
Emulator Programming

About This Book
This book provides necessary programming information for you to use the HCL Z and I Emulator for Windows

Emulator High-Level Language Application Program Interface (EHLLAPI), and Z and I Emulator for Windows Session

API (PCSAPI), and. The Host Access Class Library is described in Host Access Class Library.

EHLLAPI/PCSAPI is used with Z and I Emulator for Windows to provide a way for users and programmers to access

the host presentation space with a set of functions that can be called from an application program running in a

workstation session.

In this book, Windows refers to Windows® 7, Windows® 8/8.1, Windows® 10, Windows® Server 2008, and

Windows® Server 2012. When information is relevant only to a specific operating system, this will be indicated in the

text.

Who Should Read This Book
This book is intended for programmers who write application programs that use the APIs documented in this book.

A working knowledge of Windows® is assumed. For information about Windows®, refer to the list of publications

under Where To Find More Information on page 2.

The programmer must also be familiar with connecting to a host system from a terminal or from a workstation with

terminal emulation software.

This book assumes you are familiar with the language and the compiler that you are using. For information on how

to write, compile, or link-edit programs, refer to Where To Find More Information on page 2 for the appropriate

references for the specific language you are using.

Where To Find More Information
The Z and I Emulator for Windows library includes the following publications:

• Installation Guide

• Quick Beginnings

• Emulator User's Reference

• Administrator's Guide and Reference

• Emulator Programming

• Client/Server Communications Programming

• System Management Programming

• Host Access Class Library

• Configuration File Reference

In addition to the printed books, there are Hypertext Markup Language (HTML) documents provided with Z and I

Emulator for Windows:

Host Access Class Library

The HACL Java HTML files describe how to write an ActiveX/OLE 2.0-compliant application to

use Z and I Emulator for Windows as an embedded object. These files can be accessed from

the Docs_Admin_Aids zipped folder delivered along with Z and I Emulator for Windows product

documentation in the following path : ZIEWin_3.0_Docs_Admin_Aids.zip\publications\en_US\doc\hacl

Following is a list of related publications:

• IBM 3270 Information Display System Data Stream Programmer's Reference, GA23-0059

• IBM 5250 Information Display System Functions Reference Manual, SA21-9247

Notation
A table at the beginning of each section explains API functions in EHLLAPI Functions on page 32, PCSAPI

Functions on page 187, and WinHLLAPI Extension Functions on page 174. It shows whether a function is

supported for the products that provide the function described in the section. Yes means it is supported for a host

type, and No means not supported. For example, the following table indicates that a function is available for 3270 and

VT sessions but not for 5250 sessions.

3270 5250 VT

Yes No Yes

4

Chapter 1. Introduction to Emulator APIs
The IBM® Z and I Emulator for Windows product supplies several application programming interfaces (APIs). Each

interface has a specific set of functions and may be used for different purposes. Choose the programming interface

that best matches the functional requirements of your application. Some applications may use more than one

interface to achieve the desired results. The programming interfaces are:

• Emulator High Level Language API (EHLLAPI): introduction to Emulator APIsEmulator High Level Language API (EHLLAPI) This interface provides functions to access emulator

"presentation space" data such as characters on the host screen. It also provides functions for sending

keystrokes to the host, intercepting user-entered keystrokes, querying the status of the host session,

uploading and downloading files, and other functions. This interface is often used for automated operator

applications which read host screens and enter keystrokes without direct user intervention. See EHLLAPI

Functions on page 32.

◦ IBM® Standard HLLAPI Support: This is a standard programming interface which allows

programmatic access to a host emulator session. See Introduction to IBM Standard EHLLAPI, IBM

Enhanced EHLLAPI and WinHLLAPI Programming on page 7.

◦ IBM® Enhanced HLLAPI Support: This interface is based on the IBM® Standard HLLAPI interface. It

provides all of the existing functionality but uses modified data structures. See Introduction to IBM

Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming on page 7.

◦ Windows® High Level Language API (WinHLLAPI): This interface provides much of the same

functionality of IBM® Standard EHLLAPI and adds some extensions that take advantage of the

Windows® environment. See Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and

WinHLLAPI Programming on page 7.

• Any 32-bit APIs which accept\return Window Handles and pointers might not work correctly with HCL ZIEWin

due to difference in pointer\handle sizes between x86 and x64 platforms.

For Example:

"Data String" parameter returned in byte numbers (9-12) in API Start Communication Notification (80) might

be truncated on x64 platform.

• Z and I Emulator for Windows Session API (PCSAPI): This introduction to Emulator APIsZ and I Emulator for Windows Session API (PCSAPI) interface is used to start, stop, and control

emulator sessions and settings. See PCSAPI Functions on page 187.

For Z and I Emulator for Windows Version 3.0, functions have been added to allow control and retrieval

of page and printer settings. See Page Setup Functions on page 196 and Printer Setup Functions on

page 204.

• HCL Z and I Emulator for Windows Host Access Class Library (ECL): ECL is a set of objects that allow

application programmers and scripting language writers to access host applications easily and quickly. Z

and I Emulator for Windows supports three different ECL layers (C++ objects, ActiveAutomation (OLE), and

LotusScript Extension (LSX)). Refer to Host Access Class Library (HACL) for more details.

Chapter 1. Introduction to Emulator APIs

Using API Header Files
The application program should include operating system header files before including API header files. For example:

 #include <windows.h> // Windows main header
 #include "pcsapi.h" // ZIEWin PCSAPI header
 ...

Critical Sections
Use critical sections (EnterCriticalSection function) carefully when your program calls emulator APIs. Do not make

emulator API calls within a critical section. If one thread of an application establishes a critical section and another

thread is within an emulator API call, the call is suspended until you exit from the critical section.

During processing of an API call, all signals (except numeric coprocessor signals) are delayed until the call completes

or until the call needs to wait for incoming data. Also, TerminateProcess issued from another process is held until the

application completes an API call it might be processing.

Stack Size
Emulator APIs use the calling program's stack when they are executed. The operating system, the application, and the

API all require stack space for dynamic variables and function parameters. At least 8196 bytes (8K) of stack space

should be available at the time of an API call. It is the responsibility of the application program to ensure sufficient

stack space is available for the API.

Windows x64 Platform Support
The x64-based versions of Microsoft® Windows® Server 2008 and Microsoft® Windows® 8/8.1/10 x64 Edition are

optimized to run native 64-bit programs, but do not support 32-bit drivers or 16-bit applications.

For these platforms, Z and I Emulator for Windows does not install the following libraries.

• 16-bit API support:

◦ Standard EHLLAPI 16-bit interface

◦ WinHLLAPI 16-bit interface

◦ PCSAPI 16-bit interface

Sample Programs
Several sample programs are provided, each of which illustrates the use of one of the Z and I Emulator for Windows

APIs. If you choose to install the sample programs, they will be installed in the \SAMPLES directory.

5

Emulator Programming

6

Note: International Business Machines Corporation provides these files as is, without warranty of any kind,

either express or implied, including, but not limited to, the implied warranties of merchantability or fitness for

a particular purpose.

The sample program files include source and supporting files for the following Z and I Emulator for Windows APIs:

• Emulator High-Level Language Programming Interface (EHLLAPI)

• PCSAPI Functions

The following files are installed in the \SAMPLES directory.

Table 1. Sample Program Subdirectories

File Name Description

DDE_C.H DDE include file

EHLAPI32.H IBM® standard 32-bit EHLLAPI include file

WHLLAPI.H WinHLLAPI 16-bit include file

HAPI_C.H EHLLAPI include file

PCSAPI.H PCSAPI include file

PCSCALLS.LIB Import library for standard interface

PCSCAL32.LIB Import library for enhanced interface

EHLAPI32.LIB Import library for IBM® Standard 32-bit EHLLAPI interface

WHLLAPI.LIB Import library for WinHLLAPI 16-bit interface

WHLAPI32.LIB Import library for WinHLLAPI 32-bit interface

The following subdirectories are created in the \SAMPLES directory.

Table 2. Sample Program Subdirectories

File Name Description

ECL The sample\ecl\cpp folder contains all files related HACL CPP sample.

The sample\ecl\vb folder contains all files related to HACL VB.Net sample.

HLLSMP Shows how to use EHLLAPI to request a keystroke and log on to a VM system.(X86).

It supports the logon, pastetext and sendkey functionalities. Refer to the hllsmp\

Readme.txt for the details on using the above-mentioned functionalities with hllsmp.exe.

(X64).

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM
Enhanced EHLLAPI and WinHLLAPI Programming
This chapter provides information needed to incorporate IBM® Standard EHLLAPI (16- and 32-bit), WinHLLAPI

(16- and 32-bit), and IBM® Enhanced 32-bit EHLLAPI (EHLAPI32) functions into applications written in a high

level language. It provides details on call format, memory allocation considerations, initializing the interfaces,

and compiling and linking applications. Also included is a short sample EHLLAPI program and the compile/link

instructions used to build it. Finally, a set of possible uses for the EHLLAPI interface (scenarios) is described.

An EHLLAPI application is any application program which uses the EHLLAPI interface to access the host 3270/5250/

VT presentation space. The presentation space includes the visible emulator character data, fields and attribute data,

keystroke data, and other information.

EHLLAPI Overviews
Following are overviews for HLLAPI programming interfaces.

IBM Standard EHLLAPI
EHLLAPI OverviewsIBM Standard EHLLAPIEHLLAPI is a standard programming interface which allows programmatic access to a host emulator session.

Functions are provided for reading host screen data (such as the characters and attributes), for sending keystrokes,

and performing other emulator-related functions.

The EHLLAPI interface is a single call-point interface. There is a single callable API through which all EHLLAPI

functions are requested. On each call to the interface the application provides a function number which identifies the

function requested, a pointer to a data buffer, a pointer to the length of the data buffer, and a pointer to a return code

(see EHLLAPI Call Format on page 8).

WinHLLAPI
EHLLAPI OverviewsWinHLLAPIWinHLLAPI is based on the familiar EHLLAPI.API. It encompasses all of the existing functionality and adds

extensions that take advantage of the Windows® message driven environment. Users of the HCL Z and I Emulator for

Windows EHLLAPI interface will notice no functional difference unless they incorporate the WinHLLAPI extensions.

The WinHLLAPI extension functions and any functions that deviate from the EHLLAPI form are described in

WinHLLAPI Extension Functions on page 174. For information on common functions, refer to EHLLAPI Functions

on page 32.

WinHLLAPI and IBM® Standard EHLLAPI
EHLLAPI OverviewsWinHLLAPI vs. IBM Standard EHLLAPIThe entry symbol for WinHLLAPI, is appropriately, WinHLLAPI. EHLLAPI users wishing to switch to the WinHLLAPI

implementation must change from the hllapi standard entry. New users should follow all of the directions in EHLLAPI

Functions on page 32, and use the WinHLLAPI entry in place of the standard hllapi entry.

7

Emulator Programming

8

IBM Enhanced EHLLAPI and IBM Standard EHLLAPI
EHLLAPI OverviewsIBM Enhanced EHLLAPI vs. IBM Standard EHLLAPIIBM Enhanced EHLLAPI is based on the familiar EHLLAPI API. It encompasses all of the existing functionality but

takes advantage of the 32-bit environment and uses modified data structures. Standard interface users wishing to

switch to IBM® Enhanced 32-bit EHLLAPI need to change only the entry symbol from LPWORD to LPINT in the first,

third, and fourth parameters. New users should use the procedures in the following sections.

Languages
Any programming language which can invoke an entry point in a DLL with the "Pascal" calling convention can be

used to execute EHLLAPI functions. However, the Z and I Emulator for Windows EHLLAPI toolkit provides header

files and function prototypes only for the C++ languages. A clear understanding of data structure layout and calling

conventions is required to use any other language. The EHLLAPI toolkit supports the following C/C++ compilers:

• Microsoft® Visual C/C++ Version 4.0 and higher

Most other C/C++ compilers will also work with the toolkit.

EHLLAPI C/C++ applications must include the Z and I Emulator for Windows EHLLAPI header file (HAPI_C.H). This file

defines the layout of data structures and provides a prototype for the EHLLAPI entry point.

Note: The data structure layout for 16- and 32-bit applications are not the same (see Standard and Enhanced

Interface Considerations on page 24).

EHLLAPI Call Format
The EHLLAPI entry point (hllapi) is always called with the following four parameters:

1. EHLLAPI Function Number (input)

2. Data Buffer (input/output)

3. Buffer Length (input/output)

4. Position (input); Return Code (output)

The prototype for IBM® Standard EHLLAPI is:

[long hllapi (LPWORD, LPSTR, LPWORD, LPWORD);

The prototype for IBM® Enhanced EHLLAPI is:

[long hllapi (LPINT, LPSTR, LPINT, LPINT);

Each parameter is passed by reference not by value. Thus each parameter to the function call must be a pointer to

the value, not the value itself. For example, the following is a correct example of calling the EHLLAPI Query Session

Status function:

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

 #include "hapi_c.h"
 struct HLDQuerySessionStatus QueryData;
 int Func, Len, Rc;
 long Rc;

 memset(QueryData, 0, sizeof(QueryData)); // Init buffer
 QueryData.qsst_shortname = 'A'; // Session to query
 Func = HA_QUERY_SESSION_STATUS; // Function number
 Len = sizeof(QueryData); // Len of buffer
 Rc = 0; // Unused on input

 hllapi(&Func, (char *)&QueryData, &Len, &Rc); // Call EHLLAPI
 if (Rc != 0) { // Check return code
 // ...Error handling
 }

All the parameters in the hllapi call are pointers and the return code of the EHLLAPI function is returned in the value of

the 4th parameter, not as the value of the function. For example, the following is not correct:

 if (hllapi(&Func, (char *)&QueryData, &Len, &Rc) != 0) { // WRONG!
 // ...Error handling
 }

Although the hllapi function is defined to return a long data type for IBM® Standard and Enhanced EHLLAPI, and void

data type for WinHLLAPI, its value is undefined and should not be used.

The second through fourth parameters of the hllapi call can return information to the application. The description of

each EHLLAPI function describes what, if any, information is returned in these parameters.

Data Structures
Many EHLLAPI functions use a formatted data structure to pass information to or from the application program. The

description of each function shows the layout of the data structure. The data passed to or from the EHLLAPI function

must exist in storage exactly as documented, byte for byte. Note that the structure layout is the same for all IBM®

Standard and WinHLLAPI 16- and 32-bit applications. Data structures for the IBM® Enhanced 32-bit applications are

packed to a 4-byte alignment.

It is highly recommended that the supplied header file and data structure definitions be used to ensure proper data

alignment and layout. Although it is technically possible, the following is not recommended:

 char QueryData[20]; // Not recommended
 ...
 Func = HA_QUERY_SESSION_STATUS;
 hllapi(&Func, QueryData, &Len, &Rc);
 if (QueryData[13] == 'F') {
 // ...this is a 5250 session
 }

The recommended way to write this function would be:

 #include "hapi_c.h"
 struct HLDQuerySessionStatus QueryData; // Recommended
 ...
 Func = HA_QUERY_SESSION_STATUS;

9

Emulator Programming

10

 hllapi(&Func, (char *)&QueryData, &Len, &Rc);
 if (QueryData.qsst_sestype == 'F') {
 // ...this is a 5250 session
 }

Memory Allocation
EHLLAPI functions do not allocate or free memory. The application program must preallocate buffer space for

EHLLAPI functions which require it before calling the hllapi entry point. The buffer space may be pre-allocated as a

dynamic variable such as:

 struct HLDQuerySessionStatus QueryBuff;

or it may be allocated by a call to a C library or operating system function such as:

 struct HLDQuerySessionStatus *QueryBuff;
 ...
 QueryBuff = malloc(sizeof(struct HLDQuerySessionStatus));

In any case, the application is responsible for allocating sufficient buffer space before calling EHLLAPI functions and

for freeing buffers when they are not needed.

EHLLAPI Return Codes
EHLLAPI functions return a completion code or return codein the 4th parameter of the hllapi function call (except

for the Convert Position or RowCol (99) function). The return code indicates the success or failure of the requested

function.

Unless indicated otherwise in the description of each function, the following table shows the meaning of each return

code value. Some functions may have a slightly different interpretation of these return codes; refer to the individual

function descriptions for details.

Table 3. EHLLAPI Return Codes

Return Code Explanation

0 The function successfully executed, or no update since the last call was issued.

1 An incorrect host presentation space ID was specified. The specified session either was not

connected, does not exist, or is a logical printer session.

2 A parameter error was encountered, or an incorrect function number was specified. (Refer to

the individual function for details.)

4 The execution of the function was inhibited because the target presentation space was busy, in

X CLOCK state (X []), or in X SYSTEM state.

5 The execution of the function was inhibited for some reason other than those stated in return

code 4.

6 A data error was encountered due to specification of an incorrect parameter (for example, a

length error causing truncation).

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

Table 3. EHLLAPI Return Codes (continued)

Return Code Explanation

7 The specified presentation space position was not valid.

8 A functional procedure error was encountered (for example, use of conflicting functions or

missing prerequisite functions).

9 A system error was encountered.

10 This function is not available for EHLLAPI.

11 This resource is not available.

12 This session stopped.

24 The string was not found, or the presentation space is unformatted.

25 Keystrokes were not available on input queue.

26 A host event occurred. See Query Host Update (24) for details.

27 File transfer was ended by a Ctrl+Break command.

28 Field length was 0.

31 Keystroke queue overflow. Keystrokes were lost.

32 An application has already connected to this session for communications.

33 Reserved.

34 The message sent to the host was canceled.

35 The message sent from the host was canceled.

36 Contact with the host was lost.

37 Inbound communication has been disabled.

38 The requested function has not completed its execution.

39 Another DDM session is already connected.

40 The disconnection attempt was successful, but there were asynchronous requests that had not

been completed at the time of the disconnection.

41 The buffer you requested is being used by another application.

42 There are no outstanding requests that match.

43 The API was already locked by another EHLLAPI application (on LOCK) or API not locked (on

UNLOCK).

Compiling and Linking
Linkingdescription

The application program can be linked using dynamic linking method. This means that we can link the entry point by

performing the dynamic linking. In this case, the application uses operating system calls to load the correct DLL and

obtain the entry point address at run time.

The following table shows which .DLL should be used for dynamic loading.

11

Emulator Programming

12

Interface Entry Point DLL

IBM® Standard (64-bit) hllapi EHLAPI32.DLL

IBM® Enhanced (64-bit) hllapi PCSHLL32.DLL

WinHLLAPI (64-bit) winhllapi WHLAPI32.DLL

Dynamic Link Method
LinkingDynamic Link MethodUsing the dynamic link method the application makes calls to the operating system at run time to load the Z and I

Emulator for Windows EHLLAPI module and to locate the hllapi entry point within it. This method requires more code

in the application but gives the application greater control over error conditions. For example, the application can

display a specific error message to the user if the Z and I Emulator for Windows EHLLAPI module cannot be found.

To use dynamic linking, the application needs to load the appropriate Z and I Emulator for Windows module and

locate the entry point. It is recommended that the entry point be located by its ordinal number and not by name. The

ordinal number is defined in the header file. The following 32-bit Windows® code loads the IBM® Standard 32-bit

EHLLAPI module, locates the hllapi entry point, and makes an EHLLAPI function call.

 #include "hapi_c.h"

 HMODULE Hmod; // Handle of PCSHLL32.DLL
 long (APIENTRY hllapi)(int *, char *, int *, int *); // Function pointer
 int HFunc, HLen, HRc; // Function parameters
 char HBuff[1]; // Function parameters

 Hmod = LoadLibrary("PCSHLL32.DLL"); // Load EHLLAPI module
 if (Hmod == NULL) {
 // ... Error, cannot load EHLLAPI module
 }

 hllapi = GetProcAddress(Hmod, MAKEINTRESOURCE(ord_hllapi));
 // Get EHLLAPI entry point
 if (hllapi == NULL) {
 // ... Error, cannot find EHLLAPI entry point
 }

 HFunc = HA_RESET_SYSTEM; // Run EHLLAPI function
 HLen = 0;
 HRc = 0;
 (*hllapi)(&Func, HBuff, &HLen, &HRc);
 if (HRc != 0) {
 // ... EHLLAPI access error
 }

Multithreading
MultithreadingHCL Enhanced EHLLAPI (32-bit) and HCL® Standard EHLLAPI 16-bit connect on a per process basis. All threads

access the same connected host session. The thread that performs the connections must also perform the

disconnection.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

HCL® Standard EHLLAPI (32-bit) and WinHLLAPI connect on a per thread basis. Each thread must maintain its own

connections. This allows a multithreaded process to maintain connections to more than one connected host session

at a time. This eliminates the need for multi-process schemes when using a WinHLLAPI program to coordinate data

between different hosts. It also puts the burden of connecting and disconnecting as necessary on the individual

thread.

Presentation Spaces
Many EHLLAPI functions require a presentation space ID (PSID) to indicate which host emulator session is to be

used for the function. (This is also referred to as the short session ID). A presentation space ID is a single character in

the range A to Z. There are a maximum of 26 sessions.

IBM® Enhanced 32-Bit Interface Presentation Space IDs
presentation spaceEnhanced 32-bit interfaceFor IBM® Enhanced EHLLAPI applications, the session ID is extended with three additional bytes. These extended

session bytes must be set to zero for future compatibility. This is most easily accomplished by setting the contents

of EHLLAPI buffers to all binary zero before filling them in with the required information. For example, the following

might be used to query the status of session B:

 #include "hapi_c.h"
 int HFunc, HLen, HRc; // Function parameters
 struct HLDPMWindowStatus StatusData; // Function parameters

 Func = HA_PM_WINDOW_STATUS;
 HLen = sizeof(StatusData);
 HRc = 0;

 // Set data buffer to zeros and fill in request
 memset(&StatusData, 0x00, sizeof(StatusData));
 StatusData.cwin_shortname = 'B'; // Short session ID
 StatusData.cwin_option = 0x02; // Query command

 hllapi(&Func, (char *)&StatusData, &HLen, &HRc);

Types of Presentation Spaces
presentation spacetypesAn emulator session can be configured as a display session or a printer session. EHLLAPI applications cannot

connect to printer or router sessions of PC400. The Query Sessions (10) function can be used to determine the type

of a particular session.

Size of Presentation Spaces
An emulator display session can be configured for a range of screen sizes from 1920 bytes (24x80 screen size) to

9920 bytes (62x160 screen size). Some EHLLAPI functions such as Copy PS to String (8) require the application to

13

Emulator Programming

14

allocate enough storage to hold (possibly) the entire presentation space. The size of the presentation space for a

given session can be obtained using the Query Session Status (22) function.

Presentation Space IDs
EHLLAPI functions interact with only one presentation space at a time. The presentation space ID (PSID) is used to

identify the particular presentation space in which a function is to operate. presentation spaceidentifierfunction

For some functions, the PSID is contained in a preceding call to the Connect Presentation Space (1) function. For

other functions, presentation spacehow specified the PSID is contained in the calling data string parameter.

Host-Connected Presentation Space
Connection to the host presentation space (or session) is controlled by using the Connect Presentation Space (1)

and Disconnect Presentation Space (2) functions. The status of the connection determines whether some functions

can be executed. It also affects how the PSID is defined. The following text explains how to control the status of the

connection to the host presentation space:

• At any given time, there can be either no host-connected presentation space, or there can be one and only one

host-connected presentation space.

• There is no default host-connected presentation space.

• Following a connect, there is one and only one host-connected presentation space. The host presentation

space that is connected is identified in the calling data string parameter of the connect function. Connect Presentation Space (1)interaction with disconnect Disconnect Presentation Space (2)interaction with connect

• A subsequent call to connect can be executed with no intervening disconnect. In this case, there is still one

and only one host-connected presentation space. Again, the host presentation space that is connected is

identified in the calling data string parameter of the connect function.

• Following a disconnect, there is no host-connected presentation space. This rule applies following multiple

consecutive calls to connect or following a single call to connect.

• You cannot connect to a logical printer session.

Presentation Space ID Handling
The PSID is used to specify the host presentation space (or session) in which you desire a function to operate. The

way the PSID is handled is affected by two factors: presentation spaceidentifierhow processed

1. The method used to specify the PSID:

a. As the calling data string parameter of a preceding call to the Connect Presentation Space (1)

function

b. As a character in the calling data string of the function being executed. Handling varies depending on

whether the character is:

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

• A letter A through Z

• A blank or a null

2. The status of the connection to the host presentation space.

The following paragraphs describe how the PSID is handled for the various combinations of these two factors.

PSID Handling for Functions Requiring Connect
Some functions interact only with the host-connected presentation space. These functions require the Connect

Presentation Space (1) function as a prerequisite call. The PSID for these functions is determined by the Connect

Presentation Space (1) and the Disconnect Presentation Space (2) functions as follows:

• When there is no host-connected presentation space, these functions do not interact with any presentation

space. A return code of 1 is generated.

• When there is one host-connected presentation space, these functions interact with the presentation space

specified in the calling data string parameter of the most recent call to the Connect Presentation Space (1)

function.

PSID Handling for Functions Not Requiring Connect
Some functions can interact with a host presentation space whether it is connected or not. These functions allow you

to specify the PSID in the calling data string parameter. They are as follows:

• Connect Presentation Space (1)

• Convert Position RowCol (99)

• Get Key (51)

• Post Intercept Status (52)

• Query Close Intercept (42)

• Query Host Update (24)

• Query Session Status (22)

• Start Close Intercept (41)

• Start Host Notification (23)

• Start Keystroke Intercept (50)

• Stop Close Intercept (43)

• Stop Host Notification (25)

• Stop Keystroke Intercept (53)

All except the first two of these functions allow you to specify the PSID using either:

• A letter A through Z

• A blank or a null presentation spaceidentifierletter specifiernull specifierblank specifier

15

Emulator Programming

16

The first two functions require that a letter be used to specify the PSID.

When there is no host-connected presentation space, the following rules apply:

• The function can interact with any host presentation space if a letter, not a blank or a null, is used to specify

the PSID.

• If a blank or a null is used to specify the PSID, a return code of 1 is generated. The function does not execute.

• Using a letter to specify the PSID does not establish a host-connected presentation space, except on a

connect PS request.

When there is one host-connected presentation space, the following rules apply:

• The function can interact with any host presentation space if a letter is used to specify the PSID.

• If a blank or a null is used to specify the PSID, the function operates in the presentation space identified in the

most recent call to the Connect Presentation Space (1) function.

• Using a letter to specify the PSID does not change the established PSID of the host-connected presentation

space, except on a connect PS request.

The following functions are available for printer sessions:

• Start Host Notification (23)

• Query Host Update (24)

• Stop Host Notification (25)

Sharing EHLLAPI Presentation Space between Processes
More than one EHLLAPI application can share a presentation space if the applications support sharing (that is, if they

were developed to work together or if they exhibit predictable behavior1). To determine which applications support

sharing, EHLLAPI applications are specified as one of following types:

• Supervisory

• Exclusive write with read privilege allowed

• Exclusive write without read privilege allowed

• Super write

• Read

The type of shared access can be defined by setting the following read and write sharing options for each function in

the Set Session Parameters (9) function call:

1. This means that two EHLLAPI programs will not be vying for the same Presentation Space at the same time;

or that there is logic in those programs which will allow the program to wait until the PS is available; or that the

applications never use the Session in a way which would lock out other applications.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

SUPER_WRITE
The application allows other applications that allow sharing and have write access permissions to concurrently

connect to the same presentation space. The originating application performs supervisory-type functions but does

not create errors for other applications that share the presentation space.

WRITE_SUPER
The application requires write access and allows only supervisory applications to concurrently connect to its

presentation space. This is the default value.

WRITE_WRITE
The application requires write access and allows partner or other applications with predictable behavior to share the

presentation space.

WRITE_READ
The application requires write access and allows other applications that perform read-only functions to share the

presentation space. The application is also allowed to copy the presentation space and perform other read-only

operations as usual.

WRITE_NONE
The application has exclusive use of the presentation space. No other applications are allowed to share the

presentation space, including supervisory applications. The application is allowed to copy the presentation space and

perform read-only operations as usual.

READ_WRITE
The application requires only read access to monitor the presentation space and allows other applications that

perform read or write, or both, functions to share the presentation space. The application is also allowed to copy the

presentation space and perform other read-only operations as usual.

Note: Sharing presentation space is not available between threads in a process.

Table 4. EHLLAPI Read and Write Sharing Option Combinations

Calling Applica

tion

Super_Write Write_Super Write_Write Write_Read Write_None Read_Write

Super_Write Yes Yes Yes No No Yes

Write_Super (de

fault)

Yes No No No No No

Write_Write Yes No Yes No No Yes

Write_Read No No No No No Yes

17

Emulator Programming

18

Table 4. EHLLAPI Read and Write Sharing Option Combinations (continued)

Calling Applica

tion

Super_Write Write_Super Write_Write Write_Read Write_None Read_Write

Write_None No No No No No No

Read_Write Yes No Yes Yes No Yes

In addition to specifying compatible read and write access options, applications that are designed to work together

but cannot allow others to work in the same presentation space can optionally define a keyword, KEY$nnnnnnnn, in

the Set Session Parameters (9) function call. This keyword allows only those applications that use the same keyword

to share the presentation space.

