symbol for WinHLLAPI, is appropriately, WinHLLAPI. EHLLAPI users wishing to switch to the WinHLLAPI

implementation must change from the hllapi standard entry. New users should follow all of the directions in EHLLAPI

Functions on page 536, and use the WinHLLAPI entry in place of the standard hllapi entry.

IBM Enhanced EHLLAPI and IBM Standard EHLLAPI
EHLLAPI OverviewsIBM Enhanced EHLLAPI vs. IBM Standard EHLLAPIIBM Enhanced EHLLAPI is based on the familiar EHLLAPI API. It encompasses all of the existing functionality but

takes advantage of the 32-bit environment and uses modified data structures. Standard interface users wishing to

switch to IBM® Enhanced 32-bit EHLLAPI need to change only the entry symbol from LPWORD to LPINT in the first,

third, and fourth parameters. New users should use the procedures in the following sections.

Languages
Any programming language which can invoke an entry point in a DLL with the "Pascal" calling convention can be

used to execute EHLLAPI functions. However, the Z and I Emulator for Windows EHLLAPI toolkit provides header

files and function prototypes only for the C++ languages. A clear understanding of data structure layout and calling

conventions is required to use any other language. The EHLLAPI toolkit supports the following C/C++ compilers:

• Microsoft® Visual C/C++ Version 4.0 and higher

Most other C/C++ compilers will also work with the toolkit.

EHLLAPI C/C++ applications must include the Z and I Emulator for Windows EHLLAPI header file (HAPI_C.H). This file

defines the layout of data structures and provides a prototype for the EHLLAPI entry point.

Note: The data structure layout for 16- and 32-bit applications are not the same (see Standard and Enhanced

Interface Considerations on page 530).

EHLLAPI Call Format
The EHLLAPI entry point (hllapi) is always called with the following four parameters:

513

HCL Z and I Emulator for Windows (ENGLISH)

514

1. EHLLAPI Function Number (input)

2. Data Buffer (input/output)

3. Buffer Length (input/output)

4. Position (input); Return Code (output)

The prototype for IBM® Standard EHLLAPI is:

[long hllapi (LPWORD, LPSTR, LPWORD, LPWORD);

The prototype for IBM® Enhanced EHLLAPI is:

[long hllapi (LPINT, LPSTR, LPINT, LPINT);

Each parameter is passed by reference not by value. Thus each parameter to the function call must be a pointer to

the value, not the value itself. For example, the following is a correct example of calling the EHLLAPI Query Session

Status function:

 #include "hapi_c.h"
 struct HLDQuerySessionStatus QueryData;
 int Func, Len, Rc;
 long Rc;

 memset(QueryData, 0, sizeof(QueryData)); // Init buffer
 QueryData.qsst_shortname = 'A'; // Session to query
 Func = HA_QUERY_SESSION_STATUS; // Function number
 Len = sizeof(QueryData); // Len of buffer
 Rc = 0; // Unused on input

 hllapi(&Func, (char *)&QueryData, &Len, &Rc); // Call EHLLAPI
 if (Rc != 0) { // Check return code
 // ...Error handling
 }

All the parameters in the hllapi call are pointers and the return code of the EHLLAPI function is returned in the value of

the 4th parameter, not as the value of the function. For example, the following is not correct:

 if (hllapi(&Func, (char *)&QueryData, &Len, &Rc) != 0) { // WRONG!
 // ...Error handling
 }

Although the hllapi function is defined to return a long data type for IBM® Standard and Enhanced EHLLAPI, and void

data type for WinHLLAPI, its value is undefined and should not be used.

The second through fourth parameters of the hllapi call can return information to the application. The description of

each EHLLAPI function describes what, if any, information is returned in these parameters.

Data Structures
Many EHLLAPI functions use a formatted data structure to pass information to or from the application program. The

description of each function shows the layout of the data structure. The data passed to or from the EHLLAPI function

must exist in storage exactly as documented, byte for byte. Note that the structure layout is the same for all IBM®

Standard and WinHLLAPI 16- and 32-bit applications. Data structures for the IBM® Enhanced 32-bit applications are

packed to a 4-byte alignment.

Chapter 2. Product Documentation

It is highly recommended that the supplied header file and data structure definitions be used to ensure proper data

alignment and layout. Although it is technically possible, the following is not recommended:

 char QueryData[20]; // Not recommended
 ...
 Func = HA_QUERY_SESSION_STATUS;
 hllapi(&Func, QueryData, &Len, &Rc);
 if (QueryData[13] == 'F') {
 // ...this is a 5250 session
 }

The recommended way to write this function would be:

 #include "hapi_c.h"
 struct HLDQuerySessionStatus QueryData; // Recommended
 ...
 Func = HA_QUERY_SESSION_STATUS;
 hllapi(&Func, (char *)&QueryData, &Len, &Rc);
 if (QueryData.qsst_sestype == 'F') {
 // ...this is a 5250 session
 }

Memory Allocation
EHLLAPI functions do not allocate or free memory. The application program must preallocate buffer space for

EHLLAPI functions which require it before calling the hllapi entry point. The buffer space may be pre-allocated as a

dynamic variable such as:

 struct HLDQuerySessionStatus QueryBuff;

or it may be allocated by a call to a C library or operating system function such as:

 struct HLDQuerySessionStatus *QueryBuff;
 ...
 QueryBuff = malloc(sizeof(struct HLDQuerySessionStatus));

In any case, the application is responsible for allocating sufficient buffer space before calling EHLLAPI functions and

for freeing buffers when they are not needed.

EHLLAPI Return Codes
EHLLAPI functions return a completion code or return codein the 4th parameter of the hllapi function call (except

for the Convert Position or RowCol (99) function). The return code indicates the success or failure of the requested

function.

Unless indicated otherwise in the description of each function, the following table shows the meaning of each return

code value. Some functions may have a slightly different interpretation of these return codes; refer to the individual

function descriptions for details.

515

HCL Z and I Emulator for Windows (ENGLISH)

516

Table 67. EHLLAPI Return Codes

Return Code Explanation

0 The function successfully executed, or no update since the last call was issued.

1 An incorrect host presentation space ID was specified. The specified session either was not

connected, does not exist, or is a logical printer session.

2 A parameter error was encountered, or an incorrect function number was specified. (Refer to

the individual function for details.)

4 The execution of the function was inhibited because the target presentation space was busy, in

X CLOCK state (X []), or in X SYSTEM state.

5 The execution of the function was inhibited for some reason other than those stated in return

code 4.

6 A data error was encountered due to specification of an incorrect parameter (for example, a

length error causing truncation).

7 The specified presentation space position was not valid.

8 A functional procedure error was encountered (for example, use of conflicting functions or

missing prerequisite functions).

9 A system error was encountered.

10 This function is not available for EHLLAPI.

11 This resource is not available.

12 This session stopped.

24 The string was not found, or the presentation space is unformatted.

25 Keystrokes were not available on input queue.

26 A host event occurred. See Query Host Update (24) for details.

27 File transfer was ended by a Ctrl+Break command.

28 Field length was 0.

31 Keystroke queue overflow. Keystrokes were lost.

32 An application has already connected to this session for communications.

33 Reserved.

34 The message sent to the host was canceled.

35 The message sent from the host was canceled.

36 Contact with the host was lost.

37 Inbound communication has been disabled.

38 The requested function has not completed its execution.

39 Another DDM session is already connected.

40 The disconnection attempt was successful, but there were asynchronous requests that had not

been completed at the time of the disconnection.

41 The buffer you requested is being used by another application.

42 There are no outstanding requests that match.

43 The API was already locked by another EHLLAPI application (on LOCK) or API not locked (on

UNLOCK).

Chapter 2. Product Documentation

Compiling and Linking
Linkingdescription

The application program can be linked using dynamic linking method. This means that we can link the entry point by

performing the dynamic linking. In this case, the application uses operating system calls to load the correct DLL and

obtain the entry point address at run time.

The following table shows which .DLL should be used for dynamic loading.

Interface Entry Point DLL

IBM® Standard (64-bit) hllapi EHLAPI32.DLL

IBM® Enhanced (64-bit) hllapi PCSHLL32.DLL

WinHLLAPI (64-bit) winhllapi WHLAPI32.DLL

Dynamic Link Method
LinkingDynamic Link MethodUsing the dynamic link method the application makes calls to the operating system at run time to load the Z and I

Emulator for Windows EHLLAPI module and to locate the hllapi entry point within it. This method requires more code

in the application but gives the application greater control over error conditions. For example, the application can

display a specific error message to the user if the Z and I Emulator for Windows EHLLAPI module cannot be found.

To use dynamic linking, the application needs to load the appropriate Z and I Emulator for Windows module and

locate the entry point. It is recommended that the entry point be located by its ordinal number and not by name. The

ordinal number is defined in the header file. The following 32-bit Windows® code loads the IBM® Standard 32-bit

EHLLAPI module, locates the hllapi entry point, and makes an EHLLAPI function call.

 #include "hapi_c.h"

 HMODULE Hmod; // Handle of PCSHLL32.DLL
 long (APIENTRY hllapi)(int *, char *, int *, int *); // Function pointer
 int HFunc, HLen, HRc; // Function parameters
 char HBuff[1]; // Function parameters

 Hmod = LoadLibrary("PCSHLL32.DLL"); // Load EHLLAPI module
 if (Hmod == NULL) {
 // ... Error, cannot load EHLLAPI module
 }

 hllapi = GetProcAddress(Hmod, MAKEINTRESOURCE(ord_hllapi));
 // Get EHLLAPI entry point
 if (hllapi == NULL) {
 // ... Error, cannot find EHLLAPI entry point
 }

 HFunc = HA_RESET_SYSTEM; // Run EHLLAPI function
 HLen = 0;
 HRc = 0;
 (*hllapi)(&Func, HBuff, &HLen, &HRc);

517

HCL Z and I Emulator for Windows (ENGLISH)

518

 if (HRc != 0) {
 // ... EHLLAPI access error
 }

Multithreading
MultithreadingHCL Enhanced EHLLAPI (32-bit) and HCL® Standard EHLLAPI 16-bit connect on a per process basis. All threads

access the same connected host session. The thread that performs the connections must also perform the

disconnection.

HCL® Standard EHLLAPI (32-bit) and WinHLLAPI connect on a per thread basis. Each thread must maintain its own

connections. This allows a multithreaded process to maintain connections to more than one connected host session

at a time. This eliminates the need for multi-process schemes when using a WinHLLAPI program to coordinate data

between different hosts. It also puts the burden of connecting and disconnecting as necessary on the individual

thread.

Presentation Spaces
Many EHLLAPI functions require a presentation space ID (PSID) to indicate which host emulator session is to be

used for the function. (This is also referred to as the short session ID). A presentation space ID is a single character in

the range A to Z. There are a maximum of 26 sessions.

IBM® Enhanced 32-Bit Interface Presentation Space IDs
presentation spaceEnhanced 32-bit interfaceFor IBM® Enhanced EHLLAPI applications, the session ID is extended with three additional bytes. These extended

session bytes must be set to zero for future compatibility. This is most easily accomplished by setting the contents

of EHLLAPI buffers to all binary zero before filling them in with the required information. For example, the following

might be used to query the status of session B:

 #include "hapi_c.h"
 int HFunc, HLen, HRc; // Function parameters
 struct HLDPMWindowStatus StatusData; // Function parameters

 Func = HA_PM_WINDOW_STATUS;
 HLen = sizeof(StatusData);
 HRc = 0;

 // Set data buffer to zeros and fill in request
 memset(&StatusData, 0x00, sizeof(StatusData));
 StatusData.cwin_shortname = 'B'; // Short session ID
 StatusData.cwin_option = 0x02; // Query command

 hllapi(&Func, (char *)&StatusData, &HLen, &HRc);

Chapter 2. Product Documentation

Types of Presentation Spaces
presentation spacetypesAn emulator session can be configured as a display session or a printer session. EHLLAPI applications cannot

connect to printer or router sessions of PC400. The Query Sessions (10) function can be used to determine the type

of a particular session.

Size of Presentation Spaces
An emulator display session can be configured for a range of screen sizes from 1920 bytes (24x80 screen size) to

9920 bytes (62x160 screen size). Some EHLLAPI functions such as Copy PS to String (8) require the application to

allocate enough storage to hold (possibly) the entire presentation space. The size of the presentation space for a

given session can be obtained using the Query Session Status (22) function.

Presentation Space IDs
EHLLAPI functions interact with only one presentation space at a time. The presentation space ID (PSID) is used to

identify the particular presentation space in which a function is to operate. presentation spaceidentifierfunction

For some functions, the PSID is contained in a preceding call to the Connect Presentation Space (1) function. For

other functions, presentation spacehow specified the PSID is contained in the calling data string parameter.

Host-Connected Presentation Space
Connection to the host presentation space (or session) is controlled by using the Connect Presentation Space (1)

and Disconnect Presentation Space (2) functions. The status of the connection determines whether some functions

can be executed. It also affects how the PSID is defined. The following text explains how to control the status of the

connection to the host presentation space:

• At any given time, there can be either no host-connected presentation space, or there can be one and only one

host-connected presentation space.

• There is no default host-connected presentation space.

• Following a connect, there is one and only one host-connected presentation space. The host presentation

space that is connected is identified in the calling data string parameter of the connect function. Connect Presentation Space (1)interaction with disconnect Disconnect Presentation Space (2)interaction with connect

• A subsequent call to connect can be executed with no intervening disconnect. In this case, there is still one

and only one host-connected presentation space. Again, the host presentation space that is connected is

identified in the calling data string parameter of the connect function.

• Following a disconnect, there is no host-connected presentation space. This rule applies following multiple

consecutive calls to connect or following a single call to connect.

• You cannot connect to a logical printer session.

519

HCL Z and I Emulator for Windows (ENGLISH)

520

Presentation Space ID Handling
The PSID is used to specify the host presentation space (or session) in which you desire a function to operate. The

way the PSID is handled is affected by two factors: presentation spaceidentifierhow processed

1. The method used to specify the PSID:

a. As the calling data string parameter of a preceding call to the Connect Presentation Space (1)

function

b. As a character in the calling data string of the function being executed. Handling varies depending on

whether the character is:

• A letter A through Z

• A blank or a null

2. The status of the connection to the host presentation space.

The following paragraphs describe how the PSID is handled for the various combinations of these two factors.

PSID Handling for Functions Requiring Connect
Some functions interact only with the host-connected presentation space. These functions require the Connect

Presentation Space (1) function as a prerequisite call. The PSID for these functions is determined by the Connect

Presentation Space (1) and the Disconnect Presentation Space (2) functions as follows:

• When there is no host-connected presentation space, these functions do not interact with any presentation

space. A return code of 1 is generated.

• When there is one host-connected presentation space, these functions interact with the presentation space

specified in the calling data string parameter of the most recent call to the Connect Presentation Space (1)

function.

PSID Handling for Functions Not Requiring Connect
Some functions can interact with a host presentation space whether it is connected or not. These functions allow you

to specify the PSID in the calling data string parameter. They are as follows:

• Connect Presentation Space (1)

• Convert Position RowCol (99)

• Get Key (51)

• Post Intercept Status (52)

• Query Close Intercept (42)

• Query Host Update (24)

• Query Session Status (22)

• Start Close Intercept (41)

Chapter 2. Product Documentation

• Start Host Notification (23)

• Start Keystroke Intercept (50)

• Stop Close Intercept (43)

• Stop Host Notification (25)

• Stop Keystroke Intercept (53)

All except the first two of these functions allow you to specify the PSID using either:

• A letter A through Z

• A blank or a null presentation spaceidentifierletter specifiernull specifierblank specifier

The first two functions require that a letter be used to specify the PSID.

When there is no host-connected presentation space, the following rules apply:

• The function can interact with any host presentation space if a letter, not a blank or a null, is used to specify

the PSID.

• If a blank or a null is used to specify the PSID, a return code of 1 is generated. The function does not execute.

• Using a letter to specify the PSID does not establish a host-connected presentation space, except on a

connect PS request.

When there is one host-connected presentation space, the following rules apply:

• The function can interact with any host presentation space if a letter is used to specify the PSID.

• If a blank or a null is used to specify the PSID, the function operates in the presentation space identified in the

most recent call to the Connect Presentation Space (1) function.

• Using a letter to specify the PSID does not change the established PSID of the host-connected presentation

space, except on a connect PS request.

The following functions are available for printer sessions:

• Start Host Notification (23)

• Query Host Update (24)

• Stop Host Notification (25)

Sharing EHLLAPI Presentation Space between Processes
More than one EHLLAPI application can share a presentation space if the applications support sharing (that is, if they

were developed to work together or if they exhibit predictable behavior1). To determine which applications support

sharing, EHLLAPI applications are specified as one of following types:

1. This means that two EHLLAPI programs will not be vying for the same Presentation Space at the same time;

or that there is logic in those programs which will allow the program to wait until the PS is available; or that the

applications never use the Session in a way which would lock out other applications.

521

HCL Z and I Emulator for Windows (ENGLISH)

522

• Supervisory

• Exclusive write with read privilege allowed

• Exclusive write without read privilege allowed

• Super write

• Read

The type of shared access can be defined by setting the following read and write sharing options for each function in

the Set Session Parameters (9) function call:

SUPER_WRITE
The application allows other applications that allow sharing and have write access permissions to concurrently

connect to the same presentation space. The originating application performs supervisory-type functions but does

not create errors for other applications that share the presentation space.

WRITE_SUPER
The application requires write access and allows only supervisory applications to concurrently connect to its

presentation space. This is the default value.

WRITE_WRITE
The application requires write access and allows partner or other applications with predictable behavior to share the

presentation space.

WRITE_READ
The application requires write access and allows other applications that perform read-only functions to share the

presentation space. The application is also allowed to copy the presentation space and perform other read-only

operations as usual.

WRITE_NONE
The application has exclusive use of the presentation space. No other applications are allowed to share the

presentation space, including supervisory applications. The application is allowed to copy the presentation space and

perform read-only operations as usual.

READ_WRITE
The application requires only read access to monitor the presentation space and allows other applications that

perform read or write, or both, functions to share the presentation space. The application is also allowed to copy the

presentation space and perform other read-only operations as usual.

Chapter 2. Product Documentation

Note: Sharing presentation space is not available between threads in a process.

Table 68. EHLLAPI Read and Write Sharing Option Combinations

Calling Applica

tion

Super_Write Write_Super Write_Write Write_Read Write_None Read_Write

Super_Write Yes Yes Yes No No Yes

Write_Super (de

fault)

Yes No No No No No

Write_Write Yes No Yes No No Yes

Write_Read No No No No No Yes

Write_None No No No No No No

Read_Write Yes No Yes Yes No Yes

In addition to specifying compatible read and write access options, applications that are designed to work together

but cannot allow others to work in the same presentation space can optionally define a keyword, KEY$nnnnnnnn, in

the Set Session Parameters (9) function call. This keyword allows only those applications that use the same keyword

to share the presentation space.

Note:

1. The Start Keystroke Intercept (50) function is non-shareable. Only one application at a time can trap

keystrokes.

2. The Connect To Presentation Space (1) and Start Keystroke Intercept (50) functions share common

subsystem functions. Successful requests by an application to share either of these functions

can affect the requests of these two functions by other applications. For example, if application

A successfully requests a Connect To Presentation Space (1) with Write_Read access and KEY

$abcdefgh as the keyword, a request by application B to Connect To Presentation Space (1) or Start

Keystroke Intercept (50) is successful only if both applications have set compatible read and write

options.

Table 69. Prerequisite Functions and Associated Dependent Functions

Prerequisite Call Functions Access

Allocate Communications

Buffer (120)

Free Communication Buffer (120) N/A

Connect Window

Service (101)

Change PS Window Name (106)

Change Switch List Name (105)

Disconnect Window

Service (102)

Query Window Service (103)

Window Status (104)

Write

Read

Query=Read

Set=Write

Write

523

HCL Z and I Emulator for Windows (ENGLISH)

524

Table 69. Prerequisite Functions and Associated Dependent Functions (continued)

Prerequisite Call Functions Access

Connect Presentation

Space (1)

Copy Field to String (34)

Copy OIA (13)

Copy Presentation Space (5)

Copy Presentation Space to String (8)

Copy Presentation Space to Clipboard (35)

Copy String to Field (33)

Copy String to Presentation Space (15)

Disconnect Presentation Space (2)

Find Field Length (32)

Find Field Position (31)

Query Cursor Location (7)

Query Field Attribute (14)

Paste Clipboard to Presentation Space (36)

Release (12)

Reserve (11)

Search Field (30)

Search Presentation Space (6)

Send key (3)

Set Cursor (40)

Start Playing Macro (110)

Wait (4)

Read

Read

Read

Read

Read

Write

Write

Write

Read

Read

Read

Read

Write

Write

Write

Read

Read

Read

Write

Write

Read

Connect Structured Field (120) Disconnect Structured Field (121)

Get Request Completion (125)

Read Structured Field (126)

Write Structured Field (127)

N/A

Read Structured Field (126) Get Request Completion (125) N/A

Start Close Intercept (41) Query Close Intercept (42)

Stop Close Intercept (43)

N/A

Start Host Notification (23) Query Host Update (24)

Stop Host Notification (25)

Start Keystroke Intercept (50) Get Key (51)

Post Intercept Status (52)

Stop Keystroke Intercept (53)

Send Key (3) if edit keystrokes are to

be sent (edit keystroked support is

available in Enhanced Mode)

N/A

Write Structured Field (127) Get Request Completion (125) N/A

Chapter 2. Product Documentation

Locking Presentation Space
An application, even if specified with shared presentation space, can obtain exclusive control of a presentation space

by using the Lock Presentation Space API (60) or the Lock Windows® Services API (61) functions. Requests by the

other applications to use a presentation space locked by these functions are queued and processed in first-in-first-out

(FIFO) order when the originating application unlocks the presentation space.

If the application that locked the presentation space does not unlock it by using the same call with an Unlock option

or Reset System (21) call, the lock is removed when the application terminates or the session stops.

Using mouse actions to select, copy, and paste text in the Presentation Space
The following mouse actions can be used in the Presentation Space.

• Select a word by double-clicking the left mouse button.

• Copy a selected word by clicking the right mouse button.

• Paste a copied word by double-clicking the mouse right button.

ASCII Mnemonics
Keystrokes originating at a host keyboard might have a corresponding ASCII value. The response of the Get Key (51)

function to a keystroke depends on whether the key is defined and also on whether the key is defined as an ASCII

value or an ASCII mnemonic.

The keyboard for one session might not be capable of producing some codes needed by the another session. ASCII

mnemonics that represent these codes keyboard, session session keyboard can be included in the data string parameter of the Send Key (3) function.

The capabilities of the Send Key (3) function and the Get Key (51) function allow sessions to exchange keystrokes

that might not be represented by ASCII values or by an available key. A set of mnemonics mnemonicsfor Send Key sending keystrokesmnemonics keyboard mnemonicsgeneral that can be generated

from a keyboard is provided. These mnemonics let you use ASCII characters to represent the special function keys of

the workstation keyboard.

Mnemonics for unshifted keys consist of the escape character followed by an abbreviation. This is also true for the

shift keys themselves, Upper shift, Alt, and Ctrl. Mnemonics for shifted keys consist of the mnemonic for the shift key

followed by the mnemonic for the unshifted key. Hence the mnemonic for a shifted key is a 4-character sequence of

escape character, abbreviation, escape character, abbreviation.

The default escape character is @. You can change the value of the escape character to any other character with

the ESC=c option of the Set Session Parameters (9) function. The following text uses the default escape character,

however.

Shift indicators that are not part of the ASCII character set are represented to the host application by 2-byte ASCII

mnemonics as follows:

Upper shift @S

Alt @A

Ctrl @r

525

HCL Z and I Emulator for Windows (ENGLISH)

526

shift key mnemonics mnemonicsshift key

Mnemonics for these shift indicators are never received separately by an application. Likewise, they are never sent

separately by an application. Shift indicator mnemonics are always accompanied by a non-shift-indicator character or

mnemonic.

The abbreviations used make the mnemonics for special keys easy to remember. An alphabetic key code has been

used for the most common keys. For example, the Clear key is C; the Tab key is T, and so on. Please note that the

uppercase and lowercase alphabetic characters are mnemonic abbreviations for different keys.

The following text describes the use of these functions. Get Key (51) Send Key (3)

General
All defined keys are represented by either:

• A 1-byte ASCII value that is part of the 256-element ASCII character set, or

• A 2-, 4-, or 6-byte ASCII mnemonic

mnemonicsASCII characters, ASCII

To represent a key defined as an ASCII character, a 1-byte ASCII value that corresponds to that character is used.

To represent a key defined as a function, a 2-, 4-, or 6-byte ASCII mnemonic that corresponds to that function is used.

For example, to represent the backtab key, @B is used. To represent PF1, @1 is used. To represent Erase Input, @A@F is

used. See the following lists:

@B Left Tab @0 Home @h PF17

@C Clear @1 PF1/F1 @i PF18

@D Delete @2 PF2/F2 @j PF19

@E Enter @3 PF3/F3 @k PF20

@F Erase EOF @4 PF4/F4 @l PF21

@H Help (PC400) @5 PF5/F5 @m PF22

@I Insert @6 PF6/F6 @n PF23

@J Jump @7 PF7/F7 @o PF24

@L Cursor Left @8 PF8/F8 @q End

@N New Line @9 PF9/F9 @u Page UP (PC400)

@O Space @a PF10/F10 @v Page Down (PC400)

@P Print @b PF11/F11 @x PA1

@R Reset @c PF12/F12 @y PA2

@T Right Tab @d PF13 @z PA3

@U Cursor Up @e PF14 @@ @ (at) symbol

@V Cursor Down @f PF15 @$ Alternate Cursor

@Z Cursor Right

Chapter 2. Product Documentation

@A@C Test (PC400) @A@e Pink (PC/3270)

@A@D Word Delete @A@f Green (PC/3270)

@A@E Field Exit @A@g Yellow (PC/3270)

@A@F Erase Input @A@h Blue (PC/3270)

@A@H System Request @A@i Turquoise (PC/3270)

@A@I Insert Toggle @A@j White (PC/3270)

@A@J Cursor Select @A@l Reset Host Color (PC/3270)

@A@L Cursor Left Fast @A@t Print (Personal Computer)

@A@Q Attention @A@u Rollup (PC400)

@A@R Device Cancel @A@v Rolldown (PC400)

@A@T Print Presentation Space @A@y Forward Word Tab

@A@U Cursor Up Fast @A@z Backward Word Tab

@A@V Cursor Down Fast @A@- Field - (PC400)

@A@Z Cursor Right Fast @A@+ Field + (PC400)

@A@9 Reverse Video @A@< Record Backspace (PC400)

@A@b Underscore (PC/3270) @S@E Print Presentation Space on Host (PC400)

@A@c Reset Reverse Video (PC/3270) @S@x Dup

@A@d Red (PC/3270) @S@y Field Mark

Note:

1. The first @ symbol in the first table represents the escape character. The first and second @ symbol

in the second table is the escape character. The @ symbol is the default escape character. You can

change the value of the escape character using the ESC=c option of the Set Session Parameters (9)

function. escape character character, escape

If you change the escape character to #, the literal sequences used to represent the Backtab, Home,

and Erase Input keys become #B, #0, and #A#F, respectively.

Also, the literal sequence used to represent the @ symbol becomes #@.

2. If you send the mnemonic for print screen (that is, either @P or @A@T), place it at the end of the calling

data string.

3. If you send the mnemonic for device cancel (that is, @A@R), it is passed through with no error message;

however, local copy is not stopped.

Get Key (51) Function
If the terminal operator types a key defined as an ASCII character, the host application receives a 1-byte ASCII value

that corresponds to that character.

527

HCL Z and I Emulator for Windows (ENGLISH)

528

If the operator types a key defined as a function, the host application receives a 2-, 4-, or 6-byte ASCII mnemonic that

corresponds to that function. For example, if the Backtab key is typed, @B is received. If PF1 is pressed, @1 is received.

If Erase Input is pressed, @A@F is received.

If the operator types a defined shift key combination, the host application receives the ASCII character, or the 2-, 4-, or

6-byte ASCII mnemonic that corresponds to the defined character or function.

If the operator types an individual key that is not defined, the Get Key (51) function returns a return code of 20 and

nothing is sent to the host application.

The Get Key (51) function prefixes all characters and mnemonics sent to the host application with two ASCII

characters. The first ASCII character is the PSID of the host presentation space to which the keystrokes are sent.

The other character is an A, S, or M for ASCII, special shift, or mnemonic, respectively. See Return Parameters on

page 590.

Send Key (3) Function
To send an ASCII character to another session, include that character in the data string parameter of the Send Key (3)

function.

To send a function key to another session, include the ASCII mnemonic for that function in the data string parameter

of the Send Key (3) function.

If the Send Key (3) function sends an unrecognized mnemonic to the host session a return code rejecting the key

might result.

Debugging
As an aid in debugging EHLLAPI applications, the Trace Facility of Z and I Emulator for Windows may be used. This

facility will produce a log of all EHLLAPI calls, parameters, return values, and return codes. For more information on

using the Trace Facility, refer to Administrator's Guide and Reference.

A Simple EHLLAPI Sample Program
The following sample Windows® application will enter the character string "Hello World!" in the first input field of host

session 'A'.

 #include <stdlib.h>
 #include <stdio.h>
 #include <windows.h>
 #include "hapi_c.h"

 int main(char **argv, int argc) {
 int HFunc, HLen, HRc;
 char HBuff[1];
 struct HLDConnectPS ConnBuff;
 // Send Key string for HOME+string+ENTER:
 char SendString[] = "@0Hello World!@E";

Chapter 2. Product Documentation

 HFunc = HA_RESET_SYSTEM;
 HLen = 0;
 HRc = 0;
 hllapi(&HFunc, HBuff, &HLen, &HRc);
 if (HRc != HARC_SUCCESS) {
 printf("Unable to access EHLLAPI.\n");
 return 1;
 }

 HFunc = HA_CONNECT_PS;
 HLen = sizeof(ConnBuff);
 HRc = 0;
 memset(&ConnBuff, 0x00, sizeof(ConnBuff));
 ConnBuff.stps_shortname = 'A';
 hllapi(&HFunc, (char *)&ConnBuff, &HLen, &HRc);
 switch (HRc) {
 case HARC_SUCCESS:
 case HARC_BUSY:
 case HARC_LOCKED: // All these are OK
 break;
 case HARC_INVALID_PS:
 printf("Host session A does not exist.\n");
 return 1;
 case HARC_UNAVAILABLE:
 printf("Host session A is in use by another EHLLAPI application.\n");
 return 1;
 case HARC_SYSTEM_ERROR:
 printf("System error connecting to session A.\n");
 return 1;
 default:
 printf("Error connecting to session A.\n");
 return 1;
 }

 HFunc = HA_SENDKEY;
 HLen = strlen(SendString);
 HRc = 0;
 hllapi(&HFunc, SendString, &HLen, &HRc);
 switch (HRc) {
 case HARC_SUCCESS:
 break;
 case HARC_BUSY:
 case HARC_LOCKED:
 printf("Send failed, host session locked or busy.\n");
 break;
 default:
 printf("Send failed.\n");
 break;
 }

 HFunc = HA_DISCONNECT_PS;
 HLen = 0;
 HRc = 0;
 hllapi(&HFunc, HBuff, &HLen, &HRc);

 printf("EHLLAPI program ended.\n");

529

HCL Z and I Emulator for Windows (ENGLISH)

530

 return 0;
}

The application could be built with the following command:

 nmake /a all

Standard and Enhanced Interface Considerations
There is no functional difference between the standard and enhanced EHLLAPI interfaces on a given platform.

However there are other important differences:

• The enhanced EHLLAPI interface extends the presentation space ID (PSID) from 1 byte to 4 bytes. Currently

the additional bytes are not used, but your application should set them to binary zeros to ensure compatibility

with future versions of enhanced EHLLAPI.

• The position (offset) of data elements in memory buffers passed to and from EHLLAPI functions are different.

Data elements in enhanced EHLLAPI are aligned to double-word boundaries. Data elements in standard

EHLLAPI are not aligned in any particular way. EHLLAPI applications should not be coded to set or retrieve

data in the buffers by offset (byte) values. Instead, the supplied data structures in the HAPI_C.H file should be

used to set and retrieve data elements. This will ensure that data is set and retrieved from the correct position

for both 16- and 32-bit programs.

By prefilling EHLLAPI data buffers with binary zeros, and using the data structures supplied in HAPI_C.H, an

application can be compiled for standard or enhanced operation without any source code changes. For example, the

following section of source code syntax code would work for standard EHLLAPI but would fail for enhanced EHLLAPI:

 #include "hapi_c.h"
 ...
 int Func, Len, Rc;
 char Buff[18];
 char SessType;

 Func = HA_QUERY_SESSION_STATUS; // Function
 Len = 18; // Buffer length
 Rc = 0;
 Buff[0] = 'A' // Session to query
 hllapi(&Func, Buff, &Len, &Rc); // Execute function

 SessType = Buff[9]; // Get session type
 ...

The above example would fail if compiled as a enhanced EHLLAPI application because:

• The application does not set the extended session ID bytes to zero.

• The buffer length for this function is 20, not 18.

• The session type indicator is not at offset 9 in the data buffer, it is at offset 12.

The following is the same function written to work correctly if compiled for standard or enhanced operation. Changed

lines are indicated with a >:

Chapter 2. Product Documentation

 #include "hapi_c.h"
 ...
 int Func, Len, Rc;
> struct HLDQuerySessionStatus Buff;
 char SessType;

 Func = HA_QUERY_SESSION_STATUS; // Function
> Len = sizeof(Buff); // Buffer length
 Rc = 0;
> memset(&Buff, 0x00, sizeof(Buff));// Zero buffer
> Buff.qsst_shortname = 'A'; // Session to query
 hllapi(&Func, (char *)&Buff, &Len, &Rc); // Execute function

> SessType = Buff.qsst_sestype; // Get session type
 ...

Host Automation Scenarios
The sample scenarios presented here provide conceptual information about activities that can be facilitated by using

EHLLAPI. The scenarios deal with the duties your EHLLAPI programmed operator can perform in these areas:

• Host system operation, including:

◦ Search function

◦ Sending keystrokes

• Distributed processing, including:

◦ Data extraction

◦ File transfer

• Integrating interfaces

Scenario 1. A Search Function
There are four phases in a typical host system transaction:

1. Starting the transaction

2. Waiting for the host system to respond

3. Analyzing the response to see if it is the expected response

4. Extracting and using the data from the response

Your programmed operator can use a series of EHLLAPI functions to mimic these actions. After determining the

correct starting point for the host system transaction, the programmed operator can call the Search Presentation

Space (6) function to determine which keyword messages or prompting messages are on the display screen.

Next, the programmed operator can use the Send Key (3) function to type data into a host system session and enter a

host system transaction. Then the programmed operator can:

531

HCL Z and I Emulator for Windows (ENGLISH)

532

• Use the Wait (4) function Wait (4) that waits for the X CLOCK, X [], or X SYSTEM condition to end (or returns a

keyboard-locked condition if the terminal has locked up).

If the keyboard is inhibited, your EHLLAPI program can call the Copy OIA (13) function to get more information

about the error condition. Copy OIA (13)

• Use the Search Presentation Space (6) function Search Presentation Space (6) to look for an expected keyword to validate that the proper

response had been received.

• Use the Copy Presentation Space to String (8) function Copy Presentation Space to String (8) (or any of several data access functions) to extract

the desired data.

The Search Presentation Space (6) function is critical to simulate another task of the terminal operator. Some host

systems do not stay locked in X CLOCK, X [], or X SYSTEM mode until they respond; instead, they quickly unlock the

keyboard and allow the operator to stack other requests. In this environment, the terminal operator depends on some

other visual prompt to know that the data has returned (perhaps a screen title or label). The Search Presentation

Space (6) function allows your EHLLAPI program to search the presentation space while waiting. Also, while waiting

for a response, calling the Pause (18) function allows other DOS sessions Pause (18) to share the central processing unit

resource. The Pause (18) function has an option that allows your EHLLAPI program to wait for a host system update

event to occur.

If no host system event occurs after a reasonable time-out period, your EHLLAPI program could call a customized

error message such as:

No Response From Host. Retry?

In this environment, program revisions become very important considerations, because the programmed operator

must be reprogrammed for even minor changes in the display messages.

For example, if a terminal operator expects the message:

Enter Part Number:

as a prompt, he or she will probably be able to respond properly to an application change that produces the message:

Enter Component Number:

However, because the programmed operator is looking for a literal keyword string, subtle changes in message syntax,

even as trivial as uppercase versus lowercase, can make the program take a preprogrammed error action.

Scenario 2. Sending Keystrokes
There are several considerations that demand attention in designing programs that send keystrokes to the host

system. In some application environments, issuing a command is as simple as typing a string and pressing Enter.

Other applications involve more complex formatted screens in which data can be entered into any one of several

fields. In this environment you must understand the keystrokes required to fill in the display screen.

The Tab key mnemonic (@T; see General on page 526 for a full list of mnemonics) can be used to skip between

fields. When sending keystrokes to a field using the Send Key (3) function, you should be aware of the field lengths

and contents. If you fill the fields completely presentation spacecursor movement cursor movement and the next attribute byte is autoskip, your cursor will then be moved to

the next field. If you then issued a tab, you would skip to yet another field.

Chapter 2. Product Documentation

Likewise, if your keystrokes do not completely fill the field, there might be data left from prior input. You should use

the Erase End of Field (EOF) command to clear this residual data.

Scenario 3. Distributed Processing
Some applications fall into the category called collaborative. These applications provide a single end-user interface,

but their processing is performed at two or more different physical locations.

An EHLLAPI application can interact with host system applications by intercepting the communication between the

host system and the terminal user. The host system presentation space is the vehicle used to intercept this data. The

local application can request to be notified each time the presentation space is updated or whenever an AID key is

pressed by the operator.

This workstation application can then cooperate with a host system application in any of the following ways:

• On a field or presentation space basis using either the copy functions that address fields (Copy String to

Field (33) function or Copy Field to String (34) function) or the functions that let you copy from and into

presentation spaces (for example, Copy String to Presentation Space (15) function or Copy Presentation

Space to String (8) function).Copy String to Field (33)Copy Field to String (34)

• On a keystroke basis, using the Send Key (3) function.

• On a file basis, for large blocks of data. You can have your application use the EHLLAPI file transfer capability

(using Send File (90) function or Receive File (91) function) to transfer data or functions (such as load

modules) and have it processed locally or remotely.Send File (90)generalReceive File (91)general

Scenario 4. File Transfer
In this scenario, assume that you want to automate a file transfer:

• You could begin by using the procedure discussed in the search scenario earlier to log on to a host system

session.

• Instead of using one of the copy functions (which are inefficient for copying many screens of data), your

EHLLAPI program could call file transfer functions Send File (90) and Receive File (91) to transfer data.

• Upon successful completion:

◦ If the Send File (90) function finished executing, your EHLLAPI program could submit a batch job using

either a copy function or the Send Key (3) function before logging off.

◦ If the Receive File (91) function finished executing, your EHLLAPI program could start up a local

application.

Scenario 5. Automation
An application can provide all the keystrokes for another application or can intersperse keystrokes to the target

destination with those from the keyboard. Sometimes, to do this, Reserve (11) Release (12) the application must lock out other sources of

533

HCL Z and I Emulator for Windows (ENGLISH)

534

keystroke input that might be destined for a target application or presentation space (using the Reserve (11) function)

and the later unlock it (using the Release (12) function).

The origin of keystrokes presented to any application is determined by the design of the application. Keystrokes can

originate from:

• The keyboard

• Data integrated into the source application

• Secondary storage retrieved through the DOS interface

• The Z and I Emulator for Windows interface

In all cases the keystrokes that are provided to the target application are indistinguishable from the ordinary operator

input.

Scenario 6. Keystroke Filtering
An application that acts as a filter can intercept a keystroke coming from EHLLAPI (either from the keyboard or a

source application) that is targeted for another destination. The keystroke can then be:

• Ignored (that is, deleted)

• Redirected to another application

• Validated

• Converted (for example, uppercase to lowercase)

• Enhanced (through keyboard macros)

Figure 11: Keystroke Flow on page 535 provides a simplified representation of the keystroke flow and the objects

within a keyboard enhancement environment.

Chapter 2. Product Documentation

Figure 11. Keystroke Flow

Scenario 7. Keyboard Enhancement
This scenario makes use of filtering to create an enhancer application program. An enhancer application program

is one that monitors the data coming in from the keyboard and changes it in some specified way. Typically, these

application programs use instructions called keyboard macros, which tell them what keystrokes to look for and

what changes to make. The change might involve suppressing a keystroke (so it appears to the target application

as though it was never sent), replacing a keystroke with another, or replacing single keystroke with a series of

keystrokes.

To do this using EHLLAPI, you might construct this scenario:

1. Your EHLLAPI application program calls the Connect Presentation Space (1) function to connect to the

presentation space whose keystrokes are to be filtered.

2. Your EHLLAPI program next calls the Start Keystroke Intercept (50) function specifying the L option. This

causes all keystrokes to be routed to the filtering application program.

3. The filtering application program can now define a loop in which:

a. The Get Key (51) function intercepts all keystrokes being sent to the target presentation space.

b. The filtering application examines each keystroke and performs a keyboard macro task, such as:

• Abbreviating program commands so that three- or four-keystroke command can be condensed

into a single keystroke

• Customizing commands so that they are easier to remember or consistent with other software

packages

535

HCL Z and I Emulator for Windows (ENGLISH)

536

• Creating boiler plates for contracts or frequently used letters

• Rearranging the keyboard for concurrent applications that use the same keys for differing

functions

For example, the filtering application might convert a key combination such as Alt+Y into a command

to move the cursor to column 35 of the second line in presentation space and write the string “XYZ

Tool Corporation, Dallas, Texas”.

c. If a keystroke is rejected, your EHLLAPI program can cause a beep to be sounded, using the Post

Intercept Status (52) function. Post Intercept Status (52)

4. After your EHLLAPI program exits the filtering loop, Stop Keystroke Intercept (53), you can call the Stop Keystroke Intercept (53) function to end the filtering

process.

EHLLAPI Functions
This chapter describes each individual Z and I Emulator for Windows EHLLAPI function in detail and explains how to

use the EHLLAPI program sampler. The functions are arranged alphabetically by name. The functions are explained

for both the standard and enhanced interfaces.

Note: Throughout this chapter WinHLLAPI, IBM® Standard 32-bit HLLAPI and 16-bit EHLLAPI are referred to

as Standard Interface, and IBM® Enhanced 32-bit EHLLAPI is referred to as Enhanced Interface.

Page Layout Conventions
All EHLLAPI function calls are presented in the same format so that you can quickly retrieve the information you need.

The format is:

• Function Name (Function Number)

◦ Prerequisite Calls

◦ Call Parameters

◦ Return Parameters

◦ Notes on Using This Function

Prerequisite Calls
“Prerequisite Calls” lists any calls that must be made prior to calling the function being discussed. function callsprerequisite calls prerequisite calls, general

Chapter 2. Product Documentation

Call Parameters
“Call Parameters” lists the parameters that must be defined in your program to call the discussed EHLLAPI function

and explains how those parameters are to be defined. If a parameter is never used by a function, then NA (not

applicable) is listed. If a parameter can be overridden by certain values of session parameters defined with calls to

the Set Session Parameters (9) function, such session parameters are named.

Return Parameters
“Return Parameters” lists the parameters that must be received by your program after a call to the discussed EHLLAPI

function and explains how to interpret those parameters.

Notes on Using This Function
“Notes on Using This Function” lists any session options that affect the function under discussion. It also provides

technical information about using the function and application development tips.

Summary of EHLLAPI Functions
Table 70: EHLLAPI Functions Summary on page 537 is the summary of the EHLLAPI functions:

Table 70. EHLLAPI Functions Summary

Function 3270 5250 VT

Connect Presentation Space (1) on page 546 Yes Yes Yes

Disconnect Presentation Space (2) on page 581 Yes Yes Yes

Send Key (3) on page 634 Yes Yes Yes

Wait (4) on page 667 Yes Yes Yes

Copy Presentation Space (5) on page 564 Yes Yes Yes

Search Presentation Space (6) on page 631 Yes Yes Yes

Query Cursor Location (7) on page 607 Yes Yes Yes

Copy Presentation Space to String (8) on page 569 Yes Yes Yes

Set Session Parameters (9) on page 643 Yes Yes Yes

Query Sessions (10) on page 614 Yes Yes Yes

Reserve (11) on page 627 Yes Yes Yes

Release (12) on page 626 Yes Yes Yes

Copy OIA (13) on page 555 Yes Yes Yes

Query Field Attribute (14) on page 608 Yes Yes Yes

Copy String to Presentation Space (15) on page 575 Yes Yes Yes

Pause (18) on page 600 Yes Yes Yes

Query System (20) on page 616 Yes Yes Yes

537

HCL Z and I Emulator for Windows (ENGLISH)

538

Table 70. EHLLAPI Functions Summary (continued)

Function 3270 5250 VT

Reset System (21) on page 628 Yes Yes Yes

Query Session Status (22) on page 612 Yes Yes Yes

Start Host Notification (23) on page 657 Yes Yes Yes

Query Host Update (24) on page 611 Yes Yes Yes

Stop Host Notification (25) on page 665 Yes Yes Yes

Search Field (30) on page 629 Yes Yes Yes

Find Field Position (31) on page 587 Yes Yes Yes

Find Field Length (32) on page 585 Yes Yes Yes

Copy String to Field (33) on page 573 Yes Yes Yes

Copy Field to String (34) on page 551 Yes Yes Yes

Copy Presentation Space to Clipboard (35) on page 576 Yes Yes Yes

Paste Clipboard to Presentation Space (36) on page 578 Yes Yes Yes

Set Cursor (40) on page 642 Yes Yes Yes

Start Close Intercept (41) on page 653 Yes Yes Yes

Query Close Intercept (42) on page 604 Yes Yes Yes

Stop Close Intercept (43) on page 664 Yes Yes Yes

Query Additional Field Attribute DRB on page 603 No Yes No

Start Keystroke Intercept (50) on page 660 Yes Yes Yes

Get Key (51) on page 589 Yes Yes Yes

Post Intercept Status (52) on page 601 Yes Yes Yes

Stop Keystroke Intercept (53) on page 666 Yes Yes Yes

Lock Presentation Space API (60) on page 596 Yes No No

Lock Window Services API (61) on page 598 Yes No No

Start Communication Notification (80) on page 655 Yes Yes Yes

Query Communication Event (81) on page 606 Yes Yes Yes

Stop Communication Notification (82) on page 665 Yes Yes Yes

Send File (90) on page 683 Yes Yes No

Receive File (91) on page 624 Yes Yes No

Cancel File Transfer (92) on page 540 Yes Yes Yes

Convert Position or Convert RowCol (99) on page 548 Yes Yes Yes

Connect Window Services (101) on page 547 Yes Yes Yes

Disconnect Window Service (102) on page 582 Yes Yes Yes

Query Window Coordinates (103) on page 618 Yes Yes Yes

Window Status (104) on page 668 Yes Yes Yes

Change Switch List LT Name (105) on page 542 Yes Yes Yes

Change PS Window Name (106) on page 541 Yes Yes Yes

Start Playing Macro (110) on page 663 Yes Yes Yes

Chapter 2. Product Documentation

Table 70. EHLLAPI Functions Summary (continued)

Function 3270 5250 VT

Connect for Structured Fields (120) on page 544 Yes No No

Disconnect from Structured Fields (121) on page 580 Yes No No

Query Communications Buffer Size (122) on page 605 Yes No No

Allocate Communications Buffer (123) on page 539 Yes No No

Free Communications Buffer (124) on page 588 Yes No No

Get Request Completion (125) on page 593 Yes No No

Read Structured Fields (126) on page 619 Yes No No

Write Structured Fields (127) on page 673 Yes No No

Allocate Communications Buffer (123)

3270 5250 VT

Yes No No

The Allocate Communications Buffer function obtains a buffer from the operating system. A buffer address must be

passed on both the Read Structured Fields (126) and Write Structured Fields (127) functions.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 123

Data String See the following table

Length Must be 6 Must be 8

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1–2 1–4 32-bit or 16-bit buffer length. (0 < size ≤ (64 KB-256 bytes)=X'FF00')

3–6 5–8 32-bit allocated buffer address (returned)

539

HCL Z and I Emulator for Windows (ENGLISH)

540

Return Parameters

Return Code Explanation

0 The Allocate Communications Buffer function was successful.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

Notes on Using This Function

1. The EHLLAPI obtains a buffer from the operating system memory management and places the buffer address

into the return parameter string. The requested buffer size (length) is also passed in the parameter string. The

buffer size can be from 1 byte to 64 KB minus 256 bytes (X'FF00' bytes) in length.

See “Query Communications Buffer Size (122)” for information regarding buffer size.

2. Buffers obtained using this function must not be shared among different processes. If this is attempted, the

applications will experience unpredictable results.

3. An EHLLAPI application must issue a Free Communications Buffer (124) function to free the allocated

memory.

4. A maximum of 10 buffers can be allocated to an application. If this limit is reached, a return code for resource

unavailable (RC=11) will be returned.

5. The Reset System (21) function frees buffers allocated by this function.

Cancel File Transfer (92)

3270 5250 VT

Yes Yes Yes

The Cancel File Transfer function causes any current EHLLAPI initiated Send File or Receive File for the specified

session to immediately return.

Prerequisite Calls
Send File (90) or Receive File (91)

Call Parameters

Enhanced Interface

Function Number Must be 92

Data String 1-character short name of the host presentation space. A blank or null indicates re

quest for updates to the host-connected presentation space

Length 4 is implied

Chapter 2. Product Documentation

Enhanced Interface

PS Position NA

The calling data structure contains these elements

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function was called for the

PSID

9 A system error was encountered

Notes on Using This Function
Since both Send File (90) and Receive File (91) are blocking calls, this function must always be issued on a different

thread.

Change PS Window Name (106)

3270 5250 VT

Yes Yes Yes

The Change PS Window Name function allows the application to specify a new name for the presentation space

window or reset the presentation space window to the default name.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 106

Data String See the following table

Length Must be specified (See note.) Must be 68

PS Position NA

541

HCL Z and I Emulator for Windows (ENGLISH)

542

Note: The data string length must be specified (normally 3–63 for PC/3270, 4–63 for PC400, 68 for enhanced

interface).

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2 5 A change request option value, select one of:

• X'01' for changing the presentation space window name.

• X'02' for resetting the presentation space window name.

6–66 An ASCII string of from 1 (for PC/3270) or 2 (for PC400) to 61 bytes in

cluding a terminator byte. The ASCII string must end with a NULL charac

ter. This string must contain at least one non-NULL character followed by

a NULL character.

3–63

67–68 Reserved

Return Parameters

Return Code Explanation

0 The Change PS Window Name function was successful.

1 An incorrect host presentation space short session ID was specified, or the host

presentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function
A string is ended at the first NULL character found. The NULL character overrides the specified string length. If the

NULL character is not at the end of the specified length, the last byte at the specified length is replaced by a NULL

character, and the remainder of the data string is lost. If the NULL character is found before the specified length, the

string is truncated at that point, and the remainder of the data string is lost.

If the application fails to reset the presentation space name before exiting, the exit list processing resets the name.

Chapter 2. Product Documentation

Change Switch List LT Name (105)

3270 5250 VT

Yes Yes Yes

The Change Switch List LT Name function allows the application to change or reset a switch list for a selected logical

terminal (LT). The application must specify on the call the name to be inserted in the switch list.

Note: This is for compatibility with Communication Manager EHLLAPI, and has the same result as the

Change PS Window Name (106) function.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 105

Data String See the following table

Length Normally 4–63 Must be 68

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2 5 A change request option; select:

• X'01' for changing a switch list LT name

• X'02' for resetting a switch list LT name

6–66 An ASCII string of 2 to 61 bytes including a terminator byte. The ASCII

string must end with a NULL character. This string must contain at least

one non-NULL character followed by a NULL character.

3–63

67–68 Reserved

Return Parameters

Return Code Explanation

0 The Change Switch List LT Name function was successful.

543

HCL Z and I Emulator for Windows (ENGLISH)

544

Return Code Explanation

1 An incorrect host presentation space short session ID was specified, or the host

presentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function
A string is ended at the first NULL character found. The NULL character overrides the specified string length. If the

NULL character is not at the end of the specified length, the last byte at the specified length is replaced by a NULL

character, and the remainder of the data string is lost. If the NULL character is found before the specified length, the

string is truncated at that point, and the remainder of the data string is lost.

If the application fails to reset the switch list LT name before exiting, the exit list processing resets the name.

Connect for Structured Fields (120)

3270 5250 VT

Yes No No

The Connect for Structured Fields function allows an application to establish a connection to the emulation program

to exchange structured field data with a host application. The workstation application must provide the Query Reply

data field and must point to it with in the parameter string. The destination/origin ID returned by the emulator will be

returned to the application.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 120

Data String See the following table

Length 7 or 11 Must be 16

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

Chapter 2. Product Documentation

Byte Definition

2–4 Reserved

2–5 5–8 Address of the Query Reply data buffer

9–10 Destination/origin unique ID. (16-bit word, returned)6–7

11–12 Reserved

8–11 13–16 The data in these position is ignored by EHLLAPI. However, no error is

caused if the migrating program has data in these positions. This data is

accepted to provide compatibility with migrating applications.

Return Parameters

Return Code Explanation

0 The Connect for Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid, or the host pre

sentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

10 The function is not supported by the emulation program.

32 An application has already connected to this session for communications (success

ful connect).

39 One DDM session is already connected to this session.

Notes on Using This Function

1. EHLLAPI scans the query reply buffers for the destination/origin ID (DOID) self-defining parameter (SDP) to

determine the contents of the DOID field of the query reply. If this value is X'0000', the emulator will assign

a DOID to the application and EHLLAPI will fill in the DOID field of the query reply with the assigned ID. If the

value specified by the application in the DOID field of the query reply is a nonzero value, the emulator will

assign the specified value as the application’s DOID, assuming that the ID has not been previously assigned. If

the specified DOID is already in use, a return code of 2 will be returned by EHLLAPI.

2. The application should build the Query Reply Data structures in the application’s private memory. Refer to

Query Reply Data Structures Supported by EHLLAPI on page 721, for the detailed formats and usages of the

query reply data structures supported by EHLLAPI.

3. Only cursory checking is performed on the Query Reply Data. Only the ID and the length of the structure are

checked for validity.

4. Only one DDM base type connect is allowed per host session. If the DDM connection supports the self-

defining parameter (SDP) for the destination origin ID (DOID), then multiple connects are allowed.

5. If return code RC=32 or RC=39 is received, an application is already connected to the selected session and

use of that presentation space should be approached with caution. Conflicts with file transfer, and other

EHLLAPI applications might result.

545

HCL Z and I Emulator for Windows (ENGLISH)

546

Connect Presentation Space (1)

3270 5250 VT

Yes Yes Yes

The Connect Presentation Space function establishes a connection between your EHLLAPI application program and

the host presentation space.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 1

Data String 1-character short name of the host presentation space

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters
The Connect Presentation Space function sets the return code to indicate the status of the attempt and, if successful,

the status of the host presentation space.

Return Code Explanation

0 The Connect Presentation Space function was successful; the host presentation

space is unlocked and ready for input.

1 An incorrect host presentation space ID was specified. The specified session either

does not exist or is a logical printer session. This return code could also mean that

the API Setting for EHLLAPI is not set on.

4 Successful connection was achieved, but the host presentation space is busy.

5 Successful connection was achieved, but the host presentation space is locked (in

put inhibited).

9 A system error was encountered.

Chapter 2. Product Documentation

Return Code Explanation

11 This resource is unavailable. The host presentation space is already being used by

another system function.

Notes on Using This Function

1. The Connect Presentation Space function is affected by the CONLOG/CONPHYS session option. Connect Presentation Space (1)functions where not required

2. An EHLLAPI application cannot be connected to multiple presentation spaces concurrently. Calls requiring the

Connect Presentation Space function as a prerequisite use the currently connected presentation space. For

example, if an application is connected to presentation space A, B, and C in that order, the application must

connect to B or A again to issue functions.

3. Each thread that requests a Connect Presentation Space must have a corresponding Disconnect

Presentation Space (2), or one of the threads must issue a Reset System (21), which affects all threads and

disconnects any remaining connections.

4. More than one EHLLAPI application can share a presentation space, if the applications support sharing (that

is, if they were developed to work together and if they exhibit predictable behavior) and have compatible read/

write access and keyword options as set in the Set Sessions Parameters (9) function. For more information,

see Set Session Parameters (9) on page 643.

5. Because the Connect Presentation Space and Start Keystroke Intercept (50) functions share common

subsystem functions, successful requests by an application to share either of these functions for the same

session can affect the request of these two functions by other applications. For example, if application

A successfully requests a Connect Presentation Space for a session with Write_Read access and KEY

$abcdefgh as the keyword, a request by application B to Connect Presentation Space for a session and Start

Keystroke Intercept is successful only if both applications have set compatible read/write options.

6. You cannot connect to a session that is defined as a logical printer session. Refer to Administrator's Guide

and Reference for more information.

Connect Window Services (101)

3270 5250 VT

Yes Yes Yes

The Connect Window Services function allows the application to manage the presentation space windows. Only one

EHLLAPI application at a time can be connected to a presentation space for window services.

An EHLLAPI application can connect to more than one presentation space concurrently for window services.

Prerequisite Calls
There are no prerequisite calls for this function.

547

HCL Z and I Emulator for Windows (ENGLISH)

548

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 101

Data String 1-character short session ID of the host presentation space

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Connect Window Services function was successful.

1 An incorrect host presentation space short session ID was specified, or the Ses

sions Window Services manager was not connected. This return code could also

mean that the API Setting for EHLLAPI is not set on.

9 A system error occurred.

10 The function is not supported by the emulation program.

11 This resource is unavailable. The host presentation space is already being used by

another system function.

Notes on Using This Function

1. An EHLLAPI application can be connected to multiple presentation space windows at the same time. The

application can go back and forth between the connected presentation space windows without having to

disconnect. For example, if an application is connected to presentation space windows A, B, and C, the

application can access all of A, B, and C at the same time, and the other applications cannot access A, B, or C.

2. A Connect Window Services function is sufficient for the process. However, each thread that requests

a Connect Window Services must have a corresponding Disconnect Window Services (102), or one of

the threads must issue a Reset System (21), which affects all threads and disconnects any remaining

connections.

Chapter 2. Product Documentation

Convert Position or Convert RowCol (99)

3270 5250 VT

Yes Yes Yes

The Convert Position or Convert RowCol function converts the host presentation space positional value into the

display row and column coordinates or converts the display row and column coordinates into the host presentation

space positional value. This function does not change the cursor position.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 99

Data String Host presentation space short name and P for the Convert Position func

tion (for example, AP converts the presentation space position of session

A); or Host presentation space short name and R for the Convert RowCol

function (for example, AR converts the row and column coordinates of ses

sion A).

Length Row, when R is specified as the second character in the data string para

meter. The lower limit for valid input is 1. The upper limit for valid input de

pends on how your host presentation space is configured. See Notes on

Using This Function on page 551.

NA when P is specified as the second character in the data string parame

ter.

PS Position Column, when R is specified as the second character in the data string pa

rameter. The lower limit for valid input is 1. The upper limit for valid input

ranges from 24 to 43 depending on how your host presentation space is

configured. See Notes on Using This Function on page 551.

Host presentation space position, when P is specified as the second char

acter in the data string parameter. The lower limit for valid input is 1. The

upper limit for valid input ranges from 1920 to 3564 depending on how

your host presentation space is configured. See Notes on Using This Func

tion on page 551.

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

549

HCL Z and I Emulator for Windows (ENGLISH)

550

Byte Definition

2–4 Reserved

5 Convert option P or R2

6–8 Reserved

Return Parameters
This function returns a length and a return code.

Length:

For the Convert Position function (P as the second character in the calling data string), a number

between 1 and 43 (for PC/3270) or 27 (for PC400) is returned. This value is the number of the row that

contains the PS position contained in the calling PS position parameter. The upper limit can be smaller

than 43 (for PC/3270) or 27 (for PC400) depending on how the host presentation space is configured.

For the Convert RowCol function (R as the second character in the calling data string), a value of 0

indicates an error in the input value for row (calling length parameter).

Return Code:

The Convert Position or RowCol function is the exception to the rule that the fourth return parameter

always contains a return code. For this function, the value returned in the fourth parameter is called

a status code. This status code can contain data or a return code. Your application must provide for

processing of this status code to prevent unpredictable results or an error.

• If the value of the fourth parameter is 0, 9998, or 9999, it is a return code.

• For the Convert Position function (P as the second character of the calling data string), a value

in the range of 1–132 is the number of the column that contains the PS position passed in the

calling PS Position parameter. The upper limit can be smaller than 132 depending on how the

host presentation space is configured.

• For the Convert RowCol function (R as the second character of the calling data string), a value

in the range of 1–3564 represents the host presentation space position that corresponds to the

row and column values passed in the calling length and PS position parameters, respectively.

The upper limit can be smaller than 3564 depending on how the host presentation space is

configured.

The following status codes are defined:

Status Code Explanation

0 This is an incorrect PS position or column.

>0 This is the PS position or column.

9998 An incorrect host presentation space ID was specified or a system error occurred.

9999 Character 2 in the data string is not P or R.

Chapter 2. Product Documentation

Notes on Using This Function

1. To configure your presentation space, refer to Administrator's Guide and Reference

2. To find out how many rows and columns are in your presentation space, examine the returned data string

parameter for the Query Session Status (22) function. See Query Session Status (22) on page 612.

Copy Field to String (34)

3270 5250 VT

Yes Yes Yes

The Copy Field to String function transfers characters from a field in the host-connected presentation space into a

string.

The Copy Field to String function translates the characters in the host source presentation space into American

National Standard Code for Information Interchange (ASCII). Attribute bytes and other characters attribute bytes not represented in

ASCII normally are translated into blanks.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 34

Data String Preallocated target data string. When the Set Session Parameters (9)

function with Extended Attribute Bytes (EAB) option is issued, the length of

the data string must be at least twice the length of the field.

Length Number of bytes to copy (the length of the data string).

PS Position Identifies the target field. This can be the PS position of any byte within the

target field. Copy always starts at the beginning of the field.

Return Parameters
This function returns a data string, length, and a return code.

Data String:

A string containing data from the identified field in the host presentation space. The first byte in the

returned data string is the beginning byte of the identified field in the host presentation space. The

number of bytes in the returned data string is determined by the smaller of:

551

HCL Z and I Emulator for Windows (ENGLISH)

552

• Number of bytes specified in the calling length parameter

• Number of bytes in the identified field in the host presentation space

Length:

The length of the data returned.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Copy Field to String function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

6 The data to be copied and the target field are not the same size. The data is truncat

ed if the string length is smaller than the field copied.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function

1. The field position and length information can be found by using the Find Field Position (31) and Find Field

Length (32) functions. The Copy Field to String function can be used with either protected or unprotected

fields, but only in a field-formatted host presentation space. 31, Find Field Position 32, Find Field Length Find Field Length (32) Find Field Position (31) presentation spacefield-formatted field-formatted PS

2. The copy is ended when one of the following conditions is encountered:

• When the end of the field is reached

• When the length of the target string is exceeded

3. An EAB can be returned when the Set Session Parameters (9) function EAB option is used. EAB is related to

each character in the presentation space and is returned preceding each character.

4. The Copy Field to String function is affected by the ATTRB/NOATTRB/NULLATTRB, the EAB/NOEAB, the XLATE/NOXLATE,

the DISPLAY/NODISPLAY, the DISPLAY/NODISPLAY session options. Refer to items 5 on page 646; 13 on

page 649 and 14 on page 650; 17 on page 650; and and for more information.

As previously stated, the return of attributes by the various Copy (5, 8, and 34) functions is affected by the Set

Session Parameters (9) function. The involved set session parameters have the following effect:

Set Session Parameter

Effect on the COPY Function

NOEAB and NOEAD

Attributes are not returned. Only text is copied from the presentation space to the user buffer.

EAB and NOXLATE

Attributes are returned as defined in the following tables.

Chapter 2. Product Documentation

EAB and XLATE

The colors used for the presentation space display are returned. Colors can be remapped; so the

attribute colors are not the ones returned by the COPY functions when XLATE and EAB are on at

the same time.

The returned character attributes are defined in the following tables. The attribute bit positions are in IBM®

format with bit 0 the left most bit in the byte.

3270 character attributes are returned from the host to the emulator. The following table applies when EAB

and NOXLATE are set.

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

2–4 Character color (Color remap can override this color definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–6 Character attributes

00 = Default value

7 Reserved

5250 character attributes are returned from the host to the emulator. The following table applies when EAB

and NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

1 Underline

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

553

HCL Z and I Emulator for Windows (ENGLISH)

554

Bit Position Meaning

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

The following table shows Z and I Emulator for Windows character color attributes. The following table

applies when EAB and XLATE are set.

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

Chapter 2. Product Documentation

For a PS/2® monochrome display, the characters in the application (workstation) session appear as various

shades of gray. This is required to give users their remapped colors in the EHLLAPI application session so

they can get what they see in their host application presentation spaces.

5. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. Refer

to Memory Allocation on page 515 for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on the status bar. By EXTEND_PS option, an EHLLAPI application can use the

same interface with Communication Manager EHLLAPI and valid presentation space is extended when this

condition occurs.

Copy OIA (13)

3270 5250 VT

Yes Yes Yes

The Copy OIA function returns the current operator information area (OIA) data from the host-connected presentation

space.

The OIA is located under the bottom dividing line of the screen and is used to display session status information

about the connection between the workstation and the host.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 13

Data String Preallocated target data string

Length 103 104

PS Position NA

Return Parameters
This function returns a data string and a return code.

555

HCL Z and I Emulator for Windows (ENGLISH)

556

Data String:

A 103-byte string for 16-bit and 104-byte string for 32-bit. See Format of the Returned OIA Data String on

page 556 for more information.

Return Code:

The following codes are defined:

Return Code Explanation

0 OIA data is returned. The target presentation space is unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length. OIA data was not returned.

4 OIA data is returned. The target presentation space is busy.

5 OIA data is returned. The target presentation space is locked. (Input inhibited)

9 An internal system error was encountered. OIA data was not returned.

Notes on Using This Function

1. The OIA Group consists of the bits that show the status of the connected sessions. The group is categorized

by the represented host function. (For example, Group 8 consists of the bits that show all conditions of the

input inhibit in the session.) The states of each group are ordered so that the high-order bits represent the

indicators of higher priority. That is, bit 7 has priority over bit 0. Therefore, if more than one state is active

within a group, the state with the highest priority is the active state within that group.

2. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. Refer

to Memory Allocation on page 515 for more information.

Format of the Returned OIA Data String
The OIA data string contains the following information:

Byte Definition

Standard Enhanced

1 1 The OIA format byte. The value is 1 (PC/3270), 9 (PC400), or 5 (VT).

2–81 2–81 The OIA image in the host code points.

82–103 OIA group indicator meanings.82–103

104 Reserved.

PC/3270 OIA Group Indicator Meanings and Its Image
The OIA image group consists of an 80-byte ASCII character string with no attribute bytes that contains the OIA image

in host code points. Figure 12: Host Presentation Space Characters on page 558 shows the hexadecimal codes presentation

Chapter 2. Product Documentation

spacecharacter table found in the host presentation space, and the characters they represent. The returned data can be translated into OIA

graphics characters. Refer to Quick Beginnings for information on the OIA indicators.

To translate the returned data into OIA graphics characters, proceed as follows:

1. Print the data returned in bytes 2 through 81 to the screen or to a printer.

2. Using the code page chart applicable to the device on which the output appears, find the hexadecimal value

corresponding to each character.

3. Using Figure 12: Host Presentation Space Characters on page 558, find the OIA graphics character

corresponding to each hexadecimal value found in step 2.

Note: Group 8 (byte 0) machine, communications, and program check images are followed by a three-digit

number related to the type of check.

The short session ID followed by X'20' is in column 7.

All group images are represented by Main Frame Interactive (MFI) hex code points.

557

HCL Z and I Emulator for Windows (ENGLISH)

558

Note: The OIA image data string position minus 1 position equals the OIA column.

Figure 12. Host Presentation Space Characters

• Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning

0–1 Reserved

2 SSCP-LU session owns screen

3 LU-LU session owns screen

4 Online and not owned

Chapter 2. Product Documentation

Bit Meaning

5 Subsystem ready

6–7 Reserved

• Group 2 (Offset 83): Character Selection

Bit Meaning

0 Reserved

1 APL

3 Alphanumeric

4–5 Reserved

• Group 3 (Offset 84): Shift State

Bit Meaning

0 Upper shift

1 Numeric

2 CAPS

3–7 Reserved

• Group 4 (Offset 85): PSS Group 1

Bit Meaning

0–7 Reserved

• Group 5 (Offset 86): Highlight Group 1

Bit Meaning

0 Operator selectable

1 Field inherit

2–7 Reserved

• Group 6 (Offset 87): Color Group 1

Bit Meaning

0 Operator selectable

1 Field inherit

2–7 Reserved

• Group 7 (Offset 88): Insert

Bit Meaning

0 Insert mode

1–7 Reserved

• Group 8 (Offset 89–93): Input Inhibited (5 bytes)

◦ Byte 1 (Offset 89)

Bit Meaning

0 Non-resettable machine check

559

HCL Z and I Emulator for Windows (ENGLISH)

560

Bit Meaning

1 Reserved

2 Machine check

3 Communications check

4 Program check

5–7 Reserved

◦ Byte 2 (Offset 90)

Bit Meaning

0 Device busy

1 Terminal wait

2 Minus symbol

3 Minus function

4 Too much entered

5–7 Reserved

◦ Byte 3 (Offset 91)

Bit Meaning

0–2 Reserved

3 Incorrect dead key combination, limited key.

4 Wrong place

5–7 Reserved

◦ Byte 4 (Offset 92)

Bit Meaning

0–1 Reserved

2 System wait

3–7 Reserved

◦ Byte 5 (Offset 93)

Bit Meaning

0–7 Reserved

• Group 9 (Offset 94): PSS Group 2

Bit Meaning

0–7 Reserved

• Group 10 (Offset 95): Highlight Group 2

Bit Meaning

0–7 Reserved

• Group 11 (Offset 96): Color Group 2

Chapter 2. Product Documentation

Bit Meaning

0–7 Reserved

• Group 12 (Offset 97): Communication Error Reminder

Bit Meaning

0-6 Communications error

1–7 Reserved

• Group 13 (Offset 98): Printer State

Bit Meaning

0–7 Reserved

• Group 14 (Offset 99): Graphics

Bit Meaning

0–7 Reserved

• Group 15 (Offset 100): Reserved

• Group 16 (Offset 101): Automatic Key Play/Record State

Bit Meaning

0–7 Reserved

• Group 17 (Offset 102): Automatic Key Quit/Stop State

Bit Meaning

0–7 Reserved

• Group 18 (Offset 103): Expanded State

Bit Meaning

0–7 Reserved

PC400 OIA Group Indicator Meanings and Its Image
Details of the OIA group are listed in the following tables.

• Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning Beginning Position of Data String

0–2 Reserved

3 System available 1

4 Reserved

5 Subsystem ready

6–7 Reserved

• Group 2 (Offset 83): Character Selection

561

HCL Z and I Emulator for Windows (ENGLISH)

562

Bit Meaning Beginning Position of Data String

0–1 Reserved

3 Alphanumeric

4–5 Reserved

• Group 3 (Offset 84): Shift State

Bit Meaning Beginning Position of Data String

0 Reserved

1 Keyboard shift 39

2 CAPS

3–6 Reserved

• Group 4 (Offset 85): PSS Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 5 (Offset 86): Highlight Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 6 (Offset 87): Color Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 7 (Offset 88): Insert

Bit Meaning Beginning Position of Data String

0 Insert mode 68

1–7 Reserved

• Group 8 (Offset 89–93): Input Inhibited (5 bytes)

◦ Byte 1 (Offset 89)

Bit Meaning Beginning Position of Data String

0–7 Reserved

◦ Byte 2 (Offset 90)

Bit Meaning Beginning Position of Data String

0–7 Reserved

◦ Byte 3 (Offset 91)

Bit Meaning Beginning Position of Data String

0–4 Reserved

5 Operator input error 64

6–7 Reserved

Chapter 2. Product Documentation

◦ Byte 4 (Offset 92)

Bit Meaning Beginning Position of Data String

0–1 Reserved

2 System wait 64

3–7 Reserved

◦ Byte 5 (Offset 93)

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 9 (Offset 94): PSS Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 10 (Offset 95): Highlight Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 11 (Offset 96): Color Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 12 (Offset 97): Communication Error Reminder

Bit Meaning Beginning Position of Data String

0 Communications Error

1–5 Reserved

7 Message wait 3

• Group 13 (Offset 98): Printer State

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 14 (Offset 99): Graphics

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 15 (Offset 100): Reserved

• Group 16 (Offset 101): Automatic Key Play/Record State

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 17 (Offset 102): Automatic Key Quit/Stop State

563

HCL Z and I Emulator for Windows (ENGLISH)

564

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 18 (Offset 103): Expanded State

Bit Meaning Beginning Position of Data String

0–7 Reserved

VT Host OIA Group Indicator Meanings and Its Image
Details of the VT Host OIA group are listed in the following tables.

• Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning

5 Subsystem ready

• Group 2 (Offset 83): Character Selection

Bit Meaning

0 Upper shift

2 CAPS

• Group 7 (Offset 88): Insert

Bit Meaning

0 Insert mode

Some columns on the OIA line display different messages for VT than those messages displayed for 3270/5250. See

the following table for specific details.

Column Symbol

VT220 7

VT220 8

VT100

VT52

1–7

VTANSI

9 - 12 LOCK

61 - 64 HOLD

Copy Presentation Space (5)

3270 5250 VT

Yes Yes Yes

Chapter 2. Product Documentation

The Copy Presentation Space function copies the contents of the host-connected presentation space into a data

string that you define in your EHLLAPI application program.

The Copy Presentation Space function translates the characters in the host source presentation space into ASCII.

Attribute bytes and other characters not represented in ASCII normally are translated into blanks. If you do not want

the attribute bytes translated into blanks, you can override this translation with the ATTRB option under the Set

Session Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 5

Data String Preallocated target string the size of your host presentation space. This

can vary depending on how your host presentation space is configured.

When the Set Session Parameters (9) function with the EAB option is is

sued, the length of the data string must be at least twice the length of the

presentation space.

Length NA (the length of the host presentation space is implied).

PS Position NA.

Return Parameters
This function returns a data string, length, and a return code.

Data String:

Contents of the connected host presentation space.

Length:

Length of the data copied.

Return Code:

The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the application program. The

target presentation space was active, and the keyboard was unlocked.

1 Your program is not connected to a host session.

4 The host presentation space contents were copied. The connected host presenta

tion space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

565

HCL Z and I Emulator for Windows (ENGLISH)

566

Return Code Explanation

9 A system error was encountered.

Notes on Using This Function

1. An EAB can be returned when the Set Session Parameters (9) function EAB option is used. EAB is related to

each character in the presentation space and is returned preceding each character.

2. The Copy Presentation Space function is affected by the following session options:

• ATTRB/NOATTRB/NULLATTRB

• EAB/NOEAB

• XLATE/NOXLATE

• BLANK/NOBLANK

• DISPLAY/NODISPLAY

• EXTEND_PS/NOEXTEND_PS

Refer to items 5 on page 646; 13 on page 649, 14 on page 650, 15 on page 650 and 17 on page 650; and

and for more information.

If the target data string provided is not long enough to hold the requested data, unpredictable results can occur.

As previously stated, the return of attributes by the various Copy (5, 8, and 34) functions is affected by the Set

Session Parameters (9) function. The involved set session parameters have the following effect:

Set Session Parameter

Effect on the COPY Function

NOEAB and NOEAD

Attributes are not returned. Only text is copied from the presentation space to the user buffer.

EAB and NOXLATE

Attributes are returned as defined in the following tables.

EAB and XLATE

The colors used for the presentation space display are returned. Colors can be remapped; so the

attribute colors are not the ones returned by the Copy functions when XLATE and EAB are on at the

same time.

NOSO/SPACESO/SO

When NOSO is specified, it works as SPACESO. The size of the presentation space is not changed.

The returned character attributes are defined in the following tables. The attribute bit positions are in IBM® format

with bit 0 the left most bit in the byte.

3270 character attributes are returned from the host to the emulator. The following table applies when EAB and

NOXLATE are set.

Chapter 2. Product Documentation

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

2–4 Character color (Color remap can override this color definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–6 Character attribute

00 = Default value

7 Reserved

5250 character attributes are returned from the host to the emulator. The following table applies when EAB and

NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

1 Underline

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

567

HCL Z and I Emulator for Windows (ENGLISH)

568

The following table shows Z and I Emulator for Windows character color attributes. The following table applies when

EAB and XLATE are set.

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

For a PS/2® monochrome display, the characters in the application (workstation) session appear as various shades

of gray. This is required to give users their remapped colors in the EHLLAPI application session so they can get what

they see in their host application presentation spaces.

If you want to copy only a portion of the host presentation space, use the Copy Presentation Space to String (8)

function.

To use this function, preallocate memory to receive the returned data string parameter. The statements required

to preallocate this memory vary depending on the language in which your application is written. Refer to Memory

Allocation on page 515 for more information.

Chapter 2. Product Documentation

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Copy Presentation Space to String (8)

3270 5250 VT

Yes Yes Yes

The Copy Presentation Space to String function is used to copy all or part of the host-connected presentation space

into a data string that you define in your EHLLAPI application program.

The input PS position is the offset into the host presentation space. This offset is based on a layout in which the

upper-left corner (row 1/column 1) is location 1 and the bottom-right corner is 3564, which is the maximum screen

size for the host presentation space. The value of PS Position + (Length – 1) cannot exceed the configured size of

your host presentation space.

The Copy Presentation Space to String function translates the characters in the host source presentation space into

ASCII. Attribute bytes and other characters not represented in ASCII normally are translated into blanks. If you do not

want the attribute bytes translated into blanks, you can override this translation with the ATTRB option under the Set

Session Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1).

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 8

Data String Preallocated target string the size of your host presentation space. When

the Set Session Parameters (9) function with the EAB option is issued, the

length of the data string must be at least twice the length of the presenta

tion space.

Length Length of the target data string.

PS Position Position within the host presentation space of the first byte in your target

data string.

569

HCL Z and I Emulator for Windows (ENGLISH)

570

Return Parameters
This function returns a data string and a return code.

Data String:

Contents of the host presentation space.

Return Code:

The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the application program. The

target presentation space was active, and the keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of (Length - 1) + PS posi

tion is greater than the size of the connected host presentation space.

4 The host presentation space contents were copied. The host presentation space

was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function

1. An EAB can be returned when the Set Session Parameters (9) function EAB option is used. EAB is related to

each character in the presentation space and is returned following each character.

2. The Copy Presentation Space to String function is affected by the following options:

• ATTRB/NOATTRB/NULLATTRB

• EAB/NOEAB

• XLATE/NOXLATE

• BLANK/NOBLANK

• DISPLAY/NODISPLAY

• EXTEND_PS/NOEXTEND_PS

Refer to items 5 on page 646; 13 on page 649 and 14 on page 650; 15 on page 650; 17 on page 650;

and and

If the target data string provided is not large enough to hold the requested number of bytes, the copy ends

successfully (RC=0, 4, or 5) when the end of the target data string is reached.

As previously stated, the return of attributes by the various Copy (5, 8, and 34) functions is affected by the Set

Session Parameters (9) function. The involved set session parameters have the following effect:

Set Session Parameter

Effect on the Copy Function

Chapter 2. Product Documentation

NOEAB and NOEAD

Attributes are not returned. Only text is copied from the presentation space to the user buffer.

EAB and NOXLATE

Attributes are returned as defined in the following tables.

EAB and XLATE

The colors used for the presentation space display are returned. Colors can be remapped, so the

attribute colors are not the ones returned by the Copy functions when XLATE and EAB are on at

the same time.

The returned character attributes are defined in the following tables. The attribute bit positions are in IBM

format with bit 0 the left most bit in the byte.

• 3270 character attributes are returned from the host to the emulator. The following table applies when

EAB and NOXLATE are set.

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

2–4 Character color (Color remap can override this color

definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–7 Reserved

• 5250 character attributes are returned from the host to the emulator. The following table applies when

EAB and NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

1 Underline

571

HCL Z and I Emulator for Windows (ENGLISH)

572

Bit Position Meaning

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

• VT character attributes are returned from the host to the emulator. The following table applies when

EAB and NOXLATE are set.

Bit Position Meaning

0-3 Reserved

4 Bold

1 = On

0 = Off

5 Underscore

1 = On

1 = Off

6 Blink

1 = On

0 = Off

7 Reverse

0 = On

1 = Off

• The following table shows Z and I Emulator for Windows character color attributes. The following table

applies when EAB and XLATE are set.

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

Chapter 2. Product Documentation

Bit Position Meaning

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

For a PS/2 monochrome display, the characters in the application (workstation) session appear as various

shades of gray. This is required to give users their remapped colors in the EHLLAPI application session so

they can get what they see in their host application presentation spaces.

3. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. Refer

to Memory Allocation on page 515 for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Copy String to Field (33)

3270 5250 VT

Yes Yes Yes

The Copy String to Field function transfers a string of characters into a specified field in the host-connected

presentation space. This function can be used only in a field-formatted host presentation space.

573

HCL Z and I Emulator for Windows (ENGLISH)

574

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 33

Data String String containing the data to be transferred to a target field in the host pre

sentation space.

Length Length, in number of bytes, of the source data string. Overridden if in EOT

mode.

PS Position Identifies the target field. This can be the PS position of any byte within the

target field. Copy always starts at the beginning of the field.

Return Parameters

Return Code Explanation

0 The Copy String to Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target field was protected or inhibited, or incorrect data was sent to the target

field (such as a field attribute).

6 Copy was completed, but data is truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function

1. The Copy String to Field function is affected by the following options:

• STRLEN/STREOT

• EOT

• EAB/NOEAB

• XLATE/NOXLATE

• PUTEAB/NOPUTEAB

Refer to items 1 on page 645 and 2 on page 645; 13 on page 649 and 14 on page 650; 18 on

page 650; and and for more information.

2. The string to be transferred is specified with the calling data string parameter. The string ends when one of

these three conditions is encountered:

Chapter 2. Product Documentation

• When an end-of-text (EOT) delimiter is encountered in the string if EOT mode was selected using the

Set Session Parameters (9) function. (See Set Session Parameters (9) on page 643).

• When the number specified in the length is reached if not in EOT mode.

• When an end-of-field is encountered in the field.

Note: If the field at the end of the host presentation space wraps, wrapping occurs when the end of

the presentation space is reached.

3. The keyboard mnemonics (see Send Key (3) function) cannot be sent using the Copy String to Field function.

4. The first byte of the data to be transferred is always placed at the beginning of the field that contains the

specified PS position.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Copy String to Presentation Space (15)

3270 5250 VT

Yes Yes Yes

The Copy String to Presentation Space function copies an ASCII data string directly into the host presentation space

at the location specified by the PS position calling parameter.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 15.

Data String String of ASCII data to be copied into the host presentation space.

Length Length, in number of bytes, of the source data string. Overridden if in EOT

mode.

PS Position Position in the host presentation space to begin the copy, a value between

1 and the configured size of your host presentation space.

575

HCL Z and I Emulator for Windows (ENGLISH)

576

Return Parameters

Return Code Explanation

0 The Copy String to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target presentation space is protected or inhibited, or incorrect data was sent to

the target presentation space (such as a field attribute byte).

6 The copy was completed, but the data was truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function

1. The Copy String to Presentation Space function is affected by the following options:

• STRLEN/STREOT

• EOT

• EAB/NOEAB

• XLATE/NOXLATE

• PUTEAB/NOPUTEAB

• EXTEND_PS/NOEXTEND_PS

Refer to items 1 on page 645 and 2 on page 645; 13 on page 649 and 14 on page 650; 18 on

page 650; and and for more information. attribute bytes specifying strings

2. The keyboard mnemonics (see Send Key (3) function) cannot be sent using the Copy String to Presentation

Space function.

3. The string ends when an end-of-text (EOT) delimiter is encountered in the string if EOT mode was selected

using the Set Session Parameters (9) function. (See Set Session Parameters (9) on page 643).

4. Although the Send Key (3) function accomplishes the same purpose, this function responds with the prompt

and enters a command more quickly. Because the Send Key (3) function emulates the terminal operator

typing the data from the keyboard, its process speed is slow for an application operating with a lot of data.

This function provides a faster input path to the host.

5. The original data (the copied string) cannot exceed the size of the presentation space.

6. This function call may cause a cursor movement to an unexpected position with some host applications. A

SendKey function may be a better choice for filling a field than this function.

Note: This only occurs with VT sessions or connections to an ASCII host.

Chapter 2. Product Documentation

Copy Presentation Space to Clipboard (35)

3270 5250 VT

Yes Yes Yes

The Copy Presentation Space to Clipboard function is used to copy all or part of the host-connected presentation

space into clipboard. The input PS position is the offset into the host presentation space. This offset is based on a

layout in which the upper-left corner (row 1/column 1) is location 1 and the bottom-right corner is 3564, which is the

maximum screen size for the host presentation space. The value of PS Position + (Length – 1) cannot exceed the

configured size of your host presentation space.

The Copy Presentation Space to Clipboard translates the characters in the host source presentation space into

ASCII. Attribute bytes and other characters not represented in ASCII normally are translated into blanks. If you do not

want the attribute bytes translated into blanks, you can override this translation with the ATTRB option under the Set

Sesssion Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 35.

Data String Preallocated target string the size of your host presentation space. When

the Set Session Parameters (9) function with the EAB option is issued, the

length of the data string must be at least twice the length of the presenta

tion space.

Length Length of the target data string

PS Position Position within the host presentation space of the first byte in your target

data string.

Return Parameters

Return Code Explanation

0 The host presentation space contents were copied to the clipboard. The target pre

sentation space was active, and the keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of (Length - 1) + PS posi

tion is greater than the size of the connected host presentation space.

4 The host presentation space contents were copied to clipboard. The host presenta

tion space was waiting for host response.

5 The host presentation space was copied to clipboard. The keyboard was locked.

577

HCL Z and I Emulator for Windows (ENGLISH)

578

Return Code Explanation

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function

1. An EAB can be returned when the Set Session Parameters (9) function EAB option is used. EAB is related to

each character in the presentation space and is returned following each character.

2. The Copy Presentation Space to Clipboard function is affected by the following options:

• ATTRB/NOATTRB/NULLATTRB

• EAB/NOEAB

• XLATE/NOXLATE

• BLANK/NOBLANK

• DISPLAY/NODISPLAY

• PUTEAB/NOPUTEAB

• EXTEND_PS/NOEXTEND_PS

specifying strings

3. The data string buffer is used in processing the data retrieved from presentation space and copy to clipboard.

If the data string buffer provided is not large enough to hold the requested number of bytes, the copy ends

successfully (RC=0, 4, or 5) when the end of the data string buffer is reached. As previously stated, the return

of attributes by the various Copy (5, 8, and 34) functions is affected by the Set Session Parameters (9)

function. The involved set session parameters have the following effect:

Set Session Parameter

Effect on the Copy Function

NOEAB and NOEAD

Attributes are not returned. Only text is copied from the presentation space to the clipboard.

EAB and NOXLATE

Attributes are returned as defined in the following tables.

EAB and XLATE

The colors used for the presentation space display are returned. Colors can be remapped, so the attribute

colors are not the ones returned by the Copy functions when XLATE and EAB are on at the same time.

Paste Clipboard to Presentation Space (36)

3270 5250 VT

Yes Yes Yes

Chapter 2. Product Documentation

The Paste Clipboard to Presentation Space function pastes an ASCII data string directly into the host presentation

space at the location specified by the PS position calling parameter.

Prerequisite Calls

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 36.

Data String String buffer that holds the data from clipboard to paste into the host pre

sentation space.

Length Length, in number of bytes to be pasted

PS Position Position in the host presentation space to begin the copy, a value between

1 and the configured size of your host presentation space.

Return Parameters

Return Code Explanation

0 The Paste Clipboard to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy

5 The target presentation space is protected or inhibited, or incorrect data was sent to

the target presentation space (such as a field attribute byte).

6 The copy was completed, but the data was truncated.

7 The copy was completed, but the data was truncated.

9 A system error was encountered.

Notes on Using This Function

1. The Paste Clipboard to Presentation Space function is affected by the following options:

• STRLEN/STREOT

• EAB/NOEAB

• EOT

• XLATE/NOXLATE

• PUTEAB/NOPUTEAB

• EXTEND_PS/NOEXTEND_PS

specifying strings

2. The string ends when an end-of-text (EOT) delimiter is encountered in the string if EOT mode was selected

using the Set Session Parameters (9) function. (See “Set Session Parameters (9)” on page 147).

3. The original data (the copied string) cannot exceed the size of the presentation space.

579

HCL Z and I Emulator for Windows (ENGLISH)

580

 String Meanings Single-byte character field

X'000C' (NULL)(FF) X'00'X'0C' (SB NULL)(SB FF) X'00'X'0C'

X'0E000C0F' (SO)(DB FF)(SI)

X'0E'X'000C'X'0F'

–S error

Note: SB means single-byte characters.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances, Communication

Manager 5250 emulation displays a 25th row. This occurs when either an error message from the host is displayed

or when the operator selects the SysReq key. Z and I Emulator for Windows always displays the same information

on the 24th row. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Disconnect from Structured Fields (121)

3270 5250 VT

Yes No No

The Disconnect from Structured Fields function drops the connection between the emulation program and the

EHLLAPI application. The EHLLAPI application must disconnect from the emulation program before exiting from the

system. The EHLLAPI application should issue this function request if a previous Connect for Structured Fields was

issued.

The Reset System (21) function will also disconnect any outstanding SF connections.

Prerequisite Calls
Connect for Structured Fields (120)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 121

Data String See the following table

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

Chapter 2. Product Documentation

Byte Definition

2–4 Reserved.

5–6 Destination/origin unique ID returned by the Connect for structured field

(120) functions.

2–3

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Disconnect from Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid or was not con

nected.

2 An error was made in specifying parameters.

9 A system error occurred.

40 Disconnected with asynchronous requests pending.

Notes on Using This Function

1. When a Disconnect from Structured Fields function is called, any outstanding asynchronous Read Structured

Fields (126) or Write Structured Fields (127) function requests are returned if the application issues the Get

Request Completion (125) function call. Use the asynchronous form of this function when cleaning up after

issuing a Disconnect call.

2. The Reset System (21) function will also free any outstanding asynchronous requests (requests that have not

been retrieved by the application using the Get Request Completion (125) function).

Disconnect Presentation Space (2)

3270 5250 VT

Yes Yes Yes

The Disconnect Presentation Space function drops the connection between your EHLLAPI application program

and the host presentation space. Also, if a host presentation space is reserved using the Reserve (11) function, it is

released upon execution of the Disconnect Presentation Space function.

Prerequisite Calls
Connect Presentation Space (1)

581

HCL Z and I Emulator for Windows (ENGLISH)

582

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 2

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Disconnect Presentation Space function was successful.

1 Your program was not currently connected to the host presentation space.

9 A system error was encountered.

Notes on Using This Function

1. After the Disconnect Presentation Space function is called, functions that interact with the host-connected

presentation space are no longer valid (for example, the Send Key (3), Wait (4), Reserve (11) and Release (12)

functions).

2. Your EHLLAPI application should disconnect from the host presentation space before exiting.

3. The Disconnect Presentation Space function does not reset the session parameters to the defaults. Your

EHLLAPI application must call the Reset System (21) function to accomplish this.

Disconnect Window Service (102)

3270 5250 VT

Yes Yes Yes

The Disconnect Window Service function disconnects the window services connection between the EHLLAPI

program and the specified host presentation space window.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 102

Chapter 2. Product Documentation

Standard Interface Enhanced Interface

Data String See the following table

Length 1 4

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Disconnect Window Service function was successful.

1 Your program is not connected for Window Services.

9 A system error occurred.

Notes on Using This Function
After the Disconnect Window Service function has been called, your application no longer manages the presentation

space window.

Before exiting the application, you should request a Disconnect Window Service function for all presentation

spaces that have been connected for Presentation Manager® services. If the application exits with an outstanding

connection for window services, the subsystem cancels the outstanding connection.

EditKey Intercept
This feature enables you to intercept Edit keys in addition to the existing all keystrokes and send them to a session in

a Windows 32-bit environment.

Prerequisites

1. Map the Edit functions in the Customize Keyboard window (for example Ctrl+C for edit copy function).

2. Call the Start Keystroke Intercept (50) EHLLAPI function with the call parameter data string value set. The

values are as follows:

583

HCL Z and I Emulator for Windows (ENGLISH)

584

Byte

Posi

tion

Contents

1 One of the following values:

• A specific host presentation space short name (PSID)

• A blank or null indicating a request for the host-connected host presentation space

2 to 4 Reserved

5 An option code character:

• D for AID keystrokes only

• L for all keystrokes

• E for all keystrokes and Edit keys

• M for requesting the asynchronous message mode of the notification (Windows only). If

M is specified, a code character D or L, or E must be placed in position 13

6 to 8 Reserved

9 to 12 If M is specified in position 5, the window handle of the window that receives the message. The

message is a non-zero return value of RegisterWindowMessage (PCSHLL).

13 If M is specified in position 5, one of the following values:

• D for AID keystrokes only

• L for all keystrokes

• E for all keystrokes and Edit keys

14 to

16

Reserved

3. To get the intercepted Edit keys, use the Get Key (51) EHLLAPI function. The key mnemonic returned in the

data string for the Edit keys will have M (keystroke type mnemonic) at the 5th byte position. The next 4 bytes

will have one of the following Edit key mnemonics based on the Edit key intercepted:

Key mnemonicKey intercepted

@W@C Edit Copy

@W@D Edit Clear

@W@E Edit Copy Ap

pend

@W@L Edit Copy Link

@W@N Edit Paste Next

@W@V Edit Paste

@W@X Edit Cut

@W@Z Edit Undo

4. To send Edit keys to the session, use the Send Key (3) EHLLAPI function. The data string passed as the call

parameter can specify the following Edit key mnemonics:

Key mnemonicKey sent

@W@C Edit Copy

Chapter 2. Product Documentation

Key mnemonicKey sent

@W@D Edit Clear

@W@E Edit Copy Ap

pend

@W@L Edit Copy Link

@W@N Edit Paste Next

@W@V Edit Paste

@W@X Edit Cut

@W@Z Edit Undo

Note:

1. You do not have to call the Get Key (51) EHLLAPI function to use the Send Key (3) function. For

both Get Key (51) and Send Key (3) functions to handle Edit keys, you must first call Start Keystroke

Intercept (50) with the 5th byte position set to E. If the 5th byte contains M, then position 13 must

contain E.

2. The expected return values for Start Keystroke Intercept (50), Get Key (51) and Send Key (3) functions

have not changed.

3. Any prerequisites from the existing documentation should be followed as well as the prerequisites

documented here.

Find Field Length (32)

3270 5250 VT

Yes Yes Yes

The Find Field Length function returns the length of a target field in the connected presentation space. This function

can be used to find either protected or unprotected fields, but only in a field-formatted host presentation space.

This function returns the number of characters contained in the field identified using the call PS position parameter.

This includes all characters from the beginning of the target field up to the character preceding the next attribute byte.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 32

585

HCL Z and I Emulator for Windows (ENGLISH)

586

Standard Interface Enhanced Interface

Data String See the following table

Length NA NA

PS Position See note

Note: PS Position: Identifies the field within the host presentation space at which to start the Find. It can be

the PS position of any byte within the field in which you desire the Find to start.

The calling 2-character data string can contain:

Code Explanation

␢␢ or T␢ This field

P␢ The previous field, either protected or unprotected.

N␢ The next field, either protected or unprotected

NP The next protected field

NU The next unprotected field

PP The previous protected field

PU The previous unprotected field

Note: The ␢ symbol represents a required blank.

Return Parameters
This function returns a length and a return code.

Length:

The following lengths are valid:

Length Explanation

= 0 When return code = 28, field length is 0. When return code = 24, host presentation

space is not field formatted.

> 0 Required field length in the host presentation space.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Find Field Length function was successful.

1 Your program is not connected to a host session.

2 A parameter error was encountered.

7 The host presentation space position is not valid.

9 A system error was encountered.

Chapter 2. Product Documentation

Return Code Explanation

24 No such field was found.

28 Field length of 0 bytes.

Notes on Using This Function
Except when ␢␢ or T␢ is used as the calling data string, if the field found is the same as the field from which the Find

started, a return code of 24 is returned.

Find Field Position (31)

3270 5250 VT

Yes Yes Yes

The Find Field Position function returns the beginning position of a target field in the host-connected presentation

space. This function can be used to find either protected or unprotected fields but only in a field-formatted host

presentation space.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 31

Data String See the following table

Length NA NA

PS Position See note

Note: PS Position: Identifies the field within the host presentation space at which to start the Find. It can be

the PS position of any byte within the field in which you want the Find to start.

The calling 2-character data string can contain:

Code Explanation

␢␢ or T␢ This field

P␢ The previous field, either protected or unprotected

N␢ The next field, either protected or unprotected

NP The next protected field

NU The next unprotected field

PP The previous protected field

587

HCL Z and I Emulator for Windows (ENGLISH)

588

Code Explanation

PU The previous unprotected field

Note: The ␢ symbol represents a required blank.

Return Parameters
This function returns a length and a return code.

Length:

The following lengths are valid:

Length Explanation

= 0 When return code = 28, field length is 0. When return code = 24, host presentation

space is not field-formatted.

> 0 Relative position of the requested field from the origin of the host presentation

space. This position is defined to be the first position after the attribute byte.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Find Field Position function was successful.

1 Your program is not connected to a host session.

2 A parameter error was encountered.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 No such field was found.

28 Field length of 0 bytes.

Notes on Using This Function
Except when ␢␢ or T␢ is used as the calling data string, if the field found is the same as the field from which the Find

started, a return code of 24 is returned.

Free Communications Buffer (124)

3270 5250 VT

Yes No No

Chapter 2. Product Documentation

The Free Communications Buffer function returns to management memory a buffer that is no longer required by the

application. The application should free the buffer prior to exiting the system.

Prerequisite Calls
Allocate Communications Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 124

Data String See the following table

Length Must be 6 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1–2 1–4 Must be 0

3–6 5–8 The address of the buffer

Return Parameters

Return Code Explanation

0 The Free Communications Buffer function was successful.

2 An error was made in specifying parameters.

9 A system error occurred.

41 The buffer is in use.

Notes on Using This Function

1. If the application attempts to free an in use buffer, the free request will be denied and a return code of 41 will

be returned.

2. An application should request the Free Communications Buffer (124) function before exiting for all

communication buffers that have been allocated using the Allocate Communications Buffer (123) function.

3. The Reset System (21) function will free buffers allocated by the Allocate Communications Buffer (123)

function.

589

HCL Z and I Emulator for Windows (ENGLISH)

590

Get Key (51)

3270 5250 VT

Yes Yes Yes

The Get Key function lets your EHLLAPI application program retrieve a keystroke from a session specified by the Start

Keystroke Intercept (50) function and either process, accept, or reject that keystroke. By placing this function in a

loop, you can use it to intercept a string. string interception, Get Key (51) keystroke interception, Get Key (51)

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 51

Data String See the following table

Length 8 12

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short name (PSID)

• A blank or null indicating a function call for the host-connected

presentation

1

2–4 Reserved

5–11 Blanks that hold space for the symbolic representation of the requested

data

2–8

12 Reserved

Return Parameters
This function returns a data string and a return code.

Data String:

See the following table:

Chapter 2. Product Documentation

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short name (PSID)

• A blank or null indicating a function call for the host-connected

presentation

1

2–4 Reserved

2 5 An option code character, one of the following characters:

• A for ASCII returned

• M for keystroke mnemonic

• S for special mnemonic

3–8 6–11 These 6 bytes of the preallocated buffer space are used internally to en

queue and dequeue keystrokes. Possible combinations include:

• Byte 3 contains an ASCII character and byte 4 contains X'00'

• Byte 3 contains the escape character (either @ or another charac

ter specified using the ESC=c option of function 9) and byte 4 con

tains a 1-byte abbreviation for a function. (See ASCII Mnemonics

on page 525)

• Bytes 5 through 8 might be similar to bytes 3 and 4 if the returned

ASCII mnemonic is longer than 2 bytes (for example, if the ASCII

mnemonic represents Attn @A@Q, byte 5 contains @ and byte 6 con

tains Q). If not used, bytes 5 through 8 are set to zero (X'00').

For clarification, some examples of returned data strings are provided below:

Note: The @ symbol is the default escape character. The value of the escape character can be set to any

keystroke represented in ASCII by using the ESC=c option of the Set Session Parameters (9) function. If the

escape character has been changed to another character using this option, the @ symbol in the following

examples is replaced by the other character.

escape character character, escape

16-Bit Interface
EAt

E is the presentation space short name. The keystrokes are returned as ASCII (A), and the returned key

is the lowercase letter t. (Bytes 4–8 = X'00').

591

HCL Z and I Emulator for Windows (ENGLISH)

592

EM@2

E is the presentation space short name. The keystrokes are returned as mnemonics, and the returned

key is PF2 (Bytes 5–8 = X'00').

32-Bit Interface
E␢␢␢At

E is the presentation space short name. The keystrokes are returned as ASCII (A), and the returned key

is the lowercase letter t. (Bytes 7–11 = X'00').

E␢␢␢M@2

E is the presentation space short name. The keystrokes are returned as mnemonics, and the returned

key is PF2 (Bytes 8–11 = X'00').

Return Code:

The following codes are valid:

Return Code Explanation

0 The Get Key function was successful.

1 An incorrect presentation space was specified.

5 You specified the AID only option under the Start Keystroke Intercept (50) function,

and non-AID keys are inhibited by this session type when EHLLAPI tries to write in

correct keys to the presentation space.

8 No prior Start Keystroke Intercept (50) function was called for this presentation

space.

9 A system error was encountered.

20 An undefined key combination was typed.

25 The requested keystrokes are not available on the input queue.

31 Keystroke queue overflowed and keystrokes were lost.

Notes on Using This Function

1. If a return code of 31 occurs for the Get Key function, either:

• Increase the value of the calling length parameter for the Start Keystroke Intercept (50) function, or

• Execute the Get Key function more frequently.

An intercepted keystroke occupies 3 bytes in the buffer. The next intercepted keystroke is placed in the

adjacent three bytes. When the Get Key function retrieves a keystroke (first in first out, FIFO), the three bytes

that it occupied are made available for another keystroke. By increasing the size of the buffer or the rate at

which keystrokes are retrieved from the buffer, you can eliminate buffer overflow.

For the PC/3270, another way to eliminate return code 31 is to operate the PC/3270 emulator in the resume

mode.

Chapter 2. Product Documentation

2. You can use the Send Key (3) function Send Key (3) 03, Send Key to pass both original keystrokes and any others that your EHLLAPI

application might need to the host-connected presentation space.

3. Keystrokes arrive asynchronously and are enqueued in the keystroke queue that you have provided in your

EHLLAPI application program using the Start Keystroke Intercept (50) function.

4. The Get Key function behaves like a read. When keystrokes are available, they are read into the data area that

you have provided in your application.

5. In the case of field support for a session, the application might be interested only in AID keys, for example the

Enter key. If so, the Start Keystroke Intercept (50) function option code should be set to D (meaning for AID

Keys only).

6. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. Refer

to Memory Allocation on page 515 for more information.

Get Request Completion (125)

3270 5250 VT

Yes No No

The Get Request Completion function allows an application to determine the status of a previous asynchronous

function request issued to the EHLLAPI and to obtain the function parameter list before using the data string again.

This function is valid only if the user specified asynchronous (A) completion on a previous function call such as Read

Structured Fields (126) or Write Structured Fields (127).

Each asynchronous request requiring the Get Request Completion function will return a unique ID from the

asynchronous request. The application must save this ID. This ID is the identification used by the Get Request

Completion function to identify the desired request. The user has three request options using this function:

1. The application can query or wait for a specific asynchronous function request by supplying the request ID of

that function and a nonblank session short name.

2. The application can query or wait for the first completed asynchronous function request for a specified

session by supplying a request ID of X'0000' and a nonblank session short name.

Prerequisite Calls
Connect Structured Fields (120) and Allocate Communications Buffer (123)

and

Read Structured Fields (126) or Write Structured Fields (127)

593

HCL Z and I Emulator for Windows (ENGLISH)

594

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 125

Data String See the following table

Length Must be 14 Must be 24

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2 5 N or W N=NOWAIT is required W=WAIT is required

6–8 Reserved

3–4 9–10 Function request ID.

5–6 11–12 Reserved

7–10 13–16 Reserved

11–12 17–20 Reserved

13–14 21–24 Reserved

The Get Request Completion function behaves differently depending upon the second character of the parameter

string, which is one of the following characters:

N

Nowait option: If a specific request ID was supplied and the function has completed, control will be

returned to the application with a return code of zero and a completed data string as defined in Return

Parameters on page 595. If a request ID of zero was supplied and any eligible asynchronous function

has completed, control will be returned to the application with a return code of zero and a completed

data string as defined in Return Parameters on page 595.

W

Wait option: If a specific request ID was supplied and the function has not completed, the call will wait

until the function has completed before returning to the application. If the supplied request ID was

zero and no eligible asynchronous function has completed, the call will wait until a function completes

before returning to the calling application. On return, the return code value will be zero and the data

string will be completed as defined in Return Parameters on page 595.

Chapter 2. Product Documentation

Return Parameters

Byte Definition

Standard Enhanced

5–6 11–12 Function number of the completed asynchronous function (126 or 127).

(returned)

7–10 13–16 Address of the data string of the completed asynchronous function call.

(The application must not reuse the data string until the request has

completed). (returned)

11–12 17–20 Length of the data string of the completed asynchronous function call.

(returned)

13–14 21–24 Return code of the completed asynchronous function call. (returned)

Return Code Explanation

0 The Get Request Completion function was successful.

2 An error was made in specifying parameters.

9 A system error was encountered.

38 Requested function was not complete.

42 No matching request was found.

There are some differences between return codes 38 and 42:

1. Return code 38

a. If a specific request ID and session were requested, both the session and ID were found but the

request is pending (not in a completed state).

b. If a zero request ID and a specific session were requested, the specified session has pending requests,

but they are not satisfied (complete).

c. If a zero request ID and a blank session were requested, pending requests were found but none were

satisfied (complete).

2. Return code 42

a. If a specific request ID and session were requested, the specific request ID was not found in either a

pending or a completed state.

b. If a zero request ID and a specific session were requested, the specific session contains no pending or

completed requests.

c. If a zero request ID and a blank session were requested, no pending or completed requests were

found.

595

HCL Z and I Emulator for Windows (ENGLISH)

596

Notes on Using This Function

1. This function is valid only if the user specified asynchronous completion (A for Asynchronous) on a previous

function call such as Read Structured Fields or Write Structured Fields.

2. If the return code is a 0, the application should check the returned data string for information pertaining to the

completion of the requested asynchronous function.

Lock Presentation Space API (60)

3270 5250 VT

Yes No No

The Lock Presentation Space API function allows the application to obtain or release exclusive control of the

presentation space window over other Windows 32–bit applications. While locked, no other application can connect

to the presentation space window.

Successful processing of this function with the Lock causes EHLLAPI presentation space window functions

requested from other EHLLAPI applications to be queued until the requesting application unlocks the presentation

space. Requests from the locking application are processed normally.

Prerequisite Calls
Connect to Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 60

Data String See the following table

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

2 5 One of the following characters:

Chapter 2. Product Documentation

Byte Definition

• L to lock the API.

• U to unlock the API.

6 One of the following characters:

• R to return if the presentation space is already locked by an appli

cation.

• Q to queue the Lock request if the presentation space is already

locked by an application.

3

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Lock Presentation Space API function was successful.

1 An incorrect host presentation space short session ID was specified or was not con

nected.

2 An error was made in specifying parameters.

9 A system error was encountered.

43 The API was already locked by another EHLLAPI application (on LOCK) or API not

locked (on UNLOCK).

Notes on Using This Function
The following EHLLAPI functions are queued when a lock is in effect:

• Send Key (3)

• Copy Presentation Space (5)

• Search Presentation Space (6)

• Copy Presentation Space to String (8)

• Release (11)

• Reserve (12)

• Query Field Attribute (14)

• Copy String to Presentation Space (15)

• Search Field (30)

• Find Field Position (31)

• Find Field Length (32)

• Copy String to Field (33)

• Copy Field to String (34)

• Set Cursor (40)

• Send File (90)

• Copy Presentation Space to Clipboard (35)

597

HCL Z and I Emulator for Windows (ENGLISH)

598

• Paste Clipboard to Presentation Space (36)

• Receive File (91)

• Connect to Presentation Space (1) with the CONPHYS parameter set in a previous Set Sessions Parameter

(9) function call.

These queued requests are not serviced until the lock is removed. When the lock is removed, the queued requests are

processed in first-in-first-out (FIFO) order. EHLLAPI functions not listed are run as if there was no lock. The requesting

application unlocks the presentation space window by one of the following methods:

• Disconnecting from the presentation space while still owning the Lock.

• Issuing the Reset System (21) function while still owning the Lock.

• Stopping the application while still owning the Lock.

• Stopping the session.

• Successfully issuing the Lock Presentation Space API with the Unlock option.