Note:

1. The Start Keystroke Intercept (50) function is non-shareable. Only one application at a time can trap

keystrokes.

2. The Connect To Presentation Space (1) and Start Keystroke Intercept (50) functions share common

subsystem functions. Successful requests by an application to share either of these functions

can affect the requests of these two functions by other applications. For example, if application

A successfully requests a Connect To Presentation Space (1) with Write_Read access and KEY

$abcdefgh as the keyword, a request by application B to Connect To Presentation Space (1) or Start

Keystroke Intercept (50) is successful only if both applications have set compatible read and write

options.

Table 5. Prerequisite Functions and Associated Dependent Functions

Prerequisite Call Functions Access

Allocate Communications

Buffer (120)

Free Communication Buffer (120) N/A

Connect Window

Service (101)

Change PS Window Name (106)

Change Switch List Name (105)

Disconnect Window

Service (102)

Query Window Service (103)

Window Status (104)

Write

Read

Query=Read

Set=Write

Write

Connect Presentation

Space (1)

Copy Field to String (34)

Copy OIA (13)

Copy Presentation Space (5)

Copy Presentation Space to String (8)

Copy Presentation Space to Clipboard (35)

Copy String to Field (33)

Copy String to Presentation Space (15)

Read

Read

Read

Read

Read

Write

Write

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

Table 5. Prerequisite Functions and Associated Dependent Functions (continued)

Prerequisite Call Functions Access

Disconnect Presentation Space (2)

Find Field Length (32)

Find Field Position (31)

Query Cursor Location (7)

Query Field Attribute (14)

Paste Clipboard to Presentation Space (36)

Release (12)

Reserve (11)

Search Field (30)

Search Presentation Space (6)

Send key (3)

Set Cursor (40)

Start Playing Macro (110)

Wait (4)

Write

Read

Read

Read

Read

Write

Write

Write

Read

Read

Read

Write

Write

Read

Connect Structured Field (120) Disconnect Structured Field (121)

Get Request Completion (125)

Read Structured Field (126)

Write Structured Field (127)

N/A

Read Structured Field (126) Get Request Completion (125) N/A

Start Close Intercept (41) Query Close Intercept (42)

Stop Close Intercept (43)

N/A

Start Host Notification (23) Query Host Update (24)

Stop Host Notification (25)

Start Keystroke Intercept (50) Get Key (51)

Post Intercept Status (52)

Stop Keystroke Intercept (53)

Send Key (3) if edit keystrokes are to

be sent (edit keystroked support is

available in Enhanced Mode)

N/A

Write Structured Field (127) Get Request Completion (125) N/A

Locking Presentation Space
An application, even if specified with shared presentation space, can obtain exclusive control of a presentation space

by using the Lock Presentation Space API (60) or the Lock Windows® Services API (61) functions. Requests by the

other applications to use a presentation space locked by these functions are queued and processed in first-in-first-out

(FIFO) order when the originating application unlocks the presentation space.

19

Emulator Programming

20

If the application that locked the presentation space does not unlock it by using the same call with an Unlock option

or Reset System (21) call, the lock is removed when the application terminates or the session stops.

Using mouse actions to select, copy, and paste text in the Presentation Space
The following mouse actions can be used in the Presentation Space.

• Select a word by double-clicking the left mouse button.

• Copy a selected word by clicking the right mouse button.

• Paste a copied word by double-clicking the mouse right button.

ASCII Mnemonics
Keystrokes originating at a host keyboard might have a corresponding ASCII value. The response of the Get Key (51)

function to a keystroke depends on whether the key is defined and also on whether the key is defined as an ASCII

value or an ASCII mnemonic.

The keyboard for one session might not be capable of producing some codes needed by the another session. ASCII

mnemonics that represent these codes keyboard, session session keyboard can be included in the data string parameter of the Send Key (3) function.

The capabilities of the Send Key (3) function and the Get Key (51) function allow sessions to exchange keystrokes

that might not be represented by ASCII values or by an available key. A set of mnemonics mnemonicsfor Send Key sending keystrokesmnemonics keyboard mnemonicsgeneral that can be generated

from a keyboard is provided. These mnemonics let you use ASCII characters to represent the special function keys of

the workstation keyboard.

Mnemonics for unshifted keys consist of the escape character followed by an abbreviation. This is also true for the

shift keys themselves, Upper shift, Alt, and Ctrl. Mnemonics for shifted keys consist of the mnemonic for the shift key

followed by the mnemonic for the unshifted key. Hence the mnemonic for a shifted key is a 4-character sequence of

escape character, abbreviation, escape character, abbreviation.

The default escape character is @. You can change the value of the escape character to any other character with

the ESC=c option of the Set Session Parameters (9) function. The following text uses the default escape character,

however.

Shift indicators that are not part of the ASCII character set are represented to the host application by 2-byte ASCII

mnemonics as follows:

Upper shift @S

Alt @A

Ctrl @r

shift key mnemonics mnemonicsshift key

Mnemonics for these shift indicators are never received separately by an application. Likewise, they are never sent

separately by an application. Shift indicator mnemonics are always accompanied by a non-shift-indicator character or

mnemonic.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

The abbreviations used make the mnemonics for special keys easy to remember. An alphabetic key code has been

used for the most common keys. For example, the Clear key is C; the Tab key is T, and so on. Please note that the

uppercase and lowercase alphabetic characters are mnemonic abbreviations for different keys.

The following text describes the use of these functions. Get Key (51) Send Key (3)

General
All defined keys are represented by either:

• A 1-byte ASCII value that is part of the 256-element ASCII character set, or

• A 2-, 4-, or 6-byte ASCII mnemonic

mnemonicsASCII characters, ASCII

To represent a key defined as an ASCII character, a 1-byte ASCII value that corresponds to that character is used.

To represent a key defined as a function, a 2-, 4-, or 6-byte ASCII mnemonic that corresponds to that function is used.

For example, to represent the backtab key, @B is used. To represent PF1, @1 is used. To represent Erase Input, @A@F is

used. See the following lists:

@B Left Tab @0 Home @h PF17

@C Clear @1 PF1/F1 @i PF18

@D Delete @2 PF2/F2 @j PF19

@E Enter @3 PF3/F3 @k PF20

@F Erase EOF @4 PF4/F4 @l PF21

@H Help (PC400) @5 PF5/F5 @m PF22

@I Insert @6 PF6/F6 @n PF23

@J Jump @7 PF7/F7 @o PF24

@L Cursor Left @8 PF8/F8 @q End

@N New Line @9 PF9/F9 @u Page UP (PC400)

@O Space @a PF10/F10 @v Page Down (PC400)

@P Print @b PF11/F11 @x PA1

@R Reset @c PF12/F12 @y PA2

@T Right Tab @d PF13 @z PA3

@U Cursor Up @e PF14 @@ @ (at) symbol

@V Cursor Down @f PF15 @$ Alternate Cursor

@Z Cursor Right

@A@C Test (PC400) @A@e Pink (PC/3270)

@A@D Word Delete @A@f Green (PC/3270)

@A@E Field Exit @A@g Yellow (PC/3270)

@A@F Erase Input @A@h Blue (PC/3270)

21

Emulator Programming

22

@A@H System Request @A@i Turquoise (PC/3270)

@A@I Insert Toggle @A@j White (PC/3270)

@A@J Cursor Select @A@l Reset Host Color (PC/3270)

@A@L Cursor Left Fast @A@t Print (Personal Computer)

@A@Q Attention @A@u Rollup (PC400)

@A@R Device Cancel @A@v Rolldown (PC400)

@A@T Print Presentation Space @A@y Forward Word Tab

@A@U Cursor Up Fast @A@z Backward Word Tab

@A@V Cursor Down Fast @A@- Field - (PC400)

@A@Z Cursor Right Fast @A@+ Field + (PC400)

@A@9 Reverse Video @A@< Record Backspace (PC400)

@A@b Underscore (PC/3270) @S@E Print Presentation Space on Host (PC400)

@A@c Reset Reverse Video (PC/3270) @S@x Dup

@A@d Red (PC/3270) @S@y Field Mark

Note:

1. The first @ symbol in the first table represents the escape character. The first and second @ symbol

in the second table is the escape character. The @ symbol is the default escape character. You can

change the value of the escape character using the ESC=c option of the Set Session Parameters (9)

function. escape character character, escape

If you change the escape character to #, the literal sequences used to represent the Backtab, Home,

and Erase Input keys become #B, #0, and #A#F, respectively.

Also, the literal sequence used to represent the @ symbol becomes #@.

2. If you send the mnemonic for print screen (that is, either @P or @A@T), place it at the end of the calling

data string.

3. If you send the mnemonic for device cancel (that is, @A@R), it is passed through with no error message;

however, local copy is not stopped.

Get Key (51) Function
If the terminal operator types a key defined as an ASCII character, the host application receives a 1-byte ASCII value

that corresponds to that character.

If the operator types a key defined as a function, the host application receives a 2-, 4-, or 6-byte ASCII mnemonic that

corresponds to that function. For example, if the Backtab key is typed, @B is received. If PF1 is pressed, @1 is received.

If Erase Input is pressed, @A@F is received.

If the operator types a defined shift key combination, the host application receives the ASCII character, or the 2-, 4-, or

6-byte ASCII mnemonic that corresponds to the defined character or function.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

If the operator types an individual key that is not defined, the Get Key (51) function returns a return code of 20 and

nothing is sent to the host application.

The Get Key (51) function prefixes all characters and mnemonics sent to the host application with two ASCII

characters. The first ASCII character is the PSID of the host presentation space to which the keystrokes are sent.

The other character is an A, S, or M for ASCII, special shift, or mnemonic, respectively. See Return Parameters on

page 85.

Send Key (3) Function
To send an ASCII character to another session, include that character in the data string parameter of the Send Key (3)

function.

To send a function key to another session, include the ASCII mnemonic for that function in the data string parameter

of the Send Key (3) function.

If the Send Key (3) function sends an unrecognized mnemonic to the host session a return code rejecting the key

might result.

Debugging
As an aid in debugging EHLLAPI applications, the Trace Facility of Z and I Emulator for Windows may be used. This

facility will produce a log of all EHLLAPI calls, parameters, return values, and return codes. For more information on

using the Trace Facility, refer to Administrator's Guide and Reference.

A Simple EHLLAPI Sample Program
The following sample Windows® application will enter the character string "Hello World!" in the first input field of host

session 'A'.

 #include <stdlib.h>
 #include <stdio.h>
 #include <windows.h>
 #include "hapi_c.h"

 int main(char **argv, int argc) {
 int HFunc, HLen, HRc;
 char HBuff[1];
 struct HLDConnectPS ConnBuff;
 // Send Key string for HOME+string+ENTER:
 char SendString[] = "@0Hello World!@E";

 HFunc = HA_RESET_SYSTEM;
 HLen = 0;
 HRc = 0;
 hllapi(&HFunc, HBuff, &HLen, &HRc);
 if (HRc != HARC_SUCCESS) {
 printf("Unable to access EHLLAPI.\n");

23

Emulator Programming

24

 return 1;
 }

 HFunc = HA_CONNECT_PS;
 HLen = sizeof(ConnBuff);
 HRc = 0;
 memset(&ConnBuff, 0x00, sizeof(ConnBuff));
 ConnBuff.stps_shortname = 'A';
 hllapi(&HFunc, (char *)&ConnBuff, &HLen, &HRc);
 switch (HRc) {
 case HARC_SUCCESS:
 case HARC_BUSY:
 case HARC_LOCKED: // All these are OK
 break;
 case HARC_INVALID_PS:
 printf("Host session A does not exist.\n");
 return 1;
 case HARC_UNAVAILABLE:
 printf("Host session A is in use by another EHLLAPI application.\n");
 return 1;
 case HARC_SYSTEM_ERROR:
 printf("System error connecting to session A.\n");
 return 1;
 default:
 printf("Error connecting to session A.\n");
 return 1;
 }

 HFunc = HA_SENDKEY;
 HLen = strlen(SendString);
 HRc = 0;
 hllapi(&HFunc, SendString, &HLen, &HRc);
 switch (HRc) {
 case HARC_SUCCESS:
 break;
 case HARC_BUSY:
 case HARC_LOCKED:
 printf("Send failed, host session locked or busy.\n");
 break;
 default:
 printf("Send failed.\n");
 break;
 }

 HFunc = HA_DISCONNECT_PS;
 HLen = 0;
 HRc = 0;
 hllapi(&HFunc, HBuff, &HLen, &HRc);

 printf("EHLLAPI program ended.\n");
 return 0;
}

The application could be built with the following command:

 nmake /a all

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

Standard and Enhanced Interface Considerations
There is no functional difference between the standard and enhanced EHLLAPI interfaces on a given platform.

However there are other important differences:

• The enhanced EHLLAPI interface extends the presentation space ID (PSID) from 1 byte to 4 bytes. Currently

the additional bytes are not used, but your application should set them to binary zeros to ensure compatibility

with future versions of enhanced EHLLAPI.

• The position (offset) of data elements in memory buffers passed to and from EHLLAPI functions are different.

Data elements in enhanced EHLLAPI are aligned to double-word boundaries. Data elements in standard

EHLLAPI are not aligned in any particular way. EHLLAPI applications should not be coded to set or retrieve

data in the buffers by offset (byte) values. Instead, the supplied data structures in the HAPI_C.H file should be

used to set and retrieve data elements. This will ensure that data is set and retrieved from the correct position

for both 16- and 32-bit programs.

By prefilling EHLLAPI data buffers with binary zeros, and using the data structures supplied in HAPI_C.H, an

application can be compiled for standard or enhanced operation without any source code changes. For example, the

following section of source code syntax code would work for standard EHLLAPI but would fail for enhanced EHLLAPI:

 #include "hapi_c.h"
 ...
 int Func, Len, Rc;
 char Buff[18];
 char SessType;

 Func = HA_QUERY_SESSION_STATUS; // Function
 Len = 18; // Buffer length
 Rc = 0;
 Buff[0] = 'A' // Session to query
 hllapi(&Func, Buff, &Len, &Rc); // Execute function

 SessType = Buff[9]; // Get session type
 ...

The above example would fail if compiled as a enhanced EHLLAPI application because:

• The application does not set the extended session ID bytes to zero.

• The buffer length for this function is 20, not 18.

• The session type indicator is not at offset 9 in the data buffer, it is at offset 12.

The following is the same function written to work correctly if compiled for standard or enhanced operation. Changed

lines are indicated with a >:

 #include "hapi_c.h"
 ...
 int Func, Len, Rc;
> struct HLDQuerySessionStatus Buff;
 char SessType;

 Func = HA_QUERY_SESSION_STATUS; // Function
> Len = sizeof(Buff); // Buffer length

25

Emulator Programming

26

 Rc = 0;
> memset(&Buff, 0x00, sizeof(Buff));// Zero buffer
> Buff.qsst_shortname = 'A'; // Session to query
 hllapi(&Func, (char *)&Buff, &Len, &Rc); // Execute function

> SessType = Buff.qsst_sestype; // Get session type
 ...

Host Automation Scenarios
The sample scenarios presented here provide conceptual information about activities that can be facilitated by using

EHLLAPI. The scenarios deal with the duties your EHLLAPI programmed operator can perform in these areas:

• Host system operation, including:

◦ Search function

◦ Sending keystrokes

• Distributed processing, including:

◦ Data extraction

◦ File transfer

• Integrating interfaces

Scenario 1. A Search Function
There are four phases in a typical host system transaction:

1. Starting the transaction

2. Waiting for the host system to respond

3. Analyzing the response to see if it is the expected response

4. Extracting and using the data from the response

Your programmed operator can use a series of EHLLAPI functions to mimic these actions. After determining the

correct starting point for the host system transaction, the programmed operator can call the Search Presentation

Space (6) function to determine which keyword messages or prompting messages are on the display screen.

Next, the programmed operator can use the Send Key (3) function to type data into a host system session and enter a

host system transaction. Then the programmed operator can:

• Use the Wait (4) function Wait (4) that waits for the X CLOCK, X [], or X SYSTEM condition to end (or returns a

keyboard-locked condition if the terminal has locked up).

If the keyboard is inhibited, your EHLLAPI program can call the Copy OIA (13) function to get more information

about the error condition. Copy OIA (13)

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

• Use the Search Presentation Space (6) function Search Presentation Space (6) to look for an expected keyword to validate that the proper

response had been received.

• Use the Copy Presentation Space to String (8) function Copy Presentation Space to String (8) (or any of several data access functions) to extract

the desired data.

The Search Presentation Space (6) function is critical to simulate another task of the terminal operator. Some host

systems do not stay locked in X CLOCK, X [], or X SYSTEM mode until they respond; instead, they quickly unlock the

keyboard and allow the operator to stack other requests. In this environment, the terminal operator depends on some

other visual prompt to know that the data has returned (perhaps a screen title or label). The Search Presentation

Space (6) function allows your EHLLAPI program to search the presentation space while waiting. Also, while waiting

for a response, calling the Pause (18) function allows other DOS sessions Pause (18) to share the central processing unit

resource. The Pause (18) function has an option that allows your EHLLAPI program to wait for a host system update

event to occur.

If no host system event occurs after a reasonable time-out period, your EHLLAPI program could call a customized

error message such as:

No Response From Host. Retry?

In this environment, program revisions become very important considerations, because the programmed operator

must be reprogrammed for even minor changes in the display messages.

For example, if a terminal operator expects the message:

Enter Part Number:

as a prompt, he or she will probably be able to respond properly to an application change that produces the message:

Enter Component Number:

However, because the programmed operator is looking for a literal keyword string, subtle changes in message syntax,

even as trivial as uppercase versus lowercase, can make the program take a preprogrammed error action.

Scenario 2. Sending Keystrokes
There are several considerations that demand attention in designing programs that send keystrokes to the host

system. In some application environments, issuing a command is as simple as typing a string and pressing Enter.

Other applications involve more complex formatted screens in which data can be entered into any one of several

fields. In this environment you must understand the keystrokes required to fill in the display screen.

The Tab key mnemonic (@T; see General on page 21 for a full list of mnemonics) can be used to skip between

fields. When sending keystrokes to a field using the Send Key (3) function, you should be aware of the field lengths

and contents. If you fill the fields completely presentation spacecursor movement cursor movement and the next attribute byte is autoskip, your cursor will then be moved to

the next field. If you then issued a tab, you would skip to yet another field.

Likewise, if your keystrokes do not completely fill the field, there might be data left from prior input. You should use

the Erase End of Field (EOF) command to clear this residual data.

27

Emulator Programming

28

Scenario 3. Distributed Processing
Some applications fall into the category called collaborative. These applications provide a single end-user interface,

but their processing is performed at two or more different physical locations.

An EHLLAPI application can interact with host system applications by intercepting the communication between the

host system and the terminal user. The host system presentation space is the vehicle used to intercept this data. The

local application can request to be notified each time the presentation space is updated or whenever an AID key is

pressed by the operator.

This workstation application can then cooperate with a host system application in any of the following ways:

• On a field or presentation space basis using either the copy functions that address fields (Copy String to

Field (33) function or Copy Field to String (34) function) or the functions that let you copy from and into

presentation spaces (for example, Copy String to Presentation Space (15) function or Copy Presentation

Space to String (8) function).Copy String to Field (33)Copy Field to String (34)

• On a keystroke basis, using the Send Key (3) function.

• On a file basis, for large blocks of data. You can have your application use the EHLLAPI file transfer capability

(using Send File (90) function or Receive File (91) function) to transfer data or functions (such as load

modules) and have it processed locally or remotely.Send File (90)generalReceive File (91)general

Scenario 4. File Transfer
In this scenario, assume that you want to automate a file transfer:

• You could begin by using the procedure discussed in the search scenario earlier to log on to a host system

session.

• Instead of using one of the copy functions (which are inefficient for copying many screens of data), your

EHLLAPI program could call file transfer functions Send File (90) and Receive File (91) to transfer data.

• Upon successful completion:

◦ If the Send File (90) function finished executing, your EHLLAPI program could submit a batch job using

either a copy function or the Send Key (3) function before logging off.

◦ If the Receive File (91) function finished executing, your EHLLAPI program could start up a local

application.

Scenario 5. Automation
An application can provide all the keystrokes for another application or can intersperse keystrokes to the target

destination with those from the keyboard. Sometimes, to do this, Reserve (11) Release (12) the application must lock out other sources of

keystroke input that might be destined for a target application or presentation space (using the Reserve (11) function)

and the later unlock it (using the Release (12) function).

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

The origin of keystrokes presented to any application is determined by the design of the application. Keystrokes can

originate from:

• The keyboard

• Data integrated into the source application

• Secondary storage retrieved through the DOS interface

• The Z and I Emulator for Windows interface

In all cases the keystrokes that are provided to the target application are indistinguishable from the ordinary operator

input.

Scenario 6. Keystroke Filtering
An application that acts as a filter can intercept a keystroke coming from EHLLAPI (either from the keyboard or a

source application) that is targeted for another destination. The keystroke can then be:

• Ignored (that is, deleted)

• Redirected to another application

• Validated

• Converted (for example, uppercase to lowercase)

• Enhanced (through keyboard macros)

Figure 1: Keystroke Flow on page 30 provides a simplified representation of the keystroke flow and the objects

within a keyboard enhancement environment.

29

Emulator Programming

30

Figure 1. Keystroke Flow

Scenario 7. Keyboard Enhancement
This scenario makes use of filtering to create an enhancer application program. An enhancer application program

is one that monitors the data coming in from the keyboard and changes it in some specified way. Typically, these

application programs use instructions called keyboard macros, which tell them what keystrokes to look for and

what changes to make. The change might involve suppressing a keystroke (so it appears to the target application

as though it was never sent), replacing a keystroke with another, or replacing single keystroke with a series of

keystrokes.

To do this using EHLLAPI, you might construct this scenario:

1. Your EHLLAPI application program calls the Connect Presentation Space (1) function to connect to the

presentation space whose keystrokes are to be filtered.

2. Your EHLLAPI program next calls the Start Keystroke Intercept (50) function specifying the L option. This

causes all keystrokes to be routed to the filtering application program.

3. The filtering application program can now define a loop in which:

a. The Get Key (51) function intercepts all keystrokes being sent to the target presentation space.

b. The filtering application examines each keystroke and performs a keyboard macro task, such as:

• Abbreviating program commands so that three- or four-keystroke command can be condensed

into a single keystroke

• Customizing commands so that they are easier to remember or consistent with other software

packages

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming

• Creating boiler plates for contracts or frequently used letters

• Rearranging the keyboard for concurrent applications that use the same keys for differing

functions

For example, the filtering application might convert a key combination such as Alt+Y into a command

to move the cursor to column 35 of the second line in presentation space and write the string “XYZ

Tool Corporation, Dallas, Texas”.

c. If a keystroke is rejected, your EHLLAPI program can cause a beep to be sounded, using the Post

Intercept Status (52) function. Post Intercept Status (52)

4. After your EHLLAPI program exits the filtering loop, Stop Keystroke Intercept (53), you can call the Stop Keystroke Intercept (53) function to end the filtering

process.

31

32

Chapter 3. EHLLAPI Functions
This chapter describes each individual Z and I Emulator for Windows EHLLAPI function in detail and explains how to

use the EHLLAPI program sampler. The functions are arranged alphabetically by name. The functions are explained

for both the standard and enhanced interfaces.

Note: Throughout this chapter WinHLLAPI, IBM® Standard 32-bit HLLAPI and 16-bit EHLLAPI are referred to

as Standard Interface, and IBM® Enhanced 32-bit EHLLAPI is referred to as Enhanced Interface.

Page Layout Conventions
All EHLLAPI function calls are presented in the same format so that you can quickly retrieve the information you need.

The format is:

• Function Name (Function Number)

◦ Prerequisite Calls

◦ Call Parameters

◦ Return Parameters

◦ Notes on Using This Function

Prerequisite Calls
“Prerequisite Calls” lists any calls that must be made prior to calling the function being discussed. function callsprerequisite calls prerequisite calls, general

Call Parameters
“Call Parameters” lists the parameters that must be defined in your program to call the discussed EHLLAPI function

and explains how those parameters are to be defined. If a parameter is never used by a function, then NA (not

applicable) is listed. If a parameter can be overridden by certain values of session parameters defined with calls to

the Set Session Parameters (9) function, such session parameters are named.

Return Parameters
“Return Parameters” lists the parameters that must be received by your program after a call to the discussed EHLLAPI

function and explains how to interpret those parameters.

Chapter 3. EHLLAPI Functions

Notes on Using This Function
“Notes on Using This Function” lists any session options that affect the function under discussion. It also provides

technical information about using the function and application development tips.

Summary of EHLLAPI Functions
Table 6: EHLLAPI Functions Summary on page 33 is the summary of the EHLLAPI functions:

Table 6. EHLLAPI Functions Summary

Function 3270 5250 VT

Connect Presentation Space (1) on page 41 Yes Yes Yes

Disconnect Presentation Space (2) on page 76 Yes Yes Yes

Send Key (3) on page 129 Yes Yes Yes

Wait (4) on page 162 Yes Yes Yes

Copy Presentation Space (5) on page 59 Yes Yes Yes

Search Presentation Space (6) on page 126 Yes Yes Yes

Query Cursor Location (7) on page 102 Yes Yes Yes

Copy Presentation Space to String (8) on page 64 Yes Yes Yes

Set Session Parameters (9) on page 138 Yes Yes Yes

Query Sessions (10) on page 109 Yes Yes Yes

Reserve (11) on page 122 Yes Yes Yes

Release (12) on page 121 Yes Yes Yes

Copy OIA (13) on page 50 Yes Yes Yes

Query Field Attribute (14) on page 103 Yes Yes Yes

Copy String to Presentation Space (15) on page 70 Yes Yes Yes

Pause (18) on page 95 Yes Yes Yes

Query System (20) on page 111 Yes Yes Yes

Reset System (21) on page 123 Yes Yes Yes

Query Session Status (22) on page 107 Yes Yes Yes

Start Host Notification (23) on page 152 Yes Yes Yes

Query Host Update (24) on page 106 Yes Yes Yes

Stop Host Notification (25) on page 160 Yes Yes Yes

Search Field (30) on page 124 Yes Yes Yes

Find Field Position (31) on page 82 Yes Yes Yes

Find Field Length (32) on page 80 Yes Yes Yes

Copy String to Field (33) on page 68 Yes Yes Yes

Copy Field to String (34) on page 46 Yes Yes Yes

Copy Presentation Space to Clipboard (35) on page 71 Yes Yes Yes

Paste Clipboard to Presentation Space (36) on page 73 Yes Yes Yes

33

Emulator Programming

34

Table 6. EHLLAPI Functions Summary (continued)

Function 3270 5250 VT

Set Cursor (40) on page 137 Yes Yes Yes

Start Close Intercept (41) on page 148 Yes Yes Yes

Query Close Intercept (42) on page 99 Yes Yes Yes

Stop Close Intercept (43) on page 159 Yes Yes Yes

Query Additional Field Attribute DRB on page 98 No Yes No

Start Keystroke Intercept (50) on page 155 Yes Yes Yes

Get Key (51) on page 84 Yes Yes Yes

Post Intercept Status (52) on page 96 Yes Yes Yes

Stop Keystroke Intercept (53) on page 161 Yes Yes Yes

Lock Presentation Space API (60) on page 91 Yes No No

Lock Window Services API (61) on page 93 Yes No No

Start Communication Notification (80) on page 150 Yes Yes Yes

Query Communication Event (81) on page 101 Yes Yes Yes

Stop Communication Notification (82) on page 160 Yes Yes Yes

Send File (90) on page 179 Yes Yes No

Receive File (91) on page 119 Yes Yes No

Cancel File Transfer (92) on page 36 Yes Yes Yes

Convert Position or Convert RowCol (99) on page 44 Yes Yes Yes

Connect Window Services (101) on page 43 Yes Yes Yes

Disconnect Window Service (102) on page 77 Yes Yes Yes

Query Window Coordinates (103) on page 113 Yes Yes Yes

Window Status (104) on page 163 Yes Yes Yes

Change Switch List LT Name (105) on page 38 Yes Yes Yes

Change PS Window Name (106) on page 37 Yes Yes Yes

Start Playing Macro (110) on page 158 Yes Yes Yes

Connect for Structured Fields (120) on page 39 Yes No No

Disconnect from Structured Fields (121) on page 75 Yes No No

Query Communications Buffer Size (122) on page 100 Yes No No

Allocate Communications Buffer (123) on page 34 Yes No No

Free Communications Buffer (124) on page 83 Yes No No

Get Request Completion (125) on page 88 Yes No No

Read Structured Fields (126) on page 114 Yes No No

Write Structured Fields (127) on page 168 Yes No No

Chapter 3. EHLLAPI Functions

Allocate Communications Buffer (123)

3270 5250 VT

Yes No No

The Allocate Communications Buffer function obtains a buffer from the operating system. A buffer address must be

passed on both the Read Structured Fields (126) and Write Structured Fields (127) functions.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 123

Data String See the following table

Length Must be 6 Must be 8

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1–2 1–4 32-bit or 16-bit buffer length. (0 < size ≤ (64 KB-256 bytes)=X'FF00')

3–6 5–8 32-bit allocated buffer address (returned)

Return Parameters

Return Code Explanation

0 The Allocate Communications Buffer function was successful.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

Notes on Using This Function

1. The EHLLAPI obtains a buffer from the operating system memory management and places the buffer address

into the return parameter string. The requested buffer size (length) is also passed in the parameter string. The

buffer size can be from 1 byte to 64 KB minus 256 bytes (X'FF00' bytes) in length.

See “Query Communications Buffer Size (122)” for information regarding buffer size.

2. Buffers obtained using this function must not be shared among different processes. If this is attempted, the

applications will experience unpredictable results.

35

Emulator Programming

36

3. An EHLLAPI application must issue a Free Communications Buffer (124) function to free the allocated

memory.

4. A maximum of 10 buffers can be allocated to an application. If this limit is reached, a return code for resource

unavailable (RC=11) will be returned.

5. The Reset System (21) function frees buffers allocated by this function.

Cancel File Transfer (92)

3270 5250 VT

Yes Yes Yes

The Cancel File Transfer function causes any current EHLLAPI initiated Send File or Receive File for the specified

session to immediately return.

Prerequisite Calls
Send File (90) or Receive File (91)

Call Parameters

Enhanced Interface

Function Number Must be 92

Data String 1-character short name of the host presentation space. A blank or null indicates re

quest for updates to the host-connected presentation space

Length 4 is implied

PS Position NA

The calling data structure contains these elements

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function was called for the

PSID

9 A system error was encountered

Chapter 3. EHLLAPI Functions

Notes on Using This Function
Since both Send File (90) and Receive File (91) are blocking calls, this function must always be issued on a different

thread.

Change PS Window Name (106)

3270 5250 VT

Yes Yes Yes

The Change PS Window Name function allows the application to specify a new name for the presentation space

window or reset the presentation space window to the default name.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 106

Data String See the following table

Length Must be specified (See note.) Must be 68

PS Position NA

Note: The data string length must be specified (normally 3–63 for PC/3270, 4–63 for PC400, 68 for enhanced

interface).

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2 5 A change request option value, select one of:

• X'01' for changing the presentation space window name.

• X'02' for resetting the presentation space window name.

3–63 6–66 An ASCII string of from 1 (for PC/3270) or 2 (for PC400) to 61 bytes in

cluding a terminator byte. The ASCII string must end with a NULL charac

ter. This string must contain at least one non-NULL character followed by

a NULL character.

37

Emulator Programming

38

Byte Definition

67–68 Reserved

Return Parameters

Return Code Explanation

0 The Change PS Window Name function was successful.

1 An incorrect host presentation space short session ID was specified, or the host

presentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function
A string is ended at the first NULL character found. The NULL character overrides the specified string length. If the

NULL character is not at the end of the specified length, the last byte at the specified length is replaced by a NULL

character, and the remainder of the data string is lost. If the NULL character is found before the specified length, the

string is truncated at that point, and the remainder of the data string is lost.

If the application fails to reset the presentation space name before exiting, the exit list processing resets the name.

Change Switch List LT Name (105)

3270 5250 VT

Yes Yes Yes

The Change Switch List LT Name function allows the application to change or reset a switch list for a selected logical

terminal (LT). The application must specify on the call the name to be inserted in the switch list.

Note: This is for compatibility with Communication Manager EHLLAPI, and has the same result as the

Change PS Window Name (106) function.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 105

Data String See the following table

Chapter 3. EHLLAPI Functions

Standard Interface Enhanced Interface

Length Normally 4–63 Must be 68

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2 5 A change request option; select:

• X'01' for changing a switch list LT name

• X'02' for resetting a switch list LT name

6–66 An ASCII string of 2 to 61 bytes including a terminator byte. The ASCII

string must end with a NULL character. This string must contain at least

one non-NULL character followed by a NULL character.

3–63

67–68 Reserved

Return Parameters

Return Code Explanation

0 The Change Switch List LT Name function was successful.

1 An incorrect host presentation space short session ID was specified, or the host

presentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function
A string is ended at the first NULL character found. The NULL character overrides the specified string length. If the

NULL character is not at the end of the specified length, the last byte at the specified length is replaced by a NULL

character, and the remainder of the data string is lost. If the NULL character is found before the specified length, the

string is truncated at that point, and the remainder of the data string is lost.

If the application fails to reset the switch list LT name before exiting, the exit list processing resets the name.

Connect for Structured Fields (120)

3270 5250 VT

Yes No No

39

Emulator Programming

40

The Connect for Structured Fields function allows an application to establish a connection to the emulation program

to exchange structured field data with a host application. The workstation application must provide the Query Reply

data field and must point to it with in the parameter string. The destination/origin ID returned by the emulator will be

returned to the application.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 120

Data String See the following table

Length 7 or 11 Must be 16

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2–5 5–8 Address of the Query Reply data buffer

9–10 Destination/origin unique ID. (16-bit word, returned)6–7

11–12 Reserved

8–11 13–16 The data in these position is ignored by EHLLAPI. However, no error is

caused if the migrating program has data in these positions. This data is

accepted to provide compatibility with migrating applications.

Return Parameters

Return Code Explanation

0 The Connect for Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid, or the host pre

sentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

10 The function is not supported by the emulation program.

32 An application has already connected to this session for communications (success

ful connect).

39 One DDM session is already connected to this session.

Chapter 3. EHLLAPI Functions

Notes on Using This Function

1. EHLLAPI scans the query reply buffers for the destination/origin ID (DOID) self-defining parameter (SDP) to

determine the contents of the DOID field of the query reply. If this value is X'0000', the emulator will assign

a DOID to the application and EHLLAPI will fill in the DOID field of the query reply with the assigned ID. If the

value specified by the application in the DOID field of the query reply is a nonzero value, the emulator will

assign the specified value as the application’s DOID, assuming that the ID has not been previously assigned. If

the specified DOID is already in use, a return code of 2 will be returned by EHLLAPI.

2. The application should build the Query Reply Data structures in the application’s private memory. Refer to

Query Reply Data Structures Supported by EHLLAPI on page 219, for the detailed formats and usages of the

query reply data structures supported by EHLLAPI.

3. Only cursory checking is performed on the Query Reply Data. Only the ID and the length of the structure are

checked for validity.

4. Only one DDM base type connect is allowed per host session. If the DDM connection supports the self-

defining parameter (SDP) for the destination origin ID (DOID), then multiple connects are allowed.

5. If return code RC=32 or RC=39 is received, an application is already connected to the selected session and

use of that presentation space should be approached with caution. Conflicts with file transfer, and other

EHLLAPI applications might result.

Connect Presentation Space (1)

3270 5250 VT

Yes Yes Yes

The Connect Presentation Space function establishes a connection between your EHLLAPI application program and

the host presentation space.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 1

Data String 1-character short name of the host presentation space

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

41

Emulator Programming

42

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters
The Connect Presentation Space function sets the return code to indicate the status of the attempt and, if successful,

the status of the host presentation space.

Return Code Explanation

0 The Connect Presentation Space function was successful; the host presentation

space is unlocked and ready for input.

1 An incorrect host presentation space ID was specified. The specified session either

does not exist or is a logical printer session. This return code could also mean that

the API Setting for EHLLAPI is not set on.

4 Successful connection was achieved, but the host presentation space is busy.

5 Successful connection was achieved, but the host presentation space is locked (in

put inhibited).

9 A system error was encountered.

11 This resource is unavailable. The host presentation space is already being used by

another system function.

Notes on Using This Function

1. The Connect Presentation Space function is affected by the CONLOG/CONPHYS session option. Connect Presentation Space (1)functions where not required

2. An EHLLAPI application cannot be connected to multiple presentation spaces concurrently. Calls requiring the

Connect Presentation Space function as a prerequisite use the currently connected presentation space. For

example, if an application is connected to presentation space A, B, and C in that order, the application must

connect to B or A again to issue functions.

3. Each thread that requests a Connect Presentation Space must have a corresponding Disconnect

Presentation Space (2), or one of the threads must issue a Reset System (21), which affects all threads and

disconnects any remaining connections.

4. More than one EHLLAPI application can share a presentation space, if the applications support sharing (that

is, if they were developed to work together and if they exhibit predictable behavior) and have compatible read/

write access and keyword options as set in the Set Sessions Parameters (9) function. For more information,

see Set Session Parameters (9) on page 138.

5. Because the Connect Presentation Space and Start Keystroke Intercept (50) functions share common

subsystem functions, successful requests by an application to share either of these functions for the same

session can affect the request of these two functions by other applications. For example, if application

A successfully requests a Connect Presentation Space for a session with Write_Read access and KEY

Chapter 3. EHLLAPI Functions

$abcdefgh as the keyword, a request by application B to Connect Presentation Space for a session and Start

Keystroke Intercept is successful only if both applications have set compatible read/write options.

6. You cannot connect to a session that is defined as a logical printer session. Refer to Administrator's Guide

and Reference for more information.

Connect Window Services (101)

3270 5250 VT

Yes Yes Yes

The Connect Window Services function allows the application to manage the presentation space windows. Only one

EHLLAPI application at a time can be connected to a presentation space for window services.

An EHLLAPI application can connect to more than one presentation space concurrently for window services.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 101

Data String 1-character short session ID of the host presentation space

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Connect Window Services function was successful.

1 An incorrect host presentation space short session ID was specified, or the Ses

sions Window Services manager was not connected. This return code could also

mean that the API Setting for EHLLAPI is not set on.

9 A system error occurred.

43

Emulator Programming

44

Return Code Explanation

10 The function is not supported by the emulation program.

11 This resource is unavailable. The host presentation space is already being used by

another system function.

Notes on Using This Function

1. An EHLLAPI application can be connected to multiple presentation space windows at the same time. The

application can go back and forth between the connected presentation space windows without having to

disconnect. For example, if an application is connected to presentation space windows A, B, and C, the

application can access all of A, B, and C at the same time, and the other applications cannot access A, B, or C.

2. A Connect Window Services function is sufficient for the process. However, each thread that requests

a Connect Window Services must have a corresponding Disconnect Window Services (102), or one of

the threads must issue a Reset System (21), which affects all threads and disconnects any remaining

connections.

Convert Position or Convert RowCol (99)

3270 5250 VT

Yes Yes Yes

The Convert Position or Convert RowCol function converts the host presentation space positional value into the

display row and column coordinates or converts the display row and column coordinates into the host presentation

space positional value. This function does not change the cursor position.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 99

Data String Host presentation space short name and P for the Convert Position func

tion (for example, AP converts the presentation space position of session

A); or Host presentation space short name and R for the Convert RowCol

function (for example, AR converts the row and column coordinates of ses

sion A).

Length Row, when R is specified as the second character in the data string para

meter. The lower limit for valid input is 1. The upper limit for valid input de

Chapter 3. EHLLAPI Functions

Standard Interface Enhanced Interface

pends on how your host presentation space is configured. See Notes on

Using This Function on page 46.

NA when P is specified as the second character in the data string parame

ter.

PS Position Column, when R is specified as the second character in the data string pa

rameter. The lower limit for valid input is 1. The upper limit for valid input

ranges from 24 to 43 depending on how your host presentation space is

configured. See Notes on Using This Function on page 46.

Host presentation space position, when P is specified as the second char

acter in the data string parameter. The lower limit for valid input is 1. The

upper limit for valid input ranges from 1920 to 3564 depending on how

your host presentation space is configured. See Notes on Using This Func

tion on page 46.

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

5 Convert option P or R2

6–8 Reserved

Return Parameters
This function returns a length and a return code.

Length:

For the Convert Position function (P as the second character in the calling data string), a number

between 1 and 43 (for PC/3270) or 27 (for PC400) is returned. This value is the number of the row that

contains the PS position contained in the calling PS position parameter. The upper limit can be smaller

than 43 (for PC/3270) or 27 (for PC400) depending on how the host presentation space is configured.

For the Convert RowCol function (R as the second character in the calling data string), a value of 0

indicates an error in the input value for row (calling length parameter).

Return Code:

The Convert Position or RowCol function is the exception to the rule that the fourth return parameter

always contains a return code. For this function, the value returned in the fourth parameter is called

a status code. This status code can contain data or a return code. Your application must provide for

processing of this status code to prevent unpredictable results or an error.

45

Emulator Programming

46

• If the value of the fourth parameter is 0, 9998, or 9999, it is a return code.

• For the Convert Position function (P as the second character of the calling data string), a value

in the range of 1–132 is the number of the column that contains the PS position passed in the

calling PS Position parameter. The upper limit can be smaller than 132 depending on how the

host presentation space is configured.

• For the Convert RowCol function (R as the second character of the calling data string), a value

in the range of 1–3564 represents the host presentation space position that corresponds to the

row and column values passed in the calling length and PS position parameters, respectively.

The upper limit can be smaller than 3564 depending on how the host presentation space is

configured.

The following status codes are defined:

Status Code Explanation

0 This is an incorrect PS position or column.

>0 This is the PS position or column.

9998 An incorrect host presentation space ID was specified or a system error occurred.

9999 Character 2 in the data string is not P or R.

Notes on Using This Function

1. To configure your presentation space, refer to Administrator's Guide and Reference

2. To find out how many rows and columns are in your presentation space, examine the returned data string

parameter for the Query Session Status (22) function. See Query Session Status (22) on page 107.

Copy Field to String (34)

3270 5250 VT

Yes Yes Yes

The Copy Field to String function transfers characters from a field in the host-connected presentation space into a

string.

The Copy Field to String function translates the characters in the host source presentation space into American

National Standard Code for Information Interchange (ASCII). Attribute bytes and other characters attribute bytes not represented in

ASCII normally are translated into blanks.

Prerequisite Calls
Connect Presentation Space (1)

Chapter 3. EHLLAPI Functions

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 34

Data String Preallocated target data string. When the Set Session Parameters (9)

function with Extended Attribute Bytes (EAB) option is issued, the length of

the data string must be at least twice the length of the field.

Length Number of bytes to copy (the length of the data string).

PS Position Identifies the target field. This can be the PS position of any byte within the

target field. Copy always starts at the beginning of the field.

Return Parameters
This function returns a data string, length, and a return code.

Data String:

A string containing data from the identified field in the host presentation space. The first byte in the

returned data string is the beginning byte of the identified field in the host presentation space. The

number of bytes in the returned data string is determined by the smaller of:

• Number of bytes specified in the calling length parameter

• Number of bytes in the identified field in the host presentation space

Length:

The length of the data returned.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Copy Field to String function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

6 The data to be copied and the target field are not the same size. The data is truncat

ed if the string length is smaller than the field copied.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

47

Emulator Programming

48

Notes on Using This Function

1. The field position and length information can be found by using the Find Field Position (31) and Find Field

Length (32) functions. The Copy Field to String function can be used with either protected or unprotected

fields, but only in a field-formatted host presentation space. 31, Find Field Position 32, Find Field Length Find Field Length (32) Find Field Position (31) presentation spacefield-formatted field-formatted PS

2. The copy is ended when one of the following conditions is encountered:

• When the end of the field is reached

• When the length of the target string is exceeded

3. An EAB can be returned when the Set Session Parameters (9) function EAB option is used. EAB is related to

each character in the presentation space and is returned preceding each character.

4. The Copy Field to String function is affected by the ATTRB/NOATTRB/NULLATTRB, the EAB/NOEAB, the XLATE/NOXLATE,

the DISPLAY/NODISPLAY, the DISPLAY/NODISPLAY session options. Refer to items 5 on page 141; 13 on

page 144 and 14 on page 145; 17 on page 145; and and for more information.

As previously stated, the return of attributes by the various Copy (5, 8, and 34) functions is affected by the Set

Session Parameters (9) function. The involved set session parameters have the following effect:

Set Session Parameter

Effect on the COPY Function

NOEAB and NOEAD

Attributes are not returned. Only text is copied from the presentation space to the user buffer.

EAB and NOXLATE

Attributes are returned as defined in the following tables.

EAB and XLATE

The colors used for the presentation space display are returned. Colors can be remapped; so the

attribute colors are not the ones returned by the COPY functions when XLATE and EAB are on at

the same time.

The returned character attributes are defined in the following tables. The attribute bit positions are in IBM®

format with bit 0 the left most bit in the byte.

3270 character attributes are returned from the host to the emulator. The following table applies when EAB

and NOXLATE are set.

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

2–4 Character color (Color remap can override this color definition.)

Chapter 3. EHLLAPI Functions

Bit Position Meaning

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–6 Character attributes

00 = Default value

7 Reserved

5250 character attributes are returned from the host to the emulator. The following table applies when EAB

and NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

1 Underline

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

The following table shows Z and I Emulator for Windows character color attributes. The following table

applies when EAB and XLATE are set.

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

49

Emulator Programming

50

Bit Position Meaning

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

For a PS/2® monochrome display, the characters in the application (workstation) session appear as various

shades of gray. This is required to give users their remapped colors in the EHLLAPI application session so

they can get what they see in their host application presentation spaces.

5. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. Refer

to Memory Allocation on page 10 for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on the status bar. By EXTEND_PS option, an EHLLAPI application can use the

same interface with Communication Manager EHLLAPI and valid presentation space is extended when this

condition occurs.

Copy OIA (13)

3270 5250 VT

Yes Yes Yes

Chapter 3. EHLLAPI Functions

The Copy OIA function returns the current operator information area (OIA) data from the host-connected presentation

space.

The OIA is located under the bottom dividing line of the screen and is used to display session status information

about the connection between the workstation and the host.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 13

Data String Preallocated target data string

Length 103 104

PS Position NA

Return Parameters
This function returns a data string and a return code.

Data String:

A 103-byte string for 16-bit and 104-byte string for 32-bit. See Format of the Returned OIA Data String on

page 52 for more information.

Return Code:

The following codes are defined:

Return Code Explanation

0 OIA data is returned. The target presentation space is unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length. OIA data was not returned.

4 OIA data is returned. The target presentation space is busy.

5 OIA data is returned. The target presentation space is locked. (Input inhibited)

9 An internal system error was encountered. OIA data was not returned.

Notes on Using This Function

1. The OIA Group consists of the bits that show the status of the connected sessions. The group is categorized

by the represented host function. (For example, Group 8 consists of the bits that show all conditions of the

input inhibit in the session.) The states of each group are ordered so that the high-order bits represent the

51

Emulator Programming

52

indicators of higher priority. That is, bit 7 has priority over bit 0. Therefore, if more than one state is active

within a group, the state with the highest priority is the active state within that group.

2. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. Refer

to Memory Allocation on page 10 for more information.

Format of the Returned OIA Data String
The OIA data string contains the following information:

Byte Definition

Standard Enhanced

1 1 The OIA format byte. The value is 1 (PC/3270), 9 (PC400), or 5 (VT).

2–81 2–81 The OIA image in the host code points.

82–103 OIA group indicator meanings.82–103

104 Reserved.

PC/3270 OIA Group Indicator Meanings and Its Image
The OIA image group consists of an 80-byte ASCII character string with no attribute bytes that contains the OIA image

in host code points. Figure 2: Host Presentation Space Characters on page 53 shows the hexadecimal codes presentation

spacecharacter table found in the host presentation space, and the characters they represent. The returned data can be translated into OIA

graphics characters. Refer to Quick Beginnings for information on the OIA indicators.

To translate the returned data into OIA graphics characters, proceed as follows:

1. Print the data returned in bytes 2 through 81 to the screen or to a printer.

2. Using the code page chart applicable to the device on which the output appears, find the hexadecimal value

corresponding to each character.

3. Using Figure 2: Host Presentation Space Characters on page 53, find the OIA graphics character

corresponding to each hexadecimal value found in step 2.

Note: Group 8 (byte 0) machine, communications, and program check images are followed by a three-digit

number related to the type of check.

The short session ID followed by X'20' is in column 7.

All group images are represented by Main Frame Interactive (MFI) hex code points.

Chapter 3. EHLLAPI Functions

Note: The OIA image data string position minus 1 position equals the OIA column.

Figure 2. Host Presentation Space Characters

• Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning

0–1 Reserved

2 SSCP-LU session owns screen

3 LU-LU session owns screen

4 Online and not owned

53

Emulator Programming

54

Bit Meaning

5 Subsystem ready

6–7 Reserved

• Group 2 (Offset 83): Character Selection

Bit Meaning

0 Reserved

1 APL

3 Alphanumeric

4–5 Reserved

• Group 3 (Offset 84): Shift State

Bit Meaning

0 Upper shift

1 Numeric

2 CAPS

3–7 Reserved

• Group 4 (Offset 85): PSS Group 1

Bit Meaning

0–7 Reserved

• Group 5 (Offset 86): Highlight Group 1

Bit Meaning

0 Operator selectable

1 Field inherit

2–7 Reserved

• Group 6 (Offset 87): Color Group 1

Bit Meaning

0 Operator selectable

1 Field inherit

2–7 Reserved

• Group 7 (Offset 88): Insert

Bit Meaning

0 Insert mode

1–7 Reserved

• Group 8 (Offset 89–93): Input Inhibited (5 bytes)

◦ Byte 1 (Offset 89)

Bit Meaning

0 Non-resettable machine check

Chapter 3. EHLLAPI Functions

Bit Meaning

1 Reserved

2 Machine check

3 Communications check

4 Program check

5–7 Reserved

◦ Byte 2 (Offset 90)

Bit Meaning

0 Device busy

1 Terminal wait

2 Minus symbol

3 Minus function

4 Too much entered

5–7 Reserved

◦ Byte 3 (Offset 91)

Bit Meaning

0–2 Reserved

3 Incorrect dead key combination, limited key.

4 Wrong place

5–7 Reserved

◦ Byte 4 (Offset 92)

Bit Meaning

0–1 Reserved

2 System wait

3–7 Reserved

◦ Byte 5 (Offset 93)

Bit Meaning

0–7 Reserved

• Group 9 (Offset 94): PSS Group 2

Bit Meaning

0–7 Reserved

• Group 10 (Offset 95): Highlight Group 2

Bit Meaning

0–7 Reserved

• Group 11 (Offset 96): Color Group 2

55

Emulator Programming

56

Bit Meaning

0–7 Reserved

• Group 12 (Offset 97): Communication Error Reminder

Bit Meaning

0-6 Communications error

1–7 Reserved

• Group 13 (Offset 98): Printer State

Bit Meaning

0–7 Reserved

• Group 14 (Offset 99): Graphics

Bit Meaning

0–7 Reserved

• Group 15 (Offset 100): Reserved

• Group 16 (Offset 101): Automatic Key Play/Record State

Bit Meaning

0–7 Reserved

• Group 17 (Offset 102): Automatic Key Quit/Stop State

Bit Meaning

0–7 Reserved

• Group 18 (Offset 103): Expanded State

Bit Meaning

0–7 Reserved

PC400 OIA Group Indicator Meanings and Its Image
Details of the OIA group are listed in the following tables.

• Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning Beginning Position of Data String

0–2 Reserved

3 System available 1

4 Reserved

5 Subsystem ready

6–7 Reserved

• Group 2 (Offset 83): Character Selection

Chapter 3. EHLLAPI Functions

Bit Meaning Beginning Position of Data String

0–1 Reserved

3 Alphanumeric

4–5 Reserved

• Group 3 (Offset 84): Shift State

Bit Meaning Beginning Position of Data String

0 Reserved

1 Keyboard shift 39

2 CAPS

3–6 Reserved

• Group 4 (Offset 85): PSS Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 5 (Offset 86): Highlight Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 6 (Offset 87): Color Group 1

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 7 (Offset 88): Insert

Bit Meaning Beginning Position of Data String

0 Insert mode 68

1–7 Reserved

• Group 8 (Offset 89–93): Input Inhibited (5 bytes)

◦ Byte 1 (Offset 89)

Bit Meaning Beginning Position of Data String

0–7 Reserved

◦ Byte 2 (Offset 90)

Bit Meaning Beginning Position of Data String

0–7 Reserved

◦ Byte 3 (Offset 91)

Bit Meaning Beginning Position of Data String

0–4 Reserved

5 Operator input error 64

6–7 Reserved

57

Emulator Programming

58

◦ Byte 4 (Offset 92)

Bit Meaning Beginning Position of Data String

0–1 Reserved

2 System wait 64

3–7 Reserved

◦ Byte 5 (Offset 93)

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 9 (Offset 94): PSS Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 10 (Offset 95): Highlight Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 11 (Offset 96): Color Group 2

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 12 (Offset 97): Communication Error Reminder

Bit Meaning Beginning Position of Data String

0 Communications Error

1–5 Reserved

7 Message wait 3

• Group 13 (Offset 98): Printer State

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 14 (Offset 99): Graphics

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 15 (Offset 100): Reserved

• Group 16 (Offset 101): Automatic Key Play/Record State

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 17 (Offset 102): Automatic Key Quit/Stop State

Chapter 3. EHLLAPI Functions

Bit Meaning Beginning Position of Data String

0–7 Reserved

• Group 18 (Offset 103): Expanded State

Bit Meaning Beginning Position of Data String

0–7 Reserved

VT Host OIA Group Indicator Meanings and Its Image
Details of the VT Host OIA group are listed in the following tables.

• Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning

5 Subsystem ready

• Group 2 (Offset 83): Character Selection

Bit Meaning

0 Upper shift

2 CAPS

• Group 7 (Offset 88): Insert

Bit Meaning

0 Insert mode

Some columns on the OIA line display different messages for VT than those messages displayed for 3270/5250. See

the following table for specific details.

Column Symbol

VT220 7

VT220 8

VT100

VT52

1–7

VTANSI

9 - 12 LOCK

61 - 64 HOLD

Copy Presentation Space (5)

3270 5250 VT

Yes Yes Yes

59

Emulator Programming

60

The Copy Presentation Space function copies the contents of the host-connected presentation space into a data

string that you define in your EHLLAPI application program.

The Copy Presentation Space function translates the characters in the host source presentation space into ASCII.

Attribute bytes and other characters not represented in ASCII normally are translated into blanks. If you do not want

the attribute bytes translated into blanks, you can override this translation with the ATTRB option under the Set

Session Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 5

Data String Preallocated target string the size of your host presentation space. This

can vary depending on how your host presentation space is configured.

When the Set Session Parameters (9) function with the EAB option is is

sued, the length of the data string must be at least twice the length of the

presentation space.

Length NA (the length of the host presentation space is implied).

PS Position NA.

Return Parameters
This function returns a data string, length, and a return code.

Data String:

Contents of the connected host presentation space.

Length:

Length of the data copied.

Return Code:

The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the application program. The

target presentation space was active, and the keyboard was unlocked.

1 Your program is not connected to a host session.

4 The host presentation space contents were copied. The connected host presenta

tion space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

Chapter 3. EHLLAPI Functions

Return Code Explanation

9 A system error was encountered.

Notes on Using This Function

1. An EAB can be returned when the Set Session Parameters (9) function EAB option is used. EAB is related to

each character in the presentation space and is returned preceding each character.

2. The Copy Presentation Space function is affected by the following session options:

• ATTRB/NOATTRB/NULLATTRB

• EAB/NOEAB

• XLATE/NOXLATE

• BLANK/NOBLANK

• DISPLAY/NODISPLAY

• EXTEND_PS/NOEXTEND_PS

Refer to items 5 on page 141; 13 on page 144, 14 on page 145, 15 on page 145 and 17 on page 145; and

and for more information.

If the target data string provided is not long enough to hold the requested data, unpredictable results can occur.

As previously stated, the return of attributes by the various Copy (5, 8, and 34) functions is affected by the Set

Session Parameters (9) function. The involved set session parameters have the following effect:

Set Session Parameter

Effect on the COPY Function

NOEAB and NOEAD

Attributes are not returned. Only text is copied from the presentation space to the user buffer.

EAB and NOXLATE

Attributes are returned as defined in the following tables.

EAB and XLATE

The colors used for the presentation space display are returned. Colors can be remapped; so the

attribute colors are not the ones returned by the Copy functions when XLATE and EAB are on at the

same time.

NOSO/SPACESO/SO

When NOSO is specified, it works as SPACESO. The size of the presentation space is not changed.