Before exiting the application, you should unlock any presentation space windows that have been locked with the

Lock Presentation Space API function. If the application exits with outstanding locks, or a Reset System (21), or

Disconnect Presentation Space (2) function is issued, the locks are released.

It is recommended that applications lock the presentation space only for short periods of time and only when

exclusive use of the presentation space is required.

Lock Window Services API (61)

3270 5250 VT

Yes No No

The Lock Window Services API function allows the application to obtain or release exclusive control of the

presentation space window over other Windows 32-bit applications. While locked, no other application can connect to

the presentation space window.

Successful processing of this function with the Lock causes EHLLAPI presentation space window functions

requested from other EHLLAPI applications to be queued until the requesting application unlocks the presentation

space. Requests from the locking application are processed normally.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 61

Data String See the following table.

Chapter 2. Product Documentation

Standard Interface Enhanced Interface

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

2 5 One of the following characters:

• L to lock the API.

• U to unlock the API.

3 6 One of the following characters:

• R to return if the presentation space is already locked by an appli

cation.

• Q to queue the Lock request if the presentation space is already

locked by an application.

11–12 Function number of the completed asynchronous function (126 or 127).

(returned)

5–6

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Lock Window Services API function was successful.

1 An incorrect host presentation space short session ID was specified or was not connect

ed.

2 An error was made in specifying parameters.

9 A system error was encountered.

38 Requested function was not complete.

43 The API was already locked by another EHLLAPI application (on LOCK) or API not locked

(on UNLOCK).

Notes on Using This Function
The following EHLLAPI functions are queued when a lock is in effect:

599

HCL Z and I Emulator for Windows (ENGLISH)

600

• Window Status (104)

• Change Switch List Name (105)

• Change PS Window Name (106)

These queued requests are not serviced until the lock is removed. When the lock is removed, the queued requests are

processed in first-in-first-out (FIFO) order.

The requesting application unlocks the presentation space window by one of the following methods:

• Successfully issuing the Lock Window Services API with the UNLOCK option.

• Disconnecting from the presentation space while still owning the Lock.

• Issuing the Reset System (21) function while still owning the Lock.

• Stopping the application while still owning the Lock.

• Stopping the session.

Before exiting the application, you should Unlock any presentation space windows that have been locked with the

Lock Window Services API function. If the application exits with outstanding locks, the subsystem releases the locks.

It is recommended that applications lock the presentation space only for short periods of time and only when

exclusive use of the presentation space is required.

Pause (18)

3270 5250 VT

Yes Yes Yes

The Pause function waits for a specified amount of time. It should be used in place of timing loops to wait for an

event to occur. A Pause function can be ended by a host event if a prior Start Host Notification (23) function has been

called and the IPAUSE option is selected. Start Host Notification (23) 23, Start Host Notification

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 18

Data String NA

Length Contains the pause duration in half-second increments

PS Position NA

Chapter 2. Product Documentation

Return Parameters

Return Code Definition

0 The wait duration has expired.

9 An internal system error was encountered. The time results are unpredictable.

26 The host session presentation space or OIA has been updated. Use the Query Host

Update (24) function to get more information.

Notes on Using This Function

1. Selecting the FPAUSE or IPAUSE option using the Set Session Parameters (9) function affects the length of

the pause you get when you call this function. See item 6 on page 646 for more information.

2. The value entered in the calling length parameter is the maximum number of half-second intervals that the

Pause function waits. For a pause of 20 seconds, a hex value of 0028 (decimal 40) must be passed in the

calling length parameter.

3. If you use the IPAUSE option and the pause value is zero, then the function waits up to 2400 half-second

intervals, unless interrupted sooner. If you use the FPAUSE option and the pause value is zero, then the

function returns immediately.

4. If you use the IPAUSE option, once a pause has been satisfied by a host event, you should call the Query Host

Update (24) function to clear the queue prior to the next Pause function. The Pause function will continue to

be satisfied with the pending event until the Query Host Update (24) function is completed. Query Host Update (24) 24, Query Host Update

5. A practical maximum value for the Pause function is 2400. You should not use the Pause function for these

kinds of tasks:

• Delay for very long durations (of several hours, for example).

• Delay for more than a moderate length of time (20 minutes) before checking the system time-of-day

clock and proceeding with your EHLLAPI program execution.

• With applications requiring a high-resolution timer because the time interval created by a Pause

function is approximate.

• Set the time interval to zero in a loop.

6. IPAUSE set and the interruptible pause allow an EHLLAPI application to determine whether the specified host

presentation space (PS) or operator information area (OIA) is updated. The following three functions are used:

• Start Host Notification (23)

• Query Host Update (24)

• Stop Host Notification (25)

By using IPAUSE when the Start function is called, you can make an application wait until the host

presentation space or OIA (or both) receives an update. When the receive is completed and the application

can issue the Query function to determine the changes, Pause terminates. Then the application issues the

Search Presentation Space (6) to check whether the expected update occurred.

601

HCL Z and I Emulator for Windows (ENGLISH)

602

Post Intercept Status (52)

3270 5250 VT

Yes Yes Yes

The Post Intercept Status function informs the Z and I Emulator for Windows emulator that a keystroke obtained

through the Get Key (51) function was accepted or rejected. When the application rejects a keystroke, the Post

Intercept Status function issues a beep. 51, Get Key Get Key (51) beep

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 52

Data String See the following table

Length Must be 2 Must be 8

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 One of the following values:

• The 1-letter short name of the presentation space.

• A blank or null indicating a function call for the host-connected

presentation space.

1

2–4 Reserved

5 One of the following characters:

• A for accepted keystroke.

• R for rejected keystroke.

2

6–8 Reserved.

Return Parameters

Return Code Explanation

0 The Post Intercept Status function was successful.

1 An incorrect presentation space was specified.

2 An incorrect session option was specified.

Chapter 2. Product Documentation

Return Code Explanation

8 No prior Start Keystroke Intercept (50) function was called for this presentation

space ID.

9 A system error was encountered.

Query Additional Field Attribute (45)

3270 5250 VT

No Yes No

The Query Additional Field Attribute function returns additional information about the 5250 field containing the input

host presentation space position. This information is returned in the data string parameter in the form of a defined

structure.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 45.

Data String 8 bytes long character string.

Length 8 is implied.

PS Position Identifies the target. This can be the PS position of any byte within the tar

get field.

The calling data string can contain:

ByteDefini

tion

1–8 Reserved

Return Parameters
This function returns a data string and a return code.

Data String:

The function returns the following data string.

Byte Definition

1–6 Reserved

7–8 Two 8–bit unsigned characters that return:

603

HCL Z and I Emulator for Windows (ENGLISH)

604

Byte Definition

• R if field is RTL and L if field is LTR.

• U if field is upper case and L if field is a normal case

field.

Return Code:

The following return codes are defined:

Return Code Explanation

0 The Query Additional Field Attribute was successful.

1 Your program is not currently connected to a host session.

7 The host presentation space position is not valid.

9 No field was found in this position.

24 Field is unformatted.

Query Close Intercept (42)

3270 5250 VT

Yes Yes Yes

The Query Close Intercept function allows the application to determine if the close option was selected.

Prerequisite Calls
Start Close Intercept (41)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 42

Data String See the following table.

Length Must be 1 Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1-character short session ID of the host presentation space, or a blank or

null indicating request for querying the host-connected session

1

2–4 Reserved

Chapter 2. Product Documentation

Return Parameters

Return Code Explanation

0 A close intercept event did not occur.

1 The presentation source was not valid.

2 An error was made in specifying parameters.

8 No prior Start Close Intercept (41) function was called for this host presentation

space.

9 A system error occurred.

12 The session stopped.

26 A close intercept occurred since the last query close intercept call.

Query Communications Buffer Size (122)

3270 5250 VT

Yes No No

The Query Communications Buffer Size function allows an application to determine both the maximum and the

optimum buffer sizes supported by the emulation program.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 122

Data String See the following table

Length Must be 9 Must be 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2–3 5–8 16- or 32-bit field for the optimum supported inbound buffer size (Re

turned value)

605

HCL Z and I Emulator for Windows (ENGLISH)

606

Byte Definition

4–5 9–12 16- or 32-bit field for the maximum supported inbound buffer size (Re

turned value)

6–7 13–16 16- or 32-bit field for the optimum supported outbound buffer size (Re

turned value)

8–9 17–20 16- or 32-bit field for the maximum supported outbound buffer size (Re

turned value)

Return Parameters

Return Code Explanation

0 The Query Communications Buffer Size function was successful.

1 A specified host presentation space short session ID was not valid or was not con

nected.

2 An error was made in specifying parameters.

9 A system error occurred.

10 The function was not supported by the emulation program.

Notes on Using This Function

1. There is no way to require the user to use this function. It is not a required function so that the application can

be tailored to run on any system.

2. The buffer sizes returned represent the record sizes that are actually transmitted across the medium. For a

DDM connection, the 8-byte header supplied in the Read and Write Structured Fields data buffer is stripped

off and 1 byte containing the structured field AID value is prefixed. The application should compare the size of

the actual data in the data buffer (which does not include the 8-byte header) with the buffer sizes returned by

the Query Communications Buffer Size minus 1 byte. For destination/origin connections, the 8-byte header

supplied in the Read and Write Structured Fields data buffer is stripped off and 9 bytes are then prefixed to

the data. The application should compare the size of the actual data in the data buffer (which does not include

the 8-byte header) with the buffer size returned by the Query Communications Buffer Size minus 9 bytes.

3. The maximum buffer sizes returned represent the maximum number of bytes supported by the workstation

hardware and by the emulator. The maximum buffer size can be used only if the host is also configured to

accept at least these maximum sizes.

4. The optimum buffer sizes returned represent the optimum number of bytes supported by the both the

workstation hardware and the emulator. Some network configurations might set transmission limits smaller

than these values. In these cases, the data transfer buffer size override value in the emulator configuration

profile will be used for structured field support. The Query Communications Buffer Size will reflect any buffer

size override values entered in the emulator configuration profile.

Chapter 2. Product Documentation

Query Communication Event (81)

3270 5250 VT

Yes Yes Yes

The Query Communication Event function lets the EHLLAPI program determine whether any communication events

have occurred.

Prerequisite Calls
Start Communication Notification (80)

Call Parameters

 Enhanced Interface

Function Number Must be 81

Data String 1-character short name of the host presentation space or a blank or null indicating

request for updates to the host-connected presentation space

Length 4 is implied

PS Position NA

The calling data structure contains these elements:

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function was called for the

PSID

9 A system error was encountered

21 The indicated PSID was connected

22 The Indicated PSID was disconnected

Query Cursor Location (7)

3270 5250 VT

Yes Yes Yes

607

HCL Z and I Emulator for Windows (ENGLISH)

608

The Query Cursor Location function indicates the position of the cursor in the host-connected presentation space by

returning the cursor position.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 7

Data String NA

Length NA

PS Position NA

Return Parameters
This function returns a length and a return code.

Length:

Host presentation space position of the cursor.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Cursor Location function was successful.

1 Your program is not currently connected to a host session.

9 A system error was encountered.

Query Field Attribute (14)

3270 5250 VT

Yes Yes Yes

The Query Field Attribute function returns the attribute byte of the field containing the input host presentation space

position. This information is returned in the returned length parameter.

For the PC/3270, note also that:

• The returned length parameter is set to 0 if the screen is unformatted.

• Attribute bytes are equal to or greater than hex C0.

Chapter 2. Product Documentation

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 14.

Data String NA.

Length NA.

PS Position Identifies the target. This can be the PS position of any byte within the tar

get field.

Return Parameters
This function returns a length and a return code.

Length:

The attribute value if the screen is formatted, or 0 if the screen is unformatted.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Field Attribute was successful.

1 Your program is not currently connected to a host session.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Attribute byte not found or unformatted host presentation space.

Notes on Using This Function
The returned field attributes are defined in the following tables. The bit positions are in IBM format with bit 0 as the

left most bit in the byte.

• 3270 field attribute:

Bit Position Meaning

0–1 Both = 1, field attribute byte

2 Unprotected/protected

0 = Unprotected data field

1 = Protected field

609

HCL Z and I Emulator for Windows (ENGLISH)

610

Bit Position Meaning

3 A/N

0 = Alphanumeric data

1 = Numeric data only

4–5 I/SPD

00 = Normal intensity, pen not detectable

01 = Normal intensity, pen detectable

10 = High intensity, pen detectable

11 = Nondisplay, pen not detectable

6 Reserved

7 MDT

0 = Field has not been modified

1 = Field has been modified

• 5250 field attributes:

Bit Position Meaning

0 Field attribute flag

0 = Nonfield attribute flag

1 = Field attribute flag

1 Visibility

0 = Nondisplay

1 = Display

2 Unprotected/protected

0 = Unprotected data field

1 = Protected field

3 Intensity

0 = Normal intensity

1 = High intensity

4–6 Field type

000 = Alphanumeric data: All characters are available

001 = Alphabet only: Uppercase and lowercase, comma, period, hyphen,

blank, or Dup key are available

010 = Numeric shift: Automatic shift for number

Chapter 2. Product Documentation

Bit Position Meaning

011 = Numeric data only: 0–9, comma, period, plus, minus, blank, or Dup key

are available

101 = Numeric data only: 0–9, or Dup key are available

110 = Magnetic stripe reading device data only

111 = Signed-numeric data: 0–9, plus, minus, or Dup key are available

7 MDT

0 = Field has not been modified

1 = Field has been modified

Query Host Update (24)

3270 5250 VT

Yes Yes Yes

The Query Host Update function lets the programmed operator determine if the host has updated the host

presentation space or OIA because:

• The Start Host Notification (23) function was called Start Host Notification (23) 23, Start Host Notification (on first call to the Query Host Update function only)

• The previous call to the Query Host Update function (for all calls to the Query Host Update function except the

first).

Prerequisite Calls
Start Host Notification (23)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 24

Data String 1-character short name of the host presentation space, or a blank or null

indicating request for updates to host-connected presentation space

Length 1 is implied 4 is implied

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

611

HCL Z and I Emulator for Windows (ENGLISH)

612

Return Parameters

Return Code Definition

0 No updates have been made since the last call.

1 An incorrect host presentation space was specified.

8 No prior Start Host Notification (23) function was called for the host presentation

space ID.

9 A system error was encountered.

21 The OIA was updated.

22 The presentation space was updated.

23 Both the OIA and the host presentation space were updated.

44 Printing has completed in the printer session.

Notes on Using This Function
The target presentation space must be specified in the data string, even though a connection to the host presentation

space is not necessary to check for updates.

Query Session Status (22)

3270 5250 VT

Yes Yes Yes

The Query Session Status function is used to obtain session-specific information.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

16-bit 32-bit

Function Number Must be 22.

Data String An 18/20-byte string consisting of a 1-byte short name of the target pre

sentation space plus 17 bytes for returned data. Position 1 can be filled

with:

1. A blank or a null to indicate a request for the host_connected pre

sentation space.

2. An * (asterisk) to indicate a request for the keyboard-owner presen

tation space.

Length Must be 18 Must be 20

Chapter 2. Product Documentation

16-bit 32-bit

PS Position NA

Return Parameters
This function returns a data string and a return code.

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2–9 5–12 Session long name (same as profile name; or, if profile not set, same

as short name)

10 13 Session

Type

D

3270 display

E

3270 printer

F

5250 display

G

5250 printer

H

ASCII VT

11 14 Session characteristics expressed by a binary number including the

following session-characteristics bits

Bit 0

EAB 0: Session has the basic attribute. 1: Session has

the extended attribute

Bit 1

PSS 0: Session does not support the programmed sym

bols 1: Session supports the programmed symbols

Bits 2–7

Reserved

613

HCL Z and I Emulator for Windows (ENGLISH)

614

Byte Definition

12–13 15–16 Number of rows in the host presentation space, expressed as a binary

number

14–15 17–18 Number of columns in the host presentation space, expressed as a bi

nary number

16–17 19–20 Host code page expressed as a binary number

18 Reserved

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Session Status function was successful.

1 An incorrect host presentation space was specified.

2 An incorrect string length was made.

9 A system error was encountered.

Notes on Using This Function

1. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. See

Memory Allocation on page 515 for more information.

Query Sessions (10)

3270 5250 VT

Yes Yes Yes

The Query Sessions function returns a 16-byte (12-byte for standard interface) data string describing each host

session.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Function Description

Standard Interface Enhanced Interface

Function Number Must be 10

Chapter 2. Product Documentation

Function Description

Data String Preallocated string of 16n bytes long (12n for 16-bit) (n =number of ses

sions) or more

Length 12n bytes 16n bytes

PS Position NA

Note: When the length is not matched to the number of sessions, the return code is 2.

Return Parameters
This function returns a data string, a length, and a return code.

Data String:

The returned data string is 16n bytes long (12n for standard interface), where n is the number of host

sessions. The descriptors are concatenated into the data string and each session type, and presentation

space size of a host session.

The format of each 16-byte (12-byte for standard interface) session descriptor is as follows:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2–9 5–12 Session long name (same as profile name; or, if profile not set, same as

short name)

13 Connection type H=host10

14 Reserved

11–12 15–16 Host presentation space size (this is a binary number and is not in dis

play format). If the session type is a print session, the value is 0.

Length:

The number of host sessions started.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Sessions function was successful.

2 An incorrect string length was made.

9 A system error was encountered.

615

HCL Z and I Emulator for Windows (ENGLISH)

616

Notes on Using This Function

1. If an application program receives RC=2 or RC=0, the number of the active sessions is returned in the length

field. The application program can recognize the minimum string length by this number.

2. The Query Sessions function is affected by the CFGSIZE/NOCFGZISE session option (see item 16 on

page 650 for more information) and by the EXTEND_PS/NOEXTEND_PS option (see item 20 on page 651

for more information).

Note:

1. When NOCFGSIZE is set in Set Session Parameters (9) for a 5250 session, the value of presentation

space size returned in byte position 11 and 12 from Query Sessions(10) will be changed in

accordance with the selection of EXTEND_PS or NOEXTEND_PS.

2. When EXTEND_PS is set in Set Session Parameters (9), presentation space size returned from Query

Sessions (10) will include the size of the message line, if it exists.

3. When NOEXTEND_PS is set, the value will not change regardless of the existence of a message line. In

the case of 25 row, 80 column presentation space, the value can be 1920 or 2000.

Query System (20)

3270 5250 VT

Yes Yes Yes

The Query System function can be used by an EHLLAPI application program to determine the level of Z and I

Emulator for Windows support and other system-related values. This function returns a string that contains the

appropriate system data. Most of this information is for use by a service coordinator when you call the IBM Support

Center after receiving a return code 9 IBM Support Center service (a system error was encountered).

The bytes in this returned string are defined in Return Parameters on page 617.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 20

Data String Preallocated string of 35 bytes 36 bytes

Length Must be 35 Must be 36

Chapter 2. Product Documentation

Standard Interface Enhanced Interface

PS Position NA

Return Parameters
This function returns a data string and a return code.

Data String:

A data string of 35 bytes (for 16–bit) or 36 bytes (for 32–bit) is returned. The bytes are defined as

follows:

Byte Definition

Standard Enhanced

1 1 EHLLAPI version number

2–3 2–3 EHLLAPI level number

4–9 4–9 Reserved

10–12 10–12 Reserved

13 13 Hardware base, U=Unable to determine

14 14 Program type, where P=HCL Z and I Emulator for Windows

15–16 15–16 Reserved

17–18 17–18 Z and I Emulator for Windows version/level as a 2-byte ASCII value

19 19 Reserved

20–23 20–23 Reserved

24–27 24–27 Reserved

28–29 28–29 Reserved

 30 Reserved

30–31 31–32 NLS type expressed as a 2-byte binary number

33–35 34–36 Reserved

Return Code
The following codes are defined:

Return Code Explanation

0 The Query System function was successful; data string has been returned.

1 EHLLAPI is not loaded. (PC/3270 only)

2 An incorrect string length was specified. (PC/3270 only)

9 A system error was encountered.

617

HCL Z and I Emulator for Windows (ENGLISH)

618

Notes on Using This Function
To use this function, preallocate memory to receive the returned data string parameter. See Memory Allocation on

page 515 for more information.

Query Window Coordinates (103)

3270 5250 VT

Yes Yes Yes

The Query Window Coordinates function requests the coordinates for the window of a presentation space. The

window coordinates are returned in pels.

Note: (0,0) indicates the top-left of the window.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 103

Data String 1-character short session ID of the host presentation space

Length 17 is implied 20 is implied

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short name (PSID)

• A blank or null indicating a function call for the current connec

tion presentation space

1

2–4 Reserved

2-17 5–20 Reserved

Return Parameters
This function returns a data string and a return code.

Chapter 2. Product Documentation

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short session ID

• A blank or null indicating a function call for the current connec

tion presentation space

1

2–4 Reserved

2–17 5–20 Four 32-bit unsigned integers that return:

2–5 5–8 XLeft Long integer in pels of the left X coordinate of the rectangular win

dow relative to the desktop window

6–9 9–12 YBottom Long integer in pels of the bottom Y coordinate of the rectangu

lar window relative to the desktop window

10–13 13–15 XRight Long integer in pels of the right X coordinate of the rectangular

window relative to the desktop window

14–17 16–20 YTop Long integer in pels of the top Y coordinate of the rectangular win

dow relative to the desktop window

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Window Coordinates function was successful.

1 Your program was not currently connected to the host session.

9 A system error occurred.

12 The session stopped.

Read Structured Fields (126)

3270 5250 VT

Yes No No

The Read Structured Fields function allows an application to read structured field data from the host application.

If the call specifies S (for Synchronous), the application does not receive control until the Read Structured Fields is

completed. If the call specifies A (for Asynchronous), the application receives control immediately after the call. If the

call specifies M (for Asynchronous, message mode), the application receives control immediately after the call. The

application can wait for the message. In any case (S, A, or M), the application provides the buffer address in which the

data from the host is to be placed.

For a successful asynchronous completion of this function, the following statements apply:

619

HCL Z and I Emulator for Windows (ENGLISH)

620

The return code field in the parameter list might not contain the results of the requested I/O. If the return code is not 0,

the request failed. The application must take the appropriate action based on the return code.

If the return code for this request is 0, the application must use the request ID returned with this function call to issue

the Get Request Completion function call to determine the completion results of the function associated with the

request ID. The Get Request Completion function call returns the following information:

1. Function request ID

2. Address of the data string from the asynchronous request

3. Length of the data string

4. Return code of the completed function

Prerequisite Calls
Connect for Structured Fields (120) and Allocate Communication Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 126

Data String See the following table

Length 8, 10 or 14 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

5 S or A or M

S =

Synchronous. Control is not returned to the application until

the read is satisfied.

A =

Asynchronous. Control is returned immediately to the appli

cation, can wait for the event object.

M =

Asynchronous. Control is returned immediately to the appli

cation, can wait for the message.

2

6 Reserved.

Chapter 2. Product Documentation

Byte Definition

3–4 7–8 2-byte destination/origin ID.

5–8 9–12 4-byte address of the buffer into which the data is to be read. The buffer

must be obtained using the Allocate Communications Buffer (123) func

tion.

9–10 13–16 Reserved.

11–12 When M is specified in position 2 the window handle of the window that

receives the message should be set. The message is a return value of

RegisterWindowMessage (“PCSHLL”)(not equal 0).

13–14

17–20

The data in these positions is ignored by EHLLAPI. However, no error is

caused if the migrating program has data in these positions. This data is

accepted to provide compatibility with migrating applications.

Return Parameters
This function returns a data string and a return code.

Data String:

If A (asynchronous) is specified in position 5, (2 for standard interface) and the function is completed

successfully, the following data string is returned:

Byte Definition

Standard Enhanced

13–14 2-byte function request ID. It is used by the Get Request Completion

(125) function to determine the completion of this function call.

15–16 Reserved.

9–10

17–20 4-byte value in which the event object address is returned by EHLLAPI.

The application can wait for this event object. When the event object is

cleared, the application must issue the Get Request Completion (125)

function call (32-bit only).

Note: A event object address is returned for each successful asynchronous request. The event object should

not be used again. A new event object is returned for each request and is valid for only the duration of that

request.

Data String:

If “M” (asynchronous message mode) is specified in position 5 (2 for 16-bit applications) and the

function is completed successfully, the following data string is returned:

621

HCL Z and I Emulator for Windows (ENGLISH)

622

Byte Definition

13–14 A 2-byte function request ID. It is used by the Get Request Completion

(125) function to determine the completion of this function call.

9–10

15–16 Reserved.

17–18 Task ID of asynchronous message mode.11–12

19–20 Reserved.

Note: If the function is completed successfully, an application window receive a message. The message is

a return value of RegisterWindowMessage (PCSHLL). The wParam parameter contains Task ID returned by

the function call. The HIWORD of lParam parameter contains Return Code 0, which shows the function was

successful, and LOWORD of lParam parameter contains function number 126.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Read Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid or was not con

nected.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

35 Request rejected. An outbound transmission from the host was canceled.

36 Request rejected. Lost contact with the host.

37 The function was successful, but the host is inbound disabled.

Notes on Using This Function

1. Return code 35 will be returned when the first Read Structured Fields or Write Structured Fields is requested

after an outbound transmission from the host is canceled. Corrective action is the responsibility of the

application.

2. Return code 36 requires that the application disconnect from the emulation program and then reconnect to

reestablish communication with the host. Corrective action is the responsibility of the application.

3. Return code 37 will be returned if the host is inbound disabled. The Read Structured Fields function was

successfully requested.

4. The EHLLAPI allows for a maximum of 20 asynchronous requests per application to be outstanding. A return

code for unavailable resources (RC=11) is returned if more than 20 asynchronous requests are attempted.

The structured field data contains the application structured fields received from the host. Structured field headers

are removed by the EHLLAPI before the structured field data reaches the application.

Chapter 2. Product Documentation

The structured field data format is as follows:

Offset Length Contents

0 1 word X'0000'.

2 1 word m (message length: The number of bytes of data in the message, the number

does not include the buffer header prefix, which contains 8 bytes). This value is

returned by EHLLAPI.

4 1 word n (buffer size: the supplied length of the data buffer that does include the 8-

byte message header). This value must be set by the application.

6 1 word X'C000'.

8 8 bytes Length of the first (or only) structured field message.

10 1 byte First nonlength byte of the structured field message.

⋮

m+7 1 byte Last byte in the structured field message.

Bytes 0 through 7 are the buffer header. These first 8 bytes are used by the emulation program. The user section of

the buffer begins with offset 8. Bytes 8 and 9 contain the number of bytes in the first structured field (a structured

field message can contain multiple structured fields), including 2 bytes for bytes 8 and 9. Bytes 8 through m+7 are

used for the structured field message received from the host (which could contain multiple structured fields).

The using application must furnish the complete buffer with the word at offset 0 set to zero. The buffer length must

be in the word at offset 4. The word at offset 6 must be X'C000'. The emulation program will place the data message

beginning at offset 8 and place the length of the message in the word at offset 2. The buffer length is not disturbed by

EHLLAPI.

Synchronous Requests
When Read Structured Fields is requested synchronously (the S option in the data string), control is returned to the

application only after the request is satisfied. The application can assume:

• The return code is correct.

• The data in the communications buffer (read buffer) is correct.

• The host is no longer processing the Read Structured Fields request.

Asynchronous Requests
When Read Structured Fields is requested asynchronously (the A option in the data string), the application cannot

assume:

• The return code is correct.

• The data in the communications buffer (read buffer) is correct.

• The host is no longer processing the Read Structured Fields request.

When requested asynchronously, EHLLAPI returns the following values:

623

HCL Z and I Emulator for Windows (ENGLISH)

624

• A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data string

• The address of a event object in positions 17—20 of the data string

These are used to complete the asynchronous Read Structured Fields call.

The following steps must be completed to determine the outcome of an asynchronous Read Structured Fields

function call:

• If the EHLLAPI return code is not zero, the request failed. No asynchronous request has been made. The

application must take appropriate actions before attempting the call again.

• If the return code is zero, the application should wait until the event object is in the signaled state by using the

Get Request Completion (125) function or Wait For Single Object. The event object should not be reused. The

event object is valid only for the duration of the Read Structured Fields function call through the completion of

the Get Request Completion (125) function call.

• Once the event object is in the signaled state, use the returned 16-bit Request ID as the Request ID parameter

in a call to the Get Request Completion (125) function. The data string returned from the Get Request

Completion (125) function call contains the final return code of the Read Structured Fields function call.

When Read Structured Fields is requested asynchronously (the M option in the data string), the application cannot

assume:

• The return code is correct.

• The data in the communications buffer (read buffer) is correct.

• The host is no longer processing the Read Structured Fields request.

When requested asynchronously with the M option, EHLLAPI returns the following values:

• A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data string

• Task ID of asynchronous message mode in positions 17–18 (11–12 for standard interface) of the data string.

These are used to complete the asynchronous Read Structured Fields call.

Receive File (91)

3270 5250 VT

Yes Yes No

The Receive File function is used to transfer a file from the host session to the workstation session. It is used the

same way as the RECEIVE command is used in the PC/3270. The Receive File function can be called by an EHLLAPI

application program.

Prerequisite Calls
There are no prerequisite calls for this function.

Chapter 2. Product Documentation

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 91.

Data String Refer to the examples.

Length Length, in number of bytes, of the data string. Overridden if in EOT mode.

Receive File (91)generalRECEIVE.EXE locationFollowing are examples of the data strings for a single-byte character set (SBSC):

3270 Session

• To receive the file from the VM/CMS host system:

pc_filename [id:]fn ft [fm] [(option]

• To receive the file from the MVS™/TSO host system:

pc_filename[id:]dataset[(member)] [/password] [option]

• To receive the file from the CICS® host system:

pc_filename [id:]host_filename [(option]

5250 Session

• To receive the file from the iSeries™, eServer™ i5, or System i5™ host system:

pc_filename [id:]library file member [option]

Return Parameters

Return Code Explanation

2 Parameter error or you have specified a length that is too long (more than 255

bytes) for the EHLLAPI buffer. The file transfer was unsuccessful.

3 File transfer complete.

4 File transfer complete with segmented records.

9 A system error was encountered.

27 File transfer terminated because of either a Cancel button or the timeout set by the

Set Session Parameter (9) function.

101 File transfer was successful (transfer to/from CICS®).

If you receive return code 2 or 9, there is a problem with the system or with the way you specified your data string.

Other return codes can also be received, which relate to message numbers generated by the host transfer program.

For transfers to a CICS® host transfer program, subtract 100 from the return code to give you the numeric portion of

the message. For example, a return code of 101 would mean that the message number INW0001 was issued by the

host. For other host transfer programs, just use the return code as the numerical part of the message. For example,

a return of 34 would mean that message TRANS34 was issued by the host transfer program. The documentation for

your host transfer program should give more information about the meanings of the specific messages.

625

HCL Z and I Emulator for Windows (ENGLISH)

626

Operating system error codes reported by EHLLAPI are greater than 300. To determine the error code, subtract 300

and refer to the operating system documentation for return codes.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are related to this function. They are

the STRLEN/STREOT, EOT=c, QUIET/NOQUIET and the TIMEOUT=c/TIMEOUT=0 session options. See items 1

on page 645 and 2 on page 645 and items 7 on page 646 and 8 on page 647 for more information.

2. If no path is specified when the Receive File function is executed, the received file is stored in the current

subdirectory, which is the directory in which your application is running. directory, defaultReceive File path, defaultReceive File Receive File (91)default path for target file

Release (12)

3270 5250 VT

Yes Yes Yes

The Release function unlocks the keyboard that is associated with the host presentation space reserved using the

Reserve (11) function. Reserve (11)

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 12

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Release function was successful.

1 Your program is not connected to a host session.

9 A system error was encountered.

Chapter 2. Product Documentation

Notes on Using This Function
If you do not Release a host presentation space reserved by using the Reserve (11) function, you are locked out of

that session until you call the Reset System (21) function, you call the Disconnect Presentation Space (2) function, or

you terminate the EHLLAPI application program. Reset System (21)

Reserve (11)

3270 5250 VT

Yes Yes Yes

The Reserve function locks the keyboard that is associated with the host-connected presentation space to block

input from the terminal operator.

The reserved host presentation space remains locked until one of the following occurs:

• Connect (1) function is executed to a new session.

• Disconnect Presentation Space (2) function is executed.

• Release (12) function is executed.

• Reset System (21) function is executed.

• Start Keystroke Intercept (50) function is executed.

• EHLLAPI application program is terminated.

Release (12) 12, Release Reset System (21) 21, Reset System

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 11

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Reserve function was successful.

1 Your program is not connected to a host session.

5 Presentation space cannot be used.

627

HCL Z and I Emulator for Windows (ENGLISH)

628

Return Code Explanation

9 A system error was encountered.

Notes on Using This Function

1. If your EHLLAPI application program is sending a series of transactions to the host, you might need to prevent

the user from gaining access to that session until your application processing is complete.

2. The keyboard input that a user makes while the keyboard is locked by this function is enqueued and

processed after the session is terminated.

3. This function locks both the mouse and the keyboard input. The application program must unlock the

presentation space to enable either the mouse or the keyboard input.

Reset System (21)

3270 5250 VT

Yes Yes Yes

The Reset System function reinitializes EHLLAPI to its starting state. The session parameter options are reset to

their defaults. Event notification is stopped. The reserved host session is released. The host presentation space is

disconnected. Keystroke intercept is disabled.

You can use the Reset System function during initialization or at program termination to reset the system to a known

initial condition.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 21

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Definition

0 The Reset System function was successful.

1 EHLLAPI is not loaded.

9 A system error was encountered.

Chapter 2. Product Documentation

Notes on Using this Function
For the PC/3270, this function can be used to check whether EHLLAPI is loaded. Place a call to this function at the

start of your application and check for a return code of 1.

Search Field (30)

3270 5250 VT

Yes Yes Yes

The Search Field function examines a field within the connected host presentation space for the occurrence of a

specified string. If the target string is found, this function returns the decimal position of the string numbered from

the beginning of the host presentation space. (For example, in a 24-row by 80-column presentation space, the row 1,

column 1 position is numbered 1 and the row 5, column 1 position is numbered 321.)

This function can be used to search either protected or unprotected fields, but only in a field-formatted host

presentation space.

Note: If the field at the end of the host presentation space wraps, wrapping occurs when the end of the

presentation space is reached.

presentation spacefield-formatted field-formatted PS

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 30.

Data String Target string for search.

Length Length of the target data string. Overridden in EOT mode.

PS Position Identifies the target field. For SRCHALL, this can be the PS position of any

byte within the target field. For SRCHFROM, it is the beginning point of the

search for SRCHFRWD or the ending point of the search for SRCHBKWD. See

note 3 on page 630.

Return Parameters
This function returns a length and a return code.

629

HCL Z and I Emulator for Windows (ENGLISH)

630

Length:

The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space position.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Search Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error. Either the string length was zero, or EOT mode was specified but no

EOT character was found in calling data string.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found, or the host presentation space was unformatted.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are related to this function. They are

the SRCHALL/SRCHFROM, STRLEN/STREOT, SRCHFRWD/SRCHBKWD, and the EOT=c session options. See

items 1 on page 645 through 4 on page 646 for more information.

2. You can use the Set Session Parameters (9) function to determine whether your searches proceed forward

(SRCHFRWD) or backward (SRCHBKWD) in a field.

3. The Search Field function normally checks the entire field (SRCHALL default mode). However, you can use the

function 9 to specify SRCHFROM. In this mode, the calling PS position parameter does more than identify the

target field. It also provides a beginning or ending point for the search.

• If the SRCHFRWD option is in effect, the search for the designated string begins at the specified PS

position and proceeds toward the end of the field.

• If the SRCHBKWD option is in effect, the search for the designated string begins at the end of the field

and proceeds backward toward the specified PS position. If the target string is not found, the search

ends at the PS position specified in the calling PS position parameter.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

Chapter 2. Product Documentation

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Search Presentation Space (6)

3270 5250 VT

Yes Yes Yes

The Search Presentation Space function lets your EHLLAPI program examine the host presentation space for the

occurrence of a specified string.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 6.

Data String Target string for search.

Length Length of the target data string. Overridden in EOT mode.

PS Position Position within the host presentation space where the search is to be

gin (SRCHFRWD option) or to end (SRCHBKWD option). Overridden in SR

CHALL (default) mode.

Return Parameters
This function returns a length and a return code.

Length:

The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space position.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Search Presentation Space function was successful.

1 Your program is not connected to a host session.

631

HCL Z and I Emulator for Windows (ENGLISH)

632

Return Code Explanation

2 An error was made in specifying parameters.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are related to this function. They are

the SRCHALL/SRCHFROM, STRLEN/STREOT, SRCHFRWD/SRCHBKWD, and the EOT=c session options. See

items 1 on page 645 through 4 on page 646 through for more information.

2. You can use the Set Session Parameters (9) function to specify SRCHBKWD. When this option is in effect, the

search operation locates the last occurrence of the string.

3. The Search Presentation Space function normally checks the entire host presentation space. However, you

can use the Set Session Parameters (9) function to specify SRCHFROM. In this mode, the calling PS position

parameter specifies a beginning or ending point for the search.

• If the SRCHFRWD option is in effect, the search for the designated string begins at the specified PS

position and proceeds toward the end of the host presentation space.

• If the SRCHBKWD option is in effect, the search for the designated string begins at the end of the PS

and proceeds backward toward the specified PS position. If the target string is not found, the search

ends at the PS position specified in the calling PS position parameter.

4. The SRCHFROM option is also useful if you are looking for a keyword that might occur more than once in the

host presentation space.

5. The Search Presentation Space function is useful in determining when the host presentation space is

available. If your EHLLAPI application is expecting a specific prompt or message before sending data, the

Search Presentation Space function allows you to check for a prompt message before continuing.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Send File (90)

3270 5250 VT

Yes Yes No

Chapter 2. Product Documentation

The Send File function is used to transfer a file from the workstation session where EHLLAPI is running to a host

session.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 90.

Data String Refer to the examples.

Length Length of the target data string. Overridden in EOT mode.

PS Position Must be 0.

Send File (90)SEND.EXE locationFollowing are examples of the data strings for SBCS

3270 Session

• To send the file to the VM/CMS host system:

pc_filename [id:]fn ft [fm] [(option]

• To send the file to the MVS/TSO host system:

pc_filename [id:]dataset[(member)] [/password] [option]

• To send the file to the CICS host system:

pc_filename [id:]host_filename [(option]

5250 Session

• To send the file to the iSeries™, eServer™ i5, or System i5™ host system:

pc_filename [id:]library file member [option]

Return Parameters

Return Code Explanation

2 Parameter error or you have specified a length that is too long (more than 255

bytes) for the EHLLAPI buffer. The file transfer was unsuccessful.

3 File transfer complete.

4 File transfer complete with segmented records.

5 Workstation file name is not valid or not found. File transfer was canceled.

9 A system error was encountered.

27 File transfer terminated because of either a Cancel button or the timeout set by the

Set Session Parameter (9) function.

101 File transfer was successful (transfer to/from CICS).

633

HCL Z and I Emulator for Windows (ENGLISH)

634

If you receive return code 2 or 9, there is a problem with the system or with the way you specified your data string.

Other return codes can also be received which relate to message numbers generated by the host transfer program.

For transfers to a CICS host transfer program, subtract 100 from the return code to give you the numeric portion of

the message. For example, a return code of 101 would mean that the message number INW0001 was issued by the

host. For other host transfer programs, just use the return code as the numerical part of the message. For example,

a return of 34 would mean that message TRANS34 was issued by the host transfer program. The documentation for

your host transfer program should give more information about the meanings of the specific messages.

Operating system error codes reported by EHLLAPI are greater than 300. To determine the error code, subtract 300

and refer to the operating system documentation for return codes.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are related to this function. They are

the QUIET/NOQUIET, STRLEN/STREOT, TIMEOUT=c/TIMEOUT=0, and the EOT=c session options. See items 1

on page 645 and 2 on page 645 plus items 7 on page 646 and 8 on page 647 for more information. path, defaultSend File Send File (90)default path for target file

Send Key (3)

3270 5250 VT

Yes Yes Yes

The Send Key function is used to send either a keystroke or a string of keystrokes to the host presentation space.

You define the string of keystrokes to be sent with the calling data string parameter. The keystrokes appear to

the target session as though they were entered by the terminal operator. You can also send all attention identifier

(AID) keys such as Enter and so on. All host fields that are input protected or are numeric only must host fieldsinput protectednumeric only input protected fields numeric only fields fields, hostinput protectednumeric only be treated

accordingly.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 3.

Data String A string of keystrokes, maximum 255. Uppercase and lowercase ASCII

characters are represented literally. Function keys and shifted func

tion keys are represented by mnemonics. See Keyboard Mnemonics on

page 636.

Length Length of the source data string. Overridden if in EOT mode.

PS Position NA

Chapter 2. Product Documentation

Return Parameters

Return Code Explanation

0 The keystrokes were sent; status is normal.

1 Your program is not connected to a host session.

2 An incorrect parameter was passed to EHLLAPI.

4 The host session was busy; all of the keystrokes could not be sent.

5 Input to the target session was inhibited or rejected; all of the keystrokes could not

be sent.

9 A system error was encountered.

Notes on Using This Function

1. The parameters under the Set Session Parameters (9) function are related to this function. They are the

AUTORESET/NORESET, STRLEN/STREOT, EOT=c, ESC=c, and RETRY/NORETRY session options. See items 1

on page 645 and 2 on page 645, 9 on page 648 and 10 on page 648, and 19 on page 651 for more

information. Set Session Parameters (9)general

2. Keystrokes cannot be sent to the host session when the keyboard is locked or busy. You can check this

condition with the Wait (4) function. Wait (4)

3. If the host is busy, input might be rejected.

4. The length of the data string must be explicitly defined by the default length parameter, but it can be defined

implicitly by the EOT=c option of the Set Session Parameters (9) function.

When explicitly defining length (see item 1), the value for the length parameter passed by the application must

be calculated. For this calculation, allow 2 bytes for compound keystrokes such as @E and allow 4 bytes for

compound keystrokes such as @A@C.

5. To send special control keys, a compound character coding scheme is used. In this coding scheme, one

keystroke is represented by a sequence of two to four ASCII characters. The first and third character are

always the escape character. The second and fourth character are always a keycode.

To send the sequence LOGON ABCDE followed by the Enter key, you would code the string LOGON ABCDE@E. A

complete list of these keycodes is represented in Keyboard Mnemonics on page 636.escape charactercharacter, escape

This compound coding technique allows an ASCII string representation of all necessary keystroke codes

without requiring the use of complex hexadecimal key codes.

The default escape character is @. The value of the escape character can be changed to any other character

with the ESC=c option of the Set Session Parameters (9) function.

6. Users needing higher levels of performance should use the Copy String to Field (33) or Copy String to

Presentation Space (15) function rather than send keystrokes with the Send Key (3) function. But remember,

only the Send Key (3) function can send the special control keys.

7. Refer to Set Session Parameters (9) on page 643 session option 10 on page 648 (NORESET option) to

improve the performance of this function.

635

HCL Z and I Emulator for Windows (ENGLISH)

636

Unless NORESET is required, the reset mnemonic is added to the keystroke strings as a prefix. Therefore, all

resettable status except input inhibit are reset.

The NORESET option is not the same as the Reset System (21) function.

8. The keystroke strings, including the AID key, are sent to the host via multiple paths. Each path sends the

strings before the first AID key (or including the AID key). EHLLAPI adjusts the string length and the start

position of each path. For a host application program, any keystroke might be lost by the AID key process.

Therefore, you should not send a keystroke list that includes plural AID keys.

9. During the @P (Print) or @A@T (Print Presentation Space) process, all requests that update the presentation

space are rejected. If the presentation space is busy or the interruption request occurs during the print

request, the mnemonic @A@R (Device Reset – Cancel to print the Presentation Space) cancels the request

and resets the status.

Keyboard Mnemonics
The keyboard mnemonics provide the ASCII characters representing the special function keys of the keyboard in the

workstation. The abbreviation codes make the mnemonics for special keys easy to remember. An alphabetic key

code is used for the most common keys. For example, the Clear key is C, and the Tab key is T.

Table 71: Mnemonics with Uppercase Alphabetic Characters on page 636 shows the mnemonics using uppercase

alphabetic characters:

Table 71. Mnemonics with Uppercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@B Left Tab Yes Yes No

@C Clear Yes Yes No

@D Delete Yes Yes No

@E Enter Yes Yes No

@F Erase EOF Yes Yes No

@H Help No Yes No

@I Insert Yes Yes No

@J Jump (Set Focus) Yes Yes No

@L Cursor Left Yes Yes Yes

@N New Line Yes Yes Yes

@O Space Yes Yes Yes

@P Print Yes Yes Yes

@R Reset Yes Yes No

@T Right Tab Yes Yes Yes

@U Cursor Up Yes Yes Yes

@V Cursor Down Yes Yes Yes

@Z Cursor Right Yes Yes Yes

Chapter 2. Product Documentation

Table 72: Mnemonics with Numbers or Lowercase Characters on page 637 shows the mnemonics using a number

or lowercase alphabetic characters.

Table 72. Mnemonics with Numbers or Lowercase Characters

Mnemonic Meaning 3270 5250 VT

@0 Home Yes Yes No

@1 PF1/F1 Yes Yes No

@2 PF2/F2 Yes Yes No

@3 PF3/F3 Yes Yes No

@4 PF4/F4 Yes Yes No

@5 PF5/F5 Yes Yes No

@6 PF6/F6 Yes Yes Yes

@7 PF7/F7 Yes Yes Yes

@8 PF8/F8 Yes Yes Yes

@9 PF9/F9 Yes Yes Yes

@a PF10/F10 Yes Yes Yes

@b PF11/F11 Yes Yes Yes

@c PF12/F12 Yes Yes Yes

@d PF13 Yes Yes Yes

@e PF14 Yes Yes Yes

@f PF15 Yes Yes Yes

@g PF16 Yes Yes Yes

@h PF17 Yes Yes Yes

@i PF18 Yes Yes Yes

@j PF19 Yes Yes Yes

@k PF20 Yes Yes Yes

@l PF21 Yes Yes No

@m PF22 Yes Yes No

@n PF23 Yes Yes No

@o PF24 Yes Yes No

@q End Yes Yes No

@u Page Up No Yes No

@v Page Down No Yes No

@x PA1 Yes Yes No

@y PA2 Yes Yes No

@z PA3 Yes Yes No

Table 73: Mnemonics with @A and @ Uppercase Alphabetic Characters on page 638 shows the mnemonics using

the combination @A and @alphabetic uppercase (A–Z) key.

637

HCL Z and I Emulator for Windows (ENGLISH)

638

Table 73. Mnemonics with @A and @ Uppercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@A@C Test No Yes No

@A@D Word Delete Yes Yes No

@A@E Field Exit Yes Yes No

@A@F Erase Input Yes Yes No

@A@H System Request Yes Yes No

@A@I Insert Toggle Yes Yes No

@A@J Cursor Select Yes Yes No

@A@L Cursor Left Fast Yes Yes No

@A@Q Attention Yes Yes No

@A@R Device Cancel (Can

cels Print Presenta

tion Space)

Yes Yes No

@A@T Print Presentation

Space

Yes Yes Yes

@A@U Cursor Up Fast Yes Yes No

@A@V Cursor Down Fast Yes Yes No

@A@Z Cursor Right Fast Yes Yes No

Table 74: Mnemonics with @A and @ Lowercase Alphabetic Characters on page 638 shows the mnemonics using

the combination @A and @number or @A and @alphabetic lowercase (a–z) key.

Table 74. Mnemonics with @A and @ Lowercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@A@9 Reverse Video Yes Yes No

@A@b Underscore Yes No No

@A@c Reset Reverse Video Yes No No

@A@d Red Yes No No

@A@e Pink Yes No No

@A@f Green Yes No No

@A@g Yellow Yes No No

@A@h Blue Yes No No

@A@i Turquoise Yes No No

@A@j White Yes No No

@A@l Reset Host Colors Yes No No

@A@t Print (Personal Com

puter)

Yes Yes No

@A@y Forward Word Tab Yes Yes No

@A@z Backward Word Tab Yes Yes No

Chapter 2. Product Documentation

Table 75: Mnemonics with @A and @ Alphanumeric (Special) Characters on page 639 shows the mnemonics using

the combination @A and @special character.

Table 75. Mnemonics with @A and @ Alphanumeric (Special) Characters

Mnemonic Meaning 3270 5250 VT

@A@- Field - No Yes No

@A@+ Field + No Yes No

@A@< Record Backspace No Yes No

Table 76: Mnemonics with @S (Shift), @W (Edit) and @ Alphabetic Characters on page 639 shows the mnemonics

using the combination @S , @W, and @alphabetic lowercase.

Table 76. Mnemonics with @S (Shift), @W (Edit) and @ Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@S@E Print Presentation

Space on Host

No Yes No

@S@x Dup Yes Yes No

@S@y Field Mark Yes Yes No

@W@C Edit Copy Yes Yes Yes

@W@D Edit Clear Yes Yes Yes

@W@E Edit Copy Append Yes Yes Yes

@W@L Edit Copy Link Yes Yes Yes

@W@N Edit Paste Next Yes Yes Yes

@W@V Edit Paste Yes Yes Yes

@W@X Edit Cut Yes Yes Yes

@W@Z Edit Undo Yes Yes Yes

Note: @W Edit mnemonics are supported only in EHLLAPI functions in Enhanced mode. See Start Keystroke

Intercept function under Summary of EHLLAPI Functions on page 537.

VT Only: Table 77: Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only) on page 639 shows the

mnemonics using the combination @M and @number or @alphabetic lowercase (a-z)

Table 77. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only)

Mnemonic Meaning 3270 5250 VT

@M@0 VT Numeric Pad 0 No No Yes

@M@1 VT Numeric Pad 1 No No Yes

@M@2 VT Numeric Pad 2 No No Yes

@M@3 VT Numeric Pad 3 No No Yes

@M@4 VT Numeric Pad 4 No No Yes

@M@5 VT Numeric Pad 5 No No Yes

639

HCL Z and I Emulator for Windows (ENGLISH)

640

Table 77. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only) (continued)

Mnemonic Meaning 3270 5250 VT

@M@6 VT Numeric Pad 6 No No Yes

@M@7 VT Numeric Pad 7 No No Yes

@M@8 VT Numeric Pad 8 No No Yes

@M@9 VT Numeric Pad 9 No No Yes

@M@- VT Numeric Pad - No No Yes

@M@, VT Numeric Pad , No No Yes

@M@. VT Numeric Pad . No No Yes

@M@e VT Numeric Pad Enter No No Yes

@M@f VT Edit Find No No Yes

@M@i VT Edit Insert No No Yes

@M@r VT Edit Remove No No Yes

@M@s VT Edit Select No No Yes

@M@p VT Edit Previous

Screen

No No Yes

@M@n VT Edit Next Screen No No Yes

@M@a VT PF1 No No Yes

@M@b VT PF2 No No Yes

@M@c VT PF3 No No Yes

@M@d VT PF4 No No Yes

@M@h VT HOld Screen No No Yes

@M@(space) Control Code NUL No No Yes

@M@A Control Code SOH No No Yes

@M@B Control Code STX No No Yes

@M@C Control Code ETX No No Yes

@M@D Control Code EOT No No Yes

@M@E Control Code ENQ No No Yes

@M@F Control Code ACK No No Yes

@M@G Control Code BEL No No Yes

@M@H Control Code BS No No Yes

@M@I Control Code HT No No Yes

@M@J Control Code LF No No Yes

@M@K Control Code VT No No Yes

@M@L Control Code FF No No Yes

@M@M Control Code CR No No Yes

@M@N Control Code SO No No Yes

@M@O Control Code SI No No Yes

@M@P Control Code DLE No No Yes

Chapter 2. Product Documentation

Table 77. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only) (continued)

Mnemonic Meaning 3270 5250 VT

@M@Q Control Code DC1 No No Yes

@M@R Control Code DC2 No No Yes

@M@S Control Code DC3 No No Yes

@M@T Control Code DC4 No No Yes

@M@U Control Code NAK No No Yes

@M@V Control Code SYN No No Yes

@M@W Control Code ETB No No Yes

@M@X Control Code CAN No No Yes

@M@Y Control Code EM No No Yes

@M@Z Control Code SUB No No Yes

@M@u Control Code ESC No No Yes

@M@v Control Code FS No No Yes

@M@w Control Code GS No No Yes

@M@x Control Code RS No No Yes

@M@y Control Code US No No Yes

@M@z Control Code DEL No No Yes

@Q@A VT User Defined Key 6 No No Yes

@Q@B VT User Defined Key 7 No No Yes

@Q@C VT User Defined Key 8 No No Yes

@Q@D VT User Defined Key 9 No No Yes

@Q@E VT User Defined Key

10

No No Yes

@Q@F VT User Defined Key

11

No No Yes

@Q@G VT User Defined Key

12

No No Yes

@Q@H VT User Defined Key

13

No No Yes

@Q@I VT User Defined Key

14

No No Yes

@Q@J VT User Defined Key

15

No No Yes

@Q@K VT User Defined Key

16

No No Yes

@Q@L VT User Defined Key

17

No No Yes

@Q@M VT User Defined Key

18

No No Yes

641

HCL Z and I Emulator for Windows (ENGLISH)

642

Table 77. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only) (continued)

Mnemonic Meaning 3270 5250 VT

@Q@N VT User Defined Key

19

No No Yes

@Q@0 VT User Defined Key

20

No No Yes

@Q@a VT Backtab No No Yes

@Q@r VT Clear Page No No Yes

@Q@s VT Edit No No Yes

The following table shows the mnemonics using a special character.

Table 78. Mnemonics with Special Character Keys

Mnemonic Meaning 3270 5250 VT

@@ @ Yes Yes Yes

@$ Alternate Cursor (The

Presentation Manag

er® Interface only)

Yes Yes Yes

@< Backspace Yes Yes Yes

The following character keys are interpreted as they are.

a–z ! ' ' < }

A–Z $ (. > [

0–9 %) / =]

~ & * : ? |

" + ; {

Set Cursor (40)

3270 5250 VT

Yes Yes Yes

The Set Cursor function is used to set the position of the cursor within the host presentation space. Before using the

Set Cursor function, a workstation application must be connected to the host presentation space.

Prerequisite Calls
Connect Presentation Space (1)

Chapter 2. Product Documentation

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 40

Data String NA

Length NA

PS Position Desired cursor position in the connected host presentation space

Return Parameters

Return Code Explanation

0 Cursor was successfully located at the specified position.

1 Your program is not connected to a host session.

4 The session is busy.

7 A cursor location less than 1 or greater than the size of the connected host presen

tation space was specified.

9 A system error occurred.

Set Session Parameters (9)

3270 5250 VT

Yes Yes Yes

The Set Session Parameters function lets you change certain default session options in EHLLAPI for all sessions.

When EHLLAPI is loaded, the default settings for session options are as indicated by the underscored entries in the

tables that appear in Session Options on page 645 . Any, some, or all of these settings can be changed by including

the desired option in the calling data string as explained below. Specified settings remain in effect until:

• Changed by a subsequent Set Session Parameters (9) function that specifies a new value.

• The Reset System (21) function is executed. Reset System (21) 21, Reset System

• The EHLLAPI application program is terminated.

The following table lists those EHLLAPI functions that are affected by session options. Functions not listed in the

table are not affected by any of the session options. Session options that affect each function are indicated by

corresponding entries in the “See Items” column. These entries are indexed to the list that follows Call Parameters on

page 645. Set Session Parameters (9)List of affected functions

Function Number Function Name See Items

1 Connect Presentation Space 11 on page 648, 21 on page 651,

22 on page 652

643

HCL Z and I Emulator for Windows (ENGLISH)

644

Function Number Function Name See Items

3 Send Key 1 on page 645, 2 on page 645, 9

on page 648, 10 on page 648, 19

on page 651

4 Wait 12 on page 648

5 Copy Presentation Space 5 on page 646, 13 on page 649,

14 on page 650, 15 on page 650,

17 on page 650, 20 on page 651

6 Search Presentation Space 1 on page 645, 2 on page 645, 3

on page 646, 4 on page 646

8 Copy Presentation Space to String 5 on page 646, 13 on page 649,

14 on page 650, 15 on page 650,

17 on page 650, 20 on page 651

10 Query Sessions 16 on page 650, 20 on page 651

15 Copy String to Presentation Space 1 on page 645, 2 on page 645,

13 on page 649, 14 on page 650,

18 on page 650, 20 on page 651

18 Pause 6 on page 646

30 Search Field 1 on page 645, 2 on page 645, 3

on page 646, 4 on page 646, 20

on page 651

33 Copy String to Field 1 on page 645, 2 on page 645,

13 on page 649, 14 on page 650,

18 on page 650, 20 on page 651

34 Copy Field to String 5 on page 646, 13 on page 649,

14 on page 650, 17 on page 650,

20 on page 651

35 Copy Presentation Space to Clipboard 5 on page 646, 13 on page 649,

14 on page 650, 17 on page 650,

20 on page 651

36 Paste Clipboard to Presentation Space 1 on page 645, 2 on page 645,

13 on page 649, 14 on page 650,

18 on page 650, 20 on page 651

51 Get Key 9 on page 648, 12 on page 648

90 Send File 1 on page 645, 2 on page 645, 7

on page 646, 8 on page 647

91 Receive File 1 on page 645, 2 on page 645, 7

on page 646, 8 on page 647

101 Connect Window Services 21 on page 651, 22 on page 652

Chapter 2. Product Documentation

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 9.

Data String String containing the desired values of those session options that are to

be changed. The data string can contain any of the values in the tables of

Session Options on page 645. The values should be placed on the data

string line, separated by commas or blanks. The sets of parameters are ex

plained in terms of the functions they affect.

Length Explicit length of the source data string (the STREOT option is not allowed).

PS Position NA.

Session Options
The following tables show the session options. The default is underlined. Set Session Parameters (9)Valid Inputstring specification

1. string specificationsession optionsThe values in the following table determine how the data string length is defined for functions Send Key (3),

Search Presentation Space (6), Copy String to Presentation Space (15), Search Field (30), Copy String to

Field (33), Send File (90), and Receive File (91).

Value Explanation

STRLEN An explicit length is passed for all strings.

STREOT Lengths are not explicitly coded. Calling (source) data strings are terminated

with an EOT character.

STRLEN STREOT

2. The statement in the following table is used to specify the character that is used as the end-of-text (EOT)

delimiter in the calling (source) data string for EHLLAPI functions Send Key (3), Search Presentation Space

(6), Copy String to Presentation Space (15), Search Field (30), Copy String to Field (33), Send File (90), and

Receive File (91). EOT

Value Explanation

EOT=c Allows you to specify the EOT character for string terminators (in STREOT

mode). Binary zero is the default. Do not leave a blank after the equal sign.

To be valid, c must be entered as a 1-byte string literal character with no preceding blanks. The EOT character

specified by this statement is used to determine the length of a calling data string only when the STREOT

option (see item 1) is in effect.

645

HCL Z and I Emulator for Windows (ENGLISH)

646

3. The values in the following table affect the Search Presentation Space (6) and Search Field (30) search

functions. SRCHALL SRCHFROM

Value Explanation

SRCHALL The Search Presentation Space (6) function and Search Field (30) function

scan the entire host presentation space or field.

SRCHFROM The Search Presentation Space (6) function and Search Field (30) function

start from a specified PS position (for SRCHFRWD) or end at a specified PS posi

tion (for SRCHBKWD).

4. The values in the following table affect the Search Presentation Space (6) and Search Field (30) search

functions. They determine the direction for the search. SRCHFRWD SRCHBKWD

Value Explanation

SRCHFRWD The Search Presentation Space (6) function and Search Field (30) function

perform in an ascending direction.

SRCHBKWD The Search Presentation Space (6) function and Search Field (30) function

perform in a descending direction. A search is satisfied if the first character of

the requested string starts within the bounds specified for the search.

5. The values in the following table determine how attribute bytes are treated for functions Copy Presentation

Space (5), Copy Presentation Space to String (8), and Copy Field to String (34). attribute bytes ATTRB NOATTRB NULLATTRB

Value Explanation

NOATTRB Convert all unknown values to blanks.

ATTRB Pass back all codes that do not have an ASCII equivalent as their original val

ues.

NULLATTRB Convert all field attributes to null characters.

6. The values in the following table affect the Pause (18) function. FPAUSE IPAUSE

Value Explanation

FPAUSE A full-duration pause lasts for however long you specified in the Pause (18)

function.

IPAUSE Interruptible pause. Start Host Notification (23) After the Start Host Notification (23) function is executed,

a host event satisfies a pause.

7. The values in the following table determine whether messages generated by file transfer functions Send File

(90) and Receive File (91) are displayed. QUIET NOQUIET

Value Explanation

NOQUIET SEND and RECEIVE messages are displayed.

QUIET SEND and RECEIVE messages are not displayed.

Chapter 2. Product Documentation

8. The statements in the following table determine how long Z and I Emulator for Windows EHLLAPI waits

before it automatically issues a Cancel during execution of file transfer functions Send File (90) and Receive

File (91). To be valid, c must be a capital letter J–N and must not be preceded by a blank. TIMEOUT

Value Explanation

TIMEOUT=0 A Cancel is automatically issued following a 20-second (approximate) delay.

TIMEOUT=c A Cancel is automatically issued following a specified delay. A 1-character in

dicator from the table below tells Z and I Emulator for Windows how many 30-

second cycles it should accept before issuing a Cancel itself.

Character

Value (in minutes)

1

0.5

2

1.0

3

1.5

4

2.0

5

2.5

6

3.0

7

3.5

8

4.0

9

4.5

J

5.0

K

5.5

647

HCL Z and I Emulator for Windows (ENGLISH)

648

Value Explanation

L

6.0

M

6.5

N

7.0

Send File (90)general Receive File (91)general

9. The statement in the following table is used to define the escape character for keystroke mnemonics. This

session option affects functions Send Key (3) and Get Key (51). The value of c must be entered as a 1-byte

literal character string with no preceding blanks. escape character character, escape ESC

Value Explanation

ESC=c Specifies the escape character for keystroke mnemonics (@ is the default). Do

not leave a blank after the equal sign. A blank is not a valid escape character.

10. The values in the following table determine whether EHLLAPI automatically precedes strings sent using the

Send Key (3) function with a reset. AUTORESET NORESET

Value Explanation

AUTORESET EHLLAPI attempts to reset all inhibited conditions by prefixing all strings of

keys sent using the Send Key (3) function with a reset.

NORESET Do not AUTORESET.

11. The values in the following table affect the manner in which the Connect Presentation Space (1) command

function.

Value Explanation

CONLOG Establishes a logical connection between the workstation session and a host

session. During Connect, does not jump to the requested presentation space.

CONPHYS Establishes a physical connection between the workstation session and a host

session. During Connect, jumps to the requested presentation space.

12. The values in the following table affect the Wait (4) function and Get Key (51) function. For each value, there

are two different effects, one for each function. TWAIT LWAIT NWAIT

Value Explanation

TWAIT For the Wait (4) function, waits up to a minute before timing out on XCLOCK (X

[]) or XSYSTEM.

Chapter 2. Product Documentation

Value Explanation

For the Get Key (51) function, does not return control to your EHLLAPI applica

tion program until it has intercepted a key (normal or AID key based on the op

tion specified under the Start Keystroke Intercept (50) function).

LWAIT For the Wait (4) function, waits until XCLOCK (X [])/XSYSTEM clears. This op

tion is not recommended, because control does not return to your application

until the host is available.

For the Get Key (51) function, does not return control to your EHLLAPI applica

tion program until it has intercepted a key (normal or AID key based on the op

tion specified under the Start Keystroke Intercept (50) function).

NWAIT For the Wait (4) function, checks status and returns immediately (no wait).

For the Get Key (51) function, returns return code 25 (keystrokes not available)

in the fourth parameter if nothing is queued matching the option specified un

der the Start Keystroke Intercept (50) function.

Note: Use of NWAIT is recommended.

13. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8),

Copy String to Presentation Space (15), Copy String to Field (33), and Copy Field to String (34). Extended

attribute bytes (EAB) include extended character attributes and extended field attributes. EAB NOEAB

Value Explanation

NOEAB Pass data only, no EABs.

EAB Pass the presentation space data with extended attribute bytes. For each char

acter that appears on the screen, 2 bytes of data are passed. Therefore, a

buffer twice the size of the presentation space must be preallocated; for exam

ple 2 x 1920 = 3840 for a 24-row by 80-column presentation space.

Extended attributes for a string of characters may be reported as attributes of

the field byte, rather than as attributes of each individual character in the field.

In this case, to tell if a particular character or set of characters on a screen is

underscored, do a CopyPStoString specifying the position of the field attribute

byte (the byte before the field that is displayed on the screen) to get the EAB in

formation that applies to all of the characters in that field.

Note: When using EHLLAPI Copy PS to String, text is copied which should be invisible to the operator.

Use the EHLLAPI Set Session Parameters function to set the NODISPLAY option to determine if there

is hidden data. This causes EHLLAPI to return nondisplay fields as nulls. Another common procedure

for hiding data is to set the foreground and background colors the same (BLACK, for instance) so the

text is displayed, but not visible to the human operator. The only way for your application to detect

649

HCL Z and I Emulator for Windows (ENGLISH)

650

this is to use the EAB and XLATE session parameters and then copying the PS. The foreground/

background color of each position is returned and you can determine which characters are invisible.

14. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8),

Copy String to Presentation Space (15), Copy String to Field (33), and Copy Field to String (34). XLATE NOXLATE

Value Explanation

NOXLATE EABs are not translated.

XLATE EABs are translated to the PC color graphics adapter (CGA) format.

15. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8)

and Copy Presentation Space to Clipboard (35) if NOATTRB and NOEAB are specified. BLANK NOBLANK

Value Explanation

BLANK Convert all unknown values to X'20'.

NOBLANK Convert all unknown values to X'00'.

The default value is BLANK. If you want to change the default value to NOBLANK, add the following statement

in the PCSWIN.INI file located in the Z and I Emulator for Windows user-class application data directory:

[API]
NullToBlank=NO

16. The values in the following table affect the presentation space size that is returned by the Query Sessions

(10).

Value Explanation

CFGSIZE Returns the configured size of the connected presentation space. This option

ignores any override of the configured size by the host.

NOCFGSIZE Returns the current size of the connected presentation space.

17. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8),

Copy Field to String (34) and Copy Presentation Space to Clipboard (35).

Value Explanation

DISPLAY Copy nondisplay fields in the presentation space to the target buffer area in the

same manner as display fields. Current applications function normally.

NODISPLAY Do not copy nondisplay fields in the presentation space to the target buffer

area. Copy the nondisplay fields to the target buffer as a string of null charac

ters. This allows applications to display the copied buffers in the presentation

widow without displaying confidential information, such as passwords.

18. The values in the following table affect Copy String to Presentation Space (15), Copy String to Field (33) and

Paste Clipboard to Presentation Space (36).

Chapter 2. Product Documentation

Value Explanation

NOPUTEAB EAB is not contained in the data string of Copy String to Presentation Space or

Copy String to Field.

PUTEAB EAB is contained with character data in the data string of Copy String to Pre

sentation Space or Copy String to Field.

This option is used for the compatibility with Communication Manager/2. For Communication Manager/2, the

data string, which is specified in Copy String to Presentation Space or Copy String to Field, must be contain

EAB (or EAD) with character data when EAB (or EAD) is valid in Set Session Parameters. Whereas, for the

previous Z and I Emulator for Windows, the data string specified in these functions must consist of character

data only even if EAB (or EAD) is valid. But Z and I Emulator for Windows allows that the data string contains

EAB (or EAD) by setting PUTEAB to provide the compatibility with Communication Manager/2.

19. The values in the following table affect the Send Key (3) function. Keystrokes are not processed if the

keyboard is blocked or in use. The options determine whether the function tries to resend the keystrokes until

a 4-minute timeout occurs or if the function returns immediately after determining the keyboard is blocked or

in use.

Value Explanation

RETRY Continues to attempt to send keystrokes until they are sent or until a 4-minute

timeout occurs.

NORETRY Returns immediately after determining the keyboard is blocked or in use.

20. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8),

Copy String to Presentation Space (15), Copy String to Field (33), Copy Field to String (34) Search Field (30),

Query Sessions. (10), Copy Presentation Space to Clipboard (35) and Paste Clipboard to Presentation Space

(36).

Value Explanation

EXTEND_PS 5250 emulation supports a presentation space of 24 rows by 80 columns. In

some instances, Communication Manager 5250 emulation displays a 25th

row. This occurs when either an error message from the host is displayed or

when the operator selects the SysReq key. Z and I Emulator for Windows dis

plays 25th row information on row 24, but EHLLAPI normally sees the real 24th

row. By EXTEND_PS option, an EHLLAPI application can use the same inter

face with Communication Manager EHLLAPI and valid presentation space is

extended when this condition occurs.

NOEXTEND_PS The presentation space is not extended when the above condition occurs. This

is the default value.

21. The values in the following table affect the Connect Presentation Space (1) and Connect Window Services

(101) functions. The options specify whether an application can or will share the presentation space to which

it is connected with another application. Only one of the following values can be specified with each Set

Session Parameter call.

651

HCL Z and I Emulator for Windows (ENGLISH)

652

Value Explanation

SUPER_WRITE The application allows other applications that allow sharing and have write ac

cess permissions to concurrently connect to the same presentation space.

The originating application performs supervisory-type functions but does not

create errors for other applications that share the presentation space.

WRITE_SUPER The application requires write access and allows only supervisory application

to concurrently connect to its presentation space. This is the default value.

WRITE_WRITE The application requires write access and allows partner or other applications

with predictable behavior to share the presentation space.

WRITE_READ The application requires write access and allows other applications that per

form read-only functions to share the presentation space. The application is al

so allowed to copy the presentation space and perform other read-only opera

tions as usual.

WRITE_NONE The application has exclusive use of the presentation space. No other applica

tions are allowed to share the presentation space, including supervisory appli

cations. The application is allowed to copy the presentation space and perform

read-only operations as usual.

READ_WRITE The application requires only read access to monitor the presentation space

and allows other applications that perform read or write, or both, functions to

share the presentation space. The application is also allowed to copy the pre

sentation space and perform other read-only operations as usual.

22. The values in the following table allow applications that have presentation space sharing requirements to limit

the sharing to a partner application (an application that was developed to work with it).

Value Explanation

NOKEY Allows the application to be compatible with existing applications that do not

specify the KEY parameter.

KEY$nnnnnnnn Uses a keyword to restrict sharing access to the presentation space that it

supports. The keyword must be exactly 8 bytes in length.

Set Session Parameters (9)Valid Input options

Return Parameters
This function returns a length and a return code.

Length:

Number of valid session parameters that are set.

Return Code:

The following codes are defined:

Chapter 2. Product Documentation

Return Code Explanation

0 The session parameters have been set.

2 One or more parameters were not valid.

9 A system error was encountered.

Start Close Intercept (41)

3270 5250 VT

Yes Yes Yes

The Start Close Intercept function allows the application to intercept close requests generated when a user selects

the close option from the emulator session window. This function intercepts the close request and discards it until a

Stop Close Intercept (43) function is requested.

After using this function, your application program can use the Query Close Intercept (42) function to determine when

a close request has occurred.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Byte Definition

 Standard Interface Enhanced Interface

Function Number Must be 41

Data String See the following table

Length 5 or 6 Must be 12

PS Position NA

The data string contains the following items.

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

4–5 The data in these positions is ignored by EHLLAPI. However, no error is

caused if the migrating program has data in these positions. This data is

accepted to provide compatibility with migrating applications.

5 Specify M to request asynchronous message mode (Windows only).6

6–8 Reserved.

653

HCL Z and I Emulator for Windows (ENGLISH)

654

Byte Definition

2–3 9–12 When M is specified in position 5 (6 for 16-bit), the window handle of the

window that receives the message should be set. The message is a return

value of RegisterWindowMessage (PCSHLL) (not equal 0).

Return Parameters
This function returns a data string and a return code.

Data String:

If asynchronous message mode is not specified in position 5 (6 for standard interface) and the function

is completed successfully, the following data string is returned.

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).

2–8 Reserved.

1

9–12 4 byte value in which the event object address is returned by EHLLAPI.

The application can wait for this event object. (32-bit only).

Data String:

If M (asynchronous message mode) is specified in position 5 (6 for standard interface) and the function

is completed successfully, the following data string is returned.

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–8 Reserved

2–3 9–10 Task ID of asynchronous message mode

Note: If a user selects the close option, an application window receives a message. The message is a return

value of RegisterWindowMessage (PCSHLL). The wParam parameter will contain the Task ID returned by this

function call. The HIWORD of the lParam parameter will contain the Return Code 26, which shows a close

intercept occurred, and the LOWORD of the lParam parameter will contain the function number 41.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Start Close Intercept function was successful.

1 An incorrect host presentation space was specified.

2 A parameter error occurred.

Chapter 2. Product Documentation

Return Code Explanation

9 A system error occurred.

10 The function is not supported by the emulation program.

Notes on Using This Function

1. The returned event object or semaphore is in a non-signaled state when the start request function returns.

The event object is in the signaled state each time a close request occurs. To receive notification of multiple

close request events, put the event object into the signaled state each time using SetEvent or the Query Close

Intercept (42) function.

2. After using this function, your application program can use the Query Close Intercept (42) function to

determine when a close request has occurred. The application can wait on the returned event object to

determine when the event has occurred.

3. This is not an exclusive call. Multiple applications can request this function for the same short session ID.

4. If there are no applications intercepting close requests for a session, any subsequent close requests selected

by the user from the emulator operations dialog result in a normal stop requested for that session.

Start Communication Notification (80)

3270 5250 VT

Yes Yes Yes

The Start Communication Notification function begins the process by which your EHLLAPI application can determine

whether the specified session is connected to a host.

After using this function, the application can use Query Communication Event (81) to determine whether the session

is connected or disconnected.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Enhanced Interface

Function Number Must be 80

Data String Preallocated structure; see the following table

Length 16

PSPosition NA

The calling data structure contains these elements

Byte Definition

655

HCL Z and I Emulator for Windows (ENGLISH)

656

1 A 1-character presentation space short name (PSID).

2-4 Reserved

5 One of the following values:

• The character C asks for notification when the session either disconnects or

connects to the host.

• The character A requests the asynchronous mode of notification. When A is

specified, position 9-12 returns the address of an event object (Windows).

The character C must be placed in position 13.

• The character M requests the asynchronous message mode of the notifica

tion. When M is specified, the event selection character C must be placed in

position 13.

6-8 Reserved

9-12 When M is specified in position 5, the window handle of the window that receives

the message should be set. The message is a return value of RegisterWindowMes

sage (PCSHLL)—(not zero).

13 This should contain the character C if position 5 is A or M.

14-16 Reserved

Data String
If A (asynchronous mode) is specified in position 5 of the calling data structure and the function is completed

successfully, the following data string is returned:

Byte Definition

1 A 1-character presentation space short-name (PSID)

2-8 Reserved

9-12 4-byte binary value in which the event object handle is returned by EHLLAPI. The ap

plication can wait for this event object.

If M (asynchronous message mode) is specified in position 5 of the calling data structure and the function is

completed successfully, the following data string is returned:

Byte Definition

1 A 1-character presentation space short-name (PSID)

2-8 Reserved

9-10 Task ID of asynchronous message mode

When the session connects or disconnects an application window receives a message. The message is the return

value of RegisterWindow Message (PCSHLL). The wParam contains the Task ID returned by the function call.

HIWORD of lParam contains a 21 if the session is connected to the host or a 22 if the session is disconnected. The

LOWORD of lParam contains the function number 80.

Chapter 2. Product Documentation

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

2 An error was made in designating parameters

9 A system error was encountered

Notes on using this Function

1. An application program can issue this function for multiple host sessions. The Query Communication Event

(81) function can be used to determine the session communication status.

2. If the application chooses the asynchronous option, it can use the Windows SDK call WaitForSingleObject to

wait until the sessions communication status has changed.

3. The event object is initially in a non-signaled state. It is signaled each time an event occurs. To receive

notification for multiple events the application must put the event object into the non-signaled state each time

it is signaled, by using the Windows SDK call ResetEvent, or by using function 81 Query Communications

Event.

4. Multiple calls to this function with the same options from the same application will be ignored.

5. This is not exclusive to one application. Several applications can request this function for the same Session

ID.

Start Host Notification (23)

3270 5250 VT

Yes Yes Yes

The Start Host Notification function begins the process by which your EHLLAPI application program determines if the

host presentation space or OIA have been updated.

After using this function, your application program can use the Query Host Update (24) function to determine when a

host event has occurred. Query Host Update (24)

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 23

657

HCL Z and I Emulator for Windows (ENGLISH)

658

Standard Interface Enhanced Interface

Data String Preallocated string; see the following table

Length 6 or 7 implied 16

PS Position NA

The calling data string contains these elements:

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short name (PSID)

• A blank or null indicating a request for the host-connected host

presentation space

1

2–4 Reserved.

5 One of the following values:

• The character B asking for notification of both host presentation

space and OIA updates.

• The character O asking for notification of only OIA updates.

• The character P asking for notification of only host presentation

space updates.

• The character A requesting the asynchronous mode of the notifi

cation When A is specified, position 9–12 returns the address of

an event object. The event selection character B, O, or P must be

placed in position 13.

• The character M requesting the asynchronous message mode of

the notification.

When M is specified, the event selection character B, O, or P must

be placed in position 13 (7 for 16-bit).

• E The character E asking for notification of completion during a

printer session.

2

6–8 Reserved.

3–4 9–12 When M is specified in position 5 (2 for 16-bit), the window handle of the

window that receives the message should be set. The message is a re

turn value of RegisterWindowMessage (PCSHLL) (not equal 0).

7 13 One of the following values if position 5 (2 for 16-bit) is A or M:

Chapter 2. Product Documentation

Byte Definition

• The character B asking for notification of both host presentation

space and OIA updates

• The character O asking for notification of only OIA updates

• The character P asking for notification of only host presentation

update.

14–16 Reserved.

Return Parameters
This function returns a data string and a return code.

Data String:

If A (asynchronous mode of notification) is specified in position 5 and the function is completed

successfully, the following data string is returned:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).

2–8 Reserved.

1

9–12 4-byte value in which the event object address is returned by EHLLAPI.

The application can wait for this event object (32-bit only).

Data String:

If M (asynchronous message mode) is specified in position 5 (2 for standard interface) and the function

is completed successfully, the following data string is returned:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–8 Reserved

3–4 9–10 Task ID of asynchronous message mode

Note: If OIA or presentation space is updated, an application window receives a message. The message is a

return value of RegisterWindowMessage (PCSHLL). The wParam parameter contains the Task ID returned by

the function call. HIWORD of lParam contains Return Code 21 (shows the OIA is updated), 22 (shows the host

presentation space is updated), or 23 (shows both the OIA and the host presentation space are updated), and

LOWORD of lParam parameter contains function number 23.

Return Code:

The following codes are defined:

659

HCL Z and I Emulator for Windows (ENGLISH)

660

Return Code Definition

0 The Start Host Notification function was successful.

1 An incorrect host presentation space was specified.

2 An error was made in designating parameters.

9 A system error was encountered.

Notes on Using This Function

1. An application program can issue this function for multiple host sessions. The Pause (18) function can notify

the application when one or more host sessions (PS, OIA, or both of them) are updated. The Query Host

Update (24) function can be used to determine whether a PS, OIA, or both of them have been updated.

2. If the application chooses the asynchronous option, it can wait for the returned event object or semaphore to

determine when a host event has occurred.

3. The event object or semaphore is initially in a non-signaled state and is signaled each time an appropriate

event occurs. To receive notification for multiple events, the application must put the event object into the

non-signaled state each time it has been signaled using either the ResetEvent or the Query Host Update (24)

function.

4. An application cannot request Start Host Notification more than once with the same options.

5. This is not an exclusive call. Multiple applications can request this function for the same short session ID.

Start Keystroke Intercept (50)

3270 5250 VT

Yes Yes Yes

The Start Keystroke Intercept function allows a workstation application to filter any keystrokes sent to a session

by a terminal operator. After a call to this function, keystrokes are intercepted and saved until the keystroke queue

overflows or until the Stop Keystroke Intercept (53) function or Reset System (21) function is called. The intercepted

keystrokes can be:

• Received through the Get Key (51) function and sent to the same or another session with the Send Key (3)

function 51, Get Key Get Key (51) 03, Send Key Send Key (3) 52, Post Intercept Status Post Intercept Status (52)

• Accepted or rejected through the Post Intercept Status (52) function

• Replaced by other keystrokes with the Send Key (3) function

• Used to trigger other processes

Prerequisite Calls
There are no prerequisite calls for this function.

Chapter 2. Product Documentation

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 50

Data String See the following table

Length Keystroke buffer size EHLLAPI allocates 32 bytes minimum for this buffer.

PS Position NA

The calling data string contains:

Byte Definition

Standard Enhanced

1 One of the following values:

• A specific host presentation space short name (PSID)

• A blank or null indicating a request for the host-connected host

presentation space

1

2–4 Reserved.

5 An option code character:

• D for AID keystrokes only.

• L for all keystrokes.

• E for edit keys and all keystrokes (Available in Enhanced mode

only)

• M for requesting the asynchronous message mode of the notifi

cation (Windows only).

When M is specified, a code character D, or L, or E (Enhanced

Monde) must be placed in position 13 (7 for 16-bit).

Prerequisite: keyboard keys must be mapped to edit functions, e.g. Ctrl

+C mapped to edit copy function. See Table 76: Mnemonics with @S

(Shift), @W (Edit) and @ Alphabetic Characters on page 639 for edit

functions supported.

2

6–8 Reserved.

3–4 9–12 When M is specified in position 5 (2 for 16-bit), the window handle of the

window that receives the message should be set. The message is a re

turn value of RegisterWindowMessage (PCSHLL) (not equal 0).

7 13 One of the following values if position 5 (2 for 16-bit) is M:

661

HCL Z and I Emulator for Windows (ENGLISH)

662

Byte Definition

• D for AID keystrokes only.

• L for all keystrokes.

• E for edit keys and all keystrokes. (Available in Enhanced mode

only.)

14–16 Reserved.

Data String:

If M (asynchronous message mode) is specified in position 5 (2 for standard interface) and the function

is completed successfully, the following data string is returned:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–8 Reserved

3–4 9–10 Task ID of asynchronous message mode

Note: If a user sends keystrokes to a session, an application window receives a message. The message is a

return value of RegisterWindowMessge (PCSHLL). The wParam parameter contains the Task ID returned by

the function call. HIWORD of lParam parameter contains return code 0, which shows that the function was

successful, and LOWORD of lParam parameter contains function number 50.

Return Parameters

Return Code Explanation

0 The Start Keystroke Intercept function was successful.

1 An incorrect presentation space was specified.

2 An incorrect option was specified.

4 The execution of the function was inhibited because the target presentation space

was busy.

9 A system error was encountered. Release is being used.

Notes on Using This Function

1. If a return code of 31 occurs for the Get Key (51) function, either:

• Increase the value of the calling length parameter for this function, or

• Execute the Get Key (51) function more frequently.

An intercepted keystroke occupies 3 bytes in the buffer. The next intercepted keystroke is placed in the

adjacent 3 bytes. When the Get Key (51) function retrieves a keystroke (first-in first-out, or FIFO), the 3 bytes

Chapter 2. Product Documentation

that it occupied are made available for another keystroke. By increasing the size of the buffer or the rate at

which keystrokes are retrieved from the buffer, you can eliminate buffer overflow.

In the PC/3270, another way to eliminate return code 31 is to operate the PC/3270 emulator in the resume

mode.

2. If option code D is provided, EHLLAPI writes intercepted non-AID keys to the presentation space to which they

were originally intended, and returns only AID keys to the application.

3. Call the Stop Keystroke Intercept (53) function before exiting your EHLLAPI application. Otherwise, keystroke

interception remains enabled with unpredictable results.

Start Playing Macro (110)

3270 5250 VT

Yes Yes Yes

The Start Playing Macro function invokes a macro. The macro will be executed in the connected session.

Note: This macro must exist in the Z and I Emulator for Windows user-class application data directory and no

extension should be specified in the function call for the macro name.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface

Function Number Must be 110

Data String See the following table

Length Length of macro name, plus 3

PS Position NA

Byte Definition

Standard Enhanced

1-2 Reserved

3-n Null terminated macro name

Return Parameters

Return Code Explanation

0 The Start Playing Macro function was successful.

663

HCL Z and I Emulator for Windows (ENGLISH)

664

Return Code Explanation

1 The programs is not connected to a host session.

2 An error was made in specifying parameters.

9 A system error was encountered.

Stop Close Intercept (43)

3270 5250 VT

Yes Yes Yes

The Stop Close Intercept function allows the application to turn off the Start Close Intercept (41) function. After the

application has issued the Stop Close Intercept function, subsequent close requests result in a normal stop sent to

the logical terminal session.

Prerequisite Calls
Start Close Intercept (41)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 43

Data String 1-character short session ID of the host presentation space

Length 1 Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Stop Close Intercept function was successful.

1 An incorrect host presentation space was specified.

2 An error was made in specifying parameters.

8 No previous Start Close Intercept (41) function was issued.

9 A system error occurred.

Chapter 2. Product Documentation

Return Code Explanation

12 The session stopped.

Stop Communication Notification (82)

3270 5250 VT

Yes Yes Yes

The Stop Communication Notification function disables the capability of the Query Communication Event (81)

function to determine whether any communication events have occurred in the specified Session.

Prerequisite Calls
Start Communication Notification (80)

Call Parameters

Enhanced Interface

Function

Number

Must be 82

Data String 1-character short name of the host presentation space, or a blank or null indicating request for up

dates to the host-connected presentation space

Length 4 is implied

PSPosition NA

The calling data structure contains these elements:

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function was called for the

PSID

9 A system error was encountered

665

HCL Z and I Emulator for Windows (ENGLISH)

666

Stop Host Notification (25)

3270 5250 VT

Yes Yes Yes

The Stop Host Notification function disables the capability of the Query Host Update (24) function to determine if the Query Host Update (24)

24, Query Host Update host presentation space or OIA has been updated. This function also stops host events from affecting the Pause (18)

function. Pause (18) 18, Pause

Prerequisite Calls
Start Host Notification (23)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 121

Data String See the following note

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Note: 1-character short name of the target presentation space ID, or a blank or a null to indicate a request for

the host-connected presentation space.

Return Parameters

Return Code Definition

0 The Stop Host Notification function was successful.

1 An incorrect host presentation space was specified.

8 No previous Start Host Notification (23) function was issued. Start Host Notification (23)

9 A system error was encountered.

Chapter 2. Product Documentation

Stop Keystroke Intercept (53)

3270 5250 VT

Yes Yes Yes

The Stop Keystroke Intercept function ends your application program's ability to intercept keystrokes.

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 53

Data String Short name of the target presentation space (PSID)

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Stop Keystroke Intercept function was successful.

1 An incorrect presentation space was specified.

8 No prior Start Keystroke Intercept (50) function was called for this presentation

space.

9 A system error was encountered.

Wait (4)

3270 5250 VT

Yes Yes Yes

667

HCL Z and I Emulator for Windows (ENGLISH)

668

The Wait function checks the status of the host-connected presentation space. If the session is waiting for a host

response (indicated by XCLOCK (X []) or XSYSTEM), the Wait function causes EHLLAPI to wait up to 1 minute to see if

the condition clears.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 4

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Definition

0 The keyboard is unlocked and ready for input.

1 Your application program is not connected to a valid session.

4 Timeout while still in XCLOCK (X []) or XSYSTEM.

5 The keyboard is locked.

9 A system error was encountered.

Notes on Using This Function

1. The Wait function is used to give host requests like those made by the Send Key (3) function the time required

to be completed. Send Key (3) 03, Send Key Using the Set Session Parameters (9) function, you can request the TWAIT, LWAIT, or the

NWAIT option. See item 12 on page 648. LWAIT TWAIT NWAIT

2. You can use this function to see if the host OIA is inhibited. OIA

3. The Wait function is satisfied by the host unlocking the keyboard. Therefore, a return code of 0 does not

necessarily mean that the transaction has been completed. To verify completion of the transaction, you

should use the Search Field (30) function or Search Presentation Space (6) function combined with the Wait

function to look for expected keyword prompts.30, Search FieldSearch Field (30)06, Search Presentation SpaceSearch Presentation Space (6)

Window Status (104)

3270 5250 VT

Yes Yes Yes

Chapter 2. Product Documentation

The Window Status function allows the application to query or change a window's presentation space size, location,

or visible state.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 104

Data String See the following table

Length 16 or 20 24 or 28

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2 5 A request option value, select one of the following values:

• X'01' for set status

Note: When the session is embedded In-Place in a com

pound OLE document, the set form of this function (byte

5 = X'01') always returns 0 but has no effect.

• X'02' for query for status

• X'03' for query for extended status

6 Reserved

If the request option value is X'01' (set status):

Byte Definition

Standard Enhanced

3–4 7–8 A 16- or 32-bit word containing the status set bits if the request option is

1 (set status). The following codes are valid return values if the request

option is set status:

X'0001'

Change the window size. (Not valid with minimize, maxi

mize, restore, or move.)

669

HCL Z and I Emulator for Windows (ENGLISH)

670

Byte Definition

X'0002'

Move the window. (Not valid with minimize, maximize, size,

or restore.)

X'0004'

ZORDER window replacement.

X'0008'

Set the window to visible.

X'0010'

Set the window to invisible.

X'0080'

Activate the window. (Sets focus to window and places it in

the foreground unless ZORDER is specified. In this case, the

ZORDER placement is used.)

X'0100'

Deactivate the window. (Deactivates the window and makes

the window the bottom window unless ZORDER is also

specified. In this case, the ZORDER placement is used.)

X'0400'

Set the window to minimized. (Not valid with maximize, re

store, size, or move.)

X'0800'

Set the window to maximized. (Not valid with minimize, re

store, size, or move.)

X'1000'

Restore the window. (Not valid with minimize, maximize,

size, or move.)

5–6 9–12 A 16- or 32-bit word containing the X window position coordinate. (Ig

nored if the move option is not set.)

7–8 13–16 A 16- or 32-bit word containing the Y window position coordinate. (Ig

nored if the move option is not set.)

9–10 17–20 A 16- or 32-bit word containing the X window size in device units. (Ignored

if the size option is not set.)

11–12 21–24 A 16- or 32-bit word containing the Y window size in device units. (Ignored

if the size option is not set.)

Chapter 2. Product Documentation

Byte Definition

13–16 25–28 A 16- or 32-bit word containing a window handle for relative window

placement. These two words are only for the set option. (Ignored if the

ZORDER option is not set.) Valid values are as follows:

X'00000003' Place in front of all sibling windows. X'00000004' Place be

hind all sibling windows.

If the request option value is X'02' (query for status):

Byte Definition

Standard Enhanced

3–4 7–8 A 16- or 32-bit word containing X'0000' if the request option is 2 (query for

status). The following codes are possible return values if the request op

tion is query for status. More than one state is possible.

X'0008'

The window is visible.

X'0010'

The window is invisible.

X'0080'

The window is activated.

X'0100'

The window is deactivated.

X'0400'

The window is minimized.

X'0800'

The window is maximized.

5–6 9–12 A 16- or 32-bit word containing the X window position coordinate. (Ig

nored if the move option is not set.)

7–8 13–16 A 16- or 32-bit word containing the Y window position coordinate. (Ig

nored if the move option is not set.)

9–10 17–20 A 16- or 32-bit word containing the X window size in device units. (Ignored

if the size option is not set.)

11–12 21–24 A 16- or 32-bit word containing the Y window size in device units. (Ignored

if the size option is not set.)

13–16 25–28 A 16- or 32-bit word containing a window handle for relative window

placement. These two words are only for the set option. (Ignored if the

ZORDER option is not set.) Valid values are as follows:

671

HCL Z and I Emulator for Windows (ENGLISH)

672

Byte Definition

X'00000003' Place in front of all sibling windows. X'00000004' Place be

hind all sibling windows.

If the request option value is X'03' (query for extended status):

Byte Definition

Standard Enhanced

3–4 7–8 A 16- or 32-bit word containing X'0000' if the request option is 3 (query

for extended status). The following codes are possible return values if

the request option is query for extended status. More than one state is

possible.

X'0008'

The window is visible.

X'0010'

The window is invisible.

X'0080'

The window is activated.

X'0100'

The window is deactivated.

X'0400'

The window is minimized.

X'0800'

The window is maximized.

5–6 9–10 A 16- or 32-bit word containing the current font size in the X-dimension.

The value is in screen pels.

7–8 11–12 A 16- or 32-bit word containing the current font size in the Y-dimension.

The value is in screen pels.

9–12 13–16 Reserved. This value is always zero.

13–14 17–18 A 16- or 32-bit word containing the row number of the first visible charac

ter of the presentation space. This value is usually one, unless the Fixed

Size font option is in effect, and the window has been resized such that

some of the presentation space is hidden.

15–16 19–20 A 16- or 32-bit word containing the column number of the first visible

character of the presentation space.

17–20 21–24 A 16- or 32-bit word containing the presentation space window handle of

the session.

Chapter 2. Product Documentation

Return Parameters

Return Code Explanation

0 The Window Status function was successful.

1 The presentation space was not valid or not connected.

2 An incorrect option was specified.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function
The logical terminal (LT) windows use character cells. When resizing the LT windows, the LT rounds the number

to prevent character cell truncation. The requested size and position might be slightly different from what was

requested. Follow the set option with a query option to determine the final Presentation Manager® window position

and size. All x and y coordinate positions and sizes are in pels.

Write Structured Fields (127)

3270 5250 VT

Yes No No

The Write Structured Fields function allows an application to write structured field data to the host application. If the

call specifies S (for Synchronous), the application does not receive control until the Write Structured Fields function is

completed. If the call specifies A (for Asynchronous), the application receives control immediately after the call. If the

call specifies M, the application receives control immediately after the call. The application may wait for the message.

In any case (S, A or M), the application provides the buffer address in which data to the host is to be placed.

For a successful asynchronous completion of this function, the following statements apply:

The return code field in the parameter list might not contain the results of the requested I/O. If the return code is not 0,

then the request failed. The application must take the appropriate action based on the return code.

If the return code for this request is 0, the application must use the request ID returned with this function call to issue

the Get Request Completion function call to determine the completion results of the function associated with the

request ID. The Get Request Completion function call returns the following information:

1. Function request ID

2. Address of the data string from the asynchronous request

3. Length of the data string

4. Return code of the completed function

673

HCL Z and I Emulator for Windows (ENGLISH)

674

Prerequisite Calls
Connect for Structured Fields (120) Allocate Communication Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 127

Data String See the following table

Length 8, 10, or 14 Must be 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

5 S or A or M

S =

Synchronous. Control is not returned to the application until

the read is satisfied.

A =

Asynchronous. Control is returned immediately to the appli

cation, can wait for the event object.

M =

Asynchronous. Control is returned immediately to the appli

cation, can wait for the message.

2

6 Reserved.

3–4 7–8 2-byte destination/origin ID.

5–8 9–12 4-byte address of the buffer from which the data is to be written. The

buffer must be obtained using the Allocate Communications Buffer (123)

function.

9–10 13–16 Reserved.

11–12 When “M” is specified in position 5 (2 for 16-bit), the window handle of

the window that receives the message should be set, The message is a

return value of RegisterWindowMessage (“PCSHLL”) (not equal 0).

13–14

17–20

The data in these positions is ignored by EHLLAPI However, no error is

caused if the migrating program has data in these positions. This data is

accepted to provide compatibility with migrating applications.

Chapter 2. Product Documentation

Return Parameters
This function returns a data string and a return code.

Data String:

If A (asynchronous) is specified in position 5 (2 for standard interface) and the function is completed

successfully, the following data string is returned:

Byte Definition

13–14 2-byte Function Request ID. It is used by the Get Request Completion (125) function

to determine the completion of this function call.

15–16 Reserved.

9–10

17–20 4-byte value in which the event object address is returned by EHLLAPI. The appli

cation can wait for this event object. When the event object is cleared, the applica

tion must issue the Get Request Completion (125) function call to get results of the

Write Structured Fields request. (32-bit only).

Note: An event object is returned for each successful asynchronous request. The event object should not be

used again. A new event object is returned for each request and is valid for only the duration of that request.

Data String:

If M (asynchronous message mode) is specified in position 5 (2 for standard interface) and the function

is completed successfully, the following data string is returned:

Byte Definition

13–14 2-byte Function Request ID. It is used by the Get Request Completion (125) function

to determine the completion of this function call.

9–10

15–16 Reserved.

17–18 Task ID of asynchronous message mode.11–12

19–20 Reserved.

Note: If the function is completed successfully, an application window receive a message. The message is

a return value of RegisterWindowMessage (PCSHLL). The wParam parameter contains the Task ID returned

by the function call. HIWORD of lParam parameter contains return code 0, which shows the function was

successful, and LOWORD of lParam parameter contains function number 127.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Write Structured Fields function was successful.

675

HCL Z and I Emulator for Windows (ENGLISH)

676

Return Code Explanation

1 A specified host presentation space short session ID was not valid or was not con

nected.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

34 The message sent inbound to the host was canceled.

35 An outbound transmission from the host was canceled.

36 Request rejected. Lost contact with the host.

37 Failed. The host is inbound disabled.

Notes on Using This Function

1. Return code 35 will be returned when the first Read Structured Fields or Write Structured Fields is requested

after an outbound transmission from the host is canceled. Corrective action is the responsibility of the

application.

2. Return code 36 requires that the application disconnect from the emulation program and then reconnect to

reestablish communications with the host. Corrective action is the responsibility of the application.

3. Return code 37 will be returned if the host is inbound disabled.

4. The EHLLAPI allows for a maximum of 20 asynchronous requests per application to be outstanding. A return

code for unavailable resources (RC=11) is returned if more than 20 asynchronous requests are attempted.

The structured field data format is as follows:

Offset Length Contents

0 1 word X'0000'

2 1 word m (message length: the number of bytes of data in the message, the number

does not include the buffer header prefix, which contains 8 bytes) This value

must be set by the application.

4 1 word X'0000'

6 1 word X'0000'

8 8 bytes Length of the first (or only) structured field message.

10 1 byte First nonlength byte of the structured field message.

⋮

m+7 1 byte Last byte in the structured field message.

Bytes 0 through 7 are the buffer header. These first 8 bytes are used by the emulation program. The user section of

the buffer begins with offset 8. Bytes 8 and 9 contain the number of bytes in the first structured field (a structured

field message can contain multiple structured fields) including 2 bytes for bytes 8 and 9. Bytes 8 through m+7 are

used for the structured field message sent to the host.

Chapter 2. Product Documentation

Synchronous Requests
When Write Structured Fields is requested synchronously (the S option in the data string), control is returned to the

application only after the request is satisfied. The application can assume:

• The return code is correct.

• The data in the communications buffer (read buffer) is correct.

• The host is no longer processing the Write Structured Fields request.

Asynchronous Requests
When Write Structured Fields is requested asynchronously (the A option in the data string), the application cannot

assume:

• The return code is correct.

• The data in the communications buffer (write buffer) is correct.

• The host is no longer processing the Write Structured Fields request.

When requested asynchronously, EHLLAPI returns the following values:

• A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data string

• The address of a event object in positions 17–20 of the data string.

These are used to complete the asynchronous Write Structured Fields call.

The following steps must be completed to determine the outcome of an asynchronous Write Structured Fields

function call:

• If the EHLLAPI return code is not zero, the request failed. No asynchronous request has been made. The

application must take appropriate actions before attempting the call again.

• If the return code is zero, the application should wait until the event object is in the signaled state by using

the Get Request Completion (125) function. The event object Get Request Completion (125) function) and

should not be reused. The event object is valid only for the duration of the Write Structured Fields function call

through the completion of the Get Request Completion (125) function call.

• Once the event object is in the signaled state use the returned 16-bit Request ID as the Request ID parameter

in a call to the Get Request Completion (125) function. The data string returned from the Get Request

Completion (125) function call contains the final return code of the Write Structured Fields function call.

Asynchronous Requests
When Write Structured Fields is requested asynchronously (the M option in the data string), the application cannot

assume:

677

HCL Z and I Emulator for Windows (ENGLISH)

678

• The return code is correct

• The data in the communications buffer (write buffer) is correct

• The host is no longer processing the Write Structured Fields request

When requested asynchronously with the M option, EHLLAPI returns the following values:

• A 16-bit request ID in positions 13–14 (9–10 for standard interface) of the data string

• Task ID of asynchronous message mode in position 17–18 (11–12 for standard interface)

These are used to complete the asynchronous Write Structured Fields call.

WinHLLAPI Extension Functions
This chapter describes the extension functions provided when using WinHLLAPI programming support.

Summary of WinHLLAPI Functions
The following WinHLLAPI functions are available for 3270, 5250, and VT:

• Wait (4) on page 679

• Start Host Notification (23) on page 680

• Start Close Intercept (41) on page 681

• Start Keystroke Intercept (50) on page 682

• Send File (90) on page 683

• Receive File (91) on page 685

WinHLLAPI Asynchronous Functions
Asynchronous Functions, WinHLLAPIWinHLLAPI Extension FunctionsAsynchronous FunctionsgeneralThe following sections describe the WinHLLAPI asynchronous functions.

WinHLLAPIAsync
WinHLLAPI Extension FunctionsAsynchronous FunctionsWinHLLAPIAsyncThis entry point is used for six WinHLLAPI functions that often take a long time to complete. With WinHLLAPIAsync,

the function will be launched asynchronously and will not interfere with the continued progression of the calling

application. These functions are: Wait (04), Start Host Notify (23), Start Close Intercept (41), Start Keystroke

Intercept (50), Send File (90), and Receive File (91), and are described in WinHLLAPI Extension Functions on

page 678.

HANDLE WinHLLAPIAsync (HWIND hWnd, LPWORD lpnFunction, LPBYTE lpData, LPWORD lpnLength, LPWORD

lpnRetC)*

The parameter list is the same as WinHLLAPI except a window handle is required before the function number. Since

the function operates asynchronously, its completion is signaled by a registered message. The window handle is

required as the target of the message.

Chapter 2. Product Documentation

There are two messages that must be registered by the WinHLLAPI application through calls to

RegisterWindowsMessage() with the strings WinHLLAPIAsync(for all functions except 90 and 91) and

WinHLLAPIAsyncFileTransfer (for functions 90 and 91). The standard format is as follows:

WPARAM

contains the Task Handle returned by the original function call.

LPARAM

the high word contains the error code and the low word contains the original function number.

Wait (4)
This function determines whether the Host session is in an inhibited state. If, for some reason, the session is in an

inhibited state, this function will signal your application with a message when either the inhibited state expires or your

wait period has expired. The amount of time to wait is set with the Set Session Parameters (9) function.

Prerequisite Functions
Connect Presentation Space (1)

WinHLLAPIAsync(hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String NA

Data Length NA

PS Position NA

Return Codes

Code Description

WHLLOK The PS is uninhibited and ready for input.

WHLLNOTCONNECTED Your WinHLLAPI application is not connected to a valid host

session.

WHLLPSBUSY Function timed out while still inhibited.

WHLLNHIBITED The PS is inhibited.

SHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks
Asynchronous Wait is used to notify the calling application when the inhibited state of the PS is expired. When

inhibited state has expired, this version of Wait will post a WinHLLAPIAsync message to the window specified by the

679

HCL Z and I Emulator for Windows (ENGLISH)

680

hWnd. The session options TWAIT, LWAIT, and NWAITaffect the length of time that this function will wait. See Set

Session Parameters (9) on page 643 for details on these session options.

Note: If NWAIT is specified in the session parameters and the application registers using revision 1.1 of the

WinHLLAPI implementation, the WINHLLAPIAsync call will work the same as the WinHLLAPI call and not

send a message. If revision 1.0 is being used then Wait will return a message immediately with the inhibited

status of the PS.

Start Host Notification (23)
This function enables you to notify your WinHLLAPI application of changes in the Host Session Presentation Space

(PS) or Operation Information Area (OIA).

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String A 7-byte string in the following format:

Byte 1

Short name session ID of the desired Host session,

or space or null for the current Host session.

Byte 2

Notification mode. "P" for presentation space update

only, "O" for OIA update only, "B" for both presentation

space and OIA updates. When calling WinHLLAPIA

sync, this position can be "A".

Byte 3-6

Not used. Provided for compatibility with older appli

cations.

Byte 7

Reserved or replaced with one of the following if us

ing WinHLLAPIAsync and A in byte 2: P for presenta

tion space update only, O for OIA update only; and B

for both presentation space and OIA updates.

Data Length Length of Host event buffer (256 recommended).

Chapter 2. Product Documentation

Parameter Description

PS Position NA

Return Parameters

Parameter Description

Data String Same as Data String on the call.

Return Codes

Code Description

WHLLOK Host notification enabled.

WHLLNOTCONNECTED The specified Host session is invalid.

WHLLPARAMETERERROR One of more parameters are invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks
Once enabled, Host notification is enabled until you call Stop Host Notification (25) or

WinHLLAPICancelAsyncRequest(). The function initiates host notification and immediately returns control to your

Windows HLLAPI application. This frees your application to perform other tasks while waiting for host updates.

When an update occurs, the function will notify the window specified by hWnd with the registered message

WinHLLAPIAsync.

Start Close Intercept (41)
This function intercepts user requests to close Z and I Emulator for Windows.

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String A 5-byte string for returned semaphore address. The first byte is

the session short name of the session to query, or space or null for

the current session.

Data Length Must be specified.

PS Position NA

681

HCL Z and I Emulator for Windows (ENGLISH)

682

Return Parameters

Parameter Description

Data String A 5-byte string with the following format:

Byte 1

Session short name, or space or null for the current

session

Bytes 2-5

Semaphore address.

Return Code

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks
Once enabled, Host notification remains enabled until you call Stop Close Intercept (43) or

WinHLLAPICancelAsyncRequest (). Initially, the semaphore is set. After using this function, close requests from the

user are discarded and the semaphore is cleared.

The function initiates close intercept and immediately returns control to your Windows HLLAPI application. This frees

your application to perform other tasks while waiting for close requests. When a close request occurs, the function

will notify the window specified by hWnd with the registered message WinHLLAPIAsync.

Start Keystroke Intercept (50)
This function intercepts keystrokes sent to a session by the user.

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String A 6-byte string in the following format:

Chapter 2. Product Documentation

Parameter Description

Byte 1

Session short name, or space or null for the current

Host session.

Byte 2

Keystroke intercept code. "D" causes only AID key

strokes to be intercepted; "L" causes all keystrokes to

be intercepted.

Bytes 3-6

Reserved

Data Length Variable (256 is recommended)

PS Position NA

Return Code

Code Description

WHLLOK Keystroke intercept has been initiated.

WHLLNOTCONNECTED The Host session presentation space is invalid.

WHLLPARAMETERERROR One or more parameters are invalid.

WHLLPSBUSY Session is busy.

WHLLSYSERROR Function failed due to a system error.

WHLLCANCEL Asynchronous function was cancelled.

Remarks
The function initiates keystroke intercept and immediately returns control to your Windows HLLAPI application.

This frees your application to perform other tasks while waiting for keystrokes. Once initiated, the function will post

a WinHLLAPIAsync message to the window specified by hWnd whenever the user sends a key to the PS. After

notification, the intercepted keystrokes can be handled in any way that is allowed by a normal EHLLAPI application.

Take note that the keystroke buffer is of limited size so each keystroke should be handled and removed from the

buffer.

Send File (90)
This function transfers a file from the PC to the Host.

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

683

HCL Z and I Emulator for Windows (ENGLISH)

684

Call Parameters

Parameter Description

Data String SEND command parameters.

Data Length Length of Data String. NA if session option EOT is specified.

PS Position NA

Return Codes

Code Description

WHLLOK File transfer started successfully.

WHLLPARAMETERERROR Parameter error or Data Length is zero or greater

than 255.

WHLLFTXCOMPLETE File transfer complete.

WHLLFTXSEGMENTED Transfer is complete with segmented records.

WHLLSYSERROR The function failed due to a system error.

WHLLTRANSABORTED File transfer aborted, either due to the user click

ing the cancel button or because the timeout pe

riod has elapsed.

WHLLFILENOTFOUND PC file not found.

WHLLFTXCOMPLETECICS File transfer was successful (transfer to CICS).

WHLLACCESSDENIED Access denied to PC file.

WHLLMEMORY Insufficient memory.

WHLLINVALIDENVIRONMENT Invalid environment.

Remarks
Only one file transfer operation is supported per connected Host session.

The function initiates the file transfer and immediately returns control to your Windows HLLAPI application. This frees

your application to perform other tasks while the file transfer is occurring. Once initiated the function will regularly

post WinHLLAPIAsyncFileTransfer messages to the window specified by hWnd. These messages will notify the

WinHLLAPI application of the status of the transfer and send a final message when the transfer is complete.

wParm

Is the status indicator: the high byte contains the Session ID, the low byte contains the status. If the low

byte is zero, the file transfer is still in progress. If the low byte is one, the file transfer has completed.

lParm

If the low byte of wParm is zero (in progress), lParm is the number of bytes transferred. If the low byte

wParm is one (completed), lParm is the completion code.

Chapter 2. Product Documentation

Receive File (91)
This function transfers a file from the PC to the Host.

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String RECEIVE command parameters.

Data Length Length of Data String. NA if session option EOT is specified.

PS Position NA

Return Codes

Code Description

WHLLOK File transfer started successfully.

WHLLPARAMETERERROR Parameter error or Data Length is zero or greater

than 255.

WHLLFTXCOMPLETE File transfer complete.

WHLLFTXSEGMENTED Transfer is complete with segmented records.

WHLLSYSERROR The function failed due to a system error.

WHLLTRANSABORTED File transfer aborted, either due to the user click

ing the cancel button or because the timeout pe

riod has elapsed.