The returned character attributes are defined in the following tables. The attribute bit positions are in IBM® format

with bit 0 the left most bit in the byte.

3270 character attributes are returned from the host to the emulator. The following table applies when EAB and

NOXLATE are set.

61

Emulator Programming

62

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

2–4 Character color (Color remap can override this color definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–6 Character attribute

00 = Default value

7 Reserved

5250 character attributes are returned from the host to the emulator. The following table applies when EAB and

NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

1 Underline

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

Chapter 3. EHLLAPI Functions

The following table shows Z and I Emulator for Windows character color attributes. The following table applies when

EAB and XLATE are set.

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

For a PS/2® monochrome display, the characters in the application (workstation) session appear as various shades

of gray. This is required to give users their remapped colors in the EHLLAPI application session so they can get what

they see in their host application presentation spaces.

If you want to copy only a portion of the host presentation space, use the Copy Presentation Space to String (8)

function.

To use this function, preallocate memory to receive the returned data string parameter. The statements required

to preallocate this memory vary depending on the language in which your application is written. Refer to Memory

Allocation on page 10 for more information.

63

Emulator Programming

64

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Copy Presentation Space to String (8)

3270 5250 VT

Yes Yes Yes

The Copy Presentation Space to String function is used to copy all or part of the host-connected presentation space

into a data string that you define in your EHLLAPI application program.

The input PS position is the offset into the host presentation space. This offset is based on a layout in which the

upper-left corner (row 1/column 1) is location 1 and the bottom-right corner is 3564, which is the maximum screen

size for the host presentation space. The value of PS Position + (Length – 1) cannot exceed the configured size of

your host presentation space.

The Copy Presentation Space to String function translates the characters in the host source presentation space into

ASCII. Attribute bytes and other characters not represented in ASCII normally are translated into blanks. If you do not

want the attribute bytes translated into blanks, you can override this translation with the ATTRB option under the Set

Session Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1).

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 8

Data String Preallocated target string the size of your host presentation space. When

the Set Session Parameters (9) function with the EAB option is issued, the

length of the data string must be at least twice the length of the presenta

tion space.

Length Length of the target data string.

PS Position Position within the host presentation space of the first byte in your target

data string.

Chapter 3. EHLLAPI Functions

Return Parameters
This function returns a data string and a return code.

Data String:

Contents of the host presentation space.

Return Code:

The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the application program. The

target presentation space was active, and the keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of (Length - 1) + PS posi

tion is greater than the size of the connected host presentation space.

4 The host presentation space contents were copied. The host presentation space

was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function

1. An EAB can be returned when the Set Session Parameters (9) function EAB option is used. EAB is related to

each character in the presentation space and is returned following each character.

2. The Copy Presentation Space to String function is affected by the following options:

• ATTRB/NOATTRB/NULLATTRB

• EAB/NOEAB

• XLATE/NOXLATE

• BLANK/NOBLANK

• DISPLAY/NODISPLAY

• EXTEND_PS/NOEXTEND_PS

Refer to items 5 on page 141; 13 on page 144 and 14 on page 145; 15 on page 145; 17 on page 145;

and and

If the target data string provided is not large enough to hold the requested number of bytes, the copy ends

successfully (RC=0, 4, or 5) when the end of the target data string is reached.

As previously stated, the return of attributes by the various Copy (5, 8, and 34) functions is affected by the Set

Session Parameters (9) function. The involved set session parameters have the following effect:

Set Session Parameter

Effect on the Copy Function

65

Emulator Programming

66

NOEAB and NOEAD

Attributes are not returned. Only text is copied from the presentation space to the user buffer.

EAB and NOXLATE

Attributes are returned as defined in the following tables.

EAB and XLATE

The colors used for the presentation space display are returned. Colors can be remapped, so the

attribute colors are not the ones returned by the Copy functions when XLATE and EAB are on at

the same time.

The returned character attributes are defined in the following tables. The attribute bit positions are in IBM

format with bit 0 the left most bit in the byte.

• 3270 character attributes are returned from the host to the emulator. The following table applies when

EAB and NOXLATE are set.

Bit Position Meaning

0–1 Character highlighting

00 = Normal

01 = Blink

10 = Reverse video

11 = Underline

2–4 Character color (Color remap can override this color

definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White

5–7 Reserved

• 5250 character attributes are returned from the host to the emulator. The following table applies when

EAB and NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image

1 = Reverse image

1 Underline

Chapter 3. EHLLAPI Functions

Bit Position Meaning

0 = No underline

1 = Underline

2 Blink

0 = Not blink

1 = Blink

3 Separator of columns

0 = No separator

1 = Separator

4–7 Reserved

• VT character attributes are returned from the host to the emulator. The following table applies when

EAB and NOXLATE are set.

Bit Position Meaning

0-3 Reserved

4 Bold

1 = On

0 = Off

5 Underscore

1 = On

1 = Off

6 Blink

1 = On

0 = Off

7 Reverse

0 = On

1 = Off

• The following table shows Z and I Emulator for Windows character color attributes. The following table

applies when EAB and XLATE are set.

Bit Position Meaning

0–3 Background character colors

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

4–7 Foreground character colors

67

Emulator Programming

68

Bit Position Meaning

0000 = Black

0001 = Blue

0010 = Green

0011 = Cyan

0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)

0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

For a PS/2 monochrome display, the characters in the application (workstation) session appear as various

shades of gray. This is required to give users their remapped colors in the EHLLAPI application session so

they can get what they see in their host application presentation spaces.

3. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. Refer

to Memory Allocation on page 10 for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Copy String to Field (33)

3270 5250 VT

Yes Yes Yes

The Copy String to Field function transfers a string of characters into a specified field in the host-connected

presentation space. This function can be used only in a field-formatted host presentation space.

Chapter 3. EHLLAPI Functions

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 33

Data String String containing the data to be transferred to a target field in the host pre

sentation space.

Length Length, in number of bytes, of the source data string. Overridden if in EOT

mode.

PS Position Identifies the target field. This can be the PS position of any byte within the

target field. Copy always starts at the beginning of the field.

Return Parameters

Return Code Explanation

0 The Copy String to Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target field was protected or inhibited, or incorrect data was sent to the target

field (such as a field attribute).

6 Copy was completed, but data is truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function

1. The Copy String to Field function is affected by the following options:

• STRLEN/STREOT

• EOT

• EAB/NOEAB

• XLATE/NOXLATE

• PUTEAB/NOPUTEAB

Refer to items 1 on page 140 and 2 on page 140; 13 on page 144 and 14 on page 145; 18 on

page 145; and and for more information.

2. The string to be transferred is specified with the calling data string parameter. The string ends when one of

these three conditions is encountered:

69

Emulator Programming

70

• When an end-of-text (EOT) delimiter is encountered in the string if EOT mode was selected using the

Set Session Parameters (9) function. (See Set Session Parameters (9) on page 138).

• When the number specified in the length is reached if not in EOT mode.

• When an end-of-field is encountered in the field.

Note: If the field at the end of the host presentation space wraps, wrapping occurs when the end of

the presentation space is reached.

3. The keyboard mnemonics (see Send Key (3) function) cannot be sent using the Copy String to Field function.

4. The first byte of the data to be transferred is always placed at the beginning of the field that contains the

specified PS position.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Copy String to Presentation Space (15)

3270 5250 VT

Yes Yes Yes

The Copy String to Presentation Space function copies an ASCII data string directly into the host presentation space

at the location specified by the PS position calling parameter.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 15.

Data String String of ASCII data to be copied into the host presentation space.

Length Length, in number of bytes, of the source data string. Overridden if in EOT

mode.

PS Position Position in the host presentation space to begin the copy, a value between

1 and the configured size of your host presentation space.

Chapter 3. EHLLAPI Functions

Return Parameters

Return Code Explanation

0 The Copy String to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target presentation space is protected or inhibited, or incorrect data was sent to

the target presentation space (such as a field attribute byte).

6 The copy was completed, but the data was truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function

1. The Copy String to Presentation Space function is affected by the following options:

• STRLEN/STREOT

• EOT

• EAB/NOEAB

• XLATE/NOXLATE

• PUTEAB/NOPUTEAB

• EXTEND_PS/NOEXTEND_PS

Refer to items 1 on page 140 and 2 on page 140; 13 on page 144 and 14 on page 145; 18 on

page 145; and and for more information. attribute bytes specifying strings

2. The keyboard mnemonics (see Send Key (3) function) cannot be sent using the Copy String to Presentation

Space function.

3. The string ends when an end-of-text (EOT) delimiter is encountered in the string if EOT mode was selected

using the Set Session Parameters (9) function. (See Set Session Parameters (9) on page 138).

4. Although the Send Key (3) function accomplishes the same purpose, this function responds with the prompt

and enters a command more quickly. Because the Send Key (3) function emulates the terminal operator

typing the data from the keyboard, its process speed is slow for an application operating with a lot of data.

This function provides a faster input path to the host.

5. The original data (the copied string) cannot exceed the size of the presentation space.

6. This function call may cause a cursor movement to an unexpected position with some host applications. A

SendKey function may be a better choice for filling a field than this function.

Note: This only occurs with VT sessions or connections to an ASCII host.

71

Emulator Programming

72

Copy Presentation Space to Clipboard (35)

3270 5250 VT

Yes Yes Yes

The Copy Presentation Space to Clipboard function is used to copy all or part of the host-connected presentation

space into clipboard. The input PS position is the offset into the host presentation space. This offset is based on a

layout in which the upper-left corner (row 1/column 1) is location 1 and the bottom-right corner is 3564, which is the

maximum screen size for the host presentation space. The value of PS Position + (Length – 1) cannot exceed the

configured size of your host presentation space.

The Copy Presentation Space to Clipboard translates the characters in the host source presentation space into

ASCII. Attribute bytes and other characters not represented in ASCII normally are translated into blanks. If you do not

want the attribute bytes translated into blanks, you can override this translation with the ATTRB option under the Set

Sesssion Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 35.

Data String Preallocated target string the size of your host presentation space. When

the Set Session Parameters (9) function with the EAB option is issued, the

length of the data string must be at least twice the length of the presenta

tion space.

Length Length of the target data string

PS Position Position within the host presentation space of the first byte in your target

data string.

Return Parameters

Return Code Explanation

0 The host presentation space contents were copied to the clipboard. The target pre

sentation space was active, and the keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of (Length - 1) + PS posi

tion is greater than the size of the connected host presentation space.

4 The host presentation space contents were copied to clipboard. The host presenta

tion space was waiting for host response.

5 The host presentation space was copied to clipboard. The keyboard was locked.

Chapter 3. EHLLAPI Functions

Return Code Explanation

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function

1. An EAB can be returned when the Set Session Parameters (9) function EAB option is used. EAB is related to

each character in the presentation space and is returned following each character.

2. The Copy Presentation Space to Clipboard function is affected by the following options:

• ATTRB/NOATTRB/NULLATTRB

• EAB/NOEAB

• XLATE/NOXLATE

• BLANK/NOBLANK

• DISPLAY/NODISPLAY

• PUTEAB/NOPUTEAB

• EXTEND_PS/NOEXTEND_PS

specifying strings

3. The data string buffer is used in processing the data retrieved from presentation space and copy to clipboard.

If the data string buffer provided is not large enough to hold the requested number of bytes, the copy ends

successfully (RC=0, 4, or 5) when the end of the data string buffer is reached. As previously stated, the return

of attributes by the various Copy (5, 8, and 34) functions is affected by the Set Session Parameters (9)

function. The involved set session parameters have the following effect:

Set Session Parameter

Effect on the Copy Function

NOEAB and NOEAD

Attributes are not returned. Only text is copied from the presentation space to the clipboard.

EAB and NOXLATE

Attributes are returned as defined in the following tables.

EAB and XLATE

The colors used for the presentation space display are returned. Colors can be remapped, so the attribute

colors are not the ones returned by the Copy functions when XLATE and EAB are on at the same time.

Paste Clipboard to Presentation Space (36)

3270 5250 VT

Yes Yes Yes

73

Emulator Programming

74

The Paste Clipboard to Presentation Space function pastes an ASCII data string directly into the host presentation

space at the location specified by the PS position calling parameter.

Prerequisite Calls

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 36.

Data String String buffer that holds the data from clipboard to paste into the host pre

sentation space.

Length Length, in number of bytes to be pasted

PS Position Position in the host presentation space to begin the copy, a value between

1 and the configured size of your host presentation space.

Return Parameters

Return Code Explanation

0 The Paste Clipboard to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy

5 The target presentation space is protected or inhibited, or incorrect data was sent to

the target presentation space (such as a field attribute byte).

6 The copy was completed, but the data was truncated.

7 The copy was completed, but the data was truncated.

9 A system error was encountered.

Notes on Using This Function

1. The Paste Clipboard to Presentation Space function is affected by the following options:

• STRLEN/STREOT

• EAB/NOEAB

• EOT

• XLATE/NOXLATE

• PUTEAB/NOPUTEAB

• EXTEND_PS/NOEXTEND_PS

specifying strings

2. The string ends when an end-of-text (EOT) delimiter is encountered in the string if EOT mode was selected

using the Set Session Parameters (9) function. (See “Set Session Parameters (9)” on page 147).

3. The original data (the copied string) cannot exceed the size of the presentation space.

Chapter 3. EHLLAPI Functions

 String Meanings Single-byte character field

X'000C' (NULL)(FF) X'00'X'0C' (SB NULL)(SB FF) X'00'X'0C'

X'0E000C0F' (SO)(DB FF)(SI)

X'0E'X'000C'X'0F'

–S error

Note: SB means single-byte characters.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances, Communication

Manager 5250 emulation displays a 25th row. This occurs when either an error message from the host is displayed

or when the operator selects the SysReq key. Z and I Emulator for Windows always displays the same information

on the 24th row. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Disconnect from Structured Fields (121)

3270 5250 VT

Yes No No

The Disconnect from Structured Fields function drops the connection between the emulation program and the

EHLLAPI application. The EHLLAPI application must disconnect from the emulation program before exiting from the

system. The EHLLAPI application should issue this function request if a previous Connect for Structured Fields was

issued.

The Reset System (21) function will also disconnect any outstanding SF connections.

Prerequisite Calls
Connect for Structured Fields (120)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 121

Data String See the following table

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

75

Emulator Programming

76

Byte Definition

2–4 Reserved.

5–6 Destination/origin unique ID returned by the Connect for structured field

(120) functions.

2–3

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Disconnect from Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid or was not con

nected.

2 An error was made in specifying parameters.

9 A system error occurred.

40 Disconnected with asynchronous requests pending.

Notes on Using This Function

1. When a Disconnect from Structured Fields function is called, any outstanding asynchronous Read Structured

Fields (126) or Write Structured Fields (127) function requests are returned if the application issues the Get

Request Completion (125) function call. Use the asynchronous form of this function when cleaning up after

issuing a Disconnect call.

2. The Reset System (21) function will also free any outstanding asynchronous requests (requests that have not

been retrieved by the application using the Get Request Completion (125) function).

Disconnect Presentation Space (2)

3270 5250 VT

Yes Yes Yes

The Disconnect Presentation Space function drops the connection between your EHLLAPI application program

and the host presentation space. Also, if a host presentation space is reserved using the Reserve (11) function, it is

released upon execution of the Disconnect Presentation Space function.

Prerequisite Calls
Connect Presentation Space (1)

Chapter 3. EHLLAPI Functions

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 2

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Disconnect Presentation Space function was successful.

1 Your program was not currently connected to the host presentation space.

9 A system error was encountered.

Notes on Using This Function

1. After the Disconnect Presentation Space function is called, functions that interact with the host-connected

presentation space are no longer valid (for example, the Send Key (3), Wait (4), Reserve (11) and Release (12)

functions).

2. Your EHLLAPI application should disconnect from the host presentation space before exiting.

3. The Disconnect Presentation Space function does not reset the session parameters to the defaults. Your

EHLLAPI application must call the Reset System (21) function to accomplish this.

Disconnect Window Service (102)

3270 5250 VT

Yes Yes Yes

The Disconnect Window Service function disconnects the window services connection between the EHLLAPI

program and the specified host presentation space window.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 102

77

Emulator Programming

78

Standard Interface Enhanced Interface

Data String See the following table

Length 1 4

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Disconnect Window Service function was successful.

1 Your program is not connected for Window Services.

9 A system error occurred.

Notes on Using This Function
After the Disconnect Window Service function has been called, your application no longer manages the presentation

space window.

Before exiting the application, you should request a Disconnect Window Service function for all presentation

spaces that have been connected for Presentation Manager® services. If the application exits with an outstanding

connection for window services, the subsystem cancels the outstanding connection.

EditKey Intercept
This feature enables you to intercept Edit keys in addition to the existing all keystrokes and send them to a session in

a Windows 32-bit environment.

Prerequisites

1. Map the Edit functions in the Customize Keyboard window (for example Ctrl+C for edit copy function).

2. Call the Start Keystroke Intercept (50) EHLLAPI function with the call parameter data string value set. The

values are as follows:

Chapter 3. EHLLAPI Functions

Byte

Posi

tion

Contents

1 One of the following values:

• A specific host presentation space short name (PSID)

• A blank or null indicating a request for the host-connected host presentation space

2 to 4 Reserved

5 An option code character:

• D for AID keystrokes only

• L for all keystrokes

• E for all keystrokes and Edit keys

• M for requesting the asynchronous message mode of the notification (Windows only). If

M is specified, a code character D or L, or E must be placed in position 13

6 to 8 Reserved

9 to 12 If M is specified in position 5, the window handle of the window that receives the message. The

message is a non-zero return value of RegisterWindowMessage (PCSHLL).

13 If M is specified in position 5, one of the following values:

• D for AID keystrokes only

• L for all keystrokes

• E for all keystrokes and Edit keys

14 to

16

Reserved

3. To get the intercepted Edit keys, use the Get Key (51) EHLLAPI function. The key mnemonic returned in the

data string for the Edit keys will have M (keystroke type mnemonic) at the 5th byte position. The next 4 bytes

will have one of the following Edit key mnemonics based on the Edit key intercepted:

Key mnemonicKey intercepted

@W@C Edit Copy

@W@D Edit Clear

@W@E Edit Copy Ap

pend

@W@L Edit Copy Link

@W@N Edit Paste Next

@W@V Edit Paste

@W@X Edit Cut

@W@Z Edit Undo

4. To send Edit keys to the session, use the Send Key (3) EHLLAPI function. The data string passed as the call

parameter can specify the following Edit key mnemonics:

Key mnemonicKey sent

@W@C Edit Copy

79

Emulator Programming

80

Key mnemonicKey sent

@W@D Edit Clear

@W@E Edit Copy Ap

pend

@W@L Edit Copy Link

@W@N Edit Paste Next

@W@V Edit Paste

@W@X Edit Cut

@W@Z Edit Undo

Note:

1. You do not have to call the Get Key (51) EHLLAPI function to use the Send Key (3) function. For

both Get Key (51) and Send Key (3) functions to handle Edit keys, you must first call Start Keystroke

Intercept (50) with the 5th byte position set to E. If the 5th byte contains M, then position 13 must

contain E.

2. The expected return values for Start Keystroke Intercept (50), Get Key (51) and Send Key (3) functions

have not changed.

3. Any prerequisites from the existing documentation should be followed as well as the prerequisites

documented here.

Find Field Length (32)

3270 5250 VT

Yes Yes Yes

The Find Field Length function returns the length of a target field in the connected presentation space. This function

can be used to find either protected or unprotected fields, but only in a field-formatted host presentation space.

This function returns the number of characters contained in the field identified using the call PS position parameter.

This includes all characters from the beginning of the target field up to the character preceding the next attribute byte.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 32

Chapter 3. EHLLAPI Functions

Standard Interface Enhanced Interface

Data String See the following table

Length NA NA

PS Position See note

Note: PS Position: Identifies the field within the host presentation space at which to start the Find. It can be

the PS position of any byte within the field in which you desire the Find to start.

The calling 2-character data string can contain:

Code Explanation

␢ ␢ or T␢ This field

P␢ The previous field, either protected or unprotected.

N␢ The next field, either protected or unprotected

NP The next protected field

NU The next unprotected field

PP The previous protected field

PU The previous unprotected field

Note: The ␢ symbol represents a required blank.

Return Parameters
This function returns a length and a return code.

Length:

The following lengths are valid:

Length Explanation

= 0 When return code = 28, field length is 0. When return code = 24, host presentation

space is not field formatted.

> 0 Required field length in the host presentation space.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Find Field Length function was successful.

1 Your program is not connected to a host session.

2 A parameter error was encountered.

7 The host presentation space position is not valid.

9 A system error was encountered.

81

Emulator Programming

82

Return Code Explanation

24 No such field was found.

28 Field length of 0 bytes.

Notes on Using This Function

Except when ␢ ␢ or T␢ is used as the calling data string, if the field found is the same as the field from which

the Find started, a return code of 24 is returned.

Find Field Position (31)

3270 5250 VT

Yes Yes Yes

The Find Field Position function returns the beginning position of a target field in the host-connected presentation

space. This function can be used to find either protected or unprotected fields but only in a field-formatted host

presentation space.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 31

Data String See the following table

Length NA NA

PS Position See note

Note: PS Position: Identifies the field within the host presentation space at which to start the Find. It can be

the PS position of any byte within the field in which you want the Find to start.

The calling 2-character data string can contain:

Code Explanation

␢ ␢ or T␢ This field

P␢ The previous field, either protected or unprotected

N␢ The next field, either protected or unprotected

NP The next protected field

NU The next unprotected field

Chapter 3. EHLLAPI Functions

Code Explanation

PP The previous protected field

PU The previous unprotected field

Note: The ␢ symbol represents a required blank.

Return Parameters
This function returns a length and a return code.

Length:

The following lengths are valid:

Length Explanation

= 0 When return code = 28, field length is 0. When return code = 24, host presentation

space is not field-formatted.

> 0 Relative position of the requested field from the origin of the host presentation

space. This position is defined to be the first position after the attribute byte.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Find Field Position function was successful.

1 Your program is not connected to a host session.

2 A parameter error was encountered.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 No such field was found.

28 Field length of 0 bytes.

Notes on Using This Function

Except when ␢ ␢ or T␢ is used as the calling data string, if the field found is the same as the field from which

the Find started, a return code of 24 is returned.

Free Communications Buffer (124)

3270 5250 VT

Yes No No

83

Emulator Programming

84

The Free Communications Buffer function returns to management memory a buffer that is no longer required by the

application. The application should free the buffer prior to exiting the system.

Prerequisite Calls
Allocate Communications Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 124

Data String See the following table

Length Must be 6 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1–2 1–4 Must be 0

3–6 5–8 The address of the buffer

Return Parameters

Return Code Explanation

0 The Free Communications Buffer function was successful.

2 An error was made in specifying parameters.

9 A system error occurred.

41 The buffer is in use.

Notes on Using This Function

1. If the application attempts to free an in use buffer, the free request will be denied and a return code of 41 will

be returned.

2. An application should request the Free Communications Buffer (124) function before exiting for all

communication buffers that have been allocated using the Allocate Communications Buffer (123) function.

3. The Reset System (21) function will free buffers allocated by the Allocate Communications Buffer (123)

function.

Chapter 3. EHLLAPI Functions

Get Key (51)

3270 5250 VT

Yes Yes Yes

The Get Key function lets your EHLLAPI application program retrieve a keystroke from a session specified by the Start

Keystroke Intercept (50) function and either process, accept, or reject that keystroke. By placing this function in a

loop, you can use it to intercept a string. string interception, Get Key (51) keystroke interception, Get Key (51)

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 51

Data String See the following table

Length 8 12

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short name (PSID)

• A blank or null indicating a function call for the host-connected

presentation

1

2–4 Reserved

5–11 Blanks that hold space for the symbolic representation of the requested

data

2–8

12 Reserved

Return Parameters
This function returns a data string and a return code.

Data String:

See the following table:

85

Emulator Programming

86

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short name (PSID)

• A blank or null indicating a function call for the host-connected

presentation

1

2–4 Reserved

2 5 An option code character, one of the following characters:

• A for ASCII returned

• M for keystroke mnemonic

• S for special mnemonic

3–8 6–11 These 6 bytes of the preallocated buffer space are used internally to en

queue and dequeue keystrokes. Possible combinations include:

• Byte 3 contains an ASCII character and byte 4 contains X'00'

• Byte 3 contains the escape character (either @ or another charac

ter specified using the ESC=c option of function 9) and byte 4 con

tains a 1-byte abbreviation for a function. (See ASCII Mnemonics

on page 20)

• Bytes 5 through 8 might be similar to bytes 3 and 4 if the returned

ASCII mnemonic is longer than 2 bytes (for example, if the ASCII

mnemonic represents Attn @A@Q, byte 5 contains @ and byte 6 con

tains Q). If not used, bytes 5 through 8 are set to zero (X'00').

For clarification, some examples of returned data strings are provided below:

Note: The @ symbol is the default escape character. The value of the escape character can be set to any

keystroke represented in ASCII by using the ESC=c option of the Set Session Parameters (9) function. If the

escape character has been changed to another character using this option, the @ symbol in the following

examples is replaced by the other character.

escape character character, escape

16-Bit Interface
EAt

E is the presentation space short name. The keystrokes are returned as ASCII (A), and the returned key

is the lowercase letter t. (Bytes 4–8 = X'00').

Chapter 3. EHLLAPI Functions

EM@2

E is the presentation space short name. The keystrokes are returned as mnemonics, and the returned

key is PF2 (Bytes 5–8 = X'00').

32-Bit Interface

E␢ ␢ ␢ At

E is the presentation space short name. The keystrokes are returned as ASCII (A), and the returned key

is the lowercase letter t. (Bytes 7–11 = X'00').

E␢ ␢ ␢ M@2

E is the presentation space short name. The keystrokes are returned as mnemonics, and the returned

key is PF2 (Bytes 8–11 = X'00').

Return Code:

The following codes are valid:

Return Code Explanation

0 The Get Key function was successful.

1 An incorrect presentation space was specified.

5 You specified the AID only option under the Start Keystroke Intercept (50) function,

and non-AID keys are inhibited by this session type when EHLLAPI tries to write in

correct keys to the presentation space.

8 No prior Start Keystroke Intercept (50) function was called for this presentation

space.

9 A system error was encountered.

20 An undefined key combination was typed.

25 The requested keystrokes are not available on the input queue.

31 Keystroke queue overflowed and keystrokes were lost.

Notes on Using This Function

1. If a return code of 31 occurs for the Get Key function, either:

• Increase the value of the calling length parameter for the Start Keystroke Intercept (50) function, or

• Execute the Get Key function more frequently.

An intercepted keystroke occupies 3 bytes in the buffer. The next intercepted keystroke is placed in the

adjacent three bytes. When the Get Key function retrieves a keystroke (first in first out, FIFO), the three bytes

that it occupied are made available for another keystroke. By increasing the size of the buffer or the rate at

which keystrokes are retrieved from the buffer, you can eliminate buffer overflow.

For the PC/3270, another way to eliminate return code 31 is to operate the PC/3270 emulator in the resume

mode.

87

Emulator Programming

88

2. You can use the Send Key (3) function Send Key (3) 03, Send Key to pass both original keystrokes and any others that your EHLLAPI

application might need to the host-connected presentation space.

3. Keystrokes arrive asynchronously and are enqueued in the keystroke queue that you have provided in your

EHLLAPI application program using the Start Keystroke Intercept (50) function.

4. The Get Key function behaves like a read. When keystrokes are available, they are read into the data area that

you have provided in your application.

5. In the case of field support for a session, the application might be interested only in AID keys, for example the

Enter key. If so, the Start Keystroke Intercept (50) function option code should be set to D (meaning for AID

Keys only).

6. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. Refer

to Memory Allocation on page 10 for more information.

Get Request Completion (125)

3270 5250 VT

Yes No No

The Get Request Completion function allows an application to determine the status of a previous asynchronous

function request issued to the EHLLAPI and to obtain the function parameter list before using the data string again.

This function is valid only if the user specified asynchronous (A) completion on a previous function call such as Read

Structured Fields (126) or Write Structured Fields (127).

Each asynchronous request requiring the Get Request Completion function will return a unique ID from the

asynchronous request. The application must save this ID. This ID is the identification used by the Get Request

Completion function to identify the desired request. The user has three request options using this function:

1. The application can query or wait for a specific asynchronous function request by supplying the request ID of

that function and a nonblank session short name.

2. The application can query or wait for the first completed asynchronous function request for a specified

session by supplying a request ID of X'0000' and a nonblank session short name.

Prerequisite Calls
Connect Structured Fields (120) and Allocate Communications Buffer (123)

and

Read Structured Fields (126) or Write Structured Fields (127)

Chapter 3. EHLLAPI Functions

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 125

Data String See the following table

Length Must be 14 Must be 24

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2 5 N or W N=NOWAIT is required W=WAIT is required

6–8 Reserved

3–4 9–10 Function request ID.

5–6 11–12 Reserved

7–10 13–16 Reserved

11–12 17–20 Reserved

13–14 21–24 Reserved

The Get Request Completion function behaves differently depending upon the second character of the parameter

string, which is one of the following characters:

N

Nowait option: If a specific request ID was supplied and the function has completed, control will be

returned to the application with a return code of zero and a completed data string as defined in Return

Parameters on page 90. If a request ID of zero was supplied and any eligible asynchronous function

has completed, control will be returned to the application with a return code of zero and a completed

data string as defined in Return Parameters on page 90.

W

Wait option: If a specific request ID was supplied and the function has not completed, the call will wait

until the function has completed before returning to the application. If the supplied request ID was

zero and no eligible asynchronous function has completed, the call will wait until a function completes

before returning to the calling application. On return, the return code value will be zero and the data

string will be completed as defined in Return Parameters on page 90.

89

Emulator Programming

90

Return Parameters

Byte Definition

Standard Enhanced

5–6 11–12 Function number of the completed asynchronous function (126 or 127).

(returned)

7–10 13–16 Address of the data string of the completed asynchronous function call.

(The application must not reuse the data string until the request has

completed). (returned)

11–12 17–20 Length of the data string of the completed asynchronous function call.

(returned)

13–14 21–24 Return code of the completed asynchronous function call. (returned)

Return Code Explanation

0 The Get Request Completion function was successful.

2 An error was made in specifying parameters.

9 A system error was encountered.

38 Requested function was not complete.

42 No matching request was found.

There are some differences between return codes 38 and 42:

1. Return code 38

a. If a specific request ID and session were requested, both the session and ID were found but the

request is pending (not in a completed state).

b. If a zero request ID and a specific session were requested, the specified session has pending requests,

but they are not satisfied (complete).

c. If a zero request ID and a blank session were requested, pending requests were found but none were

satisfied (complete).

2. Return code 42

a. If a specific request ID and session were requested, the specific request ID was not found in either a

pending or a completed state.

b. If a zero request ID and a specific session were requested, the specific session contains no pending or

completed requests.

c. If a zero request ID and a blank session were requested, no pending or completed requests were

found.

Chapter 3. EHLLAPI Functions

Notes on Using This Function

1. This function is valid only if the user specified asynchronous completion (A for Asynchronous) on a previous

function call such as Read Structured Fields or Write Structured Fields.

2. If the return code is a 0, the application should check the returned data string for information pertaining to the

completion of the requested asynchronous function.

Lock Presentation Space API (60)

3270 5250 VT

Yes No No

The Lock Presentation Space API function allows the application to obtain or release exclusive control of the

presentation space window over other Windows 32–bit applications. While locked, no other application can connect

to the presentation space window.

Successful processing of this function with the Lock causes EHLLAPI presentation space window functions

requested from other EHLLAPI applications to be queued until the requesting application unlocks the presentation

space. Requests from the locking application are processed normally.

Prerequisite Calls
Connect to Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 60

Data String See the following table

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

2 5 One of the following characters:

91

Emulator Programming

92

Byte Definition

• L to lock the API.

• U to unlock the API.

6 One of the following characters:

• R to return if the presentation space is already locked by an appli

cation.

• Q to queue the Lock request if the presentation space is already

locked by an application.

3

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Lock Presentation Space API function was successful.

1 An incorrect host presentation space short session ID was specified or was not con

nected.

2 An error was made in specifying parameters.

9 A system error was encountered.

43 The API was already locked by another EHLLAPI application (on LOCK) or API not

locked (on UNLOCK).

Notes on Using This Function
The following EHLLAPI functions are queued when a lock is in effect:

• Send Key (3)

• Copy Presentation Space (5)

• Search Presentation Space (6)

• Copy Presentation Space to String (8)

• Release (11)

• Reserve (12)

• Query Field Attribute (14)

• Copy String to Presentation Space (15)

• Search Field (30)

• Find Field Position (31)

• Find Field Length (32)

• Copy String to Field (33)

• Copy Field to String (34)

• Set Cursor (40)

• Send File (90)

• Copy Presentation Space to Clipboard (35)

Chapter 3. EHLLAPI Functions

• Paste Clipboard to Presentation Space (36)

• Receive File (91)

• Connect to Presentation Space (1) with the CONPHYS parameter set in a previous Set Sessions Parameter

(9) function call.

These queued requests are not serviced until the lock is removed. When the lock is removed, the queued requests are

processed in first-in-first-out (FIFO) order. EHLLAPI functions not listed are run as if there was no lock. The requesting

application unlocks the presentation space window by one of the following methods:

• Disconnecting from the presentation space while still owning the Lock.

• Issuing the Reset System (21) function while still owning the Lock.

• Stopping the application while still owning the Lock.

• Stopping the session.

• Successfully issuing the Lock Presentation Space API with the Unlock option.

Before exiting the application, you should unlock any presentation space windows that have been locked with the

Lock Presentation Space API function. If the application exits with outstanding locks, or a Reset System (21), or

Disconnect Presentation Space (2) function is issued, the locks are released.

It is recommended that applications lock the presentation space only for short periods of time and only when

exclusive use of the presentation space is required.

Lock Window Services API (61)

3270 5250 VT

Yes No No

The Lock Window Services API function allows the application to obtain or release exclusive control of the

presentation space window over other Windows 32-bit applications. While locked, no other application can connect to

the presentation space window.

Successful processing of this function with the Lock causes EHLLAPI presentation space window functions

requested from other EHLLAPI applications to be queued until the requesting application unlocks the presentation

space. Requests from the locking application are processed normally.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 61

Data String See the following table.

93

Emulator Programming

94

Standard Interface Enhanced Interface

Length Must be 3 Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

2 5 One of the following characters:

• L to lock the API.

• U to unlock the API.

3 6 One of the following characters:

• R to return if the presentation space is already locked by an appli

cation.

• Q to queue the Lock request if the presentation space is already

locked by an application.

11–12 Function number of the completed asynchronous function (126 or 127).

(returned)

5–6

7–8 Reserved.

Return Parameters

Return Code Explanation

0 The Lock Window Services API function was successful.

1 An incorrect host presentation space short session ID was specified or was not connect

ed.

2 An error was made in specifying parameters.

9 A system error was encountered.

38 Requested function was not complete.

43 The API was already locked by another EHLLAPI application (on LOCK) or API not locked

(on UNLOCK).

Notes on Using This Function
The following EHLLAPI functions are queued when a lock is in effect:

Chapter 3. EHLLAPI Functions

• Window Status (104)

• Change Switch List Name (105)

• Change PS Window Name (106)

These queued requests are not serviced until the lock is removed. When the lock is removed, the queued requests are

processed in first-in-first-out (FIFO) order.

The requesting application unlocks the presentation space window by one of the following methods:

• Successfully issuing the Lock Window Services API with the UNLOCK option.

• Disconnecting from the presentation space while still owning the Lock.

• Issuing the Reset System (21) function while still owning the Lock.

• Stopping the application while still owning the Lock.

• Stopping the session.

Before exiting the application, you should Unlock any presentation space windows that have been locked with the

Lock Window Services API function. If the application exits with outstanding locks, the subsystem releases the locks.

It is recommended that applications lock the presentation space only for short periods of time and only when

exclusive use of the presentation space is required.

Pause (18)

3270 5250 VT

Yes Yes Yes

The Pause function waits for a specified amount of time. It should be used in place of timing loops to wait for an

event to occur. A Pause function can be ended by a host event if a prior Start Host Notification (23) function has been

called and the IPAUSE option is selected. Start Host Notification (23) 23, Start Host Notification

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 18

Data String NA

Length Contains the pause duration in half-second increments

PS Position NA

95

Emulator Programming

96

Return Parameters

Return Code Definition

0 The wait duration has expired.

9 An internal system error was encountered. The time results are unpredictable.

26 The host session presentation space or OIA has been updated. Use the Query Host

Update (24) function to get more information.

Notes on Using This Function

1. Selecting the FPAUSE or IPAUSE option using the Set Session Parameters (9) function affects the length of

the pause you get when you call this function. See item 6 on page 141 for more information.

2. The value entered in the calling length parameter is the maximum number of half-second intervals that the

Pause function waits. For a pause of 20 seconds, a hex value of 0028 (decimal 40) must be passed in the

calling length parameter.

3. If you use the IPAUSE option and the pause value is zero, then the function waits up to 2400 half-second

intervals, unless interrupted sooner. If you use the FPAUSE option and the pause value is zero, then the

function returns immediately.

4. If you use the IPAUSE option, once a pause has been satisfied by a host event, you should call the Query Host

Update (24) function to clear the queue prior to the next Pause function. The Pause function will continue to

be satisfied with the pending event until the Query Host Update (24) function is completed. Query Host Update (24) 24, Query Host Update

5. A practical maximum value for the Pause function is 2400. You should not use the Pause function for these

kinds of tasks:

• Delay for very long durations (of several hours, for example).

• Delay for more than a moderate length of time (20 minutes) before checking the system time-of-day

clock and proceeding with your EHLLAPI program execution.

• With applications requiring a high-resolution timer because the time interval created by a Pause

function is approximate.

• Set the time interval to zero in a loop.

6. IPAUSE set and the interruptible pause allow an EHLLAPI application to determine whether the specified host

presentation space (PS) or operator information area (OIA) is updated. The following three functions are used:

• Start Host Notification (23)

• Query Host Update (24)

• Stop Host Notification (25)

By using IPAUSE when the Start function is called, you can make an application wait until the host

presentation space or OIA (or both) receives an update. When the receive is completed and the application

can issue the Query function to determine the changes, Pause terminates. Then the application issues the

Search Presentation Space (6) to check whether the expected update occurred.

Chapter 3. EHLLAPI Functions

Post Intercept Status (52)

3270 5250 VT

Yes Yes Yes

The Post Intercept Status function informs the Z and I Emulator for Windows emulator that a keystroke obtained

through the Get Key (51) function was accepted or rejected. When the application rejects a keystroke, the Post

Intercept Status function issues a beep. 51, Get Key Get Key (51) beep

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 52

Data String See the following table

Length Must be 2 Must be 8

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 One of the following values:

• The 1-letter short name of the presentation space.

• A blank or null indicating a function call for the host-connected

presentation space.

1

2–4 Reserved

5 One of the following characters:

• A for accepted keystroke.

• R for rejected keystroke.

2

6–8 Reserved.

Return Parameters

Return Code Explanation

0 The Post Intercept Status function was successful.

1 An incorrect presentation space was specified.

2 An incorrect session option was specified.

97

Emulator Programming

98

Return Code Explanation

8 No prior Start Keystroke Intercept (50) function was called for this presentation

space ID.

9 A system error was encountered.

Query Additional Field Attribute (45)

3270 5250 VT

No Yes No

The Query Additional Field Attribute function returns additional information about the 5250 field containing the input

host presentation space position. This information is returned in the data string parameter in the form of a defined

structure.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 45.

Data String 8 bytes long character string.

Length 8 is implied.

PS Position Identifies the target. This can be the PS position of any byte within the tar

get field.

The calling data string can contain:

ByteDefini

tion

1–8 Reserved

Return Parameters
This function returns a data string and a return code.

Data String:

The function returns the following data string.

Byte Definition

1–6 Reserved

7–8 Two 8–bit unsigned characters that return:

Chapter 3. EHLLAPI Functions

Byte Definition

• R if field is RTL and L if field is LTR.

• U if field is upper case and L if field is a normal case

field.

Return Code:

The following return codes are defined:

Return Code Explanation

0 The Query Additional Field Attribute was successful.

1 Your program is not currently connected to a host session.

7 The host presentation space position is not valid.

9 No field was found in this position.

24 Field is unformatted.

Query Close Intercept (42)

3270 5250 VT

Yes Yes Yes

The Query Close Intercept function allows the application to determine if the close option was selected.

Prerequisite Calls
Start Close Intercept (41)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 42

Data String See the following table.

Length Must be 1 Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1-character short session ID of the host presentation space, or a blank or

null indicating request for querying the host-connected session

1

2–4 Reserved

99

Emulator Programming

100

Return Parameters

Return Code Explanation

0 A close intercept event did not occur.

1 The presentation source was not valid.

2 An error was made in specifying parameters.

8 No prior Start Close Intercept (41) function was called for this host presentation

space.

9 A system error occurred.

12 The session stopped.

26 A close intercept occurred since the last query close intercept call.

Query Communications Buffer Size (122)

3270 5250 VT

Yes No No

The Query Communications Buffer Size function allows an application to determine both the maximum and the

optimum buffer sizes supported by the emulation program.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 122

Data String See the following table

Length Must be 9 Must be 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2–3 5–8 16- or 32-bit field for the optimum supported inbound buffer size (Re

turned value)

Chapter 3. EHLLAPI Functions

Byte Definition

4–5 9–12 16- or 32-bit field for the maximum supported inbound buffer size (Re

turned value)

6–7 13–16 16- or 32-bit field for the optimum supported outbound buffer size (Re

turned value)

8–9 17–20 16- or 32-bit field for the maximum supported outbound buffer size (Re

turned value)

Return Parameters

Return Code Explanation

0 The Query Communications Buffer Size function was successful.

1 A specified host presentation space short session ID was not valid or was not con

nected.

2 An error was made in specifying parameters.

9 A system error occurred.

10 The function was not supported by the emulation program.

Notes on Using This Function

1. There is no way to require the user to use this function. It is not a required function so that the application can

be tailored to run on any system.

2. The buffer sizes returned represent the record sizes that are actually transmitted across the medium. For a

DDM connection, the 8-byte header supplied in the Read and Write Structured Fields data buffer is stripped

off and 1 byte containing the structured field AID value is prefixed. The application should compare the size of

the actual data in the data buffer (which does not include the 8-byte header) with the buffer sizes returned by

the Query Communications Buffer Size minus 1 byte. For destination/origin connections, the 8-byte header

supplied in the Read and Write Structured Fields data buffer is stripped off and 9 bytes are then prefixed to

the data. The application should compare the size of the actual data in the data buffer (which does not include

the 8-byte header) with the buffer size returned by the Query Communications Buffer Size minus 9 bytes.

3. The maximum buffer sizes returned represent the maximum number of bytes supported by the workstation

hardware and by the emulator. The maximum buffer size can be used only if the host is also configured to

accept at least these maximum sizes.

4. The optimum buffer sizes returned represent the optimum number of bytes supported by the both the

workstation hardware and the emulator. Some network configurations might set transmission limits smaller

than these values. In these cases, the data transfer buffer size override value in the emulator configuration

profile will be used for structured field support. The Query Communications Buffer Size will reflect any buffer

size override values entered in the emulator configuration profile.

101

Emulator Programming

102

Query Communication Event (81)

3270 5250 VT

Yes Yes Yes

The Query Communication Event function lets the EHLLAPI program determine whether any communication events

have occurred.

Prerequisite Calls
Start Communication Notification (80)

Call Parameters

 Enhanced Interface

Function Number Must be 81

Data String 1-character short name of the host presentation space or a blank or null indicating

request for updates to the host-connected presentation space

Length 4 is implied

PS Position NA

The calling data structure contains these elements:

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function was called for the

PSID

9 A system error was encountered

21 The indicated PSID was connected

22 The Indicated PSID was disconnected

Query Cursor Location (7)

3270 5250 VT

Yes Yes Yes

Chapter 3. EHLLAPI Functions

The Query Cursor Location function indicates the position of the cursor in the host-connected presentation space by

returning the cursor position.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 7

Data String NA

Length NA

PS Position NA

Return Parameters
This function returns a length and a return code.

Length:

Host presentation space position of the cursor.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Cursor Location function was successful.

1 Your program is not currently connected to a host session.

9 A system error was encountered.

Query Field Attribute (14)

3270 5250 VT

Yes Yes Yes

The Query Field Attribute function returns the attribute byte of the field containing the input host presentation space

position. This information is returned in the returned length parameter.

For the PC/3270, note also that:

• The returned length parameter is set to 0 if the screen is unformatted.

• Attribute bytes are equal to or greater than hex C0.

103

Emulator Programming

104

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 14.

Data String NA.

Length NA.

PS Position Identifies the target. This can be the PS position of any byte within the tar

get field.

Return Parameters
This function returns a length and a return code.

Length:

The attribute value if the screen is formatted, or 0 if the screen is unformatted.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Field Attribute was successful.

1 Your program is not currently connected to a host session.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Attribute byte not found or unformatted host presentation space.

Notes on Using This Function
The returned field attributes are defined in the following tables. The bit positions are in IBM format with bit 0 as the

left most bit in the byte.

• 3270 field attribute:

Bit Position Meaning

0–1 Both = 1, field attribute byte

2 Unprotected/protected

0 = Unprotected data field

1 = Protected field

Chapter 3. EHLLAPI Functions

Bit Position Meaning

3 A/N

0 = Alphanumeric data

1 = Numeric data only

4–5 I/SPD

00 = Normal intensity, pen not detectable

01 = Normal intensity, pen detectable

10 = High intensity, pen detectable

11 = Nondisplay, pen not detectable

6 Reserved

7 MDT

0 = Field has not been modified

1 = Field has been modified

• 5250 field attributes:

Bit Position Meaning

0 Field attribute flag

0 = Nonfield attribute flag

1 = Field attribute flag

1 Visibility

0 = Nondisplay

1 = Display

2 Unprotected/protected

0 = Unprotected data field

1 = Protected field

3 Intensity

0 = Normal intensity

1 = High intensity

4–6 Field type

000 = Alphanumeric data: All characters are available

001 = Alphabet only: Uppercase and lowercase, comma, period, hyphen,

blank, or Dup key are available

010 = Numeric shift: Automatic shift for number

105

Emulator Programming

106

Bit Position Meaning

011 = Numeric data only: 0–9, comma, period, plus, minus, blank, or Dup key

are available

101 = Numeric data only: 0–9, or Dup key are available

110 = Magnetic stripe reading device data only

111 = Signed-numeric data: 0–9, plus, minus, or Dup key are available

7 MDT

0 = Field has not been modified

1 = Field has been modified

Query Host Update (24)

3270 5250 VT

Yes Yes Yes

The Query Host Update function lets the programmed operator determine if the host has updated the host

presentation space or OIA because:

• The Start Host Notification (23) function was called Start Host Notification (23) 23, Start Host Notification (on first call to the Query Host Update function only)

• The previous call to the Query Host Update function (for all calls to the Query Host Update function except the

first).

Prerequisite Calls
Start Host Notification (23)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 24

Data String 1-character short name of the host presentation space, or a blank or null

indicating request for updates to host-connected presentation space

Length 1 is implied 4 is implied

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Chapter 3. EHLLAPI Functions

Return Parameters

Return Code Definition

0 No updates have been made since the last call.

1 An incorrect host presentation space was specified.

8 No prior Start Host Notification (23) function was called for the host presentation

space ID.

9 A system error was encountered.

21 The OIA was updated.

22 The presentation space was updated.

23 Both the OIA and the host presentation space were updated.

44 Printing has completed in the printer session.

Notes on Using This Function
The target presentation space must be specified in the data string, even though a connection to the host presentation

space is not necessary to check for updates.

Query Session Status (22)

3270 5250 VT

Yes Yes Yes

The Query Session Status function is used to obtain session-specific information.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

16-bit 32-bit

Function Number Must be 22.

Data String An 18/20-byte string consisting of a 1-byte short name of the target pre

sentation space plus 17 bytes for returned data. Position 1 can be filled

with:

1. A blank or a null to indicate a request for the host_connected pre

sentation space.

2. An * (asterisk) to indicate a request for the keyboard-owner presen

tation space.

Length Must be 18 Must be 20

107

Emulator Programming

108

16-bit 32-bit

PS Position NA

Return Parameters
This function returns a data string and a return code.

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2–9 5–12 Session long name (same as profile name; or, if profile not set, same

as short name)

10 13 Session

Type

D

3270 display

E

3270 printer

F

5250 display

G

5250 printer

H

ASCII VT

11 14 Session characteristics expressed by a binary number including the

following session-characteristics bits

Bit 0

EAB 0: Session has the basic attribute. 1: Session has

the extended attribute

Bit 1

PSS 0: Session does not support the programmed sym

bols 1: Session supports the programmed symbols

Bits 2–7

Reserved

Chapter 3. EHLLAPI Functions

Byte Definition

12–13 15–16 Number of rows in the host presentation space, expressed as a binary

number

14–15 17–18 Number of columns in the host presentation space, expressed as a bi

nary number

16–17 19–20 Host code page expressed as a binary number

18 Reserved

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Session Status function was successful.

1 An incorrect host presentation space was specified.

2 An incorrect string length was made.

9 A system error was encountered.

Notes on Using This Function

1. To use this function, preallocate memory to receive the returned data string parameter. The statements

required to preallocate this memory vary depending on the language in which your application is written. See

Memory Allocation on page 10 for more information.

Query Sessions (10)

3270 5250 VT

Yes Yes Yes

The Query Sessions function returns a 16-byte (12-byte for standard interface) data string describing each host

session.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Function Description

Standard Interface Enhanced Interface

Function Number Must be 10

109

Emulator Programming

110

Function Description

Data String Preallocated string of 16n bytes long (12n for 16-bit) (n =number of ses

sions) or more

Length 12n bytes 16n bytes

PS Position NA

Note: When the length is not matched to the number of sessions, the return code is 2.

Return Parameters
This function returns a data string, a length, and a return code.

Data String:

The returned data string is 16n bytes long (12n for standard interface), where n is the number of host

sessions. The descriptors are concatenated into the data string and each session type, and presentation

space size of a host session.

The format of each 16-byte (12-byte for standard interface) session descriptor is as follows:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2–9 5–12 Session long name (same as profile name; or, if profile not set, same as

short name)

13 Connection type H=host10

14 Reserved

11–12 15–16 Host presentation space size (this is a binary number and is not in dis

play format). If the session type is a print session, the value is 0.

Length:

The number of host sessions started.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Sessions function was successful.

2 An incorrect string length was made.

9 A system error was encountered.

Chapter 3. EHLLAPI Functions

Notes on Using This Function

1. If an application program receives RC=2 or RC=0, the number of the active sessions is returned in the length

field. The application program can recognize the minimum string length by this number.

2. The Query Sessions function is affected by the CFGSIZE/NOCFGZISE session option (see item 16 on

page 145 for more information) and by the EXTEND_PS/NOEXTEND_PS option (see item 20 on page 146

for more information).

Note:

1. When NOCFGSIZE is set in Set Session Parameters (9) for a 5250 session, the value of presentation

space size returned in byte position 11 and 12 from Query Sessions(10) will be changed in

accordance with the selection of EXTEND_PS or NOEXTEND_PS.

2. When EXTEND_PS is set in Set Session Parameters (9), presentation space size returned from Query

Sessions (10) will include the size of the message line, if it exists.

3. When NOEXTEND_PS is set, the value will not change regardless of the existence of a message line. In

the case of 25 row, 80 column presentation space, the value can be 1920 or 2000.

Query System (20)

3270 5250 VT

Yes Yes Yes

The Query System function can be used by an EHLLAPI application program to determine the level of Z and I

Emulator for Windows support and other system-related values. This function returns a string that contains the

appropriate system data. Most of this information is for use by a service coordinator when you call the IBM Support

Center after receiving a return code 9 IBM Support Center service (a system error was encountered).

The bytes in this returned string are defined in Return Parameters on page 112.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 20

Data String Preallocated string of 35 bytes 36 bytes

Length Must be 35 Must be 36

111

Emulator Programming

112

Standard Interface Enhanced Interface

PS Position NA

Return Parameters
This function returns a data string and a return code.

Data String:

A data string of 35 bytes (for 16–bit) or 36 bytes (for 32–bit) is returned. The bytes are defined as

follows:

Byte Definition

Standard Enhanced

1 1 EHLLAPI version number

2–3 2–3 EHLLAPI level number

4–9 4–9 Reserved

10–12 10–12 Reserved

13 13 Hardware base, U=Unable to determine

14 14 Program type, where P=HCL Z and I Emulator for Windows

15–16 15–16 Reserved

17–18 17–18 Z and I Emulator for Windows version/level as a 2-byte ASCII value

19 19 Reserved

20–23 20–23 Reserved

24–27 24–27 Reserved

28–29 28–29 Reserved

 30 Reserved

30–31 31–32 NLS type expressed as a 2-byte binary number

33–35 34–36 Reserved

Return Code
The following codes are defined:

Return Code Explanation

0 The Query System function was successful; data string has been returned.

1 EHLLAPI is not loaded. (PC/3270 only)

2 An incorrect string length was specified. (PC/3270 only)

9 A system error was encountered.

Chapter 3. EHLLAPI Functions

Notes on Using This Function
To use this function, preallocate memory to receive the returned data string parameter. See Memory Allocation on

page 10 for more information.

Query Window Coordinates (103)

3270 5250 VT

Yes Yes Yes

The Query Window Coordinates function requests the coordinates for the window of a presentation space. The

window coordinates are returned in pels.

Note: (0,0) indicates the top-left of the window.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 103

Data String 1-character short session ID of the host presentation space

Length 17 is implied 20 is implied

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short name (PSID)

• A blank or null indicating a function call for the current connec

tion presentation space

1

2–4 Reserved

2-17 5–20 Reserved

Return Parameters
This function returns a data string and a return code.

113

Emulator Programming

114

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short session ID

• A blank or null indicating a function call for the current connec

tion presentation space

1

2–4 Reserved

2–17 5–20 Four 32-bit unsigned integers that return:

2–5 5–8 XLeft Long integer in pels of the left X coordinate of the rectangular win

dow relative to the desktop window

6–9 9–12 YBottom Long integer in pels of the bottom Y coordinate of the rectangu

lar window relative to the desktop window

10–13 13–15 XRight Long integer in pels of the right X coordinate of the rectangular

window relative to the desktop window

14–17 16–20 YTop Long integer in pels of the top Y coordinate of the rectangular win

dow relative to the desktop window

Return Code:

The following codes are defined:

Return Code Explanation

0 The Query Window Coordinates function was successful.

1 Your program was not currently connected to the host session.

9 A system error occurred.

12 The session stopped.

Read Structured Fields (126)

3270 5250 VT

Yes No No

The Read Structured Fields function allows an application to read structured field data from the host application.

If the call specifies S (for Synchronous), the application does not receive control until the Read Structured Fields is

completed. If the call specifies A (for Asynchronous), the application receives control immediately after the call. If the

call specifies M (for Asynchronous, message mode), the application receives control immediately after the call. The

application can wait for the message. In any case (S, A, or M), the application provides the buffer address in which the

data from the host is to be placed.

For a successful asynchronous completion of this function, the following statements apply:

Chapter 3. EHLLAPI Functions

The return code field in the parameter list might not contain the results of the requested I/O. If the return code is not 0,

the request failed. The application must take the appropriate action based on the return code.

If the return code for this request is 0, the application must use the request ID returned with this function call to issue

the Get Request Completion function call to determine the completion results of the function associated with the

request ID. The Get Request Completion function call returns the following information:

1. Function request ID

2. Address of the data string from the asynchronous request

3. Length of the data string

4. Return code of the completed function

Prerequisite Calls
Connect for Structured Fields (120) and Allocate Communication Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 126

Data String See the following table

Length 8, 10 or 14 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

5 S or A or M

S =

Synchronous. Control is not returned to the application until

the read is satisfied.

A =

Asynchronous. Control is returned immediately to the appli

cation, can wait for the event object.

M =

Asynchronous. Control is returned immediately to the appli

cation, can wait for the message.

2

6 Reserved.

115

Emulator Programming

116

Byte Definition

3–4 7–8 2-byte destination/origin ID.

5–8 9–12 4-byte address of the buffer into which the data is to be read. The buffer

must be obtained using the Allocate Communications Buffer (123) func

tion.

9–10 13–16 Reserved.

11–12 When M is specified in position 2 the window handle of the window that

receives the message should be set. The message is a return value of

RegisterWindowMessage (“PCSHLL”)(not equal 0).

13–14

17–20

The data in these positions is ignored by EHLLAPI. However, no error is

caused if the migrating program has data in these positions. This data is

accepted to provide compatibility with migrating applications.

Return Parameters
This function returns a data string and a return code.

Data String:

If A (asynchronous) is specified in position 5, (2 for standard interface) and the function is completed

successfully, the following data string is returned:

Byte Definition

Standard Enhanced

13–14 2-byte function request ID. It is used by the Get Request Completion

(125) function to determine the completion of this function call.

15–16 Reserved.

9–10

17–20 4-byte value in which the event object address is returned by EHLLAPI.

The application can wait for this event object. When the event object is

cleared, the application must issue the Get Request Completion (125)

function call (32-bit only).

Note: A event object address is returned for each successful asynchronous request. The event object should

not be used again. A new event object is returned for each request and is valid for only the duration of that

request.