WHLLFILENOTFOUND PC file not found.

WHLLFTXCOMPLETECICS File transfer was successful (transfer to CICS).

WHLLACCESSDENIED Access denied to PC file.

WHLLMEMORY Insufficient memory.

WHLLINVALIDENVIRONMENT Invalid environment.

Remarks
Only one file transfer operation is supported per connected Host session.

The function initiates the file transfer and immediately returns control to your Windows HLLAPI application. This frees

your application to perform other tasks while the file transfer is occurring. Once initiated the function will regularly

post WinHLLAPIAsyncFileTransfer messages to the window specified by hWnd. These messages will notify the

WinHLLAPI application of the status of the transfer and send a final message when the transfer is complete.

685

HCL Z and I Emulator for Windows (ENGLISH)

686

wParm

Is the status indicator: the high byte contains the Session ID, the low byte contains the status. If the low

byte is zero, the file transfer is still in progress. If the low byte is one, the file transfer has completed.

lParm

If the low byte of wParm is zero (in progress), lParm is the number of bytes transferred. If the low byte

wParm is one (completed), lParm is the completion code.

WinHLLAPICancelAsyncRequest
WinHLLAPI Extension FunctionsAsynchronous FunctionsWinHLLAPICancelAsyncRequestThis function cancels an outstanding asynchronous function launched by a call to WinHLLAPIAsync().

Syntax
int WinHLLAPICancelAsyncRequest (HANDLE hAsyncTask, WORD wFunction)

Parameters
hAsyncTask

The handle returned by WinHLLAPIAsync() when the function was initiated.

wFunction

The function number of the asynchronous task to cancel. Because this parameter is required for

revision 1.1 but not in 1.0, it is optional.

With this function, any asynchronous task previously initiated by a call to WinHLLAPIAsync() may be canceled while

still outstanding.

Returns
The return value indicates if the specified function was, in fact, canceled. If the function was canceled then the return

value is WHLLOK (0). If the outstanding asynchronous function was not cancelled, one of the following codes will be

returned.

WHLLINVALID

hAsyncTask is not a valid task handle.

WHLLALREADY

The asynchronous task specified by hAsyncTask has already completed.

Initialization and Termination Functions
Initialization/Termination FunctionsWinHLLAPI Extension FunctionsInitialization/Termination FunctionsgeneralgeneralThe following section describes the initialization and termination functions of WinHLLAPI programming support.

Chapter 2. Product Documentation

WinHLLAPI Startup
WinHLLAPI Extension FunctionsInitialization/Termination FunctionsWinHLLAPI StartupThis function is used to register the application with the WinHLLAPI implementation and should be called before any

other call to the WinHLLAPI implementation. This implementation supports Versions 1.0 and 1.1 of the WinHLLAPI

specification. The WinHLLAPI application should negotiate version compatibility with this function.

Syntax
int WinHLLAPIStartup(WORD wVersionRequired, LPWHLLAPIDATA lpData)

Parameters
wVersionRequired

This is the version required by the WinHLLAPI application. The low byte contains the major version

number and the high byte contains the minor version (or revision) number.

lpData

This is a pointer to a WHLLAPIDATA structure which will receive the implementations version number

and a string describing the WinHLLAPI implementation provider. The WHLLAPIDATA structure is defined

as:

#define WHLLDESCRIPTION_LEN 127
typedef struct tagWHLLAPIDATA
{
 WORD wVersion;
 Char szDescription[WHLLDESCRIPTION_LEN + 1];
}WHLLAPIDATA, * PWHLLAPIDATA, FAR *LPWHLLAPIDATA;

Returns
The return value indicates success or failure of registering the WinHLLAPI application with the implementation. If

registration was successful, the return value is WHLLOK (zero). Otherwise, it is one of the following:

WHLLSYSNOTREADY

Indicates that the underlying network subsystem is unavailable.

WHLLVERNOTSUPPORTED

Indicates that the version requested is not provided by this implementation. This implementation

supports Versions 1.0 and 1.1 only.

WinHLLAPI Cleanup
WinHLLAPI Extension FunctionsInitialization/Termination FunctionsWinHLLAPI CleanupThe WinHLLAPI specification recommends that this function be used by the WinHLLAPI application to de-register

from the WinHLLAPI implementation.

687

HCL Z and I Emulator for Windows (ENGLISH)

688

Syntax
BOOL WinHLLAPICleanup()

Returns
Returns TRUE if the unregistration was successful. Otherwise, it returns FALSE.

Blocking Routines
Blocking RoutinesWinHLLAPI Extension FunctionsBlocking RoutinesgeneralThe following sections describe the blocking routines supported by WinHLLAPI programming.

Note: Although blocking routines are supported for WinHLLAPI compliance, use of them is not

recommended. Use of the WinHLLAPIAsync functions are the recommended method for asynchronous

processing.

WinHLLAPIIsBlocking
WinHLLAPI Extension FunctionsBlocking RoutinesWinHLLAPIIsBlockingThis function tells the calling WinHLLAPI application thread whether it is in the process of executing a blocking call. A

blocking call is any synchronous function that takes a long time to execute and does not return until complete. There

are five blocking calls in this implementation of WinHLLAPI. The blocking calls are: Get Key (51), Wait (4), Pause (18),

Send File (90), and Receive File (91).

Syntax
BOOL WinHLLAPIIsBlocking()

Returns
If the WinHLLAPI application thread is in the middle of a blocking call, the function returns TRUE, otherwise, it returns

FALSE.

Remarks
Because the default blocking-hook allows messages to be processed during blocking calls, it is possible to call the

blocking call again.

WinHLLAPISetBlockingHook
WinHLLAPI Extension FunctionsBlocking RoutinesWinHLLAPISetBlockingHookThis function sets an application-defined procedure to be executed while waiting for the completion of a blocking

call. A blocking call is any synchronous function that takes a long time to execute and does not return until complete.

There are five blocking calls in this implementation of WinHLLAPI. The blocking calls are: Get Key (51), Wait (4),

Pause (18), Send File (90), and Receive File (91).

Chapter 2. Product Documentation

Syntax
FARPROC WinHLLAPISetBlockingHook(FARPROC lpfnBlockingHook)

Parameters
lpfnBlockingHook

This is a pointer to the new blocking procedure.

Description
The WinHLLAPI implementation has a default blocking procedure that consists of nothing more than a message

handler. This default mechanism is shown in the following example:

BOOL DefaultBlockingHook
{
 MSG msg;

 if (PeekMessage (&msg, NULL, 0, 0, xfPM_NOREMOVE))
 {
 if(msg.message = = WM_QUIT)
 {
 return FALSE;
 }
 PeekMessage (&msg, NULL, 0, 0, PM_REMOVE);
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
return TRUE;
}

The blocking hook is implemented on a per-thread basis. A blocking hook set by this function will stay in effect for the

thread until it is replaced by another call to WinHLLAPISetBlockingHook() or until the default is restored by a call to

WinHLLAPIUnhookBlockingHook().

The Blocking function must return FALSE if it receives a WM_QUIT message so WinHLLAPI can return control to the

application to process the message and terminate gracefully. Otherwise, the function should return TRUE.

Returns
This function returns a pointer to the blocking function being replaced.

WinHLLAPIUnhookBlockingHook
WinHLLAPI Extension FunctionsBlocking RoutinesWinHLLAPIUnhookBlockingHookThis function restores the default blocking-hook for the calling thread.

Syntax
BOOL WinHLLAPIUnhookBlockingHook()

689

HCL Z and I Emulator for Windows (ENGLISH)

690

Returns
This function returns TRUE if the default blocking mechanism was successfully restored, otherwise it returns FALSE.

WinHLLAPICancelBlockingCall
WinHLLAPI Extension FunctionsBlocking RoutinesWinHLLAPICancelBlockingCallThis function cancels an executing blocking call in the current thread. A blocking call is any synchronous function that

takes a long time to execute and does not return until complete. There are five blocking calls in this implementation

of WinHLLAPI. The blocking calls are Get Key (51), Wait (4), Pause (18), Send File (90), and Receive File (91). If one of

these is blocking calls are cancelled, the cancelled function will return WHLLCANCEL.

Syntax
int WinHLLAPICancelBlockingCall()

Returns
The return value indicates if the specified function was, in fact, canceled. If the function was canceled, then the return

value is WHLLOK (0). If there are no outstanding blocking functions, then the following return code will be returned:

WHLLINVALID

Indicates that there is no blocking call currently executing.

PCSAPI Functions
Z and I Emulator for Windows provides an API set, which is defined here and called PCSAPI. Whereas EHLLAPI is

used to manage the interaction between a workstation application program and host systems after the session is

established, the PCSAPI can be used to control the Z and I Emulator for Windows session itself.

How to Use PCSAPI
You can write application programs using the PCSAPI in C or C++. To develop a PCSAPI application, do the following:

1. Prepare source code and add the appropriate PCSAPI calls.

2. Include the header file PCSAPI.H in the application program.

3. Compile the source code.

4. Link the resultant .OBJ files with the appropriate object file or libraries.

You must also link it with the PCSAPI import library, PCSCALLS.LIB for 16-bit and PCSCAL32.LIB for 32-bit.

Page Layout Conventions
All PCSAPI function calls are presented in the same format so that you can quickly retrieve the information you need.

The format is:

Chapter 2. Product Documentation

• Function Name

◦ Function Type

◦ Parameter Type and Description

◦ Return Code

Function Type
“Function Type” shows the type of the function in the following format:

TYPE FunctionName(TYPE Parameter1, ...)

Parameter Type and Description
“Parameter Type and Description” lists the type and describes each of the parameters to be specified in the PCSAPI

function call.

Return Code
“Return Code” lists the codes that must be received by your program after a call to the PCSAPI function.

pcsConnectSession

3270 5250 VT

Yes Yes Yes

The pcsConnectSession function starts the communications with a host session specified by the short session ID.

The session must already be started. This call is equivalent to the Communications → Connect menu item on the

emulator session panel.

Function Type
BOOL WINAPI pcsConnectSession(char cShortSessionID)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

691

HCL Z and I Emulator for Windows (ENGLISH)

692

Return Code Meaning

• The session has not started.

• An incorrect session ID was specified.

• Call failed.

pcsDisconnectSession

3270 5250 VT

Yes Yes Yes

The pcsDisconnectSession function stops the communications link with a host session specified by the short

session ID. This only disconnects the link; it does not stop the session. This call is equivalent to the Communications

→ Disconnect menu item on the emulator session panel.

Function Type
BOOL WINAPI pcsDisconnectSession(char cShortSessionID)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

• The session has not started.

• An incorrect session ID was specified.

• Call failed.

pcsQueryConnectionInfo

3270 5250 VT

Yes No No

The pcsQueryConnectionInfo function returns information about the Telnet connection of the specified host session.

The resulting information is returned into the buffer supplied by the application.

Chapter 2. Product Documentation

Function Type
BOOL WINAPI pcsQueryConnectionInfo(char cShortSessionID, CONNECTIONINFO *ConnectionInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

CONNECTIONINFO *ConnectionInfo

Pointer to a CONNECTIONINFO structure where the connection info data will be returned.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

• The session has not started.

• An incorrect session ID was specified.

• The session specified was not a supported connection type for this

API (not Telnet).

ConnectionInfo
The CONNECTIONINFO structure will be filled with the information about the host connection, consisting of the

following information:

Structure Information

Host name States the name of the currently connected Telnet host.

LU name States the LU name currently assigned.

Port number States the host port number being used for the connection.

SSL indicator Indicates a Secure Connection (1 = secure; Ø = not secure).

Note: This API is valid only with the 32-bit version of PCSAPI, and only works for Telnet connections.

Example
typedef struct_CONNECTIONINFO
{ //Description of a connection @WD06A
 char hostName[63]; //telnet host name @WD06A
 char reserved[1]; //reserved @wD06A
 int portNumber; //host port number @WD06A
 char luName[17]; //LU name @WD06A
 char reserved2[3]; //reserved @WD06A

693

HCL Z and I Emulator for Windows (ENGLISH)

694

 BOOL sslIndicator; //Secure Connection @WD06A
 indicator
 char reserved3[256]; //reserved @WD06A
}CONNECTIONINFO;

pcsQueryEmulatorStatus

3270 5250 VT

Yes Yes Yes

The pcsQueryEmulatorStatus function returns the status of the host session specified by the short session ID.

Function Type
ULONG WINAPI pcsQueryEmulatorStatus(char cShortSessionID)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code
The return code value should be processed bit-significantly, that is, by either one of the following values or an ORed

value out of the following values:

Return Code Value Meaning

PCS_SESSION_STARTED 0x00000001 Specified session has start

ed. When this bit is off, the

specified session has not

started or an incorrect ses

sion ID was specified.

PCS_SESSION_ONLINE 0x00000002 Specified session is online

(connected). When this bit is

off, the specified session is

offline (disconnected).

PCS_SESSION_API_ENABLED 0x00000004 API (EHLLAPI) is enabled on

the specified session. If this

bit is off, API is disabled on

this session.

Chapter 2. Product Documentation

pcsQuerySessionList

3270 5250 VT

Yes Yes Yes

The pcsQuerySessionList function returns a list of all the current host sessions. The application must supply an array

of SESSINFO structures as defined in the PCSAPI.H file, and a count of the number of elements in the array. This

function fills in the structures with information about each session and returns the number of sessions found.

If the array has fewer elements than there are host sessions, then only the supplied elements of the array are filled in.

The function always returns the actual number of sessions, even if the array is too small.

An application can call this function with zero array elements to determine how many sessions exist. A second call

can then be made to obtain the session information.

Function Type
ULONG WINAPI pcsQuerySessionList(ULONG Count, SESSINFO *SessionList)

Parameter Type and Description
ULONG Count

Number of elements in the SessionList array.

SESSINFO *SessionList

Pointer to an array of SESSINFO structures as defined in PCSAPI.H.

Return Parameters
Return Code

Total number of Z and I Emulator for Windows sessions. This may be greater than or less than the

Count parameter.

SessionList

The array of SESSINFO structures is filled with information about the host sessions. Sessions may

be placed in the list in any order. Each SESSINFO structure contains the following fields (defined in

PCSAPI32.H)

Name

A union of char and ULONG which contains the session ID (A–Z). In the current

implementation of Z and I Emulator for Windows, only the lower byte (char) is used, the

other bytes are returned as zero.

Status

A combination of bit flags which indicate the current status of the session. The flags

(PCS_SESSION_*) are defined in the following table.

695

HCL Z and I Emulator for Windows (ENGLISH)

696

The status value should be processed bit-significantly, that is, by either one of the following values or an ORed value

out of the following values:

Return Code Meaning

PCS_SESSION_STARTED The session is running. If this flag is not set, all others

are undefined.

PCS_SESSION_ONLINE The session has established a communications link to

the host (this is, the session is connected).

PCS_SESSION_API_ENABLED The session is enabled for programming APIs. If this

flag is not set, the EHLLAPI and Host Access Class Li

brary APIs cannot be used on this session.

Example
ULONG NumSessions, i; // Session counters
SESSINFO *SessList; // Array of session information structures
// Find out number of sessions that exist
NumSessions = pcsQuerySessionList (0,NULL);
if (NumSessions == 0) {
 printf("There are no sessions.");
 exit;
}

// Allocate array large enough for all sessions
SessList = (SESSINFO *)malloc(NumSessions * sizeof(SESSINFO));
memset(SessList, 0x00, NumSessions * sizeof(SESSINFO));

// Now read actual session info
pcsQuerySessionList(NumSessions, SessList);

for (i=0; i<NumSessions; i++) {
 if ((SessList[i].Status & PCS_SESSION_STARTED) &&
 (SessList[i].Status & PCS_SESSION_ONLINE)) {

 printf("Session %c is started and connected.",
 SessList[i].Name.ShortName);
 }
}

exit;

pcsQueryWorkstationProfile

3270 5250 VT

Yes Yes Yes

The pcsQueryWorkstationProfile function returns the workstation profile name that has been used to invoke the host

session. To specify the host session, the short session ID must be used. The workstation profile name is copied to

the work buffer supplied by the application.

Chapter 2. Product Documentation

Function Type
BOOL WINAPI pcsQueryWorkstationProfile(char cShortSessionID, PSZ lpBuffer)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

PSZ lpBuffer

Work buffer to copy a null-terminated workstation profile name. The buffer must be large enough to

contain a fully qualified file name.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

• The session has not started.

• An incorrect session ID was specified.

pcsSetLinkTimeout

3270 5250 VT

Yes Yes Yes

The pcsSetLinkTimeout function sets the idle timeout of a Telnet link which is SSCP owned. This function has no

effect on non-TN connections or connections which are not in SSCP owned state. If the timeout value is set to zero

the link will not time out. Otherwise the link will time out (disconnect) after being idle in SSCP-owned state for the

number of minutes specified.

Function Prototype
ULONG WINAPI pcsSetLinkTimeout(char cShortSessionID, USHORT Timeout)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

USHORT Timeout

Timeout value in minutes. A value of zero disables timeout.

697

HCL Z and I Emulator for Windows (ENGLISH)

698

Return Code

Return Code Meaning

PCS_SUCCESSFUL The function ended successfully.

PCS_SYSTEM_ERROR A system error occurred.

pcsStartSession

3270 5250 VT

Yes Yes Yes

The pcsStartSession function starts a host session by using a specified workstation profile. A short session ID can

also be specified.

Function Type
ULONG WINAPI pcsStartSession(PSZ lpProfile, char cShortSessionID, USHORT fuCmdShow)

Parameter Type and Description
PSZ lpProfile

Path and complete filename of the profile to load. Path is optional but complete filename must be

specified (.ws extension is not assumed).

char cShortSessionID

Presentation space short session ID. Space or NULL indicates the next available session ID.

USHORT fuCmdShow

Specifies how the window is to be displayed. One of the following values from PCSAPI.H:

• PCS_HIDE

• PCS_SHOW

• PCS_MINIMIZE

• PCS_MAXIMIZE

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

PCS_USED_ID 2 The specified short session ID is already used.

Chapter 2. Product Documentation

Return Code Value Meaning

PCS_INVALID_PROFILE 3 An error was made in specifying the workstation profile, or the win

dow parameter was not valid.

PCS_SYSTEM_ERROR 9 A system error occurred.

pcsStopSession

3270 5250 VT

Yes Yes Yes

The pcsStopSession function stops a host session specified by the short session ID.

Function Type
BOOL WINAPI pcsStopSession(char cShortSessionID, USHORT fuSaveProfile)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

USHORT fuSaveProfile

This parameter can be one of the following values:

fuSaveProfile Value Meaning

PCS_SAVE_AS_PROFILE 0 Save the profile as specified in the current profile.

PCS_SAVE_ON_EXIT 1 Save the profile on exit.

PCS_NOSAVE_ON_EXIT 2 Do not save the profile on exit.

Return Code

Return Code Meaning

TRUE The function ended successfully.

FALSE It means one of the following things:

• The session has not started.

• An incorrect session ID was specified.

Page Setup Functions
The PCSAPI functions listed in this section enable you to control and retrieve the Z and I Emulator for Windows

emulator session Page Setup settings.

699

HCL Z and I Emulator for Windows (ENGLISH)

700

Restrictions
If the following restrictions are not satisfied, the API will fail. The return code indicates the reason for the failure.

• The host session specified in the argument cShortSessionID should not be in PDT mode.

• The host session should not be printing when the API is invoked.

• The File → Page Setup dialog should not be in use.

Some members in the PAGEINFO structure might be valid or supported only for specific session types. If a restriction

is not specified, then that member is valid or supported for the following session types:

• 3270 display

• 3270 printer

• 5250 display

• ASCII VT

5250 printer sessions are not supported.

pcsGetPageSettings

3270 5250 VT

Yes Yes Yes

The pcsGetPageSettings function retrieves the host session page settings values (similar to the File → Page Setup

dialog settings). Only the settings in the Text tab of the dialog are supported.

Function Type
ULONG WINAPI pcsGetPageSettings(char cShortSessionID, PAGEINFO * const pPageInfo, ULONG * const

pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

PAGEINFO * const pPageInfo

Pointer to PAGEINFO structure, where the page settings are returned.

nFlags

Combination of bit flags that indicates which members in the structure are valid. These

flags can be used independently or by ORing them together to restore the property page

(defined in PCSAPI32.H). The flags, along with the corresponding valid members in the

structure, are as follows:

Chapter 2. Product Documentation

Flag

Valid members in the structure

PCS_PAGE_CPI

nCPI

PCS_PAGE_LPI

nLPI

PCS_PAGE_FACE_NAME

szFaceName

PCS_PAGE_MPL

nMPL

PCS_PAGE_MPP

nMPP

nCPI

The number of characters printed per inch.

LOWORD is the actual CPI value.

If Font CPI is configured in the session, HIWORD is 1. If Font CPI is not configured,

HIWORD is 0.

nLPI

The number of lines printed per inch.

LOWORD is the actual LPI value.

If Font LPI is configured in the session, HIWORD is 1. If Font LPI is not configured, HIWORD

is 0.

szFaceName

Face name of the printer font. This must be a null-terminated string.

nMPL

Maximum number of lines that can be printed per page.

This is also called MPL (Maximum Print Lines). Supported range is 1 to 255.

nMPP

Maximum number of characters that can be printed per line.

This is also called MPP (Maximum Print Position). Supported range is 1 to 255.

ULONG * const pErrorInfo

Not used. This must be set to NULL by the caller.

701

HCL Z and I Emulator for Windows (ENGLISH)

702

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 Not supported for the host session type.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING 4 Page settings cannot be obtained because host session

was printing.

PCS_PDT_MODE 5 Page settings cannot be obtained because host session is

in PDT mode.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{
 ULONG Rc = 0;
 PAGEINFO *PageInfo;

 PageInfo = (PAGEINFO *) malloc(sizeof(PAGEINFO));
 memset(PageInfo, 0, sizeof(PAGEINFO));

 PageInfo->nFlags = PCS_PAGE_CPI | PCS_PAGE_LPI | PCS_PAGE_FACE_NAME|
 PCS_PAGE_MPL | PCS_PAGE_MPP;

 Rc = pcsGetPageSettings('A', PageInfo, NULL);

 if (Rc == PCS_SUCCESSFUL) {
 printf("CPI = %d,
 LPI = %d,
 FaceName = %s,
 MPL = %d,
 MPP = %d\n",
 LOWORD(PageInfo->nCPI),
 LOWORD(PageInfo->nLPI),
 PageInfo->szFaceName,
 PageInfo->nMPL,
 PageInfo->nMPP);

 if (HIWORD(PageInfo->nCPI))
 printf("FontCPI\n");
 else
 printf("No FontCPI\n");

 if (HIWORD(PageInfo->nLPI))
 printf("FontLPI\n");
 else
 printf("No FontLPI\n");

Chapter 2. Product Documentation

 } else
 printf("Failure. Return code = %d\n", Rc);
 free(PageInfo);
}

pcsRestorePageDefaults

3270 5250 VT

Yes Yes Yes

The pcsRestorePageDefaults function restores the system default values of the Page Setup property pages defined

in the nFlags field. This is equivalent to clicking Default in the property pages of the File → Page Setup dialog. Only the

settings in the Text tab are supported.

Function Type
ULONG WINAPI pcsRestorePageDefaults(char cShortSessionID, ULONG nFlags)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

ULONG nFlags

The following flag describes the name of the specified Page Setup dialog property page. This flag can

be bitwise ORed to restore the property page (defined in PCSAPI32.H).

PCS_PAGE_TEXT

This flag describes the Text property page. This is the only property page currently

supported.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 The nFlags parameter has one or more options that are not

valid for the host session type. No settings were restored.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING 4 Page settings cannot be changed because host session

was printing.

PCS_PDT_MODE 5 Page settings cannot be changed because host session is

in PDT mode.

703

HCL Z and I Emulator for Windows (ENGLISH)

704

Return Code Value Meaning

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{
 ULONG Rc = 0;

 Rc = pcsRestorePageDefaults('A', PCS_PAGE_TEXT);

 if (Rc != PCS_SUCCESSFUL)
 printf("Failure. Return code = %d\n", Rc);
}

pcsSetPageSettings

3270 5250 VT

Yes Yes Yes

The pcsSetPageSettings function sets the host session page settings. This is similar to configuring the File → Page

Setup dialog settings. Only the settings in the Text tab are supported.

Note:

1. CPI, LPI, and FontSize are dependent on the FaceName configured in the host session. If this API is

used to set CPI, LPI, FontSize, and FaceName together, FaceName is set first, then the dependent

properties.

2. If this API is used to set FaceName and the dependent properties in separate invocations, set

FaceName first, then set CPI, LPI and FontSize. Otherwise, each time FaceName is set, query CPI, LPI

and FontSize and ensure that they have the desired values.

3. If CPI, LPI, or FontSize are set before FaceName, then different values for CPI, LPI, or FontSize might

be configured in the host session. This might occur if the current CPI, LPI, or FontSize values are not

valid for the new FaceName set.

Function Type
ULONG WINAPI pcsSetPageSettings(char cShortSessionID, const PAGEINFO * const pPageInfo, ULONG * const

pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Chapter 2. Product Documentation

const PAGEINFO * const pPageInfo

Pointer to PAGEINFO structure, where the page settings are mentioned.

nFlags

Combination of bit flags that indicates which members in the structure are valid. These

flags can be used independently or by ORing them together to restore the property page

(defined in PCSAPI32.H). The flags, along with the corresponding valid members in the

structure, are as follows:

Flag

Valid members in the structure

PCS_PAGE_CPI

nCPI

PCS_PAGE_LPI

nLPI

PCS_PAGE_FACE_NAME

szFaceName

PCS_PAGE_MPL

nMPL

PCS_PAGE_MPP

nMPP

nCPI

The number of characters printed per inch.

To select Font CPI, set the HIWORD of nCPI to 1. LOWORD of nCPI will be ignored.

To select a particular CPI value, do the following:

1. Set the HIWORD of nCPI to 0.

2. Set the LOWORD of nCPI to the actual CPI value.

nLPI

The number of lines printed per inch.

To select Font LPI, set the HIWORD of nLPI to 1. LOWORD of nLPI will be ignored

To select a particular LPI value, do the following:

1. Set the HIWORD of nLPI to 0.

2. Set the LOWORD of nLPI to the actual LPI value.

705

HCL Z and I Emulator for Windows (ENGLISH)

706

szFaceName

Face name of the printer font. This must be a null-terminated string.

nMPL

Maximum number of lines that can be printed per page.

This is also called MPL (Maximum Print Lines). Supported range is 1 to 255.

nMPP

Maximum number of characters that can be printed per line.

This is also called MPP (Maximum Print Position). Supported range is 1 to 255.

ULONG * const pErrorInfo

Contains the extended error info when the API fails with the return code of PCS_FAILURE. If the detailed

error information is not needed, this flag must be set to NULL by the caller.

This is a combination of bit flags that describe which members of the PAGEINFO structure could not be

set successfully. The flags that are defined in PCSAPI32.H are as follows:

Flag

Valid members in the structure

PCS_PAGE_CPI

Only nCPI is not valid.

PCS_PAGE_LPI

Only nLPI is not valid.

PCS_PAGE_FACE_NAME

Only szFaceName is not valid.

PCS_PAGE_MPL

Only nMPL is not valid.

PCS_PAGE_MPP

Only nMPP is not valid.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 Not supported for the host session type.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or Printer Set

up dialog was in use.

Chapter 2. Product Documentation

Return Code Value Meaning

PCS_PRINTING 4 Page settings cannot be changed because host session

was printing.

PCS_PDT_MODE 5 Page settings cannot be changed because host session is

in PDT mode.

PCS_FAILURE 6 Host session page settings are not fully applied. This could

be because invalid data was given for some or all fields in

the PAGEINFO structure.

Examine pErrorInfo for details about settings that are not

applied.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{
 ULONG Rc = 0, Error = 0;
 PAGEINFO *PageInfo;

 PageInfo = (PAGEINFO *) malloc(sizeof(PAGEINFO));
 memset(PageInfo, 0, sizeof(PAGEINFO));

 PageInfo->nFlags = PCS_PAGE_CPI | PCS_PAGE_LPI |
 PCS_PAGE_FACE_NAME| PCS_PAGE_MPL |
 PCS_PAGE_MPP;
 PageInfo->nCPI = MAKELONG(10, 0);
 PageInfo->nLPI = MAKELONG(8, 0);
 PageInfo->nMPL = 40;
 PageInfo->nMPP = 60;
 strcpy(PageInfo->szFaceName, "CourierPS");

 Rc = pcsSetPageSettings('A', PageInfo, &Error);

 if (Rc != PCS_SUCCESSFUL) {
 printf("Failure. Return code = %d\n", Rc);
 printf("Following members could not be set : ");

 if (Rc == PCS_FAILURE) {
 if (Error & PCS_PAGE_CPI) printf(" nCPI");
 if (Error & PCS_PAGE_LPI) printf(" nLPI");
 if (Error & PCS_PAGE_FACE_NAME) printf(" szFaceName");
 if (Error & PCS_PAGE_MPL) printf(" nMPL");
 if (Error & PCS_PAGE_MPP) printf(" nMPP");
 printf("\n");
 }
 }
 free(PageInfo);
}

707

HCL Z and I Emulator for Windows (ENGLISH)

708

Printer Setup Functions
The PCSAPI functions listed in this section enable you to control and retrieve the Z and I Emulator for Windows

emulator session Printer Setup settings.

Restrictions
If the following restrictions are not met, the API will fail. The return code indicates the reason for the failure.

• The host session should not be printing when the API is invoked.

• The File → Printer Setup dialog should not be in use.

pcsGetPrinterSettings

3270 5250 VT

Yes Yes Yes

The pcsGetPrinterSettings function retrieves the host session printer settings (similar to the File → Printer Setup

dialog settings).

Function Type
ULONG WINAPI pcsGetPrinterSettings(char cShortSessionID, PRINTINFO * const pPrintInfo, ULONG * const

pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

PRINTINFO * const pPrintInfo

Pointer to PRINTINFO structure, where the printer settings are specified.

nFlags

Must be set to 0. This is ignored.

nBufSize

Size of the buffer allocated for the following fields:

• lpPDTFile

• lpPrtToDskAppFile

• lpPrtToDskSepFile

• lpPrinterName

Chapter 2. Product Documentation

If more than one of these members is retrieved in a single API call, then the caller must

allocate the same size for all the buffers and pass that size in this member.

If this member is set to 0, the fields are ignored. The maximum size required for the

buffers of the fields is returned in nSizeNeeded.

nSizeNeeded

The value of this member is determined by conditions related to the following fields:

• lpPDTFile

• lpPrtToDskAppFile

• lpPrtToDskSepFile

• lpPrinterName

The conditions are as follows:

• The value is the number of bytes needed, if the size of the buffer allocated by the

caller is not big enough to return the fields listed above.

• The value is the maximum size of the required buffer, if more than one of the fields

listed above are obtained by the caller.

• If nBufSize is set to 0 by the caller, this member contains the maximum size

required for the buffers of the fields listed above.

bPromptDialog

Possible values are as follows:

• If TRUE, the Printer Setup dialog is shown before printing.

• If FALSE, the Printer Setup dialog is not shown before printing.

bPDTMode

Possible values are as follows:

• If TRUE, the host session is in PDT mode.

• If FALSE, the host session is in non-PDT mode (GDI mode).

lpPDTFile

Must be set to NULL if the caller is not interested in getting this member. The PDT file is

returned if this is not a null pointer. This must point to the buffer of size nBufSize allocated

by the caller.

When the API returns, this member contains one of the following:

709

HCL Z and I Emulator for Windows (ENGLISH)

710

• The fully qualified path name of the session PDT file.

• An empty string ("") if no PDT file is configured in the session.

• A truncated file name if the buffer size is not sufficient. The member nSizeNeeded

contains the size of the buffer needed.

nPrtMode

This is an enumerated value that indicates the PrintMode of the connection. The enum

data type PRINTMODE is defined in PCSAPI32.H. The nPrtMode setting must be one of

the following:

• PrtToDskAppend (Print to Disk-Append mode)

This is equivalent to selecting the Append option in the host session Printer Setup

→ Printer → Print to Disk dialog.

• PrtToDskSeparate (Print to Disk-Separate mode)

This is equivalent to selecting the Separate option in the host session Printer

Setup → Printer → Print to Disk dialog.

• WinDefaultPrinter (Windows Default Printer mode)

This is equivalent to selecting the Use Windows Default Printer option in the host

session Printer Setup dialog.

• SpecificPrinter (Specific Printer mode)

This is equivalent to selecting a printer in the host session Printer Setup dialog,

while leaving Use Windows Default Printer unchecked.

lpPrtToDskAppFile

Must be set to NULL if the caller is not interested in getting this member. The Print to

Disk-Append file is returned if this is not a null pointer. This must point to the buffer of size

nBufSize allocated by the caller.

When the API returns, this member contains one of the following:

• The fully qualified path name of the session Print to Disk-Append file.

• An empty string ("") if no Print to Disk-Append file is configured for the session.

• A truncated file name if the buffer size is not sufficient. The nSizeNeeded member

contains the size of the buffer needed.

lpPrtToDskSepFile

Must be set to NULL if the caller is not interested in getting this member. The Print to

Disk-Separate file is returned if this is not a null pointer. This must point to the buffer of

size nBufSize allocated by the caller.

When the API returns, this member contains one of the following:

Chapter 2. Product Documentation

• The fully qualified path name of the session Print to Disk-Separate file.

• An empty string ("") if no Print to Disk-Separate file is configured for the session.

• A truncated file name if the buffer size is not sufficient. The nSizeNeeded member

contains the size of the buffer needed.

lpPrinterName

Must be set to NULL if the caller is not interested in getting this member. The name of the

printer is returned if this is not a null pointer. This must point to the buffer of size nBufSize

allocated by the caller.

When the API returns, this member has one of the following:

• The name of the specific printer configured in the session, if the host session

nPrtMode is SpecificPrinter.

• The name of the Windows default printer configured in the session, if the host

session nPrtMode is WinDefaultPrinter.

• An empty string (""), if the host session nPrtMode is PrtToDskAppend or

PrtToDskSeparate.

• A truncated printer name, if the buffer size is not sufficient. nSizeNeeded has the

size of the buffer needed.

PrinterName must have the following format:

<Printer name> on <Port Name>

For example:

• IBM InfoPrint 40 PS on Network Port

• HP LaserJet 4050 Series PCL 6 on LPT1

ULONG * const pErrorInfo

This is filled with the extended error info when the API fails with the return code of PCS_FAILURE.

pErrorInfo must be set to NULL by the caller, if the details of errors are not needed.

The following section describes the flags that are defined in PCSAPI32.H.

Flags for the pErrorInfo member of the PRINTINFO structure
PCS_PRINT_PRINTMODE_ERROR

PrintMode is not configured in the host session.

PCS_PRINT_PDTFILE_SIZEERR

The buffer size is not sufficient for lpPDTFile, so the file name is truncated. The nSizeNeeded member

contains the actual size of the buffer required to return the PDT file.

711

HCL Z and I Emulator for Windows (ENGLISH)

712

PCS_PRINT_DSKAPPFILE_SIZEERR

The buffer size is not sufficient for lpPrtToDskAppFile, so the file name is truncated. The nSizeNeeded

member contains the actual size of the buffer required to return the Print to Disk-Append file.

PCS_PRINT_DSKSEPFILE_SIZEERR

The buffer size is not sufficient for lpPrtToDskSepFile, so the file name is truncated. The nSizeNeeded

member contains the actual size of the buffer required to return the Print to Disk-Separate file.

PCS_PRINT_PRINTERNAME_SIZEERR

The buffer size is not sufficient for lpPrinterName, so the printer name is truncated. The nSizeNeeded

member contains the actual size of the buffer required to return the printer name.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

PCS_DIALOG_IN_USE
3

Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING
4

The printer settings could not be changed because the

host session was printing. The application must retry later

PCS_FAILURE

6

Some printer settings could not be retrieved successful

ly. pErrorInfo contains detailed error information on which

settings could not be retrieved.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{
 ULONG Rc = 0, Error=0, Size;
 PRINTINFO *PrintInfo;

 PrintInfo = (PRINTINFO *) malloc(sizeof(PRINTINFO));
 memset(PrintInfo, 0, sizeof(PRINTINFO));

 PrintInfo->nBufSize = 0;

 Rc = pcsGetPrinterSettings('A', PrintInfo, &Error);
 if (Rc != PCS_SUCCESSFUL)
 printf("Failure. Return code = %d\n", Rc);
 else {
 Size = PrintInfo->nSizeNeeded;
 PrintInfo->nBufSize = Size;
 PrintInfo->lpPDTFile = (char *)malloc(sizeof(char) * Size);
 PrintInfo->lpPrtToDskAppFile = (char *)malloc(sizeof(char) * Size);
 PrintInfo->lpPrtToDskSepFile = (char *)malloc(sizeof(char) * Size);
 PrintInfo->lpPrinterName = (char *)malloc(sizeof(char) * Size);
 Rc = pcsGetPrinterSettings('A', PrintInfo, &Error);

Chapter 2. Product Documentation

 if (Rc != PCS_SUCCESSFUL)
 printf("Failure. Return code = %d, Extended Error = 0x%08x\n", Rc, Error);
 else {
 if (PrintInfo->bPromptDialog)
 printf("PromptDialog\n");
 else
 printf("No PromptDialog\n");
 if (PrintInfo->bPDTMode)
 printf("PDT Mode\n");
 else
 printf("Not PDT Mode\n");

 switch(PrintInfo->nPrtMode) {

 case PrtToDskAppend:
 printf("Print to Disk-Append Mode\n");
 break;
 case PrtToDskSeparate:
 printf("Print to Disk-Separate Mode\n");
 break;
 case SpecificPrinter:
 printf("Specific Printer Mode\n");
 break;
 case WinDefaultPrinter:
 printf("Windows Default Printer Mode\n");
 break;
 }
 if (PrintInfo->lpPDTFile[0] == '\0')
 printf("No PDT File configured\n");
 else
 printf("PDT File = %s\n", PrintInfo->lpPDTFile);
 if (PrintInfo->lpPrtToDskAppFile[0] == '\0')
 printf("No Disk Append File configured\n");
 else
 printf("DiskAppend File=%s\n", PrintInfo->lpPrtToDskAppFile);
 if (PrintInfo->lpPrtToDskSepFile[0] == '\0')
 printf("No Disk Separate File configured\n");
 else
 printf("DiskSeparate File=%s\n", PrintInfo->lpPrtToDskSepFile);
 if ((PrintInfo->nPrtMode == SpecificPrinter) ||
 (PrintInfo->nPrtMode == WinDefaultPrinter))
 printf("Printer = %s\n", PrintInfo->lpPrinterName);
 }
 free(PrintInfo->lpPDTFile);
 free(PrintInfo->lpPrtToDskAppFile);
 free(PrintInfo->lpPrtToDskSepFile);
 free(PrintInfo->lpPrinterName);
 }
 free(PrintInfo);
}

713

HCL Z and I Emulator for Windows (ENGLISH)

714

pcsSetPrinterSettings

3270 5250 VT

Yes Yes Yes

The pcsSetPrinterSettings function controls the host session printer settings (similar to the File → Printer Setup

dialog settings).

Function Type
ULONG WINAPI pcsSetPrinterSettings(char cShortSessionID, const PRINTINFO * const pPrintInfo, ULONG * const

pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

const PRINTINFO * const pPrintInfo

Pointer to PRINTINFO structure, where the printer settings are mentioned.

nFlags

Combination of bit flags that indicates which members in the structure are valid. These

flags can be used independently or by ORing them together to restore the property page

(defined in PCSAPI32.H). The flags, along with the corresponding valid members in the

structure, are as follows:

Flag

Valid members in the structure

PCS_PRINT_PDT

bPDTMode, lpPDTFile

PCS_PRINT_PRINTMODE

nPrtMode, lpPrtToDskAppFile, lpPrtToDskSepFile, lpPrinterName

PCS_PRINT_PROMPT_DIALOG

bPromptDialog

nBufSize

Must be set to 0. This is ignored.

nSizeNeeded

Must be set to 0. This is ignored.

bPromptDialog

Possible values are as follows:

Chapter 2. Product Documentation

• If TRUE, the Printer Setup dialog is shown before printing.

• If FALSE, the Printer Setup dialog is not shown before printing.

bPDTMode

Possible values are as follows:

• If TRUE, the connection is set to PDT mode.

• If FALSE, the connection is set to non-PDT mode (GDI mode).

lpPDTFile

Used only if bPDTMode is set to TRUE. This is ignored if bPDTMode is set to FALSE.

This is a null-terminated string containing the name of the PDT file and must be one of the

following:

• NULL

The PDT file that is currently configured in the connection is used. If there is no

PDT file already configured in the connection, the API fails with an exception.

• File name, without the path

lpPDTFile in the PDFPDT subfolder in the Z and I Emulator for Windows installation

path is used.

• Fully qualified path name of the file

If lpPDTFile does not exist, the API fails.

nPrtMode

This is an enumerated value that indicates the PrintMode of the connection. The enum

data type PRINTMODE is defined in PCSAPI32.H. The nPrtMode setting must be one of

the following:

• PrtToDskAppend (Print to Disk-Append mode)

This is equivalent to selecting the Append option in the host session Printer Setup

→ Printer → Print to Disk dialog.

• PrtToDskSeparate (Print to Disk-Separate mode)

This is equivalent to selecting the Separate option in the host session Printer

Setup → Printer → Print to Disk dialog.

• WinDefaultPrinter (Windows Default Printer mode)

This is equivalent to selecting the Use Windows Default Printer option in the host

session Printer Setup dialog.

• SpecificPrinter (Specific Printer mode)

This is equivalent to selecting a printer in the host session Printer Setup dialog,

while leaving the Use Windows Default Printer option unchecked.

715

HCL Z and I Emulator for Windows (ENGLISH)

716

lpPrtToDskAppFile

This is used only if nPrtMode is set to PrtToDskAppend.

This is a null-terminated string containing the name of the Print to Disk-Append file and

must be one of the following:

• NULL

The file that is currently configured for the PrtToDskAppend mode in the

connection is used. If there is no PDT file already configured in the connection, the

API will fail.

• File name, without the path

The user-class application data directory path is used to locate the file. If the file

exists, it is used. Otherwise, it will be created when printing is complete.

• Fully qualified path name of the file

The directory must exist in the path, or the API will fail. It is not necessary that the

file exist in the path.

lpPrtToDskSepFile

The possible values are as follows:

• Fully qualified path name of the Print to Disk-Separate file for the session.

• An empty string ("") if no Print to Disk-Separate file is configured for the session.

• A truncated file name if the buffer size is not sufficient. The nSizeNeeded member

contains the size of the buffer needed.

lpPrinterName

This is used only if nPrtMode is set to SpecificPrinter. It is ignored otherwise. This is a null-

terminated string containing the printer name. If the printer does not exist, this member

fails.

PrinterName must have the following format:

<Printer name> on <Port Name>

For example:

• IBM InfoPrint 40 PS on Network Port

• HP LaserJet 4050 Series PCL 6 on LPT1

ULONG * const pErrorInfo

This is filled with the extended error info when the API fails with the return code of PCS_FAILURE.

pErrorInfo must be set to NULL by the caller, if the details of errors are not needed.

The following section describes the flags that are defined in PCSAPI32.H.

Chapter 2. Product Documentation

Flags for the pErrorInfo member of the PRINTINFO structure
PCS_PRINT_PDTMODE_ERROR

This can occur for one of one of the following reasons:

• bPDTMode is set to TRUE, lpPDTFile is set to NULL, and there is no PDT file already configured

for the host session.

• nPrtMode is set to PrtToDskAppend or PrtToDskSeparate, PCS_PRINT_PDT is not set in nFlags,

and the host session is not already in PDT mode.

• nPrtMode is set to PrtToDskAppend or PrtToDskSeparate and bPDTMode is set to FALSE.

PCS_PRINT_PDTFILE_ERROR

The file or the path specified in lpPDTFile was not found.

PCS_PRINT_PRTTODSK_FILE_ERROR

This can occur for one of one of the following reasons:

• The folder specified in the field lpPrtToDskAppFile or lpPrtToDskSepFile does not exist or does

not have write access.

• An extension is specified in the field lpPrtToDskSepFile.

PCS_PRINT_PRINTMODE_ERROR

nPrtMode cannot be set successfully. This can occur for one of the following reasons:

• The value of nPrtMode is not one of the enumerated constants of the PRINTMODE enum data

type.

• nPrtMode is set to PrtToDskAppend, lpPrtToDskAppFile is set to NULL, and there is no Print to

Disk-Append file already configured in the host session.

• nPrtMode is set to PrtToDskSeparate, lpPrtToDskSepFile is set to NULL, and there is no Print to

Disk-Separate file already configured in the host session.

• nPrtMode is set to SpecificPrinter and the printer given in the lpPrinterName field was not found.

• nPrtMode is set to WinDefaultPrinter and there is no default Windows® printer configured in the

system.

• bPDTMode is set to FALSE and PCS_PRINT_PRINTMODE is not set in nFlags, but the host

session PrintMode is PrtToDskAppend or PrtToDskSeparate.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

717

HCL Z and I Emulator for Windows (ENGLISH)

718

Return Code Value Meaning

PCS_DIALOG_IN_USE
3

Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING
4

The printer settings could not be changed because the host

session was printing. The application must retry later.

PCS_FAILURE

6

No host session printer settings were applied. This might

occur because invalid data was given for some or all of the

fields in the PRINTINFO structure. pErrorInfo contains de

tails about the errors.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{
 ULONG Rc = 0, Error=0;
 PRINTINFO *PrintInfo;
 char PDTFile[] = "epson.pdt";
 char SepFile[] = "DiskSep";

 PrintInfo = (PRINTINFO *) malloc(sizeof(PRINTINFO));
 memset(PrintInfo, 0, sizeof(PRINTINFO));

 PrintInfo->nFlags = PCS_PRINT_PDT | PCS_PRINT_PRINTMODE |
 PCS_PRINT_PROMPT_DIALOG;
 PrintInfo->nBufSize = 0;
 PrintInfo->nSizeNeeded = 0;
 PrintInfo->bPDTMode = TRUE;
 PrintInfo->lpPDTFile =
 (char *)malloc(sizeof(char) * (strlen(PDTFile)+1));
 strcpy(PrintInfo->lpPDTFile, PDTFile);
 PrintInfo->nPrtMode = PrtToDskSeparate;
 PrintInfo->lpPrtToDskSepFile =
 (char *)malloc(sizeof(char) * (strlen(SepFile)+1));
 strcpy(PrintInfo->lpPrtToDskSepFile, SepFile);
 PrintInfo->bPromptDialog = TRUE;
 Rc = pcsSetPrinterSettings('A', PrintInfo, &Error);
 if (Rc != PCS_SUCCESSFUL)
 printf("Failure. Return code = %d, Extended Error = 0x%08x\n", Rc, Error);
 free(PrintInfo->lpPDTFile);
 free(PrintInfo->lpPrtToDskSepFile);
 free(PrintInfo);
}

Troubleshooting for Emulator programming
You can use the following self-help information resources and tools to help you troubleshoot problems:

• Refer to the release information for your product for known issues, workaround, and troubleshooting

information.

• Check if a download or fix is available to resolve your problem.

Chapter 2. Product Documentation

• Search the available knowledge bases to see if the resolution to your problem is already documented.

• If you still need help, contact HCL Software Support and report your problem.

Partial EHLLAPI input on Z and I Emulator for Windows host screen
Problem

Truncated command text was sent to a host when using HCL Z and I Emulator for Windows.

Cause

If an EHLLAPI application sends a SYSREQ key to the host and then tries to input a command onto the

host screen, sometimes only a truncated part of the command is sent to the host. This problem occurs

due to lack of synchronization between the SYSREQ processing at the Z and I Emulator for Windows

host side and the input of commands from the EHLLAPI application.

When the application sends a SYSREQ command to the host, the following situations occur:

• The OIA is updated to indicate that you are in a SSCP-LU session.

• The Z and I Emulator for Windows session sends the AO command (the SYSREQ) to the 3270

host.

As soon as the host receives the SYSREQ, it responds to Z and I Emulator for Windows with the 0x15 or

NL (NewLine) code. When Z and I Emulator for Windows processes this NL command by filling the rest

of the line with NULLs, and moving the cursor to the beginning of the next line.

A problem occurs when the EHLLAPI application continues to input various commands in the host

screen (through the SendKeys function), even before the Z and I Emulator for Windows session has

received the NL command from the host and processed it. As a result, a part of the input command is

first entered onto the screen, while the NL command is processed and the cursor is moved over to the

next line. Then the remaining part of the command is input on the next line. Thus, only the truncated

second part of the command is sent to the host, causing erroneous results.

Resolution

The solution for this problem is to force the EHLLAPI application to wait until the NL command is

received and processed, before continuing to input the commands to the host screen. Once the session

has notified the EHLLAPI application that the host response for SYSREQ has been processed, the

EHLLAPI application can then continue with its input (because the session is now in the right state to

accept new input). To accomplish this, use the following EHLLAPI function calls:

Start_Host_Notification (23)
Pause (18)
Set_Session_Parameters (9)
Query_Host_Update (24).

Possible code in the EHLLAPI application is as follows:

719

HCL Z and I Emulator for Windows (ENGLISH)

720

• Call Sendkeys(@A@H). This sends the SYSREQ command to the session.

• Call StartHostNotify with input B, where B indicates notification of both OIA and PS. This tells

the session to notify the EHLLAPI application when the session's OIA and/or PS is updated by

the host.

• Call Pause, specifying a sufficient timeout period. This causes the EHLLAPI application to wait

until the session notifies it of a host update to the session's OIA and/or PS. This occurs when

the session receives the most-awaited host response for the SYSREQ command. Note that if

the timeout value has been exceeded, and no host notification has been received, the Pause

function call still returns.

Also, for this Pause call to work, you must use the Set_Session_Parameters (9) function call to enable

the IPAUSE option. This is required because it tells the Pause API call to return when the host notifies

the session of an OIA and/or PS update.

If Pause has returned due to an OIA/PS update (host notification), it has a return value of 26. If this

is the case, you are ready to send the host command. Otherwise, you must wait again for the host

response.

The EHLLAPI application can continue with the command once it knows that either the OIA or the

Presentation Space (or both) has been updated by the host. The QueryHostUpdate is used to check

what was updated: that is, whether the OIA alone was updated (return code 21), or the PS alone was

updated (return code 22) or whether both the OIA and the PS were updated (return code 23).

For example, the EHLLAPI code might resemble the following part:

Send Keys(@A@H) /* Send SYSREQ command to the host */

Start Host Notification with 'B' in byte 2 /* Enable notification to EHLLAPI application
 when session's OIA and/or PS are updated */

Set Session Parms with IPAUSE option /* Allow Pause to be interrupted */

Label WW:

Pause for 15 seconds /* 15 secs is a sample time-out value */

retVal = Query Host Update /* Store return value of QueryHostUpdate() into retVal */

If (retVal = 21 or 22 or 23) /* OIA and/or PS was updated */

Send Keys("Your Input Command to host") /* Send input command to host */

else

goto (Label WW)

Stop Host Notification /* Disable host notification */

This is the most appropriate solution for this problem, because the EHLLAPI application waits for the

exact minimum time required to allow the session to receive and process the SYSREQ host response,

before sending its command input.

Chapter 2. Product Documentation

Another solution is to add a delay [for example, Sleep(1000)] in the EHLLAPI application between the

SYSREQ command and the subsequent command, so that the session has enough time to receive and

process the host response. However, this solution is not the best, because the delay might be too little

or might be excessive.

Refer to RFC 2355 (TN3270 Enhancements) for more information about the 3270 SYSREQ functionality.

HCL Z and I Emulator for Windows VBHLLAPI sample does not run in FDCC
Windows Vista

Problem

The HCL Z and I Emulator for Windows VBHLLAPI sample uses controls provided by comdlg32.ocx,

which is not installed in the Federal Desktop Core Configuration (FDCC) of Microsoft Windows Vista.

Cause

VBHLLAPI uses ActiveX and Common Dialog controls that are provided by the Microsoft comdlg32.ocx

module. For security purposes, the FDCC of Windows Vista does not contain this particular module.

Resolution

The FDCC version of Windows Vista is customized, and changes are not recommended.

If HLLAPI samples containing VBHLLAPI need to be run, then the comdlg32.ocx module must be copied

from a standard Windows Vista machine into the \Windows\System32\ directory of the FDCC Windows

Vista installation.

Then reboot the system for the change to take effect.

Query Reply Data Structures Supported by EHLLAPI
Query Reply Data Structures Supported by EHLLAPIgeneralThis appendix lists and defines the query reply structures supported by the EHLLAPI structured field interface for

PC/3270. Refer to IBM 3270 Information Display System Data Stream Programmer's Reference or, in the case of an

IBM licensed program, the documentation for the specific licensed program.

Note:

1. EHLLAPI must scan the query reply buffers to locate the destination/origin ID (DOID) self-defining

parameter (SDP) for the structured field support to work and be reliable. The DOID field is then filled in

with the assigned ID.

2. The application should build the query reply data structures in the application's private memory.

3. Only cursory checking is performed on the query reply data. Only the ID and the length of the structure

are checked for validity.

4. The 2-byte length field at the beginning of each query reply is not byte reversed.

721

HCL Z and I Emulator for Windows (ENGLISH)

722

5. Only one distributed data management (DDM) base-type connection is allowed per host session. If the

DDM connection supports the SDP for the DOID, multiple connections are allowed.

6. If a nonzero return code is received indicating that an application is already connected to the selected

session (RC 32 or 39), use that presentation space with caution. Conflicts with File Transfer, and other

EHLLAPI applications might result.

The DDM Query Reply
Query Reply Data Structures Supported by EHLLAPIThe DDM Query ReplygeneralSeveral DDM query reply formats are supported. Here are some of them:

Table 79. DDM Query Reply Base Format

Offset Length Content Meaning

0 1 word Length Length of structure

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes al

lowed in inbound transmis

sion

8–9 2 bytes LIMOUT Maximum DDM bytes al

lowed in outbound trans

mission

10 1 byte NSS Number of subsets identifi

er

11 1 byte DDMSS DDM subset identifier

DDM Application Name Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIThe DDM Query ReplyDDM Application Name Self-Defining ParameterThe DDM application name self-defining parameter provides the host application with the name of the application

containing control of the DDM auxiliary device. The controlling application is identified by the DOID in the Direct

Access self-defining parameter.

This self-defining parameter is optional, but it is necessary if a host application is to identify a distinct DDM auxiliary

device when more than one application is in existence at a remote workstation.

Table 80. DDM Application Name Self-Defining Parameter

Offset Length Content Meaning

0 1 byte Length Parameter length

1 1 byte X'02' DDM application name

2–n n-2 bytes NAME Name of the remote appli

cation program

Chapter 2. Product Documentation

NAME

The name consists of 8 characters or less and is the means by which a host application can relate to an

application in a remote workstation. It is the responsibility of the host and remote application users to

ensure that the name is understood by the application at each end.

PCLK Protocol Controls Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIThe DDM Query ReplyPCLK protocol controls Self-Defining ParameterThe PCLK Protocol Controls self-defining parameter indicates that the PCLK Protocol Controls structured field, ID =

X'1013', can be used for both inbound and outbound in data streams destined to or from the DDM auxiliary device

processor.

Table 81. DDM PCLK Auxiliary Device Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'03' PCLK protocol controls

2–3 2 bytes VERS Protocol version

VERS

The value given in VERS is used to indicate the versions of PCLK installed in the terminal at the time the

query reply is returned. For example, X'0001' indicates PCLK Version 1.1.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

Base DDM Query Reply Formats
Query Reply Data Structures Supported by EHLLAPIThe DDM Query ReplyBase DDM Query Reply FormatsThe following query reply formats are examples of some of the Base + SDP (self-defining parameter) combinations

possible. Not all of the combinations are shown.

Table 82. Base DDM Query Reply Format with Name and Direct Access Self-Defining Parameters

Offset Length Content Meaning

0 1 word Length Length of structure (in

cludes self-defining para

meters)

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query Reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes al

lowed in inbound transmis

sion

8–9 2 bytes LIMOUT Maximum DDM bytes al

lowed in outbound trans

mission

723

HCL Z and I Emulator for Windows (ENGLISH)

724

Table 82. Base DDM Query Reply Format with Name and Direct Access Self-Defining Parameters (continued)

Offset Length Content Meaning

10 1 byte NSS Number of subsets sup

ported

11 1 byte DDMSS DDM subset identifier

12 1 byte Length (n+2) Parameter length

13 1 byte X'02' DDM application name

14– (13+n) n bytes Name Name of the remote appli

cation program

14+n 1 byte X'04' Parameter length

15+n 1 byte X'01' Direct access ID

16+n – 17+n 2 bytes DOID Destination/origin ID as

signed by the subsystem

The self-defining parameters begin at offsets 12 and (14 + n) where n is the length of the application name supplied

at offset 14.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

Table 83. Base DDM Query Reply Format with Direct Access and Name Self-Defining Parameters

Offset Length Content Meaning

0 1 word Length Length of structure (in

cludes self-defining para

meters)

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes al

lowed in inbound transmis

sion

8–9 2 bytes LIMOUT Maximum DDM bytes al

lowed in outbound trans

mission

10 1 byte NSS Number of subsets sup

ported

11 1 byte DDMSS DDM subset identifier

12 1 byte X'04' Parameter length

13 1 byte X'01' Direct access ID

14–15 2 bytes DOID Destination/origin ID as

signed by the subsystem

Chapter 2. Product Documentation

Table 83. Base DDM Query Reply Format with Direct Access and Name Self-Defining Parameters (continued)

Offset Length Content Meaning

16 1 byte Length (n+2) Parameter length

17 1 byte X'02' DDM application name

16+n – 17+n n bytes Name Name of the remote appli

cation program

The self-defining parameters begin at offsets 12 and 16.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

The IBM Auxiliary Device Query Reply
Query Reply Data Structures Supported by EHLLAPIIBM Auxiliary Device Query ReplygeneralThe Auxiliary Device Query Reply is used to indicate to the host application the support of an IBM auxiliary device

that uses a data stream defined by IBM, refer to IBM 3270 Information Display System Data Stream Programmer's

Reference for more details.

When the function is supported, the query reply is transmitted inbound in reply to a Read Partition structured field

specifying Query or Query List (QCODE List = X'9E', Equivalent, or All).

When a workstation supports multiple auxiliary devices, the IBM auxiliary devices query reply must be sent for each

device.

Optional Parameters
All parameters shown in the base part of the query reply must be present. Parameters not used are set to X'00'.

At least one self-defining parameter must be present.

Table 84. IBM Auxiliary Device Base Format with Direct Access Self-Defining Parameter

Offset Length Content Meaning

0–1 1 word Length Length of structure (includes self-defining parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'9E' IBM auxiliary device reply

4 1 byte

BIT 0

1–7

FLAGS

QUERY

B'1'

RES

Reserved

Read Part (Query, Query List)

Auxiliary device supports Query

Reserved, must be B'0's

5 1 byte FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes allowed in inbound transmission

8–9 2 bytes LIMOUT Maximum DDM bytes allowed in outbound transmis

sion

725

HCL Z and I Emulator for Windows (ENGLISH)

726

Table 84. IBM Auxiliary Device Base Format with Direct Access Self-Defining Parameter (continued)

Offset Length Content Meaning

10 1 byte TYPE

X'01'

X'02'

Others

Type of auxiliary device supported

IBM auxiliary device display

IBM auxiliary device printer

Reserved

11 1 byte X'04' Parameter length

12 1 byte X'01' Direct access

13–14 1 word DOID Destination/origin ID assigned by the subsystem

QUERY This bit must be set to B'1' for all IBM auxiliary devices to indicate that it supports receiving a

Read Partition (Query, Query List). The host applications can then use a Read Partition directed

to the auxiliary device to determine its characteristics. The destination/origin structured field is

used to direct the Read Partition structured field to the auxiliary device.

The minimum support level for the IBM auxiliary device is to return the Null query reply in re

sponse to the Read Partition.

LIMIN States the maximum number of bytes that can be sent in an inbound transmission. A LIMIN val

ue of X'0000' indicates no implementation limit on the number of bytes transmitted inbound.

LIMOUT States the maximum number of bytes that can be sent to an IBM auxiliary device in an outbound

transmission. A LIMOUT value of X'0000' indicates no implementation limit on the number of

bytes transmitted outbound.

TYPE Identifies the auxiliary device being supported. Two values are valid. One identifies an auxiliary

display and the other identifies an auxiliary printer. All other values are reserved.

The IBM auxiliary device processor supports two self-defining parameters, 01 and 03. These are defined in Table 85:

IBM Auxiliary Device Direct Access Self-Defining Parameter on page 726.

Direct Access Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIIBM Auxiliary Device Query ReplyDirect Access Self-Defining ParameterThe direct access self-defining parameter provides the ID for use in the destination/origin structured field in the direct

access of the IBM auxiliary device.

This SDP is always required to accompany the base query reply.

Table 85. IBM Auxiliary Device Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

Chapter 2. Product Documentation

DOID

The value in these bytes is used in the ID field of the destination/origin structured field to identify the

auxiliary device as the destination or origin of the data that follows.

PCLK Protocol Controls Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIIBM Auxiliary Device Query ReplyPCLK Protocol Controls Self-Defining ParameterThe presence of the PCLK protocol controls self-defining parameter indicates that the PCLK protocol controls

structured field, ID = X'1013', can be used for both inbound and outbound in data streams destined to or from the IBM

auxiliary device processor.

Table 86. IBM Auxiliary Device PCLK Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'03' PCLK protocol controls

2–3 2 bytes VERS Protocol version

VERS

The value given in VERS is used to indicate the versions of PCLK installed in the terminal at the time the

query reply is returned. For example, X'0001' indicates PCLK version 1.1.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

The Product-Defined Query Reply
Query Reply Data Structures Supported by EHLLAPIProduct-Defined Query ReplygeneralThis query reply is used by IBM products using registered subidentifiers within the X'9C' data structure. The Product-

Defined Data Stream query reply indicates support of a 3270DS workstation auxiliary device that uses an IBM

product-defined data stream. The data stream is not defined by a format architecture document having an identifiable

control point such as an architecture review board.

When an auxiliary device supports an IBM product-defined data stream, this query reply is transmitted inbound in

reply to a Query List (QCODE List = X'9C' or All).

Optional Parameters
Query Reply Data Structures Supported by EHLLAPIProduct-Defined Query ReplyOptional ParametersAll parameters shown in the base part of the query reply and the direct access self-defining parameter must be

present.

The format of the Product-Defined query reply is as follows:

Table 87. IBM Product-Defined Query Reply Base Format

Offset Length Content Meaning

0–1 1 word Length Length of structure (in

cludes self-defining para

meters)

727

HCL Z and I Emulator for Windows (ENGLISH)

728

Table 87. IBM Product-Defined Query Reply Base Format (continued)

Offset Length Content Meaning

2 1 byte X'81' Query reply ID

3 1 byte X'9C' IBM product-defined data

stream

4–5 2 bytes FLAGS Reserved

6 1 byte REFID Reference identifier

7 1 byte SSID Subset identifier

8 1 byte X'04' Parameter length

9 1 byte X'01' Direct access

10–11 1 word DOID Destination/origin ID as

signed by the subsystem

Valid values for REFID (offset 6) and SSID (offset 7) of the Product-Defined query reply are as follows:

Table 88. Valid REFID and SSID Values for the IBM Product-Defined Query Reply

REFID SSID Product and Data Stream Documentation

X'01' 5080 Graphics System:

This reference ID indicates the 5080 Graphics System data stream

is supported by the auxiliary device. Descriptions of the 5080

Graphics Architecture, structured field, subset ID, DOID, and associ

ated function sets are defined in IBM 5080 Graphics System Prin

ciples of Operation

 X'01' X'02' 5080 HGFD Graphics Subset 5080 RS232 Ports Subset

X'02' WHIP API (replaced by SRL name when written)

This reference ID indicates that the WHIP API data stream is sup

ported by the auxiliary device. A description of the WHIP API archi

tecture is defined in IBM RT PC Workstation Host Interface Pro

gram Version 1.1 User's Guide and Reference Manual

 X'01' WHIP Subset 1

X'03' to X'FF' All other values are reserved.

The IBM product-defined processor supports only the direct access self-defining parameter. It is defined in Table 89:

IBM Product-Defined Direct Access Self-Defining Parameter on page 729.

Direct Access Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIProduct-Defined Query ReplyDirect Access Self-Defining ParameterThe presence of the Direct Access ID self-defining parameter indicates that the auxiliary device can be accessed

directly by using the destination/origin structured field. When multiple auxiliary devices are supported that use a

product-defined data stream, separate Product-Defined Data Stream query replies must be provided, each of which

has a unique DOID.

Chapter 2. Product Documentation

Table 89. IBM Product-Defined Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID

The value in these bytes is used in the ID field of the destination/origin structured field to identify the

auxiliary device as the destination or origin of the data that follows.

The Document Interchange Architecture Query Reply
Query Reply Data Structures Supported by EHLLAPIArchitecture Query ReplyThis query reply indicates the Document Interchange Architecture (DIA) function set supported. The format of the DIA

Query Reply is as follows:

Table 90. IBM DIA Base Format

Offset Length Content Meaning

0 1 word Length Length of structure (in

cludes self-defining para

meters)

2 1 byte X'81' Query reply ID

3 1 byte X'97' IBM DIA

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes al

lowed in inbound transmis

sion

8–9 2 bytes LIMOUT Maximum DDM bytes al

lowed in outbound trans

mission

10 1 byte NFS Number of 3-byte function

set IDs that follow

11–13 3 bytes DIAFS DIA function set identifier

14– (13+(N*3)) N*3 bytes DIAFSs Additional DIA function set

IDs

14+(N*3) 1 byte X'04' Parameter length

15+(N*3) 1 byte X'01' Direct access

16+(N*3) 1 word DOID Destination/origin ID as

signed by the subsystem

The DIA auxiliary device processor supports only the direct access self-defining parameter. It is defined in Table 91:

IBM Product-Defined Direct Access Self-Defining Parameter on page 730.

729

HCL Z and I Emulator for Windows (ENGLISH)

730

Query Reply Data Structures Supported by EHLLAPIProduct-Defined Query ReplyDirect Access Self-Defining ParameterThe presence of the direct access ID self-defining parameter indicates that the auxiliary device can be accessed

directly by using the destination/origin structured field.

Table 91. IBM Product-Defined Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID

The value in these bytes is used in the ID field of the destination/origin structured field to identify the

auxiliary device as the destination or origin of the data that follows.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

Differences from Communication Manager/2 EHLLAPI
This appendix describes the differences between EHLLAPI of Z and I Emulator for Windows and EHLLAPI for

Communication Manager/2.

The following EHLLAPI functions are different from those with the same names in Communication Manager/2. You

need to understand the differences when you use these functions:

• Set Session Parameter (9)

• Copy OIA (13)

• Copy String to PS (15)

• Storage Manager (17)

• Copy String to Field (33)

• Get Key (51)

• Window Status (104)

• Query Sessions (10)

• Connect for Structured Field (120)

• Allocate Communications Buffer (123)

• ASCII mnemonics

Set Session Parameter (9)

Set Options
Z and I Emulator for Windows does not provide the following set options provided by Communication Manager:

Chapter 2. Product Documentation

OLDOIA, NEWOIA

COMPCASE, COMPICASE

OLD5250OIA, NEW5250OIA

Return Parameters
When the Set Session Parameter (9) function is terminated, Communication Manager returns a length of the valid

data string as the third parameter, the data string length. However, Z and I Emulator for Windows returns a number of

the valid set options as the data string length.

EAB Option
In Communication Manager/2, a color remap affects the value of the character color in the EAB attribute copied by

Copy PS (5) or Copy PS to String (8) function when the EAB option is specified in the Set Session Parameter (9)

function.

In Z and I Emulator for Windows, however, the value of the character color in the EAB attribute depends on the

contents of the presentation space regardless of a color remap, and it is not affected by a color remap.

Copy OIA (13)
The Copy OIA (13) function has the following differences between Communication Manager/2 and Z and I Emulator

for Windows. For more information of the group and the column positions, refer to Copy OIA (13) on page 555.

• Byte Position 21

◦ Z and I Emulator for Windows returns X'F6'.

◦ Communication Manager/2 returns X'20'.

• Byte Positions 61–63

◦ Z and I Emulator for Windows does not return the printer information.

◦ Communication Manager/2 returns the printer information.

• Group 3: Shift State

Communication Manager/2 does not return the value of bit 2. Bit 2 is reserved, and bit 0 contains both the

Upper Shift and the Caps Lock.

• Group 8 Byte 1: Input Inhibited

◦ Z and I Emulator for Windows does not return bit 6 (Device not working).

◦ Communication Manager/2 can return bit 6.

• Group 8 Byte 3: Input Inhibited

◦ Z and I Emulator for Windows does not return bit 1 (Operator unauthorized) and bit 2 (Operator

unauthorized -f).

◦ Communication Manager/2 can return bits 1 and 2.

• Group 8 Byte 4: Input Inhibited

◦ Z and I Emulator for Windows does not return bit 2 (System wait).

◦ Communication Manager/2 can return bit 2.

731

HCL Z and I Emulator for Windows (ENGLISH)

732

• Group 10: Highlight Group 2

◦ Z and I Emulator for Windows does not return bit 0 (Selected).

◦ Communication Manager/2 can return bit 0.

• Group 11: Color Group 2

◦ Z and I Emulator for Windows does not return bit 0 (Selected).

◦ Communication Manager/2 can return bit 0.

• Group 13: Printer Status

◦ In Z and I Emulator for Windows, this group is reserved.

◦ Communication Manager/2 can return this group.

• Group 14: Graphics

Communication Manager/2 does not return bit 0 (Graphic cursor).

Copy String to PS (15)
In Communication Manager/2, the EAB option of the Set Session Parameter (9) function affects the Copy String to

PS function. When you specify the EAB option, pass the attribute data that has the same size as the text data to the

function with the text data.

In Z and I Emulator for Windows, however, the data to be passed is only text data regardless of EAB option. If you

want to use the same interface with Communication Manager/2, use the PUTEAB option of Set Session Parameter (9).

Storage Manager (17)
Storage Manager (17) function provided by Communication Manager/2 is not supported by Z and I Emulator for

Windows. Use the APIs provided by Windows® to allocate the memory for the applications.

Copy String to Field (33)
In Communication Manager/2, when the EAB option of the Set Session Parameter (9) function is specified, the

attribute data is passed to the function as a part of the data. Therefore, when you specify the EAB option, pass the

attribute data that has the same size as the text data to the function with the text data.

In Z and I Emulator for Windows, however, the EAB option does not affect the data contents of the Copy String to

Field (33) function. The data to be passed is not the attribute data, but only the text data. If you want to use the same

interface with Communication Manager/2, use the PUTEAB option of Set Session Parameter (9).

Get Key (51)
Communication Manager/2 returns shift state using @A, @S, or @r, if the shift state of a passed key is not a key

or function recognized by the emulator session. Z and I Emulator for Windows does not support these ASCII

mnemonics.

Chapter 2. Product Documentation

Window Status (104)
EHLLAPI function 104 (PM_WINDOW_STATUS) ‘query extended status’ command (0x03) will return the handle of the

emulator presentation space window. This is consistent with the definition of the function and the Communication

Manager/2 implementation. However, Z and I Emulator for Windows EHLLAPI returns the handle of the frame window.

EHLLAPI applications written for Z and I Emulator for Windows using this function need to use the parent of the

window handle returned.

Query Sessions (10)
In Communication Manager/2, the descriptor for personal computer is returned. However, the descriptor is not

returned in Z and I Emulator for Windows.

Connect for Structured Fields (120)
The event object for communication connection status provided by Communication Manager/2 is not in Z and I

Emulator for Windows.

Allocate Communications Buffer (123)
In Communication Manager/2, the maximum value of the requested buffer size is 64 KB minus 8 bytes (X'FFF8').

In Z and I Emulator for Windows, however, it is 64 KB minus 256 bytes (X'FF00').

ASCII Mnemonics
The following ASCII mnemonics are not supported in Z and I Emulator for Windows:

Mnemonics Meaning

@A@N Get Cursor

@A@O Locate Cursor

@A@X Hexadecimal

@A@Y Cmd (Function) Key

@A@a Destructive Backspace

@S@A Erase EOL

@S@B Field Advance

@S@C Field Backspace

@S@D Valid Character Backspace

@S@P POR (For sending only)

@S@T Jump to Task Manager

@/ Overrun of queue (Only in the Get Key function)

733

HCL Z and I Emulator for Windows (ENGLISH)

734

Get Request Completion (125)
Z and I Emulator for Windows does not support a blank or null session ID.

Notices
This information was developed for products and services offered in the United States. HCL may not offer the

products, services, or features discussed in this information in other countries. Consult your local HCL representative

for information on the products and services currently available in your area. Any reference to an HCL product,

program, or service is not intended to state or imply that only that HCL product, program, or service may be used.

Any functionally equivalent product, program or service that does not infringe any HCL intellectual property right may

be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-HCL product,

program, or service.

HCL may have patents or pending patent applications covering subject matter described in this information. The

furnishing of this information does not give you any license to these patents. You can send license inquiries, in

writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you..

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the information. HCL may make

improvements and/or changes in the product(s) and/or program(s) described in this information at any time without

notice.

Any references in this information to non-HCL documentation or non-HCL Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those documents or Web sites. The materials for those

documents or Web sites are not part of the materials for this HCL product and use of those documents or Web sites

is at your own risk.

HCL may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

Chapter 2. Product Documentation

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this information and all licensed material available for it are provided by HCL

under terms of the HCL Customer Agreement, HCL International Programming License Agreement, or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.licensing agreement

Information concerning non-HCL products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions on the

capabilities of non-HCL products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

Trademarks
HCL, the HCL logo, and hcl.com are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other companies.

Host Access Class Library

About This Book
This book provides necessary programming information for you to use the HCL Z and I Emulator for Windows,

Version 3.0 Host Access Class Library (HACL). In this book, Windows® refers to Windows® 7, Windows® 8,

Windows® 8.1, Windows® 10, Windows® Server 2008, and Windows® Server 2012. Throughout this book,

workstation refers to all supported personal computers. When only one model or architecture of the personal

computer is referred to, only that type is specified.

Who Should Read This Book
This book is intended for programmers and developers who write application programs that use the Host Access

Class Library (HACL) functions.

735

HCL Z and I Emulator for Windows (ENGLISH)

736

A working knowledge of Windows® is assumed. For information about Windows®, see the list of publications under

Where to Find More Information on page 736.

This book assumes you are familiar with the language and compiler that you are using. For information on how to

write, compile, or link-edit programs, refer to Where to Find More Information on page 736 for the appropriate

references for the specific language you are using.

How to Use This Book
This book is organized as follows:

• Introduction on page 736, gives an overview of the Host Access Class Library.

• Host Access Class Library C++ on page 745, describes the Host Access Class Library C++ methods and

properties.

• Host Access Class Library Automation Objects on page 984, describes the methods and properties of the

Host Access Class Library Automation Objects.

• Host Access Class Library for Java on page 1155, explains where you can find detailed information about the

Host Access Class Library (HACL) Java™ classes.

• Sendkeys Mnemonic Keywords on page 1156, contains the mnemonic keywords for the Sendkeys method.

• ECL Planes — Format and Content on page 1159, describes the format and contents of the different data

planes in the HACL presentation space model.

Where to Find More Information
The Z and I Emulator for Windows library includes the following publications:

• Installation Guide

• Quick Beginnings

• Emulator User's Reference

• Administrator's Guide and Reference

• Emulator Programming

• Host Access Class Library

In addition to the printed books, there are HTML documents provided with Z and I Emulator for Windows:

Host Access Class Library for Java

The HACL Java HTML files describe how to write an ActiveX/OLE 2.0-compliant application to

use Z and I Emulator for Windows as an embedded object. These files can be accessed from

the Docs_Admin_Aids zipped folder delivered along with Z and I Emulator for Windows product

documentation in the following path : ZIEWin_3.0_Docs_Admin_Aids.zip\publications\en_US\doc\hacl

Introduction
The Host Access Class Library (HACL) is a set of objects that allows application programmers to access

host applications easily and quickly. HCL Z and I Emulator for Windows provides support for a wide variety of

Chapter 2. Product Documentation

programming languages and environments by supporting several different HACL layers: C++ objects, Java™ objects,

Microsoft® COM-based automation technology (OLE). Each layer provides the same basic functionality, but each

layer has some differences due to the different syntax and capabilities of each environment. The most functional and

flexible layer is the C++ layer, which provides the basis for all others.

This layering concept allows the basic HACL functions to be used with a wide variety of programming environments

including Java™, Microsoft® Visual Basic®, Visual Basic® for Applications, Lotus® Notes™, Lotus® WordPro and

Visual C++®. The following figure shows the HACL layers.

Figure 13. HACL Layers

C++ Objects
This C++ class library presents a complete object-oriented abstraction of a host connection that includes: reading

and writing the host presentation space (screen), enumerating the fields on the screen, reading the Operator Indicator

Area (OIA) for status information, accessing and updating information about the visual emulator window, transferring

files, and performing asynchronous notification of significant events.

See Host Access Class Library C++ on page 745 for details on C++ objects.

Java Objects
Java™ objects provides Java™ wrapping for all HACL functions similar to Host-on-Demand Version 3. See Host

Access Class Library for Java on page 1155 for details on HACL Java™ classes.

737

HCL Z and I Emulator for Windows (ENGLISH)

738

Automation Objects
The Host Access Class Library Automation Objects allow Z and I Emulator for Windows to support the Microsoft®

COM-based automation technology (formerly known as OLE automation). The HACL Automation Objects are a series

of automation servers that allow automation controllers, for example, Microsoft® Visual Basic®, to programmatically

access Z and I Emulator for Windows’ data and functionality. In other words, applications that are enabled for

controlling the automation protocol (automation controller) can control some of Z and I Emulator for Windows'

operations (automation server).

Note: The Automation Objects provided by HCL Z and I Emulator for Windows are 32-bit in nature. These can

be used only with 32-bit Microsoft Office programs.

See Host Access Class Library Automation Objects on page 984 for details on the Automation Objects layer.

ECL Concepts
The following sections describe several essential concepts of the Emulator Class Library (ECL). Understanding these

concepts will aid you in making effective use of the library.

Connections, Handles and Names
ECL ConceptsConnections, Handles and NamesIn the context of the ECL, a connection is a single, unique Z and I Emulator for Windows emulator window. The

emulator window may or may not be actually connected to a host and may or may not be visible on the screen. For

instance, a Z and I Emulator for Windows window can be in a disconnected state. Connections are distinguished by

their connection handle or by their connection name. Most HACL objects are associated with a specific connection.

Typically, the object takes a connection handle or connection name as a parameter on the constructor of the object.

For languages like Visual Basic® that do not support parameters on constructors, a member function is supplied for

making the association. Once constructed, the object cannot be associated with any other connection. For example,

to create an ECLPS (Presentation Space) object associated with connection 'B', the following code would be used:

C++

ECLPS *PSObject;
PSObject = new ECLPS('B');

Visual Basic®

Dim PSObject as Object
Set PSObject = CreateObject("ZIEWin.autECLPS")
PSObject.SetConnectionByName("B")

An HACL connection name is a single character from A–Z or a-z. There are a maximum of 52 connection names, and

Z and I Emulator for Windows is currently limited to 52 concurrent connections. A connection's name is the same as

its EHLLAPI short session ID, and the session ID shown on the Z and I Emulator for Windows window title and OIA.

An HACL handle is a unique 32-bit number that represents a single connection. Unlike a connection name, a

connection handle is not limited to 52 values, and the value itself has no significance to the application. You can use a

connection handle across threads and processes to refer to the same connection.

Chapter 2. Product Documentation

For future expansion, applications should use the connection handle whenever possible. Most HACL objects accept

a handle or a name when a connection needs to be identified. There are functions available in the base HACL class to

convert a handle to a name, and a name to a handle. These functions are available from any HACL object.

Note: Connection properties are dynamic. For example, the connection type returned by GetConnType may

change if you reconfigure the connection to a different host. In general, the application should not assume

that connection properties remain fixed.

Sessions
ECL ConceptsSessionsIn the context of the ECL, a session object (ECLSession) is only a container for all the other connection-specific

objects. It provides a shortcut for an application to create a complete set of HACL objects for a particular connection.

The term session should not be confused with the Z and I Emulator for Windows session concept. A Z and I Emulator

for Windows session refers to a physical emulation window on the screen.

Creating or destroying ECLSession objects does not affect Z and I Emulator for Windows sessions (windows). An

application can create any number of ECLSession objects that refer to the same or different connections.

ECL Container Objects
ECL ConceptsECL Container ObjectsSeveral of the HACL classes act as containers of other objects. For example, the ECLSession object contains an

instance of the ECLPS, ECLOIA, ECLWinMetrics, and ECLXfer objects. Containers provide methods to return a pointer

to the contained object. For example, the ECLSession object has a GetOIA method, which returns a pointer to an OIA

object. Contained objects are not implemented as public members of the container’s class, but rather are accessed

only through methods.

For performance or other reasons, the contained objects may or may not be created when the container object is

created. The class implementation may choose to defer construction of the contained objects until the first time

the application requests a pointer to them. The application should not assume that contained objects are created

at the same time as the container. For example, an instance of the ECLPS object may not be constructed when an

ECLSession object is constructed. Instead, the ECLSession class may delay the construction of the ECLPS object until

the first time the GetPS method is called.

When a container class is destroyed, all the contained instances are also destroyed. Any pointers that have been

returned to the application become invalid and must not be used.

Note: Some HACL layers (such as the Automation Objects) may hide the containment scheme or recast it into

a naming scheme that does not use explicit pointers

ECL List Objects
ECL ConceptsECL List ObjectsSeveral HACL classes provide list iteration capabilities. For example, the ECLConnList class manages the list of

connections. ECL list classes are not asynchronously updated to reflect changes in the list content. The application

739

HCL Z and I Emulator for Windows (ENGLISH)

740

must explicitly call the Refresh method to update the contents of a list. This allows an application to iterate a list

without concern that the list may change during the iteration.

Events
ECL ConceptsEventsThe HACL provides the capability of asynchronous notification of certain events. An application can choose to be

notified when specific events occur. For example, the application can be notified when a new Z and I Emulator for

Windows connection starts. Currently the HACL supports notification for the following events:

• Connection start/stop

• Communications connect/disconnect

• Operator keystrokes

• Presentation space or OIA updates

Notification of events is implemented by the ECLNotify abstract base classes. A separate class exists for each event

type. To be notified of an event, the application must define and create an object derived from one of the ECLNotify

abstract base classes. That object must then be registered by calling the appropriate HACL registration function.

Once an application object is registered, its NotifyEvent method is called whenever the event of interest occurs.

Note:

1. The application’s NotifyEvent method is called asynchronously on a separate thread of execution.

Therefore, the NotifyEvent method should be reentrant, and if it accesses application resources,

appropriate locking or synchronization should be used.

2. Some HACL layers (such as the Automation Objects) may not fully support or implement HACL

events.

Error Handling
ECL ConceptsError HandlingAt the C++ layer, HACL uses C++ structured exception handling. In general, errors are indicated to the application by

the throwing of a C++ exception with an ECLErr object. To catch errors, the application should enclose calls to the

HACL objects in a try/catch block such as:

try {
 PSObj = new ECLPS('A');
 x = PSObj->GetSize();

 //...more references to HACL objects...

} catch (ECLErr ErrObj) {
 ErrNumber = ErrObj.GetMsgNumber();
 MessageBox(NULL, ErrObj.GetMsgText(), "ECL Error");
}

When a HACL error is caught, the application can call methods of the ECLErr object to determine the exact cause of

the error. The ECLErr object can also be called to construct a complete language-sensitive error message.

Chapter 2. Product Documentation

In the Automation Objects layer , runtime errors cause an appropriate scripting error to be created. An application can

use an On Error handler to capture the error, query additional information about the error and take appropriate action.

Addressing (Rows, Columns, Positions)
ECL ConceptsAddressingThe HACL provides two ways of addressing points (character positions) in the host presentation space. The

application can address characters by row/column numbers, or by a single linear position value. Presentation space

addressing is always 1-based (not zero-based) no matter what addressing scheme is used.

The row/column addressing scheme is useful for applications that relate directly to the physical screen presentation

of the host data. The rectangular coordinate system (with row 1 column 1 in the upper left corner) is a natural way

to address points on the screen. The linear positional addressing method (with position 1 in the upper left corner,

progressing from left to right, top to bottom) is useful for applications that view the entire presentation space as

a single array of data elements, or for applications ported from the EHLLAPI interface which uses this addressing

scheme.

At the C++ layer, the different addressing schemes are chosen by calling different signatures for the same methods.

For example, to move the host cursor to a given screen coordinate, the application can call the ECLPS::SetCursorPos

method in one of two signatures:

PSObj->SetCusorPos(81);
PSObj->SetCursorPos(2, 1);

These statements have the same effect if the host screen is configured for 80 columns per row. This example also

points out a subtle difference in the addressing schemes — the linear position method can yield unexpected results if

the application makes assumptions about the number of characters per row of the presentation space. For example,

the first line of code in the example would put the cursor at column 81 of row 1 in a presentation space configured for

132 columns. The second line of code would put the cursor at row 2 column 1 no matter what the configuration of the

presentation space.

Note: Some HACL layers may expose only a single addressing scheme.

Migrating from EHLLAPI
Applications currently written to the Emulator High Level Language API (EHLLAPI) can be modified to use the Host

Access Class Library. In general it requires significant source code changes or application restructuring to migrate

from EHLLAPI to HACL. HACL presents a different programming model than EHLLAPI and in general requires a

different application structure to be effective.

The following sections will help a programmer familiar with EHLLAPI understand how HACL is similar and how HACL

is different than EHLLAPI. Using this information you can understand how a particular application can be modified to

use the HACL.

741

HCL Z and I Emulator for Windows (ENGLISH)

742

Note: EHLLAPI uses the term session to mean the same thing as an HACL connection. The terms are used

interchangeably in this section.

Execution/Language Interface
Migrating from EHLLAPIExecution/Language InterfaceELLHAPI, migrating fromExecution/Language InterfaceAt the most fundamental level, EHLLAPI and HACL differ in the mechanics of how the API is called by an application

program.

EHLLAPI is implemented as a single call-point interface with multiple-use parameters. A single entry point (hllapi) in

a DLL provides all the functions based on a fixed set of four parameters. Three of the parameters take on different

meanings depending on the value of the forth command parameter. This simple interface makes is easier to call the

API from a variety of programming environments and languages. The disadvantage is a lot of complexity packed into

one function and four parameters.

HACL is an object-oriented interface that provides a set of programming objects instead of explicit entry points

or functions. The objects have properties and methods that can be used to manipulate a host connection. You do

not have to be concerned with details of structure packing and parameter command codes, but can focus on the

application functions. HACL objects can only be used from one of the supported HACL layer environments (C++

or Automation Objects). These three layers are accessible to most modern programming environments such as

Microsoft® Visual C++®, Visual Basic® and Lotus® SmartSuite® applications.

Features
Migrating from EHLLAPIFeaturesELLHAPI, migrating fromFeaturesAt a high level, HACL provides a number of features not available at the EHLLAPI level. There are also a few features

of EHLLAPI not currently implemented in any HACL class.

HACL unique features include:

• Connection (session) start/stop functions

• Event notification for host communications link connect/disconnect

• Event notification for connection (session) start/stop

• Comprehensive error trapping

• Generation of language-specific error message text

• No architectural limit to the number of connections (sessions); currently, Z and I Emulator for Windows is

limited to 52

• Support for multiple concurrent connections (sessions) and multithreaded applications

• Row/column addressing for host presentation space

• Simplified model for presentation space

• Automatic generation of list of fields and attributes

• Keyword-based function key strings

EHLLAPI features not currently implemented in the HACL include:

Chapter 2. Product Documentation

• Structured field support

• OIA character images

• Lock/unlock presentation space

Session IDs
Migrating from EHLLAPISession IDsELLHAPI, migrating fromSession IDsThe HACL architecture is not limited to 52 sessions. Therefore, a single character session ID such as that used in

EHLLAPI is not appropriate. The HACL uses the concept of a connection handle, which is a simple 32-bit value that

has no particular meaning to the application. A connection handle uniquely identifies a specific connection (session).

You can use a connection handle across threads and processes to refer to the same connection.

All HACL objects and methods that need to reference a particular connection accept a connection handle. In

addition, for backward compatibility and to allow a reference from the emulator user interface (which does not

display the handle), some objects and methods also accept the traditional session ID. The application can obtain a

connection handle by enumerating the connections with the ECLConnList object. Each connection is represented by

an ECLConnection object. The ECLConnection::GetHandle method can be used to retrieve the handle associated with

that specific connection.

It is highly recommended that applications use connection handles instead of connection names (EHLLAPI short

session ID). Future implementations of the HACL may prevent applications that use connection names from

accessing more than 52 sessions. In some cases it may be necessary to use the name, such as when the user is

required to input the name of a specific session the application is to utilize. In the following C+ + example, you supply

the name of a session. The application then finds the connection in the connection list and creates PS and OIA

objects for that session:

ECLConnList ConnList; // Connection list
ECLConnection *ConnFound; // Ptr to found connection
ECLPS *PS; // Ptr to PS object
ECLOIA *OIA; // Ptr to OIA object
char UserRequestedID;

//... user inputs a session name (A-Z or a-z) and it is put
//... into the UserRequesteID variable. Then...

ConnList.Refresh(); // Update list of connections
ConnFound = ConnList.FindConnection(UserRequestedID);
if (ConnFound == NULL) {
 // Session name given by user does not exist...
}
else {
 // Create PS and OIA objects using handle of the
 // connection just found:
 PS = new ECLPS(ConnFound.GetHandle());
 OIA= new ECLOIA(ConnFound.GetHandle());

 // The following would also work, but is not the
 // preferred method:
 PS = new ECLPS(UserRequestedID);
 OIA= new ECLOIA(UserRequestedID);
}

743

HCL Z and I Emulator for Windows (ENGLISH)

744

The second way of creating the PS and OIA objects shown in the example is not preferred because is uses the

session name instead of the handle. This creates an implicit 52-session limit in this section of the code. Using the

first example shown allows that section of code to work for any number of sessions.

Presentation Space Models
Migrating from EHLLAPIPresentation Space ModelsELLHAPI, migrating fromPresentation Space ModelsThe HACL presentation space model is easier to use than that of EHLLAPI. The HACL presentation space consists of

a number of planes, each of which contains one type of data. The planes are:

• Text

• Field attributes

• Color

• Extended attributes

The planes are all the same size and contain one byte for each character position in the host presentation space. An

application can obtain any plane of interest using the ECLPS::GetScreen method.

This model is different from the EHLLAPI, in which text and non-text presentation space data is often interleaved in

a buffer. An application must set the EHLLAPI session parameter to specify what type of data to retrieve, then make

another call to copy the data to a buffer. The HACL model allows the application to get the data of interest in a single

call and different data types are never mixed in a single buffer.

SendKey Interface
The HACL method for sending keystrokes to the host (ECLPS::Sendkeys) is similar to the EHLLAPI SendKey function.

However, EHLLAPI uses cryptic escape codes to represent non-text keys such as Enter, PF1 and Backtab. The ECLPS

object uses bracketed keywords to represent these keystrokes. For example, the following C++ sample would type the

characters ABC at the current cursor position, followed by an Enter key:

ECLPS *PS;

PS = new ECLPS('A'); // Get PS object for "A"
PS->SendKeys("ABC[enter]"); // Send keystrokes

Events
Migrating from EHLLAPIEventsELLHAPI, migrating fromEventsEHLLAPI provides some means for an application to receive asynchronous notification of certain events. However,

the event models are not consistent (some events use semaphores, others use window system messages), and the

application is responsible for setting up and managing the event threads. The HACL simplifies all the event handling

and makes it consistent for all event types. The application does not have to explicitly create multiple threads of

execution, the HACL takes care of the threading internally.

However, you must be aware that the event procedures are called on a separate thread of execution. Access to

dynamic application data must be synchronized when accessed from an event procedure. The event thread is

spawned when the application registers for the event, and is terminated when the event is unregistered.

Chapter 2. Product Documentation

PS Connect/Disconnect and Multithreading
Migrating from EHLLAPIPS Connect/Disconnect, MultithreadingELLHAPI, migrating fromPS Connect/Disconnect, MultithreadingAn EHLLAPI application must manage a connection to different sessions by calling ConnectPS and DisconnectPS

EHLLAPI functions. The application must be carefully coded to avoid being connected to a session indefinitely

because sessions have to be shared by all EHLLAPI applications. You must also ensure that an application is

connected to a session before using certain other EHLLAPI functions.

The HACL does not require any explicit session connect or disconnect by the application. Each HACL object is

associated with a particular connection (session) when it is constructed. To access different connections, the

application only needs to create objects for each one. For example, the following example sends the keystrokes ABC

to session A, then DEF to session B, and then the Enter key to session A. In an EHLLAPI program, the application

would have to connect/disconnect each of the sessions since it can interact with only one at a time. An HACL

application can just use the objects in any order needed:

ECLPS *PSA, *PSB;

PSA = new ECLPS('A');
PSB = new ECLPS('B');

PSA->Sendkeys("ABC");
PSB->Sendkeys("DEF");
PSA->Sendkeys("[enter]");

For applications that interact with multiple connections (sessions), this can greatly simplify the code needed to

manage the multiple connections.

In addition to the single working session, EHLLAPI also places constraints on the multithreaded nature of the

application. Connecting to the presentation space and disconnecting from the presentation space has to be managed

carefully when the application has more than one thread calling the EHLLAPI interface, and even with multiple threads

the application can interact with only one session at a time.

The ECLPS does not impose any particular multithreading restrictions on applications. An application can interact

with any number of sessions on any number of threads concurrently.

Host Access Class Library C++
objects, C++descriptionThis C++ class library presents a complete object-oriented abstraction of a host connection that includes: reading

and writing the host presentation space (screen), enumerating the fields on the screen, reading the Operator Indicator

Area (OIA) for status information, accessing and updating information about the visual emulator window, transferring

files, and performing asynchronous notification of significant events. The class libraries support Microsoft® Visual C

++® compilers.

The Host Access Class Library C++ layer consists of a number of C++ classes arranged in a class hierarchy. Figure

14: Host Access Class Objects on page 746 illustrates the C++ inheritance hierarchy of the Host Access Class

Library C++ layer. Each object inherits from the class immediately above it in the diagram.

745

HCL Z and I Emulator for Windows (ENGLISH)

746

Figure 14. Host Access Class Objects

Figure 14: Host Access Class Objects on page 746 also shows all the member functions of each class. Note that in

addition to the functions shown for each class, classes inherit all the functions of the parent class. For example, the

function IsReady() is available on ECLSession, ECLPS, ECLOIA, ECLWinMetrics, and ECLXfer classes.

Each class is described briefly in the following sections. See the individual class descriptions in this chapter for more

details.

All the examples shown in this chapter are supplied in the ECLSAMPS.CPP file. This file can be used to compile and

execute any of the examples using any supported compiler.

Chapter 2. Product Documentation

The following is a brief overview of the Host Access Class Library C++ classes. Each class name begins with ECL,

which is the common prefix for the Host Access Class Library.

• ECLBase, on page ECLBase Class on page 749, is the base class for all ECL objects. It provides some basic

utility methods such as the conversion of connection names and handles. Because all ECL objects inherit

from this class, these methods can be used on any ECL object.

• ECLConnection, on page ECLConnection Class on page 754, represents a single Z and I Emulator for

Windows connection and contains connection information such as the connection status, the type of

connection (for example, 3270 or 5250), and the name and handle of the connection. This class is also the

base class for all the connection-specific ECL objects such as ECLPS and ECLOIA.

• ECLConnList, on page ECLConnList Class on page 769, contains a list of all the Z and I Emulator for

Windows connections that were in existence at the time the object was created or the last time the Refresh

method was called. Each connection is represented by an ECLConnection object.

• ECLConnMgr, on page ECLConnMgr Class on page 777, enumerates all the currently running Z and I

Emulator for Windows connections (windows) using the ECLConnList object. Is also provides methods for

starting new connections and stopping connections.

• ECLCommNotify, on page ECLCommNotify Class on page 784, is a notification class that an application

can use to be notified whenever a connection is disconnected from or connected to a host. It can be used to

monitor the status of a connection and take action when a connection is disconnected unexpectedly.

• ECLErr, on page ECLErr Class on page 789, provides a method for returning run-time error information from

Host Access Class Library classes.

• ECLField, on page ECLField Class on page 793, contains information about a single field on the screen, such

as the field attributes, field color, position on the screen or length. A method is also supplied to update input

fields.

• ECLFieldList, on page ECLFieldList Class on page 810, contains a collection of ECLField objects. When the

Refresh method is called, the current host screen is examined, and the list of fields is extracted and used to

build the list of ECLField objects. An application can use this collection to manage fields without having to

build the list itself.

• ECLKeyNotify, on page ECLKeyNotify Class on page 818, is a notification class that an application can use

to be notified of keystroke events. The application can filter (remove) keystrokes, replace them with other

keystrokes or discard them.

• ECLListener, on page ECLListener Class on page 823, is the base class for all new HACL event listener

objects. It provides common functions for all listener objects.

• ECLOIA, on page ECLOIA Class on page 823, provides access to operator status information such as shift

indicators, input inhibited conditions and communications errors.

• ECLOIANotify, on page ECLOIANotify Class on page 837, is an abstract base class. Applications create

objects derived from this class to receive notification of OIA changes.

• ECLPS, on page ECLPS Class on page 840, represents the presentation space (screen) of a single

connection. It contains methods for obtaining a copy of the screen contents in the form of data planes.

Each plane represents a specific aspect of the presentation space, such as the text, field attributes and color

attributes. Methods are provided for searching for strings in the presentation space, sending keystrokes to the

747

HCL Z and I Emulator for Windows (ENGLISH)

748

host, getting and setting the host cursor position, and many other functions. Also provided is an ECLFieldList

object that can be used to enumerate the list of fields on the screen.

• ECLPSEvent, on page ECLPSEvent Class on page 885, is an event object which is passed to PS event

listeners when the presentation space has been updated. It contains information about the event including

what caused the update and the portion of the screen which has been updated.

• ECLPSListener, on page ECLPSListener Class on page 890, is an abstract base class. Applications create

objects derived from this class to receive presentation space update events with all the information provided

by the ECLPSEvent object.

• ECLPSNotify, on page ECLPSNotify Class on page 893, is an abstract base class. Applications create

objects derived from this class to receive notification of presentation space updates with minimal

information.

• ECLRecoNotify, on page ECLRecoNotify Class on page 896, is an abstract base class. Applications create

objects derived from this class to receive notifications of screen recognitions.

• ECLScreenDesc, on page ECLScreenDesc Class on page 899, is a class used to describe a single host

screen. Screen description class objects are then used to trigger events when the described host screen

appears, or to synchronously wait for a particular host screen.

• ECLScreenReco, on page ECLScreenReco Class on page 908, is a class used to collect a set of screen

description objects and generate asynchronous events when any of the screens in the collection appear in the

presentation space.

• ECLSession, on page ECLSession Class on page 914, contains a collection of all the connection-specific

objects. ECLSession can be used to easily create a complete set of objects for a particular connection.

• ECLStartNotify, on page ECLStartNotify Class on page 922,is a notification class that an application can use

to be notified whenever a connection is started or stopped. It can be used to monitor the status of the system

and take action when a connection is closed unexpectedly.

• ECLUpdateNotify, on page ECLUpdateNotify Class on page 927, is a notification class that an application

can use to be notified whenever the host screen or OIA is updated.

• ECLWinMetrics, on page ECLWinMetrics Class on page 927, represents the physical window in which the

emulation is running. Methods are provided for getting and setting the window state (min, max, restored),

window size and visibility.

• ECLXfer, on page ECLXfer Class on page 950, initiates file transfers to or from the host over the connection.

• ECLPageSettings, on page ECLPageSettings Class on page 956, control and retrieve the settings of the

emulator session File > Page Setup dialog.

• ECLPrinterSettings, on page ECLPrinterSettings Class on page 969, control and retrieve the settings of the

emulator session File > Printer Setup dialogs.

Building C++ ECL Programs
Building C++ ECL ProgramsdescriptionThis section describes the mechanics of how to build a C++ program which uses the ECL. The source code

preparation, compiling and linking requirements are described.

Chapter 2. Product Documentation

Microsoft Visual C++
Building C++ ECL ProgramsMicrosoft Visual C++The following sections describe how to prepare, compile, and link Microsoft® Visual C++ applications that use the

ECL. Z and I Emulator for Windows currently supports Microsoft® Visual C++ compiler Version 4.2 and later.

Source Code Preparation
Programs that use ECL classes must include the ECL header files to obtain the class definitions and other compile-

time information. Although it is possible to include only the subset of header files the application requires, for

simplicity it is recommended that applications include all ECL header files using the ECLALL.HPP file.

Any C++ source file which contains references to ECL objects or definitions should have the following statement

before the first reference:

 #include "eclall.hpp"

Compiling
The compiler must be instructed to search the ZIEWin subdirectory containing the ECL header files. This is done

using the /I compiler option, or the Developer Studio Project Setting dialog.

The application must be compiled for multithreaded execution by using the /MT (for executable files), or /MD (for

DLLs) compiler options.

Linking
The linker must be instructed to include the ECL linkable library file (PCSECLVC.LIB). This is done by specifying the

fully qualified name of the library file on the linker command line, or by using the Developer Studio Project Settings

dialog.

Executing
When an application that uses the ECL is executed, the ZIEWin libraries must be found in the system path. By default,

the ZIEWin directory is added to the system path during ZIEWin installation.

ECLBase Class
objects, C++ECLBaseECLBase is the base class for all ECL objects. It provides some basic utility methods such as the conversion of

connection names and handles. Because all ECL objects inherit from this class, these methods can be used on any

ECL object.

An application should not create objects of this class directly.

Derivation
None

749

HCL Z and I Emulator for Windows (ENGLISH)

750

ECLBase Methods
The following shows the methods that are valid for ECLBase classes.

int GetVersion(void)

char ConvertHandle2ShortName(long ConnHandle)

long ConvertShortName2Handle(char Name)

void ConvertTypeToString(int ConnType,char *Buff)

inline void ConvertPos(ULONG Pos, ULONG *Row, ULONG *Col, ULONG PSCols)

GetVersion
This method returns the version of the Host Access Class Library. The value returned is the decimal version number

multiplied by 100. For example, version 1.02 would be returned as 102.

Prototype
int GetVersion(void)

Parameters
None

Return Value
int

The ECL version number multiplied by 100.

Example
//---
// ECLBase::GetVersion
//
// Display major version number of ECL library.
//---
void Sample2() {

if (ECLBase::GetVersion() >= 200) {
 printf("Running version 2.0 or later.\n");
}
else {
 printf("Running version 1.XX\n");
}

} // end sample

Chapter 2. Product Documentation

ConvertHandle2ShortName
This method returns the name (A–Z or a-z) of the ECL connection handle specified. Note that this function may return

a name even if the specified connection does not exist.

Prototype
char ConvertHandle2ShortName(long ConnHandle)

Parameters
long ConnHandle

The handle of an ECL connection.

Return Value
char

The name of the ECL connection in the range A–Z or a-z.

Example
//---
// ECLBase::ConvertHandle2ShortName
//
// Display name of first connection in the connection list.
//---
void Sample3() {

ECLConnList ConnList;
long Handle;
char Name;

if (ConnList.GetCount() > 0) {
 // Print connection name of first connection in the
 // connection list.
 Handle = ConnList.GetFirstConnection()->GetHandle();
 Name = ConnList.ConvertHandle2ShortName(Handle);
 printf("Name of first connection is: %c \n", Name);
}
else printf("There are no connections.\n");

} // end sample

ConvertShortName2Handle
This method returns the connection handle of the ECL connection with the specified name. The name must be in the

range A–Z or a-z. Note that this function may return a handle even if the specified connection does not exist.

751

HCL Z and I Emulator for Windows (ENGLISH)

752

Prototype
char ConvertShortName2Handle(char Name)

Parameters
char Name

The name of an ECL connection in the range A–Z or a-z.

Return Value
char

The handle of the ECL connection.

Example
//---
// ECLBase::ConvertShortName2Handle
//
// Display handle of connection 'A'.
//---
void Sample4() {

ECLConnList ConnList;
long Handle;
char Name;

Name = 'A';
Handle = ConnList.ConvertShortName2Handle(Name);
printf("Handle of connection A is: 0x%lx \n", Handle);

} // end sample

ConvertTypeToString
This method converts a connection type returned by ECLConnection::GetConnType() into a null terminated string. The

string returned is not language sensitive.

ConnType Returned String

HOSTTYPE_3270DISPLAY "3270 DISPLAY"

HOSTTYPE_3270PRINTER "3270 PRINTER"

HOSTTYPE_5250 DISPLAY "5250 PRINTER"

HOSTTYPE_5250PRINTER "5250 PRINTER"

HOSTTYPE_VT "ASCII TERMINAL"

HOSTTYPE_PC "PC SESSION"

Any other value "UNKNOWN"

Chapter 2. Product Documentation

Prototype
void ConvertTypeToString(int ConnType,char *Buff)

Parameters
int ConnType

The connection type and must be one of the HOSTTYPE_* constants defined in ECLBASE.HPP.

char *Buff

A buffer of size TYPE_MAXSTRLEN as defined in ECLBase.hpp in which the string will be returned.

Return Value
None

Example
//---
// ECLBase::ConvertTypeToString
//
// Display type of connection 'A'.
//---
void Sample5() {

ECLConnection *pConn;
char TypeString[21];

pConn = new ECLConnection('A');

pConn->ConvertTypeToString(pConn->GetConnType(), TypeString);
// Could also use:
// ECLBase::ConvertTypeToString(pConn->GetConnType(), TypeString);

printf("Session A is a %s \n", TypeString);

delete pConn;

} // end sample

ConvertPos
This method is an inline function (macro) to convert an ECL position coordinate into a row/column coordinate given

a position and the width of the presentation space. This function is faster than using ECLPS::ConvertPosToRowCol()

for applications that already know (or assume) the width of the presentation space.

Prototype
inline void ConvertPos(ULONG Pos,ULONG *Row,ULONG *Col,ULONG PSCols).

753

HCL Z and I Emulator for Windows (ENGLISH)

754

Parameters
ULONG Pos

The linear positional coordinate to be converted (input).

ULONG *Row

The pointer to the returned row number of the given position (output).

ULONG *Col

The pointer to the returned column number of the given position (output).

ULONG *PSCols

The number of columns in the host presentation space (input).

Return Value
None

Example
//---
// ECLBase::ConvertPos
//
// Display row/column coordinate of a given point.
//---
void Sample6() {

ECLPS *pPS;
ULONG NumRows, NumCols, Row, Col;

try {
 pPS = new ECLPS('A');

 pPS->GetSize(&NumRows, &NumCols); // Get height and width of PS

 // Get row/column coordinate of position 81
 ECLBase::ConvertPos(81, &Row, &Col, NumCols);
 printf("Position 81 is row %lu, column %lu \n", Row, Col);

 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

Chapter 2. Product Documentation

ECLConnection Class
objects, C++ECLConnectionECLConnection contains connection-related information for a given connection. This object can be created directly by

an application, and is also created indirectly by the ECLConnList object or when creating any object that inherits from

ECLConnection (for example, ECLSession).

The information returned by the methods of this object are current as of the time the method is called.

ECLConnection is inherited by ECLSession, ECLPS, ECLOIA, ECLWinMetrics, and ECLXfer.

Derivation
ECLBase > ECLConnection

ECLConnection Methods
The following shows the methods that are valid for ECLConnection classes.

ECLConnection(char ConnName)

ECLConnection(long ConnHandle)

~ECLConnection()

long GetHandle()

int GetConnType()

int GetEncryptionLevel()

char GetName()

BOOL IsStarted()

BOOL IsCommStarted()

BOOL IsAPIEnabled()

BOOL IsReady()

unsigned int GetCodePage()

void StartCommunication()

void StopCommunication()

void RegisterCommEvent(ECLCommNotify *NotifyObject, BOOL InitEvent = TRUE)

void UnregisterCommEvent(ECLCommNotify *NotifyObject)

ECLConnection Constructor
This method constructs an ECLConnection object from either a connection name or a handle.

Prototype
ECLConnection(long ConnHandle)

755

HCL Z and I Emulator for Windows (ENGLISH)

756

ECLConnection(char ConnName)

Parameters
long ConnHandle

Handle of connection to create a connection object.

char ConnName

Name (A–Z or a-z) of connection to create a connection object.

Return Value
None

Example
//---
// ECLConnection::ECLConnection (Constructor)
//
// Create two connection objects for connection 'A', one created
// by name, the other by handle.
//---
void Sample7() {

ECLConnection *pConn1, *pConn2;
long Hand;

try {
 pConn1 = new ECLConnection('A');
 Hand = pConn1->GetHandle();
 pConn2 = new ECLConnection(Hand); // Another ECLConnection for 'A'

 printf("Conn1 is for connection %c, Conn2 is for connection %c.\n",
 pConn1->GetName(), pConn2->GetName());

 delete pConn1; // Call destructors
 delete pConn2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLConnection Destructor
This method destroys an ECLConnection object.

Chapter 2. Product Documentation

Prototype
~ECLConnection()

Parameters
None

Return Value
None

Example
//---
// ECLConnection::~ECLConnection (Destructor)
//
// Create two connection objects, then delete both of them.
//---
void Sample8() {

ECLConnection *pConn1, *pConn2;
long Hand;

try {
 pConn1 = new ECLConnection('A');
 Hand = pConn1->GetHandle();
 pConn2 = new ECLConnection(Hand); // Another ECLConnection for 'A'

 printf("Conn1 is for connection %c, Conn2 is for connection %c.\n",
 pConn1->GetName(), pConn2->GetName());

 delete pConn1; // Call destructors
 delete pConn2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetCodePage
This method returns the host code page for which the connection is configured.

Prototype
unsigned int GetCodePage()

757

HCL Z and I Emulator for Windows (ENGLISH)

758

Parameters
None

Return Value
unsigned int

Host code page of the connection.

Example
//---
// ECLConnection::GetCodePage
//
// Display host code page for each ready connection.
//---
void Sample16() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsReady())
 printf("Connection %c is configured for host code page %u.\n",
 Info->GetName(), Info->GetCodePage());
}

} // end sample

GetHandle
This method returns the handle of the connection. This handle uniquely identifies the connection and may be used in

other ECL functions that require a connection handle.

Prototype
long GetHandle()

Parameters
None

Chapter 2. Product Documentation

Return Value
long

Connection handle of the ECLConnection object.

Example
The following example shows how to return the handle of the first connection in the connection list.

//---
// ECLConnection::GetHandle
//
// Get the handle of connection 'A' and use it to create another
// connection object.
//---
void Sample9() {

ECLConnection *pConn1, *pConn2;
long Hand;

try {
 pConn1 = new ECLConnection('A');
 Hand = pConn1->GetHandle();
 pConn2 = new ECLConnection(Hand); // Another ECLConnection for 'A'

 printf("Conn1 is for connection %c, Conn2 is for connection %c.\n",
 pConn1->GetName(), pConn2->GetName());

 delete pConn1; // Call destructors
 delete pConn2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetConnType
This method returns the connection type. This connection type may change over time (for example, you may

reconfigure the connection for a different host). The application should not assume the connection type is fixed. See

below for connection types returned.

Note: The ECLBase::ConvertTypeToString function converts the connection type to a null terminated string.

Prototype
int GetConn Type()

759

HCL Z and I Emulator for Windows (ENGLISH)

760

Parameters
None

Return Value
int

Connection type constant (HOSTTYPE_* from HOSTBASE.HPP). The following table shows the value

returned and its meaning.

Value Returned Meaning

HOSTTYPE_3270DISPLAY 3270 display

HOSTTYPE_3270PRINTER 3270 printer

HOSTTYPE_5250DISPLAY 5250 display

HOSTTYPE_5250PRINTER 5250 printer

HOSTTYPE_VT ASCII VT display

HOSTTYPE_UNKNOWN Unknown connection type

Example
The following example shows how use the GetConnType method to return the connection type.

//---
// ECLConnection::GetConnType
//
// Find the first 3270 display connection in the current list of
// all connections.
//---
void Sample10() {

ULONG i; // Connection counter
ECLConnList ConnList; // Connection list object
ECLConnection *Info=NULL; // Pointer to connection object

for (i=0; i<ConnList.GetCount(); i++) {

 Info = ConnList.GetNextConnection(Info);
 if (Info->GetConnType() == HOSTTYPE_3270DISPLAY) {
 // Found the first 3270 display connection
 printf("First 3270 display connection is '%c'.\n",
 Info->GetName());
 return;
 }

} // for
printf("Found no 3270 display connections.\n");

} // end sample

Chapter 2. Product Documentation

GetName
This method returns the connection name (a single, alphabetic character from A–Z or a-z) of the connection. This

name also corresponds to the EHLLAPI session ID.

Prototype
char GetName()

Parameters
None

Return Value
char

Connection short name.

Example
The following example shows how to use the GetName method to return the connection name.

//---
// ECLConnection::GetName
//
// Find the first 3270 display connection in the current list of
// all connections and display its name (session ID).
//---
void Sample11() {

ULONG i; // Connection counter
ECLConnList ConnList; // Connection list object
ECLConnection *Info=NULL; // Pointer to connection object

for (i=0; i<ConnList.GetCount(); i++) {

 Info = ConnList.GetNextConnection(Info);
 if (Info->GetConnType() == HOSTTYPE_3270DISPLAY) {
 // Found the first 3270 display connection, display the name
 printf("First 3270 display connection is '%c'.\n",
 Info->GetName());
 return;
 }

} // for
printf("Found no 3270 display connections.\n");

} // end sample

761

HCL Z and I Emulator for Windows (ENGLISH)

762

GetEncryptionLevel
This method returns the encryption level of the current connection.

Prototype
int GetEncryptionLevel()

Parameters
None

Return Value
int

Encryption level constant. The following table shows the value returned and its meaning.

Value Returned Meaning

ENCRYPTION_NONE No Encryption

ENCRYPTION_40BIT 40 bit encryption

ENCRYPTION_56BIT 56 bit encryption

ENCRYPTION_128BIT 128 bit encryption

ENCRYPTION_168BIT 168 bit encryption

ENCRYPTION_NOKEY Encrypted without a key

Example
The following example shows how use the GetEncryptionLevel method to return the encryption level.

//---
// ECLConnection::GetEncryptionLevel
//
// Display the encryption level of session A
//
//---
void SampleEL()
{
int EncryptionLevel = 0; //Encryption Level
ECLConnection * Info = NULL; //Pointer to connection object

Info = new ECLConnection('A');
If (Info != NULL)
{
 EncryptionLevel = Info->GetEncryptionLevel();
 switch (EncryptionLevel)
 {
 case ENCRYPTION_NONE:
 printf("Encryption Level = None");
 break;
 case ENCRYPTION_40BIT:
 printf("Encryption Level = 40 BIT");

Chapter 2. Product Documentation

 break;
 case ENCRYPTION_56BIT:
 printf("Encryption Level = 56 BIT");
 break;
 case ENCRYPTION_128BIT:
 printf("Encryption Level = 128 BIT");
 break;
 case ENCRYPTION_168BIT:
 printf("Encryption Level = 168 BIT");
 break;

 default:
 }
}
}

IsStarted
This method indicates if the connection is started. A started connection may or may not be connected to a host. Use

the IsCommStarted function to determine if the connection is currently connected to a host.

Prototype
BOOL IsStarted()

Parameters
None

Return Value
BOOL

TRUE value if the connection is started; FALSE value if the connection is not started.

Example
//---
// ECLConnection::IsStarted
//
// Display list of all started connections. Note they may or may
// not be communications-connected to a host, and may or may not
// be visible on the screen.
//---
void Sample12() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

// Print list of started connections

for (Info = ConnList.GetFirstConnection();
 Info != NULL;

763

HCL Z and I Emulator for Windows (ENGLISH)

764

 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsStarted())
 printf("Connection %c is started.\n", Info->GetName());
}

} // end sample

IsCommStarted
This method indicates if the connection is currently connected to the host (for example, it indicates if host

communications is active for the connection). This function returns a FALSE value if the connection is not started

(see IsStarted on page 763).

Prototype
BOOL IsCommStarted()

Parameters
None

Return Value
BOOL

TRUE value if the connection is connected to the host; FALSE value if the connection is not connected to

the host.

Example
//---
// ECLConnection::IsCommStarted
//
// Display list of all started connections which are currently
// in communications with a host.
//---
void Sample13() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsCommStarted())
 printf("Connection %c is connected to a host.\n", Info->GetName());
}

Chapter 2. Product Documentation

} // end sample

IsAPIEnabled
This method indicates if the connection is API-enabled. A connection that does not have API enabled cannot be used

with the Host Access Class Library. This function returns a FALSE value if the connection is not started.

Prototype
BOOL IsAPIEnabled()

Parameters
None

Return Value
BOOL

TRUE value if API is enabled; FALSE value if API is not enabled.

Example
//---
// ECLConnection::IsAPIEnabled
//
// Display list of all started connections which have APIs enabled.
//---
void Sample14() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsAPIEnabled())
 printf("Connection %c has APIs enabled.\n", Info->GetName());
}

} // end sample

IsReady
This method indicates that the connection is ready, meaning the connection is started, connected, and API-enabled.

This function is faster and easier than calling IsStarted, IsCommStarted, and IsAPIEnabled.

765

HCL Z and I Emulator for Windows (ENGLISH)

766

Prototype
BOOL IsReady()

Parameters
None

Return Value
BOOL

TRUE if the connection is started, CommStarted, and API-enabled; FALSE if otherwise.

Example
//---
// ECLConnection::IsReady
//
// Display list of all connections which are started, comm-connected
// to a host, and have APIs enabled.
//---
void Sample15() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsReady())
 printf("Connection %c is ready (started, comm-connected, API
 enabled).\n", Info->GetName());
}

} // end sample

StartCommunication
This method connects the ZIEWin emulator to the host data stream. This has the same effect as going to the ZIEWin

emulator communication menu and choosing Connect.

Prototype
void StartCommunication()

Parameters
None

Chapter 2. Product Documentation

Return Value
None

Example
//---
// ECLConnection::StartCommunication
//
// Start communications link for any connection which is currently
// not comm-connected to a host.
//---
void Sample17() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (!(Info->IsCommStarted())) {
 printf("Starting comm-link for connection %c...\n", Info->GetName());
 Info->StartCommunication();
 }
}

} // end sample

StopCommunication
This methods disconnects the ZIEWin emulator from the host data stream. This has the same effect as going to the

ZIEWin emulator communication menu and choosing Disconnect.

Prototype
void StopCommunication()

Parameters
None

Return Value
None

Example
//---
// ECLConnection::StopCommunication

767

HCL Z and I Emulator for Windows (ENGLISH)

768

//
// Stop comm-link for any connection which is currently connected
// to a host.
//---
void Sample18() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsCommStarted()) {
 printf("Stopping comm-link for connection %c...\n", Info->GetName());
 Info->StopCommunication();
 }
}

} // end sample

RegisterCommEvent
This member function registers an application object to receive notification of all communication link connect/

disconnect events. To use this function, the application must create an object derived from the ECLCommNotify

class. A pointer to that object is then passed to this registration function. Implementation Restriction: An application

can register only one object for communication event notification.

After a notify object has been registered with this function, it will be called whenever the connections communication

link with the host connects or disconnects. The object will receive notification for all communication events whether

they are caused by the StartCommunication() function or explicitly by the user. This event should not be confused

with the connection start/stop event which is triggered when a new ZIEWin connection starts or stops.

The optional InitEvent parameter causes an initial event to be generated when the object is registered. This can be

useful to synchronize an event object with the current state of the communications link. If InitEvent is specified as

FALSE, no initial event is generated when the object is registered. The default for this parameter is TRUE.

The application must call UnregisterCommEvent() before destroying the notification object. The object is

automatically unregistered if the ECLConnection object where it is registered is destroyed.

See the description of ECLCommNotify Class on page 784 for more information.

Prototype
void RegisterCommEvent(ECLCommNotify *NotifyObject, BOOL InitEvent = TRUE)

Parameters
ECLCommNotify *NotifyObject

Pointer to an object derived from ECLCommNotify class.

Chapter 2. Product Documentation

BOOL InitEvent

Generate an initial event with the current state.

Return Value
None

Example
See ECLCommNotify Class on page 784 for an example of ECLConnection::RegisterCommEvent.

UnregisterCommEvent
This member function unregisters an application object previously registered for communication events with the

RegisterCommEvent() function. A registered application notify object should not be destroyed without first calling this

function to unregister it. If there is no notify object currently registered, or the registered object is not the NotifyObject

passed in, this function does nothing (no error is thrown).

When a notify object is unregistered, its NotifyStop() member function will be called.

See the description of ECLCommNotify Class on page 784 for more information.

Prototype
void UnregisterCommEvent(ECLCommNotify *NotifyObject)

Parameters
ECLCommNotify *NotifyObject

This is a currently registered application notification object.

Return Value
None

Example
See ECLCommNotify Class on page 784 for an example of ECLConnection::UnregisterCommEvent.

ECLConnList Class
objects, C++ECLConnListECLConnList obtains information about all host connections on a given machine. An ECLConnList object contains a

collection of all the connections that are currently known in the system.

The ECLConnList object contains a collection of ECLConnection objects. Each element of the collection contains

information about a single connection. A connection in this list may be in any state (for example, stopped or

769

HCL Z and I Emulator for Windows (ENGLISH)

770

disconnected). All started connections appear in this list. The ECLConnection object contains the state of the

connection.

The list is a snapshot of the set of connections at the time this object is created, or the last time the Refresh method

was called. The list is not dynamically updated as connections are started and stopped. An application can use the

RegisterStartEvent member of the ECLConnMgr object to be notified of connection start and stop events.

An ELCConnList object may be created directly by the application or indirectly by the creation of an ECLConnMgr

object.

Derivation
ECLBase > ECLConnList

Usage Notes
An ECLConnList object provides a static snapshot of current connections. The Refresh method is automatically called

upon construction of the ECLConnList object. If you use the ECLConnList object right after construction it contains an

accurate representation of the list of connections at that moment. However, you should call the Refresh method in the

ECLConnList object before you start accessing it if some time has passed since its construction.

The application can iterate over the collection by using the GetFirstConnection and GetNextConnection methods. The

object pointers returned by GetFirstConnection and GetNextConnection are valid only until the Refresh member is

called, or the ECLConnList object is destroyed. The application can locate a specific connection of interest in the list

using the FindConnection function. Like GetNextConnection, the returned pointer is valid only until the next Refresh or

the ECLConnList object is destroyed.

The order of connections in the connection list is undefined. An application should not make any assumptions about

the list order. The order of connections in the list does not change until the Refresh function is called.

An ECLConnList object is automatically created when an ECLConnMgr object is created. However, the ECLConnList

object can be created without an ECLConnMgr object.

ECLConnList Methods
The following section describes the methods that are valid for the ECLConnList class.

ECLConnection * GetFirstConnection()

ECLConnection * GetNextConnection(ECLConnection *Prev)

ECLConnection * FindConnection(Long ConnHandle)

ECLConnection * FindConnection(char ConnName)

ULONG GetCount()

void Refresh()

Chapter 2. Product Documentation

ECLConnList Constructor
This method creates an ECLConnList object and initializes it with the current list of connections.

Prototype
ECLConnList();

Parameters
None

Return Value
None

Example
//---
// ECLConnList::ECLConnList (Constructor)
//
// Dynamically construct a connection list object, display number
// of connections in the list, then delete the list.
//---
void Sample19() {

ECLConnList *pConnList; // Pointer to connection list object

try {
 pConnList = new ECLConnList();
 printf("There are %lu connections in the connection list.\n",
 pConnList->GetCount());

 delete pConnList; // Call destructor
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLConnList Destructor
This method destroys an ECLConnList object.

Prototype
~ECLConnList()

771

HCL Z and I Emulator for Windows (ENGLISH)

772

Parameters
None

Return Value
None

Example
//---
// ECLConnList::~ECLConnList (Destructor)
//
// Dynamically construct a connection list object, display number
// of connections in the list, then delete the list.
//---
void Sample20() {

ECLConnList *pConnList; // Pointer to connection list object

try {
 pConnList = new ECLConnList();
 printf("There are %lu connections in the connection list.\n",
 pConnList->GetCount());

 delete pConnList; // Call destructor
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetFirstConnection
The GetFirstConnection method returns a pointer to the first connection information object in the ECLConnList

collection. See ECLConnection Class on page 754 for details on its contents. The returned pointer becomes invalid

when the ECLConnList Refresh member is called or the ECLConnList object is destroyed. The application should not

delete the returned object. If there are no connections in the list, NULL is returned.

Prototype
ECLConnection *GetFirstConnection()

Parameters
None

Chapter 2. Product Documentation

Return Value
ECLConnection *

Pointer to the first ECLConnection object in the list. If there are no connections in the list, null is

returned.

Example
//---
// ECLConnection::GetFirstConnection
//
// Iterate over list of connections and display information about
// each one.
//---
void Sample21() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object
char TypeString[21]; // Type of connection

for (Info = ConnList.GetFirstConnection(); // Get first one
 Info != NULL; // While there is one
 Info = ConnList.GetNextConnection(Info)) { // Get next one

 ECLBase::ConvertTypeToString(Info->GetConnType(), TypeString);
 printf("Connection %c is a %s type connection.\n",
 Info->GetName(), TypeString);
}

} // end sample

GetNextConnection
This method returns a pointer to the next connection information object in the ECLConnList collection given a

connection in the list. The application supplies a pointer to a connection previously returned by this function or

GetFirstConnection. See ECLConnection Class on page 754 for details on its contents. The returned pointer is not

valid after the next ECLConnList Refresh() call, or the ECLConnList object is destroyed. A NULL pointer is returned

if there is an attempt to read past the end of the list. Successive calls to this method (supplying the prior pointer on

each call) iterates over the list of connections. After the last connection is returned, subsequent calls return a NULL

pointer. The first connection in the list can be obtained by supplying NULL for the previous connection.

Prototype
ECLConnection *GetNext Connection (ECLConnection *Prev)

773

HCL Z and I Emulator for Windows (ENGLISH)

774

Parameters
ECLConnection *Prev

Pointer returned by prior call to this function, GetFirstConnection(), or NULL.

Return Value
ECLConnection *

This is the pointer to the next ECLConnection object, or NULL if end of list.

Example
//---
// ECLConnection::GetNextConnection
//
// Iterate over list of connections and display information about
// each one.
//---
void Sample22() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object
char TypeString[21]; // Type of connection

for (Info = ConnList.GetFirstConnection(); // Get first one
 Info != NULL; // While there is one
 Info = ConnList.GetNextConnection(Info)) { // Get next one

 ECLBase::ConvertTypeToString(Info->GetConnType(), TypeString);
 printf("Connection %c is a %s type connection.\n",
 Info->GetName(), TypeString);
}

} // end sample

FindConnection
This method searches the current connection list for the connection specified. The desired connection can be

specified by handle or by name. There are two signatures for the FindConnection method. If the specified connection

is found, a pointer to the ECLConnection object is returned. If the specified connection is not in the list, NULL is

returned. The list is not automatically refreshed by this function; if a new connection has started since the list was

constructed or refreshed it is not found. The returned pointer is to an object in the connection list maintained by the

ECLConnList object. The returned pointer is invalid after the next ECLConnList::Refresh call or the ECLConnList object

is destroyed.

Chapter 2. Product Documentation

Prototype
ECLConnection *FindConnection(Long ConnHandle),

ECLConnection *FindConnection(char ConnName)

Parameters
Long ConnHandle

Handle of the connection to find in the list.

char ConnName

Name of the connection to find in the list.

Return Value
ECLConnection *

Pointer to the requested ECLConnection object. If the specified connection is not in the list, NULL is

returned.

Example
//---
// ECLConnection::FindConnection
//
// Find connection 'B' in the list of connections. If found, display
// its type.
//---
void Sample23() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object
char TypeString[21]; // Type of connection

Info = ConnList.FindConnection('B'); // Find connection by name
if (Info != NULL) {

 ECLBase::ConvertTypeToString(Info->GetConnType(), TypeString);
 printf("Connection 'B' is a %s type connection.\n",
 TypeString);
}
else printf("Connection 'B' not found.\n");

} // end sample

GetCount
This method returns the number of connections currently in the ECLConnList collection.

775

HCL Z and I Emulator for Windows (ENGLISH)

776

Prototype
ULONG GetCount()

Parameters
None

Return Value
ULONG

Number of connections in the collection.

Example
//---
// ECLConnList::GetCount
//
// Dynamically construct a connection list object, display number
// of connections in the list, then delete the list.
//---
void Sample24() {

ECLConnList *pConnList; // Pointer to connection list object

try {
 pConnList = new ECLConnList();
 printf("There are %lu connections in the connection list.\n",
 pConnList->GetCount());

 delete pConnList; // Call destructor
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

Refresh
This method updates the ECLConnList collection with a list of all currently known connections in the system. All

pointers previously returned by GetNextConnection, GetFirstConnection and FindConnection become invalid.

Prototype
void Refresh()

Chapter 2. Product Documentation

Parameters
None

Return Value
None

Example
//---
// ECLConnection::Refresh
//
// Loop-and-wait until connection 'B' is started.
//---
void Sample25() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object
int i;

printf("Waiting up to 60 seconds for connection B to start...\n");
for (i=0; i<60; i++) { // Limit wait to 60 seconds
 ConnList.Refresh(); // Refresh the connection list
 Info = ConnList.FindConnection('B');
 if ((Info != NULL) && (Info->IsStarted())) {
 printf("Connection B is now started.\n");
 return;
 }
 Sleep(1000L); // Wait 1 second and try again
}

printf("Connection 'B' not started after 60 seconds.\n");

} // end sample

ECLConnMgr Class
objects, C++ECLConnMgrECLConnMgr manages all Z and I Emulator for Windows connections on a given machine. It provides methods

relating to the management of connections such as starting and stopping connections. It also creates an

ECLConnList object to enumerate the list of all known connections on the system (see ECLConnList Class on

page 769).

Derivation
ECLBase > ECLConnMgr

777

HCL Z and I Emulator for Windows (ENGLISH)

778

ECLConnMgr Methods
The following shows the methods that are valid with the ECLConnMgr class.

ECLConnMgr()

~ECLConnMgr()

ECLConnList * GetConnList()

void StartConnection(char *ConfigParms)

void StopConnection(Long ConnHandle, char *StopParms)

void RegisterStartEvent(ECLStartNotify *NotifyObject)

void UnregisterStartEvent(ECLStartNotify *NotifyObject)

ECLConnMgr Constructor
This method constructs an ECLConnMgr object.

Prototype
ECLConnMgr()

Parameters
None

Return Value
None

Example
//---
// ECLConnMgr::ECLConnMgr (Constructor)
//
// Create a connection mangager object, start a new connection,
// then delete the manager.
//---
void Sample26() {

ECLConnMgr *pCM; // Pointer to connection manager object

try {
 pCM = new ECLConnMgr(); // Create connection manager
 pCM->StartConnection("profile=coax connname=e");
 printf("Connection 'E' started with COAX profile.\n");
 delete pCM; // Delete connection manager
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

Chapter 2. Product Documentation

ECLConnMgr Deconstructor
This method destroys an ECLConnMgr object.

Prototype
~ECLConnMgr()

Parameters
None

Return Value
None

Example
//---
// ECLConnMgr::~ECLConnMgr (Destructor)
//
// Create a connection mangager object, start a new connection,
// then delete the manager.
//---
void Sample27() {

ECLConnMgr *pCM; // Pointer to connection manager object

try {
 pCM = new ECLConnMgr(); // Create connection manager
 pCM->StartConnection("profile=coax connname=e");
 printf("Connection 'E' started with COAX profile.\n");
 delete pCM; // Delete connection manager
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetConnList
This method returns a pointer to an ECLConnList object. See ECLConnList Class on page 769 for more information.

The ECLConnList object is destroyed when the ECLConnMgr object is destroyed.

Prototype
ECLConnList * GetConnList()

779

HCL Z and I Emulator for Windows (ENGLISH)

780

Parameters
None

Return Value
ECLConnList *

Pointer to an ECLConnList object

Example
//---
// ECLConnMgr::GetConnList
//
// Use connection manager's connection list object to display
// number of connections (see also ECLConnList::GetCount).
//---
void Sample28() {

ECLConnMgr CM; // Connection manager object

printf("There are %lu connections in the connection list.\n",
 CM.GetConnList()->GetCount());

} // end sample

StartConnection
This method starts a new Z and I Emulator for Windows emulator connection. The ConfigParms string contains

connection configuration information as explained under Usage Notes on page 781.

Prototype
void StartConnection(char *ConfigParms)

Parameters
char *ConfigParms

Null terminated connection configuration string.

Return Value
None

Chapter 2. Product Documentation

Usage Notes
The connection configuration string is implementation-specific. Different implementations of the Host Access Class

Library may require different formats or information in the configuration string. This call is asynchronous in nature;

the new connection may not yet be started when this call returns. An application can use the RegisterStartEvent

function to be notified when a connection starts.

For Z and I Emulator for Windows, the configuration string has the following format:

PROFILE=[\"]<filename>[\"] [CONNNAME=<c>] [WINSTATE=<MAX|MIN|RESTORE|HIDE>]

Optional parameters are enclosed in square brackets []. The parameters are separated by at least one blank.

Parameters may be in upper, lower, or mixed case and may appear in any order. The meaning of each parameter is as

follows:

PROFILE=<filename>

Names the Z and I Emulator for Windows workstation profile (.WS file) that contains the connection

configuration information. This parameter is not optional; a profile name must be supplied. If the file

name contains blanks, the name must be enclosed in double quotation marks. The <filename> value

may be either the profile name with no extension, the profile name with the .WS extension, or the fully-

qualified profile name path.

CONNNAME=<c>

Specifies the connection name (EHLLAPI short session ID) of the new connection. This value must be a

single, alphabetic character (A-Z or a-z). If this value is not specified, the next available connection name

is assigned automatically. If a connection already exists with the specified name an error is thrown

(ERRMAJ_INVALID_SESSION).

WINSTATE=<MAX|MIN|RESTORE|HIDE>

Specifies the initial state of the emulator window. The default if this parameter is not specified is

RESTORE.

Note: Due to the asynchronous nature of this call, it is possible for this function to return without error, but the

connection fails to start. For example, if two connections are started in a short period of time with the same

connection name the second StartConnection does not fail because the first connection has not yet started.

However, when the second connection finally attempts to register its name it does fail to start because the

name is already in use by the first connection. To minimize this possibility, connections should be started

without specifying the CONNNAME parameter if possible.

Example
The following is an example of the StartConnection method.

ECLConnMgr Manager; // Connection manager object

// Start a host connection "E" and check for errors

781

HCL Z and I Emulator for Windows (ENGLISH)

782

try {
 Manager.StartConnection("profile=coax connname=e");
}
catch (ECLErr Error) {
 MessageBox(NULL, Error.GetMsgText(), "Session start error!", MB_OK);
}

StopConnection
This method stops (terminates) the emulator connection identified by the connection handle. See Usage Notes on

page 782 for contents of the StopParms string.

Prototype
void StopConnection(Long ConnHandle, char *StopParms)

Parameters
Long ConnHandle

Handle of the connection to be stopped.

char * StopParms

Null terminated connection stop parameter string.

Return Value
None

Usage Notes
The connection stop parameter string is implementation-specific. Different implementations of the Host Access

Class Library may require a different format and contents of the parameter string. For Z and I Emulator for Windows

the string has the following format:

 [SAVEPROFILE=<YES|NO|DEFAULT>]

Optional parameters are enclosed in square brackets []. The parameters are separated by at least one blank.

Parameters may be in upper, lower, or mixed case and may appear in any order. The meaning of the SAVEPROFILE

parameter is as follows:

SAVEPROFILE=<YES|NO|DEFAULT> controls the saving of the current connection configuration back to the

workstation profile (.WS file). This causes the profile to be updated with any configuration changes you may have

made during the connection. If NO is specified, the connection is stopped and the profile is not updated. If YES is

specified, the connection is stopped and the profile is updated with the current (possibly changed) configuration.

If DEFAULT is specified, the update option is controlled by the File->Save On Exit emulator menu option. If this

parameter is not specified, DEFAULT is used.

Chapter 2. Product Documentation

Example
//---
// ECLConnMgr::StopConnection
//
// Stop the first connection in the connection list.
//---
void Sample29() {

ECLConnMgr CM; // Connection manager object

if (CM.GetConnList()->GetCount() > 0) {

 printf("Stopping connection %c.\n",
 CM.GetConnList()->GetFirstConnection()->GetName());

 CM.StopConnection(
 CM.GetConnList()->GetFirstConnection()->GetHandle(),
 "saveprofile=no");
}
else printf("No connections to stop.\n");

} // end sample

RegisterStartEvent
This method registers an application object to receive notification of all connection start and stop events. To use

this function, the application must create an object derived from the ECLStartNotify class. A pointer to that object is

then passed to this registration function. Implementation Restriction: An application can register only one object for

connection start or stop notification.

After a notify object has been registered with this function, it is called whenever a Z and I Emulator for Windows

connection is started or stopped. The object receives notification for all connections whether they are started by the

StartConnection function or explicitly by you. This event should not be confused with the start/stop Communication

event, which is triggered when a connection connects or disconnects from a host system.

See ECLStartNotify Class on page 922 for more information.

Prototype
void RegisterStartEvent(ECLStartNotify *NotifyObject)

Parameters
ECLStartNotify *NotifyObject

Pointer to object derived from the ECLStartNotify class.

783

HCL Z and I Emulator for Windows (ENGLISH)

784

Return Value
None

Example
//---
// ECLConnMgr::RegisterStartEvent
//
// See ECLStartNotify Class on page 922 for example of this method.
//---

UnregisterStartEvent
This method unregisters an application object previously registered for connection start or stop events with the

RegisterStartEvent function. A registered application notify object should not be destroyed without first calling this

function to unregister it. If there is no notify object currently registered, or the registered object is not the NotifyObject

passed in, this function does nothing (no error is thrown).

When a notify object is unregistered, its NotifyStop method is called.

See ECLStartNotify Class on page 922 for more information.

Prototype
void UnregisterStartEvent(ECLStartNotify *NotifyObject)

Parameters
None

Return Value
None

Example
//---
// ECLConnMgr::UnregisterStartEvent
//
// See ECLStartNotify Class on page 922 for example of this method.
//---

Chapter 2. Product Documentation

ECLCommNotify Class
objects, C++ECLCommNotifyECLCommNotify is an abstract base class. An application cannot create an instance of this class directly. To use

this class, the application must define its own class which is derived from ECLCommNotify. The application must

implement the NotifyEvent() member function in its derived class. It may also optionally implement NotifyError() and

NotifyStop() member functions.

The ECLCommNotify class is used to allow an application to be notified of communications connect/disconnect

events on a ZIEWin connection. Connect/disconnect events are generated whenever a ZIEWin connection (window) is

connected or disconnected from a host system.

To be notified of communications connect/disconnect events, the application must perform the following steps:

1. Define a class derived from ECLCommNotify.

2. Implement the derived class and implement the NotifyEvent() member function.

3. Optionally implement the NotifyError() function, NotifyStop() function or both.

4. Create an instance of the derived class.

5. Register the instance with the ECLConnection::RegisterCommEvent() function.

The example shown demonstrates how this may be done. When the above steps are complete, each time a

connection's communications link is connected or disconnected from a host, the applications NotifyEvent() member

function will be called.

If an error is detected during event generation, the NotifyError() member function is called with an ECLErr object.

Events may or may not continue to be generated after an error, depending on the nature of the error. When event

generation terminates (either due to an error, by calling the ECLConnection::UnregisterCommEvent, or by destruction

of the ECLConnection object) the NotifyStop() member function is called. However event notification is terminated,

the NotifyStop() member function is always called, and the application object is unregistered.

If the application does not provide an implementation of the NotifyError() member function, the default

implementation is used (a simple message box is displayed to the user). The application can override the default

behavior by implementing the NotifyError() function in the applications derived class. Likewise, the default

NotifyStop() function is used if the application does not provide this function (the default behavior is to do nothing).

Note that the application can also choose to provide its own constructor and destructor for the derived class. This

can be useful if the application wants to store some instance-specific data in the class and pass that information as

a parameter on the constructor. For example, the application may want to post a message to an application window

when a communications event occurs. Rather than define the window handle as a global variable (so it would be

visible to the NotifyEvent() function), the application can define a constructor for the class which takes the window

handle and stores it in the class member data area.

The application must not destroy the notification object while it is registered to receive events.

Implementation Restriction: Currently the ECLConnection object allows only one notification object to be registered

for communications event notification. The ECLConnection::RegisterCommEvent will throw an error if a notify object

is already registered for that ECLConnection object.

785

HCL Z and I Emulator for Windows (ENGLISH)

786

Derivation
ECLBase > ECLNotify > ECLCommNotify

Example
//---
// ECLCommNotify class
//
// This sample demonstrates the use of:
//
// ECLCommNotify::NotifyEvent
// ECLCommNotify::NotifyError
// ECLCommNotify::NotifyStop
// ECLConnection::RegisterCommEvent
// ECLConnection::UnregisterCommEvent
//---

 //...
// Define a class derived from ECLCommNotify
//...
class MyCommNotify: public ECLCommNotify
{
public:
 // Define my own constructor to store instance data
 MyCommNotify(HANDLE DataHandle);

 // We have to implement this function
 void NotifyEvent(ECLConnection *ConnObj, BOOL Connected);

 // We choose to implement this function
 void NotifyStop (ECLConnection *ConnObj, int Reason);

 // We will take the default behaviour for this so we
 // don't implement it in our class:
 // void NotifyError (ECLConnection *ConnObj, ECLErr ErrObject);

private:
 // We will store our application data handle here
 HANDLE MyDataH;
};

//...
void MyCommNotify::NotifyEvent(ECLConnection *ConnObj,
 BOOL Connected)
//
// This function is called whenever the communications link
// with the host connects or disconnects.
//
// For this example, we will just write a message. Note that we
// have access the the MyDataH handle which could have application
// instance data if we needed it here.
//
// The ConnObj pointer is to the ECLConnection object upon which
// this event was registered.

Chapter 2. Product Documentation

//...
{
 if (Connected)
 printf("Connection %c is now connected.\n", ConnObj->GetName());
 else
 printf("Connection %c is now disconnected.\n", ConnObj->GetName());

 return;
}

 //...
MyCommNotify::MyCommNotify(HANDLE DataHandle) // Constructor
//...
{
 MyDataH = DataHandle; // Save data handle for later use
}

//...
void MyCommNotify::NotifyStop(ECLConnection *ConnObj,
 int Reason)
//...
{
 // When notification ends, display message
 printf("Comm link monitoring for %c stopped.\n", ConnObj->GetName());
}

 //...
// Create the class and start notification on connection 'A'.
//...
void Sample30() {

ECLConnection *Conn; // Ptr to connection object
MyCommNotify *Event; // Ptr to my event handling object
HANDLE InstData; // Handle to application data block (for example)

try {
 Conn = new ECLConnection('A'); // Create connection obj
 Event = new MyCommNotify(InstData); // Create event handler

 Conn->RegisterCommEvent(Event); // Register for comm events

 // At this point, any comm link event will cause the
 // MyCommEvent::NotifyEvent() function to execute. For
 // this sample, we put this thread to sleep during this
 // time.

 printf("Monitoring comm link on 'A' for 60 seconds...\n");
 Sleep(60000);

 // Now stop event generation. This will cause the NotifyStop
 // member to be called.
 Conn->UnregisterCommEvent(Event);

 delete Event; // Don't delete until after unregister!
 delete Conn;
}
catch (ECLErr Err) {

787

HCL Z and I Emulator for Windows (ENGLISH)

788

 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLCommNotify Methods
The following section describes the methods that are valid for the ECLCommNotify class:

ECLCommNotify()

~ECLCommNotify()

virtual void NotifyEvent (ECLConnection *ConnObj, BOOL Connected) = 0

virtual void NotifyError (ECLConnection *ConnObj, ECLErr ErrObject)

virtual void NotifyStop (ECLConnection *ConnObj, int Reason)

NotifyEvent
This method is a “pure virtual” member function (the application must implement this function in classes derived from

ECLCommNotify). This function is called whenever a connection starts or stops and the object is registered for start/

stop events. The Connected BOOL is TRUE if the communications link is connected, or FALSE if it is not connected to

the host.

Prototype
virtual void NotifyEvent (ECLConnection *ConnObj, BOOL Connected)

Parameters
ECLConnection *ConnObj

This is the pointer to ECLConnection object where the event occurred.

BOOL Connected

This is TRUE if comm link is connected and FALSE if disconnected.

Return Value
None

NotifyError
This method is called whenever the ECLConnection object detects an error during event generation. The error object

contains information about the error (see ECLErr Class on page 789). Events may continue to be generated after

the error, depending on the nature of the error. If the event generation stops due to an error, the NotifyStop() function

is called. An application can choose to implement this function or allow the ECLCommNotify base class to handle

Chapter 2. Product Documentation

the error. The base class will display the error in a message box using the text supplied by the ECLErr::GetMsgText()

function. If the application implements this function in its derived class, it will override the base class function.

Prototype
virtual void NotifyError (ECLConnection *ConnObj, ECLErr ErrObject)

Parameters
ECLConnection *ConnObj

This is the pointer to ECLConnection object in which the error occurred.

ECLErr ErrObject

This is the ECLErr object describing the error.

Return Value
None

NotifyStop
This method is called when event generation is stopped for any reason (for example, due to an error condition or a

call to ECLConnection::UnregisterCommEvent, etc.).

Implementation Note: the reason code is currently unused and will be zero.

Prototype
virtual void NotifyStop (ECLConnection *ConnObj, int Reason)

Parameters
ECLConnection *ConnObj

This is the ptr to ECLConnection object that is stopping notification.

int Reason

This is unused (zero).

Return Value
None

789

HCL Z and I Emulator for Windows (ENGLISH)

790

ECLErr Class
objects, C++ECLErrThe ECLErr class provides a method of returning run-time error information from Host Access Class Library classes.

In error situations, ECLErr objects are created and populated with error and diagnostic information. The ECLErr

objects are then thrown as C++ exceptions. The error and diagnostic information can then be queried from the caught

ECLErr object.

Applications should not create or throw ECLErr objects directly.

Derivation
ECLBase > ECLErr

ECLErr Methods
The following section describes the methods that are valid for the ECLErr class.

const int GetMsgNumber()

const int GetReasonCode()

const char *GetMsgText()

GetMsgNumber
This method returns the message number that was set when this ECLErr object was created. Error message numbers

are described in ERRORIDS.HPP.

Prototype
const int GetMsgNumber()

Parameters
None

Return Value
const int

The error message number.

Example
//---
// ECLErr::GetMsgNumber
//
// Cause an 'invalid parameters' error and tryp the ECL exception.
// The extract the error number and language-sensative text.

Chapter 2. Product Documentation

//---
void Sample31() {

ECLPS *PS = NULL;

try {
 PS = new ECLPS('A');
 PS->SetCursorPos(999,999); // Invalid parameters
}
catch (ECLErr ErrObj) {
 printf("The following ECL error was trapped:\n");
 printf("%s \nError number: %lu\nReason code: %lu\n",
 ErrObj.GetMsgText(),
 ErrObj.GetMsgNumber(),
 ErrObj.GetReasonCode());
}

if (PS != NULL)
 delete PS;

} // end sample

GetReasonCode
This method gets the reason code (sometimes referred to as the secondary or minor return code) from the ECLErr

object. This code is generally used for debugging and diagnostic purposes. It is subject to change in future versions

of the Host Access Class Library and should not be used programmatically. Descriptions of the reason codes can be

found in ERRORIDS.HPP.

Prototype
const int GetReasonCode()

Parameters
None

Return Value
const int

The ECLErr reason code.

Example
//---
// ECLErr::GetReasonCode
//
// Cause an 'invalid parameters' error and tryp the ECL exception.
// The extract the error number and language-sensative text.
//---

791

HCL Z and I Emulator for Windows (ENGLISH)

792

void Sample32() {

ECLPS *PS = NULL;

try {
 PS = new ECLPS('A');
 PS->SetCursorPos(999,999); // Invalid parameters
}
catch (ECLErr ErrObj) {
 printf("The following ECL error was trapped:\n");
 printf("%s \nError number: %lu\nReason code: %lu\n",
 ErrObj.GetMsgText(),
 ErrObj.GetMsgNumber(),
 ErrObj.GetReasonCode());
}

if (PS != NULL)
 delete PS;

} // end sample

GetMsgText
This method returns the message text associated with the error code used to create this ECLErr object. The message

text is returned in the language for which Z and I Emulator for Windows is currently installed.

Note: The returned pointer is invalid after the ECLErr object is deleted.

Prototype
const char *GetMsgText()

Parameters
None

Return Value
char *

The message text associated with the error code that is part of this ECLErr object.

Example
//---
// ECLErr::GetMsgText
//
// Cause an 'invalid parameters' error and tryp the ECL exception.
// The extract the error number and language-sensative text.
//---

Chapter 2. Product Documentation

void Sample33() {

ECLPS *PS = NULL;

try {
 PS = new ECLPS('A');
 PS->SetCursorPos(999,999); // Invalid parameters
}
catch (ECLErr ErrObj) {
 printf("The following ECL error was trapped:\n");
 printf("%s \nError number: %lu\nReason code: %lu\n",
 ErrObj.GetMsgText(),
 ErrObj.GetMsgNumber(),
 ErrObj.GetReasonCode());
}

if (PS != NULL)
 delete PS;

} // end sample

Usage Notes
The message text is retrieved from the Z and I Emulator for Windows message facility.

ECLField Class
objects, C++ECLFieldECLField contains information for a given field in an ECLFieldList object contained by an ECLPS object. An application

should not create an object of this type directly. ECLField objects are created indirectly by the ECLFieldList object.

An ECLField object describes a single field of the host presentation space. It has methods for querying various

attributes of the field and for updating the text of the field (for example, modifying the field text). Field attributes

cannot be modified.

Derivation
ECLBase > ECLField

Copy-Constructor and Assignment Operator
This object supports copy-construction and assignment. This is useful for an application that wants to easily capture

fields on a host screen for later processing. Rather than allocate text buffers and copy the string contents of the

field, the application can simply store the field in a private ECLField object. The stored copy retains all the function

of an ECLField object including the field's text value, attributes, starting position, length, etc. For example, suppose

an application wanted to capture the first input field of the screen. Table 92: Copy-Construction and Assignment

Examples on page 794 shows two ways this could be accomplished.

793

HCL Z and I Emulator for Windows (ENGLISH)

794

Table 92. Copy-Construction and Assignment Examples

Save the field as a string Save the field as an ECLField object
#include "eclall.hpp"

{
 char *SavePtr; // Ptr to saved string
 ECLPS Ps('A'); // PS object
 ECLFieldList *List;
 ECLField *Fld;

 // Get fld list and rebuild it
 List = Ps->GetFieldList();
 List->Refresh();

 // See if there is an input field
 Fld = List->GetFirstField(GetUnmodified);
 if (Fld !=NULL) {
 // Copy the field's text value
 SavePtr=malloc(Fld->Length() + 1);
 Fld->GetScreen(SavePtr, Fld->Length()+1);
 }

 // We now have captured the field text

#include "eclall.hpp"

{
 ECLField SaveFld; // Saved field
 ECLPS Ps('A'); // PS object
 ECLFieldList *List;
 ECLField *Fld;

 // Get fld list and rebuild it
 List = Ps->GetFieldList();
 List->Refresh();

 // See if there is an input field
 Fld = List->GetFirstField(GetUnmodified);
 if (Fld !=NULL) {
 // Copy the field object
 SaveFld = *Fld;
 }

 // We now have captured the field text
 // including text, position, attrib

There are several advantages to using an ECLField object instead of a string to store a field:

• The ECLField object does all storage management of the field's text buffer; the application does not have to

allocate or free text buffers or calculate the size of the buffer required.

• The saved field retains all of the characteristics of the original field including its attributes and starting

position. All of the usual ECLField member functions can be used on the stored field except SetText(). Note

that the stored field is a copy of the original — its values are not updated when the host screen changes or

when the ECLFieldList::Refresh() function is called. As a result, the field can be stored and used later in the

application.

Assignment operator overrides are also provided for character strings and long integer value types. These overrides

make it easy to assign new string or numeric values to unprotected fields. For example, the following sets the first

two input fields of the screen:

ECLField *Fld1; //Ptr to 1st unprotected field in field list
ECLField *Fld2; // PTR to 2nd unprotected field in field list

Fld1 = FieldList->GetFirstField(GetUnprotected);
Fld2 = FieldList->GetNextField(Fld1, GetUnprotected);
if ((Fld1 == NULL) || (Fld2 == NULL)) return;

*Fld1 = "Easy string assignment";
*Fld2 = 1087;

Notes:

Chapter 2. Product Documentation

1. ECLField objects initialized by copy-construction or assignment are read-only copies of the original

field object. The SetText() method is invalid for such an object and will cause an ECLErr exception

to be thrown. Because the objects are copies, they are not updated or deleted when the original field

object is updated or deleted. The application is responsible for deleting copies of field objects when

they are no longer needed.

2. Calling any method on an unitialized ECLField object will return undefined results.

3. An ECLField object created by the application can be reassigned any number of times.

4. Assignments can only be made from another ECLField object, a character string, or a long integer

value. Assigning any other data type to an ECLField object is invalid.

5. If an assignment is made to an ECLField object that currently is part of an ECLFieldList, the effect is

to update only the field's text value. This is allowed only if the field object is an unprotected field. For

example, the following will modify the 2nd input field of the screen by copying the value from the 1st

input field:

ECLField *Fld1; // Ptr to 1st unprotected field in field list
ECLField *Fld2; // Ptr to 2nd unprotected field in field list

Fld1 = FieldList->GetFirstField(GetUnprotected);
Fld2 = FieldList->GetNextField(Fld1, GetUnprotected);
if ((Fld1 == NULL) || (Fld2 == NULL)) return;

// Update the 2nd input field using text from the first
FLD2 = * Fld1;

Because Fld2 is part of an ECLFieldList, the above assignment is identical to:

{ char temp[Fld1->GetLength()+1];
 Fld1->GetText(temp, Fld1->GetLength()+1);
 Fld2->SetText(temp);
 delete []temp;
}

Note that this will throw an ECLErr exception if Fld2 is protected. Also note that only the text of Fld2 is

updated, not its attributes, position, or length.

6. Assigning a string to a field object is equivalent to calling the SetText() method. You can also assign

numeric values without first converting to strings:

*Field = 1087;

This is equivalent to converting the number to a string and then calling the SetText() method.

ECLField Methods
The following section describes the methods that are valid for the ECLField class.

795

HCL Z and I Emulator for Windows (ENGLISH)

796

ULONG GetStart()

void GetStart(ULONG *RowULONG *Col)

ULONG GetStartRow()

ULONG GetStartCol()

ULONG GetEnd()

void GetEnd(ULONG *RowULONG *Col)

ULONG GetEndRow()

ULONG GetEndCol()

ULONG GetLength()

ULONG GetScreen(char *Buff, ULONG BuffLen, PS_PLANE Plane = TextPlane)

void SetText(char *text)

BOOL IsModified()

BOOL IsProtected()

BOOL IsNumeric()

BOOL IsHighIntensity()

BOOL IsPenDetectable()

BOOL IsDisplay()

unsigned charGetAttribute()

The following methods are valid for the ECLField class :

ULONG GetScreen(WCHAR *Buff, ULONG BuffLen, PS_PLANE Plane = TextPlane)

void SetText(WCHAR *text)

GetStart
This method returns the position in the presentation space of the first character of the field. There are two signatures

for the GetStart method. ULONG GetStart returns the position as a linear value with the upper left corner of the

presentation space being “1”. void GetStart(ULONG *Row, ULONG *Col) returns the position as a row and column

coordinate.

Prototype
ULONG GetStart(),

void GetStart(ULONG *Row, ULONG *Col)

Parameters
ULONG *Row

This output parameter is a pointer to the row value to be updated.

ULONG *Col

This output parameter is a pointer to the column value to be updated.

Chapter 2. Product Documentation

Return Value
ULONG

Position in the presentation space represented as a linear array.

Example
The following example shows how to return the position in the presentation space of the first character of the field.

/---
// ECLField::GetStart
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetStartRow
This method returns the starting row position of a given field in the ECLFieldList collection for the connection

associated with the ECLPS object.

797

HCL Z and I Emulator for Windows (ENGLISH)

798

Prototype
ULONG GetStartRow()

Parameters
None

Return Value
ULONG

This is the starting row of a given field.

Example
/---
// ECLField::GetStartRow
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu) Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(), pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

Chapter 2. Product Documentation

GetStartCol
This method return the starting column position of a given field in the ECLFieldList collection for the connection

associated with the ECLPS object.

Prototype
ULONG GetStartCol()

Parameters
None

Return Value
ULONG

This is the starting column of a given field.

Example
/---
// ECLField::GetStartCol
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());

799

HCL Z and I Emulator for Windows (ENGLISH)

800

}

} // end sample

GetEnd
This method returns the position in the presentation space of the last character of the field. There are two signatures

for the GetEnd method. ULONG GetEnd returns the position as a linear value with the upper left corner of the

presentation space being “1”. void GetEnd(ULONG *Row, ULONG *Col) returns the position as a row and column

coordinate.

Prototype
ULONG GetEnd()

void GetEnd(ULONG *Row, ULONG *Col)

Parameters
ULONG *Row

This output parameter is a pointer to the row value to be updated.

ULONG *Col

This output parameter is a pointer to the column value to be updated.

Return Value
ULONG

Position in the presentation space represented as a linear array.

Example
The following example shows how to return the position in the presentation space of the last character of the field.

/---
// ECLField::GetEnd
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

Chapter 2. Product Documentation

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetEndRow
This method returns the ending row position of the field.

Prototype
ULONG GetEndRow()

Parameters
None

Return Value
ULONG

This is the ending row in a given field.

Example
/---
// ECLField::GetEndRow
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object

801

HCL Z and I Emulator for Windows (ENGLISH)

802

ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetEndCol
This method returns the ending column position of a field.

Prototype
ULONG GetEndCol()

Parameters
None

Return Value
ULONG

This is the ending row in a given field.

Example
/---
// ECLField::GetEndCol
//

Chapter 2. Product Documentation

// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetLength
This method returns the length of the field. The length includes the entire field even if it spans multiple lines of the

presentation space. It does not include the field attribute character that starts the field.

Prototype
ULONG GetLength()

Parameters
None

803

HCL Z and I Emulator for Windows (ENGLISH)

804

Return Value
ULONG

Length of the field.

Example
The following example shows how to return the length of the field.

/---
// ECLField::GetLength
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu) Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(), pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetScreen
The GetScreen method fills an application-supplied buffer with data from the field. The type of data copied to the

buffer is selected with the optional Plane parameter. The default is to return the text plane data. The data returned is

the field as it existed at the time this field object was created; it will not reflect the current contents of the field if it has

been updated since the ECLFieldList::Refresh function was called.

Chapter 2. Product Documentation

The length of the data returned is the length of the field (see GetLength on page 803). When the TextPlane is

copied, an additional null terminating byte is added after the last data byte. Therefore, the application should provide

a buffer that is at least 1 byte more than the field length when getting the text plane. If the application buffer is too

small the returned data is truncated. The number of bytes of copied to the application buffer is returned as the

function result (not including the null terminator for copies of the text plane).

The FieldPlane cannot be obtained with this function. The ECLField::GetAttribute can be used to obtain the field

attribute value.

Prototype

ULONG GetScreen(char *Buff, ULONG BuffLen, PS_PLANE Plane=TextPlane)

Parameters
char * Buff

Pointer to application buffer to be filled with field data.

ULONG BuffLen

Length of application buffer.

PS_PLANE Plane

Optional parameter. Enumeration which indicates what plane of field data is to be retrieved. Must be one

of TextPlane, ColorPlane, or ExtendedFieldPlane.

Return Value
ULONG

Number of bytes copied to application buffer, not including trailing null character for TextPlane data.

Example
The following example shows how to return a pointer to the field data indicated by the Plane parameter.

/---
// ECLField::GetScreen
//
// Iterate over list of fields and print each fields text contents.
//---
void Sample35() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object
char *Buff; // Screen data buffer
ULONG BuffLen;

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

805

HCL Z and I Emulator for Windows (ENGLISH)

806

 BuffLen = PS->GetSize() + 1; // Make big enough for entire screen
 Buff = new char[BuffLen]; // Allocate screen buffer

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 for (Field = FieldList->GetFirstField(); // First field
 Field != NULL; // While more
 Field = FieldList->GetNextField(Field)) { // Next field

 Field->GetScreen(Buff, BuffLen); // Get this fields text
 printf("%02lu,%02lu: %s\n", // Print "row,col: text"
 Field->GetStartRow(),
 Field->GetStartCol(),
 Buff);
 }
 delete []Buff;
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetText
This method populates a given field in the presentation space with the character string passed in as text. If the text

exceeds the length of the field, the text is truncated. If the text is shorter than the field, the field is padded with nulls.

Prototype
void SetText(char *text)

Parameters
char *text

Null terminated string to set in field.

Return Value
None

Example
The following example shows how to populate a given field in the presentation space with the character string passed

in as text.

//---
// ECLField::SetText

Chapter 2. Product Documentation

//
// Set the field that contains row 2, column 10 to a value.
//---
void Sample36() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'
 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 // If the field at row 2 col 10 is an input field, set
 // it to a new value.
 Field = FieldList->FindField(2, 10); // Find field at this location
 if (Field != NULL) {
 if (!Field->IsProtected()) // Make sure its an input field
 Field->SetText("Way cool!"); // Assign new field text
 else
 printf("Position 2,10 is protected.\n");
 }
 else printf("Cannot find field at position 2,10.\n");

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

IsModified, IsProtected, IsNumeric, IsHighIntensity, IsPenDetectable, IsDisplay
This method determines if a given field in the presentation space has a particular attribute. The method returns a

TRUE value if the field has the attribute or a FALSE value if the field does not have the attribute.

Prototype
BOOL IsModified()

BOOL IsProtected()

BOOL IsNumeric()

BOOL IsHighIntensity()

BOOL IsPenDetectable()

BOOL IsDisplay()

807

HCL Z and I Emulator for Windows (ENGLISH)

808

Parameters
None

Return Value
BOOL

Returns a TRUE value if the attribute is present; a FALSE value if the attribute is not present.

Example
The following example shows how to determine if a given field has an attribute.

//---
// ECLField::IsModified
// ECLField::IsProtected
// ECLField::IsNumeric
// ECLField::IsHighIntensity
// ECLField::IsPenDetectable
// ECLField::IsDisplay
//
// Iterate over list of fields and print each fields attributes.
//---
void Sample37() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 for (Field = FieldList->GetFirstField(); // First field
 Field != NULL; // While more
 Field = FieldList->GetNextField(Field)) { // Next field

 printf("Field at %02lu,%02lu is: ",
 Field->GetStartRow(), Field->GetStartCol());

 if (Field->IsProtected())
 printf("Protect ");
 else
 printf("Input ");

 if (Field->IsModified())
 printf("Modified ");
 else
 printf("Unmodified ");

 if (Field->IsNumeric())
 printf("Numeric ");
 else

Chapter 2. Product Documentation

 printf("Alphanum ");

 if (Field->IsHighIntensity())
 printf("HiIntensity ");
 else
 printf("Normal ");

 if (Field->IsPenDetectable())
 printf("Penable ");
 else
 printf("NoPen ");

 if (Field->IsDisplay())
 printf("Display \n");
 else
 printf("Hidden \n");
 }
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

//---

GetAttribute
This method returns the attribute of the field. The value returned contains the bit flags for each of the possible field

attributes (modified, protected, numeric, high intensity, pen, and display). See ECL Planes — Format and Content

on page 1159 for more details on these bits. There is a method provided for each type of attribute (for example,

IsModified or IsHighIntensity). This method can be used to obtain complete attribute information in a single call.

Prototype
unsigned char GetAttribute()

Parameters
None

Return Value
unsigned char

Attribute bits of the field.

Example
The following example shows how to return the attribute of the field.

809

HCL Z and I Emulator for Windows (ENGLISH)

810

/ ECLField::GetAttribute
//
// Iterate over list of fields and print each fields attribute
// value.
//---
void Sample38() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 for (Field = FieldList->GetFirstField(); // First field
 Field != NULL; // While more
 Field = FieldList->GetNextField(Field)) { // Next field

 printf("Attribute value for field at %02lu,%02lu is: 0x%02x\n",
 Field->GetStartRow(), Field->GetStartCol(),
 Field->GetAttribute());
 }
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLFieldList Class
objects, C++ECLFieldListThe ECLFieldList class performs operations on a list of fields in a host presentation space. An application should not

create an ECLFieldList object directly, but only indirectly by creating an ECLPS object.

ECLFieldList contains a collection of all the fields in the presentation space. Each element of the collection is an

ECLField object. See ECLField Class on page 793 for details on its properties and methods.

An ECLFieldList object provides a static snapshot of what the presentation space contained when the Refresh

method was called. If the presentation space is updated after the call to Refresh(), the field list does not reflect those

changes. An application must explicitly call Refresh to refresh the field list.

Once an application has called Refresh it can begin walking through the collection of fields using GetFirstField and

GetNextField. If the location of a field is known, FindField can be used to locate it in the list directly.

Chapter 2. Product Documentation

Note: All ECLField object pointers returned by GetFirstField, GetNextField, and FindField become invalid when

Refresh is called or the ECLFieldList object is destroyed.

Derivation
ECLBase > ECLFieldList

Properties
ECLFieldListpropertiesNone

ECLFieldList Methods
The following section describes the methods that are valid for the ECLFieldList class.

void Refresh(PS_PLANE Planes)

ULONG GetFieldCount()

ECLField * GetFirstField()

ECLField *GetNextField(ECLField *Prev)

ECLField * FindField(ULONG Pos)

ECLField * FindField(ULONG Row, ULONG Col)

ECLField *FindField(char* text, PS_DIR DIR=SrchForward);

ECLField *FindField(char* text, ULONG Pos, PS_DIR DIR=SrchForward);

ECLField *FindField(char* text, ULONG Row, ULONG Col, PS_DIR DIR=SrchForward);

Refresh
This method gets a snapshot of all the fields currently in the presentation space. All ECLField object pointers

previously returned by this object become invalid. To improve performance, the field data can be limited to the planes

of interest. Note that the TextPlane and FieldPlane are always obtained.

Prototype
void Refresh(PS_PLANE Planes=TextPlane)

Parameters
PS_PLANE Planes

Plane for which fields are built. Valid values are TextPlane, ColorPlane, FieldPlane, ExfieldPlane, and

AllPlanes (to build for all). This is an enumeration defined in ECLPS.HPP. This optional parameter

defaults to TextPlane.

811

HCL Z and I Emulator for Windows (ENGLISH)

812

Return Value
None

Example
The following example shows how to use the Refresh method to get a snapshot of all the fields currently in the

presentation space.

///---
// ECLFieldList::Refresh
//
// Display number of fields on the screen.
//---
void Sample39() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 printf("There are %lu fields on the screen of connection %c.\n",
 FieldList->GetFieldCount(), PS->GetName());

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

--

GetFieldCount
This method returns the number of fields present in the ECLFieldList collection (based on the most recent call to the

Refresh method).

Prototype
ULONG GetFieldCount()

Parameters
None

Chapter 2. Product Documentation

Return Value
ULONG

Number of fields in the ECLFieldList collection.

Example
The following example shows how to use the GetFieldCount method to return the number of fields present in the

ECLFieldList collection.

//---
// ECLFieldList::GetFieldCount
//
// Display number of fields on the screen.
//---
void Sample40() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 printf("There are %lu fields on the screen of connection %c.\n",
 FieldList->GetFieldCount(), PS->GetName());

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetFirstField
This method returns a pointer to the first ECLField object in the collection. ECLFieldList contains a collection of

ECLField objects. See ECLField Class on page 793 for more information. The method returns a NULL pointer if there

are no fields in the collection.

Prototype
ECLField * GetFirstField();

Parameters
None

813

HCL Z and I Emulator for Windows (ENGLISH)

814

Return Value
ECLField *

Pointer to an ECLField object. If there are no fields in the connection, a null is returned.

Example
The following example shows how to use the GetFirstField method to return a pointer to the first ECLField object in

the collection.

/---
// ECLFieldList::GetFirstField
//
// Display starting position of every input (unprotected) field.
//---
void Sample41() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 // Interate over (only) unprotected fields
 printf("List of input fields:\n");
 for (Field = FieldList->GetFirstField(GetUnprotected);
 Field != NULL;
 Field = FieldList->GetNextField(Field, GetUnprotected)) {

 printf("Input field starts at %02lu,%02lu\n",
 Field->GetStartRow(), Field->GetStartCol());
 }
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetNextField
This method returns the next ECLField object in the collection after a given object. If there are no more objects in the

collection after the given object, a NULL pointer is returned. An application can make repeated calls to this method to

iterate over the ECLField objects in the collection.

Chapter 2. Product Documentation

Prototype
ECLField *GetNextField(ECLField *Prev)

Parameters
ECLField *Prev

A pointer to any ECLField object in the collection. The returned pointer will be the next object after

this one. If this value is NULL a pointer to the first object in the collection is returned. This pointer is a

pointer returned by the GetFirstField, GetNextField, or FindField member functions.

Return Value
ECLField *

A pointer to the next object in the collection. If there are no more objects in the collection after the Prev

object, NULL is returned.

Example
The following example shows how to use the GetNextFieldInfo method to return a pointer to the next ECLField object

in the collection.

///---
// ECLFieldList::GetNextField
//
// Display starting position of every input (unprotected) field.
//---
void Sample42() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 // Interate over (only) unprotected fields
 printf("List of input fields:\n");
 for (Field = FieldList->GetFirstField(GetUnprotected);
 Field != NULL;
 Field = FieldList->GetNextField(Field, GetUnprotected)) {

 printf("Input field starts at %02lu,%02lu\n",
 Field->GetStartRow(), Field->GetStartCol());
 }
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());

815

HCL Z and I Emulator for Windows (ENGLISH)

816

}

} // end sample

FindField
This method finds a field in the ECLFieldList collection using either text or a position. The position can be either a

linear position or a row, column position. If a field contains the text or the position, a pointer to an ECLField object for

that field is returned. The returned pointer is to an object in the field list collection. NULL is returned if the field is not

found. When searching for text, the search begins at row1 column1 unless you specify a starting position. Also for

text, this method will search forward in the list as a default; however, you can specify the direction to search explicitly.

Note: A search for text will be successful even if the text spans multiple fields. The field object returned will

be the field where the found text begins.

Prototype

ECLField *FindField(ULONG Pos);

ECLField *FindField(ULONG Row, ULONG Col);

ECLField *FindField(char* text, PS_DIR DIR=SrchForward);

ECLField *FindField(char* text, ULONG Pos, PS_DIR DIR=SrchForward);

ECLField *FindField(char* text, ULONG Row, ULONG Col, PS_DIR DIR=SrchForward);

Parameters
ULONG Pos

Linear position to search for OR linear position to begin text search.

ULONG Row

Row position to search for OR row to begin text search.

ULONG Col

Column position to search for OR column to begin text search.

char *text

String to search

PS_DIR Dir

Direction to search

Chapter 2. Product Documentation

Return Value
ECLField *

Pointer to an ECLField object if field is found. NULL if field is not found. Returned pointer is invalid after

the next call to Refresh.

Example
The following is an example of the FindField method.

//---
// ECLFieldList::FindField
//
// Display the field which contains row 2 column 10. Also find
// the first field containing a particular string.
//---
void Sample43() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object
char Buff[4000];

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 // Find by row,column coordinate

 Field = FieldList->FindField(2, 10);
 if (Field != NULL) {
 Field->GetText(Buff, sizeof(Buff));
 printf("Field at 2,10: %s\n", Buff);
 }
 else printf("No field found at 2,10.\n");

 // Find by text. Note that text may span fields, this
 // will find the field in which the text starts.

 Field = FieldList->FindField("HCL");
 if (Field != NULL) {
 printf("String 'HCL' found in field that starts at %lu,%lu.\n",
 Field->GetStartRow(), Field->GetStartCol());
 }
 else printf("String 'HCL' not found.\n");

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

817

HCL Z and I Emulator for Windows (ENGLISH)

818

//---------------------------

ECLKeyNotify Class
objects, C++ECLKeyNotifyECLKeyNotify is an abstract base class. An application cannot create an instance of this class directly. To use this

class, the application must define its own class which is derived from ECLKeyNotify. The application must implement

the NotifyEvent() member function in its derived class. It may also optionally implement NotifyError() and NotifyStop()

member functions.

The ECLKeyNotify class is used to allow an application to be notified of keystroke events. The application can

also choose to filter (remove) the keystrokes so they are not sent to the host screen, or replace them with other

keystrokes. Keystroke notifications are queued so that the application will always receive a notification for each and

every keystroke. Only keystrokes made by the real physical keyboard are detected by this object; keystrokes sent to

the host by other ECL objects (such as ECLPS::SendKeys) do not cause keystroke notification events.

To be notified of keystroke events, the application must perform the following steps:

1. Define a class derived from ECLKeyNotify.

2. Implement the derived class and implement the NotifyEvent() member function.

3. Optionally implement the NotifyError() and/or NotifyStop() functions.

4. Create an instance of the derived class.

5. Register the instance with the ECLPS::RegisterKeyEvent() function.

The example shown demonstrates how this may be done. When the above steps are complete, each keystroke in

the emulator window will cause the applications NotifyEvent() member function to be called. The function is passed

parameters indicating the type of keystroke (plain ASCII key, or special function key), and the value of the key (a single

ASCII character, or a keyword representing a function key). The application may perform any functions required in the

NotifyEvent() procedure, including calling other ECL functions such as ECLPS::SendKeys(). The application returns

a value from NotifyEvent() to indicate if the keystroke is to be filtered or not (return 1 to filter (discard) the keystroke,

return 0 to have it processed normally).

If an error is detected during keystroke event generation, the NotifyError() member function is called with an ECLErr

object. Keystroke events may or may not continue to be generated after an error, depending on the nature of the error.

When event generation terminates (either due to an error, by calling ECLPS::UnregisterKeyEvent, or by destruction

of the ECLPS object) the NotifyStop() member function is called. However event notification is terminated, the

NotifyStop() member function is always called, and the application object is unregistered.

If the application does not provide an implementation of the NotifyError() member function, the default

implementation is used (a simple message box is displayed to the user). The application can override the default

behavior by implementing the NotifyError() function in the applications derived class. Likewise, the default

NotifyStop() function is used if the application does not provide this function (the default behavior is to do nothing).

Note that the application can also choose to provide its own constructor and destructor for the derived class. This

can be useful if the application wants to store some instance-specific data in the class and pass that information as

a parameter on the constructor. For example, the application may want to post a message to an application window

Chapter 2. Product Documentation

when a keystroke occurs. Rather than define the window handle as a global variable (so it would be visible to the

NotifyEvent() function), the application can define a constructor for the class which takes the window handle and

stores it in the class member data area.

The application must not destroy the notification object while it is registered to receive events.

The same instance of a keystroke notification object can be registered with multiple ECLPS objects to receive

keystrokes for multiple connections. Thus an application can use a single instance of this object to process

keystrokes on any number of sessions. The member functions are passed a pointer to the ECLPS object for which the

event occurred so an application can distinguish between events on different connections. The sample shown uses

the same object to process keystrokes on two connections.

Implementation Restriction: Currently the ECLPS object allows only one notification object to be registered for a given

connection. The ECLPS::RegisterKeyEvent will throw an error if a notify object is already registered for that ECLPS

object.

Derivation
ECLBase > ECLNotify > ECLKeyNotify

Example
The following is an example of how to construct and use an ECLKeyNotify object.

// ECLKeyNotify class
//
// This sample demonstrates the use of:
//
// ECLKeyNotify::NotifyEvent
// ECLKeyNotify::NotifyError
// ECLKeyNotify::NotifyStop
// ECLPS::RegisterKeyEvent
// ECLPS::UnregisterKeyEvent
//---

//...
// Define a class derived from ECLKeyNotify
//...
class MyKeyNotify: public ECLKeyNotify
{
public:
 // Define my own constructor to store instance data
 MyKeyNotify(HANDLE DataHandle);

 // We have to implement this function
 virtual int NotifyEvent(ECLPS *PSObj, char const KeyType[2],
 const char * const KeyString);

 // We choose to implement this function
 void NotifyStop (ECLPS *PSObj, int Reason);

 // We will take the default behaviour for this so we
 // don't implement it in our class:

819

HCL Z and I Emulator for Windows (ENGLISH)

820

 // void NotifyError (ECLPS *PSObj, ECLErr ErrObject);

private:
 // We will store our application data handle here
 HANDLE MyDataH;
};

 //..
MyKeyNotify::MyKeyNotify(HANDLE DataHandle) // Constructor
//...
{
 MyDataH = DataHandle; // Save data handle for later use
}

//...
int MyKeyNotify::NotifyEvent(ECLPS *PSObj,
 char const KeyType[2],
 const char * const KeyString)

//...

{
 // This function is called whenever a keystroke occurs. We will
 // just do something simple: when the user presses PF1 we will
 // send a PF2 to the host instead. All other keys will be unchanged.

 if (KeyType[0] == 'M') { // Is this a mnemonic keyword?
 if (!strcmp(KeyString, "[pf1]")) { // Is it a PF1 key?
 PSObj->SendKeys("[pf2]"); // Send PF2 instead
 printf("Changed PF1 to PF2 on connection %c.\n",
 PSObj->GetName());
 return 1; // Discard this PF1 key
 }
 }

 return 0; // Process key normally
}

//..
void MyKeyNotify::NotifyStop (ECLPS *PSObj, int Reason)
//...
{
 // When notification ends, display message
 printf("Keystroke intercept for connection %c stopped.\n", PSObj->GetName());
}

//...
// Create the class and start keystroke processing on A and B.
//...
void Sample44() {

ECLPS *PSA, *PSB; // PS objects
MyKeyNotify *Event; // Ptr to my event handling object
HANDLE InstData; // Handle to application data block (for example)

try {

Chapter 2. Product Documentation

 PSA = new ECLPS('A'); // Create PS objects
 PSB = new ECLPS('B');
 Event = new MyKeyNotify(InstData); // Create event handler

 PSA->RegisterKeyEvent(Event); // Register for keystroke events
 PSB->RegisterKeyEvent(Event); // Register for keystroke events

 // At this point, any keystrokes on A or B will cause the
 // MyKeyEvent::NotifyEvent() function to execute. For
 // this sample, we put this thread to sleep during this
 // time.

 printf("Processing keystrokes for 60 seconds on A and B...\n");
 Sleep(60000);

 // Now stop event generation. This will cause the NotifyStop
 // member to be called.
 PSA->UnregisterKeyEvent(Event);
 PSB->UnregisterKeyEvent(Event);

 delete Event; // Don't delete until after unregister!
 delete PSA;
 delete PSB;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

//---

ECLKeyNotify Methods
The following section describes the methods that are valid for the ECLKeyNotify class.

virtual int NotifyEvent (ECLPS *PSObj, char const KeyType [2],

 const char * const KeyString) =0

virtual void NotifyError (ELLPS *PSobj, ECLErr ErrObject)

virtual void NotifyStop (ELLPS *PSObj, int Reason)

NotifyEvent
This method is a“pure virtual” member function (the application must implement this function in classes derived from

ECLKeyNotify). This function is called whenever a keystroke event occurs and the object is registered for keystroke

events. The return value indicates the disposition of the keystroke (return 1 to discard, 0 to process).

Prototype
virtual int NotifyEvent (ECLPS *PSObj, char const KeyType [2], const char * const KeyString) =0

821

HCL Z and I Emulator for Windows (ENGLISH)

822

Parameters
ECLPS *PSObj

This is a ptr to ECLPS object in which the event occurred.

char const KeyType[2]

This is a null terminated 1–char string indicating the type of key:

 A = Plain ASCII keystroke

 M = Mnemonic keyword

const char * const KeyString

This is a null terminated string containing the keystroke or mnemonic keyword. Keywords will always

be in lowercase (for example, "[enter]"). See Sendkeys Mnemonic Keywords on page 1156 for a list of

mnemonic keywords.

Return Value
int

This is the filter indicator.

 1 = Filter (discard) keystroke

 0 = Process keystroke (send to host)

NotifyError
This method is called whenever the ECLPS object detects an error during keystroke event generation. The error

object contains information about the error (see ECLErr Class on page 789). Keystroke events may continue to be

generated after the error, depending on the nature of the error. If keystroke event generation stops due to an error, the

NotifyStop() function will be called.

Prototype
virtual void NotifyError (ELLPS *PSobj, ECLErr ErrObject)

Parameters
ECLPS *PSObj

This is the ptr to ECLPS object in which the error occurred.

ECLErr ErrObject

This is the ECLErr object describing the error.

Chapter 2. Product Documentation

Return Value
None

NotifyStop
This method is called when keystroke event generation is stopped for any reason (for example, due to an error

condition, a call to ECLPS::UnregisterKeyEvent, destruction of the ECLPS object, etc.).

Prototype
virtual void NotifyStop (ELLPS *PSObj, int Reason)

Parameters
ECLPS *PSObj

This is the ptr to ECLPS object in which events are stopping.

int Reason

This is unused (zero).

Return Value
None

ECLListener Class
ECLListener is the base class for all HACL "listener" objects. Listeners are objects which are registered to receive

particular types of asynchronous events. Methods on the listener objects are called when events occur or errors are

detected.

There are no public methods on the ECLListener class.

Derivation
ECLBase > ECLListener

Usage Notes
Applications do not use this class directly, but create instances of classes which are derived from it (for example,

ECLPSListener).

823

HCL Z and I Emulator for Windows (ENGLISH)

824

ECLOIA Class
objects, C++ECLOIAECLOIA provides Operator Information Area (OIA) services.

Because ECLOIA is derived from ECLConnection, you can obtain all the information contained in an ECLConnection

object. See ECLConnection Class on page 754 for more information.

The ECLOIA object is created for the connection identified upon construction. You may create an ECLOIA object by

passing either the connection name (a single, alphabetic character from A-Z or a-z) or the connection handle, which is

usually obtained from the ECLConnList object. There can be only one Z and I Emulator for Windows connection with a

given name or handle open at a time.

Derivation
ECLBase > ECLConnection > ECLOIA

Usage Notes
The ECLSession class creates an instance of this object. If the application does not need other services, this object

may be created directly. Otherwise, consider using an ECLSession object to create all the objects needed.

ECLOIA Methods
The following section describes the methods that are valid for the ECLOIA class.

ECLOIA(char ConnName)

ECLOIA(long ConnHandle)

~ECLOIA()

BOOL IsAlphanumeric()

BOOL IsAPL()

BOOL IsUpperShift()

BOOL IsNumeric()

BOOL IsCapsLock()

BOOL IsInsertMode()

BOOL IsCommErrorReminder()

BOOL IsMessageWaiting()

BOOL WaitForInputReady(long nTimeOut = INFINITE)

BOOL WaitForAppAvailable(long nTimeOut = INFINITE)

BOOL WaitForSystemAvailable(long nTimeOut = INFINITE)

BOOL WaitForTransition(BYTE nIndex = 0xFF, long nTimeOut = INFINITE)

INHIBIT_REASON InputInhibited()

ULONG GetStatusFlags()

Chapter 2. Product Documentation

ECLOIA Constructor
This method creates an ECLOIA object from a connection name (a single, alphabetic character from A-Z or a-z) or a

connection handle. There can be only one Z and I Emulator for Windows connection started with a given name.

Prototype
ECLOIA(char ConnName)

ECLOIA(long ConnHandle)

Parameters
char ConnName

One-character short name of the connection (A-Z or a-z).

long ConnHandle

Handle of an ECL connection.

Return Value
None

Example
The following example shows how to create an ECLOIA object using the connection name.

// ECLOIA::ECLOIA (Constructor)
//
// Build an OIA object from a name, and another from a handle.
//---
void Sample45() {

ECLOIA *OIA1, *OIA2; // Pointer to OIA objects
ECLConnList ConnList; // Connection list object

try {
 // Create OIA object for connection 'A'
 OIA1 = new ECLOIA('A');

 // Create OIA object for first connection in conn list
 OIA2 = new ECLOIA(ConnList.GetFirstConnection()->GetHandle());

 printf("OIA #1 is for connection %c, OIA #2 is for connection %c.\n",
 OIA1->GetName(), OIA2->GetName());
 delete OIA1;
 delete OIA2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

825

HCL Z and I Emulator for Windows (ENGLISH)

826

IsAlphanumeric
This method checks to determine if the OIA indicates that the cursor is at an alphanumeric location.

Prototype
BOOL IsAlphanumeric()

Parameters
None

Return Value
BOOL

TRUE if the keyboard is in alphanumeric mode; FALSE if the keyboard is not in alphanumeric mode.

Example
The following example shows how to determine if the OIA indicates that the keyboard is in alphanumeric mode.

//---
// ECLOIA::IsAlphanumeric
//
// Determine status of connection 'A' OIA indicator
//---
void Sample46() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsAlphanumeric())
 printf("Alphanumeric.\n");
else
 printf("Not Alphanumeric.\n");

} // end sample

IsAPL
This method checks to determine if the OIA indicates that the keyboard is in APL mode.

Prototype
BOOL IsAPL()

Chapter 2. Product Documentation

Parameters
None

Return Value
BOOL

TRUE if the keyboard is in APL mode; FALSE if the keyboard is not in APL mode.

Example
The following example shows how to determine if the OIA indicates that the keyboard is in APL mode.

//---
// ECLOIA::IsAPL
//
// Determine status of connection 'A' OIA indicator
//---
void Sample47() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsAPL())
 printf("APL.\n");
else
 printf("Not APL.\n");

} // end sample

//------------------------

IsUpperShift
This method checks to determine if the OIA indicates that the keyboard is in upper shift mode.

Prototype
BOOL IsUpperShift()

Parameters
None

Return Value
BOOL

TRUE if the keyboard is in upper shift mode; FALSE if the keyboard is not in upper shift mode.

827

HCL Z and I Emulator for Windows (ENGLISH)

828

Example
The following example shows how to determine if the OIA indicates that the keyboard is in upper shift mode.

//---
// ECLOIA::IsUpperShift
//
// Determine status of connection 'A' OIA indicator
//---
void Sample51() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsUpperShift())
 printf("UpperShift.\n");
else
 printf("Not UpperShift.\n");

} // end sample

IsNumeric
This method checks to determine if the OIA indicates that the cursor is at a numeric-only location.

Prototype
BOOL IsNumLock()

Parameters
None

Return Value
BOOL

TRUE if Numeric is on; FALSE if not Numeric.

Example
The following example shows how to determine if the OIA indicates that the cursor is at a numeric location.

//---
// ECLOIA::IsNumeric
//
// Determine status of connection 'A' OIA indicator
//---
void Sample52() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsNumeric())

Chapter 2. Product Documentation

 printf("Numeric.\n");
else
 printf("Not Numeric.\n");

} // end sample

IsCapsLock
This method checks to determine if the OIA indicates that the keyboard has Caps Lock on.

Prototype
BOOL IsCapsLock()

Parameters
None

Return Value
BOOL

TRUE if Caps Lock is on; FALSE if Caps Lock is not on.

Example
The following example shows how to determine if the OIA indicates that the keyboard has Caps Lock on.

//---
// ECLOIA::IsCapsLock
//
// Determine status of connection 'A' OIA indicator
//---
void Sample53() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsCapsLock())
 printf("CapsLock.\n");
else
 printf("Not CapsLock.\n");

} // end sample

IsInsertMode
This method checks to determine if the OIA indicates that the keyboard is in insert mode.

829

HCL Z and I Emulator for Windows (ENGLISH)

830

Prototype
BOOL IsInsertMode()

Parameters
None

Return Value
BOOL

TRUE if the keyboard is in insert mode; FALSE if the keyboard is not in insert mode.

Example
The following example shows how to determine if the OIA indicates that the keyboard is in insert mode.

//---
// ECLOIA::IsInsertMode
//
// Determine status of connection 'A' OIA indicator
//---
void Sample54() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsInsertMode())
 printf("InsertMode.\n");
else
 printf("Not InsertMode.\n");

} // end sample

IsCommErrorReminder
This method checks to determine if the OIA indicates that a communications error reminder condition exists.

Prototype
BOOL IsCommErrorReminder()

Parameters
None

Chapter 2. Product Documentation

Return Value
BOOL

TRUE if a condition exists; FALSE if a condition does not exist.

Example
The following example shows how to determine if the OIA indicates that a communications error reminder condition

exists.

//---
// ECLOIA::IsCommErrorReminder
//
// Determine status of connection 'A' OIA indicator
//---
void Sample55() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsCommErrorReminder())
 printf("CommErrorReminder.\n");
else
 printf("Not CommErrorReminder.\n");

} // end sample

//

IsMessageWaiting
This method checks to determine if the OIA indicates that the message waiting indicator is on. This can only occur for

5250 connections.

Prototype
BOOL IsMessageWaiting()

Parameters
None

Return Value
BOOL

TRUE if the message waiting indicator is on; FALSE if the indicator is not on.

Example
The following example shows how to determine if the OIA indicates that the message waiting indicator is on.

831

HCL Z and I Emulator for Windows (ENGLISH)

832

// ECLOIA::IsMessageWaiting
//
// Determine status of connection 'A' OIA indicator
//---
void Sample56() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsMessageWaiting())
 printf("MessageWaiting.\n");
else
 printf("Not MessageWaiting.\n");

} // end sample

WaitForInputReady
The WaitForInputReady method waits until the OIA of the connection associated with the autECLOIA object indicates

that the connection is able to accept keyboard input.

Prototype
BOOL WaitForInputReady(long nTimeOut = INFINITE)

Parameters
long nTimeOut

The maximum length of time to wait in milliseconds, this parameter is optional. The default is INFINITE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

WaitForSystemAvailable
The WaitForSystemAvailable method waits until the OIA of the session connected with the ECLOIA object indicates

that session is connected to a host system.

Prototype
BOOL WaitForSystemAvailable(long nTimeOut = INFINITE)

Chapter 2. Product Documentation

Parameters
long nTimeOut

The maximum length of time to wait in milliseconds, this parameter is optional. The default is INFINITE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

WaitForAppAvailable
The WaitForAppAvailable method waits while the OIA of the connected session indicates that the application is

initialized and ready for use.

Prototype
BOOL WaitForAppAvailable(long nTimeOut = INFINITE)

Parameters
long nTimeOut

The maximum length of time to wait in milliseconds, this parameter is optional. The default is INFINITE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

WaitForTransition
The WaitForTransition method waits for the value at the specified position in the OIA of the connected session to

change.

Prototype
BOOL WaitForTransition(BYTE nIndex = 0xFF, long nTimeOut = INFINITE)

Parameters
BYTE nIndex

The 1 byte Hex position of the OIA to monitor. This parameter is optional. The default is 3.

long nTimeOut

The maximum length of time to wait in milliseconds, this parameter is optional. The default is INFINITE.

833

HCL Z and I Emulator for Windows (ENGLISH)

834

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

InputInhibited
This method returns an enumerated value that indicates whether input is inhibited or not. If input is inhibited, the

reason for the inhibit can be determined. If input is inhibited for more than one reason the highest value enumeration

is returned (for example, if there is a communications error and a protocol programming error, the ProgCheck value is

returned).

Prototype
INHIBIT_REASON InputInhibited ()

Parameters
None

Return Value
INHIBIT_REASON

Returns one of the INHIBIT_REASON values as defined in ECLOIA.HPP. The value NotInhibited is

returned if input is currently not inhibited.

Example
The following example shows how to determine whether input is inhibited or not.

//---
// ECLOIA::InputInhibited
//
// Determine status of connection 'A' OIA indicator
//---
void Sample57() {

ECLOIA OIA('A'); // OIA object for connection A

switch (OIA.InputInhibited()) {
case NotInhibited:
 printf("Input not inhibited.\n");
 break;
case SystemWait:
 printf("Input inhibited for SystemWait.\n");
 break;
case CommCheck:
 printf("Input inhibited for CommCheck.\n");
 break;
case ProgCheck:
 printf("Input inhibited for ProgCheck.\n");

Chapter 2. Product Documentation

 break;
case MachCheck:
 printf("Input inhibited for MachCheck.\n");
 break;
case OtherInhibit:
 printf("Input inhibited for OtherInhibit.\n");
 break;
default:
 printf("Input inhibited for unknown reason.\n");
 break;
}
} // end sample

GetStatusFlags
This method returns a set of status bits that represent various OIA indicators. This method can be used to collect a

set of OIA indicators in a single call rather than making calls to several different IsXXX methods. Each bit returned

represents a single OIA indicator where a value of 1 means the indicator is on (TRUE), and 0 means it is off (FALSE).

A set of bitmask constants are defined in the ECLOIA.HPP header file for isolating individual indicators in the returned

32–bit value.

Prototype
ULONG GetStatusFlags()

Parameters
None

Return Value
ULONG

Set of bit flags defined as follows:

Bit Position Mask Constant Description

31 (msb) OIAFLAG_ALPHANUM IsAlphanumeric

30 OIAFLAG_APL IsAPL

26 OIAFLAG_UPSHIFT IsUpperShift

25 OIAFLAG_NUMERIC IsNumeric

24 OIAFLAG_CAPSLOCK IsCapsLock

23 OIAFLAG_INSERT IsInsertMode

22 OIAFLAG_COMMERR IsCommErrorReminder

21 OIAFLAG_MSGWAIT IsMessageWaiting

20 OIAFLAG_ENCRYPTED IsConnectionEncrypted

19-4 <reserved>

835

HCL Z and I Emulator for Windows (ENGLISH)

836

Bit Position Mask Constant Description

3-0 OIAFLAG_INHIBMASK InputInhibited:

0=NotInhibited

1=SystemWait

2=CommCheck

3=ProgCheck

4=MachCheck

5=OtherInhibit

RegisterOIAEvent
This member function registers an application object to receive notifications of OIA update events. To use this

function the application must create an object derived from ECLOIANotify. A pointer to that object is then passed

to this registration function. Any number of notify objects may be registered at the same time. The order in which

multiple listeners receive events is not defined and should not be assumed.

After an ECLOIANotify object is registered with this function, its NotifyEvent() method will be called whenever a

update to the OIA occurs. Multiple updates to the OIA in a short time period may be aggregated into a single event.

The application must unregister the notify object before destroying it. The object will automatically be unregistered if

the ECLOIA object is destroyed.

Prototype
void RegisterOIAEvent(ECLOIANotify * notify)

Parameters
ECLOIANotify *

Pointer to the ECLOIANotify object to be registered.

Return Value
None

UnregisterOIAEvent
This member function unregisters an application object previously registered with the RegisterOIAEvent function. An

object registered to receive events should not be destroyed without first calling this function to unregister it. If the

specific object is not currently registered, no action is taken and no error occurs.

When an ECLOIANotify object is unregistered its NotifyStop() method is called.

Chapter 2. Product Documentation

Prototype
void UnregisterOIAEvent(ECLOIANotify * notify)

Parameters
ECLPSNotify *

Pointer to the ECLOIANotify object to be unregistered.

Return Value
None

ECLOIANotify Class
ECLOIANotify is an abstract base class. An application cannot create an instance of this class directly. To use this

class, the application must define its own class which is derived from ECLOIANotify. The application must implement

the NotifyEvent() member function in its derived class. It may also optionally implement NotifyError() and NotifyStop()

member functions.

The ECLOIANotify class is used to allow an application to be notified of updates to the Operator Information Area.

Events are generated whenever any indicator on the OIA is updated.

Derivation
ECLBase > ECLNotify > ECLOIANotify

Usage Notes
To be notified of OIA updates using this class, the application must perform the following steps:

1. Define a class derived from ECLOIANotify.

2. Implement the NotifyEvent method of the ECLOIANotify-derived class.

3. Optionally implement other member functions of ECLOIANotify.

4. Create an instance of the derived class.

5. Register the instance with the ECLOIA::RegisterOIAEvent() method.

After registration is complete, updates to the OIA indicators will cause the NotifyEvent() method of the ECLOIANotify-

derived class to be called.

Note that multiple OIA updates which occur in a short period of time may be aggregated into a single event

notification.

837

HCL Z and I Emulator for Windows (ENGLISH)

838

An application can choose to provide its own constructor and destructor for the derived class. This can be useful if

the application needs to store some instance-specific data in the class and pass that information as a parameter on

the constructor.

If an error is detected during event registration, the NotifyError() member function is called with an ECLErr object.

Events may or may not continue to be generated after an error. When event generation terminates (due to an error

or some other reason) the NotifyStop() member function is called. The default implementation of NotifyError() will

present a message box to the user showing the text of the error messages retrieved from the ECLErr object.

When event notification stops for any reason (error or a call the ECLOIA::UnregisterOIAEvent) the NotifyStop()

member function is called. The default implementation of NotifyStop() does nothing.

ECLOIANotify Methods
The following section describes the methods that are valid for the ECLOIANotify class and all classes derived from it.

ECLOIANotify()

~ECLOIANotify()

virtual void NotifyEvent(ECLOIA * OIAObj) = 0

virtual void NotifyError(ECLOIA * OIAObj, ECLErr ErrObj)

virtual void NotifyStop(ECLOIA * OIAObj, int Reason)

NotifyEvent
This method is a pure virtual member function (the application must implement this function in classes derived from

ECLOIANotify). This method is called whenever the OIA is updated and this object is registered to receive update

events.

Multiple OIA updates may be aggregated into a single event causing only a single call to this method.

Prototype
virtual void NotifyEvent(ECLOIA * OIAObj) = 0

Parameters
ECLOIA *

Pointer to the ECLOIA object which generated this event.

Return Value
None

Chapter 2. Product Documentation

NotifyError
This method is called whenever the ECLOIA object detects an error during event generation. The error object contains

information about the error (see the ECLErr class description). Events may continue to be generated after the error

depending on the nature of the error. If the event generation stops due to an error, the NotifyStop() method is called.

An application can choose to implement this function or allow the base ECLOIANotify class handle it. The default

implementation will display the error in a message box using text supplied by the ECLErr::GetMsgText() method. If the

application implements this function in its derived class it overrides this behavior.

Prototype

virtual void NotifyError(ECLOIA * OIAObj, ECLErr ErrObj)

Parameters
ECLOIA *

Pointer to the ECLOIA object which generated this event.

ECLErr

An ECLErr object which describes the error.

Return Value
None

NotifyStop
This method is called when event generation is stopped for any reason (for example, due to an error condition or a

call to ECLOIA::UnregisterOIAEvent).

The reason code parameter is currently unused and will be zero.

The default implementation of this function does nothing.

Prototype

virtual void NotifyStop(ECLOIA * OIAObj, int Reason)

Parameters
ECLOIA *

Pointer to the ECLOIA object which generated this event.

int

Reason event generation has stopped (currently unused and will be zero).

839

HCL Z and I Emulator for Windows (ENGLISH)

840

Return Value
None

ECLPS Class
objects, C++ECLPSThe ECLPS class performs operations on a host presentation space.

The ECLPS object is created for the connection identified upon construction. You may create an ECLPS object by

passing either the connection name (a single, alphabetic character from A-Z) or the connection handle, which is

usually obtained from an ECLConnection object. There can be only one Z and I Emulator for Windows connection with

a given name or handle open at a time.

Derivation
ECLBase > ECLConnection > ECLPS

Properties
ECLPSpropertiesNone

Usage Notes
The ECLSession class creates an instance of this object. If the application does not need other services, this object

may be created directly. Otherwise, you may want to consider using an ECLSession object to create all the objects

needed.

ECLPS Methods
The following section describes the methods available for ECLPS.

ECLPS(char ConnName)

ECLPS(char ConnName)

ECLPS(long ConnHandle)

~ECLPS()

int GetPCCodePage()

int GetHostCodePage()

int GetOSCodePage()

void GetSize(ULONG *Rows, ULONG *Cols) ULONG GetSize()

ULONG GetSizeCols() ULONG GetSizeRows()

void GetCursorPos(ULONG *Row, ULONG *Col) ULONG GetCursorPos()

ULONG GetCursorPosRow()

Chapter 2. Product Documentation

ULONG GetCursorPosCol()

void SetCursorPos(ULONG pos),

void SetCursorPos(ULONG Row, ULONG Col)

void SendKeys(Char *text, ULONG AtPos),

void SendKeys(Char * text),

void SendKeys(Char *text, ULONG AtRow, ULONG AtCol)

ULONG SearchText(const char * const text, PS_DIR Dir=SrchForward,

 BOOL FoldCase=FALSE)

ULONG SearchText(const char * const text,

ULONG StartPos, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE)

ULONG SearchText(const char char * const text, ULONG StartRow,

 ULONG StartCol, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE)

ULONG GetScreen(char * Buff, ULONG BuffLen, PS_PLANE Plane=TextPlane)

ULONG GetScreen(char * Buff, ULONG BuffLen, ULONG StartPos,

 ULONG Length, PS_PLANE Plane=TextPlane)

ULONG GetScreen(char * Buff, ULONG BuffLen, ULONG StartRow,

 ULONG StartCol, ULONG Length, PS_PLANE Plane=TextPlane)

ULONG GetScreenRect(char * Buff, ULONG BuffLen, ULONG StartPos,

 ULONG EndPos, PS_PLANE Plane=TextPlane)

ULONG StartCol, ULONG EndRow, ULONG EndCol,

ULONG GetScreenRect(char * Buff, ULONG BuffLen, ULONG StartRow,

 ULONG StartCol, ULONG EndRow, ULONG EndCol,

 PS_PLANE Plane=TextPlane)

void SetText(char *text);

void SetText(char *text, ULONG AtPos);

void SetText(char *text, ULONG AtRow, ULONG AtCol);

void CopyText ();

void CopyText (ULONG Long Len);

void CopyText (ULONG AtPos, ULONG Long Len);

void CopyText (ULONG AtRow, ULONG AtCol, ULONG Long Len);

void PasteText ();

void PasteText (ULONG Long Len);

void PasteText (ULONG AtPos, ULONG Long Len);

void PasteText (ULONG AtRow, ULONG AtCol, ULONG Long Len);

void ConvertPosToRowCol(ULONG pos, ULONG *row, ULONG *col)

ULONG ConvertRowColToPos(ULONG row, ULONG col)

ULONG ConvertPosToRow(ULONG Pos)

ULONG ConvertPosToCol(ULONG Pos)

void RegisterKeyEvent(ECLKeyNotify *NotifyObject)

virtual UnregisterKeyEvent(ECLKeyNotify *NotifyObject)

841

HCL Z and I Emulator for Windows (ENGLISH)

842

ECLFieldList *GetFieldList()

BOOL WaitForCursor(int Row, int Col, long nTimeOut=INFINITE,

 BOOL bWaitForIR=TRUE)

BOOL WaitWhileCursor(int Row, int Col, long nTimeOut=INFINITE,

 BOOL bWaitForIR=TRUE)

BOOL WaitForString(char* WaitString, int Row=0, int Col=0,

 long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

BOOL WaitWhileString(char* WaitString, int Row=0, int Col=0,

 long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

BOOL WaitForStringInRect(char* WaitString, int sRow, int sCol,

 int eRow,int eCol, long nTimeOut=INFINITE,

 BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

BOOL WaitWhileStringInRect(char* WaitString, int sRow, int sCol,

 int eRow,int eCol, long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE,

 BOOL bCaseSens=TRUE)

BOOL WaitForAttrib(int Row, int Col, unsigned char AttribDatum,

 unsigned char MskDatum = 0xFF, PS_PLANE plane = FieldPlane,

 long TimeOut = INFINITE, BOOL bWaitForIR = TRUE)

BOOL WaitWhileAttrib(int Row, int Col, unsigned char AttribDatum,

 unsigned char MskDatum = 0xFF, PS_PLANE plane = FieldPlane,

 long TimeOut = INFINITE, BOOL bWaitForIR = TRUE)

BOOL WaitForScreen(ECLScreenDesc* screenDesc, long TimeOut = INFINITE)

BOOL WaitWhileScreen(ECLScreenDesc* screenDesc, long TimeOut = INFINITE)

void RegisterPSEvent(ECLPSNotify * notify)

void RegisterPSEvent(ECLPSListener * listener)

void RegisterPSEvent(ECLPSListener * listener, int type)

void StartMacro(String MacroName)

void UnregisterPSEvent(ECLPSNotify * notify)

void UnregisterPSEvent(ECLPSListener * listener)

void UnregisterPSEvent(ECLPSListener * listener, int type)

The following methods are available for ECLPS :

void SendKeys(WCHAR * text),

void SendKeys(WCHAR *text, ULONG AtPos),

void SendKeys(WCHAR *text, ULONG AtRow, ULONG AtCol)

ULONG SearchText(const WCHAR * const text, PS_DIR Dir=SrchForward,

 BOOL FoldCase=FALSE)

ULONG SearchText(const WCHAR * const text,

 ULONG StartPos, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE)

ULONG SearchText(const WCHAR * const text, ULONG StartRow,

Chapter 2. Product Documentation

 ULONG StartCol, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE)

ULONG GetScreen(WCHAR * Buff, ULONG BuffLen, PS_PLANE Plane=TextPlane)

ULONG GetScreen(WCHAR * Buff, ULONG BuffLen, ULONG StartPos,

 ULONG Length, PS_PLANE Plane=TextPlane)

ULONG GetScreen(WCHAR * Buff, ULONG BuffLen, ULONG StartRow,

 ULONG StartCol, ULONG Length, PS_PLANE Plane=TextPlane)

ECLPS Constructor
This method uses a connection name or handle to create an ECLPS object.

Prototype
ECLPS(char ConnName)

ECLPS(long ConnHandle)

Parameters
char ConnName

One-character short name of the connection (A-Z or a-z).

long ConnHandle

Handle of an ECL connection.

Return Value
None

Example
The following example shows how to use a connection name to create an ECLPS object.

//---
// ECLPS::ECLPS (Constructor)
//
// Build a PS object from a name, and another from a handle.
//---
void Sample58() {

ECLPS *PS1, *PS2; // Pointer to PS objects
ECLConnList ConnList; // Connection list object

try {
 // Create PS object for connection 'A'
 PS1 = new ECLPS('A');

 // Create PS object for first connection in conn list
 PS2 = new ECLPS(ConnList.GetFirstConnection()->GetHandle());

843

HCL Z and I Emulator for Windows (ENGLISH)

844

 printf("PS #1 is for connection %c, PS #2 is for connection %c.\n",
 PS1->GetName(), PS2->GetName());
 delete PS1;
 delete PS2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

ECLPS Destructor
This method destroys the ECLPS object.

Prototype
~ECLPS()

Parameters
None

Return Value
None

Example
The following example shows how to destroy an ECLPS object.

ULONG RowPos, ColPos;
ECLPS *pPS;

try {
 pPS = new ECLPS('A');
 RowPos = pPS->ConvertPosToRow(544);
 ColPos = pPS->ConvertPosToCol(544);
 printf("PS position is at row %lu column %lu.",
 RowPos, ColPos);
 // Done with PS object so kill it
 delete pPS;
}
catch (ECLErr HE) {
 // Just report the error text in a message box
 MessageBox(NULL, HE.GetMsgText(), "Error!", MB_OK);
}

GetPCCodePage
The GetPCCodePage method retrieves the number designating the code page in force for the personal computer.

Chapter 2. Product Documentation

Prototype
int GetPCCodePage()

Parameters
None

Return Value
int

Number of the code page.

GetHostCodePage
The GetHostCodePage method retrieves the number designating the code page in force for the host computer.

Prototype
int GetHostCodePage()

Parameters
None

Return Value
int

Number of the code page.

GetOSCodePage
The GetOSCodePage method retrieves the number designating the code page in force for the operating system on the

personal computer.

Prototype
int GetOSCodePage()

Parameters
None

845

HCL Z and I Emulator for Windows (ENGLISH)

846

Return Value
int

Number of the code page.

GetSize
This method returns the size of the presentation space for the connection associated with the ECLPS object.

There are two signatures of the GetSize method. Using ULONG GetSize(), the size is returned as a linear value and

represents the total number of characters in the presentation space. With void GetSize(ULONG *Rows, ULONG *Cols),

the number of rows and columns of the presentation space is returned.

Prototype
ULONG GetSize()

void GetSize(ULONG *Rows, ULONG *Cols)

Parameters
ULONG *Rows

This output parameter is the number of rows in the presentation space.

ULONG *Cols

This output parameter is the number of columns in the presentation space.

Return Value
ULONG

Size of the presentation space as a linear value.

Example
The following is an example of using the GetSize method.

//---
// ECLPS::GetSize
//
// Display dimensions of connection 'A'
//---
void Sample59() {

ECLPS PS('A'); // PS object for connection A
ULONG Rows, Cols, Len;

PS.GetSize(&Rows, &Cols); // Get num of rows and cols
// Could also write as:
Rows = PS.GetSizeRows(); // Redundant

Chapter 2. Product Documentation

Cols = PS.GetSizeCols(); // Redundant

Len = PS.GetSize(); // Get total size

printf("Connection A has %lu rows and %lu columns (%lu total length)\n",
 Rows, Cols, Len);

} // end sample

GetSizeRows
This method returns the number of rows in the Presentation Space for the connection associated with the ECLPS

object.

Prototype
ULONG GetSizeRows()

Parameters
None

Return Value
ULONG

This is the number of rows in the Presentation Space.

Example
The following is an example of using the GetSizeRows method.

//---
// ECLPS::GetSizeRows
//
// Display dimensions of connection 'A'
//---
void Sample59() {

ECLPS PS('A'); // PS object for connection A
ULONG Rows, Cols, Len;

PS.GetSize(&Rows, &Cols); // Get num of rows and cols
// Could also write as:
Rows = PS.GetSizeRows(); // Redundant
Cols = PS.GetSizeCols(); // Redundant

Len = PS.GetSize(); // Get total size

printf("Connection A has %lu rows and %lu columns (%lu total length)\n",
 Rows, Cols, Len);

847

HCL Z and I Emulator for Windows (ENGLISH)

848

} // end sample

GetSizeCols
This method returns the number of columns in the Presentation Space for the connection associated with the ECLPS

object.

Prototype
ULONG GetSizeCols()

Parameters
None

Return Value
ULONG

This is the number of columns in the Presentation Space.

Example
The following is an example of using the GetSizeCols method.

//---
// ECLPS::GetSizeCols
//
// Display dimensions of connection 'A'
//---
void Sample59() {

ECLPS PS('A'); // PS object for connection A
ULONG Rows, Cols, Len;

PS.GetSize(&Rows, &Cols); // Get num of rows and cols
// Could also write as:
Rows = PS.GetSizeRows(); // Redundant
Cols = PS.GetSizeCols(); // Redundant

Len = PS.GetSize(); // Get total size

printf("Connection A has %lu rows and %lu columns (%lu total length)\n",
 Rows, Cols, Len);

} // end sample

Chapter 2. Product Documentation

GetCursorPos
This method returns the position of the cursor in the presentation space for the connection associated with the

ECLPS object. There are two signatures for the GetCursorPos method. Using ULONG GetCursorPos(), the position is

returned as a linear (1-based) position. With void GetCursorPos(ULONG *Row, ULONG * Col), the position is returned

as a row and column coordinate.

Prototype
ULONG GetCursorPos()

void GetCursorPos(ULONG *Row, ULONG *Col)

Parameters
ULONG *Row

This output parameter is the row coordinate of the host cursor.

ULONG *Col

This output parameter is the column coordinate of the host cursor.

Return Value
ULONG

Cursor position represented as a linear value.

Example
The following is an example of using the GetCursorPos method.

//---
// ECLPS::GetCursorPos
//
// Display position of host cursor in connection 'A'
//---
void Sample60() {

ECLPS PS('A'); // PS object for connection A
ULONG Row, Col, Pos;

PS.GetCursorPos(&Row, &Col); // Get row/col position
// Could also write as:
Row = PS.GetCursorPosRow(); // Redundant
Col = PS.GetCursorPosCol(); // Redundant

Pos = PS.GetCursorPos(); // Get linear position

printf("Host cursor of connection A is at row %lu column %lu
 (linear position %lu)\n", Row, Col, Pos);

} // end sample

849

HCL Z and I Emulator for Windows (ENGLISH)

850

/

GetCursorPosRow
This method returns the row position of the cursor in the Presentation Space for the connection associated with the

ECLPS object.

Prototype
ULONG GetCursorPosRow()

Parameters
None

Return Value
ULONG

This is the row position of the cursor in the Presentation Space.

Example
The following is an example of using the GetCursorPosRow method.

//---
// ECLPS::GetCursorPosRow
//
// Display position of host cursor in connection 'A'
//---
void Sample60() {

ECLPS PS('A'); // PS object for connection A
ULONG Row, Col, Pos;

PS.GetCursorPos(&Row, &Col); // Get row/col position
// Could also write as:
Row = PS.GetCursorPosRow(); // Redundant
Col = PS.GetCursorPosCol(); // Redundant

Pos = PS.GetCursorPos(); // Get linear position

printf("Host cursor of connection A is at row %lu column %lu
 (linear position %lu)\n", Row, Col, Pos);

} // end sample

Chapter 2. Product Documentation

GetCursorPosCol
This method returns the column position of the cursor in the Presentation Space for the connection associated with

the ECLPS object.

Prototype
ULONG GetCursorPosCol()

Parameters
None

Return Value
ULONG

This is the column position of the cursor in the Presentation Space.

Example
The following is an example of using the GetCursorPosCol method.

//---
// ECLPS::GetCursorPosCol
//
// Display position of host cursor in connection 'A'
//---
void Sample60() {

ECLPS PS('A'); // PS object for connection A
ULONG Row, Col, Pos;

PS.GetCursorPos(&Row, &Col); // Get row/col position
// Could also write as:
Row = PS.GetCursorPosRow(); // Redundant
Col = PS.GetCursorPosCol(); // Redundant

Pos = PS.GetCursorPos(); // Get linear position

printf("Host cursor of connection A is at row %lu column %lu
 (linear position %lu)\n", Row, Col, Pos);

} // end sample

//---

SetCursorPos
The SetCursorPos method sets the position of the cursor in the presentation space for the connection associated

with the ECLPS object. There are two signatures for the SetCursorPos method. The position can be specified as

851

HCL Z and I Emulator for Windows (ENGLISH)

852

a linear (1-based) position using void SetCursorPos(ULONG pos), or as a row and column coordinate using void

SetCursorPos(ULONG Row, ULONG Col).

Prototype
void SetCursorPos(ULONG pos),

void SetCursorPos(ULONG Row, ULONG Col)

Parameters
ULONG pos

Cursor position as a linear position.

ULONG Row

Cursor row coordinate.

ULONG Col

Cursor column coordinate.

Return Value
None

Example
The following is an example of using the SetCursorPos method.

--
// ECLPS::SetCursorPos
//
// Set host cursor to row 2 column 1.
//---
void Sample61() {

ECLPS PS('A'); // PS object for connection A

PS.SetCursorPos(2, 1); // Put cursor at row 2, column 1
printf("Cursor of connection A set to row 2 column 1.\n");

} // end sample

/

SendKeys
The SendKeys method sends a null-terminated string of keys to the presentation space for the connection associated

with the ECLPS object. There are three signatures for the SendKeys method. If no position is specified, the keystrokes

Chapter 2. Product Documentation

are entered starting at the current host cursor position. A position may be specified (in linear or row and column

coordinates), in which case the host cursor is first moved to the given position.

The text string may contain plain text characters, which are written to the presentation space exactly as given. In

addition, the string can contain imbedded keywords (mnemonics) that represent various control keystrokes such as

3270 Enter keys and 5250 PageUp keys. Keywords are enclosed in square brackets (for example, [enter]). When such

a keyword is encountered in the string it is translated into the proper emulator command and sent. A text string may

contain any number of plain characters and imbedded keywords. The keywords are processed from left to right until

the end of the string is reached. For example, the following string would cause the characters ABC to be typed at the

current cursor position, followed by a 3270 Erase-end-of-field keystroke, followed by a 3270 Tab keystroke, followed

by XYZ and a PF1 key:

ABC[eraseeof][tab]XYZ[pf1]

Note: Blank characters in the string are written to the host presentation space like any other plain text

character. Therefore, blanks should not be used to separate keywords or text.

To send a left or right square bracket character to the host, it must be doubled in the text string (for example, it must

occur twice to cause a single bracket to be written). The following example causes the string “A [:]” to be written to

the presentation space.

A[[:]]

If you attempt to write keystrokes to a protected position on the screen, the keyboard locks and the remainder of the

keystrokes are discarded.

Refer to Sendkeys Mnemonic Keywords on page 1156 for a list of keywords.

Prototype
void SendKeys(char * text),

void SendKeys(char * text, ULONG AtPos),

void SendKeys(char * text, ULONG AtRow, ULONG AtCol)

Parameters
Char *text

String of keys to send to the presentation space.

ULONG AtPos

Position at which to start writing keystrokes.

ULONG AtRow

Row at which to start writing keystrokes.

ULONG AtCol

Column at which to start writing keystrokes.

853

HCL Z and I Emulator for Windows (ENGLISH)

854

Return Value
None

Example
The following is an example of using the SendKeys method.

//---
// ECLPS::SendKeys
//
// Sends a series of keystrokes, including 3270 function keys, to
// the host on connection A.
//---
void Sample62() {

ECLPS PS('A'); // PS object for connection A

// The following key string will erase from the current cursor
// position to the end of the field, and then type the given
// characters into the field.
char SendStr[] = "[eraseeof]ZIEWin is really cool";

// Note that an ECL error is thrown if we try to send keys to
// a protected field.

try {
 PS.SendKeys(SendStr); // Do it at the current cursor position
 PS.SendKeys(SendStr, 3, 10); // Again at row 3 column 10
}
catch (ECLErr Err) {
 printf("Failed to send keys: %s\n", Err.GetMsgText());
}

} // end sample

SearchText
The SearchText method searches for text in the presentation space of the connection associated with the ECLPS

object. The method returns the linear position at which the text is found, or zero if the text is not found. The search

may be made in the forward (left to right, top to bottom) or backward (right to left, bottom to top) directions using

the optional Dir parameter. The search can be case-sensitive or case folded (insensitive) using the optional FoldCase

parameter.

If no starting position is given, the search starts at the beginning of the screen for forward searches, or at the end of

the screen for backward searches. A starting position may be given in terms of a linear position or row and column

coordinates. If a starting position is given it indicates the position at which to begin the search. Forward searches

search from the starting position (inclusive) to the last character of the screen. Backward searches search from the

starting position (inclusive) to the first character of the screen.

Chapter 2. Product Documentation

The search string must exist completely within the search area for the search to be successful (for example, if the

search string spans over the specified starting position it will not be found).

The returned linear position may be converted to row and column coordinates using the base class

ConvertPosToRowCol method.