Data String:

If “M” (asynchronous message mode) is specified in position 5 (2 for 16-bit applications) and the

function is completed successfully, the following data string is returned:

Chapter 3. EHLLAPI Functions

Byte Definition

13–14 A 2-byte function request ID. It is used by the Get Request Completion

(125) function to determine the completion of this function call.

9–10

15–16 Reserved.

17–18 Task ID of asynchronous message mode.11–12

19–20 Reserved.

Note: If the function is completed successfully, an application window receive a message. The message is

a return value of RegisterWindowMessage (PCSHLL). The wParam parameter contains Task ID returned by

the function call. The HIWORD of lParam parameter contains Return Code 0, which shows the function was

successful, and LOWORD of lParam parameter contains function number 126.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Read Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid or was not con

nected.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

35 Request rejected. An outbound transmission from the host was canceled.

36 Request rejected. Lost contact with the host.

37 The function was successful, but the host is inbound disabled.

Notes on Using This Function

1. Return code 35 will be returned when the first Read Structured Fields or Write Structured Fields is requested

after an outbound transmission from the host is canceled. Corrective action is the responsibility of the

application.

2. Return code 36 requires that the application disconnect from the emulation program and then reconnect to

reestablish communication with the host. Corrective action is the responsibility of the application.

3. Return code 37 will be returned if the host is inbound disabled. The Read Structured Fields function was

successfully requested.

4. The EHLLAPI allows for a maximum of 20 asynchronous requests per application to be outstanding. A return

code for unavailable resources (RC=11) is returned if more than 20 asynchronous requests are attempted.

The structured field data contains the application structured fields received from the host. Structured field headers

are removed by the EHLLAPI before the structured field data reaches the application.

117

Emulator Programming

118

The structured field data format is as follows:

Offset Length Contents

0 1 word X'0000'.

2 1 word m (message length: The number of bytes of data in the message, the number

does not include the buffer header prefix, which contains 8 bytes). This value is

returned by EHLLAPI.

4 1 word n (buffer size: the supplied length of the data buffer that does include the 8-

byte message header). This value must be set by the application.

6 1 word X'C000'.

8 8 bytes Length of the first (or only) structured field message.

10 1 byte First nonlength byte of the structured field message.

⋮

m+7 1 byte Last byte in the structured field message.

Bytes 0 through 7 are the buffer header. These first 8 bytes are used by the emulation program. The user section of

the buffer begins with offset 8. Bytes 8 and 9 contain the number of bytes in the first structured field (a structured

field message can contain multiple structured fields), including 2 bytes for bytes 8 and 9. Bytes 8 through m+7 are

used for the structured field message received from the host (which could contain multiple structured fields).

The using application must furnish the complete buffer with the word at offset 0 set to zero. The buffer length must

be in the word at offset 4. The word at offset 6 must be X'C000'. The emulation program will place the data message

beginning at offset 8 and place the length of the message in the word at offset 2. The buffer length is not disturbed by

EHLLAPI.

Synchronous Requests
When Read Structured Fields is requested synchronously (the S option in the data string), control is returned to the

application only after the request is satisfied. The application can assume:

• The return code is correct.

• The data in the communications buffer (read buffer) is correct.

• The host is no longer processing the Read Structured Fields request.

Asynchronous Requests
When Read Structured Fields is requested asynchronously (the A option in the data string), the application cannot

assume:

• The return code is correct.

• The data in the communications buffer (read buffer) is correct.

• The host is no longer processing the Read Structured Fields request.

When requested asynchronously, EHLLAPI returns the following values:

Chapter 3. EHLLAPI Functions

• A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data string

• The address of a event object in positions 17—20 of the data string

These are used to complete the asynchronous Read Structured Fields call.

The following steps must be completed to determine the outcome of an asynchronous Read Structured Fields

function call:

• If the EHLLAPI return code is not zero, the request failed. No asynchronous request has been made. The

application must take appropriate actions before attempting the call again.

• If the return code is zero, the application should wait until the event object is in the signaled state by using the

Get Request Completion (125) function or Wait For Single Object. The event object should not be reused. The

event object is valid only for the duration of the Read Structured Fields function call through the completion of

the Get Request Completion (125) function call.

• Once the event object is in the signaled state, use the returned 16-bit Request ID as the Request ID parameter

in a call to the Get Request Completion (125) function. The data string returned from the Get Request

Completion (125) function call contains the final return code of the Read Structured Fields function call.

When Read Structured Fields is requested asynchronously (the M option in the data string), the application cannot

assume:

• The return code is correct.

• The data in the communications buffer (read buffer) is correct.

• The host is no longer processing the Read Structured Fields request.

When requested asynchronously with the M option, EHLLAPI returns the following values:

• A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data string

• Task ID of asynchronous message mode in positions 17–18 (11–12 for standard interface) of the data string.

These are used to complete the asynchronous Read Structured Fields call.

Receive File (91)

3270 5250 VT

Yes Yes No

The Receive File function is used to transfer a file from the host session to the workstation session. It is used the

same way as the RECEIVE command is used in the PC/3270. The Receive File function can be called by an EHLLAPI

application program.

Prerequisite Calls
There are no prerequisite calls for this function.

119

Emulator Programming

120

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 91.

Data String Refer to the examples.

Length Length, in number of bytes, of the data string. Overridden if in EOT mode.

Receive File (91)generalRECEIVE.EXE locationFollowing are examples of the data strings for a single-byte character set (SBSC):

3270 Session

• To receive the file from the VM/CMS host system:

pc_filename [id:]fn ft [fm] [(option]

• To receive the file from the MVS™/TSO host system:

pc_filename[id:]dataset[(member)] [/password] [option]

• To receive the file from the CICS® host system:

pc_filename [id:]host_filename [(option]

5250 Session

• To receive the file from the iSeries™, eServer™ i5, or System i5™ host system:

pc_filename [id:]library file member [option]

Return Parameters

Return Code Explanation

2 Parameter error or you have specified a length that is too long (more than 255

bytes) for the EHLLAPI buffer. The file transfer was unsuccessful.

3 File transfer complete.

4 File transfer complete with segmented records.

9 A system error was encountered.

27 File transfer terminated because of either a Cancel button or the timeout set by the

Set Session Parameter (9) function.

101 File transfer was successful (transfer to/from CICS®).

If you receive return code 2 or 9, there is a problem with the system or with the way you specified your data string.

Other return codes can also be received, which relate to message numbers generated by the host transfer program.

For transfers to a CICS® host transfer program, subtract 100 from the return code to give you the numeric portion of

the message. For example, a return code of 101 would mean that the message number INW0001 was issued by the

host. For other host transfer programs, just use the return code as the numerical part of the message. For example,

a return of 34 would mean that message TRANS34 was issued by the host transfer program. The documentation for

your host transfer program should give more information about the meanings of the specific messages.

Chapter 3. EHLLAPI Functions

Operating system error codes reported by EHLLAPI are greater than 300. To determine the error code, subtract 300

and refer to the operating system documentation for return codes.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are related to this function. They are

the STRLEN/STREOT, EOT=c, QUIET/NOQUIET and the TIMEOUT=c/TIMEOUT=0 session options. See items 1

on page 140 and 2 on page 140 and items 7 on page 141 and 8 on page 142 for more information.

2. If no path is specified when the Receive File function is executed, the received file is stored in the current

subdirectory, which is the directory in which your application is running. directory, defaultReceive File path, defaultReceive File Receive File (91)default path for target file

Release (12)

3270 5250 VT

Yes Yes Yes

The Release function unlocks the keyboard that is associated with the host presentation space reserved using the

Reserve (11) function. Reserve (11)

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 12

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Release function was successful.

1 Your program is not connected to a host session.

9 A system error was encountered.

121

Emulator Programming

122

Notes on Using This Function
If you do not Release a host presentation space reserved by using the Reserve (11) function, you are locked out of

that session until you call the Reset System (21) function, you call the Disconnect Presentation Space (2) function, or

you terminate the EHLLAPI application program. Reset System (21)

Reserve (11)

3270 5250 VT

Yes Yes Yes

The Reserve function locks the keyboard that is associated with the host-connected presentation space to block

input from the terminal operator.

The reserved host presentation space remains locked until one of the following occurs:

• Connect (1) function is executed to a new session.

• Disconnect Presentation Space (2) function is executed.

• Release (12) function is executed.

• Reset System (21) function is executed.

• Start Keystroke Intercept (50) function is executed.

• EHLLAPI application program is terminated.

Release (12) 12, Release Reset System (21) 21, Reset System

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 11

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation

0 The Reserve function was successful.

1 Your program is not connected to a host session.

5 Presentation space cannot be used.

Chapter 3. EHLLAPI Functions

Return Code Explanation

9 A system error was encountered.

Notes on Using This Function

1. If your EHLLAPI application program is sending a series of transactions to the host, you might need to prevent

the user from gaining access to that session until your application processing is complete.

2. The keyboard input that a user makes while the keyboard is locked by this function is enqueued and

processed after the session is terminated.

3. This function locks both the mouse and the keyboard input. The application program must unlock the

presentation space to enable either the mouse or the keyboard input.

Reset System (21)

3270 5250 VT

Yes Yes Yes

The Reset System function reinitializes EHLLAPI to its starting state. The session parameter options are reset to

their defaults. Event notification is stopped. The reserved host session is released. The host presentation space is

disconnected. Keystroke intercept is disabled.

You can use the Reset System function during initialization or at program termination to reset the system to a known

initial condition.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 21

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Definition

0 The Reset System function was successful.

1 EHLLAPI is not loaded.

9 A system error was encountered.

123

Emulator Programming

124

Notes on Using this Function
For the PC/3270, this function can be used to check whether EHLLAPI is loaded. Place a call to this function at the

start of your application and check for a return code of 1.

Search Field (30)

3270 5250 VT

Yes Yes Yes

The Search Field function examines a field within the connected host presentation space for the occurrence of a

specified string. If the target string is found, this function returns the decimal position of the string numbered from

the beginning of the host presentation space. (For example, in a 24-row by 80-column presentation space, the row 1,

column 1 position is numbered 1 and the row 5, column 1 position is numbered 321.)

This function can be used to search either protected or unprotected fields, but only in a field-formatted host

presentation space.

Note: If the field at the end of the host presentation space wraps, wrapping occurs when the end of the

presentation space is reached.

presentation spacefield-formatted field-formatted PS

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 30.

Data String Target string for search.

Length Length of the target data string. Overridden in EOT mode.

PS Position Identifies the target field. For SRCHALL, this can be the PS position of any

byte within the target field. For SRCHFROM, it is the beginning point of the

search for SRCHFRWD or the ending point of the search for SRCHBKWD. See

note 3 on page 125.

Return Parameters
This function returns a length and a return code.

Chapter 3. EHLLAPI Functions

Length:

The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space position.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Search Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error. Either the string length was zero, or EOT mode was specified but no

EOT character was found in calling data string.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found, or the host presentation space was unformatted.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are related to this function. They are

the SRCHALL/SRCHFROM, STRLEN/STREOT, SRCHFRWD/SRCHBKWD, and the EOT=c session options. See

items 1 on page 140 through 4 on page 141 for more information.

2. You can use the Set Session Parameters (9) function to determine whether your searches proceed forward

(SRCHFRWD) or backward (SRCHBKWD) in a field.

3. The Search Field function normally checks the entire field (SRCHALL default mode). However, you can use the

function 9 to specify SRCHFROM. In this mode, the calling PS position parameter does more than identify the

target field. It also provides a beginning or ending point for the search.

• If the SRCHFRWD option is in effect, the search for the designated string begins at the specified PS

position and proceeds toward the end of the field.

• If the SRCHBKWD option is in effect, the search for the designated string begins at the end of the field

and proceeds backward toward the specified PS position. If the target string is not found, the search

ends at the PS position specified in the calling PS position parameter.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

125

Emulator Programming

126

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Search Presentation Space (6)

3270 5250 VT

Yes Yes Yes

The Search Presentation Space function lets your EHLLAPI program examine the host presentation space for the

occurrence of a specified string.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 6.

Data String Target string for search.

Length Length of the target data string. Overridden in EOT mode.

PS Position Position within the host presentation space where the search is to be

gin (SRCHFRWD option) or to end (SRCHBKWD option). Overridden in SR

CHALL (default) mode.

Return Parameters
This function returns a length and a return code.

Length:

The following codes are defined:

Length Explanation

= 0 The string was not found.

> 0 The string was found at the indicated host presentation space position.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Search Presentation Space function was successful.

1 Your program is not connected to a host session.

Chapter 3. EHLLAPI Functions

Return Code Explanation

2 An error was made in specifying parameters.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are related to this function. They are

the SRCHALL/SRCHFROM, STRLEN/STREOT, SRCHFRWD/SRCHBKWD, and the EOT=c session options. See

items 1 on page 140 through 4 on page 141 through for more information.

2. You can use the Set Session Parameters (9) function to specify SRCHBKWD. When this option is in effect, the

search operation locates the last occurrence of the string.

3. The Search Presentation Space function normally checks the entire host presentation space. However, you

can use the Set Session Parameters (9) function to specify SRCHFROM. In this mode, the calling PS position

parameter specifies a beginning or ending point for the search.

• If the SRCHFRWD option is in effect, the search for the designated string begins at the specified PS

position and proceeds toward the end of the host presentation space.

• If the SRCHBKWD option is in effect, the search for the designated string begins at the end of the PS

and proceeds backward toward the specified PS position. If the target string is not found, the search

ends at the PS position specified in the calling PS position parameter.

4. The SRCHFROM option is also useful if you are looking for a keyword that might occur more than once in the

host presentation space.

5. The Search Presentation Space function is useful in determining when the host presentation space is

available. If your EHLLAPI application is expecting a specific prompt or message before sending data, the

Search Presentation Space function allows you to check for a prompt message before continuing.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In some instances,

Communication Manager 5250 emulation displays a 25th row. This occurs when either an error message

from the host is displayed or when the operator selects the SysReq key. Z and I Emulator for Windows

displays 25th row information on row 24, or on the status bar. For information to be displayed on the status

bar, the status bar must be configured. Refer to Quick Beginnings for information on configuring the status

bar. By the EXTEND_PS option, an EHLLAPI application can use the same interface with Communication

Manager EHLLAPI and valid presentation space is extended when this condition occurs.

Send File (90)

3270 5250 VT

Yes Yes No

127

Emulator Programming

128

The Send File function is used to transfer a file from the workstation session where EHLLAPI is running to a host

session.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 90.

Data String Refer to the examples.

Length Length of the target data string. Overridden in EOT mode.

PS Position Must be 0.

Send File (90)SEND.EXE locationFollowing are examples of the data strings for SBCS

3270 Session

• To send the file to the VM/CMS host system:

pc_filename [id:]fn ft [fm] [(option]

• To send the file to the MVS/TSO host system:

pc_filename [id:]dataset[(member)] [/password] [option]

• To send the file to the CICS host system:

pc_filename [id:]host_filename [(option]

5250 Session

• To send the file to the iSeries™, eServer™ i5, or System i5™ host system:

pc_filename [id:]library file member [option]

Return Parameters

Return Code Explanation

2 Parameter error or you have specified a length that is too long (more than 255

bytes) for the EHLLAPI buffer. The file transfer was unsuccessful.

3 File transfer complete.

4 File transfer complete with segmented records.

5 Workstation file name is not valid or not found. File transfer was canceled.

9 A system error was encountered.

27 File transfer terminated because of either a Cancel button or the timeout set by the

Set Session Parameter (9) function.

101 File transfer was successful (transfer to/from CICS).

Chapter 3. EHLLAPI Functions

If you receive return code 2 or 9, there is a problem with the system or with the way you specified your data string.

Other return codes can also be received which relate to message numbers generated by the host transfer program.

For transfers to a CICS host transfer program, subtract 100 from the return code to give you the numeric portion of

the message. For example, a return code of 101 would mean that the message number INW0001 was issued by the

host. For other host transfer programs, just use the return code as the numerical part of the message. For example,

a return of 34 would mean that message TRANS34 was issued by the host transfer program. The documentation for

your host transfer program should give more information about the meanings of the specific messages.

Operating system error codes reported by EHLLAPI are greater than 300. To determine the error code, subtract 300

and refer to the operating system documentation for return codes.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are related to this function. They are

the QUIET/NOQUIET, STRLEN/STREOT, TIMEOUT=c/TIMEOUT=0, and the EOT=c session options. See items 1

on page 140 and 2 on page 140 plus items 7 on page 141 and 8 on page 142 for more information. path, defaultSend File Send File (90)default path for target file

Send Key (3)

3270 5250 VT

Yes Yes Yes

The Send Key function is used to send either a keystroke or a string of keystrokes to the host presentation space.

You define the string of keystrokes to be sent with the calling data string parameter. The keystrokes appear to

the target session as though they were entered by the terminal operator. You can also send all attention identifier

(AID) keys such as Enter and so on. All host fields that are input protected or are numeric only must host fieldsinput protectednumeric only input protected fields numeric only fields fields, hostinput protectednumeric only be treated

accordingly.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 3.

Data String A string of keystrokes, maximum 255. Uppercase and lowercase ASCII

characters are represented literally. Function keys and shifted func

tion keys are represented by mnemonics. See Keyboard Mnemonics on

page 131.

Length Length of the source data string. Overridden if in EOT mode.

PS Position NA

129

Emulator Programming

130

Return Parameters

Return Code Explanation

0 The keystrokes were sent; status is normal.

1 Your program is not connected to a host session.

2 An incorrect parameter was passed to EHLLAPI.

4 The host session was busy; all of the keystrokes could not be sent.

5 Input to the target session was inhibited or rejected; all of the keystrokes could not

be sent.

9 A system error was encountered.

Notes on Using This Function

1. The parameters under the Set Session Parameters (9) function are related to this function. They are the

AUTORESET/NORESET, STRLEN/STREOT, EOT=c, ESC=c, and RETRY/NORETRY session options. See items 1

on page 140 and 2 on page 140, 9 on page 143 and 10 on page 143, and 19 on page 146 for more

information. Set Session Parameters (9)general

2. Keystrokes cannot be sent to the host session when the keyboard is locked or busy. You can check this

condition with the Wait (4) function. Wait (4)

3. If the host is busy, input might be rejected.

4. The length of the data string must be explicitly defined by the default length parameter, but it can be defined

implicitly by the EOT=c option of the Set Session Parameters (9) function.

When explicitly defining length (see item 1), the value for the length parameter passed by the application must

be calculated. For this calculation, allow 2 bytes for compound keystrokes such as @E and allow 4 bytes for

compound keystrokes such as @A@C.

5. To send special control keys, a compound character coding scheme is used. In this coding scheme, one

keystroke is represented by a sequence of two to four ASCII characters. The first and third character are

always the escape character. The second and fourth character are always a keycode.

To send the sequence LOGON ABCDE followed by the Enter key, you would code the string LOGON ABCDE@E. A

complete list of these keycodes is represented in Keyboard Mnemonics on page 131.escape charactercharacter, escape

This compound coding technique allows an ASCII string representation of all necessary keystroke codes

without requiring the use of complex hexadecimal key codes.

The default escape character is @. The value of the escape character can be changed to any other character

with the ESC=c option of the Set Session Parameters (9) function.

6. Users needing higher levels of performance should use the Copy String to Field (33) or Copy String to

Presentation Space (15) function rather than send keystrokes with the Send Key (3) function. But remember,

only the Send Key (3) function can send the special control keys.

7. Refer to Set Session Parameters (9) on page 138 session option 10 on page 143 (NORESET option) to

improve the performance of this function.

Chapter 3. EHLLAPI Functions

Unless NORESET is required, the reset mnemonic is added to the keystroke strings as a prefix. Therefore, all

resettable status except input inhibit are reset.

The NORESET option is not the same as the Reset System (21) function.

8. The keystroke strings, including the AID key, are sent to the host via multiple paths. Each path sends the

strings before the first AID key (or including the AID key). EHLLAPI adjusts the string length and the start

position of each path. For a host application program, any keystroke might be lost by the AID key process.

Therefore, you should not send a keystroke list that includes plural AID keys.

9. During the @P (Print) or @A@T (Print Presentation Space) process, all requests that update the presentation

space are rejected. If the presentation space is busy or the interruption request occurs during the print

request, the mnemonic @A@R (Device Reset – Cancel to print the Presentation Space) cancels the request

and resets the status.

Keyboard Mnemonics
The keyboard mnemonics provide the ASCII characters representing the special function keys of the keyboard in the

workstation. The abbreviation codes make the mnemonics for special keys easy to remember. An alphabetic key

code is used for the most common keys. For example, the Clear key is C, and the Tab key is T.

Table 7: Mnemonics with Uppercase Alphabetic Characters on page 131 shows the mnemonics using uppercase

alphabetic characters:

Table 7. Mnemonics with Uppercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@B Left Tab Yes Yes No

@C Clear Yes Yes No

@D Delete Yes Yes No

@E Enter Yes Yes No

@F Erase EOF Yes Yes No

@H Help No Yes No

@I Insert Yes Yes No

@J Jump (Set Focus) Yes Yes No

@L Cursor Left Yes Yes Yes

@N New Line Yes Yes Yes

@O Space Yes Yes Yes

@P Print Yes Yes Yes

@R Reset Yes Yes No

@T Right Tab Yes Yes Yes

@U Cursor Up Yes Yes Yes

@V Cursor Down Yes Yes Yes

@Z Cursor Right Yes Yes Yes

131

Emulator Programming

132

Table 8: Mnemonics with Numbers or Lowercase Characters on page 132 shows the mnemonics using a number or

lowercase alphabetic characters.

Table 8. Mnemonics with Numbers or Lowercase Characters

Mnemonic Meaning 3270 5250 VT

@0 Home Yes Yes No

@1 PF1/F1 Yes Yes No

@2 PF2/F2 Yes Yes No

@3 PF3/F3 Yes Yes No

@4 PF4/F4 Yes Yes No

@5 PF5/F5 Yes Yes No

@6 PF6/F6 Yes Yes Yes

@7 PF7/F7 Yes Yes Yes

@8 PF8/F8 Yes Yes Yes

@9 PF9/F9 Yes Yes Yes

@a PF10/F10 Yes Yes Yes

@b PF11/F11 Yes Yes Yes

@c PF12/F12 Yes Yes Yes

@d PF13 Yes Yes Yes

@e PF14 Yes Yes Yes

@f PF15 Yes Yes Yes

@g PF16 Yes Yes Yes

@h PF17 Yes Yes Yes

@i PF18 Yes Yes Yes

@j PF19 Yes Yes Yes

@k PF20 Yes Yes Yes

@l PF21 Yes Yes No

@m PF22 Yes Yes No

@n PF23 Yes Yes No

@o PF24 Yes Yes No

@q End Yes Yes No

@u Page Up No Yes No

@v Page Down No Yes No

@x PA1 Yes Yes No

@y PA2 Yes Yes No

@z PA3 Yes Yes No

Table 9: Mnemonics with @A and @ Uppercase Alphabetic Characters on page 133 shows the mnemonics using

the combination @A and @alphabetic uppercase (A–Z) key.

Chapter 3. EHLLAPI Functions

Table 9. Mnemonics with @A and @ Uppercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@A@C Test No Yes No

@A@D Word Delete Yes Yes No

@A@E Field Exit Yes Yes No

@A@F Erase Input Yes Yes No

@A@H System Request Yes Yes No

@A@I Insert Toggle Yes Yes No

@A@J Cursor Select Yes Yes No

@A@L Cursor Left Fast Yes Yes No

@A@Q Attention Yes Yes No

@A@R Device Cancel (Can

cels Print Presenta

tion Space)

Yes Yes No

@A@T Print Presentation

Space

Yes Yes Yes

@A@U Cursor Up Fast Yes Yes No

@A@V Cursor Down Fast Yes Yes No

@A@Z Cursor Right Fast Yes Yes No

Table 10: Mnemonics with @A and @ Lowercase Alphabetic Characters on page 133 shows the mnemonics using

the combination @A and @number or @A and @alphabetic lowercase (a–z) key.

Table 10. Mnemonics with @A and @ Lowercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@A@9 Reverse Video Yes Yes No

@A@b Underscore Yes No No

@A@c Reset Reverse Video Yes No No

@A@d Red Yes No No

@A@e Pink Yes No No

@A@f Green Yes No No

@A@g Yellow Yes No No

@A@h Blue Yes No No

@A@i Turquoise Yes No No

@A@j White Yes No No

@A@l Reset Host Colors Yes No No

@A@t Print (Personal Com

puter)

Yes Yes No

@A@y Forward Word Tab Yes Yes No

@A@z Backward Word Tab Yes Yes No

133

Emulator Programming

134

Table 11: Mnemonics with @A and @ Alphanumeric (Special) Characters on page 134 shows the mnemonics using

the combination @A and @special character.

Table 11. Mnemonics with @A and @ Alphanumeric (Special) Characters

Mnemonic Meaning 3270 5250 VT

@A@- Field - No Yes No

@A@+ Field + No Yes No

@A@< Record Backspace No Yes No

Table 12: Mnemonics with @S (Shift), @W (Edit) and @ Alphabetic Characters on page 134 shows the mnemonics

using the combination @S , @W, and @alphabetic lowercase.

Table 12. Mnemonics with @S (Shift), @W (Edit) and @ Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@S@E Print Presentation

Space on Host

No Yes No

@S@x Dup Yes Yes No

@S@y Field Mark Yes Yes No

@W@C Edit Copy Yes Yes Yes

@W@D Edit Clear Yes Yes Yes

@W@E Edit Copy Append Yes Yes Yes

@W@L Edit Copy Link Yes Yes Yes

@W@N Edit Paste Next Yes Yes Yes

@W@V Edit Paste Yes Yes Yes

@W@X Edit Cut Yes Yes Yes

@W@Z Edit Undo Yes Yes Yes

Note: @W Edit mnemonics are supported only in EHLLAPI functions in Enhanced mode. See Start Keystroke

Intercept function under Summary of EHLLAPI Functions on page 33.

VT Only: Table 13: Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only) on page 134 shows the

mnemonics using the combination @M and @number or @alphabetic lowercase (a-z)

Table 13. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only)

Mnemonic Meaning 3270 5250 VT

@M@0 VT Numeric Pad 0 No No Yes

@M@1 VT Numeric Pad 1 No No Yes

@M@2 VT Numeric Pad 2 No No Yes

@M@3 VT Numeric Pad 3 No No Yes

@M@4 VT Numeric Pad 4 No No Yes

@M@5 VT Numeric Pad 5 No No Yes

Chapter 3. EHLLAPI Functions

Table 13. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only) (continued)

Mnemonic Meaning 3270 5250 VT

@M@6 VT Numeric Pad 6 No No Yes

@M@7 VT Numeric Pad 7 No No Yes

@M@8 VT Numeric Pad 8 No No Yes

@M@9 VT Numeric Pad 9 No No Yes

@M@- VT Numeric Pad - No No Yes

@M@, VT Numeric Pad , No No Yes

@M@. VT Numeric Pad . No No Yes

@M@e VT Numeric Pad Enter No No Yes

@M@f VT Edit Find No No Yes

@M@i VT Edit Insert No No Yes

@M@r VT Edit Remove No No Yes

@M@s VT Edit Select No No Yes

@M@p VT Edit Previous

Screen

No No Yes

@M@n VT Edit Next Screen No No Yes

@M@a VT PF1 No No Yes

@M@b VT PF2 No No Yes

@M@c VT PF3 No No Yes

@M@d VT PF4 No No Yes

@M@h VT HOld Screen No No Yes

@M@(space) Control Code NUL No No Yes

@M@A Control Code SOH No No Yes

@M@B Control Code STX No No Yes

@M@C Control Code ETX No No Yes

@M@D Control Code EOT No No Yes

@M@E Control Code ENQ No No Yes

@M@F Control Code ACK No No Yes

@M@G Control Code BEL No No Yes

@M@H Control Code BS No No Yes

@M@I Control Code HT No No Yes

@M@J Control Code LF No No Yes

@M@K Control Code VT No No Yes

@M@L Control Code FF No No Yes

@M@M Control Code CR No No Yes

@M@N Control Code SO No No Yes

@M@O Control Code SI No No Yes

@M@P Control Code DLE No No Yes

135

Emulator Programming

136

Table 13. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only) (continued)

Mnemonic Meaning 3270 5250 VT

@M@Q Control Code DC1 No No Yes

@M@R Control Code DC2 No No Yes

@M@S Control Code DC3 No No Yes

@M@T Control Code DC4 No No Yes

@M@U Control Code NAK No No Yes

@M@V Control Code SYN No No Yes

@M@W Control Code ETB No No Yes

@M@X Control Code CAN No No Yes

@M@Y Control Code EM No No Yes

@M@Z Control Code SUB No No Yes

@M@u Control Code ESC No No Yes

@M@v Control Code FS No No Yes

@M@w Control Code GS No No Yes

@M@x Control Code RS No No Yes

@M@y Control Code US No No Yes

@M@z Control Code DEL No No Yes

@Q@A VT User Defined Key 6 No No Yes

@Q@B VT User Defined Key 7 No No Yes

@Q@C VT User Defined Key 8 No No Yes

@Q@D VT User Defined Key 9 No No Yes

@Q@E VT User Defined Key

10

No No Yes

@Q@F VT User Defined Key

11

No No Yes

@Q@G VT User Defined Key

12

No No Yes

@Q@H VT User Defined Key

13

No No Yes

@Q@I VT User Defined Key

14

No No Yes

@Q@J VT User Defined Key

15

No No Yes

@Q@K VT User Defined Key

16

No No Yes

@Q@L VT User Defined Key

17

No No Yes

@Q@M VT User Defined Key

18

No No Yes

Chapter 3. EHLLAPI Functions

Table 13. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only) (continued)

Mnemonic Meaning 3270 5250 VT

@Q@N VT User Defined Key

19

No No Yes

@Q@0 VT User Defined Key

20

No No Yes

@Q@a VT Backtab No No Yes

@Q@r VT Clear Page No No Yes

@Q@s VT Edit No No Yes

The following table shows the mnemonics using a special character.