Prototype

ULONG SearchText(const char * const text, PS_DIR Dir=SrchForward,

 BOOL FoldCase=FALSE)

ULONG SearchText(const char * const text,

 ULONG StartPos, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE)

ULONG SearchText(const char char * const text, ULONG StartRow,

 ULONG StartCol, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE)

Parameters
char *text

Null-terminated string to search for.

PS_DIR Dir

Optional parameter indicating the direction in which to search. If specified, must be one of SrchForward

or SrchBackward. The default is SrchForward.

BOOL FoldCase

Optional parameter indicating the case-sensitivity of the search. If specified as FALSE the text string

must exactly match the presentation space including the use of uppercase and lowercase characters. If

specified as TRUE, the text string will be found without regard to uppercase or lowercase. The default is

FALSE.

ULONG StartPos

Indicates the starting linear position of the search. This position will be included in the search.

ULONG StartRow

Indicates the row in which to start the search.

ULONG StartCol

Indicates the column in which to start the search.

Return Value
ULONG

Linear position of the found string, or zero if not found.

855

HCL Z and I Emulator for Windows (ENGLISH)

856

Example
The following is an example of using the SearchText method.

/---
// ECLPS::SearchText
//
// Search for a string in various parts of the screen.
//---
void Sample63() {

ECLPS PS('A'); // PS object
char FindStr[] = "HCL"; // String to search for
ULONG LastOne; // Position of search result

// Case insensative search of entire screen

printf("Searching for '%s'...\n", FindStr);
printf(" Anywhere, any case: ");
if (PS.SearchText(FindStr, TRUE) != 0)
 printf("Yes\n");
else
 printf("No\n");

// Backward, case sensative search on line 1

printf(" Line 1, exact match: ");
if (PS.SearchText(FindStr, 1, 80, SrchBackward) != 0)
 printf("Yes\n");
else
 printf("No\n");

// Backward, full screen search

LastOne = PS.SearchText(FindStr, SrchBackward, TRUE);
if (LastOne != 0)
 printf(" Last occurance on the screen is at row %lu, column %lu.\n",
 PS.ConvertPosToRow(LastOne), PS.ConvertPosToCol(LastOne));

} // end sample

GetScreen
This method retrieves data from the presentation space of the connection associated with the ECLPS object. The

data is returned as a linear array of byte values, one byte per presentation space character position. The array is

not null terminated except when data is retrieved from the TextPlane, in which case a single null termination byte is

appended.

The application must supply a buffer for the returned data, and the length of the buffer. If the requested data does not

fit into the buffer it is truncated. For TextPlane data, the buffer must include at least one extra byte for the terminating

null. The method returns the number of bytes copied to the application buffer (not including the terminating null for

TextPlane copies).

Chapter 2. Product Documentation

The application must specify the number of bytes of data to retrieve from the presentation space. If the starting

position plus this length exceeds the size of the presentation space an error is thrown. Data is returned starting

at the given starting position or row 1, column 1 if no starting position is specified. Returned data is copied from

the presentation space in a linear fashion from left to right, top to bottom spanning multiple rows up to the length

specified. If the application wants to get screen data for a rectangular area of the screen, the GetScreenRect method

should be used.

The application can specify any plane for which to retrieve data. If no plane is specified, the TextPlane is retrieved.

See ECL Planes — Format and Content on page 1159 for details on the different ECL planes.

Prototype

ULONG GetScreen(char * Buff, ULONG BuffLen, PS_PLANE Plane=TextPlane)

ULONG GetScreen(char * Buff, ULONG BuffLen, ULONG StartPos, ULONG Length,

 PS_PLANE Plane=TextPlane)

ULONG GetScreen(char * Buff, ULONG BuffLen, ULONG StartRow, ULONG StartCol,

 ULONG Length, PS_PLANE Plane=TextPlane)

Parameters
char *Buff

Pointer to application supplied buffer of at least BuffLen size.

ULONG BuffLen

Number of bytes in the supplied buffer.

ULONG StartPos

Linear position in the presentation space at which to start the copy.

ULONG StartRow

Row in the presentation space at which to start the copy.

ULONG StartCol

Column in the presentation space at which to start the copy.

ULONG Length

Linear number of bytes to copy from the presentation space.

PS_PLANE plane

Optional parameter specifying which presentation space plane is to be copied. If specified, must be one

of TextPlane, ColorPlane, FieldPlane, and ExfieldPlane. The default is TextPlane. See ECL Planes —

Format and Content on page 1159 for the content and format of the different ECL planes.

857

HCL Z and I Emulator for Windows (ENGLISH)

858

Return Value
ULONG

Number of data bytes copied from the presentation space. This value does not include the trailing null

byte for TextPlane copies.

Example
The following is an example of using the GetScreen method.

//---
// ECLPS::GetScreen
//
// Get text and other planes of data from the presentation space.
//---
void Sample64() {

ECLPS PS('A'); // PS object
char *Text; // Text plane data
char *Field; // Field plane data
ULONG Len; // Size of PS

Len = PS.GetSize();

// Note text buffer needs extra byte for null terminator

Text = new char[Len + 1];
Field = new char[Len];

PS.GetScreen(Text, Len+1); // Get entire screen (text)
PS.GetScreen(Field, Len, FieldPlane); // Get entire field plane
PS.GetScreen(Text, Len+1, 1, 1, 80); // Get line 1 of text

printf("Line 1 of the screen is:\n%s\n", Text);

delete []Text;
delete []Field;

} // end sample

GetScreenRect
This method retrieves data from the presentation space of the connection associated with the ECLPS object. The

data is returned as a linear array of byte values, one byte per presentation space character position. The array is not

null terminated.

The application supplies a starting and ending coordinate in the presentation space. These coordinates form the

opposing corner points of a rectangular area. The presentation space within the rectangular area is copied to the

application buffer as a single linear array. The starting and ending points may be in any spatial relationship to each

other. The copy is defined to start from the row containing the uppermost point to the row containing the lowermost

Chapter 2. Product Documentation

point, and from the left-most column to the right-most column. Both coordinates must be within the bounds of the

size of the presentation space or an error is thrown. The coordinates may be specified in terms of linear position or

row and column numbers.

The supplied application buffer must be at least large enough to contain the number of bytes in the rectangle. If the

buffer is too small, no data is copied and zero is returned as the method result. Otherwise the method returns the

number of bytes copied.

The application can specify any plane for which to retrieve data. If no plane is specified, the TextPlane is retrieved.

See ECL Planes — Format and Content on page 1159 for details on the different ECL planes.

Prototype
ULONG GetScreenRect(char * Buff, ULONG BuffLen,

 ULONG StartPos, ULONG EndPos, PS_PLANE Plane=TextPlane)

ULONG GetScreenRect(char * Buff, ULONG BuffLen,

 ULONG StartRow, ULONG StartCol, ULONG EndRow,

 ULONG EndCol, PS_PLANE Plane=TextPlane)

Parameters
char *Buff

Pointer to application supplied buffer of at least BuffLen size.

ULONG BuffLen

Number of bytes in the supplied buffer.

ULONG StartPos

Linear position in the presentation space of one corner of the copy rectangle.

ULONG EndPos

Linear position in the presentation space of one corner of the copy rectangle.

ULONG StartRow

Row in the presentation space of one corner of the copy rectangle.

ULONG StartCol

Column in the presentation space of one corner of the copy rectangle.

ULONG EndRow

Row in the presentation space of one corner of the copy rectangle.

ULONG EndCol

Column in the presentation space of one corner of the copy rectangle.

859

HCL Z and I Emulator for Windows (ENGLISH)

860

PS_PLANE plane

Optional parameter specifying which presentation space plane is to be copied. If specified, must be

one of TextPlane, ColorPlane, FieldPlane, or ExfieldPlane. The default is TextPlane. See ECL Planes —

Format and Content on page 1159 for the content and format of the different ECL planes.

Return Value
ULONG

Number of data bytes copied from the presentation space.

Example
The following is an example of using the GetScreenRect method.

// ECLPS::GetScreenRect
//
// Get rectangular parts of the host screen.
//---
void Sample66() {

ECLPS PS('A'); // PS object for connection A
char Buff[4000]; // Big buffer

// Get first 2 lines of the screen text
PS.GetScreenRect(Buff, sizeof(Buff), 1, 1, 2, 80);

// Get last 2 lines of the screen
PS.GetScreenRect(Buff, sizeof(Buff),
 PS.GetSizeRows()-1,
 1,
 PS.GetSizeRows(),
 PS.GetSizeCols());

// Get just a part of the screen (VM main menu calendar)
PS.GetScreenRect(Buff, sizeof(Buff),
 5, 51,
 13, 76);

// Same as previous (specify any 2 oposite corners of the rectangle)
PS.GetScreenRect(Buff, sizeof(Buff),
 13, 51,
 5, 76);

// Note results are placed in buffer end-to-end with no line delimiters
printf("Contents of rectangular screen area:\n%s\n", Buff);

} // end sample

Chapter 2. Product Documentation

SetText
The SetText method sends a character array to the Presentation Space for the connection associated with the ECLPS

object. Although this is similar to the SendKeys method, it is different in that it does not send mnemonic keystrokes

(for example, [enter] or [pf1]).

If a position is not specified, the text is written starting at the current cursor position.

Prototype
void SetText(char *text);

void SetText(char *text, ULONG AtPos);

void SetText(char *text, ULONG AtRow, ULONG AtCol);

Parameters
char *text

Null terminated string of characters to copy to the presentation space.

ULONG AtPos

Linear position in the presentation space at which to begin the copy.

ULONG AtRow

Row in the presentation space of which to begin the copy.

ULONG AtCol

Column in the presentation space at which to begin the copy.

Return Value
None

Example
The following is an example of using the SetText method.

//---
// ECLPS::SetText
//
// Update various input fields of the screen.
//---
void Sample65() {

ECLPS PS('A'); // PS object for connection A

// Note that an ECL error is thrown if we try to write to
// a protected field.

try {
 // Update first 2 input fields of the screen. Note

861

HCL Z and I Emulator for Windows (ENGLISH)

862

 // fields are not erased before update.
 PS.SendKeys("[home]");
 PS.SetText("Field 1");
 PS.SendKeys("[tab]");
 PS.SetText("Field 2");
 // Note: Above 4 lines could also be written as:
 // PS.SendKeys("[home]Field 1[tab]Field 2");
 // But SetText() is faster, esp for long strings
}
catch (ECLErr Err) {
 printf("Failed to send keys: %s\n", Err.GetMsgText());
}

} // end sample

//-------------------------------------

CopyText
This method copies the text from a given location in presentation space of a specified length to clipboard. The length

of the text copied will be the length specified, if no length is specified the text till the end of presentation space is

copied. If the location is not specified, the text copied is from the current cursor position in presentation space. In

case of no parameters, whole presentation space is copied to clipboard.

Prototype
void CopyText ();

void CopyText (ULONG Long Len);

void CopyText (ULONG AtPos, ULONG Long Len);

void CopyText (ULONG AtRow, ULONG AtCol, ULONG Long Len);

Parameters
ULONG Long Len

Linear number of bytes to copy from the presentation space.

ULONG AtPos

Linear position in the presentation space at which to begin the copy.

ULONG AtRow

Row in the presentation space of which to begin the copy.

ULONG AtCol

Column in the presentation space at which to begin the copy.

Chapter 2. Product Documentation

Return Value
None

Example
The following is an example of using the CopyText method.

//---
// ECLPS::CopyText
//
// Copy text from Presentation Space to clipboard.
//---
void Sample126() {

ECLPS PS('A'); // PS object for connection A
long row, col, length2copy;

// Note that an ECL error is thrown if we try to write to
// a protected field.
try {
 printf("Please enter the position and length to copy from PS [row col length2copy] \n");

 scanf("%ld %ld %ld", &row, &col, &length2copy);
 PS.CopyText(row, col, length2copy);
 }
catch (ECLErr Err) {
 printf("Failed to copy text: %s\n", Err.GetMsgText());
}
} // end sample
//-------------------------------------

PasteText
This method pastes the text of specified length from clipboard to a given location in presentation space. The length

of the text pasted is the length specified, if no length is specified the whole text in clipboard is pasted until it reaches

the end of presentation space. If the location is not specified, the text is pasted at the current cursor position in

presentation space. If the presentation space is field formatted and while pasting the clipboard content, when there is

a tab character '\t,' the remaining paste content is moved to the next writable field.

Prototype
void PasteText ();

void PasteText (ULONG Long Len);

void PasteText (ULONG AtPos, ULONG Long Len);

void PasteText (ULONG AtRow, ULONG AtCol, ULONG Long Len);

863

HCL Z and I Emulator for Windows (ENGLISH)

864

Parameters
ULONG Long Len

Linear number of bytes to paste from the presentation space.

ULONG AtPos

Linear position in the presentation space at which to begin the paste.

ULONG AtRow

Row in the presentation space of which to begin the paste.

ULONG AtCol

Column in the presentation space at which to begin the paste.

Return Value
None

Example
The following is an example of using the PasteText method.

//---
// ECLPS::PasteText
//
// Paste text to Presentation Space from clipboard.
//---
void Sample127() {

ECLPS PS('A'); // PS object for connection A
long row, col, length2paste;

// Note that an ECL error is thrown if we try to write to
// a protected field.
try {
 printf("Please enter the position and length to paste from clipboard [row col length2paste] \n");
 scanf("%ld %ld %ld", &row, &col, &length2paste);
 PS.PasteText(row, col, length2paste);
}
catch (ECLErr Err) {
 printf("Failed to paste text: %s\n", Err.GetMsgText());
}
} // end sample
//--

ConvertPosToRowCol
The ConvertPosToRowCol method converts a position in the presentation space represented as a linear array to a

position in the presentation space given in row and column coordinates. The position converted is in the presentation

space for the connection associated with the ECLPS object.

Chapter 2. Product Documentation

Prototype
void ConvertPosToRowCol(ULONG pos, ULONG *row, ULONG *col)

Parameters
ULONG pos

Position to convert in the presentation space represented as a linear array.

ULONG *row

Converted row coordinate in the presentation space.

ULONG *col

Converted column coordinate in the presentation space.

Return Value
None

Example
The following example shows how to convert a position in the presentation space represented as a linear array to a

position shown in row and column coordinates.

///---
// ECLPS::ConvertPosToRowCol
//
// Find a string in the presentation space and display the row/column
// coordinate of its location.
//---
void Sample67() {

ECLPS PS('A'); // PS Object
ULONG FoundPos; // Linear position
ULONG FoundRow,FoundCol;

FoundPos = PS.SearchText("HCL", TRUE);
if (FoundPos != 0) {
 PS.ConvertPosToRowCol(FoundPos, &FoundRow, &FoundCol);
 // Another way to do the same thing:
 FoundRow = PS.ConvertPosToRow(FoundPos);
 FoundCol = PS.ConvertPosToCol(FoundPos);

 printf("String found at row %lu column %lu (position %lu)\n",
 FoundRow, FoundCol, FoundPos);
}
else printf("String not found.\n");

} // end sample

865

HCL Z and I Emulator for Windows (ENGLISH)

866

ConvertRowColToPos
The ConvertRowColToPos method converts a position in the presentation space in row and column coordinates to a

position in the presentation space represented as a linear array. The position converted is in the presentation space

for the connection associated with the ECLPS object.

Prototype
ULONG ConvertRowColToPos(ULONG row, ULONG col)

Parameters
ULONG row

Row coordinate to convert in the presentation space.

ULONG col

Column coordinate to convert in the presentation space.

Return Value
ULONG

Converted position in the presentation space represented as a linear array.

Example
The following example shows how to convert a position in the presentation space shown in row and column

coordinates to a linear array position.

///---
// ECLPS::ConvertRowColToPos
//
// Find a string in the presentation space and display the row/column
// coordinate of its location.
//---
void Sample67() {

ECLPS PS('A'); // PS Object
ULONG FoundPos; // Linear position
ULONG FoundRow,FoundCol;

FoundPos = PS.SearchText("HCL", TRUE);
if (FoundPos != 0) {
 PS.ConvertPosToRowCol(FoundPos, &FoundRow, &FoundCol);
 // Another way to do the same thing:
 FoundRow = PS.ConvertPosToRow(FoundPos);
 FoundCol = PS.ConvertPosToCol(FoundPos);

 printf("String found at row %lu column %lu (position %lu)\n",
 FoundRow, FoundCol, FoundPos);
}
else printf("String not found.\n");

Chapter 2. Product Documentation

} // end sample

ConvertPosToRow
This method takes a linear position value in the Presentation Space and returns the row in which it resides for the

connection associated with the ECLPS object.

Prototype
ULONG ConvertPosToRow(ULONG Pos)

Parameters
ULONG Pos

This is the linear position in the Presentation Space to convert.

Return Value
ULONG

This is the row position for the linear position.

Example
The following is an example of using the ConvertPosToRow method.

///---
// ECLPS::ConvertPosToRow
//
// Find a string in the presentation space and display the row/column
// coordinate of its location.
//---
void Sample67() {

ECLPS PS('A'); // PS Object
ULONG FoundPos; // Linear position
ULONG FoundRow,FoundCol;

FoundPos = PS.SearchText("HCL", TRUE);
if (FoundPos != 0) {
 PS.ConvertPosToRowCol(FoundPos, &FoundRow, &FoundCol);
 // Another way to do the same thing:
 FoundRow = PS.ConvertPosToRow(FoundPos);
 FoundCol = PS.ConvertPosToCol(FoundPos);

 printf("String found at row %lu column %lu (position %lu)\n",
 FoundRow, FoundCol, FoundPos);
}
else printf("String not found.\n");

867

HCL Z and I Emulator for Windows (ENGLISH)

868

} // end sample

ConvertPosToCol
This method takes a linear position value in the Presentation Space and returns the column in which it resides for the

connection associated with the ECLPS object.

Prototype
ULONG ConvertPosToCol(ULONG Pos)

Parameters
ULONG Pos

This is the linear position in the Presentation Space to convert.

Return Value
ULONG

This is the column position for the linear position.

Example
The following is an example of using the ConvertPosToCol method.

///---
/// ECLPS::ConvertPosToCol
//
// Find a string in the presentation space and display the row/column
// coordinate of its location.
//---
void Sample67() {

ECLPS PS('A'); // PS Object
ULONG FoundPos; // Linear position
ULONG FoundRow,FoundCol;

FoundPos = PS.SearchText("HCL", TRUE);
if (FoundPos != 0) {
 PS.ConvertPosToRowCol(FoundPos, &FoundRow, &FoundCol);
 // Another way to do the same thing:
 FoundRow = PS.ConvertPosToRow(FoundPos);
 FoundCol = PS.ConvertPosToCol(FoundPos);

 printf("String found at row %lu column %lu (position %lu)\n",
 FoundRow, FoundCol, FoundPos);
}
else printf("String not found.\n");

Chapter 2. Product Documentation

} // end sample

RegisterKeyEvent
The RegisterKeyEvent function registers an application-supplied object to receive notification of operator keystroke

events. The application must construct an object derived from the ECLKeyNotify abstract base class. When an

operator keystroke occurs, the NotifyEvent() method of the application supplied object is called. The application

can choose to have the keystroke filtered or passed on and processed in the usual way. See ECLKeyNotify Class on

page 818 for more details.

Implementation Restriction: Only one object may be registered to receive keystroke events at a time.

Prototype
void RegisterKeyEvent(ECLKeyNotify *NotifyObject)

Parameters
ECLKeyNotify *NotifyObject

Application object derived from ECLKeyNotify class.

Return Value
None

Example
The following example shows how to register an application-supplied object to receive notification of operator

keystroke events. See the ECLKeyNotify Class on page 818 for a RegisterKeyEvent example.

// This is the declaration of your class derived from ECLKeyNotify....
class MyKeyNotify: public ECLKeyNotify
{
public:
 // App can put parms on constructors if needed
 MyKeyNotify(); // Constructor
 MyKeyNotify(); // Destructor

 // App must define the NotifyEvent method
 int NotifyEvent(char KeyType[2], char KeyString[7]); // Keystroke callback

private:
 // Whatever you like...
};
// this is the implementation of app methods...

int MyKeyNotify::NotifyEvent(ECLPS *, char *KeyType, char *Keystring)
{
 if (...) {

869

HCL Z and I Emulator for Windows (ENGLISH)

870

 ...
 return 0; // Remove keystroke (filter)
 }
 else
 ...
 return 1; // Pass keystroke to emulator as usual
 }
}

// this would be the code in say, WinMain...

ECLPS *pPS; // Pointer to ECLPS object
MyKeyNotify *MyKeyNotifyObject; // My key notification object,derived
 // from ECLKeyNotify

try {
 pPS = new ECLPS('A'); // Create PS object for 'A' session

 // Register for keystroke events
 MyKeyNotifyObject = new MyKeyNotify();
 pPS->RegisterKeyEvent(MyKeyNotifyObject);

 // After this, MyKeyNotifyObject->NotifyEvent() will be called
 // for each operator keystroke...
}
catch (ECLErr HE) {
 // Just report the error text in a message box
 MessageBox(NULL, HE.GetMsgText(), "Error!", MB_OK);
}

UnregisterKeyEvent
The UnregisterKeyEvent method unregisters an application object previously registered for keystroke events with the

RegisterKeyEvent function. A registered application notify object should not be destroyed without first calling this

function to unregister it. If there is no notify object currently registered, or the registered object is not the NotifyObject

passed in, this function does nothing (no error is thrown).

Prototype
virtual UnregisterKeyEvent(ECLKeyNotify *NotifyObject)

Parameters
ECLKeyNotify *NotifyObject

Object currently registered for keystroke events.

Return Value
None

Chapter 2. Product Documentation

Example
See the ECLKeyNotify Class on page 818 for a UnregisterKeyEvent example.

GetFieldList
This method returns a pointer to an ECLFieldList object. The field list object can be used to iterate over the list of

fields in the host presentation space. The ECLFieldList object returned by this function is automatically destroyed

when the ECLPS object is destroyed. See ECLFieldList Class on page 810 for more information about this object.

Prototype
ECLFieldList *GetFieldList()

Parameters
None

Return Value
ECLFieldList *

Pointer to ECLFieldList object.

Example
The following example shows how to return a pointer to an ECLFieldList object.

// ECLPS::GetFieldList
//
// Display number of fields on the screen.
//---
void Sample68() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 printf("There are %lu fields on the screen of connection %c.\n",
 FieldList->GetFieldCount(), PS->GetName());

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

871

HCL Z and I Emulator for Windows (ENGLISH)

872

} // end sample

WaitForCursor
The WaitForCursor method waits for the cursor in the presentation space of the connection associated with the

ECLPS object to be located at a specified position.

Prototype
BOOL WaitForCursor(int Row, int Col, long nTimeOut=INFINITE,

 BOOL bWaitForIR=TRUE)

Parameters
int Row

Row position of the cursor. If negative, this value indicates the Row position from the bottom of the PS.

int Col

Column position of the cursor. If negative, this value indicates the Cursor position from the edge of the

PS.

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

BOOL bWaitForIR

If this value is true, after meeting the wait condition the function will wait until the OIA indicates the PS

is ready to accept input. This parameter is optional and is defaulted to TRUE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
int TimeOut = 5000;
BOOL waitOK = ps.WaitForCursor(23,1,TimeOut, TRUE);

// do the processing for the screen

Chapter 2. Product Documentation

WaitWhileCursor
The WaitWhileCursor method waits while the cursor in the presentation space of the connection associated with the

ECLPS object is located at a specified position.

Prototype
BOOL WaitWhileCursor(int Row, int Col, long nTimeOut=INFINITE,

 BOOL bWaitForIR=TRUE)

Parameters
int Row

Row position of the cursor. If negative, this value indicates the Row position from the bottom of the PS.

int Col

Column position of the cursor. If negative, this value indicates the Cursor position from the edge of the

PS.

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

BOOL bWaitForIR

If this value is true, after meeting the wait condition the function will wait until the OIA indicates the PS

is ready to accept input. This parameter is optional and is defaulted to TRUE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
int TimeOut = 5000;
BOOL waitOK = ps.WaitWhileCursor(23,1,TimeOut, TRUE);

// do the processing for when the screen goes away

873

HCL Z and I Emulator for Windows (ENGLISH)

874

WaitForString
The WaitForString method waits for the specified string to appear in the presentation space of the connection

associated with the ECLPS object. If the optional Row and Column parameters are used, the string must begin at the

specified position. If 0,0 are passed for Row,Col the method searches the entire PS.

Prototype

BOOL WaitForString(char* WaitString, int Row=0, int Col=0, long nTimeOut=INFINITE,

 BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

Parameters
char* WaitString

The string which will be the subject of the wait.

int Row

Row position of the cursor. If negative, this value indicates the Row position from the bottom of the PS.

The default is zero.

int Col

Column position of the cursor. If negative, this value indicates the Cursor position from the edge of the

PS. The default is zero.

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

BOOL bWaitForIR

If this value is true, after meeting the wait condition the function will wait until the OIA indicates the PS

is ready to accept input. This parameter is optional and is defaulted to TRUE.

BOOL bCaseSens

If this value is True, the wait condition is verified as case-sensitive. This parameter is optional. The

default is TRUE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

Chapter 2. Product Documentation

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitForString("LOGON");

// do the processing for the screen

WaitWhileString
The WaitWhileString method waits while the specified string is in the presentation space of the connection

associated with the ECLPS object. If the optional Row and Column parameters are used, the string must begin at the

specified position. If 0,0 are passed for Row,Col the method searches the entire PS.

Prototype

BOOL WaitWhileString(char* WaitString, int Row=0, int Col=0,

 long nTimeOut=INFINITE,

 BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

Parameters
char* WaitString

The string which will be the subject of the wait.

int Row

Start Row position of the string. If negative, this value indicates the Row position from the bottom of the

PS. The default is zero.

int Col

Start Column position of the string. If negative, this value indicates the Cursor position from the edge of

the PS. The default is zero.

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

BOOL bWaitForIR

If this value is true, after meeting the wait condition the function will wait until the OIA indicates the PS

is ready to accept input. This parameter is optional and is defaulted to TRUE.

875

HCL Z and I Emulator for Windows (ENGLISH)

876

BOOL bCaseSens

If this value is True, the wait condition is verified as case-sensitive. This parameter is optional. The

default is TRUE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitWhileString("LOGON");

// do the processing for when the screen goes away

WaitForStringInRect
The WaitForStringInRect method waits for the specified string to appear in the presentation space of the connection

associated with the ECLPS object in the specified Rectangle.

Prototype

BOOL WaitForStringInRect(char* WaitString, int sRow, int sCol, int eRow,int eCol,

 long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

Parameters
char* WaitString

The string which will be the subject of the wait.

int Row

Start Row position of the rectangle.

int Col

Start Column position of the rectangle.

int eRow

Ending row position of the search rectangle.

Chapter 2. Product Documentation

int eCol

Ending column position of the search rectangle.

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

BOOL bWaitForIR

If this value is true, after meeting the wait condition the function will wait until the OIA indicates the PS

is ready to accept input. This parameter is optional and is defaulted to TRUE.

BOOL bCaseSens

If this value is True, the wait condition is verified as case-sensitive. This parameter is optional. The

default is TRUE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitForStringInRect("LOGON",1,1,23,80);

// do the processing for the screen

WaitWhileStringInRect
The WaitWhileStringInRect method waits while the specified string is in the presentation space of the connection

associated with the ECLPS object in the specified Rectangle.

Prototype

BOOL WaitWhileStringInRect(char* WaitString, int sRow, int sCol, int eRow,int eCol,

 long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

Parameters
char* WaitString

The string which will be the subject of the wait.

877

HCL Z and I Emulator for Windows (ENGLISH)

878

int Row

Start Row position of the rectangle.

int Col

Start Column position of the rectangle.

int eRow

Ending row position of the search rectangle.

int eCol

Ending column position of the search rectangle.

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

BOOL bWaitForIR

If this value is true, after meeting the wait condition the function will wait until the OIA indicates the PS

is ready to accept input. This parameter is optional and is defaulted to TRUE.

BOOL bCaseSens

If this value is True, the wait condition is verified as case-sensitive. This parameter is optional. The

default is TRUE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitWhileStringInRect("LOGON",1,1,23,80);

// do the processing for when the screen goes away

WaitForAttrib
The WaitForAttrib method will wait until the specified Attribute value appears in the presentation space of the

connection associated with the ECLPS object at the specified Row/Column position. The optional MaskData

parameter can be used to control which values of the attribute you are looking for. The optional plane parameter

allows you to select any of the four PS planes.

Chapter 2. Product Documentation

Prototype

BOOL WaitForAttrib(int Row, int Col, unsigned char AttribDatum,

 unsigned char MskDatum= 0xFF, PS_PLANE plane = FieldPlane,

 long TimeOut = INFINITE, BOOL bWaitForIR = TRUE)

Parameters
int Row

Row position of the attribute.

int Col

Column position of the attribute.

unsigned char AttribDatum

The 1 byte HEX value of the attribute to wait for.

unsigned char MskDatum

The 1 byte HEX value to use as a mask with the attribute. This parameter is optional. The default value

is 0xFF.

PS_PLANE plane

The plane of the attribute to get. The plane can have the following values: TextPlane, ColorPlane,

FieldPlane, and ExfieldPlane. See ECL Planes — Format and Content on page 1159 for the content and

format of the different ECL planes.

This parameter is optional. The default is FieldPlane.

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

BOOL bWaitForIR

If this value is true, after meeting the wait condition the function will wait until the OIA indicates the PS

is ready to accept input. This parameter is optional and is defaulted to TRUE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

879

HCL Z and I Emulator for Windows (ENGLISH)

880

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitForAttrib(10, 16, 0xE0, 0xFF, FieldPlane, INFINITE, FALSE);

// do the processing for when the screen goes away

WaitWhileAttrib
The WaitWhileAttrib method waits while the specified Attribute value appears in the presentation space of the

connection associated with the ECLPS object at the specified Row/Column position. The optional MaskData

parameter can be used to control which values of the attribute you are looking for. The optional plane parameter

allows you to select any of the four PS planes.

Prototype

BOOL WaitWhileAttrib(int Row, int Col, unsigned char AttribDatum,

 unsigned char MskDatum= 0xFF, PS_PLANE plane = FieldPlane,

 long TimeOut = INFINITE, BOOL bWaitForIR = TRUE)

Parameters
int Row

Row position of the attribute.

int Col

Column position of the attribute unsigned.

char AttribDatum

The 1 byte HEX value of the attribute to wait for.

unsigned char MskDatum

The 1 byte HEX value to use as a mask with the attribute. This parameter is optional. The default value

is 0xFF.

PS_PLANE plane

The plane of the attribute to get. The plane can have the following values: TextPlane, ColorPlane,

FieldPlane, and ExfieldPlane. See ECL Planes — Format and Content on page 1159 for the content and

format of the different ECL planes.

Chapter 2. Product Documentation

This parameter is optional. The default is FieldPlane.

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

BOOL bWaitForIR

If this value is true, after meeting the wait condition the function will wait until the OIA indicates the PS

is ready to accept input. This parameter is optional and is defaulted to TRUE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitWhileAttrib(10, 16, 0xE0, 0xFF, FieldPlane, INFINITE, FALSE);

// do the processing for when the screen goes away

WaitForScreen
Synchronously waits for the screen described by the ECLScreenDesc parameter to appear in the Presentation Space.

Prototype
BOOL WaitForScreen(ECLScreenDesc* screenDesc, long TimeOut = INFINITE)

Parameters
ECLScreenDesc

screenDesc Object that describes the screen (see ECLScreenDesc Class on page 899).

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

881

HCL Z and I Emulator for Windows (ENGLISH)

882

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddCursorPos(23,1);
eclSD.AddString("LOGON");

// do the wait
int TimeOut = 5000;
BOOL waitOK = ps.WaitForScreen(eclSD, timeInt.intValue());

// do processing for the screen

WaitWhileScreen
Synchronously waits until the screen described by the ECLScreenDesc parameter is no longer in the Presentation

Space.

Prototype
BOOL WaitWhileScreen(ECLScreenDesc* screenDesc, long TimeOut = INFINITE)

Parameters
ECLScreenDesc

screenDesc Object that describes the screen (see ECLScreenDesc Methods on page 900).

long nTimeOut

The maximum length of time in milliseconds to wait. This parameter is optional. The default is INFINITE.

Return Value
The method returns TRUE if the condition is met, or FALSE if nTimeOut (in milliseconds) has elapsed.

Note: This method will block if nTimeOut is default value (INFINITE) when the test condition would return

FALSE.

Example
// set up PS
ECLPS ps = new ECLPS('A');

Chapter 2. Product Documentation

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddCursorPos(23,1);
eclSD.AddString("LOGON");

// do the wait
int TimeOut = 5000;
BOOL waitOK = ps.WaitWhileScreen(eclSD, timeInt.intValue());

// do processing for when the screen goes away

RegisterPSEvent
This member function registers an application object to receive notifications of PS update events. To use this

function the application must create an object derived from either ECLPSNotify or ECLPSListener. A pointer to that

object is then passed to this registration function. Any number of notify or listener objects may be registered at the

same time. The order in which multiple listeners receive events is not defined and should not be assumed.

Different prototypes for this function allow different types of update events to be generated, and different levels of

detail about the updates. The simplest update event is registered with an ECLPSNotify object. The type of registration

produces an event for every PS update. No information about the update is generated. See the description of the

ECLPSNotify object for more information.

For applications with need more information about the update, the ECLPSListener object can be registered.

Registration of this object gives the application the ability to ignore some types of updates (for example, local

terminal functions such as keystrokes) and to determine the region of the screen which was updated. See the

description of the ECLPSListener object for more information. When registering an ECLPSListener object, the

application can optionally specify the type of updates which are to cause events.

After an ECLPSNotify or ECLPSListener object is registered with this function, it's NotifyEvent() method will be called

whenever a update to the presentation space occurs. Multiple updates to the PS in a short time period may be

aggregated into a single event.

The application must unregister the notify/listener object before destroying it. The object will automatically be

unregistered if the ECLPS object is destroyed.

Prototype
void RegisterPSEvent(ECLPSNotify * notify)

void RegisterPSEvent(ECLPSListener * listener)

void RegisterPSEvent(ECLPSListener * listener, int type)

Parameters
ECLPSNotify *

Pointer to the ECLPSNotify object to be registered.

883

HCL Z and I Emulator for Windows (ENGLISH)

884

ECLPSListener *

Pointer to the ECLPSListener object to be registered.

int

Type of updates which will cause events:

• USER_EVENTS (local terminal functions)

• HOST_EVENTS (host updates)

• ALL_EVENTS (all updates)

Return Value
None

StartMacro
The StartMacro method runs the Z and I Emulator for Windows macro file indicated by the MacroName parameter.

Prototype
void StartMacro(String MacroName)

Parameters
String MacroName

Name of macro file located in the Z and I Emulator for Windows user-class application data directory

(specified at installation), without the file extension. This method does not support long file names.

Return Value
None

Usage Notes
You must use the short file name for the macro name. This method does not support long file names.

Example
The following example shows how to start a macro.

Dim PS as Object

Set PS = CreateObject("ZIEWin.autECLPS")
PS.StartMacro "mymacro"

Chapter 2. Product Documentation

UnregisterPSEvent
This member function unregisters an application object previously registered with the RegisterPSEvent function. An

object registered to receive events should not be destroyed without first calling this function to unregister it. If the

specific object is not currently registered, no action is taken and no error occurs.

When an ECLPSNotify or ECLPSListener object is unregistered its NotifyStop() method is called.

Prototype
void UnregisterPSEvent(ECLPSNotify * notify)

void UnregisterPSEvent(ECLPSListener * listener)

void UnregisterPSEvent(ECLPSListener * listener, int type)

Parameters
ECLPSNotify *

Pointer to the ECLPSNotify object to be unregistered.

ECLPSListener *

Pointer to the ECLPSListener object to be unregistered.

int

Type of updates which where registered:

• USER_EVENTS (local terminal functions)

• HOST_EVENTS (host updates)

• ALL_EVENTS (all updates)

Return Value
None

ECLPSEvent Class
ECLPSEvent objects are passed to ECLListener objects when the presentation space has been updated. This event

object represents the presentation space update event and contains information about the update.

There are two sets of functions an application can use to determine the region of the presentation space which

was updated. The GetStart() and GetEnd() methods return a linear position indicating the starting position and

ending position of the update region in the presentation space. Linear addressing starts at 1 for the upper-left-most

character and proceeds left-to-right wrapping from row to row. A corresponding set of functions (GetStartRow,

GetStartCol, GetEndRow, GetEndCol) return the same information in row/column coordinates.

The update region includes all PS characters from the starting character to the ending character (inclusive). If the

start and end position are not on the same row then the update region wraps from the end of one row to the first

885

HCL Z and I Emulator for Windows (ENGLISH)

886

column of the next row. Note that the update region is (generally) not rectangular. If the starting position is greater

than the ending position, the update region starts at the starting position, wraps from the last character of the screen

to the first, and continues to the ending position.

Note that the update region may encompass more than the actual changed portion of the presentation space, but it is

guaranteed to cover at least the changed area. When multiple PS updates occur in a short period of time the changes

may be aggregated into a single event in which the update region spans the sum of all the updates.

Derivation
ECLBase > ECLEvent > ECLPSEvent

Usage Notes
Applications do not use this class directly. Applications create ECLListener-derived objects which receive ECLPSEvent

objects on the ECLListener::NotifyEvent method.

ECLPSEvent Methods
The following section describes the methods that are valid for the ECLPSEvent class and all classes derived from it.

ECLPS * GetPS()

int GetType()

ULONG GetStart()

ULONG GetEnd()

ULONG GetStartRow()

ULONG GetStartCol()

ULONG GetEndRow()

ULONG GetEndCol()

GetPS
This method returns the ECLPS object which generated this event.

Prototype
ECLPS * GetPS()

Parameters
None

Chapter 2. Product Documentation

Return Value
ECLPS *

Pointer to ECLPS object which generated the event.

GetType
This method returns the type of presentation space update which generated this event. The return value is on of

USER_EVENTS or HOST_EVENTS. User events are defined as any PS update which occurs as a local terminal function

(for example, keystrokes entered by the user or by a programming API). Host events are PS updates which occur from

host outbound datastreams.

Prototype
int GetType()

Parameters
None

Return Value
int

Returns USER_EVENTS or HOST_EVENTS constants.

GetStart
This method returns the linear location in the presentation space of the start of the update region. Note that the row/

column coordinate of this location is dependant on the number of columns currently defined for the presentation

space. If this value is greater than that returned by GetEnd(), then the update region starts at this location, wraps at

the end of the screen to the beginning of the screen, and continues to the ending position.

Prototype
ULONG GetStart()

Parameters
None

887

HCL Z and I Emulator for Windows (ENGLISH)

888

Return Value
ULONG

Linear position of start of the update region.

GetEnd
This method returns the linear location in the presentation space of the end of the update region. Note that the row/

column coordinate of this location is dependant on the number of columns currently defined for the presentation

space. If this value is less than that returned by GetStart(), then the update region starts at the GetStart() location,

wraps at the end of the screen to the beginning of the screen, and continues to this position.

Prototype
ULONG GetEnd()

Parameters
None

Return Value
ULONG

Linear position of end of the update region.

GetStartRow
This method returns the row number in the presentation space of the start of the update region. If the starting row/

column position is greater than that of the ending row/column position, then the update region starts at this location,

wraps at the end of the screen to the beginning of the screen, and continues to the ending position.

Prototype
ULONG GetStartRow()

Parameters
None

Return Value
ULONG

Row number of start of the update region.

Chapter 2. Product Documentation

GetStartCol
This method returns the column number in the presentation space of the start of the update region. If the starting

row/column position is greater than that of the ending row/column position, then the update region starts at the

starting row/column, wraps at the end of the screen to the beginning of the screen, and continues to the ending

position.

Prototype
ULONG GetStartCol()

Parameters
None

Return Value
ULONG

Column number of start of the update region.

GetEndRow
This method returns the row number in the presentation space of the end of the update region. If the starting row/

column position is greater than that of the ending row/column position, then the update region starts at the starting

row/column, wraps at the end of the screen to the beginning of the screen, and continues to the ending row/column.

Prototype
ULONG GetEndRow()

Parameters
None

Return Value
ULONG

Row number of end of the update region.

889

HCL Z and I Emulator for Windows (ENGLISH)

890

GetEndCol
This method returns the column number in the presentation space of the end of the update region. If the starting row/

column position is greater than that of the ending row/column position, then the update region starts at the starting

row/column, wraps at the end of the screen to the beginning of the screen, and continues to the ending row/column.

Prototype
ULONG GetEndCol()

Parameters
None

Return Value
ULONG

Column number of end of the update region.

ECLPSListener Class
ECLPSListener is an abstract base class. An application cannot create an instance of this class directly. To use

this class, the application must define its own class which is derived from ECLPSListener. The application must

implement all the methods in this class.

The ECLPSListener class is used to allow an application to be notified of updates to the presentation space. Events

are generated whenever the host screen is updated (any data in the presentation space is changed in any plane).

This class is similar to the ECLPSNotify class in that it is used to receive notifications of PS updates. It differs

however in that it receives much more information about the cause and scope of the update than the ECLPSNotify

class. In general using this class will be more expensive in terms of processing time and memory since more

information has to be generated with each event. For applications which need to efficiently update a visual

representation of the host screen this class may be more efficient than redrawing the representation each time an

update occurs. Using this class the application can update only the portion of the visual representation that has

changed.

This class also differs from ECLPSNotify in that all the methods are pure virtual and therefor must be implemented by

the application (there is no default implementation of any methods).

Derivation
ECLBase > ECLListener > ECLPSListener

Chapter 2. Product Documentation

Usage Notes
To be notified of PS updates using this class, the application must perform the following steps:

1. Define a class derived from ECLPSListener.

2. Implement all methods of the ECLPSListener-derived class.

3. Create an instance of the derived class.

4. Register the instance with the ECLPS::RegisterPSEvent() method.

After registration is complete, updates to the presentation space will cause the NotifyEvent() method of the

ECLPSListener-derived class to be called. The application can then used the ECLPSEvent object supplied on the

method call to determine what caused the PS update and the region of the screen affected.

Note that multiple PS updates which occurred in a short period of time may be aggregated into a single event

notification.

An application can choose to provide its own constructor and destructor for the derived class. This can be useful if

the application needs to store some instance-specific data in the class and pass that information as a parameter on

the constructor.

If an error is detected during event registration, the NotifyError() member function is called with an ECLErr object.

Events may or may not continue to be generated after an error. When event generation terminates (due to an error or

some other reason) the NotifyStop() member function is called.

ECLPSListener Methods
The following section describes the methods that are valid for the ECLPSListener class and all classes derived from

it. Note that all methods except the constructor and destructor are pure virtual methods.

ECLPSListener()

ECLPSListener()

virtual void NotifyEvent(ECLPSEvent * event) = 0

virtual void NotifyError(ECLPS * PSObj, ECLErr ErrObj) = 0

virtual void NotifyStop(ECLPS * PSObj, int Reason) = 0

NotifyEvent
This method is a pure virtual member function (the application must implement this function in classes derived from

ECLPSListener). This method is called whenever the presentation space is updated and this object is registered to

receive update events. The ECLPSEvent object passed as a parameter contains information about the event including

the region of the screen that was modified. See ECLPSEvent Class on page 885 for details.

Multiple PS updates may be aggregated into a single event causing only a single call to this method. The changed

region contained in the ECLPSEvent object will encompass the sum of all the modifications.

891

HCL Z and I Emulator for Windows (ENGLISH)

892

Events may be restricted to only a particular type of PS update by supplying the appropriate parameters on the

ECLPS::RegisterPSEvent() method. For example the application may choose to be notified only for updates from the

host and not for local keystrokes.

Prototype
virtual void NotifyEvent(ECLPSEvent * event) = 0

Parameters
ECLPSEvent *

Pointer to an ECLPSEvent object which represents the PS update.

Return Value
None

NotifyError
This method is called whenever the ECLPS object detects an error during event generation. The error object contains

information about the error (see ECLErr Class on page 789). Events may continue to be generated after the error

depending on the nature of the error. If the event generation stops due to an error, the NotifyStop() method is called.

This is a pure virtual method which the application must implement.

Prototype
virtual void NotifyError(ECLPS * PSObj, ECLErr ErrObj) = 0

Parameters
ECLPS *

Pointer to the ECLPS object which generated this event.

ECLErr

An ECLErr object which describes the error.

Return Value
None

NotifyStop
This method is called when event generation is stopped for any reason (for example, due to an error condition or a

call to ECLPS::UnregisterPSEvent).

Chapter 2. Product Documentation

This is a pure virtual method which the application must implement.

The reason code parameter is currently unused and will be zero.

Prototype
virtual void NotifyStop(ECLPS * PSObj, int Reason) = 0

Parameters
ECLPS *

Pointer to the ECLPS object which generated this event.

int

Reason event generation has stopped (currently unused and will be zero).

Return Value
None

ECLPSNotify Class
ECLPSNotify is an abstract base class. An application cannot create an instance of this class directly. To use this

class, the application must define its own class which is derived from ECLPSNotify. The application must implement

the NotifyEvent() member function in its derived class. It may also optionally implement NotifyError() and NotifyStop()

member functions.

The ECLPSNotify class is used to allow an application to be notified of updates to the presentation space. Events are

generated whenever the host screen is updated (any data in the presentation space is changed in any plane).

This class is similar to the ECLPSListener class in that it is used to receive notifications of PS updates. It differs

however in that it receives no information about the cause and scope of the update than the ECLPSNotify class. In

general using this class will be more efficient in terms of processing time and memory since no information has to be

generated with each event. This class may be used for applications which only need notification of updates and do

not need the details of what caused the event or what part of the screen was updated.

This class also differs from ECLPSListener in that default implementations are provided for the NotifyError() and

NotifyStop() methods.

Derivation
ECLBase > ECLNotify > ECLPSNotify

Usage Notes
To be notified of PS updates using this class, the application must perform the following steps:

893

HCL Z and I Emulator for Windows (ENGLISH)

894

1. Define a class derived from ECLPSNotify.

2. Implement the NotifyEvent method of the ECLPSNotify-derived class.

3. Optionally implement other member functions of ECLPSNotify.

4. Create an instance of the derived class.

5. Register the instance with the ECLPS::RegisterPSEvent() method.

After registration is complete, updates to the presentation space will cause the NotifyEvent() method of the

ECLPSNotify-derived class to be called.

Note that multiple PS updates which occur in a short period of time may be aggregated into a single event

notification.

An application can choose to provide its own constructor and destructor for the derived class. This can be useful if

the application needs to store some instance-specific data in the class and pass that information as a parameter on

the constructor.

If an error is detected during event registration, the NotifyError() member function is called with an ECLErr object.

Events may or may not continue to be generated after an error. When event generation terminates (due to an error

or some other reason) the NotifyStop() member function is called. The default implementation of NotifyError() will

present a message box to the user showing the text of the error messages retrieved from the ECLErr object.

When event notification stops for any reason (error or a call the ECLPS::UnregisterPSEvent) the NotifyStop() member

function is called. The default implementation of NotifyStop() does nothing.

ECLPSNotify Methods
The following section describes the methods that are valid for the ECLPSNotify class and all classes derived from it.

ECLPSNotify()=0

~ECLPSNotify()

virtual void NotifyEvent(ECLPS * PSObj)

virtual void NotifyError(ECLPS * PSObj, ECLErr ErrObj)

virtual void NotifyStop(ECLPS * PSObj, int Reason)

NotifyEvent
This method is a pure virtual member function (the application must implement this function in classes derived from

ECLPSNotify). This method is called whenever the presentation space is updated and this object is registered to

receive update events.

Multiple PS updates may be aggregated into a single event causing only a single call to this method.

Prototype

virtual void NotifyEvent(ECLPS * PSObj)

Chapter 2. Product Documentation

Parameters
ECLPS *

Pointer to the ECLPS object which generated this event.

Return Value
None

NotifyError
This method is called whenever the ECLPS object detects an error during event generation. The error object contains

information about the error (see ECLErr Class on page 789). Events may continue to be generated after the error

depending on the nature of the error. If the event generation stops due to an error, the NotifyStop() method is called.

An application can choose to implement this function or allow the base ECLPSNotify class handle it. The default

implementation will display the error in a message box using text supplied by the ECLErr::GetMsgText() method. If the

application implements this function in its derived class it overrides this behavior.

Prototype
virtual void NotifyError(ECLPS * PSObj, ECLErr ErrObj) = 0

Parameters
ECLPS *

Pointer to the ECLPS object which generated this event.

ECLErr

An ECLErr object which describes the error.

Return Value
None

NotifyStop
This method is called when event generation is stopped for any reason (for example, due to an error condition or a

call to ECLPS::UnregisterPSEvent).

The reason code parameter is currently unused and will be zero.

The default implementation of this function does nothing.

895

HCL Z and I Emulator for Windows (ENGLISH)

896

Prototype
virtual void NotifyStop(ECLPS * PSObj, int Reason) = 0

Parameters
ECLPS *

Pointer to the ECLPS object which generated this event.

int

Reason event generation has stopped (currently unused and will be zero).

Return Value
None

ECLRecoNotify Class
ECLRecoNotify can be used to implement an object which will receive and handle ECLScreenReco events. Events are

generated whenever any screen in the PS is matched to an ECLScreenDesc object in ECLScreenReco. Special events

are generated when event generation stops and when errors occur during event generation.

To be notified of ECLScreenReco events, the application must perform the following steps:

1. Define a class which derives from the ECLRecoNotify class.

2. Implement the NotifyEvent(), NotifyStop(), and NotifyError() methods.

3. Create an instance of the new class.

4. Register the instance with the ECLScreenReco::RegisterScreen() method.

See ECLScreenReco Class on page 908 for an example.

Derivation
ECLBase > ECLNotify > ECLRecoNotify

ECLRecoNotify Methods
Valid methods for ECLRecoNotify are listed below:

ECLRecoNotify()

~ECLRecoNotify()

void NotifyEvent(ECLPS *ps, ECLScreenDesc *sd)

Chapter 2. Product Documentation

void NotifyStop(ECLPS *ps, ECLScreenDesc *sd)

void NotifyError(ECLPS *ps, ECLScreenDesc *sd, ECLErr e)

ECLRecoNotify Constructor
Creates an empty instance of ECLRecoNotify.

Prototype
ECLRecoNotify()

Parameters
None

Return Value
None

Example
See ECLScreenReco Class on page 908 for an example.

ECLRecoNotify Destructor
Destroys the instance of ECLRecoNotify

Prototype
~ECLRecoNotify()

Parameters
None

Return Value
None

Example
See ECLScreenReco Class on page 908 for an example.

897

HCL Z and I Emulator for Windows (ENGLISH)

898

NotifyEvent
Called when the ECLScreenDesc registered with the ECLRecoNotify object on ECLScreenReco appears in the

presentation space.

Prototype
void NotifyEvent(ECLPS *ps, ECLScreenDesc *sd)

Parameters
ECLPS ps

The ECLPS object that you registered.

ECLScreenDesc sd

ECLScreenDesc that you registered.

Return Value
None

Example
See ECLScreenReco Class on page 908 for an example.

NotifyStop
Called when the ECLScreenReco object stops monitoring its ECLPS objects for the registered ECLScreenDesc

objects.

Prototype
void NotifyStop(ECLPS *ps, ECLScreenDesc *sd)

Parameters
ECLPS ps

The ECLPS object that you registered.

ECLScreenDesc sd

ECLScreenDesc that you registered.

Return Value
None

Chapter 2. Product Documentation

Example
See ECLScreenReco Class on page 908 for an example.

NotifyError
Called when the ECLScreenReco object encounters an error.

Prototype
void NotifyError(ECLPS *ps, ECLScreenDesc *sd, ECLErr e)

Parameters
ECLPS ps

The ECLPS object that you registered.

ECLScreenDesc sd

ECLScreenDesc that you registered.

ECLErr e

ECLErr object that contains the error information.

Return Value
None

Example
See ECLScreenReco Class on page 908 for an example.

ECLScreenDesc Class
ECLScreenDesc is the class that is used to describe a screen for the Host Access Class Library screen recognition

technology. It uses all four major planes of the presentation space to describe it (TEXT,FIELD,EXFIELD, COLOR), as

well as the cursor position.

Using the methods provided on this object, the programmer can set up a detailed description of what a given screen

looks like in a host side application. Once an ECLScreenDesc object is created and set, it may be passed to either

the synchronous WaitFor... methods provided on ECLPS, or it may be passed to ECLScreenReco, which fires an

asynchronous event if the screen matching the ECLScreenDesc object appears in the PS.

899

HCL Z and I Emulator for Windows (ENGLISH)

900

Derivation
ECLBase > ECLScreenDesc

ECLScreenDesc Methods
Valid methods for ECLScreenDesc are listed below:

ECLScreenDesc()

~ECLScreenDesc()

void AddAttrib(BYTE attrib, UINT pos, PS_PLANE plane=FieldPlane);

void AddAttrib(BYTE attrib, UINT row, UINT col, PS_PLANE plane=FieldPlane);

void AddCursorPos(uint row, uint col)

void AddNumFields(uint num)

void AddNumInputFields(uint num)

void AddOIAInhibitStatus(OIAStatus type=NOTINHIBITED)

void AddString(LPCSTR s, UINT row, UINT col, BOOL caseSensitive=TRUE)

void AddStringInRect(char * str, int Top, int Left, int Bottom, int Right,

 BOOL caseSense=TRUE)

void Clear()

ECLScreenDesc Constructor
Creates an empty instance of ECLScreenDesc.

Prototype
ECLScreenDesc()

Parameters
None

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddCursorPos(23,1);
eclSD.AddString("LOGON");

Chapter 2. Product Documentation

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

ECLScreenDesc Destructor
Destroys the instance of ECLScreenDesc.

Prototype
~ ECLScreenDesc()

Parameters
None

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddCursorPos(23,1);
eclSD.AddString("LOGON");

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());
// destroy the descriptor
delete eclSD;

AddAttrib
Adds an attribute value at the given position to the screen description.

Prototype

void AddAttrib(BYTE attrib, UINT pos, PS_PLANE plane=FieldPlane);

void AddAttrib(BYTE attrib, UINT row, UINT col, PS_PLANE plane=FieldPlane);

901

HCL Z and I Emulator for Windows (ENGLISH)

902

Parameters
BYTE attrib

Attribute value to add.

int row

Row position.

int col

Column position.

PS_PLANE plane

Plane in which attribute resides. Valid values are: TextPlane, ColorPlane, FieldPlane, Exfield Plane,

GridPlane.TextPlane, ColorPlane, FieldPlane, and ExfieldPlane. See ECL Planes — Format and Content

on page 1159 for the content and format of the different ECL planes.

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddCursorPos
Sets the cursor position for the screen description to the given position.

Prototype
void AddCursorPos(uint row, uint col)

Chapter 2. Product Documentation

Parameters
uint row

Row position.

uint col

Column position.

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddNumFields
Adds the number of input fields to the screen description.

Prototype
void AddNumFields(uint num)

Parameters
uint num

Number of fields.

Return Value
None

903

HCL Z and I Emulator for Windows (ENGLISH)

904

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddNumInputFields
Adds the number of input fields to the screen description.

Prototype
void AddNumInputFields(uint num)

Parameters
uint num

Number of input fields.

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

Chapter 2. Product Documentation

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddOIAInhibitStatus
Sets the type of OIA monitoring for the screen description.

Prototype
void AddOIAInhibitStatus(OIAStatus type=NOTINHIBITED)

Parameters
OIAStatus type

Type of OIA status. Current valid values are DONTCARE and NOTINHIBITED.

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddString
Adds a string at the given location to the screen description. If row and column are not provided, string may appear

anywhere in the PS.

905

HCL Z and I Emulator for Windows (ENGLISH)

906

Note: Negative values are absolute positions from the bottom of the PS. For example, row=-2 is row 23 out of

24 rows.

Prototype
void AddString(LPCSTR s, UINT row, UINT col, BOOL caseSensitive=TRUE)

Parameters
LPCSTR s

String to add.

uint row

Row position.

uint col

Column position.

BOOL caseSense

If this value is TRUE, the strings are added as case-sensitive. This parameter is optional. The default is

TRUE.

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

Chapter 2. Product Documentation

AddStringInRect
Adds a string in the given rectangle to the screen description.

Prototype
void AddStringInRect(char * str, int Top, int Left, int Bottom, int Right,

 BOOL caseSense=TURE)

Parameters
char * str

String to add.

int Top

Upper left row position. This parameter is optional. The default is the first row.

int Left

Upper left column position. This parameter is optional. The default is the first column.

int Bottom

Lower right row position. This parameter is optional. The default is the last row.

int Right

Lower right column position. This parameter is optional. The default is the last column.

BOOL caseSense

If this value is TRUE, the strings are added as case-sensitive. This parameter is optional. The default is

TRUE.

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait

907

HCL Z and I Emulator for Windows (ENGLISH)

908

int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

Clear
Removes all description elements from the screen description.

Prototype
void Clear()

Parameters
None

Return Value
None

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

// do processing for the screen

eclSD.Clear() // start over for a new screen

ECLScreenReco Class
The ECLScreenReco class is the engine for the Host Access Class Library screen recognition system. It contains the

methods for adding and removing descriptions of screens. It also contains the logic for recognizing those screens

and for asynchronously calling back to your handler code for those screens.

Chapter 2. Product Documentation

Think of an object of the ECLScreenReco class as a unique recognition set. The object can have multiple ECLPS

objects that it watches for screens, multiple screens to look for, and multiple callback points to call when it sees a

screen in any of the ECLPS objects.

All you need to do is set up your ECLScreenReco objects at the start of your application, and when any screen

appears in any ECLPS that you want to monitor, your code will get called by ECLScreenReco. You do absolutely no

legwork in monitoring screens!

Here's an example of a common implementation:

class MyApp {
ECLPS myECLPS('A'); // My main HACL PS object
ECLScreenReco myScreenReco(); // My screen reco object
ECLScreenDesc myScreenDesc(); // My screen descriptor
MyRecoCallback myCallback(); // My GUI handler

MyApp() {
// Save the number of fields for below
ECLFieldList *fl = myECLPS.GetFieldList()
Fl->Refresh();
int numFields = fl->GetFieldCount();

// Set up my HACL screen description object. Say the screen
// is identified by a cursor position, a key word, and the
// number of fields
myScreenDesc.AddCursorPos(23,1);
myScreenDesc.AddString("LOGON");
myScreenDesc.AddNumFields(numFields);

// Set up HACL screen reco object, it will begin monitoring here
myScreenReco.AddPS(myECLPS);
myScreenReco.RegisterScreen(&myScreenDesc, &myCallback);
}

 MyApp() {
myScreenReco.UnregisterScreen(&myScreenDesc, &myCallback);
myScreenReco.RemovePS(&eclPS);
}

public void showMainGUI() {
// Show the main application GUI, this is just a simple example
}

// ECLRecoNotify-derived inner class (the "callback" code)
class MyRecoCallback public: ECLRecoNotify {
public: void NotifyEvent(ECLScreenDesc *sd, ECLPS *ps) {
// GUI code here for the specific screen
// Maybe fire a dialog that front ends the screen
}

public void NotifyError(ECLScreenDesc *sd, ECLPS *ps, ECLErr e) {
// Error handling
}

909

HCL Z and I Emulator for Windows (ENGLISH)

910

public void NotifyStop(ECLScreenDesc *sd, ECLPS *ps, int Reason) {
// Possible stop monitoring, not essential
}
}

}

int main() {
MyApp app = new MyApp();
app.showMainGUI();
}

Derivation
ECLBase > ECLScreenReco

ECLScreenReco Methods
The following methods are valid for ECLScreenReco:

ECLScreenReco()

~ECLScreenReco()

AddPS(ECLPS*)

IsMatch(ECLPS*, ECLScreenDesc*)

RegisterScreen(ECLScreenDesc*, ECLRecoNotify*)

RemovePS(ECLPS*)

UnregisterScreen(ECLScreenDesc*)

ECLScreenReco Constructor
Creates an empty instance of ECLScreenReco

Prototype
ECLScreenReco()

Parameters
None

Return Value
None

Example
See the example of a common implementation provided in ECLScreenReco Class on page 908.

Chapter 2. Product Documentation

ECLScreenReco Destructor
Destroys the instance of ECLScreenReco

Prototype
~ECLScreenReco()

Parameters
None

Return Value
None

Example
See the example of a common implementation provided in ECLScreenReco Class on page 908.

AddPS
Adds Presentation Space object to monitor.

Prototype
AddPS(ECLPS*)

Parameters
ECLPS*

PS object to monitor.

Return Value
None

Example
See the example of a common implementation provided in ECLScreenReco Class on page 908.

IsMatch
Static member method that allows for passing an ECLPS object and an ECLScreenDesc object and determining if

the screen description matches the PS. It is provided as a static method so any routine can call it without creating an

ECLScreenReco object.

911

HCL Z and I Emulator for Windows (ENGLISH)

912

Prototype
IsMatch(ECLPS*, ECLScreenDesc*)

Parameters
ECLPS*

ECLPS object to compare.

ECLScreenDesc*

ECLScreenDesc object to compare.

Return Value
TRUE if the screen in PS matches, FALSE otherwise.

Example
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45);
eclSD.AddNumInputFields(17);
AddOIAInhibitStatus(NOTINHIBITED);
eclSD.AddString("LOGON"., 23, 11, TRUE);
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE);
if(ECLScreenReco::IsMatch(ps,eclSD)) {
 // Handle Screen Match here . . .
}

RegisterScreen
Begins monitoring all ECLPS objects added to the screen recognition object for the given screen description. If the

screen appears in the PS, the NotifyEvent method on the ECLRecoNotify object will be called.

Prototype
RegisterScreen(ECLScreenDesc*, ECLRecoNotify*)

Parameters
ECLScreenDesc*

Screen description object to register.

Chapter 2. Product Documentation

ECLRecoNotify*

Object that contains the callback code for the screen description.

Return Value
None

Example
See the example of a common implementation provided in ECLScreenReco Class on page 908.

RemovePS
Removes the ECLPS object from screen recognition monitoring.

Prototype
RemovePS(ECLPS*)

Parameters
ECLPS*

ECLPS object to remove.

Return Value
None

Example
See the example of a common implementation provided in ECLScreenReco Class on page 908.

UnregisterScreen
Removes the screen description and its callback code from screen recognition monitoring.

Prototype
UnregisterScreen(ECLScreenDesc*)

Parameters
ECLScreenDesc*

Screen description object to remove.

913

HCL Z and I Emulator for Windows (ENGLISH)

914

Return Value
None

Example
See the example of a common implementation provided in ECLScreenReco Class on page 908.

ECLSession Class
objects, C++ECLSessionECLSession provides general emulator connection-related services and contains pointers to instances of other

objects in the Host Access Class Library.

Derivation
ECLBase > ECLConnection > ECLSession

Properties
None

Usage Notes
Because ECLSession is derived from ECLConnection, you can obtain all the information contained in an

ECLConnection object. See ECLConnection Class on page 754 for more information.

Although the objects ECLSession contains are capable of standing on their own, pointers to them exist in the

ECLSession class. When an ECLSession object is created, ECLPS, ECLOIA, ECLXfer, and ECLWinMetrics objects are

also created.

ECLSession Methods
The following section describes the methods that are valid for the ECLSession class:

ECLSession(char Name)

ECLSession(Long Handle)

~ECLSession()

ECLPS *GetPS()

ECLOIA *GetOIA()

ECLXfer *GetXfer()

ECLWinMetrics *GetWinMetrics()

void RegisterUpdateEvent(UPDATETYPE Type, ECLUpdateNotify *UpdateNotifyClass,

Chapter 2. Product Documentation

 BOOL InitEvent)

void UnregisterUpdateEvent(ECLUpdateNotify *UpdateNotifyClass,)

ECLSession Constructor
This method creates an ECLSession object from a connection name (a single, alphabetic character from A-Z or a-z)

or a connection handle. There can be only one Z and I Emulator for Windows connection open with a given name. For

example, there can only be one connection "A" open at a time.

Prototype
ECLSession(char Name)

ECLSession(long Handle)

Parameters
char Name

One-character short name of the connection (A-Z or a-z).

long Handle

Handle of an ECL connection.

Return Value
None

Example
//---
// ECLSession::ECLSession (Constructor)
//
// Build PS object from name.
//---
void Sample73() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLPS *PS; // PS object pointer

try {
 Sess = new ECLSession('A');

 PS = Sess->GetPS();
 printf("Size of presentation space is %lu.\n", PS->GetSize());

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

915

HCL Z and I Emulator for Windows (ENGLISH)

916

} // end sample

ECLSession Destructor
This method destroys an ECLSession object.

Prototype
~ECLSession();

Parameters
None

Return Value
None

Example
//---
// ECLSession::~ECLSession (Destructor)
//
// Build PS object from name and then delete it.
//---
void Sample74() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLPS *PS; // PS object pointer

try {
 Sess = new ECLSession('A');

 PS = Sess->GetPS();
 printf("Size of presentation space is %lu.\n", PS->GetSize());

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

Chapter 2. Product Documentation

GetPS
This method returns a pointer to the ECLPS object contained in the ECLSession object. Use this method to access the

ECLPS object methods. See ECLPS Class on page 840 for more information.

Prototype
ECLPS *GetPS()

Parameters
None

Return Value
ECLPS *

ECLPS object pointer.

Example
//---
// ECLSession::GetPS
//
// Get PS object from session object and use it.
//---
void Sample69() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLPS *PS; // PS object pointer

try {
 Sess = new ECLSession('A');

 PS = Sess->GetPS();
 printf("Size of presentation space is %lu.\n", PS->GetSize());

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetOIA
This method returns a pointer to the ECLOIA object contained in the ECLSession object. Use this method to access

the ECLOIA methods. See ECLOIA Class on page 823 for more information.

917

HCL Z and I Emulator for Windows (ENGLISH)

918

Prototype
ECLOIA *GetOIA()

Parameters
None

Return Value
ECLOIA *

ECLOIA object pointer.

Example
//---
// ECLSession::GetOIA
//
// Get OIA object from session object and use it.
//---
void Sample70() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLOIA *OIA; // OIA object pointer

try {
 Sess = new ECLSession('A');

 OIA = Sess->GetOIA();
 if (OIA->InputInhibited() == NotInhibited)
 printf("Input is not inhibited.\n");
 else
 printf("Input is inhibited.\n");

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetXfer
This method returns a pointer to the ECLXfer object contained in the ECLSession object. Use this method to access

the ECLXfer methods. See ECLXfer Class on page 950 for more information.

Prototype
ECLXfer *GetXfer()

Chapter 2. Product Documentation

Parameters
None

Return Value
ECLXfer *

ECLXfer object pointer.

Example
//---
// ECLSession::GetXfer
//
// Get OIA object from session object and use it.
//---
void Sample71() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLXfer *Xfer; // Xfer object pointer

try {
 Sess = new ECLSession('A');

 Xfer = Sess->GetXfer();
 Xfer->SendFile("c:\\autoexec.bat", "AUTOEXEC BAT A", "(ASCII CRLF");

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetWinMetrics
This method returns a pointer to the ECLWinMetrics object contained in the ECLSession object. Use this method to

access the ECLWinMetrics methods. See ECLWinMetrics Class on page 927 for more information.

Prototype
ECLWinMetrics *GetWinMetrics()

Parameters
None

919

HCL Z and I Emulator for Windows (ENGLISH)

920

Return Value
ECLWinMetrics *

ECLWinMetrics object pointer.

Example
//---
// ECLSession::GetWinMetrics
//
// Get WinMetrics object from session object and use it.
//---
void Sample72() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLWinMetrics *Metrics; // WinMetrics object pointer

try {
 Sess = new ECLSession('A');

 Metrics = Sess->GetWinMetrics();
 printf("Window height is %lu pixels.\n", Metrics->GetHeight());

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetPageSettings
This method returns a pointer to the ECLPageSettings object contained in the ECLSession object. Use this method to

access the ECLPageSettings methods. See ECLPageSettings Class on page 956 for more information.

Prototype
ECLPageSettings *GetPageSettings() const;

Parameters
None

Return Value
ECLPageSettings *

ECLPageSettings object pointer.

Chapter 2. Product Documentation

Example
//--
// ECLSession::GetPageSettings
//
// Get PageSettings object from session object and use it.
//--
void Sample124() {
 ECLSession *Sess; // Pointer to Session object for connection A
 ECLPageSettings *PgSet; // PageSettings object pointer

 try {
 Sess = new ECLSession('A');
 PgSet = Sess->GetPageSettings();
 printf("FaceName = %s\n", PgSet->GetFontFaceName());
 delete Sess;
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPrinterSettings
This method returns a pointer to the ECLPrinterSettings object contained in the ECLSession object. Use this method

to access the ECLPrinterSettings methods. See ECLPageSettings Class on page 956 for more information.

Prototype
ECLPrinterSettings *GetPrinterSettings() const;

Parameters
None

Return Value
ECLPrinterSettings *

ECLPrinterSettings object pointer.

Example
//--
// ECLSession::GetPrinterSettings
//
// Get PrinterSettings object from session object and use it.
//--
void Sample125() {
 ECLSession *Sess; // Pointer to Session object for connection A
 ECLPrinterSettings *PrSet; // PrinterSettings object pointer

921

HCL Z and I Emulator for Windows (ENGLISH)

922

 try {
 Sess = new ECLSession('A');
 PrSet = Sess->GetPrinterSettings();
 if (PrSet->IsPDTMode())
 printf("PDTMode\n");
 else
 printf("Not PDTMode\n");
 delete Sess;
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

RegisterUpdateEvent
Deprecated. See ECLPS::RegisterPSEvent in RegisterPSEvent on page 883.

UnregisterUpdateEvent
Deprecated. See ECLPS::UnregisterPSEvent in UnregisterPSEvent on page 884.

ECLStartNotify Class
ECLStartNotify is an abstract base class. An application cannot create an instance of this class directly. To use

this class, the application must define its own class which is derived from ECLStartNotify. The application must

implement the NotifyEvent() member function in its derived class. It may also optionally implement NotifyError() and

NotifyStop() member functions.

The ECLStartNotify class is used to allow an application to be notified of the starting and stopping of ZIEWin

connections. Start/stop events are generated whenever a ZIEWin connection (window) is started or stopped by any

means, including the ECLConnMgr start/stop methods.

To be notified of start/stop events, the application must perform the following steps:

1. Define a class derived from ECLStartNotify.

2. Implement the derived class and implement the NotifyEvent() member function.

3. Optionally implement the NotifyError() and/or NotifyStop() functions.

4. Create an instance of the derived class.

5. Register the instance with the ECLConnMgr::RegisterStartEvent() function.

The example shown demonstrates how this may be done. When the above steps are complete, each time a

connection is started or stopped the applications NotifyEvent() member function will be called. The function is

passed two parameters giving the handle of the connection, and a BOOL start/stop indicator. The application may

perform any functions required in the NotifyEvent() procedure, including calling other ECL functions. Note that the

application cannot prevent the stopping of a connection; the notification is made after the session is already stopped.

Chapter 2. Product Documentation

If an error is detected during event generation, the NotifyError() member function is called with an ECLErr object.

Events may or may not continue to be generated after an error, depending on the nature of the error. When event

generation terminates (either due to an error, by calling the ECLConnMgr::UnregisterStartEvent, or by destruction of

the ECLConnMgr object) the NotifyStop() member function is called. However event notification is terminated, the

NotifyStop() member function is always called, and the application object is unregistered.

If the application does not provide an implementation of the NotifyError() member function, the default

implementation is used (a simple message box is displayed to the user). The application can override the default

behavior by implementing the NotifyError() function in the applications derived class. Likewise, the default

NotifyStop() function is used if the application does not provide this function (the default behavior is to do nothing).

Note that the application can also choose to provide its own constructor and destructor for the derived class. This

can be useful if the application wants to store some instance-specific data in the class and pass that information as

a parameter on the constructor. For example, the application may want to post a message to an application window

when a start/stop event occurs. Rather than define the window handle as a global variable (so it would be visible to

the NotifyEvent() function), the application can define a constructor for the class which takes the window handle and

stores it in the class member data area.

The application must not destroy the notification object while it is registered to receive events.

Implementation Restriction:Currently, the ECLConnMgr object allows only one notification object to be registered for

a start/stop event notification. The ECLConnMgr::RegisterStartEvent will throw an error if a notify object is already

registered for that ECLConnMgr object.

Derivation
ECLBase > ECLNotify > ECLStartNotify

Example
//---
// ECLStartNotify class
//
// This sample demonstrates the use of:
//
// ECLStartNotify::NotifyEvent
// ECLStartNotify::NotifyError
// ECLStartNotify::NotifyStop
// ECLConnMgr::RegisterStartEvent
// ECLConnMgr::UnregisterStartEvent
//---

//...
// Define a class derived from ECLStartNotify
//...
class MyStartNotify: public ECLStartNotify
{
public:
 // Define my own constructor to store instance data
 MyStartNotify(HANDLE DataHandle);

923

HCL Z and I Emulator for Windows (ENGLISH)

924

 // We have to implement this function
 void NotifyEvent(ECLConnMgr *CMObj, long ConnHandle,
 BOOL Started);

 // We will take the default behaviour for these so we
 // don't implement them in our class:
 // void NotifyError (ECLConnMgr *CMObj, long ConnHandle, ECLErr ErrObject);
 // void NotifyStop (ECLConnMgr *CMObj, int Reason);

private:
 // We will store our application data handle here
 HANDLE MyDataH;
};

 //...
MyStartNotify::MyStartNotify(HANDLE DataHandle) // Constructor
//...
{
 MyDataH = DataHandle; // Save data handle for later use
}

//...
void MyStartNotify::NotifyEvent(ECLConnMgr *CMObj, long ConnHandle,
 BOOL Started)
//...
{
 // This function is called whenever a connection start or stops.

 if (Started)
 printf("Connection %c started.\n", CMObj->ConvertHandle2ShortName(ConnHandle));
 else
 printf("Connection %c stopped.\n", CMObj->ConvertHandle2ShortName(ConnHandle));

 return;
}

 //...
// Create the class and begin start/stop monitoring.
//...
void Sample75() {

ECLConnMgr CMgr; // Connection manager object
MyStartNotify *Event; // Ptr to my event handling object
HANDLE InstData; // Handle to application data block (for example)

try {
 Event = new MyStartNotify(InstData); // Create event handler

 CMgr.RegisterStartEvent(Event); // Register to get events

 // At this point, any connection start/stops will cause the
 // MyStartEvent::NotifyEvent() function to execute. For
 // this sample, we put this thread to sleep during this
 // time.

 printf("Monitoring connection start/stops for 60 seconds...\n");

Chapter 2. Product Documentation

 Sleep(60000);

 // Now stop event generation.
 CMgr.UnregisterStartEvent(Event);
 printf("Start/stop monitoring ended.\n");

 delete Event; // Don't delete until after unregister!
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLStartNotify Methods
The following section describes the methods that are valid for the ECLStartNotify class.

ECLStartNotfiy()

ECLStartNotify()

virtual int NotifyEvent (ECLConnMgr *CMObj, long ConnHandle,

 BOOL Started) = 0

virtual void NotifyError (ECLConnMgr *CMObj, long ConnHandle,

 ECLErr ErrObject)

virtual void NotifyStop (ECLConnMgr *CMObj int Reason)

NotifyEvent
This method is a pure virtual member function (the application must implement this function in classes derived from

ECLStartNotify). This function is called whenever a connection starts or stops and the object is registered for start/

stop events. The Started BOOL is TRUE if the connection is started, or FALSE if is stopped.

Prototype
virtual int NotifyEvent (ECLConnMgr *CMObj, long ConnHandle,

 BOOL Started) = 0

Parameters
ECLConnMgr *CMObj

This is the pointer to ECLConnMgr object in which the event occurred.

long ConnHandle

This is the handle of the connection that started or stopped.

925

HCL Z and I Emulator for Windows (ENGLISH)

926

BOOL Started

This is TRUE if the connection is started, or FALSE if the connection is stopped.

Return Value
None

NotifyError
This method is called whenever the ECLConnMgr object detects an error event generation. The error object contains

information about the error (see the ECLErr class description). Events may continue to be generated after the error,

depending on the nature of the error. If event generation stops due to an error, the NotifyStop() function is called.

The ConnHandle contains the handle of the connection that is related to the error. This value may be zero if the error

is not related to any specific connection.

An application can choose to implement this function or allow the ECLStartNotify base class to handle the error. The

base class will display the error in a message box using the text supplied by the ECLErr::GetMsgText() function. If the

application implements this function in its derived class it will override the base class function.

Prototype
virtual void NotifyError (ECLConnMgr *CMObj, long ConnHandle,

 ECLErr ErrObject)

Parameters
ECLConnMgr *CMObj

This is the ptr to ECLConnMgr object in which the error occurred.

long ConnHandle

This is the handle of the connection related to the error or zero.

ECLErr ErrObject

This is theECLErr object describing the error.

Return Value
None

NotifyStop
This method is called when event generation is stopped for any reason (for example, due to an error condition or a

call to ECLConnMgr::UnregisterStartEvent).

Chapter 2. Product Documentation

Prototype
virtual void NotifyStop (ECLConnMgr *CMObj int Reason)

Parameters
ECLConnMgr *CMObj

This is the ptr to ECLConnMgr object that is stopping notification.

int Reason

This is the unused zero.

Return Value
None

ECLUpdateNotify Class
Deprecated. See the class descriptions in ECLPSListener Class on page 890 and ECLOIA Class on page 823.

ECLWinMetrics Class
The ECLWinMetrics class performs operations on a Z and I Emulator for Windows connection window. It allows you

to perform window rectangle and position manipulation (for example, SetWindowRect, GetXpos or SetWidth), as well

as window state manipulation (for example, SetVisible or IsRestored).

Derivation
ECLBase > ECLConnection > ECLWinMetrics

Properties
None

Usage Notes
Because ECLWinMetrics is derived from ECLConnection, you can obtain all the information contained in an

ECLConnection object. See ECLConnection Class on page 754 for more information.

The ECLWinMetrics object is created for the connection identified upon construction. You may create an

ECLWinMetrics object by passing either the connection ID (a single, alphabetical character from A-Z or a-z) or the

connection handle, which is usually obtained from the ECLConnection object. There can be only one Z and I Emulator

for Windows connection with a given name or handle open at a time.

927

HCL Z and I Emulator for Windows (ENGLISH)

928

Note: There is a pointer to the ECLWinMetrics object in the ECLSession class. If you just want to manipulate

the connection window, create ECLWinMetrics on its own. If you want to do more, you may want to create an

ECLSession object.

ECLWinMetrics Methods
The following methods apply to the ECLWinMetrics class.

ECLWinMetrics(char Name)

ECLWinMetrics(long Handle)

~ECLWinMetrics()

const char *GetWindowTitle()

void SetWindowTitle(char *NewTitle)

long GetXpos()

void SetXpos(long NewXpos)

long GetYpos()

void SetYpos(long NewYpos)

long GetWidth()

void SetWidth(long NewWidth)

long GetHeight()

void SetHeight(long NewHeight)

void GetWindowRect(Long *left, Long *top, Long *right, Long *bottom)

void SetWindowRect(Long left, Long top, Long right, Long bottom)

BOOL IsVisible()

void SetVisible(BOOL SetFlag)

BOOL Active()

void SetActive(BOOL SetFlag)

BOOL IsMinimized()

void SetMinimized()

BOOL IsMaximized()

void SetMaximized()

BOOL IsRestored()

void SetRestored()

ECLWinMetrics Constructor
This method creates an ECLWinMetrics object from a connection name or connection handle. There can be only one

Z and I Emulator for Windows connection open with a given name. For example, there can be only one connection “A”

open at a time.

Chapter 2. Product Documentation

Prototype
ECLWinMetrics(char Name)

ECLWinMetrics(long Handle)

Parameters
char Name

One-character short name of the connection (A-Z or a-z).

long Handle

Handle of an ECL connection.

Return Value
None

Example
//---
// ECLWinMetrics::ECLWinMetrics (Constructor)
//
// Build WinMetrics object from name.
//---
void Sample77() {

ECLWinMetrics *Metrics; // Ptr to object

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 printf("Window of connection A is %lu pixels wide.\n",
 Metrics->GetWidth());

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLWinMetrics Destructor
This method destroys a ECLWinMetrics object.

929

HCL Z and I Emulator for Windows (ENGLISH)

930

Prototype
~ECLWinMetrics()

Parameters
None

Return Value
None

Example
//---
// ECLWinMetrics::ECLWinMetrics (Destructor)
//
// Build WinMetrics object from name.
//---
void Sample78() {

ECLWinMetrics *Metrics; // Ptr to object

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 printf("Window of connection A is %lu pixels wide.\n",
 Metrics->GetWidth());

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetWindowTitle
The GetWindowTitle method returns a pointer to a null terminate string containing the title that is currently in the title

bar for the connection associated with the ECLWinMetrics object. Do not assume that the string returned is persistent

over time. You must either make a copy of the string or make a call to this method each time you need it.

Prototype
const char *GetWindowTitle()

Chapter 2. Product Documentation

Parameters
None

Return Value
Pointer to null terminated string that contains the title.

Example
//---
// ECLWinMetrics::GetWindowTitle
//
// Display current window title of connection A.
//---
void Sample79() {

ECLWinMetrics *Metrics; // Ptr to object

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 printf("Title of connection A is: %s\n",
 Metrics->GetWindowTitle());

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetWindowTitle
The SetWindowTitle method changes the title currently in the title bar for the connection associated with the

ECLWinMetrics object to the title passed in the input parameter. A null string can be used to reset the title to the

default title.

Prototype
void SetWindowTitle(char *NewTitle)

Parameters
char *NewTitle

Null-terminated title string.

931

HCL Z and I Emulator for Windows (ENGLISH)

932

Return Value
None

Example
//---
// ECLWinMetrics::SetWindowTitle
//
// Change current window title of connection A.
//---
void Sample80() {

ECLWinMetrics *Metrics; // Ptr to object

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 // Get current title
 printf("Title of connection A is: %s\n", Metrics->GetWindowTitle());

 // Set new title
 Metrics->SetWindowTitle("New Title");
 printf("New title is: %s\n", Metrics->GetWindowTitle());

 // Reset back to original title
 Metrics->SetWindowTitle("");
 printf("Returned title to: %s\n", Metrics->GetWindowTitle());

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

Usage Notes
If NewTitle is a null string, SetWindowTitle will restore the window title to its original setting.

GetXpos
The GetXpos method returns the x position of the upper left point of the connection window rectangle.

Prototype
long GetXpos()

Chapter 2. Product Documentation

Parameters
None

Return Value
long

x position of connection window.

Example
//---
// ECLWinMetrics::GetXpos
//
// Move window 10 pixels.
//---
void Sample81() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot move minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetXpos();
 Y = Metrics->GetYpos();
 Metrics->SetXpos(X+10);
 Metrics->SetYpos(Y+10);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetXpos
The SetXpos method sets the x position of the upper left point of the connection window rectangle.

Prototype
void SetXpos(long NewXpos)

933

HCL Z and I Emulator for Windows (ENGLISH)

934

Parameters
long NewXpos

The new x coordinate of the window rectangle.

Return Value
None

Example
//---
// ECLWinMetrics::SetXpos
//
// Move window 10 pixels.
//---
void Sample83() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot move minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetXpos();
 Y = Metrics->GetYpos();
 Metrics->SetXpos(X+10);
 Metrics->SetYpos(Y+10);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetYpos
The GetYpos method returns the y position of the upper left point of the connection window rectangle.

Prototype
long GetYpos()

Chapter 2. Product Documentation

Parameters
None

Return Value
long

y position of the connection window.

Example
a//---
// ECLWinMetrics::GetYpos
//
// Move window 10 pixels.
//---
void Sample82() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot move minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetXpos();
 Y = Metrics->GetYpos();
 Metrics->SetXpos(X+10);
 Metrics->SetYpos(Y+10);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetYpos
The SetYpos method sets the y position of the upper left point of the connection window rectangle.

Prototype
void SetYpos(long NewYpos)

935

HCL Z and I Emulator for Windows (ENGLISH)

936

Parameters
long NewYpos

New y coordinate of the window rectangle.

Return Value
None

Example
//---
// ECLWinMetrics::SetYpos
//
// Move window 10 pixels.
//---
void Sample84() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot move minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetXpos();
 Y = Metrics->GetYpos();
 Metrics->SetXpos(X+10);
 Metrics->SetYpos(Y+10);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetWidth
This method returns the width of the connection window rectangle.

Prototype
long GetWidth()

Chapter 2. Product Documentation

Parameters
None

Return Value
long

Width of the connection window.

Example
//---
// ECLWinMetrics::GetWidth
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify.
//---
void Sample85() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetWidth();
 Y = Metrics->GetHeight();
 Metrics->SetWidth(X/2);
 Metrics->SetHeight(Y/2);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetWidth
The SetWidth method sets the width of the connection window rectangle.

Prototype
void SetWidth(long NewWidth)

937

HCL Z and I Emulator for Windows (ENGLISH)

938

Parameters
long NewWidth

New width of the window rectangle.

Return Value
None

Example
//---
// ECLWinMetrics::SetWidth
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify.
//---
void Sample87() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetWidth();
 Y = Metrics->GetHeight();
 Metrics->SetWidth(X/2);
 Metrics->SetHeight(Y/2);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetHeight
The GetHeight method returns the height of the connection window rectangle.

Prototype
long GetHeight()

Chapter 2. Product Documentation

Parameters
None

Return Value
long

Height of the connection window.

Example
//---
// ECLWinMetrics::GetHeight
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify.
//---
void Sample86() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetWidth();
 Y = Metrics->GetHeight();
 Metrics->SetWidth(X/2);
 Metrics->SetHeight(Y/2);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetHeight
This method sets the height of the connection window rectangle.

939

HCL Z and I Emulator for Windows (ENGLISH)

940

Prototype
void SetHeight(Long NewHeight)

Parameters
long NewHeight

New height of the window rectangle.

Return Value
None

Example
The following example shows how to use the SetHeight method to set the height of the connection window rectangle.

ECLWinMetrics *pWM;
ECLConnList ConnList();

// Create using connection handle of first connection in the list of
// active connections
try {
 if (ConnList.Count() != 0) {
 pWM = new ECLWinMetrics(ConnList.GetFirstSession()->GetHandle());

 // Set the height
 pWM->SetHeight(6081);
 }
}
catch (ECLErr ErrObj) {
 // Just report the error text in a message box
 MessageBox(NULL, ErrObj.GetMsgText(), "Error!", MB_OK);
}

GetWindowRect
This method returns the bounding points of the connection window rectangle.

Prototype
void GetWindowRect(Long *left, Long *top, Long *right, Long *bottom)

Parameters
long *left

This output parameter is set to the left coordinate of the window rectangle.

Chapter 2. Product Documentation

long *top

This output parameter is set to the top coordinate of the window rectangle.

long *right

This output parameter is set to the right coordinate of the window rectangle.

long *bottom

This output parameter is set to the bottom coordinate of the window rectangle.

Return Value
None

Example
//---
// ECLWinMetrics::GetWindowRect
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify. Also move the window.
//---
void Sample88() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y, Width, Height;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size/move minimized or maximized window.\n");
 }
 else {
 Metrics->GetWindowRect(&X, &Y, &Width, &Height);
 Metrics->SetWindowRect(X+10, Y+10, // Move window
 Width/2, Height/2); // Size window
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetWindowRect
This method sets the bounding points of the connection window rectangle.

941

HCL Z and I Emulator for Windows (ENGLISH)

942

Prototype
void SetWindowRect(long left, long top, long right, long bottom)

Parameters
long left

The left coordinate of the window rectangle.

long top

The top coordinate of the window rectangle.

long right

The right coordinate of the window rectangle.

long bottom

The bottom coordinate of the window rectangle.

Return Value
None

Example
//---
// ECLWinMetrics::SetWindowRect
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify. Also move the window.
//---
void Sample89() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y, Width, Height;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size/move minimized or maximized window.\n");
 }
 else {
 Metrics->GetWindowRect(&X, &Y, &Width, &Height);
 Metrics->SetWindowRect(X+10, Y+10, // Move window
 Width/2, Height/2); // Size window
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());

Chapter 2. Product Documentation

}

} // end sample

IsVisible
This method returns the visibility state of the connection window.

Prototype
BOOL IsVisible()

Parameters
None

Return Value
Visibility state. TRUE value if the window is visible, FALSE value if the window is not visible.

Example
//---
// ECLWinMetrics::IsVisible
//
// Get current state of window, and then toggle it.
//---
void Sample90() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsVisible(); // Get state
Metrics.SetVisible(!CurrState); // Set state

} // end sample

SetVisible
This method sets the visibility state of the connection window.

Prototype
void SetVisible(BOOL SetFlag)

943

HCL Z and I Emulator for Windows (ENGLISH)

944

Parameters
BOOL SetFlag

TRUE for visible, FALSE for invisible.

Return Value
None

Example
//---
// ECLWinMetrics::SetVisible
//
// Get current state of window, and then toggle it.
//---
void Sample91() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsVisible(); // Get state
Metrics.SetVisible(!CurrState); // Set state

} // end sample

//---

IsActive
This method returns the focus state of the connection window.

Prototype
BOOL Active()

Parameters
None

Return Value
BOOL

Focus state. TRUE if active, FALSE if not active.

Example

// ECLWinMetrics::IsActive

Chapter 2. Product Documentation

//
// Get current state of window, and then toggle it.
//---
void Sample92() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsActive(); // Get state
Metrics.SetActive(!CurrState); // Set state

} // end sample

SetActive
This method sets the focus state of the connection window.

Prototype
void SetActive(BOOL SetFlag)

Parameters
Bool SetFlag

New state. TRUE for active, FALSE for inactive.

Return Value
None

Example
The following is an example of the SetActive method.

ECLWinMetrics *pWM;
ECLConnList ConnList();

// Create using connection handle of first connection in the list of
// active connections
try {
 if (ConnList.Count() != 0) {
 pWM = new ECLWinMetrics(ConnList.GetFirstSession()->GetHandle());

 // Set to inactive if active
 if (pWM->Active())
 pWM->SetActive(FALSE);
 }
}
catch (ECLErr ErrObj) {
 // Just report the error text in a message box

945

HCL Z and I Emulator for Windows (ENGLISH)

946

 MessageBox(NULL, ErrObj.GetMsgText(), "Error!", MB_OK);
}

IsMinimized
This method returns the minimize state of the connection window.

Prototype
BOOL IsMinimized()

Parameters
None

Return Value
BOOL

Minimize state. TRUE value returned if the window is minimized; FALSE value returned if the window is

not minimized.

Example
//---
// ECLWinMetrics::IsMinimized
//
// Get current state of window, and then toggle it.
//---
void Sample93() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsMinimized(); // Get state
if (!CurrState)
 Metrics.SetMinimized(); // Set state
else
 Metrics.SetRestored();

} // end sample

SetMinimized
This method sets the connection window to minimized

Chapter 2. Product Documentation

Prototype
void SetMinimized()

Parameters
None

Return Value
None

Example
//---
// ECLWinMetrics::SetMinimized
//
// Get current state of window, and then toggle it.
//---
void Sample94() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsMinimized(); // Get state
if (!CurrState)
 Metrics.SetMinimized(); // Set state
else
 Metrics.SetRestored();

} // end sample

IsMaximized
This method returns the maximize state of the connection window.

Prototype
BOOL IsMaximized()

Parameters
None

947

HCL Z and I Emulator for Windows (ENGLISH)

948

Return Value
BOOL

Maximize state. TRUE value if the window is maximized; FALSE value if the window is not maximized.

Example
// ECLWinMetrics::IsMaximized
//
// Get current state of window, and then toggle it.
//---
void Sample97() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsMaximized(); // Get state
if (!CurrState)
 Metrics.SetMaximized(); // Set state
else
 Metrics.SetMinimized();

} // end sample

SetMaximized
This method sets the connection window to maximized.

Prototype
void SetMaximized()

Parameters
None

Return Value
None

Example
//---
// ECLWinMetrics::SetMaximized
//
// Get current state of window, and then toggle it.
//---
void Sample98() {

Chapter 2. Product Documentation

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsMaximized(); // Get state
if (!CurrState)
 Metrics.SetMaximized(); // Set state
else
 Metrics.SetMinimized();

} // end sample

IsRestored
This method returns the restore state of the connection window.

Prototype
BOOL IsRestored()

Parameters
None

Return Value
BOOL

Restore state. TRUE value if the window is restored; FALSE value if the window is not restored.

Example
//---
// ECLWinMetrics::IsRestored
//
// Get current state of window, and then toggle it.
//---
void Sample95() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsRestored(); // Get state
if (!CurrState)
 Metrics.SetRestored(); // Set state
else
 Metrics.SetMinimized();

} // end sample

949

HCL Z and I Emulator for Windows (ENGLISH)

950

SetRestored
The SetRestored method sets the connection window to restored.

Prototype
void SetRestored()

Parameters
None

Return Value
None

Example
//---
// ECLWinMetrics::SetRestored
//
// Get current state of window, and then toggle it.
//---
void Sample96() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsRestored(); // Get state
if (!CurrState)
 Metrics.SetRestored(); // Set state
else
 Metrics.SetMinimized();

} // end sample

//---

ECLXfer Class
objects, C++ECLXferECLXfer provides file transfer services.

Derivation
ECLBase > ECLConnection > ECLXfer

Chapter 2. Product Documentation

Properties
None

Usage Notes
Because ECLXfer is derived from ECLConnection, you can obtain all the information contained in an ECLConnection

object. See ECLConnection Class on page 754 for more information.

The ECLXfer object is created for the connection identified upon construction. You may create an ECLXfer object by

passing either the connection ID (a single, alphabetic character from A-Z or a-z) or the connection handle, which is

usually obtained from the ECLConnList object. There can be only one Z and I Emulator for Windows connection with a

given name or handle open at a time.

Note: There is a pointer to the ECLXfer object in the ECLSession class. If you only want to manipulate the

connection window, create an ECLXfer object on its own. If you want to do more, you may want to create an

ECLSession object.

ECLXfer Methods
The following section describes the methods that are valid for the ECLXfer class:

ECLXfer(char Name)

ECLXfer(long Handle)

~ECLXfer()

int SendFile(char *PCFile, char *HostFile, char *Options)

int ReceiveFile(char *PCFile, char *HostFile, char *Options)

ECLXfer Constructor
This method creates an ECLXfer object from a connection ID (a single, alphabetic character from A-Z or a-z) or

a connection handle. There can be only one Z and I Emulator for Windows connection open with a given ID. For

example, there can be only one connection “A” open at a time.

Prototype
ECLXfer(char Name)

ECLXfer(long Handle)

951

HCL Z and I Emulator for Windows (ENGLISH)

952

Parameters
char Name

One-character short name of the connection (A-Z or a-z).

long Handle

Handle of an ECL connection.

Return Value
None

Example
//---
// ECLXfer::ECLXfer (Constructor)
//
// Build ECLXfer object from a connection name.
//---
void Sample99() {

ECLXfer *Xfer; // Pointer to Xfer object

try {
 Xfer = new ECLXfer('A'); // Create object for connection A
 printf("Created ECLXfer for connection %c.\n", Xfer->GetName());

 delete Xfer; // Delete Xfer object
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLXfer Destructor
This method destroys an ECLXfer object.

Prototype
~ECLXfer();

Parameters
None

Chapter 2. Product Documentation

Return Value
None

Example
//---
// ECLXfer::~ECLXfer (Destructor)
//
// Build ECLXfer object from a connection name.
//---
void Sample100() {

ECLXfer *Xfer; // Pointer to Xfer object

try {
 Xfer = new ECLXfer('A'); // Create object for connection A
 printf("Created ECLXfer for connection %c.\n", Xfer->GetName());

 delete Xfer; // Delete Xfer object
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SendFile
This method sends a file from the workstation to the host.

Prototype
int SendFile(char *PCFile, char *HostFile, char *Options)

Parameters
char *PCFile

Pointer to a string containing the workstation file name to be sent to the host.

char *HostFile

Pointer to a string containing the host file name to be created or updated on the host.

char *Options

Pointer to a string containing the options to be used during the transfer.

953

HCL Z and I Emulator for Windows (ENGLISH)

954

Return Value
int

EHLLAPI return code as documented in Emulator Programming for the SendFile EHLLAPI function.

Example
//---
// ECLXfer::SendFile
//
// Send a file to a VM/CMS host with ASCII translation.
//---
void Sample101() {

ECLXfer *Xfer; // Pointer to Xfer object
int Rc;

try {
 Xfer = new ECLXfer('A'); // Create object for connection A

 printf("Sending file...\n");
 Rc = Xfer->SendFile("c:\\autoexec.bat", "autoexec bat a", "(ASCII CRLF QUIET");
 switch (Rc) {
 case 2:
 printf("File transfer failed, error in parameters.\n", Rc);
 break;
 case 3:
 printf("File transfer sucessfull.\n");
 break;
 case 4:
 printf("File transfer sucessfull, some records were segmented.\n");
 break;
 case 5:
 printf("File transfer failed, workstation file not found.\n");
 break;
 case 27:
 printf("File transfer cancelled or timed out.\n");
 break;
 default:
 printf("File transfer failed, code %u.\n", Rc);
 break;
 } // case

 delete Xfer; // Delete Xfer object
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

Chapter 2. Product Documentation

Usage Notes
File transfer options are host-dependent. The following is a list of some of the valid host options for a VM/CMS host:

ASCII

CRLF

APPEND

LRECL

RECFM

CLEAR/NOCLEAR

PROGRESS

QUIET

Refer to Emulator Programming for the list of supported hosts and associated file transfer options.

ReceiveFile
This method receives a file from the host and sends the file to the workstation.

Prototype
int ReceiveFile(char *PCFile, char *HostFile, char *Options)

Parameters
char *PCFile

Pointer to a string containing the workstation file name to be sent to the host.

char *HostFile

Pointer to a string containing the host file name to be created or updated on the host.

char *Options

Pointer to a string containing the options to be used during the transfer.

Return Value
int

EHLLAPI return code as documented in Emulator Programming for the ReceiveFile EHLLAPI function.

Example
//---
// ECLXfer::ReceiveFile
//
// Receive file from a VM/CMS host with ASCII translation.

955

HCL Z and I Emulator for Windows (ENGLISH)

956

//---
void Sample102() {

ECLXfer *Xfer; // Pointer to Xfer object
int Rc;

try {
 Xfer = new ECLXfer('A'); // Create object for connection A

 printf("Receiving file...\n");
 Rc = Xfer->ReceiveFile("c:\\temp.txt", "temp text a", "(ASCII CRLF QUIET");
 switch (Rc) {
 case 2:
 printf("File transfer failed, error in parameters.\n", Rc);
 break;
 case 3:
 printf("File transfer sucessfull.\n");
 break;
 case 4:
 printf("File transfer sucessfull, some records were segmented.\n");
 break;
 case 27:
 printf("File transfer cancelled or timed out.\n");
 break;
 default:
 printf("File transfer failed, code %u.\n", Rc);
 break;
 } // case

 delete Xfer; // Delete Xfer object
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

Usage Notes
File transfer options are host-dependent. The following is a list of some of the valid host options for a VM/CMS host:

ASCII

CRLF

APPEND

LRECL

RECFM

CLEAR/NOCLEAR

PROGRESS

QUIET

Refer to Emulator Programming for the list of supported hosts and associated file transfer options.

Chapter 2. Product Documentation

ECLPageSettings Class
The ECLPageSettings class performs operations on the session page settings. It enables you to retrieve and

configure the File → Page Setup dialog settings, such as CPI, LPI, and Face Name. Only the settings in the Text tab of

the dialog are supported.

Derivation
ECLBase > ECLConnection > ECLPageSettings

Properties
None

Restrictions
The connection associated with each method must be in a particular state for the method to succeed. If the

restrictions are not met, an appropriate exception is raised.

The following restrictions apply when any method of the ECLPageSettings class is invoked. If the restrictions are not

met, an exception is thrown.

• The connection Page Setup and Printer Setup dialogs must not be in use.

• The connection must not be printing.

• The associated connection must not be in PDT mode.

Additional restrictions might apply for each specific method.

Usage Notes
Because ECLPageSettings is derived from ECLConnection, you can obtain all the information contained in an

ECLConnection object. See ECLConnection Class on page 754 for more information.

The ECLPageSettings object is created for the connection identified upon construction. You can create an

ECLPageSettings object by passing the connection ID (a single alphabetical character from A to Z) or the connection

handle (usually obtained from the ECLConnection object). There can be only one Z and I Emulator for Windows

connection with a given name or handle open at one time.

The ECLSession class creates an instance of this object. If the application does not need other services provided by

ECLSession, you can create this object independently. Otherwise, consider creating an ECLSession object and use the

objects created by ECLSession. See ECLSession Class on page 914 for more information.

Each method supports only certain connection types of the connection associated with the ECLPageSettings object.

The supported connection types are provided in each method section. If a method is called on an unsupported

connection, an exception is thrown. Use the method GetConnType to determine the connection type.

957

HCL Z and I Emulator for Windows (ENGLISH)

958

CPI, LPI and FontSize are dependent on the property FaceName. Therefore, if CPI, LPI, and FontSize are set before the

FaceName is set, and if the values are not valid for the FaceName property, then different CPI, LPI, or FontSize values

might be reconfigured in the connection. You should set the FaceName value before setting the CPI, LPI, or FontSize.

Or you can query CPI, LPI, and FontSize each time you set FaceName to ensure that they use the desired values.

ECLPageSettings Methods
The following sections describe the methods that are valid for the ECLPageSettings class.

ECLPageSettings(char Name)

ECLPageSettings(long Handle)

~ECLPageSettings()

void SetCPI(ULONG CPI=FONT_CPI)

ULONG GetCPI() const

BOOL IsFontCPI()

void SetLPI(ULONG LPI=FONT_LPI)

ULONG GetLPI() const

BOOL IsFontLPI()

void SetFontFaceName(const char *const FaceName)

const char *GetFontFaceName() const

void SetFontSize(ULONG FontSize)

ULONG GetFontSize()

void SetMaxLinesPerPage(ULONG MPL)

ULONG GetMaxLinesPerPage() const

void SetMaxCharsPerLine(ULONG MPP)

ULONG GetMaxCharsPerLine() const

void RestoreDefaults(ULONG Tabs=PAGE_TEXT) const

Connection types
The valid connection types for the ECLPageSettings methods are as follows:

Connection Type String Value

3270 display HOSTTYPE_3270DISPLAY

5250 display HOSTTYPE_5250DISPLAY

3270 printer HOSTTYPE_3270PRINTER

VT (ASCII) emulation HOSTTYPE_VT

ECLPageSettings Constructor
This method uses a connection name or handle to create an ECLPageSettings object.

Chapter 2. Product Documentation

Prototype
ECLPageSettings(char Name)

ECLPageSettings(long Handle)

Parameters
char Name

One-character short name of the connection. Valid values are A–Z.

long Handle

Handle of an ECL connection.

Return Value
None

Example
The following example shows how to create an ECLPageSettings object using the connection name and the

connection handle.

void Sample108() {

 ECLPageSettings *PgSet1, *PgSet2; // Pointer to ECLPageSettings objects
 ECLConnList ConnList; // Connection list object

 try {
 // Create ECLPageSettings object for connection 'A'
 PgSet1 = new ECLPageSettings('A');
 // Create ECLPageSettings object for first connection in conn list
 ECLConnection *Connection = ConnList.GetFirstConnection();
 if (Connection != NULL) {
 PgSet2 = new ECLPageSettings(Connection->GetHandle());
 printf("PgSet#1 is for connection %c, PgSet #2 is for connection %c.\n",
 PgSet1->GetName(), PgSet2->GetName());
 delete PgSet1;
 delete PgSet2;
 }
 else
 printf("No connections to create PageSettings object.\n");
 } catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetCPI
This method sets the CPI (characters per inch) value in the connection. If this method is called without any

arguments, it sets the Font CPI in the connection.

959

HCL Z and I Emulator for Windows (ENGLISH)

960

Prototype
void SetCPI(ULONG CPI=FONT_CPI);

Parameters
ULONG CPI

Characters per inch. This parameter is optional. The default value is FONT_CPI.

Return Value
None

Example
void Sample109() {

 ECLPageSettings PgSet('A');

 PgSet.SetCPI(10);
 ULONG cpi = PgSet.GetCPI();
 printf("CPI = %ld\n", cpi);
 if (PgSet.IsFontCPI())
 printf("FontCPI\n");
 else
 printf("Not FontCPI\n");
} // end sample

GetCPI
This method returns the CPI (characters per inch) value of the connection. Even if Font CPI is selected in the

associated connection, this method returns the value of the CPI selected for the font in the associated connection.

If Font CPI is configured in the connection, this method does not return the constant FONT_CPI . Use the IsFontCPI

method to determine whether Font CPI is set in the connection.

Prototype
ULONG GetCPI() const;

Parameters
None

Return Value
ULONG CPI

Characters per inch.

Chapter 2. Product Documentation

Example
void Sample109() {

 ECLPageSettings PgSet('A');

 PgSet.SetCPI(10);
 ULONG cpi = PgSet.GetCPI();
 printf("CPI = %ld\n", cpi);
 if (PgSet.IsFontCPI())
 printf("FontCPI\n");
 else
 printf("Not FontCPI\n");
} // end sample

IsFontCPI
This method returns an indication of whether Font CPI is set in the connection.

Prototype
BOOL IsFontCPI();

Parameters
None

Return Value
BOOL

Possible values are as follows:

• TRUE if Font CPI is set in the connection.

• FALSE if Font CPI is not set in the connection.

Example
void Sample109() {

 ECLPageSettings PgSet('A');

 PgSet.SetCPI(10);
 ULONG cpi = PgSet.GetCPI();
 printf("CPI = %ld\n", cpi);
 if (PgSet.IsFontCPI())
 printf("FontCPI\n");
 else
 printf("Not FontCPI\n");
} // end sample

961

HCL Z and I Emulator for Windows (ENGLISH)

962

SetLPI
This method sets the LPI (lines per inch) value in the connection. If this method is called without any arguments, it

sets the Font LPI in the connection.

Prototype
void SetLPI(ULONG LPI=FONT_LPI);

Parameters
ULONG LPI

Lines per inch. This parameter is optional. The default value is FONT_LPI.

Return Value
None

Example
void Sample110() {

 ECLPageSettings PgSet('A');

 PgSet.SetLPI(10);
 ULONG lpi = PgSet.GetLPI();
 printf("LPI = %ld\n", lpi);
 if (PgSet.IsFontLPI())
 printf("FontLPI\n");
 else
 printf("Not FontLPI\n");
} // end sample

GetLPI
This method returns the LPI (lines per inch) value of the connection. Even if Font LPI is selected in the associated

connection, this method returns the value of the LPI selected for the font in the associated connection.

If Font LPI is configured in the connection, this method does not return the constant FONT_LPI. Use the IsFontLPI

method to determine whether Font LPI is set in the connection.

Prototype
ULONG GetLPI() const;

Chapter 2. Product Documentation

Parameters
None

Return Value
ULONG LPI

Lines per inch.

Example
void Sample110() {

 ECLPageSettings PgSet('A');

 PgSet.SetLPI(10);
 ULONG lpi = PgSet.GetLPI();
 printf("LPI = %ld\n", lpi);
 if (PgSet.IsFontLPI())
 printf("FontLPI\n");
 else
 printf("Not FontLPI\n");
} // end sample

IsFontLPI
This method returns an indication of whether Font LPI is set in the associated connection.

Prototype
BOOL IsFontLPI();

Parameters
None

Return Value
BOOL

Possible values are as follows:

• TRUE if Font LPI is set in the connection.

• FALSE if Font LPI is not set in the connection.

963

HCL Z and I Emulator for Windows (ENGLISH)

964

Example
void Sample110() {

 ECLPageSettings PgSet('A');

 PgSet.SetLPI(10);
 ULONG lpi = PgSet.GetLPI();
 printf("LPI = %ld\n", lpi);
 if (PgSet.IsFontLPI())
 printf("FontLPI\n");
 else
 printf("Not FontLPI\n");
} // end sample

SetFontFaceName
This method sets the font face in the connection.

Prototype
void SetFontFaceName(const char *const FaceName);

Parameters
char *FaceName

A null-terminated string that contains the font face name.

Return Value
None

Example
void Sample111() {

 ECLPageSettings PgSet('A');
 const char *Face;

 PgSet.SetFontFaceName("Courier New");
 Face = PgSet.GetFontFaceName();
 printf("FaceName = %s\n", Face);
} // end sample

Chapter 2. Product Documentation

GetFontFaceName
This method returns a pointer to a null-terminated string. The string contains the face name of the font that is

currently chosen in the page settings for the connection that is associated with the ECLPageSettings object. The

method might not return the same string each time.

The string is valid only for the lifetime of the object. You must either make a copy of the string or make a call to this

method each time you need it.

Prototype
const char *GetFontFaceName() const;

Parameters
None

Return Value
char *

A pointer to a null-terminated string that contains the face name of the font.

Example
void Sample111() {

 ECLPageSettings PgSet('A');
 const char *Face;

 PgSet.SetFontFaceName("Courier New");
 Face = PgSet.GetFontFaceName();
 printf("FaceName = %s\n", Face);
} // end sample

SetFontSize
This method sets the size of the font.

Prototype
void SetFontSize(ULONG FontSize);

Parameters
ULONG FontSize

Size of the font to set in the connection.

965

HCL Z and I Emulator for Windows (ENGLISH)

966

Return Value
None

SetMaxLinesPerPage
This method sets the maximum number of lines that can be printed per page.

Prototype
void SetMaxLinesPerPage(ULONG MPL);

Parameters
ULONG MPL

The maximum lines per page (Maximum Print Lines). Valid values are in the range 1–255.

Return Value
None

Example
void Sample113() {

 ECLPageSettings PgSet('A');

 PgSet.SetMaxLinesPerPage(40);
 ULONG MPL = PgSet.GetMaxLinesPerPage();
 printf("MaxLinesPerPage = %ld\n", MPL);
} // end sample

GetMaxLinesPerPage
This method returns the maximum number of lines that can be printed per page.

Prototype
ULONG GetMaxLinesPerPage() const;

Parameters
None

Chapter 2. Product Documentation

Return Value
ULONG

The maximum lines per page (Maximum Print Lines).

Example
void Sample113() {

 ECLPageSettings PgSet('A');

 PgSet.SetMaxLinesPerPage(40);
 ULONG MPL = PgSet.GetMaxLinesPerPage();
 printf("MaxLinesPerPage = %ld\n", MPL);
} // end sample

SetMaxCharsPerLine
This method sets the maximum number of characters that can be printed per line.

Prototype
void SetMaxCharsPerLine(ULONG MPP);

Parameters
ULONG MPP

The maximum number of characters that can be printed per line (Maximum Print Position). Valid values

are in the range 1–255.

Return Value
None

Example
void Sample114() {

 ECLPageSettings PgSet('A');

 PgSet.SetMaxCharsPerLine(50);
 ULONG MPP = PgSet.GetMaxCharsPerLine();
 printf("MaxCharsPerLine=%ld\n", MPP);
} // end sample

967

HCL Z and I Emulator for Windows (ENGLISH)

968

GetMaxCharsPerLine
This method returns the maximum number of characters that can be printed per line.

Prototype
ULONG GetMaxCharsPerLine() const;

Parameters
None

Return Value
ULONG

The maximum number of characters that can be printed per line (Maximum Print Position).

Example
void Sample114() {

 ECLPageSettings PgSet('A');

 PgSet.SetMaxCharsPerLine(50);
 ULONG MPP = PgSet.GetMaxCharsPerLine();
 printf("MaxCharsPerLine=%ld\n", MPP);
} // end sample

RestoreDefaults
This method restores the system default values of the property pages specified in the nFlags field of the PageSetup

panel. This is equivalent to clicking the Default button in the connection Page Setup dialog property pages.

Prototype
void RestoreDefaults(ULONG Flags=PAGE_TEXT) const;

Parameters
ULONG Flags

This parameter is optional. The following flag describes the name of the specified Page Setup dialog

property page. This flag can be bitwise ORed to restore the property page (defined in PCSAPI32.H).

PAGE_TEXT

This flag describes the Text property page. This is the only property page currently

supported.

Chapter 2. Product Documentation

Return Value
None

Example
void Sample115() {

 ECLPageSettings PgSet('A');

 PgSet.RestoreDefaults(PAGE_TEXT);
} // end sample

ECLPrinterSettings Class
The ECLPrinterSettings class performs operations on the printer settings of the Z and I Emulator for Windows

connection. It enables you to retrieve and configure the File → Printer Setup dialog settings, such as Printer and PDT

Mode.

Derivation
ECLBase > ECLConnection > ECLPrinterSettings

Properties
None

Restrictions
The connection associated with each method must be in a particular state for the method to succeed. If the

restrictions are not met, an appropriate exception is raised.

The following restrictions apply when any method of the ECLPrinterSettings class is invoked. If the restrictions are

not met, an exception is thrown.

• The connection Page Setup and Printer Setup dialogs must not be in use.

• The connection must not be printing.

Additional restrictions might apply for each specific method.

969

HCL Z and I Emulator for Windows (ENGLISH)

970

Usage Notes
Because ECLPrinterSettings is derived from ECLConnection, you can obtain all the information contained in an

ECLConnection object. See ECLConnection Class on page 754 for more information.

The ECLPrinterSettings object is created for the connection identified upon construction. You can create an

ECLPrinterSettings object by passing either the connection ID (a single alphabetical character from A to Z) or the

connection handle (usually obtained from the ECLConnection object). There can be only one Z and I Emulator for

Windows connection with a given name or handle open at one time.

The ECLSession class creates an instance of this object. If the application does not need other services provided by

ECLSession, you can create this object independently. Otherwise, consider creating an ECLSession object and use the

objects created by ECLSession. See ECLSession Class on page 914 for more information.

ECLPrinterSettings Methods
The following sections describe the methods that are valid for the ECLPrinterSettings class.

ECLPrinterSettings(char Name)

ECLPrinterSettings(long Handle)

~ECLPrinterSettings()

void SetPDTMode(BOOL PDTMode=TRUE, const char*const PDTFile = NULL)

const char *GetPDTFile() const

BOOL IsPDTMode() const

ECLPrinterSettings::PrintMode GetPrintMode() const

void SetPrtToDskAppend(const char *const FileName = NULL)

const char *GetPrtToDskAppendFile()

void SetPrtToDskSeparate(const char *const FileName = NULL)

const char *GetPrtToDskSeparateFile()

void SetSpecificPrinter(const char *const PrinterName)

void SetWinDefaultPrinter()

const char*GetPrinterName()

void SetPromptDialog(BOOL Prompt=TRUE)

BOOL IsPromptDialogEnabled()

ECLPrinterSettings Constructor
This method uses a connection name or handle to create an ECLPrinterSettings object.

Prototype
ECLPrinterSettings(char Name)

ECLPrinterSettings(long Handle)

Chapter 2. Product Documentation

Parameters
char Name

One-character short name of the connection. Valid values are A–Z.

long Handle

Handle of an ECL connection.

Return Value
None

Example
The following example shows how to create an ECLPrinterSettings object using the connection name and the

connection handle.

void Sample116() {
 ECLPrinterSettings *PrSet1, *PrSet2; // Pointer to ECLPrinterSettings objects
 ECLConnList ConnList; // Connection list object

 try {
 // Create ECLPrinterSettings object for connection 'A'
 PrSet1 = new ECLPrinterSettings('A');
 // Create ECLPrinterSettings object for first connection in conn list
 ECLConnection *Connection = ConnList.GetFirstConnection();
 if (Connection != NULL) {
 PrSet2 = new ECLPrinterSettings(Connection->GetHandle());
 printf("PrSet#1 is for connection %c, PrSet #2 is for connection %c.\n",
 PrSet1->GetName(), PrSet2->GetName());
 delete PrSet1;
 delete PrSet2;
 } else
 printf("No connections to create PageSettings object.\n");
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetPDTMode
This method sets the connection in PDT mode with the given PDT file, or it sets the connection in non-PDT mode (GDI

mode).

971

HCL Z and I Emulator for Windows (ENGLISH)

972

Note: If this method is called with PDTMode set to FALSE, PrintMode of the associated connection must

already be SpecificPrinter or WinDefaultPrinter.

Prototype
void SetPDTMode(BOOL PDTMode=TRUE, const char *const PDTFile = NULL);

Parameters
BOOL PDTMode

This parameter is optional. Possible values are as follows:

• TRUE to set the connection to PDT mode. This is the default value.

• FALSE to set the connection in non-PDT mode.

char *PDTFile

Null-terminated string containing the name of the PDT file.

This parameter is optional. It is used only if PDTMode is TRUE. The parameter is ignored if PDTMode is

FALSE.

Possible values are as follows:

• NULL

The PDT file configured in the connection is used. If there is no PDT file already configured in the

connection, this method fails with an exception. This is the default value.

• File name without the path

PDTFile in the PDFPDT subfolder in the Z and I Emulator for Windows installation path is used.

• Fully qualified path name of the file

If PDTFile does not exist, this method fails with an exception.

Return Value
None

Example
void Sample117() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPDTMode(TRUE, "epson.pdt");
 const char *PDTFile = PrSet.GetPDTFile();
 printf("PDT File = %s\n", PDTFile);

Chapter 2. Product Documentation

 if (PrSet.IsPDTMode())
 printf("PDTMode\n");
 else
 printf("Not PDTMode\n");
 PrSet.SetPDTMode(FALSE);
 PrSet.SetPDTMode(TRUE);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPDTFile
This method returns the PDT file configured in the connection. The method might not return the same string each

time.

The string is valid only for the lifetime of the object. You must either make a copy of the string or make a call to this

method each time you need it.

Prototype
const char *GetPDTFile() const;

Parameters
None

Return Value
char *

Possible values are as follows:

• A null-terminated string containing the fully qualified path name of the PDT file of the

connection.

• NULL if no PDT file is configured in the connection.

Example
void Sample117() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPDTMode(TRUE, "epson.pdt");
 const char *PDTFile = PrSet.GetPDTFile();
 printf("PDT File = %s\n", PDTFile);
 if (PrSet.IsPDTMode())
 printf("PDTMode\n");
 else

973

HCL Z and I Emulator for Windows (ENGLISH)

974

 printf("Not PDTMode\n");
 PrSet.SetPDTMode(FALSE);
 PrSet.SetPDTMode(TRUE);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

IsPDTMode
This method returns the state of the PDT mode of the connection.

Prototype
BOOL IsPDTMode() const;

Parameters
None

Return Value
BOOL

Possible values are as follows:

• TRUE if the connection is in PDT mode.

• FALSE if the connection is not in PDT mode.

Example
void Sample117() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPDTMode(TRUE, "epson.pdt");
 const char *PDTFile = PrSet.GetPDTFile();
 printf("PDT File = %s\n", PDTFile);
 if (PrSet.IsPDTMode())
 printf("PDTMode\n");
 else
 printf("Not PDTMode\n");
 PrSet.SetPDTMode(FALSE);
 PrSet.SetPDTMode(TRUE);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

Chapter 2. Product Documentation

GetPrintMode
This method returns an enumerated value that indicates the PrintMode of the connection. The enum data type

ECLPrinterSettings::PrintMode is defined in ECLPRSET.HPP.

PrintMode can be one of the following:

• PrtToDskAppend (Print to Disk-Append mode)

This is equivalent to selecting the Append option in the host session Printer Setup → Printer → Print to Disk

dialog.

• PrtToDskSeparate (Print to Disk-Separate mode)

This is equivalent to selecting the Separate option in the host session Printer Setup → Printer → Print to Disk

dialog.

• WinDefaultPrinter (Windows Default Printer mode)

This is equivalent to selecting the Use Windows Default Printer option in the host session Printer Setup

dialog.

• SpecificPrinter (Specific Printer mode)

This is equivalent to selecting a printer in the host session Printer Setup dialog, while leaving Use Windows

Default Printer unchecked.

Prototype
ECLPrinterSettings::PrintMode GetPrintMode() const;

Parameters
None

Return Value
ECLPrinterSettings::PrintMode

One of the PrintMode values defined in ECLPRSET.HPP.

Example
void Sample118() {

 ECLPrinterSettings PrSet('A');

 ECLPrinterSettings::PrintMode PrtMode;
 PrtMode = PrSet.GetPrintMode();
 switch (PrtMode) {
 case ECLPrinterSettings::PrtToDskAppend:
 printf("PrtToDskAppend mode\n");

975

HCL Z and I Emulator for Windows (ENGLISH)

976

 break;
 case ECLPrinterSettings::PrtToDskSeparate:
 printf("PrtToDskSeparate mode\n");
 break;
 case ECLPrinterSettings::SpecificPrinter:
 printf("SpecificPrinter mode\n");
 break;
 case ECLPrinterSettings::WinDefaultPrinter:
 printf("WinDefaultPrinter mode\n");
 break;
 }
} // end sample

SetPrtToDskAppend
This method sets the PrintMode to Print to Disk-Append mode and sets the appropriate file for this mode.

Note:

1. The associated connection must be in PDT mode.

2. The folder where this file is to be set must have write access. If it does not, this method fails with an

exception.

3. If the file exists, it will be used. Otherwise, it will be created when printing is complete.

Prototype
void SetPrtToDskAppend(const char *const FileName = NULL);

Parameters
char *FileName

Null-terminated string containing the name of the Print to Disk-Append file. This parameter is optional.

Possible values are as follows:

• NULL

The file that is currently configured for this PrintMode in the connection is used. If there is no

file already configured in the connection, the method fails with an exception. This is the default

value.

• File name, without the path

The user-class application data directory path will be used to locate the file.

• Fully qualified path name of the file

The directory must exist in the path, or the method will fail with an exception. It is not necessary

that the file exist in the path.

Chapter 2. Product Documentation

Return Value
None

Example
void Sample119() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPrtToDskAppend("dskapp.txt");
 const char *DskAppFile = PrSet.GetPrtToDskAppendFile();
 printf("Print to Disk-Append File = %s\n", DskAppFile);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPrtToDskAppendFile
This method returns the file configured for Print to Disk-Append mode. This file is called the Print to Disk-Append

file. The method might not return the same string each time.

The string is valid only for the lifetime of the object. You must either make a copy of the string or make a call to this

method each time you need it.

Prototype
const char *GetPrtToDskAppendFile();

Parameters
None

Return Value
char *

Possible values are as follows:

• A null-terminated string that contains the fully qualified path name of the Print to Disk-Append

file of the connection.

• NULL if the Print to Disk-Append file is not configured in the connection.

977

HCL Z and I Emulator for Windows (ENGLISH)

978

Example
void Sample119() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPrtToDskAppend("dskapp.txt");
 const char *DskAppFile = PrSet.GetPrtToDskAppendFile();
 printf("Print to Disk-Append File = %s\n", DskAppFile);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetPrtToDskSeparate
This method sets the connection in Print to Disk-Separate mode and sets the appropriate file for this mode.

Note:

1. The associated connection must be in PDT mode.

2. The folder where this file is to be set must have write access. If it does not, this method fails with an

exception.

3. The file name must not contain an extension. If it contains an extension, the method fails with an

exception.

Prototype
void SetPrtToDskSeparate(const char *const FileName = NULL);

Parameters
char *FileName

Null-terminated string containing the name of the Print to Disk-Separate file. This parameter is optional.

Possible values are as follows:

• NULL

The file that is currently configured for this PrintMode in the connection is used. If there is no

file already configured in the connection, the method fails with an exception. This is the default

value.

• File name, without the path

Chapter 2. Product Documentation

The user-class application data directory path will be used to locate the file.

• Fully qualified path name of the file

The directory must exist in the path, or the method will fail with an exception. It is not necessary

that the file exist in the path.

Return Value
None

Example
void Sample120() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPrtToDskSeparate("dsksep");
 const char *DskSepFile = PrSet.GetPrtToDskSeparateFile();
 printf("Print to Disk-Separate File = %s\n", DskSepFile);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPrtToDskSeparateFile
This method returns the file configured for Print to Disk-Separate mode. This file is called the Print to Disk-Separate

file. The method might not return the same string each time.

The string is valid only for the lifetime of the object. You must either make a copy of the string or make a call to this

method each time you need it.

Prototype
const char *GetPrtToDskSeparateFile();

Parameters
None

Return Value
char *

Possible values are as follows:

979

HCL Z and I Emulator for Windows (ENGLISH)

980

• A null-terminated string that contains the fully qualified path name of the Print to Disk-Separate

file.

• NULL, if no Print to Disk-Separate file is configured in the connection.

Example
void Sample120() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPrtToDskSeparate("dsksep");
 const char *DskSepFile = PrSet.GetPrtToDskSeparateFile();
 printf("Print to Disk-Separate File = %s\n", DskSepFile);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetSpecificPrinter
This method sets the connection in SpecificPrinter mode with the printer specified in the Printer parameter.

Prototype
void SetSpecificPrinter(const char *const Printer);

Parameters
char *Printer

A null-terminated string that contains the printer name and the port name. If the printer does not exist,

this method fails with an exception.

The value must have the following format:

<Printer name> on <Port Name>

For example:

• HP LaserJet 4050 Series PCL 6 on LPT1

Return Value
None

Chapter 2. Product Documentation

Example
void Sample121() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetSpecificPrinter("HCL InfoPrint 40 PS on Network Port");
 const char *Printer = PrSet.GetPrinterName();
 printf("Printer = %s\n", Printer);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetWinDefaultPrinter
This method sets the connection in WinDefaultPrinter mode—that is, the connection is made to use the Windows®

default printer. If no Windows default printer is configured in the machine, the method fails with an exception.

Prototype
void SetWinDefaultPrinter();

Parameters
None

Return Value
None

Example
void Sample122() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetWinDefaultPrinter();
 const char *Printer = PrSet.GetPrinterName();
 printf("Windows Default Printer = %s\n", Printer);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

981

HCL Z and I Emulator for Windows (ENGLISH)

982

GetPrinterName
This method returns NULL or the name of the printer configured in the connection. The method might not return the

same string each time.

The string is valid only for the lifetime of the object. You must either make a copy of the string or make a call to this

method each time you need it.

PrinterName must have the following format:

<Printer name> on <Port Name>

For example:

• HP LaserJet 4050 Series PCL 6 on LPT1

Prototype
const char *GetPrinterName();

Parameters
None

Return Value
char *

Possible values are as follows:

• A null-terminated string that contains the name of the specific printer, if the PrintMode of the

connection is SpecificPrinter.

• A null-terminated string that contains the name of the Windows default printer, if the PrintMode

of the connection is WinDefaultPrinter.

• NULL if no Printer is configured in the connection, or if the PrintMode of the connection is

PrtToDskAppend or PrtToDskSeparate.

Example
void Sample122() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetWinDefaultPrinter();
 const char *Printer = PrSet.GetPrinterName();
 printf("Windows Default Printer = %s\n", Printer);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());

Chapter 2. Product Documentation

 }
} // end sample

SetPromptDialog
This method sets or resets the option to show the Printer Setup dialog before printing.

Prototype
void SetPromptDialog(BOOL bPrompt=TRUE);

Parameters
BOOL bPrompt

This parameter is optional. Possible values are as follows:

• TRUE to show the Printer Setup dialog before printing. This is the default value.

• FALSE to not show the Printer Setup dialog before printing.

Return Value
None

Example
void Sample123() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPromptDialog();
 if (PrSet.IsPromptDialogEnabled())
 printf("Prompt Dialog before Printing - Enabled\n");
 else
 printf("Prompt Dialog before Printing - Disabled\n");
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

IsPromptDialogEnabled
This method checks whether the Printer Setup dialog is shown before printing or not.

983

HCL Z and I Emulator for Windows (ENGLISH)

984

Prototype
BOOL IsPromptDialogEnabled();

Parameters
None

Return Value
BOOL

Possible values are as follows:

• TRUE if the Printer Setup dialog is shown before printing.

• FALSE if the Printer Setup dialog is not shown before printing.

Example
void Sample123() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPromptDialog();
 if (PrSet.IsPromptDialogEnabled())
 printf("Prompt Dialog before Printing - Enabled\n");
 else
 printf("Prompt Dialog before Printing - Disabled\n");
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

Host Access Class Library Automation Objects
objects, automationdescriptionThe Host Access Class Library Automation Objects allow the Z and I Emulator for Windows product to support

Microsoft® COM-based automation technology (formerly known as OLE automation). The ECL Automation Objects

are a series of automation servers that allow automation controllers, for example, Microsoft® Visual Basic®, to

programmatically access Z and I Emulator for Windows data and functionality.

An example of this would be sending keys to Z and I Emulator for Windows presentation space. This can be

accomplished by manually typing keys in the Z and I Emulator for Windows window, but it can also be automated

through the appropriate Z and I Emulator for Windows automation server (autECLPS in this case). Using Visual

Basic® you can create the autECLPS object and then call the SendKeys method in that object with the string that is to

be placed in the presentation space.

In other words, applications that are enabled for controlling the automation protocol (automation controller) can

control some Z and I Emulator for Windows operations (automation server). Z and I Emulator for Windows supports

Chapter 2. Product Documentation

Visual Basic® Script, which uses ECL Automation objects. Refer to the Z and I Emulator for Windows Macro/Script

support for more details.

Z and I Emulator for Windows offers several automation servers to accomplish this. These servers are implemented

as real-world, intuitive objects with methods and properties that control Z and I Emulator for Windows operability.

Each object begins with autECL, for automation Host Access Class Library. The objects are as follows:

• autECLConnList, Connection List, on page autECLConnList Class on page 987, contains a list of Z and I

Emulator for Windows connections for a given system. This is contained by autECLConnMgr, but may be

created independently of autECLConnMgr.

• autECLConnMgr, Connection Manager, on page autECLConnMgr Class on page 994, provides methods and

properties to manage Z and I Emulator for Windows connections for a given system. A connection in this

context is a Z and I Emulator for Windows window.

• autECLFieldList, Field List, on page autECLFieldList Class on page 1000, performs operations on fields in an

emulator presentation space.

• autECLOIA, Operator Information Area, on page autECLOIA Class on page 1011, provides methods and

properties to query and manipulate the Operator Information Area. This is contained by autECLSession, but

may be created independently of autECLSession.

• autECLPS, Presentation Space, on page autECLPS Class on page 1029, provides methods and properties to

query and manipulate the presentation space for the related Z and I Emulator for Windows connection. This

contains a list of all the fields in the presentation space. It is contained by autECLSession, but may be created

independently of autECLSession.

• autECLScreenDesc, Screen Description, on page autECLScreenDesc Class on page 1069, provides methods

and properties to describe a screen. This may be used to wait for screens on the autECLPS object or the

autECLScreenReco object.

• autECLScreenReco, Screen Recognition, on page autECLScreenReco Class on page 1077, provides the

engine of the HACL screen recognition system.

• autECLSession, Session, on page autECLSession Class on page 1083, provides general session-related

functionality and information. For convenience, it contains the autECLPS, autECLOIA, autECLXfer,

autECLWinMetrics, autECLPageSettings, and autECLPrinterSettings objects.

• autECLWinMetrics, Window Metrics, on page autECLWinMetrics Class on page 1096, provides methods

to query the window metrics of the Z and I Emulator for Windows session associated with this object. For

example, use this object to minimize or maximize a Z and I Emulator for Windows window. This is contained

by autECLSession, but may be created independently of autECLSession.

• autECLXfer, File Transfer, on page autECLXfer Class on page 1112, provides methods and properties to

transfer files between the host and the workstation over the Z and I Emulator for Windows connection

associated with this file transfer object. This is contained by autECLSession, but may be created

independently of autECLsession.

• autECLPageSettings, Page Settings, on page autECLPageSettings Class on page 1126, provides methods

and properties to query and manipulate commonly used settings such as CPI, LPI, and Face Name of the

session Page Setup dialog. This is contained by autECLSession, but may be created independently of

autECLSession.

985

HCL Z and I Emulator for Windows (ENGLISH)

986

• autECLPrinterSettings, Printer Settings, on page autECLPrinterSettings Class on page 1137, provides

methods and properties to query and manipulate settings such as the Printer and PDT modes of the

session Printer Setup dialog. This is contained by autECLSession, but may be created independently of

autECLSession.

Figure 15: Host Access Class Library Automation Objects on page 986 is a graphical representation of the autECL

objects:

Figure 15. Host Access Class Library Automation Objects

This chapter describes each object's methods and properties in detail and is intended to cover all potential users of

the automation object. Because the most common way to use the object is through a scripting application such as

Visual Basic®, all examples are shown using a Visual Basic® format.

autSystem Class
The autSystem Class provides two utility functions that may be useful for use with some programming languages.

See autSystem Class on page 1124 for more information.

Chapter 2. Product Documentation

autECLConnList Class
autECLConnList contains information about all started connections. Its name in the registry is

ZIEWin.autECLConnList.

The autECLConnList object contains a collection of information about connections to a host. Each element of

the collection represents a single connection (emulator window). A connection in this list may be in any state (for

example, stopped or disconnected). All started connections appear in this list. The list element contains the state of

the connection.

An autECLConnList object provides a static snapshot of current connections. The list is not dynamically updated

as connections are started and stopped. The Refresh method is automatically called upon construction of the

autECLConnList object. If you use the autECLConnList object right after its construction, your list of connections

is current. However, you should call the Refresh method in the autECLConnList object before accessing its other

methods if some time has passed since its construction to ensure that you have current data. Once you have called

Refresh you may begin walking through the collection

Properties
This section describes the properties for the autECLConnList object.

Type Name Attributes

Long Count Read-only

The following table shows Collection Element Properties, which are valid for each item in the list.

Type Name Attributes

String Name Read-only

Long Handle Read-only

String ConnType Read-only

Long CodePage Read-only

Boolean Started Read-only

Boolean CommStarted Read-only

Boolean APIEnabled Read-only

Boolean Ready Read-only

Count
This is the number of connections present in the autECLConnList collection for the last call to the Refresh method.

The Count property is a Long data type and is read-only. The following example uses the Count property.

Dim autECLConnList as Object
Dim Num as Long

987

HCL Z and I Emulator for Windows (ENGLISH)

988

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
Num = autECLConnList.Count

Name
This collection element property is the connection name string of the connection. Z and I Emulator for Windows

only returns the short character ID (A-Z or a-z) in the string. There can be only one Z and I Emulator for Windows

connection open with a given name. For example, there can be only one connection “A” open at a time. Name is a

String data type and is read-only. The following example uses the Name collection element property.

Dim Str as String
Dim autECLConnList as Object
Dim Num as Long

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
Str = autECLConnList(1).Name

Handle
This collection element property is the handle of the connection. There can be only one Z and I Emulator for Windows

connection open with a given handle. Handle is a Long data type and is read-only. The following example uses the

Handle property.

Dim autECLConnList as Object
Dim Hand as Long

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
Hand = autECLConnList(1).Handle

ConnType
This collection element property is the connection type. This type may change over time. ConnType is a String data

type and is read-only. The following example shows the ConnType property.

Dim Type as String
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
Type = autECLConnList(1).ConnType

Connection types for the ConnType property are:

Chapter 2. Product Documentation

String Returned Meaning

DISP3270 3270 display

DISP5250 5250 display

PRNT3270 3270 printer

PRNT5250 5250 printer

ASCII VT emulation

CodePage
This collection element property is the code page of the connection. This code page may change over time.

CodePage is a Long data type and is read-only. The following example shows the CodePage property.

Dim CodePage as Long
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
CodePage = autECLConnList(1).CodePage

Started
This collection element property indicates whether the emulator window is started. The value is True if the window is

open; otherwise, it is False. Started is a Boolean data type and is read-only. The following example shows the Started

property.

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
autECLConnList.Refresh

' This code segment checks to see if is started.
' The results are sent to a text box called Result.
If Not autECLConnList(1).Started Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
This collection element property indicates the status of the connection to the host. The value is True if the host is

connected; otherwise, it is False. CommStarted is a Boolean data type and is read-only. The following example shows

the CommStarted property.

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

989

HCL Z and I Emulator for Windows (ENGLISH)

990

autECLConnList.Refresh

' This code segment checks to see if communications are connected
' The results are sent to a text box called CommConn.
If Not autECLConnList(1).CommStarted Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
This collection element property indicates whether the emulator is API-enabled. A connection may be enabled or

disabled depending on the state of its API settings (in a Z and I Emulator for Windows window, choose File -> API

Settings). The value is True if the emulator is enabled; otherwise, it is False. APIEnabled is a Boolean data type and is

read-only. The following example shows the APIEnabled property.

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
autECLConnList.Refresh

' This code segment checks to see if API is enabled.
' The results are sent to a text box called Result.
If Not autECLConnList(1).APIEnabled Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Ready
This collection element property indicates whether the emulator window is started, API-enabled, and connected. This

property checks for all three properties. The value is True if the emulator is ready; otherwise, it is False. Ready is a

Boolean data type and is read-only. The following example shows the Ready property.

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
autECLConnList.Refresh

' This code segment checks to see if X is ready.
' The results are sent to a text box called Result.
If Not autECLConnList(1).Ready Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLConnList Methods
The following section describes the methods that are valid for the autECLConnList object.

Chapter 2. Product Documentation

void Refresh()

Object FindConnectionByHandle(Long Hand)

Object FindConnectionByName(String Name)

Collection Element Methods
The following collection element methods are valid for each item in the list.

void StartCommunication()

void StopCommunication()

Refresh
The Refresh method gets a snapshot of all the started connections.

Note: You should call this method before accessing the autECLConnList collection to ensure that you have

current data.

Prototype
void Refresh()

Parameters
None

Return Value
None

Example
The following example shows how to use the Refresh method to get a snapshot of all the started connections.

Dim autECLPSObj as Object
Dim autECLConnList as Object

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

991

HCL Z and I Emulator for Windows (ENGLISH)

992

FindConnectionByHandle
This method finds an element in the autECLConnList object for the handle passed in the Hand parameter. This

method is commonly used to see if a given connection is alive in the system.

Prototype
Object FindConnectionByHandle(Long Hand)

Parameters
Long Hand

Handle to search for in the list.

Return Value
Object

Collection element dispatch object.

Example
The following example shows how to find an element by the connection handle.

Dim Hand as Long
Dim autECLConnList as Object
Dim ConnObj as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the collection
autECLConnList.Refresh
' Assume Hand obtained earlier
Set ConnObj = autECLConnList.FindConnectionByHandle(Hand)
Hand = ConnObj.Handle

FindConnectionByName
This method finds an element in the autECLConnList object for the name passed in the Name parameter. This method

is commonly used to see if a given connection is alive in the system.

Prototype
Object FindConnectionByName(String Name)

Parameters
String Name

Name to search for in the list.

Chapter 2. Product Documentation

Return Value
Object

Collection element dispatch object.

Example
The following example shows how to find an element in the autECLConnList object by the connection name.

Dim Hand as Long
Dim autECLConnList as Object
Dim ConnObj as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the collection
autECLConnList.Refresh
' Assume Hand obtained earlier
Set ConnObj = autECLConnList.FindConnectionByName("A")
Hand = ConnObj.Handle

StartCommunication
autECLConnListmethodsStartCommunicationThe StartCommunication collection element method connects the ZIEWin emulator to the host data stream. This has

the same effect as going to the ZIEWin emulator Communication menu and choosing Connect.

Prototype
void StartCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

'Start the first session
autECLConnList.Refresh
autECLConnList(1).StartCommunication()

993

HCL Z and I Emulator for Windows (ENGLISH)

994

StopCommunication
The StopCommunication collection element method disconnects the ZIEWin emulator to the host data stream. This

has the same effect as going to the ZIEWin emulator Communication menu and choosing Disconnect.

Prototype
void StopCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to disconnect a ZIEWin emulator session from the host.

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

'Start the first session
autECLConnList.Refresh
autECLConnList(1).StartCommunication()
'
'Interact programmatically with host
'
autECLConnList.Refresh
'Stop the first session
autECLConnList(1).StartCommunication()

autECLConnMgr Class
autECLConnMgr manages all Z and I Emulator for Windows connections on a given machine. It contains methods

relating to the connection management such as starting and stopping connections. It also creates an autECLConnList

object to enumerate the list of all known connections on the system (see autECLConnList Class on page 987). Its

name in the registry is ZIEWin.autECLConnMgr.

Properties
This section describes the properties for the autECLConnMgr object.

Type Name Attributes

autECLConnList Object autECLConnList Read-only

Chapter 2. Product Documentation

autECLConnList
The autECLConnMgr object contains an autECLConnList object. See autECLConnList Class on page 987 for details

on its methods and properties. The property has a value of autECLConnList, which is an autECLConnList dispatch

object. The following example shows this property.

Dim Mgr as Object
Dim Num as Long

Set Mgr = CreateObject("ZIEWin.autECLConnMgr ")

Mgr.autECLConnList.Refresh
Num = Mgr.autECLConnList.Count

autECLConnMgr Methods
The following section describes the methods that are valid for autECLConnMgr.

void RegisterStartEvent()

void UnregisterStartEvent()

void StartConnection(String ConfigParms)

void StopConnection(Variant Connection, [optional] String StopParms)

RegisterStartEvent
This method registers an autECLConnMgr object to receive notification of start events in sessions.

Prototype
void RegisterStartEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1000 for an example.

UnregisterStartEvent
Ends Start Event Processing

995

HCL Z and I Emulator for Windows (ENGLISH)

996

Prototype
void UnregisterStartEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1000 for an example.

StartConnection
This member function starts a new Z and I Emulator for Windows emulator window. The ConfigParms string contains

connection configuration information as explained under Usage Notes on page 996.

Prototype
void StartConnection(String ConfigParms)

Parameters
String ConfigParms

Configuration string.

Return Value
None

Usage Notes
The configuration string is implementation-specific. Different implementations of the autECL objects may require

different formats or information in the configuration string. The new emulator is started upon return from this call, but

it may or may not be connected to the host.

For Z and I Emulator for Windows, the configuration string has the following format:

PROFILE=[']<filename>['] [CONNNAME=<c>] [WINSTATE=<MAX|MIN|RESTORE|HIDE>]

Optional parameters are enclosed in square brackets []. The parameters are separated by at least one blank.

Parameters may be in upper, lower, or mixed case and may appear in any order. The meaning of each parameter is as

follows:

Chapter 2. Product Documentation

• PROFILE=<filename>: Names the Z and I Emulator for Windows workstation profile (.WS file), which contains

the configuration information. This parameter is not optional; a profile name must be supplied. If the file name

contains blanks the name must be enclosed in single quotation marks. The <filename> value may be either

the profile name with no extension, the profile name with the .WS extension, or the fully qualified profile name

path.

• CONNNAME=<c> specifies the short ID of the new connection. This value must be a single, alphabetic

character (A-Z or a-z). If this value is not specified, the next available connection ID is assigned automatically.

• WINSTATE=<MAX|MIN|RESTORE|HIDE> specifies the initial state of the emulator window. The default if this

parameter is not specified is RESTORE.

Example
The following example shows how to start a new Z and I Emulator for Windows emulator window.

Dim Mgr as Object
Dim Obj as Object
Dim Hand as Long

Set Mgr = CreateObject("ZIEWin.autECLConnMgr ")
Mgr.StartConnection("profile=coax connname=e")

StopConnection
The StopConnection method stops (terminates) the emulator window identified by the connection handle. See Usage

Notes on page 998 for contents of the StopParms string.

Prototype
void StopConnection(Variant Connection, [optional] String StopParms)

Parameters
Variant Connection

Connection name or handle. Legal types for this variant are short, long, BSTR, short by reference, long by

reference, and BSTR by reference.

String StopParms

Stop parameters string. See usage notes for format of string. This parameter is optional.

Return Value
None

997

HCL Z and I Emulator for Windows (ENGLISH)

998

Usage Notes
The stop parameter string is implementation-specific. Different implementations of the autECL objects may require a

different format and contents of the parameter string. For Z and I Emulator for Windows, the string has the following

format:

[SAVEPROFILE=<YES|NO|DEFAULT>]

Optional parameters are enclosed in square brackets []. The parameters are separated by at least one blank.

Parameters may be in upper, lower, or mixed case and may appear in any order. The meaning of each parameter is as

follows:

• SAVEPROFILE=<YES|NO|DEFAULT> controls the saving of the current configuration back to the workstation

profile (.WS file). This causes the profile to be updated with any configuration changes you may have made. If

NO is specified, the connection is stopped and the profile is not updated. If YES is specified, the connection is

stopped and the profile is updated with the current (possibly changed) configuration. If DEFAULT is specified,

the update option is controlled by the File->Save On Exit emulator menu option. If this parameter is not

specified, DEFAULT is used.

Example
The following example shows how to stop the emulator window identified by the connection handle.

Dim Mgr as Object
Dim Hand as Long

Set Mgr = CreateObject("ZIEWin.autECLConnMgr ")

' Assume we've got connections open and the Hand parm was obtained earlier
Mgr.StopConnection Hand, "saveprofile=no"
'or
Mgr.StopConnection "B", "saveprofile=no"

autECLConnMgr Events
The following events are valid for autECLConnMgr:

void NotifyStartEvent(By Val Handle As Variant, By Val Started As Boolean)

NotifyStartError(By Val ConnHandle As Variant)

void NotifyStartStop(Long Reason)

NotifyStartEvent
autECLConnMgreventsNotifyStartEventA Session has started or stopped.

Prototype
void NotifyStartEvent(By Val Handle As Variant, By Val Started As Boolean)

Chapter 2. Product Documentation

Note: Visual Basic will create this subroutine correctly.

Parameters
By Val Handle As Variant

Handle of the Session that started or stopped.

By Val Started As Boolean

True if the Session is started, False otherwise.

Example
See Event Processing Example on page 1000 for an example.

NotifyStartError
This event occurs when an error occurs in Event Processing.

Prototype
NotifyStartError(By Val ConnHandle As Variant)

Note: Visual Basic will create this subroutine correctly.

Parameters
None

Example
See Event Processing Example on page 1000 for an example.

NotifyStartStop
This event occurs when event processing stops.

Prototype
void NotifyStartStop(Long Reason)

999

HCL Z and I Emulator for Windows (ENGLISH)

1000

Parameters
Long Reason

Reason code for the stop. Currently, this will always be 0.

Event Processing Example
The following is a short example of how to implement Start Events:

Option Explicit
Private WithEvents mCmgr As autECLConnMgr 'AutConnMgr added as reference
dim mSess as object

sub main()
'Create Objects
Set mCmgr = New autECLConnMgr
Set mSess = CreateObject("ZIEWin.autECLSession")
mCmgr.RegisterStartEvent 'register for PS Updates

' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
call DisplayGUI()
mCmgr.UnregisterStartEvent
set mCmgr = Nothing
set mSess = Nothing
End Sub

'This sub will get called when a session is started or stopped
Private Sub mCmgr_NotifyStartEvent(Handle as long, bStarted as Boolean)
' do your processing here
if (bStarted) then
mSess.SetConnectionByHandle Handle
end if
End Sub

'This event occurs if an error happens
Private Sub mCmgr_NotifyStartError()
'Do any error processing here
End Sub

Private Sub mCmgr_NotifyStartStop(Reason As Long)
'Do any stop processing here
End Sub

autECLFieldList Class
autECLFieldList performs operations on fields in an emulator presentation space. This object does not stand on its

own. It is contained by autECLPS, and can only be accessed through an autECLPS object. autECLPS can stand alone

or be contained by autECLSession.

autECLFieldList contains a collection of all the fields on a given presentation space. Each element of the collection

contains the elements shown in Collection Element Properties on page 1001.

Chapter 2. Product Documentation

An autECLFieldList object provides a static snapshot of what the presentation space contained when the Refresh

method was called.

Note: You should call the Refresh method in the autECLFieldList object before accessing its elements to

ensure that you have current field data. Once you have called Refresh, you may begin walking through the

collection.

Properties
This section describes the properties and the collection element properties for the autECLFieldList object.

Type Name Attributes

Long Count Read-only

The following properties are collection element properties and are valid for each item in the list.

Type Name Attributes

Long StartRow Read-only

Long StartCol Read-only

Long EndRow Read-only

Long EndCol Read-only

Long Length Read-only

Boolean Modified Read-only

Boolean Protected Read-only

Boolean Numeric Read-only

Boolean HighIntensity Read-only

Boolean PenDetectable Read-only

Boolean Display Read-only

Count
This property is the number of fields present in the autECLFieldList collection for the last call to the Refresh method.

Count is a Long data type and is read-only. The following example shows this property.

Dim NumFields as long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

1001

HCL Z and I Emulator for Windows (ENGLISH)

1002

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
NumFields = autECLPSObj.autECLFieldList.Count

StartRow
This collection element property is the row position of the first character in a given field in the autECLFieldList

collection. StartRow is a Long data type and is read-only. The following example shows this property.

Dim StartRow as Long
Dim StartCol as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 StartRow = autECLPSObj.autECLFieldList(1).StartRow
 StartCol = autECLPSObj.autECLFieldList(1).StartCol
Endif

StartCol
This collection element property is the column position of the first character in a given field in the autECLFieldList

collection. StartCol is a Long data type and is read-only. The following example shows this property.

Dim StartRow as Long
Dim StartCol as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 StartRow = autECLPSObj.autECLFieldList(1).StartRow
 StartCol = autECLPSObj.autECLFieldList(1).StartCol
Endif

Chapter 2. Product Documentation

EndRow
This collection element property is the row position of the last character in a given field in the autECLFieldList

collection. EndRow is a Long data type and is read-only. The following example shows this property.

Dim EndRow as Long
Dim EndCol as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 EndRow = autECLPSObj.autECLFieldList(1).EndRow
 EndCol = autECLPSObj.autECLFieldList(1).EndCol
Endif

EndCol
This collection element property is the column position of the last character in a given field in the autECLFieldList

collection. EndCol is a Long data type and is read-only. The following example shows this property.

Dim EndRow as Long
Dim EndCol as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 EndRow = autECLPSObj.autECLFieldList(1).EndRow
 EndCol = autECLPSObj.autECLFieldList(1).EndCol
Endif

Length
This collection element property is the length of a given field in the autECLFieldList collection. Length is a Long data

type and is read-only. The following example shows this property.

Dim Len as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object

1003

HCL Z and I Emulator for Windows (ENGLISH)

1004

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 Len = autECLPSObj.autECLFieldList(1).Length
Endif

Modified
This collection element property indicates if a given field in the autECLFieldList collection has a modified attribute.

Modified is a Boolean data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).Modified) Then
 ' do whatever
 Endif
Endif

Protected
This collection element property indicates if a given field in the autECLFieldList collection has a protected attribute.

Protected is a Boolean data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).Protected) Then
 ' do whatever

Chapter 2. Product Documentation

 Endif
Endif

Numeric
This collection element property indicates if a given field in the autECLFieldList collection has a numeric input only

attribute. Numeric is a Boolean data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).Numeric) Then
 ' do whatever
 Endif
Endif

HighIntensity
This collection element property indicates if a given field in the autECLFieldList collection has a high intensity

attribute. HighIntensity is a Boolean data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).HighIntensity) Then
 ' do whatever
 Endif
Endif

PenDetectable
This collection element property indicates if a given field in the autECLFieldList collection has a pen detectable

attribute. PenDetectable is a Boolean data type and is read-only. The following example shows this property.

1005

HCL Z and I Emulator for Windows (ENGLISH)

1006

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).PenDetectable) Then
 ' do whatever
 Endif
Endif

Display
This collection element property indicates whether a given field in the autECLFieldList collection has a display

attribute. Display is a Boolean data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).Display) Then
 ' do whatever
 Endif
Endif

autECLFieldList Methods
The following section describes the methods that are valid for the autECLFieldList object.

void Refresh()

Object FindFieldByRowCol(Long Row, Long Col)

Object FindFieldByText(String text, [optional] Long Direction, [optional] Long StartRow,

 [optional] Long StartCol)

Chapter 2. Product Documentation

Collection Element Methods
The following collection element methods are valid for each item in the list.

String GetText()

void SetText(String Text)

Refresh
The Refresh method gets a snapshot of all the fields.

Note: You should call the Refresh method before accessing the field collection to ensure that you have

current field data.

Prototype
void Refresh()

Parameters
None

Return Value
None

Example
The following example shows how to get a snapshot of all the fields for a given presentation space.

Dim NumFields as long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh()
NumFields = autECLPSObj.autECLFieldList.Count

1007

HCL Z and I Emulator for Windows (ENGLISH)

1008

FindFieldByRowCol
This method searches the autECLFieldList object for a field containing the given row and column coordinates. The

value returned is a collection element object in the autECLFieldList collection.

Prototype
Object FindFieldByRowCol(Long Row, Long Col)

Parameters
Long Row

Field row to search for.

Long Col

Field column to search for.

Return Value
Object

Dispatch object for the autECLFieldList collection item.

Example
The following example shows how to search the autECLFieldList object for a field containing the given row and

column coordinates.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim FieldElement as Object

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList)

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and search for field at row 2 col 1
autECLPSObj.autECLFieldList.Refresh(1)
Set FieldElement = autECLPSObj.autECLFieldList.FindFieldByRowCol(2, 1)
FieldElement.SetText("HCL")

FindFieldByText
This method searches the autECLFieldList object for a field containing the string passed in as Text. The value

returned is a collection element object in the autECLFieldList collection.

Chapter 2. Product Documentation

Prototype
Object FindFieldByText(String Text, [optional] Long Direction, [optional] Long StartRow, [optional] Long StartCol)

Parameters
String Text

The text string to search for.

Long StartRow

Row position in the presentation space at which to begin the search.

Long StartCol

Column position in the presentation space at which to begin the search.

Long Direction

Direction in which to search. Values are 1 for search forward, 2 for search backward

Return Value
Object

Dispatch object for the autECLFieldList collection item.

Example
The following example shows how to search the autECLFieldList object for a field containing the string passed in as

text.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim FieldElement as Object

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and search for field with text
autECLPSObj.autECLFieldList.Refresh(1)
set FieldElement = autECLPSObj.autECLFieldList.FindFieldByText "HCL"

' Or... search starting at row 2 col 1
set FieldElement = autECLPSObj.autECLFieldList.FindFieldByText "HCL", 2, 1
' Or... search starting at row 2 col 1 going backwards
set FieldElement = autECLPSObj.autECLFieldList.FindFieldByText "HCL", 2, 2, 1

FieldElement.SetText("Hello.")

1009

HCL Z and I Emulator for Windows (ENGLISH)

1010

GetText
The collection element method GetText retrieves the characters of a given field in an autECLFieldList item.

Prototype
String GetText()

Parameters
None

Return Value
String

Field text.

Example
The following example shows how to use the GetText method.

Dim autECLPSObj as Object
Dim TextStr as String

' Initialize the connection
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

autECLPSObj.autECLFieldList.Refresh()
TextStr = autECLPSObj.autECLFieldList(1).GetText()

SetText
This method populates a given field in an autECLFieldList item with the character string passed in as text. If the text

exceeds the length of the field, the text is truncated.

Prototype
void SetText(String Text)

Parameters
String text

String to set in field

Return Value
None

Chapter 2. Product Documentation

Example
The following example shows how to populate the field in an autECLFieldList item with the character string passed in

as text.

Dim NumFields as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and set the first field with some text
autECLPSObj.autECLFieldList.Refresh(1)
autECLPSObj.autECLFieldList(1).SetText("HCL is a cool company")

autECLOIA Class
The autECLOIA object retrieves status from the Host Operator Information Area. Its name in the registry is

ZIEWin.autECLOIA.

You must initially set the connection for the object you create. Use SetConnectionByName or SetConnectionByHandle

to initialize your object. The connection may be set only once. After the connection is set, any further calls to the set

connection methods cause an exception. If you do not set the connection and try to access a property or method, an

exception is also raised.

Note: The autECLOIA object in the autECLSession object is set by the autECLSession object.

The following example shows how to create and set the autECLOIA object in Visual Basic.

DIM autECLOIA as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
autECLOIA.SetConnectionByName("A")

Properties
This section describes the properties for the autECLOIA object.

Type Name Attributes

Boolean Alphanumeric Read-only

Boolean APL Read-only

Boolean UpperShift Read-only

Boolean Numeric Read-only

1011

HCL Z and I Emulator for Windows (ENGLISH)

1012

Type Name Attributes

Boolean CapsLock Read-only

Boolean InsertMode Read-only

Boolean CommErrorReminder Read-only

Boolean MessageWaiting Read-only

Long InputInhibited Read-only

String Name Read-only

Long Handle Read-only

String ConnType Read-only

Long CodePage Read-only

Boolean Started Read-only

Boolean CommStarted Read-only

Boolean APIEnabled Read-only

Boolean Ready Read-only

Boolean NumLock Read-only

Alphanumeric
This property queries the operator information area to determine whether the field at the cursor location is

alphanumeric. Alphanumeric is a Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

If autECLOIA.Alphanumeric Then...

APL
This property queries the operator information area to determine whether the keyboard is in APL mode. APL is a

Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

Chapter 2. Product Documentation

' Check if the keyboard is in APL mode
if autECLOIA.APL Then...

Katakana
This property queries the operator information area to determine whether Katakana characters are enabled. Katakana

is a Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if Katakana characters are available
if autECLOIA.Katakana Then...

Hiragana
This property queries the operator information area to determine whether Hiragana characters are enabled. Hiragana

is a Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if Hiragana characters are available
if autECLOIA.Hiragana Then...

UpperShift
This property queries the operator information area to determine whether the keyboard is in uppershift mode.

Uppershift is a Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection

1013

HCL Z and I Emulator for Windows (ENGLISH)

1014

autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if the keyboard is in uppershift mode
If autECLOIA.UpperShift then...

Numeric
This property queries the operator information area to determine whether the field at the cursor location is numeric.

Numeric is a Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if the cursor location is a numeric field
If autECLOIA.Numeric Then...

CapsLock
This property queries the operator information area to determine if the keyboard CapsLock key is on. CapsLock is a

Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if the caps lock
If autECLOIA.CapsLock Then...

InsertMode
This property queries the operator information area to determine whether if the keyboard is in insert mode.

InsertMode is a Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

Chapter 2. Product Documentation

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if in insert mode
If autECLOIA.InsertMode Then...

CommErrorReminder
This property queries the operator information area to determine whether a communications error reminder condition

exists. CommErrorReminder is a Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if comm error
If autECLOIA.CommErrorReminder Then...

MessageWaiting
This property queries the operator information area to determine whether the message waiting indicator is on. This

can only occur for 5250 connections. MessageWaiting is a Boolean data type and is read-only. The following example

shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object
Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if message waiting
If autECLOIA.MessageWaiting Then...

InputInhibited
This property queries the operator information area to determine whether keyboard input is inhibited. InputInhibited is

a Long data type and is read-only. The following table shows valid values for InputInhibited.

1015

HCL Z and I Emulator for Windows (ENGLISH)

1016

Name Value

Not Inhibited 0

System Wait 1

Communication Check 2

Program Check 3

Machine Check 4

Other Inhibit 5

The following example shows this property.

DIM autECLOIA as Object
DIM autECLConnList as Object
Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if input inhibited
If not autECLOIA.InputInhibited = 0 Then...

Name
This property is the connection name string of the connection for which autECLOIA was set. Z and I Emulator for

Windows only returns the short character ID (A-Z or a-z) in the string. There can be only one Z and I Emulator for

Windows connection open with a given name. For example, there can be only one connection “A” open at a time.

Name is a String data type and is read-only. The following example shows this property.

DIM Name as String
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the name
Name = Obj.Name

Handle
This is the handle of the connection for which the autECLOIA object was set. There can be only one Z and I Emulator

for Windows connection open with a given handle. For example, there can be only one connection “A” open at a time.

Handle is a Long data type and is read-only. The following example shows this property.

DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

Chapter 2. Product Documentation

' Save the handle
Hand = Obj.Handle

ConnType
This is the connection type for which autECLOIA was set. This type may change over time. ConnType is a String data

type and is read-only. The following example shows this property.

DIM Type as String
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the type
Type = Obj.ConnType

Connection types for the ConnType property are:

String Returned Meaning

DISP3270 3270 display

DISP5250 5250 display

PRNT3270 3270 printer

PRNT5250 5250 printer

ASCII VT emulation

CodePage
This is the code page of the connection for which autECLOIA was set. This code page may change over time.

CodePage is a Long data type and is read-only. The following example shows this property.

DIM CodePage as Long
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the code page
CodePage = Obj.CodePage

Started
This indicates whether the emulator window is started. The value is True if the window is open; otherwise, it is False.

Started is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

1017

HCL Z and I Emulator for Windows (ENGLISH)

1018

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If Obj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
This indicates the status of the connection to the host. The value is True if the host is connected; otherwise, it is

False. CommStarted is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If Obj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
This indicates whether the emulator is API-enabled. A connection may be enabled or disabled depending on the state

of its API settings (in a Z and I Emulator for Windows window, choose File -> API Settings). The value is True if the

emulator is enabled; otherwise, it is False. APIEnabled is a Boolean data type and is read-only. The following example

shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.

Chapter 2. Product Documentation

If Obj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Ready
This indicates whether the emulator window is started, API-enabled, and connected. This property checks for all three

properties. The value is True if the emulator is ready; otherwise, it is False. Ready is a Boolean data type and is read-

only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If Obj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

NumLock
This property queries the operator information area to determine if the keyboard NumLock key is on. NumLock is a

Boolean data type and is read-only. The following example shows this property.

DIM autECLOIA as Object
 DIM autECLConnList as Object

 Set autECLOIA = CreateObject ("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject ("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByFHandle (autECLConnList (1) .Handle)

' Check if the num lock is on
If autECLOIA.NumLock Then . . .

autECLOIA Methods
autECLOIAmethodsoverviewThe following section describes the methods that are valid for autECLOIA.

void RegisterOIAEvent()

void UnregisterOIAEvent()

1019

HCL Z and I Emulator for Windows (ENGLISH)

1020

void SetConnectionByName (String Name)

void SetConnectionByHandle (Long Handle)

void StartCommunication()

void StopCommunication()

Boolean WaitForInputReady([optional] Variant TimeOut)

Boolean WaitForSystemAvailable([optional] Variant TimeOut)

Boolean WaitForAppAvailable([optional] Variant TimeOut)

Boolean WaitForTransition([optional] Variant Index, [optional] Variant timeout)

void CancelWaits()

RegisterOIAEvent
This method registers an object to receive notification of all OIA events.

Prototype
void RegisterOIAEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1028 for an example.

UnregisterOIAEvent
Ends OIA event processing.

Prototype
void UnregisterOIAEvent()

Parameters
None

Return Value
None

Chapter 2. Product Documentation

Example
See Event Processing Example on page 1028 for an example.

SetConnectionByName
The SetConnectionByName method uses the connection name to set the connection for a newly created autECLOIA

object. In Z and I Emulator for Windows this connection name is the short connection ID (character A-Z or a-z). There

can be only one Z and I Emulator for Windows connection open with a given name. For example, there can be only

one connection “A” open at a time.

Note: Do not call this if using the autECLOIA object in autECLSession.

Prototype
void SetConnectionByName(String Name)

Parameters
String Name

One-character string short name of the connection (A-Z or a-z).

Return Value
None

Example
The following example shows how to use the connection name to set the connection for a newly created autECLOIA

object.

DIM autECLOIA as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
autECLOIA.SetConnectionByName("A")
' For example, see if its num lock is on
If (autECLOIA.NumLock = True) Then
 'your logic here...
Endif

SetConnectionByHandle
autECLOIAmethodsSetConnectionByHandleThe SetConnectionByHandle method uses the connection handle to set the connection for a newly created

autECLOIA object. In Z and I Emulator for Windows this connection handle is a Long integer. There can be only one Z

1021

HCL Z and I Emulator for Windows (ENGLISH)

1022

and I Emulator for Windows connection open with a given handle. For example, there can be only one connection “A”

open at a time.

Note: Do not call this if using the autECLOIA object in autECLSession.

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)
' For example, see if its num lock is on
If (autECLOIA.NumLock = True) Then
 'your logic here...
Endif

Prototype
void SetConnectionByHandle(Long Handle)

Parameters
Long Handle

Long integer value of the connection to be set for the object.

Return Value
None

Example
The following example shows how to use the connection handle to set the connection for a newly created autELCOIA

object.

StartCommunication
The StartCommunication collection element method connects the ZIEWin emulator to the host data stream. This has

the same effect as going to the ZIEWin emulator Communication menu and choosing Connect.

Prototype
void StartCommunication()

Chapter 2. Product Documentation

Parameters
None

Return Value
None

Example
None

Dim OIAObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set OIAObj = CreateObject("ZIEWin.autECLOIA")

' Initialize the session
autECLConnList.Refresh
OIAObj.SetConnectionByHandle(autECLConnList(1).Handle)

OIAObj.StartCommunication()

StopCommunication
The StopCommunication collection element method disconnects the ZIEWin emulator to the host data stream. This

has the same effect as going to the ZIEWin emulator Communication menu and choosing Disconnect.

Prototype
void StopCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim OIAObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set OIAObj = CreateObject("ZIEWin.autECLOIA")

1023

HCL Z and I Emulator for Windows (ENGLISH)

1024

' Initialize the session
autECLConnList.Refresh
OIAObj.SetConnectionByHandle(autECLConnList(1).Handle)

OIAObj.StopCommunication()

WaitForInputReady
The WaitForInputReady method waits until the OIA of the connection associated with the autECLOIA object indicates

that the connection is able to accept keyboard input.

Prototype
Boolean WaitForInputReady([optional] Variant TimeOut)

Parameters
Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLOIAObj as Object

Set autECLOIAObj = CreateObject("ZIEWin.autECLOIA")
autECLOIAObj.SetConnectionByName("A")

if (autECLOIAObj.WaitForInputReady(10000)) then
msgbox "Ready for input"
else
msgbox "Timeout Occurred"
end if

WaitForSystemAvailable
The WaitForSystemAvailable method waits until the OIA of the connection associated with the autECLOIA object

indicates that the connection is connected to a host system.

Prototype
Boolean WaitForSystemAvailable([optional] Variant TimeOut)

Chapter 2. Product Documentation

Parameters
Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLOIAObj as Object

Set autECLOIAObj = CreateObject("ZIEWin.autECLOIA")
autECLOIAObj.SetConnectionByName("A")

if (autECLOIAObj.WaitForSystemAvailable(10000)) then
msgbox "System Available"
else
msgbox "Timeout Occurred"
end if

WaitForAppAvailable
The WaitForAppAvailable method waits while the OIA of the connection associated with the autECLOIA object

indicates that the application is being worked with.

Prototype
Boolean WaitForAppAvailable([optional] Variant TimeOut)

Parameters
Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLOIAObj as Object

Set autECLOIAObj = CreateObject("ZIEWin.autECLOIA")
autECLOIAObj.SetConnectionByName("A")

if (autECLOIAObj.WaitForAppAvailable (10000)) then

1025

HCL Z and I Emulator for Windows (ENGLISH)

1026

msgbox "Application is available"
else
msgbox "Timeout Occurred"
end if

WaitForTransition
The WaitForTransition method waits for the OIA position specified of the connection associated with the autECLOIA

object to change.

Prototype
Boolean WaitForTransition([optional] Variant Index, [optional] Variant timeout)

Parameters
Variant Index

The 1 byte Hex position of the OIA to monitor. This parameter is optional. The default is 3.

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLOIAObj as Object
Dim Index

Index = 03h

Set autECLOIAObj = CreateObject("ZIEWin.autECLOIA")
autECLOIAObj.SetConnectionByName("A")

if (autECLOIAObj.WaitForTransition(Index,10000)) then
 msgbox "Position " " Index " " of the OIA Changed"
else
 msgbox "Timeout Occurred"
end if

CancelWaits
Cancels any currently active wait methods.

Chapter 2. Product Documentation

Prototype
void CancelWaits()

Parameters
None

Return Value
None

autECLOIA Events
The following events are valid for autECLOIA:

void NotifyOIAEvent()

void NotifyOIAError()

void NotifyOIAStop(Long Reason)

NotifyOIAEvent
A given OIA has occurred.

Prototype
void NotifyOIAEvent()

Parameters
None

Example
See Event Processing Example on page 1028 for an example.

NotifyOIAError
This event occurs when an error occurs in the OIA.

Prototype
void NotifyOIAError()

1027

HCL Z and I Emulator for Windows (ENGLISH)

1028

Parameters
None

Example
See Event Processing Example on page 1028 for an example.

NotifyOIAStop
This event occurs when event processing stops.

Prototype
void NotifyOIAStop(Long Reason)

Parameters
Long Reason

Long Reason code for the stop. Currently, this will always be 0.

Event Processing Example
The following is a short example of how to implement OIA Events

Option Explicit
Private WithEvents myOIA As autECLOIA 'AutOIA added as reference

sub main()
'Create Objects
Set myOIA = New AutOIA

Set myConnMgr = New AutConnMgr

myOIA.SetConnectionByName ("B") 'Monitor Session B for OIA Updates

myOIA.RegisterOIAEvent 'register for OIA Notifications

' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
call DisplayGUI()

'Clean up
myOIA.UnregisterOIAEvent

Private Sub myOIA_NotifyOIAEvent()
' do your processing here
End Sub
Private Sub myOIA_NotifyOIAError()
' do your processing here
End Sub

Chapter 2. Product Documentation

 'This event occurs when Communications Status Notification ends
Private Sub myOIA_NotifyOIAStop(Reason As Long)
'Do any stop processing here
End Sub

autECLPS Class
autECLPS performs operations on a presentation space. Its name in the registry is ZIEWin.autECLPS.

You must initially set the connection for the object you create. Use SetConnectionByName or SetConnectionByHandle

to initialize your object. The connection may be set only once. After the connection is set, any further calls to the

SetConnection methods cause an exception. If you do not set the connection and try to access a property or method,

an exception is also raised.

Note:

1. In the presentation space, the first row coordinate is row 1 and the first column coordinate is column

1. Therefore, the top, left position has a coordinate of row 1, column 1.

2. The autECLPS object in the autECLSession object is set by the autECLSession object.

The following is an example of how to create and set the autECLPS object in Visual Basic.

DIM autECLPSObj as Object
DIM NumRows as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
' Initialize the connection
autECLPSObj .SetConnectionByName("A")
' For example, get the number of rows in the PS
NumRows = autECLPSObj.NumRows

Properties
This section describes the properties of the autECLPS object.

Type Name Attributes

Object autECLFieldList Read-only

Long NumRows Read-only

Long NumCols Read-only

Long CursorPosRow Read-only

Long CursorPosCol Read-only

String Name Read-only

Long Handle Read-only

String ConnType Read-only

Long CodePage Read-only

1029

HCL Z and I Emulator for Windows (ENGLISH)

1030

Type Name Attributes

Boolean Started Read-only

Boolean CommStarted Read-only

Boolean APIEnabled Read-only

Boolean Ready Read-only

autECLFieldList
This is the field collection object for the connection associated with the autECLPS object. See autECLFieldList Class

on page 1000 for details. The following example shows this object.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the field list
CurPosCol = autECLPSObj.autECLFieldList.Refresh(1)

NumRows
This is the number of rows in the presentation space for the connection associated with the autECLPS object.

NumRows is a Long data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim Rows as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
Rows = autECLPSObj.NumRows

NumCols
This is the number of columns in the presentation space for the connection associated with the autECLPS object.

NumCols is a Long data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim Cols as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

Chapter 2. Product Documentation

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
Cols = autECLPSObj.NumCols

CursorPosRow
This is the current row position of the cursor in the presentation space for the connection associated with the

autECLPS object. CursorPosRow is a Long data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim CurPosRow as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
CurPosRow = autECLPSObj.CursorPosRow

CursorPosCol
This is the current column position of the cursor in the presentation space for the connection associated with the

autECLPS object. CursorPosCol is a Long data type and is read-only. The following example shows this property.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim CurPosCol as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
CurPosCol = autECLPSObj.CursorPosCol

Name
This is the connection name string of the connection for which autECLPS was set. Z and I Emulator for Windows

only returns the short character ID (A-Z or a-z) in the string. There can be only one Z and I Emulator for Windows

connection open with a given name. For example, there can be only one connection “A” open at a time. Name is a

String data type and is read-only. The following example shows this property.

DIM Name as String
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

1031

HCL Z and I Emulator for Windows (ENGLISH)

1032

' Save the name
Name = Obj.Name

Handle
This is the handle of the connection for which the autECLPS object was set. There can be only one Z and I Emulator

for Windows connection open with a given handle. For example, there can be only one connection “A” open at a time.

Handle is a Long data type and is read-only. The following example shows this property.

DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the connection handle
Hand = Obj.Handle

ConnType
This is the connection type for which autECLPS was set. This connection type may change over time. ConnType is a

String data type and is read-only. The following example shows this property.

DIM Type as String
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the type
Type = Obj.ConnType

Connection types for the ConnType property are:

String Returned Meaning

DISP3270 3270 display

DISP5250 5250 display

PRNT3270 3270 printer

PRNT5250 5250 printer

ASCII VT emulation

CodePage
This is the code page of the connection for which autECLPS was set. This code page may change over time.

CodePage is a Long data type and is read-only. The following example shows this property.

Chapter 2. Product Documentation

DIM CodePage as Long
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the code page
CodePage = Obj.CodePage

Started
This indicates if the connection emulator window is started. The value is True if the window is open; otherwise, it is

False. Started is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If Obj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
This indicates the status of the connection to the host. The value is True if the host is connected; otherwise, it is

False. CommStarted is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If Obj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

1033

HCL Z and I Emulator for Windows (ENGLISH)

1034

APIEnabled
This indicates if the emulator is API-enabled. A connection may be enabled or disabled depending on the state of

its API settings (in a Z and I Emulator for Windows window, choose File -> API Settings). The value is True if API is

enabled; otherwise, it is False. APIEnabled is a Boolean data type and is read-only. The following example shows this

property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.
If Obj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Ready
This indicates whether the emulator window is started, API enabled and connected. This checks for all three

properties. The value is True if the emulator is ready; otherwise, it is False. Ready is a Boolean data type and is read-

only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If Obj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLPS Methods
The following section describes the methods that are valid for the autECLPS object.

void RegisterPSEvent()

void RegisterKeyEvent()

Chapter 2. Product Documentation

void RegisterCommEvent()

void UnregisterPSEvent()

void UnregisterKeyEvent()

void UnregisterCommEvent()

void SetConnectionByName (String Name)

void SetConnectionByHandle (Long Handle)

void SetCursorPos(Long Row, Long Col)

void SendKeys(String text, [optional] Long row, [optional] Long col)

Boolean SearchText(String text, [optional] Long Dir, [optional] Long row,

 [optional] Long col)

String GetText([optional] Long row, [optional] Long col, [optional] Long lenToGet)

void SetText(String Text, [optional] Long Row, [optional] Long Col)

void CopyText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

void PasteText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

String GetTextRect(Long StartRow, Long StartCol, Long EndRow, Long EndCol)

void StartCommunication()

void StopCommunication()

void StartMacro(String MacroName)

void Wait(milliseconds as Long)

Boolean WaitForCursor(Variant Row, Variant Col, [optional]Variant TimeOut,

 [optional] Boolean bWaitForIr)

Boolean WaitWhileCursor(Variant Row, Variant Col, [optional]Variant TimeOut,

 [optional] Boolean bWaitForIr)

Boolean WaitForString(Variant WaitString, [optional] Variant Row,

 [optional] Variant Col, [optional] Variant TimeOut, [optional] Boolean bWaitForIr,

 [optional] Boolean bCaseSens)

Boolean WaitWhileString(Variant WaitString, [optional] Variant Row,

 [optional] Variant Col, [optional] Variant TimeOut, [optional] Boolean bWaitForIr,

 [optional] Boolean bCaseSens)

Boolean WaitForStringInRect(Variant WaitString, Variant sRow, Variant sCol,

 Variant eRow, Variant eCol, [optional] Variant nTimeOut,

 [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens)

Boolean WaitWhileStringInRect(Variant WaitString, Variant sRow, Variant sCol,

 Variant eRow, Variant eCol, [optional] Variant nTimeOut,

 [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens)

Boolean WaitForAttrib(Variant Row, Variant Col, Variant WaitData,

 [optional] Variant MaskData, [optional] Variant plane, [optional] Variant TimeOut,

 [optional] Boolean bWaitForIr)

Boolean WaitWhileAttrib(Variant Row, Variant Col, Variant WaitData,

 [optional] Variant MaskData, [optional] Variant plane,

 [optional] Variant TimeOut, [optional] Boolean bWaitForIr)

Boolean WaitForScreen(Object screenDesc, [optional] Variant TimeOut)

1035

HCL Z and I Emulator for Windows (ENGLISH)

1036

Boolean WaitWhileScreen(Object screenDesc, [optional] Variant TimeOut)

void CancelWaits()

RegisterPSEvent
This method registers an autECLPS object to receive notification of all changes to the PS of the connected session.

Prototype
void RegisterPSEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1067 for an example.

RegisterKeyEvent
Begins Keystroke Event Processing.

Prototype
void RegisterKeyEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1067 for an example.

Chapter 2. Product Documentation

RegisterCommEvent
This method registers an object to receive notification of all communication link connect/disconnect events.

Prototype
void RegisterCommEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1067 for an example.

UnregisterPSEvent
Ends PS Event Processing.

Prototype
void UnregisterPSEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1067 for an example.

UnregisterKeyEvent
Ends Keystroke Event Processing.

1037

HCL Z and I Emulator for Windows (ENGLISH)

1038

Prototype
void UnregisterKeyEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1067 for an example.

UnregisterCommEvent
Ends Communications Link Event Processing.

Prototype
void UnregisterCommEvent()

Parameters
None

Return Value
None

SetConnectionByName
This method uses the connection name to set the connection for a newly created autECLPS object. In Z and I

Emulator for Windows this connection name is the short ID (character A-Z or a-z). There can be only one Z and I

Emulator for Windows connection open with a given name. For example, there can be only one connection “A” open at

a time.

Note: Do not call this if using the autECLPS object in autECLSession.

Prototype
void SetConnectionByName(String Name)

Chapter 2. Product Documentation

Parameters
String Name

One-character string short name of the connection (A-Z or a-z).

Return Value
None

Example
The following example shows how to set the connection for a newly created autECLPS object using the connection

name.

DIM autECLPSObj as Object
DIM NumRows as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
autECLPSObj.SetConnectionByName("A")
' For example, get the number of rows in the PS
NumRows = autECLPSObj.NumRows

SetConnectionByHandle
This method uses the connection handle to set the connection for a newly created autECLPS object. In Z and I

Emulator for Windows this connection handle is a Long integer. There can be only one Z and I Emulator for Windows

connection open with a given handle. For example, there can be only one connection “A” open at a time.

Note: Do not call this if using the autECLPS object in autECLSession.

Prototype
void SetConnectionByHandle(Long Handle)

Parameters
Long Handle

Long integer value of the connection to be set for the object.

Return Value
None

1039

HCL Z and I Emulator for Windows (ENGLISH)

1040

Example
The following example shows how to set the connection for a newly created autECLPS object using the connection

handle.

DIM autECLPSObj as Object
DIM autECLConnList as Object
DIM NumRows as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first in the list
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
' For example, get the number of rows in the PS
NumRows = autECLPSObj.NumRows

SetCursorPos
The SetCursorPos method sets the position of the cursor in the presentation space for the connection associated

with the autECLPS object. The position set is in row and column units.

Prototype
void SetCursorPos(Long Row, Long Col)

Parameters
Long Row

The row position of the cursor in the presentation space.

Long Col

The column position of the cursor in the presentation space.

Return Value
None

Example
The following example shows how to set the position of the cursor in the presentation space for the connection

associated with the autECLPS object.

DIM autECLPSObj as Object
DIM autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first in the list
autECLConnList.Refresh

Chapter 2. Product Documentation

autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
autECLPSObj.SetCursorPos 2, 1

SendKeys
The SendKeys method sends a string of keys to the presentation space for the connection associated with the

autECLPS object. This method allows you to send mnemonic keystrokes to the presentation space. See Sendkeys

Mnemonic Keywords on page 1156 for a list of these keystrokes.

Prototype
void SendKeys(String text, [optional] Long row, [optional] Long col)

Parameters
String text

String of keys to send to the presentation space.

Long Row

Row position to send keys to the presentation space. This parameter is optional. The default is the

current cursor row position. If row is specified, col must also be specified.

Long Col

Column position to send keys to the presentation space. This parameter is optional. The default is the

current cursor column position. If col is specified, row must also be specified.

Return Value
None

Example
The following example shows how to use the SendKeys method to send a string of keys to the presentation space for

the connection associated with the autECLPS object.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
autECLPSObj.SendKeys "HCL is a really cool company", 3, 1

1041

HCL Z and I Emulator for Windows (ENGLISH)

1042

SearchText
The SearchText method searches for the first occurrence of text in the presentation space for the connection

associated with the autECLPS object. The search is case-sensitive. If text is found, the method returns a TRUE value.

It returns a FALSE value if no text is found. If the optional row and column parameters are used, row and col are also

returned, indicating the position of the text if it was found.

Prototype
boolean SearchText(String text, [optional] Long Dir, [optional] Long Row, [optional] Long Col)

Parameters
String text

String to search for.

Long Dir

Direction in which to search. Must either be 1 for search forward or 2 for search backward. This

parameter is optional. The default is 1 for Forward.

Long Row

Row position at which to start the search in the presentation space. The row of found text is returned if

the search is successful. This parameter is optional. If row is specified, col must also be specified.

Long Col

Column position at which to start the search in the presentation space. The column of found text is

returned if the search is successful. This parameter is optional. If col is specified, row must also be

specified.

Return Value
TRUE if text is found, FALSE if text is not found.

Example
The following example shows how to search for text in the presentation space for the connection associated with the

autECLPS object.

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim Row as Long
Dim Col as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

Chapter 2. Product Documentation

// Search forward in the PS from the start of the PS. If found
// then call a hypothetical found routine, if not found, call a hypothetical

// not found routine.
row = 3
col = 1
If (autECLPSObj.SearchText "HCL", 1, row, col) Then
 Call FoundFunc (row, col)
Else
 Call NotFoundFunc
Endif

GetText
The GetText method retrieves characters from the presentation space for the connection associated with the

autECLPS object.

Prototype
String GetText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

Parameters
Long Row

Row position at which to start the retrieval in the presentation space. This parameter is optional.

Long Col

Column position at which to start the retrieval in the presentation space. This parameter is optional.

Long LenToGet

Number of characters to retrieve from the presentation space. This parameter is optional. The default is

the length of the array passed in as BuffLen.

Return Value
String

Text from the PS.

Example
The following example shows how to retrieve a string from the presentation space for the connection associated with

the autECLPS object.

Dim autECLPSObj as Object
Dim PSText as String

' Initialize the connection
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

1043

HCL Z and I Emulator for Windows (ENGLISH)

1044

PSText = autECLPSObj.GetText(2,1,50)

SetText
The SetText method sends a string to the presentation space for the connection associated with the autECLPS

object. Although this method is similar to the SendKeys method, this method does not send mnemonic keystrokes

(for example, [enter] or [pf1]).

Prototype
void SetText(String Text, [optional] Long Row, [optional] Long Col)

Parameters
String Text

Character array to send.

Long Row

The row at which to begin the retrieval from the presentation space. This parameter is optional. The

default is the current cursor row position.

Long Col

The column position at which to begin the retrieval from the presentation space. This parameter is

optional. The default is the current cursor column position.

Return Value
None

Example
The following example shows how to search for text in the presentation space for the connection associated with the

autECLPS object.

Dim autECLPSObj as Object

'Initialize the connection
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")
autECLPSObj.SetText"HCL is great", 2, 1

CopyText
This method copies the text from a given location in presentation space of a specified length to clipboard. The length

of the text copied will be the length specified, if no length is specified the text till the end of presentation space is

Chapter 2. Product Documentation

copied. If the location is not specified, the text copied is from the current cursor position in presentation space. In

case of no parameters, whole presentation space is copied to clipboard.

Prototype
void CopyText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

Parameters
Long LenToGet

Number of characters to copy from the presentation space. This parameter is optional. The default is

the length of the array passed in as BuffLen.

Long Row

The row at which to begin the copy from the presentation space. This parameter is optional. The default

is the current cursor row position.

Long Col

The column position at which to begin the copy from the presentation space. This parameter is optional.

The default is the current cursor column.

Return Value
None

Example
The following example shows how to copy text in the presentation space to clipboard for the connection associated

with the autECLPS object.

Dim autECLPSObj as Object
’Initialize the connection

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")

autECLPSObj.SetConnectionByName("A")
autECLPSObj.CopyText 6, 53, 10

PasteText
This method pastes the text of specified length from clipboard to a given location in presentation space. The length

of the text pasted is the length specified, if no length is specified the whole text in clipboard is pasted until it reaches

the end of presentation space. If the location is not specified, the text is pasted at the current cursor position in

presentation space. If the presentation space is field formatted and while pasting the clipboard content, when there is

a tab character '\t,' the remaining paste content is moved to the next writable field.

1045

HCL Z and I Emulator for Windows (ENGLISH)

1046

Prototype
void PasteText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

Parameters
Long LenToGet

Number of characters to paste from clipboard to the presentation space. This parameter is optional.

The default is the length of the text in clipboard.

Long Row

The row at which to begin the paste from clipboard to the presentation space. This parameter is

optional. The default is the current cursor row position.

Long Col

The column position at which to begin the paste from clipboard to the presentation space. This

parameter is optional. The default is the current cursor column position.

Return Value
None

Example
The following example shows how to paste text from clipboard to presentation space the connection associated with

the autECLPS object.

Dim autECLPSObj as Object
’Initialize the connection

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")

autECLPSObj.SetConnectionByName("A")
autECLPSObj.PasteText 8, 53, 10

GetTextRect
The GetTextRect method retrieves characters from a rectangular area in the presentation space for the connection

associated with the autECLPS object. No wrapping takes place in the text retrieval; only the rectangular area is

retrieved.

Prototype
String GetTextRect(Long StartRow, Long StartCol, Long EndRow, Long EndCol)

Chapter 2. Product Documentation

Parameters
Long StartRow

Row at which to begin the retrieval in the presentation space.

Long StartCol

Column at which to begin the retrieval in the presentation space.

Long EndRow

Row at which to end the retrieval in the presentation space.

Long EndCol

Column at which to end the retrieval in the presentation space.

Return Value
String

PS Text.

Example
The following example shows how to retrieve characters from a rectangular area in the presentation space for the

connection associated with the autECLPS object.

Dim autECLPSObj as Object
Dim PSText String

' Initialize the connection
Set autECLPSObj = CreateObject ("ZIEWin.autELCPS")
autECLPSObj.SetConnectionByName("A")

PSText = GetTextRect(1,1,2,80)

SetTextRect
The SetTextRect method sets characters to a rectangular area in the presentation space for the connection

associated with the autECLPS object. No wrapping takes place in the text setting; only the rectangular area is set.

Prototype
SetTextRect(String Text, Long StartRow, Long StartCol, Long EndRow, Long EndCol)

Parameters
String Text

Character array to set on presentation space.

1047

HCL Z and I Emulator for Windows (ENGLISH)

1048

Long StartRow

Row at which to begin the setting in the presentation space.

Long StartCol

Column at which to begin the setting in the presentation space.

Long EndRow

Row at which to end the setting in the presentation space.

Long EndCol

Column at which to end the setting in the presentation space.

Return Value
None

Example
The following example shows how to set characters to a rectangular area in the presentation space for the

connection associated with the autECLPS object.

Dim autECLPSObj as Object
Dim PSText String

’ Initialize the connection
Set autECLPSObj = CreateObject ("ZIEWin.autELCPS")
autECLPSObj.SetConnectionByName("A")

SetTextRect "HCL is great company to collaborate with", 1, 1, 4, 8

If we want to use parentheses then we can use SetTextRect as

call SetTextRect("HCL is great company to collaborate with", 1, 1, 4, 8)

StartCommunication
The StartCommunication collection element method connects the ZIEWin emulator to the host data stream. This has

the same effect as going to the ZIEWin emulator Communication menu and choosing Connect.

Prototype
void StartCommunication()

Parameters
None

Chapter 2. Product Documentation

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim PSObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set PSObj = CreateObject("ZIEWin.autECLPS")

' Initialize the session
autECLConnList.Refresh
PSObj.SetConnectionByHandle(autECLConnList(1).Handle)

PSObj.StartCommunication()

StopCommunication
The StopCommunication collection element method disconnects the ZIEWin emulator to the host data stream. This

has the same effect as going to the ZIEWin emulator Communication menu and choosing Disconnect.

Prototype
void StopCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim PSObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set PSObj = CreateObject("ZIEWin.autECLPS")

' Initialize the session
autECLConnList.Refresh
PSObj.SetConnectionByHandle(autECLConnList(1).Handle)

1049

HCL Z and I Emulator for Windows (ENGLISH)

1050

PSObj.StopCommunication()

StartMacro
The StartMacro method runs the Z and I Emulator for Windows macro file indicated by the MacroName parameter.

Prototype
void StartMacro(String MacroName)

Parameters
String MacroName

Name of macro file located in the Z and I Emulator for Windows user-class application data directory

(specified at installation), without the file extension. This method does not support long file names.

Return Value
None

Usage Notes
You must use the short file name for the macro name. This method does not support long file names.

Example
The following example shows how to start a macro.

Dim PS as Object

Set PS = CreateObject("ZIEWin.autECLPS")
PS.StartMacro "mymacro"

Wait
The Wait method waits for the number of milliseconds specified by the milliseconds parameter

Prototype
void Wait(milliseconds as Long)

Parameters
Long milliseconds

The number of milliseconds to wait.

Chapter 2. Product Documentation

Return Value
None

Example
Dim autECLPSObj as Object

Set autECLPSObj = CreateObject ("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName ("A")

' Wait for 10 seconds
autECLPSObj.Wait(10000)

WaitForCursor
The WaitForCursor method waits for the cursor in the presentation space of the connection associated with the

autECLPS object to be located at a specified position.

Prototype
Boolean WaitForCursor(Variant Row, Variant Col, [optional]Variant TimeOut,

 [optional] Boolean bWaitForIr)

Parameters
Variant Row

Row position of the cursor.

Variant Col

Column position of the cursor.

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Boolean bWaitForIr

If this value is true, after meeting the wait condition the function will wait until the OIA is ready to accept

input. This parameter is optional. The default is False.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLPSObj as Object
Dim Row, Col

1051

HCL Z and I Emulator for Windows (ENGLISH)

1052

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

Row = 20
Col = 16

if (autECLPSObj.WaitForCursor(Row,Col,10000)) then
 msgbox "Cursor is at " " Row " "," " Col
else
 msgbox "Timeout Occurred"
end if

WaitWhileCursor
The WaitWhileCursor method waits while the cursor in the presentation space of the connection associated with the

autECLPS object is located at a specified position.

Prototype
Boolean WaitWhileCursor(Variant Row, Variant Col, [optional]Variant TimeOut,

[optional] Boolean bWaitForIr)

Parameters
Variant Row

Row position of the cursor.

Variant Col

Column position of the cursor.

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Boolean bWaitForIr

If this value is true, after meeting the wait condition the function will wait until the OIA is ready to accept

input. This parameter is optional. The default is False.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLPSObj as Object
Dim Row, Col

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

Chapter 2. Product Documentation

Row = 20
Col = 16

if (autECLPSObj.WaitWhileCursor(Row,Col,10000)) then
 msgbox "Cursor is no longer at " " Row " "," " Col
else
 msgbox "Timeout Occurred"
end if

WaitForString
The WaitForString method waits for the specified string to appear in the presentation space of the connection

associated with the autECLPS object. If the optional Row and Column parameters are used, the string must begin at

the specified position. If 0,0 are passed for Row,Col the method searches the entire PS.

Prototype

Boolean WaitForString(Variant WaitString, [optional] Variant Row,

 [optional] Variant Col, [optional] Variant TimeOut, [optional] Boolean bWaitForIr,

 [optional] Boolean bCaseSens)

Parameters
Variant WaitString

The string for which to wait.

Variant Row

Row position that the string will begin. This parameter is optional. The default is 0.

Variant Col

Column position that the string will begin. This parameter is optional. The default is 0.

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Boolean bWaitForIr

If this value is true, after meeting the wait condition the function will wait until the OIA is ready to accept

input. This parameter is optional. The default is False.

Boolean bCaseSens

If this value is True, the wait condition is verified as case-sensitive. This parameter is optional. The

default is False.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

1053

HCL Z and I Emulator for Windows (ENGLISH)

1054

Example
Dim autECLPSObj as Object
Dim Row, Col, WaitString

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

WaitString = "Enter USERID"
Row = 20
Col = 16

if (autECLPSObj.WaitForString(WaitString,Row,Col,10000)) then
 msgbox WaitString " " found at " " Row " "," " Col
else
 msgbox "Timeout Occurred"
end if

WaitWhileString
The WaitWhileString method waits while the specified string appears in the presentation space of the connection

associated with the autECLPS object. If the optional Row and Column parameters are used, the string must begin at

the specified position. If 0,0 are passed for Row,Col the method searches the entire PS.

Prototype

Boolean WaitWhileString(Variant WaitString, [optional] Variant Row,

 [optional] Variant Col, [optional] Variant TimeOut, [optional] Boolean bWaitForIr,

 [optional] Boolean bCaseSens)

Parameters
Variant WaitString

The method waits while this string value exists.

Variant Row

Row position that the string will begin. This parameter is optional. The default is 0.

Variant Col

Column position that the string will begin. This parameter is optional. The default is 0.

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Boolean bWaitForIr

If this value is true, after meeting the wait condition the function will wait until the OIA is ready to accept

input. This parameter is optional. The default is False.

Chapter 2. Product Documentation

Boolean bCaseSens

If this value is True, the wait condition is verified as case-sensitive. This parameter is optional. The

default is False.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLPSObj as Object
Dim Row, Col, WaitString

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

WaitString = "Enter USERID"
Row = 20
Col = 16

if (autECLPSObj.WaitWhileString(WaitString,Row,Col,10000)) then
 msgbox WaitString " " was found at " " Row " "," " Col
else
 msgbox "Timeout Occurred"
end if

WaitForStringInRect
The WaitForStringInRect method waits for the specified string to appear in the presentation space of the connection

associated with the autECLPS object in the specified rectangle.

Prototype
Boolean WaitForStringInRect(Variant WaitString, Variant sRow, Variant sCol,

 Variant eRow, Variant eCol, [optional] Variant nTimeOut,

 [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens)

Parameters
Variant WaitString

The string for which to wait.

Variant sRow

Starting row position of the search rectangle.

Variant sCol

Starting column position of the search rectangle.

1055

HCL Z and I Emulator for Windows (ENGLISH)

1056

Variant eRow

Ending row position of the search rectangle.

Variant eCol

Ending column position of the search rectangle

Variant nTimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Boolean bWaitForIr

If this value is true, after meeting the wait condition the function will wait until the OIA is ready to accept

input. This parameter is optional. The default is False.

Boolean bCaseSens

If this value is True, the wait condition is verified as case-sensitive. This parameter is optional. The

default is False.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLPSObj as Object
Dim sRow, sCol, eRow, eCol, WaitString

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

WaitString = "Enter USERID"
sRow = 20
sCol = 16
eRow = 21
eCol = 31

if (autECLPSObj.WaitForStringInRect(WaitString,sRow,sCol,eRow,eCol,10000)) then
 msgbox WaitString " " found in rectangle"
else
 msgbox "Timeout Occurred"
end if

WaitWhileStringInRect
The WaitWhileStringInRect method waits while the specified string appears in the presentation space of the

connection associated with the autECLPS object in the specified rectangle.

Chapter 2. Product Documentation

Prototype
Boolean WaitWhileStringInRect(Variant WaitString, Variant sRow, Variant sCol,

 Variant eRow, Variant eCol, [optional] Variant nTimeOut,

 [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens)

Parameters
Variant WaitString

The method waits while this string value exists.

Variant sRow

Starting row position of the search rectangle.

Variant sCol

Starting column position of the search rectangle.

Variant eRow

Ending row position of the search rectangle.

Variant eCol

Ending column position of the search rectangle.

Variant nTimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Boolean bWaitForIr

If this value is true, after meeting the wait condition the function will wait until the OIA is ready to accept

input. This parameter is optional. The default is False.

Boolean bCaseSens

If this value is True, the wait condition is verified as case-sensitive. This parameter is optional. The

default is False.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLPSObj as Object
Dim sRow, sCol, eRow, eCol, WaitString

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

WaitString = "Enter USERID"
sRow = 20

1057

HCL Z and I Emulator for Windows (ENGLISH)

1058

sCol = 16
eRow = 21
eCol = 31

if (autECLPSObj.WaitWhileStringInRect(WaitString,sRow,sCol,eRow,eCol,10000)) then
 msgbox WaitString " " no longer in rectangle"
else
 msgbox "Timeout Occurred"
end if

WaitForAttrib
The WaitForAttrib method will wait until the specified Attribute value appears in the presentation space of the

connection associated with the autECLPS object at the specified Row/Column position. The optional MaskData

parameter can be used to control which values of the attribute you are looking for. The optional plane parameter

allows you to select any of the four PS planes.

Prototype

Boolean WaitForAttrib(Variant Row, Variant Col, Variant WaitData,

 [optional] Variant MaskData, [optional] Variant plane, [optional] Variant TimeOut,

 [optional] Boolean bWaitForIr)

Parameters
Variant Row

Row position of the attribute.

Variant Col

Column position of the attribute.

Variant WaitData

The 1-byte HEX value of the attribute to wait for.

Variant MaskData

The 1-byte HEX value to use as a mask with the attribute. This parameter is optional. The default value

is 0xFF.

Variant plane

The plane of the attribute to get. The plane can have the following values:

1

Text Plane

2

Color Plane

Chapter 2. Product Documentation

3

Field Plane (default)

4

Extended Field Plane

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Boolean bWaitForIr

If this value is true, after meeting the wait condition the function will wait until the OIA is ready to accept

input. This parameter is optional. The default is False.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLPSObj as Object
Dim Row, Col, WaitData, MaskData, plane

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

Row = 20
Col = 16
WaitData = E8h
MaskData = FFh
plane = 3

if (autECLPSObj.WaitForAttrib(Row, Col, WaitData, MaskData, plane, 10000)) then
 msgbox "Attribute " " WaitData " " found"
else
 msgbox "Timeout Occurred"
end if

WaitWhileAttrib
The WaitWhileAttrib method waits while the specified Attribute value appears in the presentation space of the

connection associated with the autECLPS object at the specified Row/Column position. The optional MaskData

parameter can be used to control which values of the attribute you are looking for. The optional plane parameter

allows you to select any of the four PS planes.

1059

HCL Z and I Emulator for Windows (ENGLISH)

1060

Prototype

Boolean WaitWhileAttrib(Variant Row, Variant Col, Variant WaitData,

 [optional] Variant MaskData, [optional] Variant plane, [optional] Variant TimeOut,

 [optional] Boolean bWaitForIr)

Parameters
Variant Row

Row position of the attribute.

Variant Col

Column position of the attribute.

Variant WaitData

The 1 byte HEX value of the attribute to wait for.

Variant MaskData

The 1 byte HEX value to use as a mask with the attribute. This parameter is optional. The default value

is 0xFF.

Variant plane

The plane of the attribute to get. The plane can have the following values:

1

Text Plane

2

Color Plane

3

Field Plane (default)

4

Extended Field Plane

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Boolean bWaitForIr

If this value is true, after meeting the wait condition the function will wait until the OIA is ready to accept

input. This parameter is optional. The default is False.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Chapter 2. Product Documentation

Example
Dim autECLPSObj as Object
Dim Row, Col, WaitData, MaskData, plane

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

Row = 20
Col = 16
WaitData = E8h
MaskData = FFh
plane = 3

if (autECLPSObj.WaitWhileAttrib(Row, Col, WaitData, MaskData, plane, 10000)) then
 msgbox "Attribute " " WaitData " " No longer exists"
else
 msgbox "Timeout Occurred"
end if

WaitForScreen
Synchronously waits for the screen described by the autECLScreenDesc parameter to appear in the Presentation

Space.

Note: The wait for OIA input flag is set on the autECLScreenDesc object, it is not passed as a parameter to the

wait method.

Prototype
Boolean WaitForScreen(Object screenDesc, [optional] Variant TimeOut)

Parameters
Object screenDesc

autECLScreenDesc object that describes the screen (see autECLScreenDesc Class on page 1069).

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

1061

HCL Z and I Emulator for Windows (ENGLISH)

1062

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

autECLScreenDesObj.AddCursorPos 23, 1

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen found"
else
 msgbox "Timeout Occurred"
end if

WaitWhileScreen
Synchronously waits until the screen described by the autECLScreenDesc parameter is no longer in the Presentation

Space.

Note: The wait for OIA input flag is set on the autECLScreenDesc object, it is not passed as a parameter to the

wait method.

Prototype
Boolean WaitWhileScreen(Object screenDesc, [optional] Variant TimeOut)

Parameters
Object ScreenDesc

autECLScreenDesc object that describes the screen (see autECLScreenDesc Class on page 1069).

Variant TimeOut

The maximum length of time in milliseconds to wait, this parameter is optional. The default is Infinite.

Return Value
The method returns True if the condition is met, or False if the Timeout value is exceeded.

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

autECLScreenDesObj.AddCursorPos 23, 1

if (autECLPSObj.WaitWhileScreen(autECLScreenDesObj, 10000)) then

Chapter 2. Product Documentation

 msgbox "Screen exited"
else
 msgbox "Timeout Occurred"
end if

CancelWaits
Cancels any currently active wait methods.

Prototype
void CancelWaits()

Parameters
None

Return Value
None

autECLPS Events
The following events are valid for autECLPS:

void NotifyPSEvent()

void NotifyKeyEvent(string KeyType, string KeyString, PassItOn as Boolean)

void NotifyCommEvent(boolean bConnected)

void NotifyPSError()

void NotifyKeyError()

void NotifyCommError()

void NotifyPSStop(Long Reason)

void NotifyKeyStop(Long Reason)

void NotifyCommStop(Long Reason)

NotifyPSEvent
A given PS has been updated.

Prototype
void NotifyPSEvent()

1063

HCL Z and I Emulator for Windows (ENGLISH)

1064

Parameters
None

Example
See Event Processing Example on page 1067 for an example.

NotifyKeyEvent
A keystroke event has occurred and the key information has been supplied. This function can be used to intercept

keystrokes to a given PS. The Key information is passed to the event handler and can be passed on, or another action

can be performed.

Note: Only one object can have keystroke event handling registered to a given PS at a time.

Prototype
void NotifyKeyEvent(string KeyType, string KeyString, PassItOn as Boolean)

Parameters
String KeyType

Type of key intercepted.

M

Mnemonic keystroke

A

ASCII

String KeyString

Intercepted keystroke

Boolean PassItOn

Flag to indicate if the keystroke should be echoed to the PS.

TRUE

Allows the keystroke to be passed on to the PS.

FALSE

Prevents the keystroke from being passed to the PS.

Chapter 2. Product Documentation

Example
See Event Processing Example on page 1067 for an example.

NotifyCommEvent
A given communications link as been connected or disconnected.

Prototype
void NotifyCommEvent(boolean bConnected)

Parameters
boolean bConnected

True if Communications Link is currently Connected, False otherwise.

Example
See Event Processing Example on page 1067 for an example.

NotifyPSError
This event occurs when an error occurs in event processing.

Prototype
void NotifyPSError()

Parameters
None

Example
See Event Processing Example on page 1067 for an example.

NotifyKeyError
This event occurs when an error occurs in event processing.

Prototype
void NotifyKeyError()

1065

HCL Z and I Emulator for Windows (ENGLISH)

1066

Parameters
None

Example
See Event Processing Example on page 1067 for an example.

NotifyCommError
This event occurs when an error occurs in event processing.

Prototype
void NotifyCommError()

Parameters
None

Example
See Event Processing Example on page 1067 for an example.

NotifyPSStop
This event occurs when event processing stops.

Prototype
void NotifyPSStop(Long Reason)

Parameters
Long Reason

Reason code for the stop. Currently this will always be 0.

Example
See Event Processing Example on page 1067 for an example.

NotifyKeyStop
This event occurs when event processing stops.

Chapter 2. Product Documentation

Prototype
void NotifyKeyStop(Long Reason)

Parameters
Long Reason

Reason code for the stop. Currently this will always be 0.

Example
See Event Processing Example on page 1067 for an example.

NotifyCommStop
This event occurs when event processing stops.

Prototype
void NotifyCommStop(Long Reason)

Parameters
Long Reason

Reason code for the stop. Currently this will always be 0.

Event Processing Example
The following is a short example of how to implement PS Events

Option Explicit
Private WithEvents mPS As autECLPS 'AutPS added as reference
Private WithEvents Mkey as autECLPS

sub main()
'Create Objects
Set mPS = New autECLPS
Set mkey = New autECLPS
mPS.SetConnectionByName "A" 'Monitor Session A for PS Updates
mPS.SetConnectionByName "B" 'Intercept Keystrokes intended for Session B

mPS.RegisterPSEvent 'register for PS Updates
mPS.RegisterCommEvent ' register for Communications Link updates for session A
mkey.RegisterKeyEvent 'register for Key stroke intercept

' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
call DisplayGUI()

1067

HCL Z and I Emulator for Windows (ENGLISH)

1068

mPS.UnregisterPSEvent
mPS.UnregisterCommEvent
mkey.UnregisterKeyEvent

set mPS = Nothing
set mKey = Nothing
End Sub

'This sub will get called when the PS of the Session registered
'above changes
Private Sub mPS_NotifyPSEvent()
' do your processing here
End Sub

'This sub will get called when Keystrokes are entered into Session B
Private Sub mkey_NotifyKeyEvent(string KeyType, string KeyString, PassItOn as Boolean)
' do your keystroke filtering here
If (KeyType = "M") Then
'handle mnemonics here
if (KeyString = "[PF1]" then 'intercept PF1 and send PF2 instead
mkey.SendKeys "[PF2]"
set PassItOn = false
end if
end if

End Sub

'This event occurs if an error happens in PS event processing
Private Sub mPS_NotifyPSError()
'Do any error processing here
End Sub

'This event occurs when PS Event handling ends
Private Sub mPS_NotifyPSStop(Reason As Long)
'Do any stop processing here
End Sub

'This event occurs if an error happens in Keystroke processing
Private Sub mkey_NotifyKeyError()
'Do any error processing here
End Sub

'This event occurs when key stroke event handling ends
Private Sub mkey_NotifyKeyStop(Reason As Long)
'Do any stop processing here
End Sub

'This sub will get called when the Communication Link Status of the registered
'connection changes
Private Sub mPS_NotifyCommEvent()
' do your processing here
End Sub

'This event occurs if an error happens in Communications Link event processing
Private Sub mPS_NotifyCommError()
'Do any error processing here

Chapter 2. Product Documentation

End Sub

'This event occurs when Communications Status Notification ends
Private Sub mPS_NotifyCommStop()
'Do any stop processing here
End Sub

autECLScreenDesc Class
autECLScreenDesc is the class that is used to describe a screen for HCL's Host Access Class Library Screen

Recognition Technology. It uses all four major planes of the presentation space to describe it (text, field, extended

field, and color planes), as well as the cursor position.

Using the methods provided on this object, the programmer can set up a detailed description of what a given screen

looks like in a host side application. Once an autECLScreenDesc object is created and set, it may be passed to either

the synchronous WaitFor... methods provided on autECLPS, or it may be passed to autECLScreenReco, which fires an

asynchronous event if the screen matching the autECLScreenDesc object appears in the PS.

autECLScreenDesc Methods
The following section describes the methods that are valid for autECLScreenDesc.

void AddAttrib(Variant attrib, Variant row, Variant col, Variant plane)

void AddCursorPos(Variant row, Variant col)

void AddNumFields(Variant num)

void AddNumInputFields(Variant num)

void AddOIAInhibitStatus(Variant type)

void AddString(String str, Variant row, Variant col, [optional] Boolean caseSense)

void AddStringInRect(String str, Variant sRow, Variant sCol,

 Variant eRow, Variant eCol, [optional] Variant caseSense)

void Clear()

AddAttrib
Adds an attribute value at the given position to the screen description.

Prototype
void AddAttrib(Variant attrib, Variant row, Variant col, Variant plane)

Parameters
Variant attrib

The 1 byte HEX value of the attribute.

1069

HCL Z and I Emulator for Windows (ENGLISH)

1070

Variant row

Row position.

Variant col

Column position.

Variant plane

The plane of the attribute to get. The plane can have the following values:

0. All Planes

1. Text Plane

2. Color Plane

3. Field Plane

4. Extended Field Plane

Return Value
None

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
 else
 msgbox "Timeout Occurred"
end if

AddCursorPos
Sets the cursor position for the screen description to the given position.

Chapter 2. Product Documentation

Prototype
void AddCursorPos(Variant row, Variant col)

Parameters
Variant row

Row position.

Variant col

Column position.

Return Value
None

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddNumFields
Adds the number of fields to the screen description.

Prototype
void AddNumFields(Variant num)

1071

HCL Z and I Emulator for Windows (ENGLISH)

1072

Parameters
Variant num

Number of fields.

Return Value
None

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddNumInputFields
Adds the number of fields to the screen description.

Prototype
void AddNumInputFields(Variant num)

Parameters
Variant num

Number of input fields.

Return Value
None

Chapter 2. Product Documentation

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddOIAInhibitStatus
Sets the type of OIA monitoring for the screen description.

Prototype
void AddOIAInhibitStatus(Variant type)

Parameters
Variant type

Type of OIA status. Valid values are as follows:

0. Don't Care

1. Not Inhibited

Return Value
None

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")

1073

HCL Z and I Emulator for Windows (ENGLISH)

1074

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddString
Adds a string at the given location to the screen description.

Prototype

void AddString(String str, Variant row, Variant col, [optional] Boolean caseSense)

Parameters
String str

String to add.

Variant row

Row position.

Variant col

Column position.

Boolean caseSense

If this value is True, the strings are added as case-sensitive. This parameter is optional. The default is

True.

Return Value
None

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Chapter 2. Product Documentation

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddStringInRect
Adds a string in the given rectangle to the screen description.

Prototype
void AddStringInRect(String str, Variant sRow, Variant sCol,

 Variant eRow, Variant eCol, [optional] Variant caseSense)

Parameters
String str

String to add

Variant sRow

Upper left row position.

Variant sCol

Upper left column position.

Variant eRow

Lower right row position.

Variant eCol

Lower right column position.

Variant caseSense

If this value is True, the strings are added as case-sensitive. This parameter is optional. The default is

True.

1075

HCL Z and I Emulator for Windows (ENGLISH)

1076

Return Value
None

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

Clear
Removes all description elements from the screen description.

Prototype
void Clear()

Parameters
None

Return Value
None

Example
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")

Chapter 2. Product Documentation

autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

autECLScreenDesObj.Clear // start over for a new screen

autECLScreenReco Class
The autECLScreenReco class is the engine for the Host Access Class Library screen recognition system. It contains

the methods for adding and removing descriptions of screens. It also contains the logic for recognizing those screens

and for asynchronously calling back to your event handler code for those screens.

Think of an object of the autECLScreenReco class as a unique recognition set. The object can have multiple

autECLPS objects that it watches for screens, and multiple screens to look for, and when it sees a registered screen in

any of the added autECLPS objects it will fire event handling code defined in your application.

All you need to do is set up your autECLScreenReco objects at the start of your application, and when any screen

appears in any autECLPS that you want to monitor, your event code will get called by autECLScreenReco. You do

absolutely no legwork in monitoring screens.

See Event Processing Example on page 1082 for an example.

autECLScreenReco Methods
The following section describes the methods that are valid for autECLScreenReco.

void AddPS(autECLPS ps)

Boolean IsMatch(autECLPS ps, AutECLScreenDesc sd)

void RegisterScreen(AutECLScreenDesc sd)

void RemovePS(autECLPS ps)

void UnregisterScreen(AutECLScreenDesc sd)

1077

HCL Z and I Emulator for Windows (ENGLISH)

1078

AddPS
Adds an autECLPS object to monitor to the autECLScreenReco Object.

Prototype
void AddPS(autECLPS ps)

Parameters
autECLPS ps

PS object to monitor.

Return Value
None

Example
See Event Processing Example on page 1082 for an example.

IsMatch
Allows for passing an autECLPS object and an AutECLScreenDesc object and determining if the screen description

matches the current state of the PS. The screen recognition engine uses this logic, but is provided so any routine can

call it.

Prototype
Boolean IsMatch(autECLPS ps, AutECLScreenDesc sd)

Parameters
autECLPS ps

autPS object to compare.

AutECLScreenDesc sd

autECLScreenDesc object to compare.

Return Value
True if the AutECLScreenDesc object matches the current screen in the PS, False otherwise.

Example
Dim autPSObj as Object
Dim autECLScreenDescObj as Object

Chapter 2. Product Documentation

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autPSObj = CreateObject("ZIEWin.autECLPS")
autPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLScreenReco.IsMatch(autPSObj, autECLScreenDesObj)) then
 msgbox "matched"
else
 msgbox "no match"
end if

RegisterScreen
Begins monitoring all autECLPS objects added to the screen recognition object for the given screen description. If the

screen appears in the PS, a NotifyRecoEvent will occur.

Prototype
void RegisterScreen(AutECLScreenDesc sd)

Parameters
AutECLScreenDesc sd

Screen description object to register.

Return Value
None

Example
See Event Processing Example on page 1082 for an example.

RemovePS
Removes the autECLPS object from screen recognition monitoring.

Prototype
void RemovePS(autECLPS ps)

1079

HCL Z and I Emulator for Windows (ENGLISH)

1080

Parameters
autECLPS ps

autECLPS object to remove.

Return Value
None

Example
See Event Processing Example on page 1082 for an example.

UnregisterScreen
Removes the screen description from screen recognition monitoring.

Prototype
void UnregisterScreen(AutECLScreenDesc sd)

Parameters
AutECLScreenDesc sd

Screen description object to remove.

Return Value
None

Example
See Event Processing Example on page 1082 for an example.

autECLScreenReco Events
The following events are valid for autECLScreenReco:

void NotifyRecoEvent(AutECLScreenDesc sd, autECLPS ps)

void NotifyRecoError()

void NotifyRecoStop(Long Reason)

Chapter 2. Product Documentation

NotifyRecoEvent
This event occurs when a Registered Screen Description appears in a PS that was added to the autECLScreenReco

object.

Prototype
void NotifyRecoEvent(AutECLScreenDesc sd, autECLPS ps)

Parameters
AutECLScreenDesc sd

Screen Description object that had its criteria met.

autECLPS ps

PS object in which the match occurred.

Example
See Event Processing Example on page 1082 for an example.

NotifyRecoError
This event occurs when an error occurs in Event Processing.

Prototype
void NotifyRecoError()

Parameters
None

Example
See Event Processing Example on page 1082 for an example.

NotifyRecoStop
This event occurs when event processing stops.

Prototype
void NotifyRecoStop(Long Reason)

1081

HCL Z and I Emulator for Windows (ENGLISH)

1082

Parameters
Long Reason

Reason code for the stop. Currently this will always be 0.

Event Processing Example
The following is a short example of how to implement Screen Recognition Events:

Dim myPS as Object
Dim myScreenDesc as Object
Dim WithEvents reco as autECLScreenReco 'autECLScreenReco added as reference

Sub Main()
 ' Create the objects
 Set reco= new autECLScreenReco
 myScreenDesc = CreateObject("ZIEWin.autECLScreenDesc")
 Set myPS = CreateObject("ZIEWin.autECLPS")
 myPS.SetConnectionByName "A"

 ' Set up the screen description
 myScreenDesc.AddCursorPos 23, 1
 myScreenDesc.AddString "LOGON"
 myScreenDesc.AddNumFields 59

 ' Add the PS to the reco object (can add multiple PS's)
 reco.addPS myPS

 ' Register the screen (can add multiple screen descriptions)
 reco.RegisterScreen myScreenDesc

 ' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
 call DisplayGUI()

 ' Clean up
 reco.UnregisterScreen myScreenDesc
 reco.RemovePS myPS
 set myPS = Nothing
 set myScreenDesc = Nothing
 set reco = Nothing
End Sub

'This sub will get called when the screen Description registered above appears in
'Session A. If multiple PS objects or screen descriptions were added, you can
'determine which screen and which PS via the parameters.

Sub reco_NotifyRecoEvent(autECLScreenDesc SD, autECLPS PS)
 If (reco.IsMatch(PS,myScreenDesc)) Then
 ' do your processing for your screen here
 End If
End Sub

Sub reco_NotifyRecoError
 'do your error handling here

Chapter 2. Product Documentation

End sub

Sub reco_NotifyRecoStop(Reason as Long)
 'Do any stop processing here
End sub

autECLSession Class
The autECLSession object provides general emulator related services and contains pointers to other key objects in

the Host Access Class Library. Its name in the registry is ZIEWin.autECLSession.

Although the objects that autECLSession contains are capable of standing on their own, pointers to them exist

in the autECLSession class. When an autECLSession object is created, autECLPS, autECLOIA, autECLXfer,

autECLWindowMetrics, autECLPageSettings, and autECLPrinterSettings objects are also created. Refer to them as

you would any other property.

Note:

1. The current version of this object is 1.2. There are two versions of this object; their ProgIDs in the

registry are ZIEWin.autECLSession.1 and ZIEWin.autECLSession.2. The version-independent ProgID

is ZIEWin.autECLSession. The ZIEWin.autECLSession.1 object does not support the properties

autECLPageSettings and autECLPrinterSettings.

2. You must initially set the connection for the object you create. Use SetConnectionByName or

SetConnectionByHandle to initialize your object. The connection can be set only once. After the

connection is set, any further calls to the SetConnection methods cause an exception. If you do not

set the connection and try to access an autECLSession property or method, an exception is also

raised.

The following example shows how to create and set the autECLSession object in Visual Basic.

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, set the host window to minimized
SessObj.autECLWinMetrics.Minimized = True

Properties
autECLSessionpropertiesoverviewThis section describes the properties for the autECLSession object.

Type Name Attributes

String Name Read-only

Long Handle Read-only

String ConnType Read-only

1083

HCL Z and I Emulator for Windows (ENGLISH)

1084

Type Name Attributes

Long CodePage Read-only

Boolean Started Read-only

Boolean CommStarted Read-only

Boolean APIEnabled Read-only

Boolean Ready Read-only

Object autECLPS Read-only

Object autECLOIA Read-only

Object autECLXfer Read-only

Object autECLWinMetrics Read-only

Object autECLPageSettings Read-only

Object autECLPrinterSettings Read-only

Name
This property is the connection name string of the connection for which autECLSession was set. Z and I Emulator

for Windows only returns the short character ID (A-Z or a-z) in the string. There can be only one Z and I Emulator for

Windows connection open with a given name. For example, there can be only one connection “A” open at a time.

Name is a String data type and is read-only. The following example shows this property.

DIM Name as String
DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

' Save the name
Name = SessObj.Name

Handle
This is the handle of the connection for which the autECLSession object was set. There can be only one Z and I

Emulator for Windows connection open with a given handle. For example, there can be only one connection “A” open

at a time. Handle is a Long data type and is read-only. The following example shows this property.