Table 14. Mnemonics with Special Character Keys

Mnemonic Meaning 3270 5250 VT

@@ @ Yes Yes Yes

@$ Alternate Cursor (The

Presentation Manag

er® Interface only)

Yes Yes Yes

@< Backspace Yes Yes Yes

The following character keys are interpreted as they are.

a–z ! ' ' < }

A–Z $ (. > [

0–9 %) / =]

~ & * : ? |

" + ; {

Set Cursor (40)

3270 5250 VT

Yes Yes Yes

The Set Cursor function is used to set the position of the cursor within the host presentation space. Before using the

Set Cursor function, a workstation application must be connected to the host presentation space.

Prerequisite Calls
Connect Presentation Space (1)

137

Emulator Programming

138

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 40

Data String NA

Length NA

PS Position Desired cursor position in the connected host presentation space

Return Parameters

Return Code Explanation

0 Cursor was successfully located at the specified position.

1 Your program is not connected to a host session.

4 The session is busy.

7 A cursor location less than 1 or greater than the size of the connected host presen

tation space was specified.

9 A system error occurred.

Set Session Parameters (9)

3270 5250 VT

Yes Yes Yes

The Set Session Parameters function lets you change certain default session options in EHLLAPI for all sessions.

When EHLLAPI is loaded, the default settings for session options are as indicated by the underscored entries in the

tables that appear in Session Options on page 140 . Any, some, or all of these settings can be changed by including

the desired option in the calling data string as explained below. Specified settings remain in effect until:

• Changed by a subsequent Set Session Parameters (9) function that specifies a new value.

• The Reset System (21) function is executed. Reset System (21) 21, Reset System

• The EHLLAPI application program is terminated.

The following table lists those EHLLAPI functions that are affected by session options. Functions not listed in the

table are not affected by any of the session options. Session options that affect each function are indicated by

corresponding entries in the “See Items” column. These entries are indexed to the list that follows Call Parameters on

page 140. Set Session Parameters (9)List of affected functions

Function Number Function Name See Items

1 Connect Presentation Space 11 on page 143, 21 on page 146,

22 on page 147

Chapter 3. EHLLAPI Functions

Function Number Function Name See Items

3 Send Key 1 on page 140, 2 on page 140, 9

on page 143, 10 on page 143, 19

on page 146

4 Wait 12 on page 143

5 Copy Presentation Space 5 on page 141, 13 on page 144,

14 on page 145, 15 on page 145,

17 on page 145, 20 on page 146

6 Search Presentation Space 1 on page 140, 2 on page 140, 3

on page 141, 4 on page 141

8 Copy Presentation Space to String 5 on page 141, 13 on page 144,

14 on page 145, 15 on page 145,

17 on page 145, 20 on page 146

10 Query Sessions 16 on page 145, 20 on page 146

15 Copy String to Presentation Space 1 on page 140, 2 on page 140,

13 on page 144, 14 on page 145,

18 on page 145, 20 on page 146

18 Pause 6 on page 141

30 Search Field 1 on page 140, 2 on page 140, 3

on page 141, 4 on page 141, 20

on page 146

33 Copy String to Field 1 on page 140, 2 on page 140,

13 on page 144, 14 on page 145,

18 on page 145, 20 on page 146

34 Copy Field to String 5 on page 141, 13 on page 144,

14 on page 145, 17 on page 145,

20 on page 146

35 Copy Presentation Space to Clipboard 5 on page 141, 13 on page 144,

14 on page 145, 17 on page 145,

20 on page 146

36 Paste Clipboard to Presentation Space 1 on page 140, 2 on page 140,

13 on page 144, 14 on page 145,

18 on page 145, 20 on page 146

51 Get Key 9 on page 143, 12 on page 143

90 Send File 1 on page 140, 2 on page 140, 7

on page 141, 8 on page 142

91 Receive File 1 on page 140, 2 on page 140, 7

on page 141, 8 on page 142

101 Connect Window Services 21 on page 146, 22 on page 147

139

Emulator Programming

140

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 9.

Data String String containing the desired values of those session options that are to

be changed. The data string can contain any of the values in the tables of

Session Options on page 140. The values should be placed on the data

string line, separated by commas or blanks. The sets of parameters are ex

plained in terms of the functions they affect.

Length Explicit length of the source data string (the STREOT option is not allowed).

PS Position NA.

Session Options
The following tables show the session options. The default is underlined. Set Session Parameters (9)Valid Inputstring specification

1. string specificationsession optionsThe values in the following table determine how the data string length is defined for functions Send Key (3),

Search Presentation Space (6), Copy String to Presentation Space (15), Search Field (30), Copy String to

Field (33), Send File (90), and Receive File (91).

Value Explanation

STRLEN An explicit length is passed for all strings.

STREOT Lengths are not explicitly coded. Calling (source) data strings are terminated

with an EOT character.

STRLEN STREOT

2. The statement in the following table is used to specify the character that is used as the end-of-text (EOT)

delimiter in the calling (source) data string for EHLLAPI functions Send Key (3), Search Presentation Space

(6), Copy String to Presentation Space (15), Search Field (30), Copy String to Field (33), Send File (90), and

Receive File (91). EOT

Value Explanation

EOT=c Allows you to specify the EOT character for string terminators (in STREOT

mode). Binary zero is the default. Do not leave a blank after the equal sign.

To be valid, c must be entered as a 1-byte string literal character with no preceding blanks. The EOT character

specified by this statement is used to determine the length of a calling data string only when the STREOT

option (see item 1) is in effect.

Chapter 3. EHLLAPI Functions

3. The values in the following table affect the Search Presentation Space (6) and Search Field (30) search

functions. SRCHALL SRCHFROM

Value Explanation

SRCHALL The Search Presentation Space (6) function and Search Field (30) function

scan the entire host presentation space or field.

SRCHFROM The Search Presentation Space (6) function and Search Field (30) function

start from a specified PS position (for SRCHFRWD) or end at a specified PS posi

tion (for SRCHBKWD).

4. The values in the following table affect the Search Presentation Space (6) and Search Field (30) search

functions. They determine the direction for the search. SRCHFRWD SRCHBKWD

Value Explanation

SRCHFRWD The Search Presentation Space (6) function and Search Field (30) function

perform in an ascending direction.

SRCHBKWD The Search Presentation Space (6) function and Search Field (30) function

perform in a descending direction. A search is satisfied if the first character of

the requested string starts within the bounds specified for the search.

5. The values in the following table determine how attribute bytes are treated for functions Copy Presentation

Space (5), Copy Presentation Space to String (8), and Copy Field to String (34). attribute bytes ATTRB NOATTRB NULLATTRB

Value Explanation

NOATTRB Convert all unknown values to blanks.

ATTRB Pass back all codes that do not have an ASCII equivalent as their original val

ues.

NULLATTRB Convert all field attributes to null characters.

6. The values in the following table affect the Pause (18) function. FPAUSE IPAUSE

Value Explanation

FPAUSE A full-duration pause lasts for however long you specified in the Pause (18)

function.

IPAUSE Interruptible pause. Start Host Notification (23) After the Start Host Notification (23) function is executed,

a host event satisfies a pause.

7. The values in the following table determine whether messages generated by file transfer functions Send File

(90) and Receive File (91) are displayed. QUIET NOQUIET

Value Explanation

NOQUIET SEND and RECEIVE messages are displayed.

QUIET SEND and RECEIVE messages are not displayed.

141

Emulator Programming

142

8. The statements in the following table determine how long Z and I Emulator for Windows EHLLAPI waits

before it automatically issues a Cancel during execution of file transfer functions Send File (90) and Receive

File (91). To be valid, c must be a capital letter J–N and must not be preceded by a blank. TIMEOUT

Value Explanation

TIMEOUT=0 A Cancel is automatically issued following a 20-second (approximate) delay.

TIMEOUT=c A Cancel is automatically issued following a specified delay. A 1-character in

dicator from the table below tells Z and I Emulator for Windows how many 30-

second cycles it should accept before issuing a Cancel itself.

Character

Value (in minutes)

1

0.5

2

1.0

3

1.5

4

2.0

5

2.5

6

3.0

7

3.5

8

4.0

9

4.5

J

5.0

K

5.5

Chapter 3. EHLLAPI Functions

Value Explanation

L

6.0

M

6.5

N

7.0

Send File (90)general Receive File (91)general

9. The statement in the following table is used to define the escape character for keystroke mnemonics. This

session option affects functions Send Key (3) and Get Key (51). The value of c must be entered as a 1-byte

literal character string with no preceding blanks. escape character character, escape ESC

Value Explanation

ESC=c Specifies the escape character for keystroke mnemonics (@ is the default). Do

not leave a blank after the equal sign. A blank is not a valid escape character.

10. The values in the following table determine whether EHLLAPI automatically precedes strings sent using the

Send Key (3) function with a reset. AUTORESET NORESET

Value Explanation

AUTORESET EHLLAPI attempts to reset all inhibited conditions by prefixing all strings of

keys sent using the Send Key (3) function with a reset.

NORESET Do not AUTORESET.

11. The values in the following table affect the manner in which the Connect Presentation Space (1) command

function.

Value Explanation

CONLOG Establishes a logical connection between the workstation session and a host

session. During Connect, does not jump to the requested presentation space.

CONPHYS Establishes a physical connection between the workstation session and a host

session. During Connect, jumps to the requested presentation space.

12. The values in the following table affect the Wait (4) function and Get Key (51) function. For each value, there

are two different effects, one for each function. TWAIT LWAIT NWAIT

Value Explanation

TWAIT For the Wait (4) function, waits up to a minute before timing out on XCLOCK (X

[]) or XSYSTEM.

143

Emulator Programming

144

Value Explanation

For the Get Key (51) function, does not return control to your EHLLAPI applica

tion program until it has intercepted a key (normal or AID key based on the op

tion specified under the Start Keystroke Intercept (50) function).

LWAIT For the Wait (4) function, waits until XCLOCK (X [])/XSYSTEM clears. This op

tion is not recommended, because control does not return to your application

until the host is available.

For the Get Key (51) function, does not return control to your EHLLAPI applica

tion program until it has intercepted a key (normal or AID key based on the op

tion specified under the Start Keystroke Intercept (50) function).

NWAIT For the Wait (4) function, checks status and returns immediately (no wait).

For the Get Key (51) function, returns return code 25 (keystrokes not available)

in the fourth parameter if nothing is queued matching the option specified un

der the Start Keystroke Intercept (50) function.

Note: Use of NWAIT is recommended.

13. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8),

Copy String to Presentation Space (15), Copy String to Field (33), and Copy Field to String (34). Extended

attribute bytes (EAB) include extended character attributes and extended field attributes. EAB NOEAB

Value Explanation

NOEAB Pass data only, no EABs.

EAB Pass the presentation space data with extended attribute bytes. For each char

acter that appears on the screen, 2 bytes of data are passed. Therefore, a

buffer twice the size of the presentation space must be preallocated; for exam

ple 2 x 1920 = 3840 for a 24-row by 80-column presentation space.

Extended attributes for a string of characters may be reported as attributes of

the field byte, rather than as attributes of each individual character in the field.

In this case, to tell if a particular character or set of characters on a screen is

underscored, do a CopyPStoString specifying the position of the field attribute

byte (the byte before the field that is displayed on the screen) to get the EAB in

formation that applies to all of the characters in that field.

Note: When using EHLLAPI Copy PS to String, text is copied which should be invisible to the operator.

Use the EHLLAPI Set Session Parameters function to set the NODISPLAY option to determine if there

is hidden data. This causes EHLLAPI to return nondisplay fields as nulls. Another common procedure

for hiding data is to set the foreground and background colors the same (BLACK, for instance) so the

text is displayed, but not visible to the human operator. The only way for your application to detect

Chapter 3. EHLLAPI Functions

this is to use the EAB and XLATE session parameters and then copying the PS. The foreground/

background color of each position is returned and you can determine which characters are invisible.

14. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8),

Copy String to Presentation Space (15), Copy String to Field (33), and Copy Field to String (34). XLATE NOXLATE

Value Explanation

NOXLATE EABs are not translated.

XLATE EABs are translated to the PC color graphics adapter (CGA) format.

15. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8)

and Copy Presentation Space to Clipboard (35) if NOATTRB and NOEAB are specified. BLANK NOBLANK

Value Explanation

BLANK Convert all unknown values to X'20'.

NOBLANK Convert all unknown values to X'00'.

The default value is BLANK. If you want to change the default value to NOBLANK, add the following statement

in the PCSWIN.INI file located in the Z and I Emulator for Windows user-class application data directory:

[API]
NullToBlank=NO

16. The values in the following table affect the presentation space size that is returned by the Query Sessions

(10).

Value Explanation

CFGSIZE Returns the configured size of the connected presentation space. This option

ignores any override of the configured size by the host.

NOCFGSIZE Returns the current size of the connected presentation space.

17. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8),

Copy Field to String (34) and Copy Presentation Space to Clipboard (35).

Value Explanation

DISPLAY Copy nondisplay fields in the presentation space to the target buffer area in the

same manner as display fields. Current applications function normally.

NODISPLAY Do not copy nondisplay fields in the presentation space to the target buffer

area. Copy the nondisplay fields to the target buffer as a string of null charac

ters. This allows applications to display the copied buffers in the presentation

widow without displaying confidential information, such as passwords.

18. The values in the following table affect Copy String to Presentation Space (15), Copy String to Field (33) and

Paste Clipboard to Presentation Space (36).

145

Emulator Programming

146

Value Explanation

NOPUTEAB EAB is not contained in the data string of Copy String to Presentation Space or

Copy String to Field.

PUTEAB EAB is contained with character data in the data string of Copy String to Pre

sentation Space or Copy String to Field.

This option is used for the compatibility with Communication Manager/2. For Communication Manager/2, the

data string, which is specified in Copy String to Presentation Space or Copy String to Field, must be contain

EAB (or EAD) with character data when EAB (or EAD) is valid in Set Session Parameters. Whereas, for the

previous Z and I Emulator for Windows, the data string specified in these functions must consist of character

data only even if EAB (or EAD) is valid. But Z and I Emulator for Windows allows that the data string contains

EAB (or EAD) by setting PUTEAB to provide the compatibility with Communication Manager/2.

19. The values in the following table affect the Send Key (3) function. Keystrokes are not processed if the

keyboard is blocked or in use. The options determine whether the function tries to resend the keystrokes until

a 4-minute timeout occurs or if the function returns immediately after determining the keyboard is blocked or

in use.

Value Explanation

RETRY Continues to attempt to send keystrokes until they are sent or until a 4-minute

timeout occurs.

NORETRY Returns immediately after determining the keyboard is blocked or in use.

20. The values in the following table affect Copy Presentation Space (5), Copy Presentation Space to String (8),

Copy String to Presentation Space (15), Copy String to Field (33), Copy Field to String (34) Search Field (30),

Query Sessions. (10), Copy Presentation Space to Clipboard (35) and Paste Clipboard to Presentation Space

(36).

Value Explanation

EXTEND_PS 5250 emulation supports a presentation space of 24 rows by 80 columns. In

some instances, Communication Manager 5250 emulation displays a 25th

row. This occurs when either an error message from the host is displayed or

when the operator selects the SysReq key. Z and I Emulator for Windows dis

plays 25th row information on row 24, but EHLLAPI normally sees the real 24th

row. By EXTEND_PS option, an EHLLAPI application can use the same inter

face with Communication Manager EHLLAPI and valid presentation space is

extended when this condition occurs.

NOEXTEND_PS The presentation space is not extended when the above condition occurs. This

is the default value.

21. The values in the following table affect the Connect Presentation Space (1) and Connect Window Services

(101) functions. The options specify whether an application can or will share the presentation space to which

it is connected with another application. Only one of the following values can be specified with each Set

Session Parameter call.

Chapter 3. EHLLAPI Functions

Value Explanation

SUPER_WRITE The application allows other applications that allow sharing and have write ac

cess permissions to concurrently connect to the same presentation space.

The originating application performs supervisory-type functions but does not

create errors for other applications that share the presentation space.

WRITE_SUPER The application requires write access and allows only supervisory application

to concurrently connect to its presentation space. This is the default value.

WRITE_WRITE The application requires write access and allows partner or other applications

with predictable behavior to share the presentation space.

WRITE_READ The application requires write access and allows other applications that per

form read-only functions to share the presentation space. The application is al

so allowed to copy the presentation space and perform other read-only opera

tions as usual.

WRITE_NONE The application has exclusive use of the presentation space. No other applica

tions are allowed to share the presentation space, including supervisory appli

cations. The application is allowed to copy the presentation space and perform

read-only operations as usual.

READ_WRITE The application requires only read access to monitor the presentation space

and allows other applications that perform read or write, or both, functions to

share the presentation space. The application is also allowed to copy the pre

sentation space and perform other read-only operations as usual.

22. The values in the following table allow applications that have presentation space sharing requirements to limit

the sharing to a partner application (an application that was developed to work with it).

Value Explanation

NOKEY Allows the application to be compatible with existing applications that do not

specify the KEY parameter.

KEY$nnnnnnnn Uses a keyword to restrict sharing access to the presentation space that it

supports. The keyword must be exactly 8 bytes in length.

Set Session Parameters (9)Valid Input options

Return Parameters
This function returns a length and a return code.

Length:

Number of valid session parameters that are set.

Return Code:

The following codes are defined:

147

Emulator Programming

148

Return Code Explanation

0 The session parameters have been set.

2 One or more parameters were not valid.

9 A system error was encountered.

Start Close Intercept (41)

3270 5250 VT

Yes Yes Yes

The Start Close Intercept function allows the application to intercept close requests generated when a user selects

the close option from the emulator session window. This function intercepts the close request and discards it until a

Stop Close Intercept (43) function is requested.

After using this function, your application program can use the Query Close Intercept (42) function to determine when

a close request has occurred.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Byte Definition

 Standard Interface Enhanced Interface

Function Number Must be 41

Data String See the following table

Length 5 or 6 Must be 12

PS Position NA

The data string contains the following items.

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

4–5 The data in these positions is ignored by EHLLAPI. However, no error is

caused if the migrating program has data in these positions. This data is

accepted to provide compatibility with migrating applications.

5 Specify M to request asynchronous message mode (Windows only).6

6–8 Reserved.

Chapter 3. EHLLAPI Functions

Byte Definition

2–3 9–12 When M is specified in position 5 (6 for 16-bit), the window handle of the

window that receives the message should be set. The message is a return

value of RegisterWindowMessage (PCSHLL) (not equal 0).

Return Parameters
This function returns a data string and a return code.

Data String:

If asynchronous message mode is not specified in position 5 (6 for standard interface) and the function

is completed successfully, the following data string is returned.

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).

2–8 Reserved.

1

9–12 4 byte value in which the event object address is returned by EHLLAPI.

The application can wait for this event object. (32-bit only).

Data String:

If M (asynchronous message mode) is specified in position 5 (6 for standard interface) and the function

is completed successfully, the following data string is returned.

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–8 Reserved

2–3 9–10 Task ID of asynchronous message mode

Note: If a user selects the close option, an application window receives a message. The message is a return

value of RegisterWindowMessage (PCSHLL). The wParam parameter will contain the Task ID returned by this

function call. The HIWORD of the lParam parameter will contain the Return Code 26, which shows a close

intercept occurred, and the LOWORD of the lParam parameter will contain the function number 41.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Start Close Intercept function was successful.

1 An incorrect host presentation space was specified.

2 A parameter error occurred.

149

Emulator Programming

150

Return Code Explanation

9 A system error occurred.

10 The function is not supported by the emulation program.

Notes on Using This Function

1. The returned event object or semaphore is in a non-signaled state when the start request function returns.

The event object is in the signaled state each time a close request occurs. To receive notification of multiple

close request events, put the event object into the signaled state each time using SetEvent or the Query Close

Intercept (42) function.

2. After using this function, your application program can use the Query Close Intercept (42) function to

determine when a close request has occurred. The application can wait on the returned event object to

determine when the event has occurred.

3. This is not an exclusive call. Multiple applications can request this function for the same short session ID.

4. If there are no applications intercepting close requests for a session, any subsequent close requests selected

by the user from the emulator operations dialog result in a normal stop requested for that session.

Start Communication Notification (80)

3270 5250 VT

Yes Yes Yes

The Start Communication Notification function begins the process by which your EHLLAPI application can determine

whether the specified session is connected to a host.

After using this function, the application can use Query Communication Event (81) to determine whether the session

is connected or disconnected.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Enhanced Interface

Function Number Must be 80

Data String Preallocated structure; see the following table

Length 16

PSPosition NA

The calling data structure contains these elements

Byte Definition

Chapter 3. EHLLAPI Functions

1 A 1-character presentation space short name (PSID).

2-4 Reserved

5 One of the following values:

• The character C asks for notification when the session either disconnects or

connects to the host.

• The character A requests the asynchronous mode of notification. When A is

specified, position 9-12 returns the address of an event object (Windows).

The character C must be placed in position 13.

• The character M requests the asynchronous message mode of the notifica

tion. When M is specified, the event selection character C must be placed in

position 13.

6-8 Reserved

9-12 When M is specified in position 5, the window handle of the window that receives

the message should be set. The message is a return value of RegisterWindowMes

sage (PCSHLL)—(not zero).

13 This should contain the character C if position 5 is A or M.

14-16 Reserved

Data String
If A (asynchronous mode) is specified in position 5 of the calling data structure and the function is completed

successfully, the following data string is returned:

Byte Definition

1 A 1-character presentation space short-name (PSID)

2-8 Reserved

9-12 4-byte binary value in which the event object handle is returned by EHLLAPI. The ap

plication can wait for this event object.

If M (asynchronous message mode) is specified in position 5 of the calling data structure and the function is

completed successfully, the following data string is returned:

Byte Definition

1 A 1-character presentation space short-name (PSID)

2-8 Reserved

9-10 Task ID of asynchronous message mode

When the session connects or disconnects an application window receives a message. The message is the return

value of RegisterWindow Message (PCSHLL). The wParam contains the Task ID returned by the function call.

HIWORD of lParam contains a 21 if the session is connected to the host or a 22 if the session is disconnected. The

LOWORD of lParam contains the function number 80.

151

Emulator Programming

152

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

2 An error was made in designating parameters

9 A system error was encountered

Notes on using this Function

1. An application program can issue this function for multiple host sessions. The Query Communication Event

(81) function can be used to determine the session communication status.

2. If the application chooses the asynchronous option, it can use the Windows SDK call WaitForSingleObject to

wait until the sessions communication status has changed.

3. The event object is initially in a non-signaled state. It is signaled each time an event occurs. To receive

notification for multiple events the application must put the event object into the non-signaled state each time

it is signaled, by using the Windows SDK call ResetEvent, or by using function 81 Query Communications

Event.

4. Multiple calls to this function with the same options from the same application will be ignored.

5. This is not exclusive to one application. Several applications can request this function for the same Session

ID.

Start Host Notification (23)

3270 5250 VT

Yes Yes Yes

The Start Host Notification function begins the process by which your EHLLAPI application program determines if the

host presentation space or OIA have been updated.

After using this function, your application program can use the Query Host Update (24) function to determine when a

host event has occurred. Query Host Update (24)

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 23

Chapter 3. EHLLAPI Functions

Standard Interface Enhanced Interface

Data String Preallocated string; see the following table

Length 6 or 7 implied 16

PS Position NA

The calling data string contains these elements:

Byte Definition

Standard Enhanced

1 One of the following values:

• A 1-character presentation space short name (PSID)

• A blank or null indicating a request for the host-connected host

presentation space

1

2–4 Reserved.

5 One of the following values:

• The character B asking for notification of both host presentation

space and OIA updates.

• The character O asking for notification of only OIA updates.

• The character P asking for notification of only host presentation

space updates.

• The character A requesting the asynchronous mode of the notifi

cation When A is specified, position 9–12 returns the address of

an event object. The event selection character B, O, or P must be

placed in position 13.

• The character M requesting the asynchronous message mode of

the notification.

When M is specified, the event selection character B, O, or P must

be placed in position 13 (7 for 16-bit).

• E The character E asking for notification of completion during a

printer session.

2

6–8 Reserved.

3–4 9–12 When M is specified in position 5 (2 for 16-bit), the window handle of the

window that receives the message should be set. The message is a re

turn value of RegisterWindowMessage (PCSHLL) (not equal 0).

7 13 One of the following values if position 5 (2 for 16-bit) is A or M:

153

Emulator Programming

154

Byte Definition

• The character B asking for notification of both host presentation

space and OIA updates

• The character O asking for notification of only OIA updates

• The character P asking for notification of only host presentation

update.

14–16 Reserved.

Return Parameters
This function returns a data string and a return code.

Data String:

If A (asynchronous mode of notification) is specified in position 5 and the function is completed

successfully, the following data string is returned:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).

2–8 Reserved.

1

9–12 4-byte value in which the event object address is returned by EHLLAPI.

The application can wait for this event object (32-bit only).

Data String:

If M (asynchronous message mode) is specified in position 5 (2 for standard interface) and the function

is completed successfully, the following data string is returned:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–8 Reserved

3–4 9–10 Task ID of asynchronous message mode

Note: If OIA or presentation space is updated, an application window receives a message. The message is a

return value of RegisterWindowMessage (PCSHLL). The wParam parameter contains the Task ID returned by

the function call. HIWORD of lParam contains Return Code 21 (shows the OIA is updated), 22 (shows the host

presentation space is updated), or 23 (shows both the OIA and the host presentation space are updated), and

LOWORD of lParam parameter contains function number 23.

Return Code:

The following codes are defined:

Chapter 3. EHLLAPI Functions

Return Code Definition

0 The Start Host Notification function was successful.

1 An incorrect host presentation space was specified.

2 An error was made in designating parameters.

9 A system error was encountered.

Notes on Using This Function

1. An application program can issue this function for multiple host sessions. The Pause (18) function can notify

the application when one or more host sessions (PS, OIA, or both of them) are updated. The Query Host

Update (24) function can be used to determine whether a PS, OIA, or both of them have been updated.

2. If the application chooses the asynchronous option, it can wait for the returned event object or semaphore to

determine when a host event has occurred.

3. The event object or semaphore is initially in a non-signaled state and is signaled each time an appropriate

event occurs. To receive notification for multiple events, the application must put the event object into the

non-signaled state each time it has been signaled using either the ResetEvent or the Query Host Update (24)

function.

4. An application cannot request Start Host Notification more than once with the same options.

5. This is not an exclusive call. Multiple applications can request this function for the same short session ID.

Start Keystroke Intercept (50)

3270 5250 VT

Yes Yes Yes

The Start Keystroke Intercept function allows a workstation application to filter any keystrokes sent to a session

by a terminal operator. After a call to this function, keystrokes are intercepted and saved until the keystroke queue

overflows or until the Stop Keystroke Intercept (53) function or Reset System (21) function is called. The intercepted

keystrokes can be:

• Received through the Get Key (51) function and sent to the same or another session with the Send Key (3)

function 51, Get Key Get Key (51) 03, Send Key Send Key (3) 52, Post Intercept Status Post Intercept Status (52)

• Accepted or rejected through the Post Intercept Status (52) function

• Replaced by other keystrokes with the Send Key (3) function

• Used to trigger other processes

Prerequisite Calls
There are no prerequisite calls for this function.

155

Emulator Programming

156

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 50

Data String See the following table

Length Keystroke buffer size EHLLAPI allocates 32 bytes minimum for this buffer.

PS Position NA

The calling data string contains:

Byte Definition

Standard Enhanced

1 One of the following values:

• A specific host presentation space short name (PSID)

• A blank or null indicating a request for the host-connected host

presentation space

1

2–4 Reserved.