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

' Save the session handle
Hand = SessObj.Handle

Chapter 2. Product Documentation

ConnType
This is the connection type for which autECLXfer was set. This type may change over time. ConnType is a String data

type and is read-only. The following example shows this property.

DIM Type as String
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' Save the type
Type = SessObj.ConnType

Connection types for the ConnType property are:

String Returned Meaning

DISP3270 3270 display

DISP5250 5250 display

PRNT3270 3270 printer

PRNT5250 5250 printer

ASCII VT emulation

CodePage
This is the code page of the connection for which autECLXfer was set. This code page may change over time.

CodePage is a Long data type and is read-only. The following example shows this property.

DIM CodePage as Long
DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' Save the code page
CodePage = SessObj.CodePage

Started
This indicates whether the emulator window is started. The value is True if the window is open; otherwise, it is False.

Started is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' This code segment checks to see if A is started.

1085

HCL Z and I Emulator for Windows (ENGLISH)

1086

' The results are sent to a text box called Result.
If SessObj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
This indicates the status of the connection to the host. The value is True if the host is connected; otherwise, it is

False. CommStarted is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for session A. The results are sent to a text box called
' CommConn.
If SessObj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
This indicates whether the emulator is API-enabled. A connection may be enabled or disabled depending on the state

of its API settings (in a Z and I Emulator for Windows window, choose File -> API Settings). The value is True if the

emulator is enabled; otherwise, it is False. APIEnabled is a Boolean data type and is read-only. The following example

shows this property.

DIM Hand as Long
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.
If SessObj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Chapter 2. Product Documentation

Ready
This indicates whether the emulator window is started, API-enabled, and connected. This property checks for all three

properties. The value is True if the emulator is ready; otherwise, it is False. Ready is a Boolean data type and is read-

only. The following example shows this property.

DIM Hand as Long
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If SessObj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLPS object
The autECLPS object allows you to access the methods contained in the ZIEWin.autECLPS class. See autECLPS

Class on page 1029 for more information. The following example shows this object.

DIM SessObj as Object
DIM PSSize as Long
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, get the PS size
PSSize = SessObj.autECLPS.GetSize()

autECLOIA object
The autECLOIA object allows you to access the methods contained in the ZIEWin.autECLOIA class. See autECLOIA

Class on page 1011 for more information. The following example shows this object.

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, set the host window to minimized
If (SessObj.autECLOIA.Katakana) Then
 'whatever
Endif

1087

HCL Z and I Emulator for Windows (ENGLISH)

1088

autECLXfer object
The autECLXfer object allows you to access the methods contained in the ZIEWin.autECLXfer class. See autECLXfer

Class on page 1112 for more information. The following example shows this object.

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example
SessObj.Xfer.Sendfile "c:\temp\filename.txt",
 "filename text a0",
 "CRLF ASCII"

autECLWinMetrics object
The autECLWinMetrics object allows you to access the methods contained in the ZIEWin.autECLWinMetrics class.

See autECLWinMetrics Class on page 1096 for more information. The following example shows this object.

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, set the host window to minimized
SessObj.autECLWinMetrics.Minimized = True

autECLPageSettings object
The autECLPageSettings object enables you to access the methods contained in the ZIEWin.autECLPageSettings

class. See autECLPageSettings Class on page 1126 for more information.

The following example shows the autECLPageSettings object.

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")
'Initialize the session
SessObj.SetConnectionByName("A")

'For example, set the FaceName
SessObj.autECLPageSettings.FaceName = "Courier New"

The autECLPageSettings object is also supported in VBSCRIPT. The following example shows how to use VBSCRIPT.

sub test_()
 autECLSession.SetConnectionByName(ThisSessionName)
 autECLSession.autECLPageSettings.FaceName="Courier"
 end sub

Chapter 2. Product Documentation

autECLPrinterSettings object
The autECLPrinterSettings object enables you to access the methods contained in the ZIEWin.autECLPrinterSettings

class. See autECLPageSettings Class on page 1126 for more information.

The following example shows the autECLPageSettings object.

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")
' Initialize the session
SessObj.SetConnectionByName("A")

'For example, set the Windows default printer
SessObj.autECLPrinterSettings.SetWinDefaultPrinter

The autECLPrinterSettings object is also supported in VBSCRIPT. The following example shows how to use

VBSCRIPT.

sub test_()
 autECLSession.SetConnectionByName(ThisSessionName)
 autECLSession.autECLPrinterSettings.SetWinDefaultPrinter
end sub

autECLSession Methods
The following section describes the methods that are valid for the autECLSession object.

void RegisterSessionEvent(Long updateType)

void RegisterCommEvent()

void UnregisterSessionEvent()

void UnregisterCommEvent()

void SetConnectionByName (String Name)

void SetConnectionByHandle (Long Handle)

void StartCommunication()

void StopCommunication()

RegisterSessionEvent
This method registers an autECLSession object to receive notification of specified Session events.

Note: This method is not supported and is not recommended for use.

Prototype
void RegisterSessionEvent(Long updateType)

1089

HCL Z and I Emulator for Windows (ENGLISH)

1090

Parameters
Long updateType

Type of update to monitor for:

1. PS Update

2. OIA Update

3. PS or OIA Update

Return Value
None

Example
See Event Processing Example on page 1095 for an example.

RegisterCommEvent
This method registers an object to receive notification of all communication link connect/disconnect events.

Prototype
void RegisterCommEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1095 for an example.

UnregisterSessionEvent
Ends Session Event processing.

Chapter 2. Product Documentation

Note: This method is not supported and is not recommended for use.

Prototype
void UnregisterSessionEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1095 for an example.

UnregisterCommEvent
Ends Communications Link Event processing.

Prototype
void UnregisterCommEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1095 for an example.

SetConnectionByName
This method uses the connection name to set the connection for a newly created autECLSession object. In Z and

I Emulator for Windows this connection name is the short ID (character A-Z or a-z). There can be only one Z and I

Emulator for Windows connection open with a given name. For example, there can be only one connection “A” open at

a time.

1091

HCL Z and I Emulator for Windows (ENGLISH)

1092

Prototype
void SetConnectionByName(String Name)

Parameters
String Name

One-character string short name of the connection (A-Z or a-z).

Return Value
None

Example
The following example shows how to use the connection name to set the connection for a newly created

autECLSession object.

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, set the host window to minimized
SessObj.autECLWinMetrics.Minimized = True

SetConnectionByHandle
This method uses the connection handle to set the connection for a newly created autECLSession object. In Z and I

Emulator for Windows this connection handle is a long integer. There can be only one Z and I Emulator for Windows

connection open with a given handle. For example, there can be only one connection “A” open at a time.

Prototype
void SetConnectionByHandle(Long Handle)

Parameters
Long Handle

Long integer value of the connection to be set for the object.

Return Value
None

Chapter 2. Product Documentation

Example
The following example shows how to use the connection handle to set the connection for a newly created

autECLSession object.

Dim SessObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

StartCommunication
The StartCommunication collection element method connects the ZIEWin emulator to the host data stream. This has

the same effect as going to the ZIEWin emulator Communication menu and choosing Connect.

Prototype
void StartCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim SessObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
autECLConnList.Refresh
SessObj.SetConnectionByHandle(autECLConnList(1).Handle)

SessObj.StartCommunication()

1093

HCL Z and I Emulator for Windows (ENGLISH)

1094

StopCommunication
The StopCommunication collection element method disconnects the ZIEWin emulator to the host data stream. This

has the same effect as going to the ZIEWin emulator Communication menu and choosing Disconnect.

Prototype
void StopCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim SessObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
autECLConnList.Refresh
SessObj.SetConnectionByHandle(autECLConnList(1).Handle)

SessObj.StopCommunication()

autECLSession Events
The following events are valid for autECLSession:

void NotifyCommEvent(boolean bConnected)

void NotifyCommError()

void NotifyCommStop(Long Reason)

NotifyCommEvent
A given communications link has been connected or disconnected.

Prototype
void NotifyCommEvent(boolean bConnected)

Chapter 2. Product Documentation

Parameters
boolean bConnected

TRUE if communications link is currently connected. FALSE otherwise.

Example
See Event Processing Example on page 1095 for an example.

NotifyCommError
This event occurs when an error occurs in event processing.

Prototype
void NotifyCommError()

Parameters
None

Example
See Event Processing Example on page 1095 for an example.

NotifyCommStop
This event occurs when event processing stops.

Prototype
void NotifyCommStop(Long Reason)

Parameters
Long Reason

Reason code for the stop. Currently, this will always be 0.

Event Processing Example
The following is a short example of how to implement Session Events

Option Explicit
Private WithEvents mSess As autECLSession 'AutSess added as reference

1095

HCL Z and I Emulator for Windows (ENGLISH)

1096

sub main()
 'Create Objects
 Set mSess = New autECLSession
 mSess.SetConnectionByName "A"
 mSess.RegisterCommEvent 'register for communication link notifications
 ' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
 call DisplayGUI()
 mSess.UnregisterCommEvent
 set mSess = Nothing
End Sub

'This sub will get called when the Communication Link Status of the registered
'connection changes
Private Sub mSess_NotifyCommEvent()
 ' do your processing here
End Sub

'This event occurs if an error happens in Communications Link event processing
Private Sub mSess_NotifyCommError()
 'Do any error processing here
End Sub

'This event occurs when Communications Status Notification ends
Private Sub mSess_NotifyCommStop()
 'Do any stop processing here
End Sub

autECLWinMetrics Class
The autECLWinMetrics object performs operations on an emulator window. It allows you to perform window rectangle

and position manipulation (for example, SetWindowRect, Ypos and Width), as well as window state manipulation (for

example, Visible or Restored). Its name in the registry is ZIEWin.autECLWinMetrics.

You must initially set the connection for the object you create. Use SetConnectionByName or SetConnectionByHandle

to initialize your object. The connection may be set only once. After the connection is set, any further calls to the set

connection methods cause an exception. If you do not set the connection and try to access a property or method, an

exception is also raised.

Note: The autECLSession object in the autECL object is set by the autECL object.

The following example shows how to create and set the autECLWinMetrics object in Visual Basic.

DIM autECLWinObj as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
autECLWinObj.SetConnectionByName("A")
' For example, set the host window to minimized
autECLWinObj.Minimized = True

Chapter 2. Product Documentation

Properties
autECLWinMetricspropertiesoverviewThis section describes the properties for the autECLWinMetrics object.

Type Name Attributes

String WindowTitle Read/Write

Long Xpos Read/Write

Long Ypos Read/Write

Long Width Read/Write

Long Height Read/Write

Boolean Visible Read/Write

Boolean Active Read/Write

Boolean Minimized Read/Write

Boolean Maximized Read/Write

Boolean Restored Read/Write

String Name Read-only

Long Handle Read-only

String ConnType Read-only

Long CodePage Read-only

Boolean Started Read-only

Boolean CommStarted Read-only

Boolean APIEnabled Read-only

Boolean Ready Read-only

WindowTitle
This is the title that is currently in the title bar for the connection associated with the autECLWinMetrics object.

This property may be both changed and retrieved. WindowTitle is a String data type and is read/write enabled. The

following example shows this process. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object
Dim WinTitle as String
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

WinTitle = autECLWinObj.WindowTitle 'get the window title

' or...

autECLWinObj.WindowTitle = "Flibberdeejibbet" 'set the window title

1097

HCL Z and I Emulator for Windows (ENGLISH)

1098

Usage Notes
If WindowTitle is set to blank, the window title of the connection is restored to its original setting.

Xpos
This is the x position of the upper left point of the emulator window rectangle. This property may be both changed

and retrieved. Xpos is a Long data type and is read/write enabled. However, if the connection you are attached to is an

inplace, embedded object, this property is read-only. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object
Dim x as Long
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

x = autECLWinObj.Xpos 'get the x position

' or...

autECLWinObj.Xpos = 6081 'set the x position

Ypos
This is the y position of the upper left point of the emulator window rectangle. This property may be both changed

and retrieved. Ypos is a Long data type and is read/write enabled. However, if the connection you are attached to is an

inplace, embedded object, this property is read-only. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object
Dim y as Long
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

y = autECLWinObj.Ypos 'get the y position

' or...

autECLWinObj.Ypos = 6081 'set the y position

Chapter 2. Product Documentation

Width
This is the width of the emulator window rectangle. This property may be both changed and retrieved. Width is a Long

data type and is read/write enabled. However, if the connection you are attached to is an inplace, embedded object,

this property is read-only. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object
Dim cx as Long
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

cx = autECLWinObj.Width 'get the width

' or...

autECLWinObj.Width = 6081 'set the width

Height
This is the height of the emulator window rectangle. This property may be both changed and retrieved. Height is a

Long data type and is read/write enabled. However, if the connection you are attached to is an inplace, embedded

object, this property is read-only. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object
Dim cy as Long
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

cy = autECLWinObj.Height 'get the height

' or...

autECLWinObj.Height = 6081 'set the height

Visible
This is the visibility state of the emulator window. This property may be both changed and retrieved. Visible is a

Boolean data type and is read/write enabled. However, if the connection you are attached to is an inplace, embedded

object, this property is read-only. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object

1099

HCL Z and I Emulator for Windows (ENGLISH)

1100

Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

' Set to Visible if not, and vice versa
If (autECLWinObj.Visible) Then
 autECLWinObj.Visible = False
Else
 autECLWinObj.Visible = True
End If

Active
This is the focus state of the emulator window. This property may be both changed and retrieved. Active is a Boolean

data type and is read/write enabled. However, if the connection you are attached to is an inplace, embedded object,

this property is read-only. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

' Set to Active if not, and vice versa
If (autECLWinObj.Active) Then
 autECLWinObj.Active = False
Else
 autECLWinObj.Active = True
End If

Minimized
This is the minimize state of the emulator window. This property may be both changed and retrieved. Minimized is a

Boolean data type and is read/write enabled. However, if the connection you are attached to is an inplace, embedded

object, this property is read-only. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

' Set to minimized if not, if minimized set to maximized
If (autECLWinObj.Minimized) Then

Chapter 2. Product Documentation

 autECLWinObj.Maximized = True
Else
 autECLWinObj.Minimized = True
End If

Maximized
This is the maximize state of the emulator window. This property may be both changed and retrieved. Maximized is a

Boolean data type and is read/write enabled. However, if the connection you are attached to is an inplace, embedded

object, this property is read-only. The following example shows this property.

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

' Set to maximized if not, if maximized set to minimized
If (autECLWinObj.Maximized) Then
 autECLWinObj.Minimized = False
Else
 autECLWinObj.Maximized = True
End If

Restored
This is the restore state of the emulator window. Restored is a Boolean data type and is read/write enabled. However,

if the connection you are attached to is an inplace, embedded object, this property is read-only. The following example

shows this property.

Dim autECLWinObj as Object
Dim SessList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set SessList = CreateObject("ZIEWin.autECLConnList")

' Initialize the session
SessList.Refresh
autECLWinObj.SetSessionByHandle(SessList(1).Handle)

' Set to restored if not, if restored set to minimized
If (autECLWinObj.Restored) Then
 autECLWinObj.Minimized = False
Else
 autECLWinObj.Restored = True
End If

1101

HCL Z and I Emulator for Windows (ENGLISH)

1102

Name
This property is the connection name string of the connection for which autECLWinMetrics was set. Currently, Z and

I Emulator for Windows only returns the short character ID (A-Z or a-z) in the string. There can be only one Z and I

Emulator for Windows connection open with a given name. For example, there can be only one connection “A” open at

a time. Name is a String data type and is read-only. The following example shows this property.

DIM Name as String
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the name
Name = Obj.Name

Handle
This is the handle of the connection for which the autECLWinMetrics object was set. There can be only one Z and I

Emulator for Windows connection open with a given handle. For example, there can be only one connection “A” open

at a time. Handle is a Long data type and is read-only. The following example shows this property.

DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the handle
Hand = Obj.Handle

ConnType
This is the connection type for which autECLWinMetrics was set. This type may change over time. ConnType is a

String data type and is read-only. The following example shows this property.

DIM Type as String
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the type
Type = Obj.ConnType

Connection types for the ConnType property are:

String Returned Meaning

DISP3270 3270 display

Chapter 2. Product Documentation

String Returned Meaning

DISP5250 5250 display

PRNT3270 3270 printer

PRNT5250 5250 printer

ASCII VT emulation

CodePage
This is the code page of the connection for which autECLWinMetrics was set. This code page may change over time.

CodePage is a Long data type and is read-only. The following example shows this property.

DIM CodePage as Long
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the code page
CodePage = Obj.CodePage

Started
This indicates whether the emulator window is started. The value is True if the window is open; otherwise, it is False.

Started is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWinZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If Obj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
This indicates the status of the connection to the host. The value is True if the host is connected; otherwise, it is

False. CommStarted is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

1103

HCL Z and I Emulator for Windows (ENGLISH)

1104

Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If Obj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
This indicates whether the emulator is API-enabled. A connection may be enabled or disabled depending on the state

of its API settings (in a Z and I Emulator for Windows window, choose File ->API Settings). The value is True if the

emulator is enabled; otherwise, it is False. APIEnabled is a Boolean data type and is read-only. The following example

shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.
If Obj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Ready
This indicates whether the emulator window is started, API enabled, and connected. This property checks for all three

properties. The value is True if the emulator is ready; otherwise, it is False. Ready is a Boolean data type and is read-

only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.

Chapter 2. Product Documentation

If Obj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLWinMetrics Methods
The following section describes the methods that are valid for the autECLWinMetrics object.

void RegisterCommEvent()

void UnregisterCommEvent()

void SetConnectionByName(String Name)

void SetConnectionByHandle(Long Handle)

void GetWindowRect(Variant Left, Variant Top, Variant Right, Variant Bottom)

void SetWindowRect(Long Left, Long Top, Long Right, Long Bottom)

void StartCommunication()

void StopCommunication()

RegisterCommEvent
This method registers an object to receive notification of all communication link connect/disconnect events.

Prototype
void RegisterCommEvent()

Parameters
None

Return Value
None

Example
See Event Processing Example on page 1111 for an example.

UnregisterCommEvent
Ends Communications Link Event Processing.

1105

HCL Z and I Emulator for Windows (ENGLISH)

1106

Prototype
void UnregisterCommEvent()

Parameters
None

Return Value
None

SetConnectionByName
autECLWinMetricsmethodsSetConnectionByNameThis method uses the connection name to set the connection for a newly created autECLWinMetrics object. In Z and

I Emulator for Windows this connection name is the short ID (character A-Z or a-z). There can be only one Z and I

Emulator for Windows connection open with a given name. For example, there can be only one connection “A” open at

a time.

Note: Do not call this if using the autECLWinMetrics object in autECLSession.

Prototype
void SetConnectionByName(String Name)

Parameters
String Name

One-character string short name of the connection (A-Z or a-z).

Return Value
None

Example
The following example shows how to use the connection name to set the connection for a newly created

autECLWinMetrics object.

DIM autECLWinObj as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
autECLWinObj.SetConnectionByName("A")
' For example, set the host window to minimized
autECLWinObj.Minimized = True

Chapter 2. Product Documentation

SetConnectionByHandle
autECLWinMetricsmethodsSetConnectionByHandleThis method uses the connection handle to set the connection for a newly created autECLWinMetrics object. In Z and

I Emulator for Windows this connection handle is a long integer. There can be only one Z and I Emulator for Windows

connection open with a given handle. For example, there can be only one connection “A” open at a time.

Note: Do not call this if using the autECLWinMetrics object in autECLSession.

Prototype
void SetConnectionByHandle(Long Handle)

Parameters
Long Handle

Long integer value of the connection to be set for the object.

Return Value
None

Example
The following example shows how to use the connection handle to set the connection for a newly created

autECLWinMetrics object.

DIM autECLWinObj as Object
DIM ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)
' For example, set the host window to minimized
autECLWinObj.Minimized = True

GetWindowRect
autECLWinMetricsmethodsGetWindowRectThe GetWindowRect method returns the bounding points of the emulator window rectangle.

Prototype
void GetWindowRect(Variant Left, Variant Top, Variant Right, Variant Bottom)

1107

HCL Z and I Emulator for Windows (ENGLISH)

1108

Parameters
Variant Left, Top, Right, Bottom

Bounding points of the emulator window.

Return Value
None

Example
The following example shows how to return the bounding points of the emulator window rectangle.

Dim autECLWinObj as Object
Dim ConnList as Object
Dim left
Dim top
Dim right
Dim bottom
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)
autECLWinObj.GetWindowRect left, top, right, bottom

SetWindowRect
autECLWinMetricsmethodsSetWindowRectThe SetWindowRect method sets the bounding points of the emulator window rectangle.

Prototype
void SetWindowRect(Long Left, Long Top, Long Right, Long Bottom)

Parameters
Long Left, Top, Right, Bottom

Bounding points of the emulator window.

Return Value
None

Example
The following example shows how to set the bounding points of the emulator window rectangle.

Chapter 2. Product Documentation

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)
autECLWinObj.SetWindowRect 0, 0, 6081, 6081

StartCommunication
The StartCommunication collection element method connects the ZIEWin emulator to the host data stream. This has

the same effect as going to the ZIEWin emulator Communication menu and choosing Connect.

Prototype
void StartCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim WinObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set WinObj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the session
autECLConnList.Refresh
WinObj.SetConnectionByHandle(autECLConnList(1).Handle)

WinObj.StartCommunication()

StopCommunication
The StopCommunication collection element method disconnects the ZIEWin emulator to the host data stream. This

has the same effect as going to the ZIEWin emulator Communication menu and choosing Disconnect.

1109

HCL Z and I Emulator for Windows (ENGLISH)

1110

Prototype
void StopCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim WinObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set WinObj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the session
autECLConnList.Refresh
WinObj.SetConnectionByHandle(autECLConnList(1).Handle)

WinObj.StopCommunication()

autECL WinMetrics Events
The following events are valid for autECL WinMetrics:

void NotifyCommEvent(boolean bConnected)

NotifyCommError()

void NotifyCommStop(Long Reason)

NotifyCommEvent
A given communications link as been connected or disconnected.

Prototype
void NotifyCommEvent(boolean bConnected)

Parameters
boolean bConnected

True if Communications Link is currently Connected, False otherwise.

Chapter 2. Product Documentation

Example
See Event Processing Example on page 1111 for an example.

NotifyCommError
This event occurs when an error occurs in Event Processing.

Prototype
NotifyCommError()

Parameters
None

Example
See Event Processing Example on page 1111 for an example.

NotifyCommStop
This event occurs when event processing stops.

Prototype
void NotifyCommStop(Long Reason)

Parameters
Long Reason

Reason code for the stop. Currently this will always be 0.

Event Processing Example
The following is a short example of how to implement WinMetrics Events.

Option Explicit
Private WithEvents mWmet As autECLWinMetrics 'AutWinMetrics added as reference

sub main()
 'Create Objects
 Set mWmet = New autECLWinMetrics
 mWmet.SetConnectionByName "A" 'Monitor Session A

 mWmet.RegisterCommEvent ' register for Communications Link updates for session A

1111

HCL Z and I Emulator for Windows (ENGLISH)

1112

 ' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
 call DisplayGUI()

 mWmet.UnregisterCommEvent

 set mWmet = Nothing
End Sub

'This sub will get called when the Communication Link Status of the registered
'connection changes
Private Sub mWmet _NotifyCommEvent()
 ' do your processing here
End Sub

'This event occurs if an error happens in Communications Link event processing
Private Sub mWmet _NotifyCommError()
 'Do any error processing here
End Sub

'This event occurs when Communications Status Notification ends
Private Sub mWmet _NotifyCommStop()
 'Do any stop processing here
End Sub

autECLXfer Class
The autECLXfer object provides file transfer services. Its name in the registry is ZIEWin.autECLXfer.

You must initially set the connection for the object you create. Use SetConnectionByName or SetConnectionByHandle

to initialize your object. The connection may be set only once. After the connection is set, any further calls to the

SetConnection methods cause an exception. If you do not set the connection and try to access an autECLXfer

property or method, an exception is also raised. The following shows how to create and set the autECLXfer object in

Visual Basic.

DIM XferObj as Object

Set XferObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
XferObj.SetConnectionByName("A")

Properties
autECLXferpropertiesoverviewThis section describes the properties for the autECLXfer object.

Type Name Attribute

String Name Read-only

Long Handle Read-only

String ConnType Read-only

Long CodePage Read-only

Boolean Started Read-only

Chapter 2. Product Documentation

Type Name Attribute

Boolean CommStarted Read-only

Boolean APIEnabled Read-only

Boolean Ready Read-only

Name
This property is the connection name string of the connection for which autECLXfer was set. Z and I Emulator for

Windows only returns the short character ID (A-Z or a-z) in the string. There can be only one Z and I Emulator for

Windows connection open with a given name. For example, there can be only one connection “A” open at a time.

Name is a String data type and is read-only. The following example shows this property.

DIM Name as String
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the name
Name = Obj.Name

Handle
This is the handle of the connection for which the autECLXfer object was set. There can be only one Z and I Emulator

for Windows connection open with a given handle. For example, there can be only one connection “A” open at a time.

Handle is a Long data type and is read-only. The following example shows this property.

DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the handle
Hand = Obj.Handle

ConnType
This is the connection type for which autECLXfer was set. This type may change over time. Conntype is a String data

type and is read-only. The following example shows this property.

DIM Type as String
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection

1113

HCL Z and I Emulator for Windows (ENGLISH)

1114

Obj.SetConnectionByName("A")
' Save the type
Type = Obj.ConnType

Connection types for the ConnType property are:

String Returned Meaning

DISP3270 3270 display

DISP5250 5250 display

PRNT3270 3270 printer

PRNT5250 5250 printer

ASCII VT emulation

CodePage
This is the code page of the connection for which autECLXfer was set. This code page may change over time.

CodePage is a Long data type and is read-only. The following example shows this property.

DIM CodePage as Long
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the code page
CodePage = Obj.CodePage

Started
This indicates whether the emulator window is started. The value is True if the window is open; otherwise, it is False.

Started is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If Obj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Chapter 2. Product Documentation

CommStarted
This indicates the status of the connection to the host. The value is True if the host is connected; otherwise, it is

False. CommStarted is a Boolean data type and is read-only. The following example shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If Obj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
This indicates whether the emulator is API-enabled. A connection may be enabled or disabled depending on the state

of its API settings (in a Z and I Emulator for Windows window, choose File -> API Settings). The value is True if the

emulator is enabled; otherwise, it is False. APIEnabled is a Boolean data type and is read-only. The following example

shows this property.

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.
If Obj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Ready
This indicates whether the emulator window is started, API enabled, and connected. This property checks for all three

properties. The value is True if the emulator is ready; otherwise, it is False. Ready is a Boolean data type and is read-

only. The following example shows this property.

1115

HCL Z and I Emulator for Windows (ENGLISH)

1116

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If Obj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLXfer Methods
The following section describes the methods that are valid for the autECLXfer object.

void RegisterCommEvent()

void UnregisterCommEvent()

void SetConnectionByName(String Name)

void SetConnectionByHandle(Long Handle)

void SendFile(String PCFile, String HostFile, String Options)

void ReceiveFile(String PCFile, String HostFile, String Options)

void StartCommunication()

void StopCommunication()

RegisterCommEvent
This method registers an object to receive notification of all communication link connect/disconnect events.

Prototype
void RegisterCommEvent()

Parameters
None

Return Value
None

Example
SeeEvent Processing Example on page 1124 for an example.

Chapter 2. Product Documentation

UnregisterCommEvent
Ends Communications Link Event Processing.

Prototype
void UnregisterCommEvent()

Parameters
None

Return Value
None

SetConnectionByName
The SetConnectionByName method uses the connection name to set the connection for a newly created autECLXfer

object. In Z and I Emulator for Windows this connection name is the short ID (character A-Z or a-z). There can be only

one Z and I Emulator for Windows connection open with a given name. For example, there can be only one connection

“A” open at a time.

Note: Do not call this if using the autECLXfer object in autECLSession.

Prototype
void SetConnectionByName(String Name)

Parameters
String Name

One-character string short name of the connection (A-Z or a-z).

Return Value
None

Example
The following example shows how to use the connection name to set the connection for a newly created autECLXfer

object.

1117

HCL Z and I Emulator for Windows (ENGLISH)

1118

DIM XferObj as Object

Set XferObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
XferObj.SetConnectionByName("A")

SetConnectionByHandle
The SetConnectionByHandle method uses the connection handle to set the connection for a newly created

autECLXfer object. In Z and I Emulator for Windows this connection handle is a Long integer. There can be only one Z

and I Emulator for Windows connection open with a given handle. For example, there can be only one connection “A”

open at a time.

Note: Do not call this if using the autECLXfer object in autECLSession.

Prototype
void SetConnectionByHandle(Long Handle)

Parameters
Long Handle

Long integer value of the connection to be set for the object.

Return Value
None

Example
The following example shows how to use the connection handle to set the connection for a newly created autECLXfer

object.

DIM XferObj as Object
DIM autECLConnList as Object

Set XferObj = CreateObject("ZIEWin.autECLXfer")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first connection in the list
autECLConnList.Refresh
XferObj.SetConnectionByHandle(autECLConnList(1).Handle)

Chapter 2. Product Documentation

SendFile
The SendFile method sends a file from the workstation to the host for the connection associated with the autECLXfer

object.

Prototype
void SendFile(String PCFile, String HostFile, String Options)

Parameters
String PCFile

Name of the file on the workstation.

String HostFile

Name of the file on the host.

String Options

Host-dependent transfer options. See Usage Notes on page 1119 for more information.

Return Value
None

Usage Notes
File transfer options are host-dependent. The following is a list of some of the valid host options for a VM/CMS host.

ASCII

CRLF

APPEND

LRECL

RECFM

CLEAR/NOCLEAR

PROGRESS

QUIET

Refer to Emulator Programming for the list of supported hosts and associated file transfer options.

Example
The following example shows how to send a file from the workstation to the host for the connection associated with

the autECLXfer object.

DIM XferObj as Object
DIM autECLConnList as Object
DIM NumRows as Long

1119

HCL Z and I Emulator for Windows (ENGLISH)

1120

Set XferObj = CreateObject("ZIEWin.autECLXfer")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first connection in the autECLConnList
autECLConnList.Refresh
XferObj.SetConnectionByHandle(autECLConnList(1).Handle)

' For example, send the file to VM
XferObj.SendFile "c:\windows\temp\thefile.txt",
 "THEFILE TEXT A0",
 "CRLF ASCII"

ReceiveFile
The ReceiveFile method receives a file from the host to the workstation for the connection associated with the

autECLXfer object.

Prototype
void ReceiveFile(String PCFile, String HostFile, String Options)

Parameters
String PCFile

Name of the file on the workstation.

String HostFile

Name of the file on the host.

String Options

Host-dependent transfer options. See Usage Notes on page 1120 for more information.

Return Value
None

Usage Notes
File transfer options are host-dependent. The following is a list of some of the valid host options for a VM/CMS host:

ASCII

CRLF

APPEND

LRECL

RECFM

CLEAR/NOCLEAR

Chapter 2. Product Documentation

PROGRESS

QUIET

Refer to Emulator Programming manual for the list of supported hosts and associated file transfer options.

Example
The following example shows how to receive a file from the host and send it to the workstation for the connection

associated with the autECLXfer object.

DIM XferObj as Object
DIM autECLConnList as Object
DIM NumRows as Long

Set XferObj = CreateObject("ZIEWin.autECLXfer")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first connection in the list
autECLConnList.Refresh
XferObj.SetConnectionByHandle(autECLConnList(1).Handle)
' For example, send the file to VM
XferObj.ReceiveFile "c:\windows\temp\thefile.txt",
 "THEFILE TEXT A0",
 "CRLF ASCII"

StartCommunication
The StartCommunication collection element method connects the ZIEWin emulator to the host data stream. This has

the same effect as going to the ZIEWin emulator Communication menu and choosing Connect.

Prototype
void StartCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim XObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set XObj = CreateObject("ZIEWin.autECLXfer")

1121

HCL Z and I Emulator for Windows (ENGLISH)

1122

' Initialize the session
autECLConnList.Refresh
XObj.SetConnectionByHandle(autECLConnList(1).Handle)

XObj.StartCommunication()

StopCommunication
The StopCommunication collection element method disconnects the ZIEWin emulator to the host data stream. This

has the same effect as going to the ZIEWin emulator Communication menu and choosing Disconnect.

Prototype
void StopCommunication()

Parameters
None

Return Value
None

Example
The following example shows how to connect a ZIEWin emulator session to the host.

Dim XObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set XObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the session
autECLConnList.Refresh
XObj.SetConnectionByHandle(autECLConnList(1).Handle)

SessObj.StopCommunication()

autECLXfer Events
The following events are valid for autECLXfer:

void NotifyCommEvent(boolean bConnected)

NotifyCommError()

void NotifyCommStop(Long Reason)

Chapter 2. Product Documentation

NotifyCommEvent
A given communications link as been connected or disconnected.

Prototype
void NotifyCommEvent(boolean bConnected)

Parameters
boolean bConnected

True if Communications Link is currently Connected, False otherwise.

Example
See Event Processing Example on page 1124 for an example.

NotifyCommError
This event occurs when an error occurs in event processing.

Prototype
NotifyCommError()

Parameters
None

Example
See Event Processing Example on page 1124 for an example.

NotifyCommStop
This event occurs when event processing stops.

Prototype
void NotifyCommStop(Long Reason)

Parameters
Long Reason

Reason code for the stop. Currently this will always be 0.

1123

HCL Z and I Emulator for Windows (ENGLISH)

1124

Event Processing Example
The following is a short example of how to implement Xfer Events

Option Explicit
Private WithEvents mXfer As autECLXfer 'AutXfer added as reference

sub main()
'Create Objects
Set mXfer = New autECLXfer
mXfer.SetConnectionByName "A" 'Monitor Session A

mXfer.RegisterCommEvent ' register for Communications Link updates for session A

' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
call DisplayGUI()

mXfer.UnregisterCommEvent

set mXfer= Nothing
End Sub

'This sub will get called when the Communication Link Status of the registered
'connection changes
Private Sub mXfer _NotifyCommEvent()
' do your processing here
End Sub

'This event occurs if an error happens in Communications Link event processing
Private Sub mXfer _NotifyCommError()
'Do any error processing here
End Sub

'This event occurs when Communications Status Notification ends
Private Sub mXfer _NotifyCommStop()
'Do any stop processing here
End Sub

autSystem Class
The autSystem class is used to perform utility operations that are not present in some programming languages.

autSystem Methods
The following section describes the methods that are valid for the autSystem object.

Long Shell(VARIANT ExeName, VARIANT Parameters, VARIANT WindowStyle)

String Inputnd()

Chapter 2. Product Documentation

Shell
The shell function runs any executable file.

Prototype
Long Shell(VARIANT ExeName, VARIANT Parameters, VARIANT WindowStyle)

Parameters
VARIANT ExeName

Full path and file name of the executable file.

VARIANT Parameters

Any parameters to pass to the executable file. This parameter is optional.

VARIANT WindowStyle

The initial window style to show as executable. This parameter is optional and can have the following

values:

1. Normal with focus (default)

2. Minimized with focus

3. Maximized

4. Normal without focus

5. Minimized without focus

Return Value
The method returns the Process ID if it is successful, or zero if it fails.

Example
Example autSystem - Shell()

'This example starts notepad with the file c:\test.txt loaded
dim ProcessID
dim SysObj as object

set SysObj = CreateObject("ZIEWin.autSystem")
ProcessID = SysObj.shell "Notepad.exe","C:\test.txt"
If ProcessID > 0 then
 Msgbox "Notepad Started, ProcessID = " + ProcessID
Else
 Msgbox "Notepad not started"
End if

1125

HCL Z and I Emulator for Windows (ENGLISH)

1126

Inputnd
The Inputnd method displays a popup input box to the user with a no-display text box so that when the user types in

data only asterisks(*) are displayed.

Prototype
String Inputnd()

Parameters
None

Return Value
The characters typed into the input box, or "" if nothing was typed in.

Example
DIM strPassWord
dim SysObj as Object
dim PSObj as Object

set SysObj = CreateObject("ZIEWin.autSystem")
set PSObj = CreateObject("ZIEWin.autPS")

PSObj.SetConnectionByName("A")
'Prompt user for password
strPassWord = SysObj.Inputnd()
PSObj.SetText(strPasssWord)
DIM XferObj as Object

Set XferObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
XferObj.SetConnectionByName("A")

autECLPageSettings Class
The autECLPageSettings object controls the page settings of a Z and I Emulator for Windows connection. Its name in

the registry is ZIEWin.autECLPageSettings. This automation object can also be used in VB scripts.

The read-only property autECLPageSettings has been added to the autECLSession object. See autECLSession Class

on page 1083 for information about how to use this property.

Note: The autECLPageSettings object in the autECLSession object is set by the autECLSession object.

The following example shows how to create and set the autECLPageSettings object in Visual Basic.

Chapter 2. Product Documentation

DIM PgSet as Object
Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
PgSet.SetConnectionByName("A")

Usage Notes
You must initially set the connection for the object you create. Use SetConnectionByName or SetConnectionByHandle

to initialize your object. The connection can be set only once. After the connection is set, any further calls to the set

connection methods cause an exception. If you do not set the connection and try to access a property or method, an

exception is raised.

The properties CPI, LPI, and FontSize are dependent on the property FaceName. Therefore, if CPI, LPI, or FontSize

are set before the FaceName is set, and if they are not valid for the new FaceName, different CPI, LPI, or FontSize

values might be reconfigured in the connection. You should set the FaceName before setting the CPI, LPI, or FontSize.

Otherwise, every time you set FaceName, query CPI, LPI, and FontSize and make sure that they have the desired

values.

Restrictions
The connection associated with each method must be in a particular state for the method to succeed. If the

restrictions are not met, an appropriate exception is raised.

The following restrictions must be satisfied while any property or method of the autECLPageSettings object is

invoked.

• The host session should not be printing when this API is invoked.

• The File → Page Setup and File → Printer Setup dialogs must not be in use.

• The associated connection must not be in PDT mode.

Additional restrictions might apply for each specific property or method.

Connection types
The following connection types are valid for the methods in the autECLPageSettings class:

• 3270 display

• 3270 printer

• 5250 display

• VT (ASCII)

If a property or method is accessed or called on an unsupported connection, an exception is raised. Use the

ConnType property to determine the connection type.

Properties
This section describes the properties for the autECLPageSettings object.

1127

HCL Z and I Emulator for Windows (ENGLISH)

1128

Type Name Attributes

Long CPI Read/Write

Boolean FontCPI Read-only

Long LPI Read/Write

Boolean FontLPI Read-only

String FaceName Read/Write

Long FontSize Read/Write

Long MaxLinesPerPage Read/Write

Long MaxCharsPerLine Read/Write

String Name Read-only

Long Handle Read-only

String ConnType Read-only

Long CodePage Read-only

Boolean Started Read-only

Boolean CommStarted Read-only

Boolean APIEnabled Read-only

Boolean Ready Read-only

CPI
This property determines the number of characters printed per inch. This is a Long data type and is read/write

enabled.

Set this property to the predefined constant pcFontCPI to select the Font CPI in Page Settings or set it to some

specific CPI value. If this property is queried when FontCPI is configured in the connection, the actual CPI value is

returned and the constant pcFontCPI is not returned.

To determine whether FontCPI is set in the connection, use the property FontCPI.

Example
Dim PgSet as Object
Dim ConnList as Object
Dim CPI as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

CPI = PgSet.CPI ' get the CPI value
' or...
PgSet.CPI = pcFontCPI 'set the connection to use Font CPI.

Chapter 2. Product Documentation

FontCPI
This determines whether Font CPI is set in the connection. FontCPI is a Boolean data type and is read-only.

Example
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

'check if Font CPI is set
If PgSet.FontCPI Then
 ...

LPI
This property determines the number of lines printed per inch. This is a Long data type and is read/write enabled. Set

it to the predefined constant pcFontLPI to select the Font LPI in Page Settings or set it to some specific LPI value.

If this property is queried when FontLPI is configured in the connection, the actual LPI value is returned and the

constant pcFontLPI is not returned. To determine whether FontLPI is set in the connection, use the property FontLPI.

Example
Dim PgSet as Object
Dim ConnList as Object
Dim LPI as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

LPI = PgSet.LPI ' get the LPI value
' or...
PgSet.LPI = pcFontLPI 'set the connection to use Font LPI.

FontLPI
This property determines whether Font LPI is set in the connection. FontLPI is a Boolean data type and is read-only.

Example
Dim PgSet as Object
Dim ConnList as Object

1129

HCL Z and I Emulator for Windows (ENGLISH)

1130

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

'check if Font LPI is set
If PgSet.FontLPI Then
 ...

FaceName
This is the Font Face Name of the Page Settings of the connection. FaceName is a String data type and is read/write

enabled.

Example
Dim PgSet as Object
Dim ConnList as Object
Dim FaceName as String

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)
FaceName = PgSet.FaceName ' get the FaceName
' or...
PgSet.FaceName = "Courier New" 'set the FaceName

MaxLinesPerPage
This property is the maximum number of lines that can be printed per page. This is also called maximum print lines or

MPL. Valid values are in the range 1–255. This is a Long data type and is read/write enabled.

Example
Dim PgSet as Object
Dim ConnList as Object
Dim MPL as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

MPL = PgSet.MaxLinesPerPage ' get the MaxLinesPerPage
' or...
PgSet.MaxLinesPerPage = 20 'set the MaxLinesPerPage

Chapter 2. Product Documentation

MaxCharsPerLine
This property is the maximum number of characters that can be printed per line. This is also called maximum print

position or MPP. Valid values are in the range 1–255. This is a Long data type and is read/write enabled.

Example
Dim PgSet as Object
Dim ConnList as Object
Dim MPP as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

MPP = PgSet.MaxCharsPerLine ' get the MaxCharsPerLine
' or...
PgSet.MaxCharsPerLine = 80 'set the MaxCharsPerLine

Name
This property is the connection name string of the connection for which autECLPageSettings was set. Z and I

Emulator for Windows returns only the short character ID (a single alphabetical character from A to Z) in the string.

There can be only one Z and I Emulator for Windows connection open with a given name. For example, there can be

only one connection A open at a time. Name is a String data type and is read-only.

Example
Dim PgSet as Object
Dim ConnList as Object
DIM Name as String

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

Name = PgSet.Name 'Save the name

Handle
This property is the handle of the connection for which the autECLPageSettings object was set. There can be only one

Z and I Emulator for Windows connection open with a given handle. For example, there can be only one connection A

open at a time. Handle is a Long data type and is read-only.

1131

HCL Z and I Emulator for Windows (ENGLISH)

1132

Example
Dim PgSet as Object
Dim ConnList as Object
Dim Hand as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

Hand = PgSet.Handle ' save the handle

ConnType
This property is the connection type for which autECLPageSettings was set. This type might change over time.

ConnType is a String data type and is read-only.

String Value Connection Type

DISP3270 3270 display

DISP5250 5250 display

PRNT3270 3270 printer

PRNT5250 5250 printer

ASCII VT emulation

Example
Dim PgSet as Object
Dim ConnList as Object
Dim Type as String

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

Type = PgSet.ConnType ' save the type

CodePage
This property is the connection type for which autECLPageSettings was set. This type might change over time.

ConnType is a String data type and is read-only.

Chapter 2. Product Documentation

Example
Dim PgSet as Object
Dim ConnList as Object
Dim CodePage as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

CodePage = PgSet.CodePage ' save the codepage

Started
This property indicates whether the emulator window is started. The value is TRUE if the window is open; otherwise, it

is FALSE. Started is a Boolean data type and is read-only.

Example
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If PgSet.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
This property indicates the status of the connection to the host. The value is TRUE if the host is connected; otherwise,

it is FALSE. CommStarted is a Boolean data type and is read-only.

Example
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

1133

HCL Z and I Emulator for Windows (ENGLISH)

1134

' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If PgSet.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
This property indicates whether the emulator is API-enabled. A connection can be API-enabled or disabled depending

on the state of its API settings (in a Z and I Emulator for Windows window, click Settings → API). The value is TRUE if

the emulator is API-enabled; otherwise, it is FALSE. APIEnabled is a Boolean data type and is read-only.

Example
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is API-enabled.
' The results are sent to a text box called Result.
If PgSet.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Ready
This property indicates whether the emulator window is started, API-enabled, and connected. This property checks

for all three properties. The value is TRUE if the emulator is ready; otherwise, it is FALSE. Ready is a Boolean data type

and is read-only.

Example
Dim PgSet as Object
Dim ConnList as Object
Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection

Chapter 2. Product Documentation

ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)
' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If PgSet.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLPageSettings Methods
The following section describes the methods that are valid for the autECLPageSettings object.

void RestoreTextDefaults()

void SetConnectionByName (String Name)

void SetConnectionByHandle (Long Handle)

RestoreTextDefaults
The RestoreTextDefaults method restores the system default values of the Text property page in the Page Setup

dialog of the connection. This is equivalent to pressing the Default button on the Text property page of the Page

Setup Dialog of the connection.

Prototype
void RestoreTextDefaults()

Parameters
None

Return Value
None

Example
The following example shows the RestoreTextDefaults method.

Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

1135

HCL Z and I Emulator for Windows (ENGLISH)

1136

PgSet.RestoreTextDefaults 'Restores Text Default Settings

SetConnectionByName
The SetConnectionByName method uses the connection name to set the connection for a newly created

autECLPageSettings object. This connection name is the short connection ID (a single alphabetical character from

A to Z). There can be only one Z and I Emulator for Windows connection open with a given name. For example, there

can be only one connection A open at a time.

Note: Do not call this method if you are using the autECLPageSettings object contained in the autECLSession

object.

Prototype
void SetConnectionByName(String Name)

Parameters
String Name

One-character string short name of the connection. Valid values are A–Z.

Return Value
None

Example
The following example shows how to use the connection name to set the connection for a newly created

autECLPageSettings object.

Dim PgSet as Object
Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
' Initialize the connection
PgSet.SetConnectionByName("A")
' For example, see if Font CPI is set
If PgSet.FontCPI Then
'your logic here...
End If

SetConnectionByHandle
The SetConnectionByHandle method uses the connection handle to set the connection for a newly created

autECLPageSettings object. In Z and I Emulator for Windows, this connection handle is a Long integer. There can

Chapter 2. Product Documentation

be only one Z and I Emulator for Windows connection open with a given handle. For example, there can be only one

connection A open at a time.

Note: Do not call this method if you are using the autECLPageSettings object contained in the autECLSession

object.

Prototype
void SetConnectionByHandle(Long Handle)

Parameters
Long Handle

Long integer value of the connection to be set for the object.

Return Value
None

Example
The following example shows how to use the connection handle to set the connection for a newly created

autECLPageSettings object.

Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

' For example, see if Font CPI is set
If PgSet.FontCPI Then
'your logic here...
End If

autECLPrinterSettings Class
The autECLPrinterSettings object controls the Printer Settings of a Z and I Emulator for Windows connection. Its

name in the registry is ZIEWin.autECLPrinterSettings. This automation object can also be used in VB scripts.

The read-only property autECLPrinterSettings has been added to the autECLSession object. See autECLSession

Class on page 1083 for information about how to use this property.

1137

HCL Z and I Emulator for Windows (ENGLISH)

1138

Note: The autECLPrinterSettings object in the autECLSession object is set by the autECLSession object.

The following example shows how to create and set the autECLPrinterSettings object in Visual Basic.

DIM PrSet as Object
Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
PrSet.SetConnectionByName("A")

Usage Notes
You must initially set the connection for the object you create. Use SetConnectionByName or SetConnectionByHandle

to initialize your object. The connection can be set only once. After the connection is set, any further calls to the set

connection methods cause an exception. If you do not set the connection and try to access a property or method, an

exception is raised.

The properties CPI, LPI, and FontSize are dependent on the property FaceName. Therefore, if CPI, LPI, or FontSize

are set before the FaceName is set, and if they are not valid for the new FaceName, different CPI, LPI, or FontSize

values might be reconfigured in the connection. You should set the FaceName before setting the CPI, LPI, or FontSize.

Otherwise, every time you set FaceName, query CPI, LPI, and FontSize and make sure that they have the desired

values.

Restrictions
The connection associated with each method must be in a particular state for the method to succeed. If the

restrictions are not met, an appropriate exception is raised.

The following restrictions must be satisfied while any property or method of the autECLPageSettings object is

invoked.

• The host session should not be printing when this API is invoked.

• The File → Page Setup and File → Printer Setup dialogs should not be in use.

Additional restrictions might apply for each specific property or method.

Properties
This section describes the properties for the autECLPrinterSettings object.

Type Name Attributes

Boolean PDTMode Read-only

String PDTFile Read-only

Long PrintMode Read-only

String Printer Read-only

String PrtToDskAppendFile Read-only

String PrtToDskSeparateFile Read-only

Chapter 2. Product Documentation

Type Name Attributes

Boolean PrompDialogOption Read/Write

String Name Read-only

Long Handle Read-only

String ConnType Read-only

Boolean CodePage Read-only

Boolean Started Read-only

Boolean CommStarted Read-only

Boolean APIEnabled Read-only

Boolean Ready Read-only

PDTMode
This property determines whether the connection is in PDT mode or not. PDTMode is a Boolean data type and is

read/write enabled.

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'check if in PDT mode.
If PrSet.PDTMode Then
 ...

PDTFile
This property is the PDT file configured in the connection. This property gives a null string if the PDT file is not

configured in the connection. Otherwise, this property gives the fully qualified path name of the PDT file. PDTFile is a

String data type and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh

1139

HCL Z and I Emulator for Windows (ENGLISH)

1140

PrSet.SetConnectionByHandle(ConnList(1).Handle)

If PrSet. PDTFile = vbNullString Then ' get the
 ...
Else
 ...

PrintMode
This property indicates the print mode of the connection. PrintMode is a Long data type and is read-only. This

property returns one of the following four enumerated values:

Value Name of the enum con

stant

Description

1 pcPrtToDskAppend Print to Disk-Append mode. This means the Print to Disk → Append option

is selected in the Printer listbox in the Printer Setup dialog of the connec

tion.

2 pcPrtToDskSeparate Print to Disk-Separate mode. This means the Print to Disk → Separate op

tion is selected in the Printer listbox in the Printer Setup dialog of the con

nection.

3 pcSpecificPrinter Specific Printer mode. This means one of the printers is selected in the

Printer listbox in the Printer Setup dialog of the connection and the Use Win

dows Default Printer checkbox is clear.

4 pcWinDefaultPrinter Windows® Default Printer mode. This means that the Use Windows Default

Printer checkbox is selected.

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

If PrSet.PrintMode = pcPrtToDskAppend Then
 ...
ElseIf PrSet.PrintMode = pcPrtToDskSeparate Then
 ...
ElseIf PrSet.PrintMode = pcSpecificPrinter Then
 ...
ElseIf PrSet.PrintMode = pcWinDefaultPrinter Then
 ...

Chapter 2. Product Documentation

Printer
This property is the name of the printer. It contains one of the following:

• The name of the specific printer if the PrintMode of the connection is pcSpecificPrinter.

• The name of the Windows default printer if the PrintMode of the connection is pcWinDefaultPrinter.

• A null string if a printer is not configured in the connection or if the PrintMode of the connection is

pcPrtToDskAppend or pcPrtToDskSeparate.

Printer is a String data type and is read-only.

The value must have the following format:

<Printer name> on <Port Name>

For example:

• HP LaserJet 4050 Series PCL 6 on LPT1

Example
Dim PrSet as Object
Dim ConnList as Object
Dim Printer as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

Printer = PrSet.Printer ' get the Printer Name

PrtToDskAppendFile
This property is the name of the file set for the Print to Disk-Append mode. This file is called the Print to Disk-Append

file. This property contains one of the following:

• The fully qualified path name of the Print to Disk-Append file of the connection.

• A null string if the Print to Disk-Append file is not configured in the connection.

PrtToDskAppendFile is a String data type and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object
Dim DskAppFile as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")

1141

HCL Z and I Emulator for Windows (ENGLISH)

1142

Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

DskAppFile = PrSet. PrtToDskAppendFile ' get the Disk append file.

PrtToDskSeparateFile
This property is the name of the file set for the Print to Disk-Separate mode. This file is called the Print to Disk-

Separate file. This property contains one of the following:

• The fully qualified path name of the Print to Disk-Separate file of the connection.

• A null string if the Print to Disk-Separate file is not configured in the connection.

PrtToDskSeparateFile is a String data type and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object
Dim DskSepFile as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

DskSepFile = PrSet. PrtToDskSeparateFile ' get the Disk separate file.

PromptDialogOption
This property indicates whether the option to show the Printer Setup dialog before printing is set or not.

PromptDialogOption is a Boolean data type and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object
Dim PromptDialog as Boolean

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

PromptDialog = PrSet.PromptDialogOption ' get the Prompt Dialog option

Chapter 2. Product Documentation

' or...
PrSet.PromptDialogOption = True 'set the Prompt Dialog option

Name
This property is the connection name string of the connection for which autECLPrinterSettings was set. Z and I

Emulator for Windows returns only the short character ID (a single alphabetical character from A to Z) in the string.

There can be only one Z and I Emulator for Windows connection open with a given name. For example, there can be

only one connection A open at a time. Name is a String data type and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object
DIM Name as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

Name = PrSet.Name 'Save the name

Handle
This property is the handle of the connection for which the autECLPrinterSettings object was set. There can be

only one Z and I Emulator for Windows connection open with a given handle. For example, there can be only one

connection A open at a time. Handle is a Long data type and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object
Dim Hand as Long

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

Hand = PrSet.Handle ' save the handle

ConnType
This property is the connection type for which autECLPrinterSettings was set. This type might change over time.

ConnType is a String data type and is read-only.

1143

HCL Z and I Emulator for Windows (ENGLISH)

1144

String Value Connection Type

DISP3270 3270 display

DISP5250 5250 display

PRNT3270 3270 printer

PRNT5250 5250 printer

ASCII VT emulation

Example
Dim PrSet as Object
Dim ConnList as Object
Dim Type as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

Type = PrSet.ConnType ' save the type

CodePage
This property is the code page of the connection for which autECLPrinterSettings was set. This code page might

change over time. CodePage is a Long data type and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object
Dim CodePage as Long

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

CodePage = PrSet.CodePage ' save the codepage

Started
This property indicates whether the emulator window is started. The value is TRUE if the window is open; otherwise, it

is FALSE. Started is a Boolean data type and is read-only.

Chapter 2. Product Documentation

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject(".autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If PrSet.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
This property indicates the status of the connection to the host. The value is TRUE if the host is connected; otherwise,

it is FALSE. CommStarted is a Boolean data type and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If PrSet.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
This property indicates whether the emulator is API-enabled. A connection is API-enabled or disabled depending on

the state of its API settings (in a Z and I Emulator for Windows window, click Settings → API).

The value is TRUE if the emulator is API-enabled; otherwise, it is FALSE. APIEnabled is a Boolean data type and is

read-only.

1145

HCL Z and I Emulator for Windows (ENGLISH)

1146

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is API-enabled.
' The results are sent to a text box called Result.
If PrSet.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

Ready
This property indicates whether the emulator window is started, API-enabled, and connected. This property checks

for all three properties. The value is TRUE if the emulator is ready; otherwise, it is FALSE. Ready is a Boolean data type

and is read-only.

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If PrSet.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLPrinterSettings Methods
The following sections describe the methods that are valid for the autECLPrinterSettings object.

void SetPDTMode(Boolean bPDTMode, [optional] String PDTFile)

void SetPrtToDskAppend([optional] String FileName)

Chapter 2. Product Documentation

void SetPrtToDskSeparate([optional] String FileName)

void SetSpecificPrinter(String Printer)

void SetWinDefaultPrinter()

void SetConnectionByName (String Name)

void SetConnectionByHandle (Long Handle)

SetPDTMode
The SetPDTMode method sets the connection in PDT mode with the given PDT file or sets the connection in non-PDT

mode (also called GDI mode).

Restriction
If this method is called with bPDTMode set to FALSE, PrintMode of the associated connection must already be set to

SpecificPrinter or WinDefaultPrinter.

Prototype
void SetPDTMode(Boolean bPDTMode, [optional] String PDTFile)

Parameters
Boolean bPDTMode

Possible values are as follows:

• TRUE to set the connection to PDT mode.

• FALSE to set the connection to non-PDT mode (GDI mode).

String PDTFile

This optional parameter contains the PDT file name.

This parameter is used only if bPDTMode is TRUE. If this parameter is not specified and bPDTMode is

set to TRUE, the PDT file configured in the connection is used. If there is no PDT file already configured

in the connection, this method fails with an exception.

This parameter ignored if bPDTMode is FALSE.

Possible values are as follows:

• File name without path

PDTFile in the PDFPDT subfolder in the Z and I Emulator for Windows installation path is used.

• Fully qualified path name of the file

If PDTFile does not exist, this method fails with an exception.

1147

HCL Z and I Emulator for Windows (ENGLISH)

1148

Return Value
None

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

PrSet.SetPDTMode(True, "epson.pdt") 'Set PDT mode
PrSet.SetPDTMode(False) 'Set non-PDT mode (also called GDI mode)

SetPrtToDskAppend
This method sets the PrintMode of the connection to Print to Disk-Append mode. It also sets the appropriate file for

this mode.

Note:

1. The folder where this file is to be set must have write access. Otherwise, this method fails with an

exception.

2. The associated connection must be in PDT mode.

Prototype
void SetPrtToDskAppend([optional] String FileName)

Parameters
String FileName

This optional parameter contains the name of the Print to Disk-Append file.

If the file exists, it is used. Otherwise, it is created when printing is complete.

Possible values are as follows:

• File name, without the path

The user-class application data directory path will be used to locate the file.

Chapter 2. Product Documentation

• Fully qualified path name of the file

The directory must exist in the path, or the method will fail with an exception. It is not necessary

that the file exist in the path.

If this parameter is not specified, the file configured for this PrintMode in the connection is used. If there

is no file already configured in the connection, this method fails with an exception.

Return Value
None

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'If PDTMode, set PrintMode to pcPrtToDskAppend
If PrSet.PDTMode Then
 PrSet.SetPrtToDskAppend("dskapp.txt")

SetPrtToDskSeparate
This method sets the PrintMode of the connection to Print to Disk-Separate mode. It also sets the appropriate file for

this mode.

Note:

1. The folder where this file is to be set must have write access. Otherwise, this method fails with an

exception.

2. The associated connection must be in PDT mode.

Prototype
void SetPrtToDskSeparate([optional] String FileName)

Parameters
String FileName

This optional parameter contains the name of the Print to Disk-Separate file.

1149

HCL Z and I Emulator for Windows (ENGLISH)

1150

If this parameter is not specified, the file configured for this PrintMode in the connection is used.

Possible values are:

• NULL (default)

The file that is currently configured for this PrintMode in the connection is used. If there is no file

already configured in the connection, the method fails with an exception.

• File name, without the path

The user-class application data directory path will be used to locate the file.

• Fully qualified path name of the file

The directory must exist in the path, or the method will fail with an exception. It is not necessary

that the file exist in the path.

Note: The file name must not contain an extension. If it contains an extension, the method fails

with an exception.

Return Value
None

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'If PDTMode, set PrintMode to pcPrtToDskSeparate
If PrSet.PDTMode Then
 PrSet.SetPrtToDskSeparate("dsksep")

SetSpecificPrinter
This method sets the PrintMode of the connection to Specific Printer mode with the printer specified by the Printer

parameter.

Prototype
void SetSpecificPrinter(String Printer)

Chapter 2. Product Documentation

Parameters
String Printer

Contains the name of the printer. If the printer does not exist, this method fails with an exception.

The value must have the following format:

<Printer name> on <Port Name>

For example:

• HP LaserJet 4050 Series PCL 6 on LPT1

Return Value
None

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'Set PrintMode to pcSpecificPrinter
PrSet. SetSpecificPrinter("HCL InfoPrint 40 PS on Network Port")

SetWinDefaultPrinter
This method sets the PrintMode of the connection to Windows Default Printer mode (the connection will use the

Windows default printer). If no Windows default printer is configured, this method fails with an exception.

Prototype
void SetWinDefaultPrinter()

Parameters
None

Return Value
None

1151

HCL Z and I Emulator for Windows (ENGLISH)

1152

Example
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'Set PrintMode to pcWinDefaultPrinter
PrSet. SetWinDefaultPrinter

SetConnectionByName
The SetConnectionByName method uses the connection name to set the connection for a newly created

autECLPrinterSettings object. In Z and I Emulator for Windows, this connection name is the short connection ID (a

single alphabetical character from A to Z). There can be only one Z and I Emulator for Windows connection open with

a given name. For example, there can be only one connection A open at a time.

Note: Do not call this if you are using the autECLPrinterSettings object contained in the autECLSession object.

Prototype
void SetConnectionByName(String Name)

Parameters
String Name

One-character string short name of the connection. Valid values are A–Z.

Return Value
None

Example
The following example shows how to use the connection name to set the connection for a newly created

autECLPrinterSettings object.

Dim PrSet as Object
Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
' Initialize the connection
PrSet.SetConnectionByName("A")
' For example, see if PDTMode
If PrSet.PDTMode Then

Chapter 2. Product Documentation

'your logic here...
End If

SetConnectionByHandle
The SetConnectionByHandle method uses the connection handle to set the connection for a newly created

autECLPrinterSettings object. In Z and I Emulator for Windows, this connection handle is a Long integer.

There can be only one Z and I Emulator for Windows connection open with a given handle. For example, there can be

only one connection A open at a time.

Note: Do not call this method if you are using the autECLPrinterSettings object contained in the

autECLSession object.

Prototype
void SetConnectionByHandle(Long Handle)

Parameters
Long Handle

The Long integer value of the connection to set for the object.

Return Value
None

Example
The following example shows how to use the connection handle to set the connection for a newly created

autECLPrinterSettings object.

Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' For example, see if PDTMode
If PrSet.PDTMode Then
'your logic here...
End If

1153

HCL Z and I Emulator for Windows (ENGLISH)

1154

Support For Primary Interop Assemblies for Automation Objects
Automation objects exposed by HCL Z and I Emulator for Windows can be used by applications written in any

language that targets the .NET framework. Managed .NET applications can program Z and I Emulator for Windows by

using the Primary Interop Assemblies (PIA) that wrap the automation objects. Interop Assemblies are the mechanism

with which managed (.NET) applications use COM-compliant objects. Interop Assemblies contain binding and

metadata information, which enables the .NET framework (CLR) to load or marshall COM objects and wrap them

for .NET applications. The PIA contains the official description of the COM types as defined by the publisher of those

COM types. The PIA is always digitally signed by the publisher of the original COM type.

There are two ways a .NET application can reference an assembly.

• If it is a simple application or the only application that uses the assembly, Microsoft recommends that the

assembly be copied in the same directory as the application.

• If multiple applications are referencing the assembly, you can install them in the Global Assembly Cache

(GAC) and have all the solutions reference the assembly in the GAC.

The model for programming the types exposed by Interop Assemblies is very similar to COM. The methods,

properties, and events exposed by the COM object can be accessed by any .NET language, using the syntax of the

language. A sample application (ECLSamps.net) written in C# is provided in the \samples directory in the Z and I

Emulator for Windows installation image. The sample demonstrates the simple usage of various Interop Assembly

types.

For Visual Basic 6.0, projects that use Z and I Emulator for Windows automation objects and have been migrated to

Visual Basic .NET using the conversion assistant wizard, you only need to replace the references that the conversion

assistant wizard implicitly generates with the corresponding Z and I Emulator for Windows Interop references (from

the \Interops directory) and recompile. The way to replace the references is to delete all the references generated

by the conversion assistant and use Visual Studio .NET to add the .NET interop references. If you have registered

the assemblies in the GAC and want to use them, add the references and set the Copy Local property for the Z and I

Emulator for Windows Interop references to False.

The PIAs for the Z and I Emulator for Windows emulator automation objects are installed in the \Interops directory

in the Z and I Emulator for Windows installation image. If the Z and I Emulator for Windows product installer detects

that the .NET framework is present, it gives you the additional option to register the types in the GAC. While installing

the assemblies in the GAC, the PIAs will also be placed in the registry, under the registry key of the corresponding type

library.

Table 93: Primary Interop Assemblies for Z and I Emulator for Windows Automation Objects on page 1154 lists the

PIAs supplied for the Z and I Emulator for Windows automation objects

Table 93. Primary Interop Assemblies for Z and I Emulator

for Windows Automation Objects

Automation Object Interop Assembly Dependency

autECLConnList Interop.AutConnListTypeLibrary.dll

autECLConnMgr Interop.AutConnMgrTypeLibrary.dll

Chapter 2. Product Documentation

Table 93. Primary Interop Assemblies for Z and I Emulator

for Windows Automation Objects (continued)

Automation Object Interop Assembly Dependency

autECLConnList Interop.AutPSTypeLibrary.dll

autECLOIA Interop.AutOIATypeLibrary.dll

autECLPS Interop.AutPSTypeLibrary.dll

autECLScreenDesc Interop.AutScreenDescTypeLibrary

.dll

autECLScreenReco Interop.AutScreenRecoTypeLibrary

.dll

autECLSession Interop.AutSessTypeLibrary.dll

autECLPageSettings Interop.AutSettingsTypeLibrary.dll

autECLPrinterSettingsInterop.AutSettingsTypeLibrary.dll

autECLWinMetrics Interop.AutWinMetricsTypeLibrary.dll

autECLXfer Interop.AutXferTypeLibrary.dll

autSystem Interop.AutSystemTypeLibrary.dll

Host Access Class Library for Java
The Host Access Class Library (HACL) Java classes expose the Z and I Emulator for Windows HACL functions to the

Java programming environment. This allows the creation of Java applets and applications that utilize the functions

provided in the HACL classes.

The HACL Java HTML files can be found in the Docs_Admin_Aids zip folder delivered along with Z and I Emulator for

Windows product documentation in the following path : ZIEWin_3.0_Docs_Admin_Aids.zip\publications\en_US\doc

\hacl directory.

Troubleshooting
You can use the following self-help information resources and tools to help you troubleshoot problems:

• Refer to the release information for your product for known issues, workaround, and troubleshooting

information.

• Check if a download or fix is available to resolve your problem.

• Search the available knowledge bases to see if the resolution to your problem is already documented.

• If you still need help, contact HCL Software Support and report your problem.

1155

HCL Z and I Emulator for Windows (ENGLISH)

1156

HCL Z and I Emulator for Windows .NET Interop assemblies fail to trigger session
OIA notifications

Problem

.NET applications which register for OIA event notifications are not notified of these events. Also several

methods of corresponding COM type library are not shown by Visual studio's intellisense feature.

Cause

.NET Interop assemblies are derived from corresponding COM type library using the tool TlbImp.exe

shipped with Microsoft SDK. The Type Library Importer converts the type definitions found within a COM

type library into equivalent definitions in a common language runtime assembly. The runtime marshaler

however cannot marshal all the data types. Therefore some COM type library definitions are not found in

the resulting common language runtime assembly.

Resolution

This is a limitation of TlbImp.exe.

Sendkeys Mnemonic Keywords
Table 94: Mnemonic Keywords for the Sendkeys Method on page 1156 contains the mnemonic keywords for the

Sendkeys method.

Table 94. Mnemonic Keywords for the Sendkeys Method

Keyword Description

[backtab] Back tab

[clear] Clear screen

[delete] Delete

[enter] Enter

[eraseeof] Erase end of field

[help] Help

[insert] Insert

[jump] Jump

[left] Left

[newline] New line

[space] Space

[print] Print

[reset] Reset

[tab] Tab

[up] Up

[Down] Down

[capslock] CapsLock

Chapter 2. Product Documentation

Table 94. Mnemonic Keywords for the Sendkeys Method (continued)

Keyword Description

[right] Right

[home] Home

[pf1] PF2

[pf2] PF2

[pf3] PF3

[pf4] PF4

[pf5] PF5

[pf6] PF6

[pf7] PF7

[pf8] PF8

[pf9] PF9

[pf10] PF10

[pf11] PF11

[pf12] PF12

[pf13] PF13

[pf14] PF14

[pf15] PF15

[pf16] PF16

[pf17] PF17

[pf18] PF18

[pf19] PF19

[pf20] PF20

[pf21] PF21

[pf22] PF22

[pf23] PF23

[pf24] PF24

[eof] End of file

[scrlock] Scroll Lock

[numlock] Num Lock

[pageup] Page Up

[pagedn] Page Down

[pa1] PA 1

[pa2] PA 2

[pa3] PA 3

[test] Test

[worddel] Word Delete

[fldext] Field Exit

1157

HCL Z and I Emulator for Windows (ENGLISH)

1158

Table 94. Mnemonic Keywords for the Sendkeys Method (continued)

Keyword Description

[erinp] Erase Input

[sysreq] System Request

[instog] Insert Toggle

[crsel] Cursor Select

[fastleft] Cursor Left Fast

[attn] Attention

[devcance] Device Cancel

[printps] Print Presentation Space

[fastup] Cursor Up Fast

[fastdown] Cursor Down Fast

[hex] Hex

[fastright] Cursor Right Fast

[revvideo] Reverse Video

[underscr] Underscore

[rstvideo] Reset Reverse Video

[red] Red

[pink] Pink

[green] Green

[yellow] Yellow

[blue] Blue

[turq] Turquoise

[white] White

[rstcolor] Reset Host Color

[printpc] Print (PC)

[wordright] Forward Word Tab

[wordleft] Backward Word Tab

[field-] Field -

[field+] Field +

[rcdbacksp] Record Backspace

[printhost] Print Presentation Space on Host

[dup] Dup

[fieldmark] Field Mark

[dispsosi] Display SO/SI

[gensosi] Generate SO/SI

[dispattr] Display Attribute

[fwdchar] Forward Character

[splitbar] Split Vertical Bar

Chapter 2. Product Documentation

Table 94. Mnemonic Keywords for the Sendkeys Method (continued)

Keyword Description

[altcsr] Alternate Cursor

[backspace] Backspace

[null] Null

ECL Planes — Format and Content
This appendix describes the format and contents of the different data planes in the ECL presentation space model.

Each plane represents a distinct aspect of the host presentation space, such as its character contents, color

specifications, field attributes, and so on. The ECL::GetScreen methods and others return data from the different

presentation space planes.

Each plane contains one byte per host presentation space character position. Each plane is described in the following

sections in terms of its logical contents and data format. The plane types are enumerated in the ECLPS.HPP header

file.

TextPlane
The text plane represents the visible characters of the presentation space. Non-display fields are shown in the text

plane. The byte value of each element of the text plane corresponds to the ASCII value of the displayed character.

The text plane does not contain any binary zero (null) character values. Any null characters in the presentation space

(such as null-padded input fields) are represented as ASCII blank (0x20) characters.

FieldPlane
The field plane represents the field positions and their attributes in the presentation space. This plane is meaningful

only for field-formatted presentation spaces. (For example, VT connections are not formatted).

This plane is a sparse-array of field attribute values. All values in this plane are binary zero except for where field

attribute characters are present in the presentation space. At those positions, the values are the attributes of the field

which starts at that location. The length of a field is the linear distance between the field attribute position and the

next field attribute in the presentation space, not including the attribute position itself.

The value of the field attribute positions are as shown in the following tables.

1159

HCL Z and I Emulator for Windows (ENGLISH)

1160

Note: Attribute values are different for different types of connections.

Table 95. 3270 Field Attributes

Bit Position (0 is least significant

bit)

Meaning

7 Always "1"

6 Always "1"

5 0

Unprotected

1

Protected

4 0

Alphanumeric data

1

Numeric data only

3, 2 0, 0

Normal intensity, not pen detectable

0, 1

Normal intensity, pen detectable

1, 0

High intensity, pen detectable

1, 1

Nondisplay, not pen detectable

1 Reserved

0 0

Field has not been modified

1

Unprotected field has been modified

Table 96. 5250 Field Attributes

Bit Position (0 is least significant

bit)

Meaning

7 Always "1"

6 0

Nondisplay

Chapter 2. Product Documentation

Table 96. 5250 Field Attributes (continued)

Bit Position (0 is least significant

bit)

Meaning

1

Display

5 0

Unprotected

1

Protected

4 0

Normal intensity

1

High intensity

3, 2, 1 0, 0, 0

Alphanumeric data

0, 0, 1

Alpha only

0, 1, 0

Numeric shift

0, 1, 1

Numeric data plus numeric specials

1, 0, 1

Numeric only

1, 1, 0

Magnetic stripe reading device data only

1, 1, 1

Signed numeric only

0 0

Field has not been modified

1

Unprotected field has been modified

Table 97: Mask Values on page 1162 defines the various mask values:

1161

HCL Z and I Emulator for Windows (ENGLISH)

1162

Table 97. Mask Values

Mnemonic Mask Description

FATTR_MDT 0x01 Modified field

FATTR_PEN_MASK 0x0C Pen detectable field

FATTR_BRIGHT 0x08 Intensified field

FATTR_DISPLAY 0x0C Visible field

FATTR_ALPHA 0x10 Alphanumeric field

FATTR_NUMERIC 0x10 Numeric only field

FATTR_PROTECTED 0x20 Protected field

FATTR_PRESENT 0x80 Field attribute present

FATTR_52_BRIGHT 0x10 5250 intensified field

FATTR_52_DISP 0x40 5250 visible field

ColorPlane
The color plane contains color information for each character of the presentation space. The foreground and

background color of each character is represented as it is specified in the host data stream. The colors in the color

plane are not modified by any color display mapping of the emulator window. Each byte of the color plane contains

the following color information.

Table 98. Color Plane Information

Bit Position (0 is least significant

bit)

Meaning

7 - 4 Background character color

0x0

Blank

0x1

Blue

0x2

Green

0x3

Cyan

0x4

Red

0x5

Magenta

Chapter 2. Product Documentation

Table 98. Color Plane Information (continued)

Bit Position (0 is least significant

bit)

Meaning

0x6

Brown (3270), Yellow (5250)

0x7

White

3-0 Foreground character color

0x0

Blank

0x1

Blue

0x2

Green

0x3

Cyan

0x4

Red

0x5

Magenta

0x6

Brown (3270), Yellow (5250)

0x7

White (normal intensity)

0x8

Gray

0x9

Light blue

0xA

Light green

0xB

Light cyan

1163

HCL Z and I Emulator for Windows (ENGLISH)

1164

Table 98. Color Plane Information (continued)

Bit Position (0 is least significant

bit)

Meaning

0xC

Light red

0xD

Light magenta

0xE

Yellow

0xF

White (high intensity)

ExfieldPlane
This plane contains extended character attribute data.

This plane is a sparse-array of extended character attribute values. All values in the array are binary zero except for

character in the presentation space for which the host has specified extended character attributes. The meaning of

the extended character attribute values are as follows.

Table 99. 3270 Extended Character Attributes

Bit Position (0 is least significant

bit)

Meaning

7, 6 Character highlighting

0, 0

Normal

0, 1

Blink

1, 0

Reverse video

1, 1

Underline

5, 4, 3 Character color

0, 0, 0

Default

Chapter 2. Product Documentation

Table 99. 3270 Extended Character Attributes (continued)

Bit Position (0 is least significant

bit)

Meaning

0, 0, 1

Blue

0, 1, 0

Red

0, 1, 1

Pink

1, 0, 0

Green

1, 0, 1

Turquoise

1, 1, 0

Yellow

1, 1, 1

White

2, 1 Character attribute

00

Default

11

Double byte character

0 Reserved

Table 100. 5250 Extended Character Attributes

Bit Position (0 is least significant

bit)

Meaning

7 0

Normal image

1

Reverse image

6 0

No underline

1165

HCL Z and I Emulator for Windows (ENGLISH)

1166

Table 100. 5250 Extended Character Attributes (continued)

Bit Position (0 is least significant

bit)

Meaning

1

Underline

5 0

No blink

1

Blink

4 0

No column separator

1

Column separator

3, 2, 1, 0 Reserved

Notices
This information was developed for products and services offered in the United States. HCL may not offer the

products, services, or features discussed in this information in other countries. Consult your local HCL representative

for information on the products and services currently available in your area. Any reference to an HCL product,

program, or service is not intended to state or imply that only that HCL product, program, or service may be used.

Any functionally equivalent product, program or service that does not infringe any HCL intellectual property right may

be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-HCL product,

program, or service.

HCL may have patents or pending patent applications covering subject matter described in this information. The

furnishing of this information does not give you any license to these patents. You can send license inquiries, in

writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you..

Chapter 2. Product Documentation

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the information. HCL may make

improvements and/or changes in the product(s) and/or program(s) described in this information at any time without

notice.

Any references in this information to non-HCL documentation or non-HCL Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those documents or Web sites. The materials for those

documents or Web sites are not part of the materials for this HCL product and use of those documents or Web sites

is at your own risk.

HCL may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this information and all licensed material available for it are provided by HCL

under terms of the HCL Customer Agreement, HCL International Programming License Agreement, or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.licensing agreement

Information concerning non-HCL products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions on the

capabilities of non-HCL products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

Trademarks
HCL, the HCL logo, and hcl.com are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other companies.

1167

HCL Z and I Emulator for Windows (ENGLISH)

1168

Reference Materials

Keyboard Layout and Mapping Reference

Contents

Figures on page 1169

Tables on page 1169

Keyboard Layouts on page 1169

• Enhanced Keyboard, Microsoft Natural Keyboard (3270 Only) on page 1169

• Enhanced Keyboard, Microsoft Natural Keyboard (5250 Only) on page 1169

• Enhanced Keyboard, Microsoft Natural Keyboard (Combined 3270 and 5250) on page 1169

• Enhanced Keyboard, Microsoft Natural Keyboard (VT Keyboard Layout) on page 1169

• Enhanced Keyboard, Microsoft Natural Keyboard (VT Local Edit Mode Only) on page 1169

• Space-Saving Keyboard (3270 Only) on page 1169

• Space-Saving Keyboard (5250 Only) on page 1169

• Space-Saving Keyboard (Combined 3270 and 5250) on page 1169

• 5576-001 (3270 Only) on page 1169

• 5576-001 (5250 Only) on page 1169

• 5576-001 (Combined 3270 and 5250) on page 1169

• 5576-A01 (3270 Only) on page 1169

• 5576-A01 Keyboard (5250 Only) on page 1169

• 5576-A01 Keyboard (Combined 3270 and 5250) on page 1169

• 5576-002/003 (3270 Only) on page 1169

• 5576-002/003 Keyboard (5250 Only) on page 1169

• 5576-002/003 Keyboard (Combined 3270 and 5250) on page 1169

• APL Keyboard Layouts (3270 only) on page 1169

Keyboard Mapping on page 1212

Key Map for Home3270 on page 1212

Appendix A. Notices

Trademarks

[Top of Page on page 1168 | Previous Page | Next Page on page 1169 | Table of Contents on page 1168]

Chapter 2. Product Documentation

Keyboard Layout and Mapping Reference

Figures

1. Shift Statuses for Function Keys on page 1169

2. Type-1 APL Keyboard on page 1169

3. Type-2 APL Keyboard on page 1169

4. Type-3 APL Keyboard on page 1169

5. Type-4 APL Keyboard on page 1169

6. Common Control Code of Keyboard Core Segment for Non-Japanese Keyboard on page 1212

7. Common Control Code of Keyboard Core Segment for Japanese Keyboard on page 1212

8. Control-Code Map of Keyboard Core Segment for U.S. Enhanced Keyboard on page 1212

[Top of Page on page 1169 | Previous Page on page 1168 | Next Page on page 1169 | Table of Contents on

page 1168]

Keyboard Layout and Mapping Reference

Tables

1. Key Combinations for Upper-Right and Lower-Right Characters on page 1212

2. Local Edit Keys on page 1212

3. Other Control Code Map of Key Segment B on page 1212

[Top of Page on page 1169 | Previous Page on page 1169 | Next Page on page 1169 | Table of Contents on

page 1168]

Keyboard Layout and Mapping Reference

Keyboard Layouts

This chapter describes U.S. keyboard layouts supported by the host system. The keyboards are selected during

installation or customization procedures. You can use keyboard layouts to locate character positions on the

keyboard.

Different characters can appear in different key positions, depending on the country language selected. The function

keys located across the top of the keyboard are not shown. Shaded areas show keys that are not available on some

U.S. keyboards.

Refer to Emulator User's Reference and the online Personal Communications help for more information on keyboard

layouts and mapping. Refer to your Windows (R) documentation for more information about the country and code

page options.

The function keys have the following shift statuses.

Figure 1. Shift Statuses for Function Keys on page 1169

1169

HCL Z and I Emulator for Windows (ENGLISH)

1170

Following are some abbreviations for the keys.

AltCur

Alternate Cursor

AltView

Alternate View

BackSp

Back Space

BackTb

Backtab

BgnOLn

Begin of Line

BotOPg

Bottom of Page

BtbWord

Backtab Word

CarRtn

Carrier Return

ChgFmt

Change Format

ChgScrn

Change Screen

ChrAdv

Character Advance

Ctrl

Control

CurBlink

Cursor Blink

Chapter 2. Product Documentation

CurSel

Cursor Select

DelWord

Delete Word

DevCan

Device Cancel

DspTxC

Display TextCode

Dup

Duplicate

EditCop

Edit Copy

EditPst

Edit Paste

EditUnd

Edit Undo

EndFld

End of Field

EndOLn

End of Line

ErEOF

Erase EOF

ErFld

Erase Field

ErInp

Erase Input

Fld-

Field-

Fld+

Field+

FldColor

Field Color

1171

HCL Z and I Emulator for Windows (ENGLISH)

1172

FldExt

Field Exit

FldHigh

Field Highlight

FldMark

Field Mark

FldTrns

Transparency Field Inherit

FastDn

Fast Down

FastDow

Fast Down

FastUp

Fast Up

FieldCol

Field Color

GrpCsr

Graphic Cursor

HostPr

Host Print

JmpNext

Jump Next

JumpNxt

Jump Next

MarkLef

Mark Left

MkDown

Mark Down

MkLeft

Mark Left

MkRight

Mark Right

Chapter 2. Product Documentation

MrkUp

Mark Up

MarkDow

Mark Down

MarkRig

Mark Right

MoveDow

Move Down

MoveLef

Move Left

MoveRig

Move Right

MvDown

Move Down

MvLeft

Move Left

MvRight

Move Right

MvUp

Move Up

NewLin

New Line

ReqBSp

Required Backspace

ReqTab

Required Tab

RolDwn

Roll Down

RollDow

Roll Down

RolUp

Roll Up

1173

HCL Z and I Emulator for Windows (ENGLISH)

1174

Rst/Ctrl

Reset/Ctrl

RPause

Record/Play Pause

SOSI

SOSI Display

SOSI/G

SOSI Generate

SysAttn

System Attention

SysReq

System Request

TabFld

Tab Field

TopOPg

Top of Page

TransOp

Transparency Opaque

TrnfldI

Transparency Field Inherit

TrnOp

Transparency Opaque

TstReq

Test Request

Turquois

Turquoise

UnderSc

Underscore

UndScr

Underscore

WdWrap

Word Wrap

Chapter 2. Product Documentation

Enhanced Keyboard, Microsoft Natural Keyboard (3270 Only)

1175

HCL Z and I Emulator for Windows (ENGLISH)

1176

Chapter 2. Product Documentation

Enhanced Keyboard, Microsoft Natural Keyboard (5250 Only)

1177

HCL Z and I Emulator for Windows (ENGLISH)

1178

Chapter 2. Product Documentation

Enhanced Keyboard, Microsoft Natural Keyboard (Combined 3270 and 5250)

1179

HCL Z and I Emulator for Windows (ENGLISH)

1180

Chapter 2. Product Documentation

Enhanced Keyboard, Microsoft Natural Keyboard (VT Keyboard Layout)

Note:

This keyboard layout does not include Personal Communications local function (for example, edit copy,

edit paste, etc.).

1181

HCL Z and I Emulator for Windows (ENGLISH)

1182

Chapter 2. Product Documentation

Enhanced Keyboard, Microsoft Natural Keyboard (VT Local Edit Mode Only)

Note:

This keyboard layout does not include Personal Communications local function (for example, edit copy,

edit paste, etc.).

1183

HCL Z and I Emulator for Windows (ENGLISH)

1184

Chapter 2. Product Documentation

Space-Saving Keyboard (3270 Only)

1185

HCL Z and I Emulator for Windows (ENGLISH)

1186

Chapter 2. Product Documentation

Space-Saving Keyboard (5250 Only)

1187

HCL Z and I Emulator for Windows (ENGLISH)

1188

Chapter 2. Product Documentation

Space-Saving Keyboard (Combined 3270 and 5250)

1189

HCL Z and I Emulator for Windows (ENGLISH)

1190

Chapter 2. Product Documentation

5576-001 (3270 Only)

1191

HCL Z and I Emulator for Windows (ENGLISH)

1192

Chapter 2. Product Documentation

5576-001 (5250 Only)

1193

HCL Z and I Emulator for Windows (ENGLISH)

1194

Chapter 2. Product Documentation

5576-001 (Combined 3270 and 5250)

1195

HCL Z and I Emulator for Windows (ENGLISH)

1196

Chapter 2. Product Documentation

5576-A01 (3270 Only)

1197

HCL Z and I Emulator for Windows (ENGLISH)

1198

Chapter 2. Product Documentation

5576-A01 Keyboard (5250 Only)

1199

HCL Z and I Emulator for Windows (ENGLISH)

1200

Chapter 2. Product Documentation

5576-A01 Keyboard (Combined 3270 and 5250)

1201

HCL Z and I Emulator for Windows (ENGLISH)

1202

Chapter 2. Product Documentation

5576-002/003 (3270 Only)

1203

HCL Z and I Emulator for Windows (ENGLISH)

1204

Chapter 2. Product Documentation

5576-002/003 Keyboard (5250 Only)

1205

HCL Z and I Emulator for Windows (ENGLISH)

1206

Chapter 2. Product Documentation

5576-002/003 Keyboard (Combined 3270 and 5250)

1207

HCL Z and I Emulator for Windows (ENGLISH)

1208

Chapter 2. Product Documentation

APL Keyboard Layouts (3270 only)

This section shows the APL keyboard layouts for each country. Only APL characters are shown in each shift position

(up/down/ALT).

Language Type

Austrian/German 1

Belgian 2

Canadian-Bilingual 1

Denmark 1

Finnish/Swedish 1

French AZERTY 2

Hangeul 4

Italian 1

Japanese 4

1209

HCL Z and I Emulator for Windows (ENGLISH)

1210

Language Type

Latin American Spanish1

Norwegian 1

Portuguese 1

Simplified Chinese 4

Spanish 1

Swiss-French 1

Swiss-German 1

Traditional Chinese 4

U.K. English 1

U.S. English 3

Figure 2. Type-1 APL Keyboard on page 1169

Figure 3. Type-2 APL Keyboard on page 1169

Chapter 2. Product Documentation

Figure 4. Type-3 APL Keyboard on page 1169

Figure 5. Type-4 APL Keyboard on page 1169

1211

HCL Z and I Emulator for Windows (ENGLISH)

1212

[Top of Page on page 1169 | Previous Page on page 1169 | Next Page on page 1212 | Table of Contents on

page 1168]

Keyboard Layout and Mapping Reference

Keyboard Mapping

This chapter describes keyboard mapping supported by the host system. The keyboards are selected during

installation or customization procedures. You can use keyboard layouts to locate character positions on the

keyboard. Refer to Emulator User's Reference for more information.

For keys with three or four characters shown, use the key combinations in Table 1 on page 1212 to produce the

desired upper-right and lower-right characters. Lower-left characters require no additional keys. Use the shift key for

upper-left characters.

Table 1. Key Combinations for Upper-Right and Lower-Right Characters on page 1169

 Country Lower-Right Character Enhanced Template 1 Upper-Right Character All Templates

Denmark AltGr Ctrl

Finland AltGr Ctrl

Norway AltGr Ctrl

Sweden AltGr Ctrl

All others AltGr None

Note:

1

Alt and AltGr keys produce the same character on the Enhanced keyboard in DOS

mode.

Chapter 2. Product Documentation

Local Edit Keys

Table 2 on page 1213 shows the keys used by local editing. These keys behave differently between the local editing

mode and the interactive editing (ECHO) mode.

Table 2. Local Edit Keys on page 1169

VT Key

Mnemonics

Local Edit

Function

Action in Local Edit Mode

VT Find Home Cur

sor

Moves the cursor to the top left position on a page in memory.

VT Insert Insert/

Override

Selects whether new characters typed displace existing characters to the right, or re

place existing characters.

VT Remove Clear Clears an unprotected field of all characters. Press in conjunction with the SHIFT key

to clear all unprotected fields in the scrolling region.

VT Select Edit Press in conjunction with the SHIFT key to enter or exit local edit mode. The status

line shows the current state.

VT Prev PrevPage Moves the cursor to the beginning of the previous page.

VT Next NextPage Moves the cursor to the beginning of the next page.

VT PF1 Tab Advances the cursor to the first occurrence of:

• A tab stop at the beginning of an unprotected field

• An unprotected field

• The end of the scrolling region

Pressing SHIFT with this key moves the cursor back to the first occurrence of:

• The previous tab stop

• The beginning of the current unprotected field

• The beginning of the previous unprotected field

• The beginning of the scrolling region

VT PF2 Insert Line Adds a blank line on the screen and moves the following lines down. This key can

not be selected on a line containing a protected field.

VT PF3 DeleteLine Deletes a line from the screen and moves the following lines up. This key cannot be

selected on a line containing a protected field.

VT PF4 DeleteChar Deletes an unprotected character at the cursor.

VT Numpad En

ter Newline

Transmit Sends a block of edited text to the host. Works like the Transmit key, if you select

Line Transmit.

Key Map for Home3270

This section shows the position of the following control codes: NUL (X'00') ESC (X'1B') FS (X'1C') GS (X'1D') RS (X'1E')

US (X'1F')

1213

HCL Z and I Emulator for Windows (ENGLISH)

1214

The positions of these control codes are fixed and common for all languages (including U.S. English), regardless

of the characters assigned to BASE and UP SHIFT positions of the keys. These control codes are positioned to the

CONTROL positions of the keys shown in Figure 6 on page 1214 through Figure 7 on page 1214.

Figure 6. Common Control Code of Keyboard Core Segment for Non-Japanese Keyboard on page 1169

Figure 7. Common Control Code of Keyboard Core Segment for Japanese Keyboard on page 1169

The positions of other control codes vary for each language. These control codes are positioned to the CONTROL

position of the associated alphabetic key. Those control codes and the associated alphabetic characters are as

follows.

Table 3. Other Control Code Map of Key Segment B on page 1169

Control Code Associated Letter

SOH (X'01') a

Chapter 2. Product Documentation

Control Code Associated Letter

STX (X'02') b

ETX (X'03') c

EOT (X'04') d

ENQ (X'05') e

ACK (X'06') f

BEL (X'07') g

BS (X'08') h

HT (X'09') i

LF (X'0A') j

VT (X'0B') k

FF (X'0C') l

CR (X'0D') m

SO (X'0E') n

SI (X'0F') o

DLE (X'10') p

DC1(XON)

(X'11')

q

DC2 (X'12') r

DC3(XOF) (X'13') s

DC4 (X'14') t

NAK (X'15') u

SYN (X'16') v

ETB (X'17') w

CAN (X'18') x

EM (X'19') y

SUB (X'1A') z

Following is an example of control-code mapping for the U.S. Enhanced Keyboard.

Figure 8. Control-Code Map of Keyboard Core Segment for U.S. Enhanced Keyboard on page 1169

1215

HCL Z and I Emulator for Windows (ENGLISH)

1216

[Top of Page on page 1212 | Previous Page on page 1169 | Next Page | Table of Contents on page 1168]

Host Code Page Reference

Contents

Host Code Page Tables

• Host Code Page 037-1/697-1 Brazil, Canada, Netherlands, Portugal, U.S., and 037/1175 Traditional Chinese on

page 1217

• Host Code Page 273-1/697-1 Austria, Germany on page 1218

• Host Code Page 275-1/697-1 Brazil on page 1219

• Host Code Page 277-1/697-1 Denmark, Norway on page 1220

• Host Code Page 278-1/697-1 Finland, Sweden on page 1221

• Host Code Page 280-1/697-1 Italy on page 1222

• Host Code Page 284-1/697-1 Latin America, Spain on page 1223

• Host Code Page 285-1/697-1 United Kingdom on page 1224

• Host Code Page 290/930 Japan (Katakana) Extended on page 1225

• Host Code Page 297-1/697-1 France on page 1226

• Host Code Page 420 Arabic Bilingual on page 1227

• Host Code Page 424/941 Israel (Hebrew - Bulletin Code) on page 1228

• Host Code Page 500-1/697-1 International on page 1229

• Host Code Page 803 Israel (Hebrew - Old Code) on page 1230

• Host Code Page 833/1173 Hangeul on page 1231

• Host Code Page 836/1174 Simplified Chinese on page 1232

• Host Code Page 870/959 Latin 2 - EBCDIC Multilingual on page 1233

• Host Code Page 871-1/697-1 Iceland on page 1234

• Host Code Page 875 Greece on page 1235

Chapter 2. Product Documentation

• Host Code Page 924-1/1353-1 International on page 1236

• Host Code Page 1025/1150 Cyrillic on page 1237

• Host Code Page 1026/1152 Latin 5 - Turkey on page 1238

• Host Code Page 1027/939 Japan (Latin) Extended on page 1239

• Host Code Page 1047/103 Latin 1 (Open Systems) on page 1240

• Host Code Page 1112/1035 Latvia, Lithuania on page 1241

• Host Code Page 1122/1037 Estonia on page 1242

• Host Code Page 1123 Ukraine on page 1243

• Host Code Page 1130 Vietnam on page 1244

• Host Code Page 1132 Laos on page 1245

• Host Code Page 1137 India on page 1246

• Host Code Page 1140-1/695-1 Brazil, Canada, Netherlands, Portugal, U.S., and 1140/1175 Traditional Chinese

on page 1247

• Host Code Page 1141-1/695-1 Austria, Germany on page 1248

• Host Code Page 1142-1/695-1 Denmark, Norway on page 1249

• Host Code Page 1143-1/695-1 Finland, Sweden on page 1250

• Host Code Page 1144-1/695-1 Italy on page 1251

• Host Code Page 1145-1/695-1 Latin America, Spain on page 1252

• Host Code Page 1146-1/695-1 United Kingdom on page 1253

• Host Code Page 1147-1/695-1 France on page 1255

• Host Code Page 1148-1/695-1 International on page 1256

• Host Code Page 1149-1/695-1 Iceland on page 1257

• Host Code Page 1153/1375 Latin 2 - EBCDIC Multilingual on page 1258

• Host Code Page 1154/1381 Cyrillic on page 1259

• Host Code Page 1155/1378 Latin 5 - Turkey on page 1260

• Host Code Page 1156/1393 Latvia, Lithuania on page 1261

• Host Code Page 1157/1391 Estonia on page 1262

• Host Code Page 1158/1388 Ukraine on page 1263

• Host Code Page 1160/1395 Thailand on page 1264

• Host Code Page 1164/1397 Vietnam on page 1265

[Top of Page on page 1216 | Previous Page | Next Page | Table of Contents on page 1216]

Host Code Page Reference

Host Code Page 037-1/697-1 Brazil, Canada, Netherlands, Portugal, U.S., and 037/1175 Traditional
Chinese

The column indicates the first digit and the row indicates the second digit.

1217

HCL Z and I Emulator for Windows (ENGLISH)

1218

[Top of Page on page 1217 | Previous Page | Next Page on page 1218 | Table of Contents on page 1216]

Host Code Page Reference

Host Code Page 273-1/697-1 Austria, Germany

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1218 | Previous Page on page 1217 | Next Page on page 1219 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 275-1/697-1 Brazil

The column indicates the first digit and the row indicates the second digit.

1219

HCL Z and I Emulator for Windows (ENGLISH)

1220

[Top of Page on page 1219 | Previous Page on page 1218 | Next Page on page 1220 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 277-1/697-1 Denmark, Norway

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1220 | Previous Page on page 1219 | Next Page on page 1221 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 278-1/697-1 Finland, Sweden

The column indicates the first digit and the row indicates the second digit.

1221

HCL Z and I Emulator for Windows (ENGLISH)

1222

[Top of Page on page 1221 | Previous Page on page 1220 | Next Page on page 1222 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 280-1/697-1 Italy

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1222 | Previous Page on page 1221 | Next Page on page 1223 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 284-1/697-1 Latin America, Spain

The column indicates the first digit and the row indicates the second digit.

1223

HCL Z and I Emulator for Windows (ENGLISH)

1224

[Top of Page on page 1223 | Previous Page on page 1222 | Next Page on page 1224 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 285-1/697-1 United Kingdom

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1224 | Previous Page on page 1223 | Next Page on page 1225 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 290/930 Japan (Katakana) Extended

The column indicates the first digit and the row indicates the second digit.

1225

HCL Z and I Emulator for Windows (ENGLISH)

1226

[Top of Page on page 1225 | Previous Page on page 1224 | Next Page on page 1226 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 297-1/697-1 France

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1226 | Previous Page on page 1225 | Next Page on page 1227 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 420 Arabic Bilingual

The column indicates the first digit and the row indicates the second digit.

1227

HCL Z and I Emulator for Windows (ENGLISH)

1228

[Top of Page on page 1227 | Previous Page on page 1226 | Next Page on page 1228 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 424/941 Israel (Hebrew - Bulletin Code)

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1228 | Previous Page on page 1227 | Next Page on page 1229 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 500-1/697-1 International

The column indicates the first digit and the row indicates the second digit.

1229

HCL Z and I Emulator for Windows (ENGLISH)

1230

[Top of Page on page 1229 | Previous Page on page 1228 | Next Page on page 1230 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 803 Israel (Hebrew - Old Code)

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1230 | Previous Page on page 1229 | Next Page on page 1231 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 833/1173 Hangeul

The column indicates the first digit and the row indicates the second digit.

1231

HCL Z and I Emulator for Windows (ENGLISH)

1232

[Top of Page on page 1231 | Previous Page on page 1230 | Next Page on page 1232 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 836/1174 Simplified Chinese

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1232 | Previous Page on page 1231 | Next Page on page 1233 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 870/959 Latin 2 - EBCDIC Multilingual

The column indicates the first digit and the row indicates the second digit.

1233

HCL Z and I Emulator for Windows (ENGLISH)

1234

[Top of Page on page 1233 | Previous Page on page 1232 | Next Page on page 1234 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 871-1/697-1 Iceland

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1234 | Previous Page on page 1233 | Next Page on page 1235 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 875 Greece

The column indicates the first digit and the row indicates the second digit.

1235

HCL Z and I Emulator for Windows (ENGLISH)

1236

[Top of Page on page 1235 | Previous Page on page 1234 | Next Page on page 1236 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 924-1/1353-1 International

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1236 | Previous Page on page 1235 | Next Page on page 1237 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1025/1150 Cyrillic

The column indicates the first digit, and the row indicates the second digit. If this code page is not used with a Cyrillic

host machine, certain characters might not display properly.

1237

HCL Z and I Emulator for Windows (ENGLISH)

1238

[Top of Page on page 1237 | Previous Page on page 1236 | Next Page on page 1238 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1026/1152 Latin 5 - Turkey

The column indicates the first digit, and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1238 | Previous Page on page 1237 | Next Page on page 1239 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1027/939 Japan (Latin) Extended

The column indicates the first digit and the row indicates the second digit.

1239

HCL Z and I Emulator for Windows (ENGLISH)

1240

[Top of Page on page 1239 | Previous Page on page 1238 | Next Page on page 1240 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1047/103 Latin 1 (Open Systems)

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1240 | Previous Page on page 1239 | Next Page on page 1241 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1112/1035 Latvia, Lithuania

The column indicates the first digit and the row indicates the second digit.

1241

HCL Z and I Emulator for Windows (ENGLISH)

1242

[Top of Page on page 1241 | Previous Page on page 1240 | Next Page on page 1242 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1122/1037 Estonia

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1242 | Previous Page on page 1241 | Next Page on page 1243 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1123 Ukraine

The column indicates the first digit and the row indicates the second digit.

1243

HCL Z and I Emulator for Windows (ENGLISH)

1244

[Top of Page on page 1243 | Previous Page on page 1242 | Next Page on page 1244 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1130 Vietnam

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1244 | Previous Page on page 1243 | Next Page on page 1245 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1132 Laos

The column indicates the first digit and the row indicates the second digit.

1245

HCL Z and I Emulator for Windows (ENGLISH)

1246

[Top of Page on page 1245 | Previous Page on page 1244 | Next Page on page 1246 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1137 India

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1246 | Previous Page on page 1245 | Next Page on page 1247 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1140-1/695-1 Brazil, Canada, Netherlands, Portugal, U.S., and 1140/1175
Traditional Chinese

The column indicates the first digit and the row indicates the second digit.

1247

HCL Z and I Emulator for Windows (ENGLISH)

1248

[Top of Page on page 1247 | Previous Page on page 1246 | Next Page on page 1248 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1141-1/695-1 Austria, Germany

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1248 | Previous Page on page 1247 | Next Page on page 1249 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1142-1/695-1 Denmark, Norway

The column indicates the first digit and the row indicates the second digit.

1249

HCL Z and I Emulator for Windows (ENGLISH)

1250

[Top of Page on page 1249 | Previous Page on page 1248 | Next Page on page 1250 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1143-1/695-1 Finland, Sweden

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1250 | Previous Page on page 1249 | Next Page on page 1251 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1144-1/695-1 Italy

The column indicates the first digit and the row indicates the second digit.

1251

HCL Z and I Emulator for Windows (ENGLISH)

1252

[Top of Page on page 1251 | Previous Page on page 1250 | Next Page on page 1252 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1145-1/695-1 Latin America, Spain

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1252 | Previous Page on page 1251 | Next Page on page 1253 | Table of Contents on

page 1216]

Host Code Page Reference
hcp_

1253

HCL Z and I Emulator for Windows (ENGLISH)

1254

Host Code Page 1146-1/695-1 United Kingdom

The column indicates the first digit and the row indicates the second digit.

[Top of Page on page 1254 | Previous Page on page 1252 | Next Page on page 1255 | Table of Contents on

page 1216]

Chapter 2. Product Documentation

Host Code Page Reference

Host Code Page 1147-1/695-1 France

The column indicates the first digit and the row indicates the second digit.

[Top of Page on page 1255 | Previous Page on page 1253 | Next Page on page 1256 | Table of Contents on

page 1216]

1255

HCL Z and I Emulator for Windows (ENGLISH)

1256

Host Code Page Reference

Host Code Page 1148-1/695-1 International

The column indicates the first digit and the row indicates the second digit.

[Top of Page on page 1256 | Previous Page on page 1255 | Next Page on page 1257 | Table of Contents on

page 1216]

Chapter 2. Product Documentation

Host Code Page Reference

Host Code Page 1149-1/695-1 Iceland

The column indicates the first digit and the row indicates the second digit.

[Top of Page on page 1257 | Previous Page on page 1256 | Next Page on page 1258 | Table of Contents on

page 1216]

1257

HCL Z and I Emulator for Windows (ENGLISH)

1258

Host Code Page Reference

Host Code Page 1153/1375 Latin 2 - EBCDIC Multilingual

The column indicates the first digit and the row indicates the second digit.

[Top of Page on page 1258 | Previous Page on page 1257 | Next Page on page 1259 | Table of Contents on

page 1216]

Chapter 2. Product Documentation

Host Code Page Reference

Host Code Page 1154/1381 Cyrillic

The column indicates the first digit, and the row indicates the second digit. If this code page is not used with a Cyrillic

host machine, certain characters might not display properly.

1259

HCL Z and I Emulator for Windows (ENGLISH)

1260

[Top of Page on page 1259 | Previous Page on page 1258 | Next Page on page 1260 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1155/1378 Latin 5 - Turkey

The column indicates the first digit, and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1260 | Previous Page on page 1259 | Next Page on page 1261 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1156/1393 Latvia, Lithuania

The column indicates the first digit and the row indicates the second digit.

1261

HCL Z and I Emulator for Windows (ENGLISH)

1262

[Top of Page on page 1261 | Previous Page on page 1260 | Next Page on page 1262 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1157/1391 Estonia

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1262 | Previous Page on page 1261 | Next Page on page 1263 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1158/1388 Ukraine

The column indicates the first digit and the row indicates the second digit.

1263

HCL Z and I Emulator for Windows (ENGLISH)

1264

[Top of Page on page 1263 | Previous Page on page 1262 | Next Page on page 1264 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1160/1395 Thailand

The column indicates the first digit and the row indicates the second digit.

Chapter 2. Product Documentation

[Top of Page on page 1264 | Previous Page on page 1263 | Next Page on page 1265 | Table of Contents on

page 1216]

Host Code Page Reference

Host Code Page 1164/1397 Vietnam

The column indicates the first digit and the row indicates the second digit.

1265

HCL Z and I Emulator for Windows (ENGLISH)

1266

[Top of Page on page 1265 | Previous Page on page 1264 | Next Page | Table of Contents on page 1216]

Chapter 3. PDF Library

PDF documentation for ZIE for Windows is also available on every online topic and click icon to download the

document.

• Quick Beginnings Guide

• Installation Guide

• Emulator User's Reference Guide

• Administrator's Guide

• Emulator Programming Guide

• Host Access Class Library

• Reference Materials

The published edition is the most current version of the documentation and applies to any subsequent product

releases and modifications until otherwise indicated in new editions.

1267

PDF_Guides/quick_beginnings.pdf
PDF_Guides/install_guide.pdf
PDF_Guides/emulator_reference.pdf
PDF_Guides/admin_guide.pdf
PDF_Guides/emulator_programming.pdf
PDF_Guides/host_access_client_library.pdf
PDF_Guides/reference_materials.pdf

Index
Numerics

01, Connect Presentation Space 546
02, Disconnect Presentation Space 581
03, Send Key 593, 634, 660, 668
04, Wait 667
05, Copy Presentation Space 564
06, Search Presentation Space 631, 668
07, Query Cursor Location 607
08, Copy Presentation Space to String 569
09, Set Session Parameters 643
10, Query Sessions 614
101, Connect Window Services 547

Connect Window Services (101) 547
102, Disconnect Window Service 582
103, Query Window Coordinates 618
104, Window Status 668
105, Change Switch List LT Name 542
106, Change PS Window Name 541
11, Reserve 627
110, Start Playing Macro 663
12, Release 626, 627
13, Copy OIA 555
14, Query Field Attribute 608
15, Copy String to Presentation Space 575
16/32 bit considerations 530
18, Pause 600, 666
20, Query System 616
21, Reset System 627, 628, 643
22, Query Session Status 612
23, Start Host Notification 600, 611, 657
24, Query Host Update 601, 611, 666
25, Stop Host Notification 665
30, Search Field 629, 668
31, Find Field Position 552, 587
32-Bit ODBC Administrator 114
32-bit presentation space IDs 518
32, Find Field Length 552, 585
3270 data stream (printing) 413
33, Copy String to Field 573
34, Copy Field to String 551
35, Copy Presentation Space to
Clipboard 576
36, Paste Clipboard to Presentation
Space 578
40, Set Cursor 642
41, Start Close Intercept 653
42, Query Close Intercept 604
43, Stop Close Intercept 664
45, Query Additional Field Attribute 603
50, Start Keystroke Intercept 660
51, Get Key 589, 602, 660
52, Post Intercept Status 601, 660
5250

automatic device name generation 383
53, Stop Keystroke Intercept 666
61, Lock PMSVC API 598
90, Send File 632
91, Receive File 624
99, Convert Position or Convert
RowCol 548

A
adapters

attachments 45
administrative installation

install from network server 150
install to run from network server 151

InstallShield command-line
parameters 155
overview and procedure 150

alerts 373
Allocate Communications Buffer (123) 539
applet 96
Application Data

file types 43
locations 43

ASCII emulator 42
ASCII Host File Transfer 355

Changing a List of Files 360
Add More File Names to List 360
Change the personal computer or
Host File Name 360
Delete File Names From List 360

Defining Transfer Types 357
Explanation of Items to Be
Defined 358

Example of ASCII Protocol Template 359
Templates Defined 359

File Transfer Templates 358
Automatic Generation of File-
Names 359
Defining Templates 358

Receiving Files From an ASCII Host 361
Receiving Files to a Workstation
Directory 361
Saving the List of Files

File-Name Extension for List
Files 359
Open List File 360
Remove From List 360
Save List File 360

Selecting Files to Receive 361
Selecting Files to Send 362

Advanced Method 362
Basic Methods 362
Select From a Send/Receive List 362

Send File to Host 362
Changing the Host-File Name or the
Transfer-Type 363
Saving a List of Files to Send 363
Sending a List of Files 363

Using XMODEM and YMODEM 355
Choosing a Protocol 355
XMODEM and XMODEM1K 356
YMODEM and YMODEMG 356

ASCII Mnemonics
general 526
get key (51) function 527
send key (3) function 528

ASCII text files 310
Assist Functions

hotspots 90
keyboard 90
Keyboard Setup 91
macro 90
macro/script 93
script 90
setup 90

asynchronous attachment
eServer i5 device description 488
iSeries device description 488
System i5 device description 488

Asynchronous Functions, WinHLLAPI 678
ATTRB 646

attribute bytes 551, 551, 564, 569, 573,
576, 646
autECLConnList

class description 987
methods

Collection Element Methods 991
FindConnectionByHandle 991
FindConnectionByName 992
Refresh 991
StartCommunication 993
StopCommunication 993

properties
APIEnabled 990
CodePage 989
CommStarted 989
ConnType 988
Count 987
Handle 988
Name 988
overview 987
Ready 990
Started 989

autECLConnMgr
class description 994
events

event processing example 1000
NotifyStartError 999
NotifyStartEvent 998
NotifyStartStop 999
overview 998

methods
RegisterStartEvent 995
StartConnection 996
StopConnection 997
UnRegisterStartEvent 995

properties, autECLConnList 995
autECLFieldList

class description 1000
methods

Collection Element Methods 1006
FindFieldByRowCol 1007
FindFieldByText 1008
GetText 1009
overview 1006
Refresh 1007
SetText 1010

properties
Count 1001
Display 1006
EndCol 1003
EndRow 1002
HighIntensity 1005
Length 1003
Modified 1004
Numeric 1005
overview 1001
PenDetectable 1005
Protected 1004
StartCol 1002
StartRow 1002

autECLOIA
class description 1011
events

event processing example 1028
NotifyCommError 1027
NotifyCommEvent 1027
NotifyCommStop 1028
overview 1027

1268

methods
CancelWaits 1026
overview 1019
RegisterCommEvent 1020
SetConnectionByHandle 1021
SetConnectionByName 1021
StartCommunication 1022
StopCommunication 1023
UnregisterCommEvent 1020
WaitForAppAvailable 1025
WaitForInputReady 1024
WaitForSystemAvailable 1024
WaitForTransition 1026

properties
Alphanumeric 1012
APIEnabled 1018
APL 1012
CapsLock 1014
CodePage 1017
CommErrorReminder 1015
CommStarted 1018
ConnType 1017
Handle 1016
Hiragana 1013
InputInhibited 1015
InsertMode 1014
Katakana 1013
MessageWaiting 1015
Name 1016
Numeric 1014
NumLock 1019
overview 1011
Ready 1019
Started 1017
UpperShift 1013

autECLPageSettings
class description 1126
methods 1135

RestoreTextDefaults 1135
SetConnectionByHandle 1136
SetConnectionByName 1136

properties 1127
APIEnabled 1134
CodePage 1132
CommStarted 1133
ConnType 1132
CPI 1128
FaceName 1130
FontCPI 1128
FontLPI 1129
Handle 1131
LPI 1129
MaxCharsPerLine 1131
MaxLinesPerPage 1130
Name 1131
Ready 1134
Started 1133

autECLPrinterSettings
class description 1137
methods 1146

SetConnectionByHandle 1153
SetConnectionByName 1152
SetPDTMode 1147
SetPrtToDskAppend 1148
SetPrtToDskSeparate 1149
SetSpecificPrinter 1150
SetWinDefaultPrinter 1151

properties 1138
APIEnabled 1145
CodePage 1144
CommStarted 1145

ConnType 1143
Handle 1143
Name 1143
PDTFile 1139
PDTMode 1139
Printer 1140
PrintMode 1140
PromptDialogOption 1142
PrtToDskAppendFile 1141
PrtToDskSeparateFile 1142
Ready 1146
Started 1144

autECLPS
class description 1029
events

event processing example 1067
NotifyCommError 1066
NotifyCommEvent 1065
NotifyCommStop 1067
NotifyKeyError 1065
NotifyKeysEvent 1064
NotifyKeyStop 1066
NotifyPsError 1065
NotifyPSEvent 1063
NotifyPSStop 1066
overview 1063

methods
CopyText 1044
GetText 1043
GetTextRect 1046
overview 1034
PasteText 1045
RegisterCommEvent 1036
RegisterKeyEvent 1036
RegisterPSEvent 1036
SearchText 1041
SendKeys 1041
SetConnectionByHandle 1039
SetConnectionByName 1038
SetCursorPos 1040
SetText 1044
StarMacro 1050
StartCommunication 1048
StopCommunication 1049
UnregisterCommEvent 1038
UnregisterKeyEvent 1037
UnregisterPSEvent 1037

properties
APIEnabled 1033
autECLFieldList 1030
CodePage 1032
CommStarted 1033
ConnType 1032
CursorPosCol 1031
CursorPosRow 1031
Handle 1032
Name 1031
NumCols 1030
NumRows 1030
overview 1029
Ready 1034
Started 1033

wait functions
CancelWaits 1063
Wait 1050
WaitForAttrib 1058
WaitForCursor 1051
WaitForScreen 1061
WaitForString 1053
WaitForStringInRect 1055
WaitWhileAttrib 1059

WaitWhileCursor 1052
WaitWhileScreen 1062
WaitWhileString 1054
WaitWhileStringInRect 1056

autECLScreenDesc
class description 1069
methods

AddAttrib 1069
AddCursorPos 1070
AddNumFields 1071
AddNumInputFields 1072
AddOIAInhibitStatus 1073
AddString 1074
AddStringInRect 1075
Clear 1076
overview 1069

autECLScreenReco
class description 1077
events

event processing example 1082
NotifyRecoError 1081
NotifyRecoEvent 1080
NotifyRecoStop 1081
overview 1080

methods
AddPS 1077
IsMatch 1078
overview 1077
RegisterScreen 1079
RemovePS 1079
UnreigsterScreen 1080

autECLSession
class description 1083
events

event processing example 1095
NotifyCommError 1095
NotifyCommEvent 1094
NotifyCommStop 1095
overview 1094

methods
overview 1089
RegisterCommEvent 1090
RegisterSessionEvent 1089
SetConnectionByHandle 1092
SetConnectionByName 1091
StartCommunication 1093
StopCommunication 1093
UnregisterCommEvent 1091
UnregisterSessionEvent 1090

properties
APIEnabled 1086
autECLOIA object 1087
autECLPageSettings object 1088
autECLPrinterSettings object 1088
autECLPS object 1087
autECLWinMetrics object 1088
autECLXfer object 1087
CodePage 1085
CommStarted 1086
ConnType 1084
Handle 1084
Name 1084
overview 1083
Ready 1086
Started 1085

autECLWinMetrics
class description 1096
events

event processing example 1111
NotifyCommError 1111
NotifyCommEvent 1110

1269

NotifyCommStop 1111
overview 1110

methods
GetWindowRect 1107, 1107
overview 1105
RegisterCommEvent 1105
SetConnectionByHandle 1107, 1107
SetConnectionByName 1106, 1106
SetWindowRect 1108, 1108
StartCommunication 1109
StopCommunication 1109
UnregisterCommEvent 1105

properties
Active 1100
APIEnabled 1104
CodePage 1103
CommStarted 1103
ConnType 1102
Handle 1102
Height 1099
Maximized 1101
Minimized 1100
Name 1101
overview 1097
Ready 1104
Restored 1101
Started 1103
Visible 1099
Width 1098
WindowTitle 1097
Xpos 1098
Ypos 1098

autECLXfer
class description 1112
events

event processing example 1124
NotifyCommError 1123
NotifyCommEvent 1122
NotifyCommStop 1123
overview 1122

methods
overview 1116
ReceiveFile 1120
RegisterCommEvent 1116
SendFile 1118
SetConnectionByHandle 1118
SetConnectionByName 1117
StartCommunication 1121
StopCommunication 1122
UnregisterCommEvent 1117

properties
APIEnabled 1115
CodePage 1114
CommStarted 1114
ConnType 1113
Handle 1113
Name 1113
overview 1112
Ready 1115
Started 1114

automatically starting sessions 64
automation 533
AUTORESET 648
autostart

applet 96
macro 95

autSystem
class description 1124
methods

overview 1124
Shell 1124

B
BASIC random files 313
BASIC sequential files 315
batch file

editing 63
h option 61
i option 61
q option 61
s option 61
using 60
v option 61

beep 602
BETWEEN test 277
BIFF files 321
BLANK 650
Blocking Routines 688
Building C++ ECL Programs

description 748
Microsoft Visual C++ 749

C
call (input) parameters

general 536
calls, prerequisite 536
Cancel File Transfer (92) 540
Certificate Express Logon

configuring 406
preparing to configure 405
problem determination 407
using 405

Change PS Window Name (106) 541
Change Switch List LT Name (105) 542
changing

configuration files 49
workstation
profiles
 49

changing the packet size 196
character, escape 527, 591, 635, 648
characters, ASCII 526
Citrix 402
CMP 87
Collect Screen

Print Collection on Exit 73, 176
Purge Collection 73, 176

color mapping 85
customization 87

default color mapping 88
enable/disable color mapping 87
migration 89

ColorPlane 1162
command-line parameters

administrative installation 155
advertise mode 155
InstallShield, setup.exe 153
language setup 155
passing to MSI package 154
repair mode 156
silent installation 154
uninstall mode 155
Windows Installer
service
 149

commands
MVS/TSO receive 230
MVS/TSO send 225

communication services functions
Receive File (91) 624
Send File (90) 632

compiler, printer table
description of 410

explanation 418
printer color mixing 412
printer definition file format 436

compiling and linking 517, 517
conditions, specifying WHERE 273
configuration

advanced configuration 379
changing 49

workstation
profiles
 49

eServer i5 examples 485
iSeries examples 485
saving 48

workstation
profiles
 48

System i5 examples 485
Connect for Structured Fields (120) 544
Connect Presentation Space (1)

functions where not required 547
general 546
interaction with disconnect 519

Connect Window Services (101) 547
Connections

ASCII emulator 42
icons 40
iSeries emulator 41
zSeries emulator 41

Convert Macro 116
Convert Position or Convert RowCol
(99) 548
Copy Field to String (34) 533, 551
copy functions

Copy Field to String (34) 551
Copy OIA (13) 555
Copy Presentation Space (5) 564
Copy Presentation Space to String
(8) 569
Copy String to Field (33) 573
Copy String to Presentation Space
(15) 575

Copy OIA (13) 532, 555
Copy Presentation Space (5) 564
Copy Presentation Space to Clipboard
(35) 576
Copy Presentation Space to String (8) 532,
569
Copy String to Field (33) 533, 573
Copy String to Presentation Space (15) 575
copying

data in cells as text data 83
lines containing only operational
signs 82
marked data 82

Copying
table data to spreadsheet 82

creating a transfer request
receiving data from the host 264

critical sections 510
cursor color 193
cursor movement 532
customization

initialization file processing 149
transform files 149

customizing a display translation table 194
Cut/Copy

Copy signed numeric fields 80
Force Leading +/- 80
Only if a trim rectangle is marked 80

1270

D
data conversions 305

data types 306
ASCII numeric 309
binary 307
character 308
double-precision 307
hexadecimal 308
integer 307
packed decimal 308
single-precision 307
zoned decimal 309

record size 305
workstation
file types
 310

data description specifications (DDS) 297,
315
data interchange format files (DIF) 318
data stream support, printer

3270 413
data structures 514
data transfer 205, 337

default library 338
default partitioned data set 213
default PC directory 213, 337
general options 212, 337
host command 213, 337
host type 213
packet size 214
PC code page 213, 338
VM disk 213

Data Transfer
icon 39
types of 117

Data Transfer for PC400
Data Conversions 305
Examples of Transfer Requests for
Receiving 285
File-Description Files 296
iSeries System-to-Personal Computer
Performance Considerations 330
Limited Usage of File Names and Field
Names 284
Menu Functions Available 291

data transfer function 246
Data Transfer utility 116
data types 306

ASCII numeric 309
binary 307
character 308
double-precision 307
hexadecimal 308
integer 307
packed decimal 308
single-precision 307
zoned decimal 309

database file 254
DDE/EHLLAPI 81
DDM

transfer function 253
DDM (distributed data management) 247
DDS (data description specifications) 297,
315
debugging 528
default (DFT) keyword 315
default key functions 185

combined package 188
PC/3270
package

 183
default library 338
delimiting print jobs 414
desktop 59
device services functions

Get Key (51) 589
Post Intercept Status (52) 601
Release (12) 626
Reserve (11) 627
Start Keystroke Intercept (50) 660
Stop Keystroke Intercept (53) 666

DFT (default) keyword 315
directory, default

Receive File 626
Disconnect from Structured Fields
(121) 580
Disconnect Presentation Space (2)

general 581
interaction with connect 519

Disconnect Window Service (102) 582
distributed data management

file concept 253
distributed data management (DDM) 247
DOS random files 324
DOS random type-2 files 326
drawing-buffer size 202
dynamic link method 517

E
EAB 649
ECL Concepts

Addressing 741
Connections, Handles and Names 738
ECL Container Objects 739
ECL List Objects 739
Error Handling 740
Events 740
Sessions 739

ECL Planes 1159
ECLBase

class description 749
methods

ConvertHandle2ShortName 750
ConvertPos 753
ConvertShortName2Handle 751
ConvertTypeToString 752
GetVersion 750
overview 750

ECLCommNotify
class description 784
derivation 785
methods

NotifyError 788
NotifyEvent 788
NotifyStop 789
overview 788

ECLConnection
class description 754
derivation 755
methods

ECLConnection Constructor 755
ECLConnection Destructor 756
GetCodePage 757
GetConnType 759
GetEncryptionLevel 761
GetHandle 758
GetName 760
IsAPIEnabled 765
IsCommStarted 764
IsReady 765
IsStarted 763

overview 755
RegisterCommEvent 768
StartCommunication 766
StopCommunication 767
UnregisterCommEvent 769

ECLConnList
class description 769
derivation 770
methods

ECLConnList Constructor 770
ECLConnList Destructor 771
FindConnection 774
GetCount 775
GetFirstConnection 772
GetNextConnection 773
overview 770
Refresh 776

ECLConnMgr
class description 777
derivation 777
methods

ECLConnMgr Constructor 778
ECLConnMgr Deconstructor 779
GetConnList 779
overview 777
RegisterStartEvent 783
StartConnection 780
StopConnection 782
UnregisterStartEvent 784

ECLErr
class description 789
derivation 790
methods

GetMsgNumber 790
GetMsgText 792
GetReasonCode 791
overview 790

ECLField
class description 793
derivation 793
methods

GetAttribute 809
GetEnd 800
GetEndCol 802
GetEndRow 801
GetLength 803
GetScreen 804
GetStart 796
GetStartCol 798
GetStartRow 797
IsDisplay 807
IsHighIntensity 807
IsModified 807
IsNumeric 807
IsPenDetectable 807
IsProtected 807
overview 795
SetText 806

ECLFieldList
class description 810
derivation 811
methods

FindField 816
GetFieldCount 812
GetFirstField 813
GetNextField 814
overview 811
Refresh 811

properties 811
ECLKeyNotify

class description 818

1271

derivation 819
methods

NotifyError 822
NotifyEvent 821
NotifyStop 823
overview 821

ECLListener
class description 823
derivation 823

ECLOIA
class description 823
derivation 824
methods

ECLOIA Constructor 824
GetStatusFlags 835
InputInhibited 834
IsAlphanumeric 826
IsAPL 826
IsCapsLock 829
IsCommErrorReminder 830
IsInsertMode 829
IsMessageWaiting 831
IsNumeric 828
IsUpperShift 827
overview 824
RegisterOIAEvent 836
UnregiterOIAEvent 836

wait functions
WaitForAppAvailable 833
WaitForInputReady 832
WaitForSystemAvailable 832
WaitForTransition 833

ECLOIANotify
class description 837
derivation 837
methods

NotifyError 838
NotifyEvent 838
NotifyStop 839
overview 838

ECLPageSettings
class description 956
derivation 957
methods 958

ECLPageSettings Constructor 958
GetCPI 960
GetFontFaceName 964
GetLPI 962
GetMaxCharsPerLine 967
GetMaxLinesPerPage 966
IsFontCPI 961
IsFontLPI 963
RestoreDefaults 968
SetCPI 959
SetFontFaceName 964
SetFontSize 965
SetLPI 962
SetMaxCharsPerLine 967
SetMaxLinesPerPage 966

properties 957
usage notes 957

ECLPrinterSettings
class description 969
derivation 969
methods 970

ECLPrinterSettings Constructor 970
GetPDTFile 973
GetPrinterName 981
GetPrintMode 975
GetPrtToDskAppendFile 977
GetPrtToDskSeparateFile 979

IsPDTMode 974
IsPromptDialogEnabled 983
SetPDTMode 971
SetPromptDialog 983
SetPrtToDskAppend 976
SetPrtToDskSeparate 978
SetSpecificPrinter 980
SetWinDefaultPrinter 981

properties 969
usage notes 969

ECLPS
class description 840
derivation 840
methods

ConvertPosToCol 868
ConvertPosToRow 867
ConvertPosToRowCol 864
ConvertRowColToPos 865
CopyText 862
ECLPS Constructor 843
ECLPS Destructor 844
GetCursorPos 848
GetCursorPosCol 850
GetCursorPosRow 850
GetFieldList 871
GetHostCodePage 845
GetOSCodePage 845
GetPCCodePage 844
GetScreen 856
GetScreenRect 858
GetSize 846
GetSizeCols 848
GetSizeRows 847
overview 840
PasteText 863
RegisterKeyEvent 869
RegisterPSEvent 883
SearchText 854
SendKeys 852
SetCursorPos 851
SetText 860
StartMacro 884
UnregisterKeyEvent 870
UnregisterPSEvent 884

properties 840
ECLPSEvent

class description 885
derivation 886
methods

GetEnd 888
GetEndCol 889
GetEndRow 889
GetPS 886
GetStart 887
GetStartCol 889
GetStartRow 888
GetType 887
overview 886

ECLPSListener
class description 890
derivation 890
methods

NotifyError 892
NotifyEvent 891
NotifyStop 892
overview 891

ECLPSNotify
class description 893
derivation 893
methods

NotifyError 895

NotifyEvent 894
NotifyStop 895
overview 894

ECLRecoNotify
class description 896
derivation 896
methods

ECLNotify Deconstructor 897
ECLRecoNotify Constructor 897
NotifyError 899
NotifyEvent 897
NotifyStop 898
overview 896

ECLScreenDesc
class description 899
derivation 899
methods

AddAttrib 901
AddCursorPos 902
AddNumFields 903
AddNumInputFields 904
AddOIAInhibitStatus 905
AddString 905
AddStringInRect 906
Clear 908
ECLScreenDesc Constructor 900
ECLScreenDesc Destructor 901
overview 900

ECLScreenReco Class 908
ECLSession

class description 914
derivation 914
methods

ECLSession Constructor 915
ECLSession Destructor 916
GetOIA 917
GetPageSettings 920
GetPrinterSettings 921
GetPS 916
GetWinMetrics 919
GetXfer 918
overview 914
RegisterUpdateEvent 922
UnregisterUpdateEvent 922

ECLStartNotify
class description 922
derivation 923
methods

NotifyError 926
NotifyEvent 925
NotifyStop 926
overview 925

ECLUpdateNotify
class description 927

ECLWinMetrics
class description 927
derivation 927
methods

Active 944
ECLWinMetrics Constructor 928
ECLWinMetrics Destructor 929
GetHeight 938
GetWidth 936
GetWindowRect 940
GetWindowTitle 930
GetXpos 932
GetYpos 934
IsMaximized 947
IsMinimized 946
IsRestored 949
IsVisible 943

1272

overview 928
SetActive 945
SetHeight 939
SetMaximized 948
SetMinimized 946
SetRestored 950
SetVisible 943
SetWidth 937
SetWindowRect 941
SetWindowTitle 931
SetXpos 933
SetYpos 935

ECLXfer
class description 950
derivation 950
methods

ECLXfer Constructor 951
ECLXfer Destructor 952
overview 951
ReceiveFile 955
SendFile 953

Edit keys
intercepting 583

edit-copy buffer 203
Editing

Copy Link 81
functions 77
linking to Windows application
programs 81
options

Cut/Copy 78
Paste 78

Paste Link 81
EditKey Intercept 583
EHLLAPI

functions 536
summary 537

EHLLAPI call format 513
EHLLAPI Overviews

IBM Enhanced EHLLAPI vs. IBM
Standard EHLLAPI 513
IBM Standard EHLLAPI 512
WinHLLAPI 513
WinHLLAPI vs. IBM Standard
EHLLAPI 513

EHLLAPI programming overview 512
EHLLAPI return codes 515
ELLHAPI, migrating from

Events 744
Execution/Language Interface 742
Features 742
Presentation Space Models 744
PS Connect/Disconnect,
Multithreading 745
SendKey Interface 744
Session IDs 743

enabling
DDE/EHLLAPI 81

EOT 645
errors caused by insufficient memory 201
ESC 648
escape character 527, 591, 635, 648
eServer i5

5250 sessions through one link 486
configuration examples 485
device description 488
system mode description 487

existing batch file 63
explaining a file-description file 297
Express Logon Feature

macro 98

extended attribute support 196
ExtendedFieldPlane 1164
extension for list-files 357

F
feature installation options 143
feature selection 141
field-formatted PS 552, 629
field-related functions

Copy Field to String (34) 551
Copy String to Field (33) 573
Find Field Length (32) 585
Find Field Position (31) 587
Query Additional Field Attribute (45) 603
Query Field Attribute (14) 608
Search Field (30) 629

FieldPlane 1159
fields, host

input protected 634
numeric only 634

file
database 254
iSeries 254
joining 254
logical 254
physical 254

file transfer 205, 331, 533
Clear command 214
code translation 244
commands, PC/3270 216
CRLF option 340
default library 338
default partitioned data set 213
default PC directory 213, 337
DOS commands 217
DSPMBRLST command 341
general options 212, 337
host command 213, 337
host type 213
import/export 216
IND$FILE 217
list files 207, 333
list-files 214, 338
logical record length (LRECL) 211, 336
managing templates 208, 334
MVS/TSO 225, 230
packet size 214
PC code page 213, 338
physical file 340
physical source file 340
receiving files from the host
system 206, 332
record format 211
restrictions 341
sending files to the host system 205,
332
status window 214, 338
timeout 214, 338
transfer types 209, 336
translation table 215, 339
TSO allocation parameter (MVS/
TSO) 212
VM disk 213

file transfer functions
Receive File (91) 624
Send File (90) 632

File Transfer, ASCII Host 355
file transfer, PC400 340
file-description file 253, 296
file-description file entries 296

comment lines 305

example 305
format 297
PCFDF 298
PCFL 300
PCFO 298
PCFT 298

file-transfer timeout 357
files

configuration 379
template 380
update 380

Files
transfer 83

ASCII host data transfer 85
Find Field Length (32) 552, 585
Find Field Position (31) 552, 587
fonts 86
FPAUSE 646
Free Communications Buffer (124) 588
function calls

call (input) parameters 536
notes on using the function 537
page layout conventions 536
prerequisite calls 536
return (output) parameters 537
use of 536

G
Get Key (51) 526, 589, 602, 660
Get Request Completion (125) 593
graphic protocol

advanced protocol 200
native protocol 200

graphics protocols 199

H
Hints and Tips

Usage Notes for Sessions in OLE
Documents 166

hole in screen caused by clearing a graphic
character 204
host automation scenarios 531
host command 213, 337
host fields

input protected 634
numeric only 634

host type 213
host-connected presentation space 519
host-directed print 413
Hotspots 90

I
i option 61
IBM Support Center 616
icons

information bundler 38
log viewer 38
migration utility 38
start or configure sessions 37
start or configure sessions online 38
trace facility 38

import/export 196
IN test 277
IND$FILE 217
Information Bundler 166, 378
information bundler, icon 38
Information, Where to Find More

Alerts, Messages and 372
Messages and Alerts 372

initialization file processing
general 149
silent installation 149

1273

Initialization/Termination Functions 686
input protected fields 634
installation

administrative installation
InstallShield command-line
parameters 155
overview and procedure 150

custom 140
customization 149
feature installation options 143
feature selection 141
initialization file processing 149
install from network server 150
install to run from network server 151
maintenance installation

modify 151
remove 151
repair 151

remote
using SMS 152
using Tivoli 152

silent 143
typical 137

Installation
hardware requirements 42, 43

installation, remote
using SMS 152
using Tivoli 152

introduction to EHLLAPI programming 512
introduction to Emulator APIs

Emulator High Level Language API
(EHLLAPI) 509
Z and I Emulator for Windows
Session API (PCSAPI)
 510

IPAUSE 646
IS test 278
iSeries

5250 sessions through one link 486
configuration examples 485
device description 488
system mode description 487

iSeries emulator 41
iSeries files 253
ISNOT test 278

J
Java applet 96
Java, Host Access Class Library 1155

K
key functions

assignments 183, 189
default 183, 189
Win32 edit hotkeys 192

keyboard
file 191
functions 185

Keyboard
functions 90

keyboard enhancement 535
keyboard mnemonics

general 525
tables 636

Keyboard Setup 91
keyboard file 92
modifying layout 92

keyboard, session 525
keystroke filtering 534
keystroke interception, Get Key (51) 590
keywords 1156

L
language, specifying

using command-line parameters 155
languages 513
library 254
licensing agreement 130, 157, 368, 497,
735, 1167
LIKE test 276
Linking

description 517
Dynamic Link Method 517

Lock Presentation Space API (60) 596
Lock Window Services API (61) 598
locking presentation space 524
log viewer 377
Log Viewer Functions 408

Changing Message Log Size and
Location 408
Filtering 409
Merging Message and Trace Logs 408
Searching 409
Sorting Message and Trace Logs 409
Viewing Message and Trace Logs 408

log viewer utility 408
log viewer, icon 38
logical database file 254
logical record length (LRECL) 211, 336
long file names 195
LWAIT 648, 668

M
macro

convert 39
Express Logon Feature 98

Macro
creating 94
Express Logon Feature 96
functions 90
playing 96
recording 96
setup 93

autostart 95
statements 94
using 93

maintenance installation
modify 151
remove 151
repair 151
repair using command-line
parameters 156

member 254
memory allocation 515
Menu bar

setup 86
message

merging 408
sorting 409
viewing 408

message logger device driver 408
messages

alerts 373
OIA 372
system fault 372

Messages 127
OIA 128
security 127
system error 128

Microsoft Systems Management Server
(SMS), remote installation 152
Migrating from EHLLAPI

Events 744

Execution/Language Interface 742
Features 742
Presentation Space Models 744
PS Connect/Disconnect,
Multithreading 745
SendKey Interface 744
Session IDs 743

migration
general 135
procedure 141

migration utility, icon 38
mnemonic 1156
mnemonics

ASCII 526
for Send Key 525
keyboard, tables 636
shift key 526

mouse
file 100
setup 100

Multiple Sessions
batch program 115

Multithreading 518
MVS/TSO

receive 230
send 225

N
no-conversion files 329
NOATTRB 646
NOBLANK 650
NOEAB 649
NOQUIET 646
NORESET 648
notices 496
NOXLATE 650
NULLATTRB 646
numeric only fields 634
NWAIT 648, 668

O
objects, automation

autECLConnList 987
autECLConnMgr 994
autECLFieldList 1000
autECLOIA 1011
autECLPageSettings 1088
autECLPrinterSettings 1088
autECLPS 1029
autECLScreenDesc 1069
autECLScreenReco 1077
autECLSession 1083
autECLWinMetrics 1096
autECLXfer 1112
autSystem 1124
description 984

objects, C++
description 745
ECLBase 749
ECLCommNotify 785
ECLConnection 755
ECLConnList 769
ECLConnMgr 777
ECLErr 790
ECLField 793
ECLFieldList 810
ECLKeyNotify 818
ECLListener 823
ECLOIA 824
ECLOIANotify 837
ECLPS 840
ECLPSEvent 885

1274

ECLPSListener 890
ECLPSNotify 893
ECLRecoNotify 896
ECLScreenDesc 899
ECLScreenReco 908
ECLSession 914
ECLStartNotify 922
ECLXfer 950

OIA 555, 668
online emulator session 103
online help 19, 159, 371
operating systems, multi-boot 135
Operator Information Area

See “OIA.” 555
operator services functions

Pause (18) 600
Query Host Update (24) 611
Query Session Status (22) 612
Query Sessions (10) 614
Query System (20) 616
Reset System (21) 628
Send Key (3) 634
Set Session Parameters (9) 643
Start Host Notification (23) 657
Stop Host Notification (25) 665
Wait (4) 667

options 652

P
packet size 214
Page Setup 76, 169
parameters

call 536
partitioned data set 213
Paste

options
Paste 78
Tab character processing 78
Wrap 78

Paste Clipboard to Presentation Space
(36) 578
path, default

Receive File 626
Send File 634

Pause (18) 532, 600, 666
PC code page 213, 338, 363
PC/3270 Sessions, Considerations for the
Use of

File Transfer Function 195
Graphic Functions 199
Support for Long File Names 195

PCFDF entries 298
PCFL entries 300
PCFO entry 298
PCFT entries 298
PCSAPI

general 690
how to use 690
pcsConnectSession 691
pcsDisconnectSession 692
pcsGetPageSettings 700
pcsGetPrinterSettings 708
pcsQueryConnectionInfo 692
pcsQueryEmulatorStatus 694
pcsQuerySessionList 694
pcsQueryWorkstationProfile 696
pcsRestorePageDefaults 703
pcsSetLinkTimeout 697
pcsSetPageSettings 704
pcsSetPrinterSettings 713
pcsStartSession 698

pcsStopSession 699
pcsDisconnectSession 692
PCSERR999 error messages 245
PCSPTC program 410, 418
pcsQueryConnectionInfo 692
pcsQueryEmulatorStatus 694
pcsQuerySessionList 694
pcsQueryWorkstationProfile 696
pcsStartSession 698
pcsStopSession 699
PCSWS.EXE

options 60
PDF 178
PDT files 178, 179

using 75
PDT mode 245
physical database file 254
plotter 203
pop-up keypad 102

(poppad) file 102
setup 101

poppad color 102
Post Intercept Status (52) 536, 601, 660
Preferences
 119
prerequisite calls, general 536
presentation services functions

Connect Presentation Space (1) 546
Copy Field to String (34) 551
Copy OIA (13) 555
Copy Presentation Space (5) 564
Copy Presentation Space to String
(8) 569
Copy String to Field (33) 573
Copy String to Presentation Space
(15) 575
Disconnect Presentation Space (2) 581
Find Field Length (32) 585
Find Field Position (31) 587
Get Request Completion (125) 593
Lock Presentation space API (60) 596
Query Additional Field Attribute (45) 603
Query Cursor Location (7) 607
Query Field Attribute (14) 608
Search Field (30) 629
Search Presentation Space (6) 631
Set Cursor (40) 642

presentation space
character table 557
cursor movement 532
Enhanced 32-bit interface 518
field-formatted 551, 552, 573, 585, 587,
629, 629
host-connected 519
how specified 519
identifier

blank specifier 521
function 519
how processed 520
letter specifier 521
null specifier 521
processing for functions not requiring
connect 520
processing for functions requiring
connect 520

OIA 555
types 519

presentation space names
declaring 519
maximum number of 519
valid names 519

presentation spaces 518
print buffer size 202
Print Collection 73
Print screen 72
Print Screen Collection

Print Collection on Exit 73, 176
Purge Collection 73, 176

Print Session Setup 69
printable area 245
printer association 68
printer color mixing 412
printer control codes 450
printer data stream support

3270 413
Printer definition

file 75
table 75

printer definition file 178
printer definition files

examples 424
field names 436
symbols 444

printer definition table 178
3270

data stream support 413
delimiting print jobs 414
overview 410
PDF statements 410
printer color mixing 412
SCS TAB setting 412
structured fields 415

PC400
example files 424
PDF file format 418
transparent print capability 423
using PDF file 418

printer function table migration utility 458
printer setup 168
printing 68

3270 session screen 76
APL Font Support 76
code page 181
Collect Screen

Print Collection on Exit 176
Purge Collection 176

display sessions 175
Host Print Transform 75

Image Print Transform 76
multiple print screen 176
Page Setup 76
Page Setup parameters 169
PDT files 75
PDT Files 178
Print Screen Collection

Print Collection on Exit 176
Purge Collection 176

Printer session 75, 76
printer sessions 178
PrinterFontCodePage parameter 181
printing to disk 181
Scalable Font 76
setup 168
translation table 181
Truetype Font 76
Windows printer driver 74
ZipPrint 40, 76

CMS file 76
Printing 168

Collect Screen
Print Collection on Exit 73
Purge Collection 73

1275

description 72
multiple print screen 73
Print Collection 73
Print Screen Collection

Print Collection on Exit 73
Purge Collection 73

printing to disk 181
problem analysis

Information Bundler 166, 378
log viewer 377
trace facility 377

programmed symbol sets, enabling 201
programmed symbols 200
PSERVIC 196
PSID handling

functions not requiring connect 520
functions requiring connect 520

Q
q option 61
Query Additional Field Attribute (45) 603,
603
Query Close Intercept (42) 604
Query Communication Event (81) 606
Query Communications Buffer Size
(122) 605
Query Cursor Location (7) 607
Query Field Attribute (14) 608, 608
Query Host Update (24) 601, 611, 657, 666
Query Reply Data Structures Supported by
EHLLAPI

Architecture Query Reply 729
general 721
IBM Auxiliary Device Query Reply

Direct Access Self-Defining
Parameter 726
general 725
PCLK Protocol Controls Self-Defining
Parameter 727

Product-Defined Query Reply
Direct Access Self-Defining
Parameter 728, 730
general 727
Optional Parameters 727

The DDM Query Reply
Base DDM Query Reply Formats 723
DDM Application Name Self-Defining
Parameter 722
general 722
PCLK protocol controls Self-Defining
Parameter 723

Query Session Status (22) 612
Query Sessions (10) 614
Query System (20) 616
Query Window Coordinates (103) 618
QUIET 646

R
Read Structured Fields (126) 619
RECEIVE command 217
Receive File (91)

default path for target file 626
general 533, 624, 625, 648

RECEIVE.EXE location 625
receiving data from the host 117
record format 211, 254

record length limit 305
record size

record length limit 305
related publications 160
Release (12) 533, 626, 627
releasing insert mode 194

remote installation
using Launchpad 153
using SMS 152
using Tivoli 152

request, transfer 253
Reserve (11) 533, 626, 627
reserved word 284
Reset System (21) 627, 627, 628, 643
return (output) parameters, general 537
run from source

installation image 143
network server 151

S
s option 61
sample program, a simple EHLLAPI 528
sample programs 511
saving

keyboard layout 191
saving a transfer request 262
Script

creating 95
functions 90
playing 96
recording 96
setup 93
using 93

scroll bar 194, 244
scroll-lock key 194
Search Field (30) 629, 668
search functions 531

Search Field (30) 629
Search Presentation Space (6) 631

Search Presentation Space (6) 532, 631,
668
security

configuring
client 397

configuring SSL 397
problem determination 400
TLS 401
using SSL 397

SEND command 217
Send File (90)

default path for target file 634
general 533, 632, 648
SEND.EXE location 633

Send Key (3) 526, 593, 634, 660, 668
sending data to the host 117
sending keystrokes 532

mnemonics 525
Send Key (3) 634

Sendkeys mnemonic keywords 1156
service 616
session keyboard 525
Session Manager 37, 45, 50

options 51
session manager online

pcsfm 53
Session Manager Online 38
sessions 103

automatically starting 64
configuring 45, 45
exiting 64
icons 50
icons for 45
IDs for 62
managing 102
multiple 60
querying 391

start or configure sessions online,
icon 38
start or configure sessions, icon 37
starting 50, 59, 389
starting specific session ID 62
stopping 64, 390
tool bar
 86

menu bar 86
status bar 86

using 66
window 50
window appearance 85

Set Cursor (40) 642
Set Session Parameters (9)

general 635, 643
List of affected functions 643
string specification 645
Valid Input 645, 652

setting up
the mouse 101
the pop-up keypad 102

setup.exe 153
shift key mnemonics 526
show status window 357
silent installation

general 143
initialization file processing 149
using command-line parameters 154

size of presentation spaces 519
source code syntax 530
source file

transferring data to 249
specifying strings 576, 578, 579
SRCHALL 646
SRCHBKWD 646
SRCHFROM 646
SRCHFRWD 646
SSL 397
stack size 510
Start Close Intercept (41) 653
Start Communication Notification (80) 655
Start Host Notification (23) 600, 611, 646,
657, 666
Start Keystroke Intercept (50) 660
Start Playing Macro (110) 663
starting

configuration setup 45
Status bar

setup 86
Stop Close Intercept (43) 664
Stop Communication Notification (82) 665
Stop Host Notification (25) 665
Stop Keystroke Intercept (53) 666
Stop Keystroke Intercept (53), you can call
the 536
stopping

macro playing 97
STREOT 645
string interception, Get Key (51) 590
string specification

session options 645
STRLEN 645
System i5

5250 sessions through one link 486
configuration examples 485
device description 488
system mode description 487

system policy support
execution policy 393
file transfer 394

1276

installation policy 394
view policy 395

T
templates

file transfer 208, 334
terminal services 402
test

combination 278
logical AND and logical OR 278

TextPlane 1159
TIMEOUT 647
TLS 401
Tool bar

setup 86, 86
Tool Bar 386
trace

merging 408
sorting 409
viewing 408

trace facility 377
trace facility, icon 38
trademarks 130, 368, 735
Transfer

files 83
ASCII host data transfer 85

transfer function 251
transfer options 212, 337

data transfer 337
transfer request

definition 253
transfer requests for receiving
(example) 285
transferring data to the host 248
Trim

options 80
Trim print 72
TWAIT 648, 668
types of

hotspots 91
sessions 40

types of presentation spaces 518

U
uninstallation

using command-line parameters 155
using maintenance installation 151

using API header files 510
using bitmaps for drawing 202
Utilities

32-Bit ODBC Administrator 114
Convert Macro 116
Data Transfer 116
Multiple Sessions

batch program 115
overview 113
Preferences
 119
ZipPrint 115

V
v option 61
vector graphics 200
View menu

Hide Session 102
Jump 102
Show Session 102

VM disk 213
VT Emulation 348

Configuring 342
Configuring Links for VT over
Telnet 347

Link Parameters 347
Optional Parameters 344
Session Parameters 343

Using a VT Session
Compose Key 348
OIA Line Display Messages 354
Transparent Mode 353

W
Wait (4) 532, 635, 667
window

setup 86
window services functions

Change PS Window Name (106) 541
Change Switch List LT Name (105) 542
Lock Window Services API (61) 598

Window Status (104) 668
Windows printer driver 74
WinHLLAPI Extension Functions

Asynchronous Functions
general 678
WinHLLAPIAsync 678
WinHLLAPICancelAsyncRequest 686

Blocking Routines
general 688
WinHLLAPICancelBlockingCall 690
WinHLLAPIIsBlocking 688
WinHLLAPISetBlockingHook 688
WinHLLAPIUnhookBlockingHook 689

general 686
Initialization/Termination Functions

general 686
WinHLLAPI Cleanup 687
WinHLLAPI Startup 687

Summary 678
workstation
profile
 48
Write Structured Fields (127) 673
WTS 402

X
XLATE 650

Z
Z and I Emulator for Windows

connections 40
functions 374
icons 37
library 19, 373
problem analysis

log viewer 377
trace facility 377

program folder 37
sessions

Client/server 40
Display 40
Printer 40

ZipPrint 40, 115
3270 session screen 76
CMS file 76
PROFS note, calendar, document
printing 76
XEDIT workspace 76

zSeries emulator 41

1277

	HCL Z and I Emulator for Windows (ENGLISH)
	Contents
	Chapter 1. Release Notes
	README
	HCL Z and I Emulator for Windows Version 3.0 Readme

	More information
	Known Issues in HCL Z and I Emulator for Windows
	Frequently Asked Questions in ZIEWin (FAQs)

	Chapter 2. Product Documentation
	Licensing
	HCL ZIE License Manager

	Quick Beginnings
	About This Book
	What's in the Package
	Where to Find More Information
	Information Center
	Online Help
	Z and I Emulator for Windows Library
	Contacting HCL

	Managed ZIEWIN and Interoperablity
	Interoperability between HCL Z and I Emulator for Windows and HCL Z and I Emulator for Web Clients

	Interoperability between HCL Z and I Emulator for Windows and HCL Z and I Emulator for Web Clients
	How to setup Managed HCL Z and I Emulator for Windows (ZIEWIN)

	Introduction
	Welcome to Z and I Emulator for Windows
	What's New in Z and I Emulator for Windows
	Z and I Emulator for Windows Program Icons
	Administrative and Problem Determination (PD) Aids
	Utilities
	Note

	Z and I Emulator for Windows Sessions
	Z and I Emulator for Windows Connections
	zSeries Emulator Connections
	iSeries Emulator Connections
	ASCII Emulator Connections (SBCS only)

	Planning to Install Z and I Emulator for Windows
	Workstation Hardware
	Workstation Memory Requirements
	Host Requirements

	Application Data
	Application Data Locations

	ZIEWin Trial Version

	Using Z and I Emulator for Windows
	Configuring Sessions
	LDAP
	Creating a Configuration
	Creating an FTP configuration
	Environment variables in workstation profile

	Saving Configuration Information
	Saving a Workstation Profile
	Saving an FTP Client Configuration

	Changing Configuration Information
	Changing a Workstation Profile
	Tip

	Starting and Stopping Emulator Sessions
	Session Manager
	Session Manager Options
	Session Manager Menu
	Right-Click Menu (Contextual)

	Session Manager Online
	Installer Enhancements

	Starting Sessions
	Starting Multiple Sessions
	Command line options for PCSWS.EXE
	Creating a Batch File
	Saving Multiple Session Views

	Starting a Batch File
	Editing an Existing Batch File
	Starting Multiple Sessions without a Batch File

	Automatically Starting Sessions
	Stopping Sessions
	Option to suppress confirmation message for pcomstop
	Stopping an emulator session without access to the tool bar

	Using Emulator Sessions
	Accessibility
	Sounds
	Screen Reader Assist
	Expanded OIA
	Popup Keypad
	Quick Connect

	Power Management
	Connected State
	Non-Connected State
	Critical Sleep

	Printer Session Association
	Print Session Setup (3270 and 5250)
	Printing
	Print Screen Collection functions
	Collecting Print Jobs (5250 Printer Session)
	Using the Windows Printer Driver
	Using Printer Definition Table (PDT) Files
	Using Host Print Transform (5250 only)
	Image Print Transform

	Page Setup
	Scalable (Truetype) APL Font Support on Printers

	ZipPrint (3270 Only)
	Preparing to Use ZipPrint
	Starting ZipPrint
	Using ZipPrint

	Editing
	Edit Options
	Paste Options
	Cut/Copy Options
	Trim Options

	Editing by Linking to Windows Application Programs
	Confirming the DDE/EHLLAPI Settings
	Using Copy Link and Paste Link

	Copying Table Data to a Spreadsheet
	Copying Marked Data without Dividing It into Cells
	Copying Lines Containing Only Operational Signs
	Copying Data in Cells As Text Data

	Transferring Files
	Note:
	ASCII Host Data Transfer

	Setting Up the Appearance of a Session Window
	Sounds
	Tool Bar Setup
	Showing or Hiding the Menu Bar, Status Bar, or Tool Bar
	Window Setup
	Customizing the Color Mapping using a configuration File
	How to Enable/Disable the creation of CMP
	Default Color Settings
	Migration of Color mapping content

	Setting Up and Using the Assist Functions
	Keyboard, Macro, and Script Functions
	Scripting Functions
	Macro Functions
	Key Functions

	Hotspot Setup
	Using Hotspots

	Keyboard Setup
	Keyboard File
	Customizing the VT Emulator Keyboard

	Macro/Script Setup and Use
	Using a Macro or Script
	Creating a Macro
	Macro Statements
	Macro Loop Considerations
	Creating a Script
	Configuring a Macro or Script to Autostart
	Auto-start macro support
	Configuring a Java Applet to Autostart
	Recording Macros or Scripts
	Playing Macros and Scripts
	ThisMacroName support

	Express Logon Feature
	Recording an Express Logon Macro
	Verifying an Express Logon Feature Macro
	Updating an Existing Macro for Express Logon

	Mouse Setup
	Mouse File

	Mouse Wheel Functionality
	Pop-Up Keypad Setup
	Pop-Up Keypad File
	Using the Pop-Up Keypad

	Tab Setup (VT only)
	Web Browser Setup

	Managing Emulator Sessions
	Getting Help

	Online Emulator Session
	Detect and Repair

	Managed ZIEWIN and Interoperablity
	Interoperability between HCL Z and I Emulator for Windows and HCL Z and I Emulator for Web Clients

	Utilities
	32-Bit ODBC Administrator
	Multiple Sessions
	ZipPrint
	File Transfer Considerations

	Convert Macro
	Data Transfer
	Requirements

	iSeries Connection Configuration Utility
	Extension List
	Cache Size

	Preferences
	Basic
	Emulator Profile File Location
	Macro/Script Location
	User Interface Language

	Advanced
	Maximum number of emulator sessions
	Pass Through Host Certificate Validation
	Configuration of License Manager settings
	ZIE Server Details

	Standby/Hibernate

	Z and I Emulator for Windows FTP client
	Command Line FTP

	Messages
	Security-Related Messages
	Functions Restricted by System Policies
	System Error Messages
	OIA Messages

	Notices
	Trademarks

	Installation Guide
	Introduction
	Information Center

	Planning to Install Z and I Emulator for Windows
	Downloading HCL Z and I Emulator for Windows
	Considerations Before Installing
	Disk Space Requirements
	Migration Considerations
	Multi-Boot Environment Installation
	Coexistence support
	Windows x64 Platform Support

	Installing Z and I Emulator for Windows
	Microsoft® Windows Installer
	Upgrading Z and I Emulator for Windows
	Typical Installation
	Custom Installation
	Feature Selection
	Feature Installation Options

	Silent Installation
	Auto-Upgrade for Standard Users
	Pre-requisite
	Upgrade using ZIEWIN Refresh Pack Update Installer
	Steps to Install Manually
	Steps to Install Using the Start or Configure Sessions Online Utility
	Steps to Install
	Steps to Install Using Managed ZIEWIN
	Configuration Involved

	Installation of HCL ZIE License Manager

	Installing Z and I Emulator for Windows Using an Initialization (response) File
	Silent Installation Using Initialization File Processing

	Administrative Installation
	Installing from Network Server
	Installing to Run from Source, Where Source Medium Is a Network Server

	Maintenance Installation of Z and I Emulator for Windows
	Remote Installation of Z and I Emulator for Windows
	Remote Installation Using SMS
	Remote Installation Using Active Directory Group Policy

	InstallShield Command-Line Parameters
	Parameter Descriptions

	Abbreviations Used in This Book
	Notices
	Trademarks

	Emulator User's Reference
	About This Book
	Who Should Read This Book
	How to Use This Book
	Command Syntax Symbols

	Where to Find More Information
	Information Center
	Online Help
	Z and I Emulator for Windows Library
	Related Publications
	Contacting HCL
	Support Options

	General Information
	Z and I Emulator for Windows Highlights
	Problem Analysis
	Log Viewer
	Trace Facility
	Enhanced trace buffers

	Information Bundler

	Considerations for Using Z and I Emulator for Windows Sessions
	Usage Notes for Sessions in OLE Documents
	Changing Fonts
	Initial Selection of Font
	WordPad
	WordPro
	Updating Linked Files

	Inactivity Timeout for Communication Links
	Environment Considerations
	Virtual Memory
	Emulator Session Icons
	Disabling CDRA Tables

	Printing
	Setting Up the Printer
	Defining a Printer for a Session

	Page Setup Parameters
	Text Parameters
	Text Options Parameters
	Page Header and Footer Parameters
	Graphics Parameters (3270)
	Orientation Parameters (5250)

	Display Sessions (3270 and 5250)
	Print Screen Collection
	Collect Screens
	Print and Purge Collection
	Print and Keep Collection
	Process Collection
	Purge Collection
	Print Collection on Exit
	Replace FF with LF in GDI Print Mode

	Printer Sessions (3270 and 5250)
	PDT Files (3270 and 5250)
	PFT Migration
	Using PDT Files
	Windows print driver for VT host printing

	Collecting Print Jobs (5250 Printer Session)
	Printing to Disk
	Workstation Profile Parameter for Code Page

	Key Functions and Keyboard Setup
	Default Key Function Assignments
	Setting the 3270 Keyboard Layout Default
	Default Key Functions for a 3270 Layout
	Setting the 5250 Keyboard Layout Default
	Default Key Functions for a 5250 Layout
	Default Key Functions for the Combined Package
	Setting the VT Keyboard Layout Default
	Default Key Functions for the VT Emulator Layout

	Keyboard Setup (3270 and 5250)
	Keyboard File
	Win32 Cut, Copy, and Paste Hotkeys

	Using Z and I Emulator for Windows 3270
	Considerations for Using PC/3270 Sessions
	TN3270E Contention Resolution
	Host-Session Window Operations
	Cursor Color
	Releasing Insert Mode with Attention Keys
	Scroll Bar
	Scroll-Lock Key
	Customizing a Display Translation Table

	Support for Long File Names
	File Transfer Function
	Host File Name and Reserved Words
	Changing the Packet Size When Import/Export Is Idle
	Wait Option for Multiple File Transfer
	NOTRUNC and BLANK Options (SBCS Only)
	Setting the VTAM® PSERVIC Statement

	Entry assist feature in 3270 display session
	Enabling DOC mode
	Word wrap
	Start Column and End Column
	New Line key
	Tab stops
	Nulls in an unprotected field straddling a margin
	Enable audible End of Line signal
	End of Line signal column
	Pasting in DOC mode

	Graphic Functions
	Graphics Protocols
	Vector Graphics
	Advanced Protocol
	Native Protocol
	Programmed Symbols
	Enabling Programmed Symbol Sets
	How to Handle Errors Caused by Insufficient Memory

	Drawing-Buffer Size
	Using Bitmaps for Drawing
	Print Buffer Size
	Edit-Copy Buffer
	Printer Fonts
	Plotter
	Hole in Screen Caused by Clearing a Graphic Character
	Miscellaneous Restrictions for Graphic Functions
	Considerations for Graphics Functions
	Native-Graphics Datastream
	Printout to LPT1

	Print Processing

	Transferring Files
	Note:
	Host Requirements
	Sending Files to the Host System
	Receiving Files from the Host System
	Using List Files
	Creating List Files
	Editing Lists

	Managing Templates
	Adding Templates
	Replacing and Deleting Templates
	Testing Templates

	Defining Transfer Types
	Items to Be Specified
	File Options
	Record Format
	Logical Record Length (LRECL)
	TSO Allocation Parameter (MVS/TSO)
	Additional Options

	Setting General Transfer Options
	Host Type
	Host Command
	Default PC Directory
	Default Partitioned Data Set (MVS/TSO Only)
	Default VM Disk (VM Only)
	PC Code Page
	Packet Size
	File-Transfer Timeout
	Extension for List-Files
	Clear Session Before Transfer
	Show Status Window

	Setting Up the Translation Table
	Changing the Translation Table
	Customizing the Translation Table

	Import/Export (3270 CICS Only)
	File Transfer Commands for PC/3270
	File Transfer Methods
	Requirements and Restrictions
	Sending and Receiving Files from the DOS Command Prompt
	Using the VM/CMS SEND Command
	Command Syntax for Sending Files to VM/CMS
	Using the VM/CMS RECEIVE Command
	Command Syntax for Receiving Files from VM/CMS
	Using the MVS/TSO SEND Command
	Command Syntax for Sending Files to MVS/TSO
	Using the MVS/TSO RECEIVE Command
	Command Syntax for Receiving Files from MVS/TSO
	Using the CICS SEND Command
	Using CICS SEND with the Z and I Emulator for Windows GUI
	Using CICS SEND with the Z and I Emulator for Windows Command Line
	CICS SEND Command Description and Options
	Command Syntax for Sending Files to CICS
	Using the CICS RECEIVE Command
	Using CICS RECEIVE with the Z and I Emulator for Windows GUI
	Using CICS RECEIVE with the Z and I Emulator for Windows Command Line
	CICS RECEIVE Description and Options
	Command Syntax for Receiving Files from CICS

	Configuring File-Transfer Code Translation

	Using Z and I Emulator for Windows 5250
	Considerations for Using PC400 Sessions
	Scroll Bar
	Print Processing
	Printing Bar Codes
	CPI/LPI of Device Fonts
	PCSERR999 Error Messages
	Disconnect in Testrequest to iSeries, eServer i5, or System i5 on Telnet 5250
	iSeries, eServer i5, or System i5 Host Print Problem
	Printable Area
	PDT Mode
	Setting the Code Page

	Data Transfer for PC400
	Data Transfer Function Overview
	Long Password Support
	Transferring Files from an iSeries, eServer i5, or System i5 System to a Workstation
	Transferring Files from a Workstation to an iSeries, eServer i5, or System i5
	Transferring Data to Existing Members in an Existing File
	Transferring Data to New Members in an Existing File
	Transferring Data to New Members in a New File
	Transferring Data to an iSeries, eServer i5, or System i5 Data File and Source File

	Preparing for Data Transfer
	Required Software Products
	Transfer Function
	Data Transfer Program
	Data Concepts of the iSeries, eServer i5, or System i5 and Your Workstation
	Workstation Files
	Distributed Data Management (DDM) Files
	iSeries, eServer i5, or System i5 Files

	Creating a Workstation-to-iSeries Transfer Request
	Items to Be Specified
	FROM
	TO
	Advanced Options
	Use of File Description File
	File Description File Name
	PC File Type
	iSeries Object

	Saving, Opening, Changing, and Executing a Transfer Request
	Saving a Transfer Request
	Opening and Changing a Saved Transfer Request
	Performing a Transfer Request
	Clicking the Icon with Which the Transfer Request Has Been Registered
	Using the PC→iSeries Transfer Window
	Conversion Errors That Can Occur during Transfer

	Creating an iSeries-to-Workstation Transfer Request
	Receiving an Entire iSeries, eServer i5, or System i5 File
	Receiving Part of an iSeries, eServer i5, or System i5 File
	Receiving Data Combined from Several iSeries, eServer i5, or System i5 Files
	Receiving a Summary of Record Groups
	Items to Be Specified
	FROM
	System name
	Library/File (Member)
	Receiving a Summary of Record Groups
	Advanced Options
	JOIN BY
	GROUP BY
	SELECT
	WHERE
	HAVING
	ORDER BY
	Return Record at Missing Field Value
	TO
	Output device

	Saving, Opening, Changing, and Executing a Transfer Request
	Saving a Transfer Request
	Opening and Changing a Saved Transfer Request
	Executing a Transfer Request
	Selecting the Icon with Which the Transfer Request Has Been Registered
	Using the iSeries→PC Transfer Window
	Status during Transfer

	Limited Usage of File Names and Field Names
	Examples of Transfer Requests for Receiving
	Receiving Part of an iSeries, eServer i5, or System i5 File
	Receiving Records Joined from Several iSeries, eServer i5, or System i5 Files
	Receiving Records Using File Qualifiers
	Receiving with Field Missing Records Joined
	Receiving with Records in a Same File Joined
	Specifying Records To Be Included in a Group
	Specifying Summary Records To Be Transferred

	Functions Available from the Pull-Down Menu
	File
	Setup (Only for iSeries→PC Transfer)
	User Options
	Sort Sequence
	Sort Sequence Table Name
	Translation Table
	Signon Options

	File-Description Files
	Creating a File-Description File
	File-Description File Format
	PCFDF Entries
	PCFT Entries
	PCFO Entry
	PCFL Entries
	Comment Entries

	File-Description File Example

	Data Conversions
	Record Size
	Data Types
	Date, Time, and Time-Stamp Data Types
	BASIC Numeric Data
	Double-Precision Data
	Integer Data
	Single-Precision Data
	Binary Data
	Character Data for SBCS
	Hexadecimal Data
	Packed Decimal Data
	Zoned Decimal Data
	ASCII Numeric Data

	Personal Computer File Types
	ASCII Text Files
	Transferring Data to ASCII Text Files
	Transferring Data from ASCII Text Files
	Errors When Transferring Data from ASCII Text Files
	BASIC Random Files
	Transferring Data to BASIC Random Files
	Transferring Data from BASIC Random Files
	Errors When Transferring Data from BASIC Random Files
	BASIC Sequential Files
	Transferring Data to BASIC Sequential Files
	Transferring Data from BASIC Sequential Files
	Errors When Transferring Data from BASIC Sequential Files
	Data Interchange Format Files
	Transferring Data to DIF Files
	Transferring Data from DIF Files
	Errors When Transferring Data from DIF Files
	BIFF Files
	Transferring Data to BIFF Files
	Transferring Data from BIFF Files
	Errors When Transferring Data from BIFF Files
	DOS Random Files
	Transferring Data to DOS Random Files
	Transferring Data from DOS Random Files
	Errors When Transferring Data from DOS Random Files
	DOS Random Type-2 Files
	Transferring Data to DOS Random Type-2 Files
	Transferring Data from DOS Random Type-2 Files
	Errors When Transferring Data from DOS Random Type-2 Files
	No-Conversion Files
	Transferring Data to No-Conversion Files
	Transferring Data from No-Conversion Files
	Errors When Transferring Data from No-Conversion Files

	iSeries, eServer i5, or System i5 System-to-PC Performance Considerations

	Transferring Files
	Note:
	Host Requirements
	Sending Files to the Host System
	Receiving Files from the Host System
	Using List Files
	Creating List Files
	Editing Lists

	Managing Templates
	Adding Templates
	Replacing and Deleting Templates
	Testing Templates

	Defining Transfer Types
	Items to Be Specified
	File Options
	Logical Record Length (LRECL)
	Additional Options

	Setting General Transfer Options
	Data Transfer
	Host Command
	Default PC Directory
	Default Library
	PC Code Page
	File-Transfer Timeout
	Extension for List-Files
	Show Status Window

	Setting Up the Translation Table
	Changing the Translation Table
	Customizing the Translation Table

	File Transfer for PC400
	PC File Transfer with the CRLF Option
	Transfer to a Physical Source File
	Transfer to a Physical File
	Using the DSPMBRLST Command
	Restrictions for Transferred File Size

	Using Z and I Emulator for Windows VT
	VT Emulation
	Configuring a VT Session
	Customizing the VT over Telnet Attachment

	Session Parameters
	Optional Parameters
	Advanced ASCII Host

	Link Parameters
	Configuring Links for VT over Telnet

	Using A VT Session
	Compose Key
	Transparent Mode
	OIA Line Display Messages
	History Logging
	Enhanced History Logging

	ASCII Host File Transfer
	Setting Preferences
	Using XMODEM and YMODEM
	Choosing a Protocol
	XMODEM and XMODEM1K
	YMODEM and YMODEMG

	File-Transfer Timeout
	Extension for List-Files
	Show Status Window
	Defining Transfer Types
	File Transfer Templates
	Defining Templates
	Automatic Generation of File Names
	Example of ASCII Protocol Template

	Working with Lists of Files
	File Name Extension for List Files
	Remove From List
	Open List File
	Save List File
	Changing a List of Files
	Change the Personal Computer or Host File Name
	Delete File Names From List
	Add More File Names To List

	Receiving Files from an ASCII Host
	Selecting a Workstation Directory
	Selecting Files to Receive

	Sending Files to an ASCII Host
	Selecting Files to Send
	Basic Methods
	Select from a Send/Receive List
	Advanced Method

	Changing the Host File Name or the Transfer Type
	Saving a List of Files to Send
	Sending a List of Files

	PC Code Page

	Troubleshooting
	Troubleshooting tips
	1. Connecting to z/OS console via Z and I Emulator for Windows 62x160 screen size results in error IEE938I
	2. Z and I Emulator for Windows TCP/IP Data Transfer fails with terminated transfer function
	3. Z and I Emulator for Windows Telnet connection timeout with error 657
	4. PCSXFER041 timeout during Z and I Emulator for Windows file transfer TSO session

	Notices
	Trademarks

	Admin Guide

	Contents
	About This Book
	Who Should Read This Book
	How to Use This Book
	Command Syntax Symbols

	Where to Find More Information
	Information Center
	Online Help
	Messages and Alerts
	Messages That Appear in Pop-Up Windows
	System-Fault Messages
	Security-Related Messages
	System-Policy-Related Messages

	OIA Messages
	Alerts

	Z and I Emulator for Windows Library

	General Information
	Z and I Emulator for Windows Highlights
	Problem Analysis
	Log Viewer
	Trace Facility
	Information Bundler

	Advanced Configuration, Management, and Operations
	Advanced Configuration
	Configuration Files
	Initial Configuration Definitions
	Configuration File and Emulator Profile Directories

	Using Template and Update Files
	Key Fields
	Adding Keywords to a Template File
	Modifying a Keyword in a Template File
	Deleting a Keyword from a Template File

	Automatic Device Name Generation (5250 Only)
	Substitution Characters
	Client Naming Function
	Device Name Collision Processing

	Commands for Emulator Functions
	Configure OneDrive
	Start a Z and I Emulator for Windows Session
	Stop a Z and I Emulator for Windows Session
	Query Z and I Emulator for Windows Sessions

	System Policy Support
	Execution Policy
	Start Session
	Product Update
	Detect and Repair
	File Transfer

	Installation Policy
	View Policy

	Configuring and Using Security for Z and I Emulator for Windows
	Certificates
	Managing Certificates in the Microsoft Certificate Stores

	Configuring and Using Secure Sockets Layer
	Preparation for TLS Communication
	Client Configuration

	Establishing a Secure Session
	Configuring Z and I Emulator for Windows Session Security
	Problem Determination

	Using Transport Layer Security
	Negotiated Telnet Security

	Using Windows Terminal Services
	Session IDs
	Trace Facility

	Azure Virtual Desktop
	Express Logon
	Bypass Signon Using Password Substitute (5250)
	Kerberos Services Ticket Auto-Signon
	Certificate Express Logon
	Using Certificate Express Logon
	Preparing to Configure Certificate Express Logon
	Configuring Certificate Express Logon
	Recording the Macro
	Manual Configuration of a Certificate Express Logon Macro
	Limitations of the Logon Macro

	Problem Determination

	Log Viewer Functions
	Viewing Message and Trace Logs
	Changing Message Log Size and Location
	Merging Message and Trace Logs
	Sorting Message and Trace Logs
	Searching Z and I Emulator for Windows Logs
	Filtering Z and I Emulator for Windows Logs

	Building a Printer Definition Table (PDT)
	Building a Printer Definition Table (PDT) for PC/3270
	ASCII_PASSTHRU? and EBCDIC_PASSTHRU?
	Supplemental Explanation of PDF Statements for PC/3270
	SCS TAB Setting
	Printer Color Mixing
	Printer Session Data Stream Support
	3270 Data Stream

	Delimiting Print Jobs
	Structured Fields
	Begin/End of File Query Reply
	Begin/End of File Structured Fields
	Processing Begin or End of File Structured Fields
	Begin or End of File Structured Field Error Conditions
	Processing SCS Data Streams
	Processing 3270 Data Streams

	Building a Printer Definition Table (PDT) for PC400
	Using the Printer Definition Table (PDT) File
	Printer Definition File (PDF File) Format
	Macro Definitions
	Macro Name Examples

	Formatting Controls
	Session parameters
	Control Codes

	Printing More than One Screen on a Page
	Transparent Print Capability
	ASCII_PASSTHRU? Keyword Support
	EBCDIC_PASSTHRU? Keyword Support

	Printer Definition Tables
	Example Printer Definition Files
	IBM4019.PDF File Contents
	IBM5577.PDF File Contents

	Field Names of Printer Definition Files
	Symbols of Printer Definition Files
	Using Printer Control Codes
	Printer Control Code Format
	Parameter Definition of Printer Control Codes
	Supported Control Codes
	Programming Notes
	Restrictions and Notes for iSeries, eServer i5, or System i5 Commands and Printer Setup
	Printer Control Codes
	How to Determine PC400 Font
	Avoiding iSeries System Dump

	PFT Migration Utility
	Using the PFT Migration Utility
	Migration Considerations

	Details of Migration
	Migration from the Printer Function Table
	Definition of PAPER HANDLING Migration
	If the LANDSCAPE PAPER HANDLING controls are not defined
	If the LANDSCAPE PAPER HANDLING controls are defined

	Troubleshooting

	iSeries, eServer i5, or System i5 Configuration Examples
	iSeries Device Description
	5250 Sessions through One Link
	Tip

	System i5, iSeries, eServer i5, or System Mode Description
	iSeries, eServer i5, or System i5 Device Description for Asynchronous Attachment Example
	iSeries, eServer i5, or System i5 VT Asynchronous Attachment Example

	Alerts
	Notices
	Trademarks

	Index
	Emulator Programming
	About This Book
	Who Should Read This Book
	Where To Find More Information
	Notation

	Introduction to Emulator APIs
	Using API Header Files
	Critical Sections
	Stack Size
	Windows x64 Platform Support
	Sample Programs

	Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming
	EHLLAPI Overviews
	IBM Standard EHLLAPI
	WinHLLAPI
	WinHLLAPI and IBM® Standard EHLLAPI
	IBM Enhanced EHLLAPI and IBM Standard EHLLAPI

	Languages
	EHLLAPI Call Format
	Data Structures
	Memory Allocation
	EHLLAPI Return Codes
	Compiling and Linking
	Dynamic Link Method
	Multithreading

	Presentation Spaces
	IBM® Enhanced 32-Bit Interface Presentation Space IDs
	Types of Presentation Spaces
	Size of Presentation Spaces
	Presentation Space IDs
	Host-Connected Presentation Space
	Presentation Space ID Handling
	PSID Handling for Functions Requiring Connect
	PSID Handling for Functions Not Requiring Connect

	Sharing EHLLAPI Presentation Space between Processes
	SUPER_WRITE
	WRITE_SUPER
	WRITE_WRITE
	WRITE_READ
	WRITE_NONE
	READ_WRITE
	Locking Presentation Space

	Using mouse actions to select, copy, and paste text in the Presentation Space
	ASCII Mnemonics
	General
	Get Key (51) Function
	Send Key (3) Function

	Debugging
	A Simple EHLLAPI Sample Program
	Standard and Enhanced Interface Considerations
	Host Automation Scenarios
	Scenario 1. A Search Function
	Scenario 2. Sending Keystrokes
	Scenario 3. Distributed Processing
	Scenario 4. File Transfer
	Scenario 5. Automation
	Scenario 6. Keystroke Filtering
	Scenario 7. Keyboard Enhancement

	EHLLAPI Functions
	Page Layout Conventions
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Summary of EHLLAPI Functions
	Allocate Communications Buffer (123)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Cancel File Transfer (92)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Change PS Window Name (106)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Change Switch List LT Name (105)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect for Structured Fields (120)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect Presentation Space (1)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect Window Services (101)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Convert Position or Convert RowCol (99)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy Field to String (34)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy OIA (13)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Format of the Returned OIA Data String
	PC/3270 OIA Group Indicator Meanings and Its Image
	PC400 OIA Group Indicator Meanings and Its Image
	VT Host OIA Group Indicator Meanings and Its Image

	Copy Presentation Space (5)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy Presentation Space to String (8)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy String to Field (33)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy String to Presentation Space (15)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy Presentation Space to Clipboard (35)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Paste Clipboard to Presentation Space (36)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Disconnect from Structured Fields (121)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Disconnect Presentation Space (2)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Disconnect Window Service (102)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	EditKey Intercept
	Prerequisites

	Find Field Length (32)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Find Field Position (31)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Free Communications Buffer (124)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Get Key (51)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	16-Bit Interface
	32-Bit Interface
	Notes on Using This Function

	Get Request Completion (125)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Lock Presentation Space API (60)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Lock Window Services API (61)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Pause (18)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Post Intercept Status (52)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Additional Field Attribute (45)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Close Intercept (42)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Communications Buffer Size (122)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Communication Event (81)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Cursor Location (7)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Field Attribute (14)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Host Update (24)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Session Status (22)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Sessions (10)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query System (20)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Return Code
	Notes on Using This Function

	Query Window Coordinates (103)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Read Structured Fields (126)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Synchronous Requests
	Asynchronous Requests

	Receive File (91)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Release (12)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Reserve (11)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Reset System (21)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using this Function

	Search Field (30)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Search Presentation Space (6)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Send File (90)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Send Key (3)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Keyboard Mnemonics

	Set Cursor (40)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Set Session Parameters (9)
	Prerequisite Calls
	Call Parameters
	Session Options
	Return Parameters

	Start Close Intercept (41)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Communication Notification (80)
	Prerequisite Calls
	Call Parameters
	Data String
	Return Parameters
	Notes on using this Function

	Start Host Notification (23)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Keystroke Intercept (50)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Playing Macro (110)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Close Intercept (43)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Communication Notification (82)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Host Notification (25)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Keystroke Intercept (53)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Wait (4)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Window Status (104)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Write Structured Fields (127)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Synchronous Requests
	Asynchronous Requests
	Asynchronous Requests

	WinHLLAPI Extension Functions
	Summary of WinHLLAPI Functions
	WinHLLAPI Asynchronous Functions
	WinHLLAPIAsync
	Wait (4)
	Prerequisite Functions
	Call Parameters
	Return Codes
	Remarks

	Start Host Notification (23)
	Prerequisite Functions
	Call Parameters
	Return Parameters
	Return Codes
	Remarks

	Start Close Intercept (41)
	Prerequisite Functions
	Call Parameters
	Return Parameters
	Return Code
	Remarks

	Start Keystroke Intercept (50)
	Prerequisite Functions
	Call Parameters
	Return Code
	Remarks

	Send File (90)
	Prerequisite Functions
	Call Parameters
	Return Codes
	Remarks

	Receive File (91)
	Prerequisite Functions
	Call Parameters
	Return Codes
	Remarks

	WinHLLAPICancelAsyncRequest
	Syntax
	Parameters
	Returns

	Initialization and Termination Functions
	WinHLLAPI Startup
	Syntax
	Parameters
	Returns

	WinHLLAPI Cleanup
	Syntax
	Returns

	Blocking Routines
	WinHLLAPIIsBlocking
	Syntax
	Returns
	Remarks

	WinHLLAPISetBlockingHook
	Syntax
	Parameters
	Description
	Returns

	WinHLLAPIUnhookBlockingHook
	Syntax
	Returns

	WinHLLAPICancelBlockingCall
	Syntax
	Returns

	PCSAPI Functions
	How to Use PCSAPI
	Page Layout Conventions
	Function Type
	Parameter Type and Description
	Return Code

	pcsConnectSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsDisconnectSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsQueryConnectionInfo
	Function Type
	Parameter Type and Description
	Return Code
	ConnectionInfo
	Example

	pcsQueryEmulatorStatus
	Function Type
	Parameter Type and Description
	Return Code

	pcsQuerySessionList
	Function Type
	Parameter Type and Description
	Return Parameters
	Example

	pcsQueryWorkstationProfile
	Function Type
	Parameter Type and Description
	Return Code

	pcsSetLinkTimeout
	Function Prototype
	Parameter Type and Description
	Return Code

	pcsStartSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsStopSession
	Function Type
	Parameter Type and Description
	Return Code

	Page Setup Functions
	Restrictions
	pcsGetPageSettings
	Function Type
	Parameter Type and Description
	Return Code
	Example

	pcsRestorePageDefaults
	Function Type
	Parameter Type and Description
	Return Code
	Example

	pcsSetPageSettings
	Function Type
	Parameter Type and Description
	Return Code
	Example

	Printer Setup Functions
	Restrictions
	pcsGetPrinterSettings
	Function Type
	Parameter Type and Description
	Flags for the pErrorInfo member of the PRINTINFO structure
	Return Code
	Example

	pcsSetPrinterSettings
	Function Type
	Parameter Type and Description
	Flags for the pErrorInfo member of the PRINTINFO structure
	Return Code
	Example

	Troubleshooting for Emulator programming
	Partial EHLLAPI input on Z and I Emulator for Windows host screen
	HCL Z and I Emulator for Windows VBHLLAPI sample does not run in FDCC Windows Vista

	Query Reply Data Structures Supported by EHLLAPI
	The DDM Query Reply
	DDM Application Name Self-Defining Parameter
	PCLK Protocol Controls Self-Defining Parameter
	Base DDM Query Reply Formats

	The IBM Auxiliary Device Query Reply
	Optional Parameters
	Direct Access Self-Defining Parameter
	PCLK Protocol Controls Self-Defining Parameter

	The Product-Defined Query Reply
	Optional Parameters
	Direct Access Self-Defining Parameter

	The Document Interchange Architecture Query Reply

	Differences from Communication Manager/2 EHLLAPI
	Set Session Parameter (9)
	Set Options
	Return Parameters
	EAB Option

	Copy OIA (13)
	Copy String to PS (15)
	Storage Manager (17)
	Copy String to Field (33)
	Get Key (51)
	Window Status (104)
	Query Sessions (10)
	Connect for Structured Fields (120)
	Allocate Communications Buffer (123)
	ASCII Mnemonics
	Get Request Completion (125)

	Notices
	Trademarks

	Host Access Class Library
	About This Book
	Who Should Read This Book
	How to Use This Book
	Where to Find More Information

	Introduction
	C++ Objects
	Java Objects
	Automation Objects
	ECL Concepts
	Connections, Handles and Names
	Sessions
	ECL Container Objects
	ECL List Objects
	Events
	Error Handling
	Addressing (Rows, Columns, Positions)

	Migrating from EHLLAPI
	Execution/Language Interface
	Features
	Session IDs
	Presentation Space Models
	SendKey Interface
	Events
	PS Connect/Disconnect and Multithreading

	Host Access Class Library C++
	Building C++ ECL Programs
	Microsoft Visual C++
	Source Code Preparation
	Compiling
	Linking
	Executing

	ECLBase Class
	Derivation

	ECLBase Methods
	GetVersion
	Prototype
	Parameters
	Return Value
	Example

	ConvertHandle2ShortName
	Prototype
	Parameters
	Return Value
	Example

	ConvertShortName2Handle
	Prototype
	Parameters
	Return Value
	Example

	ConvertTypeToString
	Prototype
	Parameters
	Return Value
	Example

	ConvertPos
	Prototype
	Parameters
	Return Value
	Example

	ECLConnection Class
	Derivation

	ECLConnection Methods
	ECLConnection Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLConnection Destructor
	Prototype
	Parameters
	Return Value
	Example

	GetCodePage
	Prototype
	Parameters
	Return Value
	Example

	GetHandle
	Prototype
	Parameters
	Return Value
	Example

	GetConnType
	Prototype
	Parameters
	Return Value
	Example

	GetName
	Prototype
	Parameters
	Return Value
	Example

	GetEncryptionLevel
	Prototype
	Parameters
	Return Value
	Example

	IsStarted
	Prototype
	Parameters
	Return Value
	Example

	IsCommStarted
	Prototype
	Parameters
	Return Value
	Example

	IsAPIEnabled
	Prototype
	Parameters
	Return Value
	Example

	IsReady
	Prototype
	Parameters
	Return Value
	Example

	StartCommunication
	Prototype
	Parameters
	Return Value
	Example

	StopCommunication
	Prototype
	Parameters
	Return Value
	Example

	RegisterCommEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterCommEvent
	Prototype
	Parameters
	Return Value
	Example

	ECLConnList Class
	Derivation
	Usage Notes

	ECLConnList Methods
	ECLConnList Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLConnList Destructor
	Prototype
	Parameters
	Return Value
	Example

	GetFirstConnection
	Prototype
	Parameters
	Return Value
	Example

	GetNextConnection
	Prototype
	Parameters
	Return Value
	Example

	FindConnection
	Prototype
	Parameters
	Return Value
	Example

	GetCount
	Prototype
	Parameters
	Return Value
	Example

	Refresh
	Prototype
	Parameters
	Return Value
	Example

	ECLConnMgr Class
	Derivation

	ECLConnMgr Methods
	ECLConnMgr Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLConnMgr Deconstructor
	Prototype
	Parameters
	Return Value
	Example

	GetConnList
	Prototype
	Parameters
	Return Value
	Example

	StartConnection
	Prototype
	Parameters
	Return Value
	Usage Notes
	Example

	StopConnection
	Prototype
	Parameters
	Return Value
	Usage Notes
	Example

	RegisterStartEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterStartEvent
	Prototype
	Parameters
	Return Value
	Example

	ECLCommNotify Class
	Derivation
	Example

	ECLCommNotify Methods
	NotifyEvent
	Prototype
	Parameters
	Return Value

	NotifyError
	Prototype
	Parameters
	Return Value

	NotifyStop
	Prototype
	Parameters
	Return Value

	ECLErr Class
	Derivation

	ECLErr Methods
	GetMsgNumber
	Prototype
	Parameters
	Return Value
	Example

	GetReasonCode
	Prototype
	Parameters
	Return Value
	Example

	GetMsgText
	Prototype
	Parameters
	Return Value
	Example
	Usage Notes

	ECLField Class
	Derivation
	Copy-Constructor and Assignment Operator

	ECLField Methods
	GetStart
	Prototype
	Parameters
	Return Value
	Example

	GetStartRow
	Prototype
	Parameters
	Return Value
	Example

	GetStartCol
	Prototype
	Parameters
	Return Value
	Example

	GetEnd
	Prototype
	Parameters
	Return Value
	Example

	GetEndRow
	Prototype
	Parameters
	Return Value
	Example

	GetEndCol
	Prototype
	Parameters
	Return Value
	Example

	GetLength
	Prototype
	Parameters
	Return Value
	Example

	GetScreen
	Prototype
	Parameters
	Return Value
	Example

	SetText
	Prototype
	Parameters
	Return Value
	Example

	IsModified, IsProtected, IsNumeric, IsHighIntensity, IsPenDetectable, IsDisplay
	Prototype
	Parameters
	Return Value
	Example

	GetAttribute
	Prototype
	Parameters
	Return Value
	Example

	ECLFieldList Class
	Derivation
	Properties

	ECLFieldList Methods
	Refresh
	Prototype
	Parameters
	Return Value
	Example

	GetFieldCount
	Prototype
	Parameters
	Return Value
	Example

	GetFirstField
	Prototype
	Parameters
	Return Value
	Example

	GetNextField
	Prototype
	Parameters
	Return Value
	Example

	FindField
	Prototype
	Parameters
	Return Value
	Example

	ECLKeyNotify Class
	Derivation
	Example

	ECLKeyNotify Methods
	NotifyEvent
	Prototype
	Parameters
	Return Value

	NotifyError
	Prototype
	Parameters
	Return Value

	NotifyStop
	Prototype
	Parameters
	Return Value

	ECLListener Class
	Derivation
	Usage Notes

	ECLOIA Class
	Derivation
	Usage Notes

	ECLOIA Methods
	ECLOIA Constructor
	Prototype
	Parameters
	Return Value
	Example

	IsAlphanumeric
	Prototype
	Parameters
	Return Value
	Example

	IsAPL
	Prototype
	Parameters
	Return Value
	Example

	IsUpperShift
	Prototype
	Parameters
	Return Value
	Example

	IsNumeric
	Prototype
	Parameters
	Return Value
	Example

	IsCapsLock
	Prototype
	Parameters
	Return Value
	Example

	IsInsertMode
	Prototype
	Parameters
	Return Value
	Example

	IsCommErrorReminder
	Prototype
	Parameters
	Return Value
	Example

	IsMessageWaiting
	Prototype
	Parameters
	Return Value
	Example

	WaitForInputReady
	Prototype
	Parameters
	Return Value

	WaitForSystemAvailable
	Prototype
	Parameters
	Return Value

	WaitForAppAvailable
	Prototype
	Parameters
	Return Value

	WaitForTransition
	Prototype
	Parameters
	Return Value

	InputInhibited
	Prototype
	Parameters
	Return Value
	Example

	GetStatusFlags
	Prototype
	Parameters
	Return Value

	RegisterOIAEvent
	Prototype
	Parameters
	Return Value

	UnregisterOIAEvent
	Prototype
	Parameters
	Return Value

	ECLOIANotify Class
	Derivation
	Usage Notes

	ECLOIANotify Methods
	NotifyEvent
	Prototype
	Parameters
	Return Value

	NotifyError
	Prototype
	Parameters
	Return Value

	NotifyStop
	Prototype
	Parameters
	Return Value

	ECLPS Class
	Derivation
	Properties
	Usage Notes

	ECLPS Methods
	ECLPS Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLPS Destructor
	Prototype
	Parameters
	Return Value
	Example

	GetPCCodePage
	Prototype
	Parameters
	Return Value

	GetHostCodePage
	Prototype
	Parameters
	Return Value

	GetOSCodePage
	Prototype
	Parameters
	Return Value

	GetSize
	Prototype
	Parameters
	Return Value
	Example

	GetSizeRows
	Prototype
	Parameters
	Return Value
	Example

	GetSizeCols
	Prototype
	Parameters
	Return Value
	Example

	GetCursorPos
	Prototype
	Parameters
	Return Value
	Example

	GetCursorPosRow
	Prototype
	Parameters
	Return Value
	Example

	GetCursorPosCol
	Prototype
	Parameters
	Return Value
	Example

	SetCursorPos
	Prototype
	Parameters
	Return Value
	Example

	SendKeys
	Prototype
	Parameters
	Return Value
	Example

	SearchText
	Prototype
	Parameters
	Return Value
	Example

	GetScreen
	Prototype
	Parameters
	Return Value
	Example

	GetScreenRect
	Prototype
	Parameters
	Return Value
	Example

	SetText
	Prototype
	Parameters
	Return Value
	Example

	CopyText
	Prototype
	Parameters
	Return Value
	Example

	PasteText
	Prototype
	Parameters
	Return Value
	Example

	ConvertPosToRowCol
	Prototype
	Parameters
	Return Value
	Example

	ConvertRowColToPos
	Prototype
	Parameters
	Return Value
	Example

	ConvertPosToRow
	Prototype
	Parameters
	Return Value
	Example

	ConvertPosToCol
	Prototype
	Parameters
	Return Value
	Example

	RegisterKeyEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterKeyEvent
	Prototype
	Parameters
	Return Value
	Example

	GetFieldList
	Prototype
	Parameters
	Return Value
	Example

	WaitForCursor
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileCursor
	Prototype
	Parameters
	Return Value
	Example

	WaitForString
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileString
	Prototype
	Parameters
	Return Value
	Example

	WaitForStringInRect
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileStringInRect
	Prototype
	Parameters
	Return Value
	Example

	WaitForAttrib
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileAttrib
	Prototype
	Parameters
	Return Value
	Example

	WaitForScreen
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileScreen
	Prototype
	Parameters
	Return Value
	Example

	RegisterPSEvent
	Prototype
	Parameters
	Return Value

	StartMacro
	Prototype
	Parameters
	Return Value
	Usage Notes
	Example

	UnregisterPSEvent
	Prototype
	Parameters
	Return Value

	ECLPSEvent Class
	Derivation
	Usage Notes

	ECLPSEvent Methods
	GetPS
	Prototype
	Parameters
	Return Value

	GetType
	Prototype
	Parameters
	Return Value

	GetStart
	Prototype
	Parameters
	Return Value

	GetEnd
	Prototype
	Parameters
	Return Value

	GetStartRow
	Prototype
	Parameters
	Return Value

	GetStartCol
	Prototype
	Parameters
	Return Value

	GetEndRow
	Prototype
	Parameters
	Return Value

	GetEndCol
	Prototype
	Parameters
	Return Value

	ECLPSListener Class
	Derivation
	Usage Notes

	ECLPSListener Methods
	NotifyEvent
	Prototype
	Parameters
	Return Value

	NotifyError
	Prototype
	Parameters
	Return Value

	NotifyStop
	Prototype
	Parameters
	Return Value

	ECLPSNotify Class
	Derivation
	Usage Notes

	ECLPSNotify Methods
	NotifyEvent
	Prototype
	Parameters
	Return Value

	NotifyError
	Prototype
	Parameters
	Return Value

	NotifyStop
	Prototype
	Parameters
	Return Value

	ECLRecoNotify Class
	Derivation

	ECLRecoNotify Methods
	ECLRecoNotify Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLRecoNotify Destructor
	Prototype
	Parameters
	Return Value
	Example

	NotifyEvent
	Prototype
	Parameters
	Return Value
	Example

	NotifyStop
	Prototype
	Parameters
	Return Value
	Example

	NotifyError
	Prototype
	Parameters
	Return Value
	Example

	ECLScreenDesc Class
	Derivation

	ECLScreenDesc Methods
	ECLScreenDesc Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLScreenDesc Destructor
	Prototype
	Parameters
	Return Value
	Example

	AddAttrib
	Prototype
	Parameters
	Return Value
	Example

	AddCursorPos
	Prototype
	Parameters
	Return Value
	Example

	AddNumFields
	Prototype
	Parameters
	Return Value
	Example

	AddNumInputFields
	Prototype
	Parameters
	Return Value
	Example

	AddOIAInhibitStatus
	Prototype
	Parameters
	Return Value
	Example

	AddString
	Prototype
	Parameters
	Return Value
	Example

	AddStringInRect
	Prototype
	Parameters
	Return Value
	Example

	Clear
	Prototype
	Parameters
	Return Value
	Example

	ECLScreenReco Class
	Derivation

	ECLScreenReco Methods
	ECLScreenReco Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLScreenReco Destructor
	Prototype
	Parameters
	Return Value
	Example

	AddPS
	Prototype
	Parameters
	Return Value
	Example

	IsMatch
	Prototype
	Parameters
	Return Value
	Example

	RegisterScreen
	Prototype
	Parameters
	Return Value
	Example

	RemovePS
	Prototype
	Parameters
	Return Value
	Example

	UnregisterScreen
	Prototype
	Parameters
	Return Value
	Example

	ECLSession Class
	Derivation
	Properties
	Usage Notes

	ECLSession Methods
	ECLSession Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLSession Destructor
	Prototype
	Parameters
	Return Value
	Example

	GetPS
	Prototype
	Parameters
	Return Value
	Example

	GetOIA
	Prototype
	Parameters
	Return Value
	Example

	GetXfer
	Prototype
	Parameters
	Return Value
	Example

	GetWinMetrics
	Prototype
	Parameters
	Return Value
	Example

	GetPageSettings
	Prototype
	Parameters
	Return Value
	Example

	GetPrinterSettings
	Prototype
	Parameters
	Return Value
	Example

	RegisterUpdateEvent
	UnregisterUpdateEvent

	ECLStartNotify Class
	Derivation
	Example

	ECLStartNotify Methods
	NotifyEvent
	Prototype
	Parameters
	Return Value

	NotifyError
	Prototype
	Parameters
	Return Value

	NotifyStop
	Prototype
	Parameters
	Return Value

	ECLUpdateNotify Class
	ECLWinMetrics Class
	Derivation
	Properties
	Usage Notes

	ECLWinMetrics Methods
	ECLWinMetrics Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLWinMetrics Destructor
	Prototype
	Parameters
	Return Value
	Example

	GetWindowTitle
	Prototype
	Parameters
	Return Value
	Example

	SetWindowTitle
	Prototype
	Parameters
	Return Value
	Example
	Usage Notes

	GetXpos
	Prototype
	Parameters
	Return Value
	Example

	SetXpos
	Prototype
	Parameters
	Return Value
	Example

	GetYpos
	Prototype
	Parameters
	Return Value
	Example

	SetYpos
	Prototype
	Parameters
	Return Value
	Example

	GetWidth
	Prototype
	Parameters
	Return Value
	Example

	SetWidth
	Prototype
	Parameters
	Return Value
	Example

	GetHeight
	Prototype
	Parameters
	Return Value
	Example

	SetHeight
	Prototype
	Parameters
	Return Value
	Example

	GetWindowRect
	Prototype
	Parameters
	Return Value
	Example

	SetWindowRect
	Prototype
	Parameters
	Return Value
	Example

	IsVisible
	Prototype
	Parameters
	Return Value
	Example

	SetVisible
	Prototype
	Parameters
	Return Value
	Example

	IsActive
	Prototype
	Parameters
	Return Value
	Example

	SetActive
	Prototype
	Parameters
	Return Value
	Example

	IsMinimized
	Prototype
	Parameters
	Return Value
	Example

	SetMinimized
	Prototype
	Parameters
	Return Value
	Example

	IsMaximized
	Prototype
	Parameters
	Return Value
	Example

	SetMaximized
	Prototype
	Parameters
	Return Value
	Example

	IsRestored
	Prototype
	Parameters
	Return Value
	Example

	SetRestored
	Prototype
	Parameters
	Return Value
	Example

	ECLXfer Class
	Derivation
	Properties
	Usage Notes

	ECLXfer Methods
	ECLXfer Constructor
	Prototype
	Parameters
	Return Value
	Example

	ECLXfer Destructor
	Prototype
	Parameters
	Return Value
	Example

	SendFile
	Prototype
	Parameters
	Return Value
	Example
	Usage Notes

	ReceiveFile
	Prototype
	Parameters
	Return Value
	Example
	Usage Notes

	ECLPageSettings Class
	Derivation
	Properties
	Restrictions
	Usage Notes

	ECLPageSettings Methods
	Connection types
	ECLPageSettings Constructor
	Prototype
	Parameters
	Return Value
	Example

	SetCPI
	Prototype
	Parameters
	Return Value
	Example

	GetCPI
	Prototype
	Parameters
	Return Value
	Example

	IsFontCPI
	Prototype
	Parameters
	Return Value
	Example

	SetLPI
	Prototype
	Parameters
	Return Value
	Example

	GetLPI
	Prototype
	Parameters
	Return Value
	Example

	IsFontLPI
	Prototype
	Parameters
	Return Value
	Example

	SetFontFaceName
	Prototype
	Parameters
	Return Value
	Example

	GetFontFaceName
	Prototype
	Parameters
	Return Value
	Example

	SetFontSize
	Prototype
	Parameters
	Return Value

	SetMaxLinesPerPage
	Prototype
	Parameters
	Return Value
	Example

	GetMaxLinesPerPage
	Prototype
	Parameters
	Return Value
	Example

	SetMaxCharsPerLine
	Prototype
	Parameters
	Return Value
	Example

	GetMaxCharsPerLine
	Prototype
	Parameters
	Return Value
	Example

	RestoreDefaults
	Prototype
	Parameters
	Return Value
	Example

	ECLPrinterSettings Class
	Derivation
	Properties
	Restrictions
	Usage Notes

	ECLPrinterSettings Methods
	ECLPrinterSettings Constructor
	Prototype
	Parameters
	Return Value
	Example

	SetPDTMode
	Prototype
	Parameters
	Return Value
	Example

	GetPDTFile
	Prototype
	Parameters
	Return Value
	Example

	IsPDTMode
	Prototype
	Parameters
	Return Value
	Example

	GetPrintMode
	Prototype
	Parameters
	Return Value
	Example

	SetPrtToDskAppend
	Prototype
	Parameters
	Return Value
	Example

	GetPrtToDskAppendFile
	Prototype
	Parameters
	Return Value
	Example

	SetPrtToDskSeparate
	Prototype
	Parameters
	Return Value
	Example

	GetPrtToDskSeparateFile
	Prototype
	Parameters
	Return Value
	Example

	SetSpecificPrinter
	Prototype
	Parameters
	Return Value
	Example

	SetWinDefaultPrinter
	Prototype
	Parameters
	Return Value
	Example

	GetPrinterName
	Prototype
	Parameters
	Return Value
	Example

	SetPromptDialog
	Prototype
	Parameters
	Return Value
	Example

	IsPromptDialogEnabled
	Prototype
	Parameters
	Return Value
	Example

	Host Access Class Library Automation Objects
	autSystem Class
	autECLConnList Class
	Properties
	Count
	Name
	Handle
	ConnType
	CodePage
	Started
	CommStarted
	APIEnabled
	Ready

	autECLConnList Methods
	Collection Element Methods
	Refresh
	Prototype
	Parameters
	Return Value
	Example

	FindConnectionByHandle
	Prototype
	Parameters
	Return Value
	Example

	FindConnectionByName
	Prototype
	Parameters
	Return Value
	Example

	StartCommunication
	Prototype
	Parameters
	Return Value
	Example

	StopCommunication
	Prototype
	Parameters
	Return Value
	Example

	autECLConnMgr Class
	Properties
	autECLConnList

	autECLConnMgr Methods
	RegisterStartEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterStartEvent
	Prototype
	Parameters
	Return Value
	Example

	StartConnection
	Prototype
	Parameters
	Return Value
	Usage Notes
	Example

	StopConnection
	Prototype
	Parameters
	Return Value
	Usage Notes
	Example

	autECLConnMgr Events
	NotifyStartEvent
	Prototype
	Parameters
	Example

	NotifyStartError
	Prototype
	Parameters
	Example

	NotifyStartStop
	Prototype
	Parameters

	Event Processing Example

	autECLFieldList Class
	Properties
	Count
	StartRow
	StartCol
	EndRow
	EndCol
	Length
	Modified
	Protected
	Numeric
	HighIntensity
	PenDetectable
	Display

	autECLFieldList Methods
	Collection Element Methods
	Refresh
	Prototype
	Parameters
	Return Value
	Example

	FindFieldByRowCol
	Prototype
	Parameters
	Return Value
	Example

	FindFieldByText
	Prototype
	Parameters
	Return Value
	Example

	GetText
	Prototype
	Parameters
	Return Value
	Example

	SetText
	Prototype
	Parameters
	Return Value
	Example

	autECLOIA Class
	Properties
	Alphanumeric
	APL
	Katakana
	Hiragana
	UpperShift
	Numeric
	CapsLock
	InsertMode
	CommErrorReminder
	MessageWaiting
	InputInhibited
	Name
	Handle
	ConnType
	CodePage
	Started
	CommStarted
	APIEnabled
	Ready
	NumLock

	autECLOIA Methods
	RegisterOIAEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterOIAEvent
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByName
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByHandle
	Prototype
	Parameters
	Return Value
	Example

	StartCommunication
	Prototype
	Parameters
	Return Value
	Example

	StopCommunication
	Prototype
	Parameters
	Return Value
	Example

	WaitForInputReady
	Prototype
	Parameters
	Return Value
	Example

	WaitForSystemAvailable
	Prototype
	Parameters
	Return Value
	Example

	WaitForAppAvailable
	Prototype
	Parameters
	Return Value
	Example

	WaitForTransition
	Prototype
	Parameters
	Return Value
	Example

	CancelWaits
	Prototype
	Parameters
	Return Value

	autECLOIA Events
	NotifyOIAEvent
	Prototype
	Parameters
	Example

	NotifyOIAError
	Prototype
	Parameters
	Example

	NotifyOIAStop
	Prototype
	Parameters

	Event Processing Example

	autECLPS Class
	Properties
	autECLFieldList
	NumRows
	NumCols
	CursorPosRow
	CursorPosCol
	Name
	Handle
	ConnType
	CodePage
	Started
	CommStarted
	APIEnabled
	Ready

	autECLPS Methods
	RegisterPSEvent
	Prototype
	Parameters
	Return Value
	Example

	RegisterKeyEvent
	Prototype
	Parameters
	Return Value
	Example

	RegisterCommEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterPSEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterKeyEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterCommEvent
	Prototype
	Parameters
	Return Value

	SetConnectionByName
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByHandle
	Prototype
	Parameters
	Return Value
	Example

	SetCursorPos
	Prototype
	Parameters
	Return Value
	Example

	SendKeys
	Prototype
	Parameters
	Return Value
	Example

	SearchText
	Prototype
	Parameters
	Return Value
	Example

	GetText
	Prototype
	Parameters
	Return Value
	Example

	SetText
	Prototype
	Parameters
	Return Value
	Example

	CopyText
	Prototype
	Parameters
	Return Value
	Example

	PasteText
	Prototype
	Parameters
	Return Value
	Example

	GetTextRect
	Prototype
	Parameters
	Return Value
	Example

	SetTextRect
	Prototype
	Parameters
	Return Value
	Example

	StartCommunication
	Prototype
	Parameters
	Return Value
	Example

	StopCommunication
	Prototype
	Parameters
	Return Value
	Example

	StartMacro
	Prototype
	Parameters
	Return Value
	Usage Notes
	Example

	Wait
	Prototype
	Parameters
	Return Value
	Example

	WaitForCursor
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileCursor
	Prototype
	Parameters
	Return Value
	Example

	WaitForString
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileString
	Prototype
	Parameters
	Return Value
	Example

	WaitForStringInRect
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileStringInRect
	Prototype
	Parameters
	Return Value
	Example

	WaitForAttrib
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileAttrib
	Prototype
	Parameters
	Return Value
	Example

	WaitForScreen
	Prototype
	Parameters
	Return Value
	Example

	WaitWhileScreen
	Prototype
	Parameters
	Return Value
	Example

	CancelWaits
	Prototype
	Parameters
	Return Value

	autECLPS Events
	NotifyPSEvent
	Prototype
	Parameters
	Example

	NotifyKeyEvent
	Prototype
	Parameters
	Example

	NotifyCommEvent
	Prototype
	Parameters
	Example

	NotifyPSError
	Prototype
	Parameters
	Example

	NotifyKeyError
	Prototype
	Parameters
	Example

	NotifyCommError
	Prototype
	Parameters
	Example

	NotifyPSStop
	Prototype
	Parameters
	Example

	NotifyKeyStop
	Prototype
	Parameters
	Example

	NotifyCommStop
	Prototype
	Parameters

	Event Processing Example

	autECLScreenDesc Class
	autECLScreenDesc Methods
	AddAttrib
	Prototype
	Parameters
	Return Value
	Example

	AddCursorPos
	Prototype
	Parameters
	Return Value
	Example

	AddNumFields
	Prototype
	Parameters
	Return Value
	Example

	AddNumInputFields
	Prototype
	Parameters
	Return Value
	Example

	AddOIAInhibitStatus
	Prototype
	Parameters
	Return Value
	Example

	AddString
	Prototype
	Parameters
	Return Value
	Example

	AddStringInRect
	Prototype
	Parameters
	Return Value
	Example

	Clear
	Prototype
	Parameters
	Return Value
	Example

	autECLScreenReco Class
	autECLScreenReco Methods
	AddPS
	Prototype
	Parameters
	Return Value
	Example

	IsMatch
	Prototype
	Parameters
	Return Value
	Example

	RegisterScreen
	Prototype
	Parameters
	Return Value
	Example

	RemovePS
	Prototype
	Parameters
	Return Value
	Example

	UnregisterScreen
	Prototype
	Parameters
	Return Value
	Example

	autECLScreenReco Events
	NotifyRecoEvent
	Prototype
	Parameters
	Example

	NotifyRecoError
	Prototype
	Parameters
	Example

	NotifyRecoStop
	Prototype
	Parameters

	Event Processing Example

	autECLSession Class
	Properties
	Name
	Handle
	ConnType
	CodePage
	Started
	CommStarted
	APIEnabled
	Ready
	autECLPS object
	autECLOIA object
	autECLXfer object
	autECLWinMetrics object
	autECLPageSettings object
	autECLPrinterSettings object

	autECLSession Methods
	RegisterSessionEvent
	Prototype
	Parameters
	Return Value
	Example

	RegisterCommEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterSessionEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterCommEvent
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByName
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByHandle
	Prototype
	Parameters
	Return Value
	Example

	StartCommunication
	Prototype
	Parameters
	Return Value
	Example

	StopCommunication
	Prototype
	Parameters
	Return Value
	Example

	autECLSession Events
	NotifyCommEvent
	Prototype
	Parameters
	Example

	NotifyCommError
	Prototype
	Parameters
	Example

	NotifyCommStop
	Prototype
	Parameters

	Event Processing Example

	autECLWinMetrics Class
	Properties
	WindowTitle
	Usage Notes

	Xpos
	Ypos
	Width
	Height
	Visible
	Active
	Minimized
	Maximized
	Restored
	Name
	Handle
	ConnType
	CodePage
	Started
	CommStarted
	APIEnabled
	Ready

	autECLWinMetrics Methods
	RegisterCommEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterCommEvent
	Prototype
	Parameters
	Return Value

	SetConnectionByName
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByHandle
	Prototype
	Parameters
	Return Value
	Example

	GetWindowRect
	Prototype
	Parameters
	Return Value
	Example

	SetWindowRect
	Prototype
	Parameters
	Return Value
	Example

	StartCommunication
	Prototype
	Parameters
	Return Value
	Example

	StopCommunication
	Prototype
	Parameters
	Return Value
	Example

	autECL WinMetrics Events
	NotifyCommEvent
	Prototype
	Parameters
	Example

	NotifyCommError
	Prototype
	Parameters
	Example

	NotifyCommStop
	Prototype
	Parameters

	Event Processing Example

	autECLXfer Class
	Properties
	Name
	Handle
	ConnType
	CodePage
	Started
	CommStarted
	APIEnabled
	Ready

	autECLXfer Methods
	RegisterCommEvent
	Prototype
	Parameters
	Return Value
	Example

	UnregisterCommEvent
	Prototype
	Parameters
	Return Value

	SetConnectionByName
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByHandle
	Prototype
	Parameters
	Return Value
	Example

	SendFile
	Prototype
	Parameters
	Return Value
	Usage Notes
	Example

	ReceiveFile
	Prototype
	Parameters
	Return Value
	Usage Notes
	Example

	StartCommunication
	Prototype
	Parameters
	Return Value
	Example

	StopCommunication
	Prototype
	Parameters
	Return Value
	Example

	autECLXfer Events
	NotifyCommEvent
	Prototype
	Parameters
	Example

	NotifyCommError
	Prototype
	Parameters
	Example

	NotifyCommStop
	Prototype
	Parameters

	Event Processing Example

	autSystem Class
	autSystem Methods
	Shell
	Prototype
	Parameters
	Return Value
	Example

	Inputnd
	Prototype
	Parameters
	Return Value
	Example

	autECLPageSettings Class
	Usage Notes
	Restrictions
	Connection types
	Properties
	CPI
	Example

	FontCPI
	Example

	LPI
	Example

	FontLPI
	Example

	FaceName
	Example

	MaxLinesPerPage
	Example

	MaxCharsPerLine
	Example

	Name
	Example

	Handle
	Example

	ConnType
	Example

	CodePage
	Example

	Started
	Example

	CommStarted
	Example

	APIEnabled
	Example

	Ready
	Example

	autECLPageSettings Methods
	RestoreTextDefaults
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByName
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByHandle
	Prototype
	Parameters
	Return Value
	Example

	autECLPrinterSettings Class
	Usage Notes
	Restrictions
	Properties
	PDTMode
	Example

	PDTFile
	Example

	PrintMode
	Example

	Printer
	Example

	PrtToDskAppendFile
	Example

	PrtToDskSeparateFile
	Example

	PromptDialogOption
	Example

	Name
	Example

	Handle
	Example

	ConnType
	Example

	CodePage
	Example

	Started
	Example

	CommStarted
	Example

	APIEnabled
	Example

	Ready
	Example

	autECLPrinterSettings Methods
	SetPDTMode
	Restriction
	Prototype
	Parameters
	Return Value
	Example

	SetPrtToDskAppend
	Prototype
	Parameters
	Return Value
	Example

	SetPrtToDskSeparate
	Prototype
	Parameters
	Return Value
	Example

	SetSpecificPrinter
	Prototype
	Parameters
	Return Value
	Example

	SetWinDefaultPrinter
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByName
	Prototype
	Parameters
	Return Value
	Example

	SetConnectionByHandle
	Prototype
	Parameters
	Return Value
	Example

	Support For Primary Interop Assemblies for Automation Objects

	Host Access Class Library for Java
	Troubleshooting
	HCL Z and I Emulator for Windows .NET Interop assemblies fail to trigger session OIA notifications

	Sendkeys Mnemonic Keywords
	ECL Planes — Format and Content
	TextPlane
	FieldPlane
	ColorPlane
	ExfieldPlane

	Notices
	Trademarks

	Reference Materials
	Keyboard Layout and Mapping Reference: Contents
	Contents
	Figures
	Figures

	Tables
	Tables

	Keyboard Layouts
	Keyboard Layouts
	Enhanced Keyboard, Microsoft Natural Keyboard (3270 Only)
	Enhanced Keyboard, Microsoft Natural Keyboard (5250 Only)
	Enhanced Keyboard, Microsoft Natural Keyboard (Combined 3270 and 5250)
	Enhanced Keyboard, Microsoft Natural Keyboard (VT Keyboard Layout)
	Enhanced Keyboard, Microsoft Natural Keyboard (VT Local Edit Mode Only)
	Space-Saving Keyboard (3270 Only)
	Space-Saving Keyboard (5250 Only)
	Space-Saving Keyboard (Combined 3270 and 5250)
	5576-001 (3270 Only)
	5576-001 (5250 Only)
	5576-001 (Combined 3270 and 5250)
	5576-A01 (3270 Only)
	5576-A01 Keyboard (5250 Only)
	5576-A01 Keyboard (Combined 3270 and 5250)
	5576-002/003 (3270 Only)
	5576-002/003 Keyboard (5250 Only)
	5576-002/003 Keyboard (Combined 3270 and 5250)
	APL Keyboard Layouts (3270 only)

	Keyboard Mapping
	Keyboard Mapping
	Local Edit Keys
	Key Map for Home3270

	Host code page reference
	Contents
	Host Code Page 037-1/697-1 Brazil, Canada, Netherlands, Portugal, U.S., and 037/1175 Traditional Chinese
	Host Code Page 037-1/697-1 Brazil, Canada, Netherlands, Portugal, U.S., and 037/1175 Traditional Chinese

	Host Code Page 273-1/697-1 Austria, Germany
	Host Code Page 273-1/697-1 Austria, Germany

	Host Code Page 275-1/697-1 Brazil
	Host Code Page 275-1/697-1 Brazil

	Host Code Page 277-1/697-1 Denmark, Norway
	Host Code Page 277-1/697-1 Denmark, Norway

	Host Code Page 278-1/697-1 Finland, Sweden
	Host Code Page 278-1/697-1 Finland, Sweden

	Host Code Page 280-1/697-1 Italy
	Host Code Page 280-1/697-1 Italy

	Host Code Page 284-1/697-1 Latin America, Spain
	Host Code Page 284-1/697-1 Latin America, Spain

	Host Code Page 285-1/697-1 United Kingdom
	Host Code Page 285-1/697-1 United Kingdom

	Host Code Page 290/930 Japan (Katakana) Extended
	Host Code Page 290/930 Japan (Katakana) Extended

	Host Code Page 297-1/697-1 France
	Host Code Page 297-1/697-1 France

	Host Code Page 420 Arabic Bilingual
	Host Code Page 420 Arabic Bilingual

	Host Code Page 424/941 Israel (Hebrew - Bulletin Code)
	Host Code Page 424/941 Israel (Hebrew - Bulletin Code)

	Host Code Page 500-1/697-1 International
	Host Code Page 500-1/697-1 International

	Host Code Page 803 Israel (Hebrew - Old Code)
	Host Code Page 803 Israel (Hebrew - Old Code)

	Host Code Page 833/1173 Hangeul
	Host Code Page 833/1173 Hangeul

	Host Code Page 836/1174 Simplified Chinese
	Host Code Page 836/1174 Simplified Chinese

	Host Code Page 870/959 Latin 2 - EBCDIC Multilingual
	Host Code Page 870/959 Latin 2 - EBCDIC Multilingual

	Host Code Page 871-1/697-1 Iceland
	Host Code Page 871-1/697-1 Iceland

	Host Code Page 875 Greece
	Host Code Page 875 Greece

	Host Code Page 924-1/1353-1 International
	Host Code Page 924-1/1353-1 International

	Host Code Page 1025/1150 Cyrillic
	Host Code Page 1025/1150 Cyrillic

	Host Code Page 1026/1152 Latin 5 - Turkey
	Host Code Page 1026/1152 Latin 5 - Turkey

	Host Code Page 1027/939 Japan (Latin) Extended
	Host Code Page 1027/939 Japan (Latin) Extended

	Host Code Page 1047/103 Latin 1 (Open Systems)
	Host Code Page 1047/103 Latin 1 (Open Systems)

	Host Code Page 1112/1035 Latvia, Lithuania
	Host Code Page 1112/1035 Latvia, Lithuania

	Host Code Page 1122/1037 Estonia
	Host Code Page 1122/1037 Estonia

	Host Code Page 1123 Ukraine
	Host Code Page 1123 Ukraine

	Host Code Page 1130 Vietnam
	Host Code Page 1130 Vietnam

	Host Code Page 1132 Laos
	Host Code Page 1132 Laos

	Host Code Page 1137 India
	Host Code Page 1137 India

	Host Code Page 1140-1/695-1 Brazil, Canada, Netherlands, Portugal, U.S., and 1140/1175 Traditional Chinese
	Host Code Page 1140-1/695-1 Brazil, Canada, Netherlands, Portugal, U.S., and 1140/1175 Traditional Chinese

	Host Code Page 1141-1/695-1 Austria, Germany
	Host Code Page 1141-1/695-1 Austria, Germany

	Host Code Page 1142-1/695-1 Denmark, Norway
	Host Code Page 1142-1/695-1 Denmark, Norway

	Host Code Page 1143-1/695-1 Finland, Sweden
	Host Code Page 1143-1/695-1 Finland, Sweden

	Host Code Page 1144-1/695-1 Italy
	Host Code Page 1144-1/695-1 Italy

	Host Code Page 1145-1/695-1 Latin America, Spain
	Host Code Page 1145-1/695-1 Latin America, Spain

	Host Code Page 1146-1/695-1 United Kingdom
	Host Code Page 1146-1/695-1 United Kingdom

	Host Code Page 1147-1/695-1 France
	Host Code Page 1147-1/695-1 France

	Host Code Page 1148-1/695-1 International
	Host Code Page 1148-1/695-1 International

	Host Code Page 1149-1/695-1 Iceland
	Host Code Page 1149-1/695-1 Iceland

	Host Code Page 1153/1375 Latin 2 - EBCDIC Multilingual
	Host Code Page 1153/1375 Latin 2 - EBCDIC Multilingual

	Host Code Page 1154/1381 Cyrillic
	Host Code Page 1154/1381 Cyrillic

	Host Code Page 1155/1378 Latin 5 - Turkey
	Host Code Page 1155/1378 Latin 5 - Turkey

	Host Code Page 1156/1393 Latvia, Lithuania
	Host Code Page 1156/1393 Latvia, Lithuania

	Host Code Page 1157/1391 Estonia
	Host Code Page 1157/1391 Estonia

	Host Code Page 1158/1388 Ukraine
	Host Code Page 1158/1388 Ukraine

	Host Code Page 1160/1395 Thailand
	Host Code Page 1160/1395 Thailand

	Host Code Page 1164/1397 Vietnam
	Host Code Page 1164/1397 Vietnam

	Chapter 3. PDF Library
	Index