5 An option code character:

• D for AID keystrokes only.

• L for all keystrokes.

• E for edit keys and all keystrokes (Available in Enhanced mode

only)

• M for requesting the asynchronous message mode of the notifi

cation (Windows only).

When M is specified, a code character D, or L, or E (Enhanced

Monde) must be placed in position 13 (7 for 16-bit).

Prerequisite: keyboard keys must be mapped to edit functions, e.g. Ctrl

+C mapped to edit copy function. See Table 12: Mnemonics with @S

(Shift), @W (Edit) and @ Alphabetic Characters on page 134 for edit

functions supported.

2

6–8 Reserved.

3–4 9–12 When M is specified in position 5 (2 for 16-bit), the window handle of the

window that receives the message should be set. The message is a re

turn value of RegisterWindowMessage (PCSHLL) (not equal 0).

7 13 One of the following values if position 5 (2 for 16-bit) is M:

Chapter 3. EHLLAPI Functions

Byte Definition

• D for AID keystrokes only.

• L for all keystrokes.

• E for edit keys and all keystrokes. (Available in Enhanced mode

only.)

14–16 Reserved.

Data String:

If M (asynchronous message mode) is specified in position 5 (2 for standard interface) and the function

is completed successfully, the following data string is returned:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–8 Reserved

3–4 9–10 Task ID of asynchronous message mode

Note: If a user sends keystrokes to a session, an application window receives a message. The message is a

return value of RegisterWindowMessge (PCSHLL). The wParam parameter contains the Task ID returned by

the function call. HIWORD of lParam parameter contains return code 0, which shows that the function was

successful, and LOWORD of lParam parameter contains function number 50.

Return Parameters

Return Code Explanation

0 The Start Keystroke Intercept function was successful.

1 An incorrect presentation space was specified.

2 An incorrect option was specified.

4 The execution of the function was inhibited because the target presentation space

was busy.

9 A system error was encountered. Release is being used.

Notes on Using This Function

1. If a return code of 31 occurs for the Get Key (51) function, either:

• Increase the value of the calling length parameter for this function, or

• Execute the Get Key (51) function more frequently.

An intercepted keystroke occupies 3 bytes in the buffer. The next intercepted keystroke is placed in the

adjacent 3 bytes. When the Get Key (51) function retrieves a keystroke (first-in first-out, or FIFO), the 3 bytes

157

Emulator Programming

158

that it occupied are made available for another keystroke. By increasing the size of the buffer or the rate at

which keystrokes are retrieved from the buffer, you can eliminate buffer overflow.

In the PC/3270, another way to eliminate return code 31 is to operate the PC/3270 emulator in the resume

mode.

2. If option code D is provided, EHLLAPI writes intercepted non-AID keys to the presentation space to which they

were originally intended, and returns only AID keys to the application.

3. Call the Stop Keystroke Intercept (53) function before exiting your EHLLAPI application. Otherwise, keystroke

interception remains enabled with unpredictable results.

Start Playing Macro (110)

3270 5250 VT

Yes Yes Yes

The Start Playing Macro function invokes a macro. The macro will be executed in the connected session.

Note: This macro must exist in the Z and I Emulator for Windows user-class application data directory and no

extension should be specified in the function call for the macro name.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface

Function Number Must be 110

Data String See the following table

Length Length of macro name, plus 3

PS Position NA

Byte Definition

Standard Enhanced

1-2 Reserved

3-n Null terminated macro name

Return Parameters

Return Code Explanation

0 The Start Playing Macro function was successful.

Chapter 3. EHLLAPI Functions

Return Code Explanation

1 The programs is not connected to a host session.

2 An error was made in specifying parameters.

9 A system error was encountered.

Stop Close Intercept (43)

3270 5250 VT

Yes Yes Yes

The Stop Close Intercept function allows the application to turn off the Start Close Intercept (41) function. After the

application has issued the Stop Close Intercept function, subsequent close requests result in a normal stop sent to

the logical terminal session.

Prerequisite Calls
Start Close Intercept (41)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 43

Data String 1-character short session ID of the host presentation space

Length 1 Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Stop Close Intercept function was successful.

1 An incorrect host presentation space was specified.

2 An error was made in specifying parameters.

8 No previous Start Close Intercept (41) function was issued.

9 A system error occurred.

159

Emulator Programming

160

Return Code Explanation

12 The session stopped.

Stop Communication Notification (82)

3270 5250 VT

Yes Yes Yes

The Stop Communication Notification function disables the capability of the Query Communication Event (81)

function to determine whether any communication events have occurred in the specified Session.

Prerequisite Calls
Start Communication Notification (80)

Call Parameters

Enhanced Interface

Function

Number

Must be 82

Data String 1-character short name of the host presentation space, or a blank or null indicating request for up

dates to the host-connected presentation space

Length 4 is implied

PSPosition NA

The calling data structure contains these elements:

Byte Definition

1 A 1-character presentation space short name (PSID)

2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function was called for the

PSID

9 A system error was encountered

Chapter 3. EHLLAPI Functions

Stop Host Notification (25)

3270 5250 VT

Yes Yes Yes

The Stop Host Notification function disables the capability of the Query Host Update (24) function to determine if the Query Host Update (24)

24, Query Host Update host presentation space or OIA has been updated. This function also stops host events from affecting the Pause (18)

function. Pause (18) 18, Pause

Prerequisite Calls
Start Host Notification (23)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 121

Data String See the following note

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Note: 1-character short name of the target presentation space ID, or a blank or a null to indicate a request for

the host-connected presentation space.

Return Parameters

Return Code Definition

0 The Stop Host Notification function was successful.

1 An incorrect host presentation space was specified.

8 No previous Start Host Notification (23) function was issued. Start Host Notification (23)

9 A system error was encountered.

161

Emulator Programming

162

Stop Keystroke Intercept (53)

3270 5250 VT

Yes Yes Yes

The Stop Keystroke Intercept function ends your application program's ability to intercept keystrokes.

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 53

Data String Short name of the target presentation space (PSID)

Length 1 is implied Must be 4

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

Return Parameters

Return Code Explanation

0 The Stop Keystroke Intercept function was successful.

1 An incorrect presentation space was specified.

8 No prior Start Keystroke Intercept (50) function was called for this presentation

space.

9 A system error was encountered.

Wait (4)

3270 5250 VT

Yes Yes Yes

Chapter 3. EHLLAPI Functions

The Wait function checks the status of the host-connected presentation space. If the session is waiting for a host

response (indicated by XCLOCK (X []) or XSYSTEM), the Wait function causes EHLLAPI to wait up to 1 minute to see if

the condition clears.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 4

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Definition

0 The keyboard is unlocked and ready for input.

1 Your application program is not connected to a valid session.

4 Timeout while still in XCLOCK (X []) or XSYSTEM.

5 The keyboard is locked.

9 A system error was encountered.

Notes on Using This Function

1. The Wait function is used to give host requests like those made by the Send Key (3) function the time required

to be completed. Send Key (3) 03, Send Key Using the Set Session Parameters (9) function, you can request the TWAIT, LWAIT, or the

NWAIT option. See item 12 on page 143. LWAIT TWAIT NWAIT

2. You can use this function to see if the host OIA is inhibited. OIA

3. The Wait function is satisfied by the host unlocking the keyboard. Therefore, a return code of 0 does not

necessarily mean that the transaction has been completed. To verify completion of the transaction, you

should use the Search Field (30) function or Search Presentation Space (6) function combined with the Wait

function to look for expected keyword prompts.30, Search FieldSearch Field (30)06, Search Presentation SpaceSearch Presentation Space (6)

Window Status (104)

3270 5250 VT

Yes Yes Yes

163

Emulator Programming

164

The Window Status function allows the application to query or change a window's presentation space size, location,

or visible state.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 104

Data String See the following table

Length 16 or 20 24 or 28

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID)1

2–4 Reserved

2 5 A request option value, select one of the following values:

• X'01' for set status

Note: When the session is embedded In-Place in a com

pound OLE document, the set form of this function (byte

5 = X'01') always returns 0 but has no effect.

• X'02' for query for status

• X'03' for query for extended status

6 Reserved

If the request option value is X'01' (set status):

Byte Definition

Standard Enhanced

3–4 7–8 A 16- or 32-bit word containing the status set bits if the request option is

1 (set status). The following codes are valid return values if the request

option is set status:

X'0001'

Change the window size. (Not valid with minimize, maxi

mize, restore, or move.)

Chapter 3. EHLLAPI Functions

Byte Definition

X'0002'

Move the window. (Not valid with minimize, maximize, size,

or restore.)

X'0004'

ZORDER window replacement.

X'0008'

Set the window to visible.

X'0010'

Set the window to invisible.

X'0080'

Activate the window. (Sets focus to window and places it in

the foreground unless ZORDER is specified. In this case, the

ZORDER placement is used.)

X'0100'

Deactivate the window. (Deactivates the window and makes

the window the bottom window unless ZORDER is also

specified. In this case, the ZORDER placement is used.)

X'0400'

Set the window to minimized. (Not valid with maximize, re

store, size, or move.)

X'0800'

Set the window to maximized. (Not valid with minimize, re

store, size, or move.)

X'1000'

Restore the window. (Not valid with minimize, maximize,

size, or move.)

5–6 9–12 A 16- or 32-bit word containing the X window position coordinate. (Ig

nored if the move option is not set.)

7–8 13–16 A 16- or 32-bit word containing the Y window position coordinate. (Ig

nored if the move option is not set.)

9–10 17–20 A 16- or 32-bit word containing the X window size in device units. (Ignored

if the size option is not set.)

11–12 21–24 A 16- or 32-bit word containing the Y window size in device units. (Ignored

if the size option is not set.)

165

Emulator Programming

166

Byte Definition

13–16 25–28 A 16- or 32-bit word containing a window handle for relative window

placement. These two words are only for the set option. (Ignored if the

ZORDER option is not set.) Valid values are as follows:

X'00000003' Place in front of all sibling windows. X'00000004' Place be

hind all sibling windows.

If the request option value is X'02' (query for status):

Byte Definition

Standard Enhanced

3–4 7–8 A 16- or 32-bit word containing X'0000' if the request option is 2 (query for

status). The following codes are possible return values if the request op

tion is query for status. More than one state is possible.

X'0008'

The window is visible.

X'0010'

The window is invisible.

X'0080'

The window is activated.

X'0100'

The window is deactivated.

X'0400'

The window is minimized.

X'0800'

The window is maximized.

5–6 9–12 A 16- or 32-bit word containing the X window position coordinate. (Ig

nored if the move option is not set.)

7–8 13–16 A 16- or 32-bit word containing the Y window position coordinate. (Ig

nored if the move option is not set.)

9–10 17–20 A 16- or 32-bit word containing the X window size in device units. (Ignored

if the size option is not set.)

11–12 21–24 A 16- or 32-bit word containing the Y window size in device units. (Ignored

if the size option is not set.)

13–16 25–28 A 16- or 32-bit word containing a window handle for relative window

placement. These two words are only for the set option. (Ignored if the

ZORDER option is not set.) Valid values are as follows:

Chapter 3. EHLLAPI Functions

Byte Definition

X'00000003' Place in front of all sibling windows. X'00000004' Place be

hind all sibling windows.

If the request option value is X'03' (query for extended status):

Byte Definition

Standard Enhanced

3–4 7–8 A 16- or 32-bit word containing X'0000' if the request option is 3 (query

for extended status). The following codes are possible return values if

the request option is query for extended status. More than one state is

possible.

X'0008'

The window is visible.

X'0010'

The window is invisible.

X'0080'

The window is activated.

X'0100'

The window is deactivated.

X'0400'

The window is minimized.

X'0800'

The window is maximized.

5–6 9–10 A 16- or 32-bit word containing the current font size in the X-dimension.

The value is in screen pels.

7–8 11–12 A 16- or 32-bit word containing the current font size in the Y-dimension.

The value is in screen pels.

9–12 13–16 Reserved. This value is always zero.

13–14 17–18 A 16- or 32-bit word containing the row number of the first visible charac

ter of the presentation space. This value is usually one, unless the Fixed

Size font option is in effect, and the window has been resized such that

some of the presentation space is hidden.

15–16 19–20 A 16- or 32-bit word containing the column number of the first visible

character of the presentation space.

17–20 21–24 A 16- or 32-bit word containing the presentation space window handle of

the session.

167

Emulator Programming

168

Return Parameters

Return Code Explanation

0 The Window Status function was successful.

1 The presentation space was not valid or not connected.

2 An incorrect option was specified.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function
The logical terminal (LT) windows use character cells. When resizing the LT windows, the LT rounds the number

to prevent character cell truncation. The requested size and position might be slightly different from what was

requested. Follow the set option with a query option to determine the final Presentation Manager® window position

and size. All x and y coordinate positions and sizes are in pels.

Write Structured Fields (127)

3270 5250 VT

Yes No No

The Write Structured Fields function allows an application to write structured field data to the host application. If the

call specifies S (for Synchronous), the application does not receive control until the Write Structured Fields function is

completed. If the call specifies A (for Asynchronous), the application receives control immediately after the call. If the

call specifies M, the application receives control immediately after the call. The application may wait for the message.

In any case (S, A or M), the application provides the buffer address in which data to the host is to be placed.

For a successful asynchronous completion of this function, the following statements apply:

The return code field in the parameter list might not contain the results of the requested I/O. If the return code is not 0,

then the request failed. The application must take the appropriate action based on the return code.

If the return code for this request is 0, the application must use the request ID returned with this function call to issue

the Get Request Completion function call to determine the completion results of the function associated with the

request ID. The Get Request Completion function call returns the following information:

1. Function request ID

2. Address of the data string from the asynchronous request

3. Length of the data string

4. Return code of the completed function

Chapter 3. EHLLAPI Functions

Prerequisite Calls
Connect for Structured Fields (120) Allocate Communication Buffer (123)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 127

Data String See the following table

Length 8, 10, or 14 Must be 20

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 A 1-character presentation space short name (PSID).1

2–4 Reserved.

5 S or A or M

S =

Synchronous. Control is not returned to the application until

the read is satisfied.

A =

Asynchronous. Control is returned immediately to the appli

cation, can wait for the event object.

M =

Asynchronous. Control is returned immediately to the appli

cation, can wait for the message.

2

6 Reserved.

3–4 7–8 2-byte destination/origin ID.

5–8 9–12 4-byte address of the buffer from which the data is to be written. The

buffer must be obtained using the Allocate Communications Buffer (123)

function.

9–10 13–16 Reserved.

11–12 When “M” is specified in position 5 (2 for 16-bit), the window handle of

the window that receives the message should be set, The message is a

return value of RegisterWindowMessage (“PCSHLL”) (not equal 0).

13–14

17–20

The data in these positions is ignored by EHLLAPI However, no error is

caused if the migrating program has data in these positions. This data is

accepted to provide compatibility with migrating applications.

169

Emulator Programming

170

Return Parameters
This function returns a data string and a return code.

Data String:

If A (asynchronous) is specified in position 5 (2 for standard interface) and the function is completed

successfully, the following data string is returned:

Byte Definition

13–14 2-byte Function Request ID. It is used by the Get Request Completion (125) function

to determine the completion of this function call.

15–16 Reserved.

9–10

17–20 4-byte value in which the event object address is returned by EHLLAPI. The appli

cation can wait for this event object. When the event object is cleared, the applica

tion must issue the Get Request Completion (125) function call to get results of the

Write Structured Fields request. (32-bit only).

Note: An event object is returned for each successful asynchronous request. The event object should not be

used again. A new event object is returned for each request and is valid for only the duration of that request.

Data String:

If M (asynchronous message mode) is specified in position 5 (2 for standard interface) and the function

is completed successfully, the following data string is returned:

Byte Definition

13–14 2-byte Function Request ID. It is used by the Get Request Completion (125) function

to determine the completion of this function call.

9–10

15–16 Reserved.

17–18 Task ID of asynchronous message mode.11–12

19–20 Reserved.

Note: If the function is completed successfully, an application window receive a message. The message is

a return value of RegisterWindowMessage (PCSHLL). The wParam parameter contains the Task ID returned

by the function call. HIWORD of lParam parameter contains return code 0, which shows the function was

successful, and LOWORD of lParam parameter contains function number 127.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Write Structured Fields function was successful.

Chapter 3. EHLLAPI Functions

Return Code Explanation

1 A specified host presentation space short session ID was not valid or was not con

nected.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

34 The message sent inbound to the host was canceled.

35 An outbound transmission from the host was canceled.

36 Request rejected. Lost contact with the host.

37 Failed. The host is inbound disabled.

Notes on Using This Function

1. Return code 35 will be returned when the first Read Structured Fields or Write Structured Fields is requested

after an outbound transmission from the host is canceled. Corrective action is the responsibility of the

application.

2. Return code 36 requires that the application disconnect from the emulation program and then reconnect to

reestablish communications with the host. Corrective action is the responsibility of the application.

3. Return code 37 will be returned if the host is inbound disabled.

4. The EHLLAPI allows for a maximum of 20 asynchronous requests per application to be outstanding. A return

code for unavailable resources (RC=11) is returned if more than 20 asynchronous requests are attempted.

The structured field data format is as follows:

Offset Length Contents

0 1 word X'0000'

2 1 word m (message length: the number of bytes of data in the message, the number

does not include the buffer header prefix, which contains 8 bytes) This value

must be set by the application.

4 1 word X'0000'

6 1 word X'0000'

8 8 bytes Length of the first (or only) structured field message.

10 1 byte First nonlength byte of the structured field message.

⋮

m+7 1 byte Last byte in the structured field message.

Bytes 0 through 7 are the buffer header. These first 8 bytes are used by the emulation program. The user section of

the buffer begins with offset 8. Bytes 8 and 9 contain the number of bytes in the first structured field (a structured

field message can contain multiple structured fields) including 2 bytes for bytes 8 and 9. Bytes 8 through m+7 are

used for the structured field message sent to the host.

171

Emulator Programming

172

Synchronous Requests
When Write Structured Fields is requested synchronously (the S option in the data string), control is returned to the

application only after the request is satisfied. The application can assume:

• The return code is correct.

• The data in the communications buffer (read buffer) is correct.

• The host is no longer processing the Write Structured Fields request.

Asynchronous Requests
When Write Structured Fields is requested asynchronously (the A option in the data string), the application cannot

assume:

• The return code is correct.

• The data in the communications buffer (write buffer) is correct.

• The host is no longer processing the Write Structured Fields request.

When requested asynchronously, EHLLAPI returns the following values:

• A 16-bit Request ID in positions 13–14 (9–10 for standard interface) of the data string

• The address of a event object in positions 17–20 of the data string.

These are used to complete the asynchronous Write Structured Fields call.

The following steps must be completed to determine the outcome of an asynchronous Write Structured Fields

function call:

• If the EHLLAPI return code is not zero, the request failed. No asynchronous request has been made. The

application must take appropriate actions before attempting the call again.

• If the return code is zero, the application should wait until the event object is in the signaled state by using

the Get Request Completion (125) function. The event object Get Request Completion (125) function) and

should not be reused. The event object is valid only for the duration of the Write Structured Fields function call

through the completion of the Get Request Completion (125) function call.

• Once the event object is in the signaled state use the returned 16-bit Request ID as the Request ID parameter

in a call to the Get Request Completion (125) function. The data string returned from the Get Request

Completion (125) function call contains the final return code of the Write Structured Fields function call.

Asynchronous Requests
When Write Structured Fields is requested asynchronously (the M option in the data string), the application cannot

assume:

Chapter 3. EHLLAPI Functions

• The return code is correct

• The data in the communications buffer (write buffer) is correct

• The host is no longer processing the Write Structured Fields request

When requested asynchronously with the M option, EHLLAPI returns the following values:

• A 16-bit request ID in positions 13–14 (9–10 for standard interface) of the data string

• Task ID of asynchronous message mode in position 17–18 (11–12 for standard interface)

These are used to complete the asynchronous Write Structured Fields call.

173

174

Chapter 4. WinHLLAPI Extension Functions
This chapter describes the extension functions provided when using WinHLLAPI programming support.

Summary of WinHLLAPI Functions
The following WinHLLAPI functions are available for 3270, 5250, and VT:

• Wait (4) on page 175

• Start Host Notification (23) on page 176

• Start Close Intercept (41) on page 177

• Start Keystroke Intercept (50) on page 178

• Send File (90) on page 179

• Receive File (91) on page 180

WinHLLAPI Asynchronous Functions
Asynchronous Functions, WinHLLAPIWinHLLAPI Extension FunctionsAsynchronous FunctionsgeneralThe following sections describe the WinHLLAPI asynchronous functions.

WinHLLAPIAsync
WinHLLAPI Extension FunctionsAsynchronous FunctionsWinHLLAPIAsyncThis entry point is used for six WinHLLAPI functions that often take a long time to complete. With WinHLLAPIAsync,

the function will be launched asynchronously and will not interfere with the continued progression of the calling

application. These functions are: Wait (04), Start Host Notify (23), Start Close Intercept (41), Start Keystroke

Intercept (50), Send File (90), and Receive File (91), and are described in WinHLLAPI Extension Functions on

page 174.

HANDLE WinHLLAPIAsync (HWIND hWnd, LPWORD lpnFunction, LPBYTE lpData, LPWORD lpnLength, LPWORD

lpnRetC)*

The parameter list is the same as WinHLLAPI except a window handle is required before the function number. Since

the function operates asynchronously, its completion is signaled by a registered message. The window handle is

required as the target of the message.

There are two messages that must be registered by the WinHLLAPI application through calls to

RegisterWindowsMessage() with the strings WinHLLAPIAsync(for all functions except 90 and 91) and

WinHLLAPIAsyncFileTransfer (for functions 90 and 91). The standard format is as follows:

WPARAM

contains the Task Handle returned by the original function call.

LPARAM

the high word contains the error code and the low word contains the original function number.

Chapter 4. WinHLLAPI Extension Functions

Wait (4)
This function determines whether the Host session is in an inhibited state. If, for some reason, the session is in an

inhibited state, this function will signal your application with a message when either the inhibited state expires or your

wait period has expired. The amount of time to wait is set with the Set Session Parameters (9) function.

Prerequisite Functions
Connect Presentation Space (1)

WinHLLAPIAsync(hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String NA

Data Length NA

PS Position NA

Return Codes

Code Description

WHLLOK The PS is uninhibited and ready for input.

WHLLNOTCONNECTED Your WinHLLAPI application is not connected to a valid host

session.

WHLLPSBUSY Function timed out while still inhibited.

WHLLNHIBITED The PS is inhibited.

SHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks
Asynchronous Wait is used to notify the calling application when the inhibited state of the PS is expired. When

inhibited state has expired, this version of Wait will post a WinHLLAPIAsync message to the window specified by the

hWnd. The session options TWAIT, LWAIT, and NWAITaffect the length of time that this function will wait. See Set

Session Parameters (9) on page 138 for details on these session options.

Note: If NWAIT is specified in the session parameters and the application registers using revision 1.1 of the

WinHLLAPI implementation, the WINHLLAPIAsync call will work the same as the WinHLLAPI call and not

175

Emulator Programming

176

send a message. If revision 1.0 is being used then Wait will return a message immediately with the inhibited

status of the PS.

Start Host Notification (23)
This function enables you to notify your WinHLLAPI application of changes in the Host Session Presentation Space

(PS) or Operation Information Area (OIA).

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String A 7-byte string in the following format:

Byte 1

Short name session ID of the desired Host session,

or space or null for the current Host session.

Byte 2

Notification mode. "P" for presentation space update

only, "O" for OIA update only, "B" for both presentation

space and OIA updates. When calling WinHLLAPIA

sync, this position can be "A".

Byte 3-6

Not used. Provided for compatibility with older appli

cations.

Byte 7

Reserved or replaced with one of the following if us

ing WinHLLAPIAsync and A in byte 2: P for presenta

tion space update only, O for OIA update only; and B

for both presentation space and OIA updates.

Data Length Length of Host event buffer (256 recommended).

PS Position NA

Return Parameters

Parameter Description

Data String Same as Data String on the call.

Chapter 4. WinHLLAPI Extension Functions

Return Codes

Code Description

WHLLOK Host notification enabled.

WHLLNOTCONNECTED The specified Host session is invalid.

WHLLPARAMETERERROR One of more parameters are invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks
Once enabled, Host notification is enabled until you call Stop Host Notification (25) or

WinHLLAPICancelAsyncRequest(). The function initiates host notification and immediately returns control to your

Windows HLLAPI application. This frees your application to perform other tasks while waiting for host updates.

When an update occurs, the function will notify the window specified by hWnd with the registered message

WinHLLAPIAsync.

Start Close Intercept (41)
This function intercepts user requests to close Z and I Emulator for Windows.

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String A 5-byte string for returned semaphore address. The first byte is

the session short name of the session to query, or space or null for

the current session.

Data Length Must be specified.

PS Position NA

Return Parameters

Parameter Description

Data String A 5-byte string with the following format:

Byte 1

Session short name, or space or null for the current

session

177

Emulator Programming

178

Parameter Description

Bytes 2-5

Semaphore address.

Return Code

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Remarks
Once enabled, Host notification remains enabled until you call Stop Close Intercept (43) or

WinHLLAPICancelAsyncRequest (). Initially, the semaphore is set. After using this function, close requests from the

user are discarded and the semaphore is cleared.

The function initiates close intercept and immediately returns control to your Windows HLLAPI application. This frees

your application to perform other tasks while waiting for close requests. When a close request occurs, the function

will notify the window specified by hWnd with the registered message WinHLLAPIAsync.

Start Keystroke Intercept (50)
This function intercepts keystrokes sent to a session by the user.

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String A 6-byte string in the following format:

Byte 1

Session short name, or space or null for the current

Host session.

Chapter 4. WinHLLAPI Extension Functions

Parameter Description

Byte 2

Keystroke intercept code. "D" causes only AID key

strokes to be intercepted; "L" causes all keystrokes to

be intercepted.

Bytes 3-6

Reserved

Data Length Variable (256 is recommended)

PS Position NA

Return Code

Code Description

WHLLOK Keystroke intercept has been initiated.

WHLLNOTCONNECTED The Host session presentation space is invalid.

WHLLPARAMETERERROR One or more parameters are invalid.

WHLLPSBUSY Session is busy.

WHLLSYSERROR Function failed due to a system error.

WHLLCANCEL Asynchronous function was cancelled.

Remarks
The function initiates keystroke intercept and immediately returns control to your Windows HLLAPI application.

This frees your application to perform other tasks while waiting for keystrokes. Once initiated, the function will post

a WinHLLAPIAsync message to the window specified by hWnd whenever the user sends a key to the PS. After

notification, the intercepted keystrokes can be handled in any way that is allowed by a normal EHLLAPI application.

Take note that the keystroke buffer is of limited size so each keystroke should be handled and removed from the

buffer.

Send File (90)
This function transfers a file from the PC to the Host.

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String SEND command parameters.

179

Emulator Programming

180

Parameter Description

Data Length Length of Data String. NA if session option EOT is specified.

PS Position NA

Return Codes

Code Description

WHLLOK File transfer started successfully.

WHLLPARAMETERERROR Parameter error or Data Length is zero or greater

than 255.

WHLLFTXCOMPLETE File transfer complete.

WHLLFTXSEGMENTED Transfer is complete with segmented records.

WHLLSYSERROR The function failed due to a system error.

WHLLTRANSABORTED File transfer aborted, either due to the user click

ing the cancel button or because the timeout pe

riod has elapsed.

WHLLFILENOTFOUND PC file not found.

WHLLFTXCOMPLETECICS File transfer was successful (transfer to CICS).

WHLLACCESSDENIED Access denied to PC file.

WHLLMEMORY Insufficient memory.

WHLLINVALIDENVIRONMENT Invalid environment.

Remarks
Only one file transfer operation is supported per connected Host session.

The function initiates the file transfer and immediately returns control to your Windows HLLAPI application. This frees

your application to perform other tasks while the file transfer is occurring. Once initiated the function will regularly

post WinHLLAPIAsyncFileTransfer messages to the window specified by hWnd. These messages will notify the

WinHLLAPI application of the status of the transfer and send a final message when the transfer is complete.

wParm

Is the status indicator: the high byte contains the Session ID, the low byte contains the status. If the low

byte is zero, the file transfer is still in progress. If the low byte is one, the file transfer has completed.

lParm

If the low byte of wParm is zero (in progress), lParm is the number of bytes transferred. If the low byte

wParm is one (completed), lParm is the completion code.

Receive File (91)
This function transfers a file from the PC to the Host.

Chapter 4. WinHLLAPI Extension Functions

Prerequisite Functions
There are no prerequisite functions for this function.

WinHLLAPIAsync (hWnd, lpwFunction, lpbyString, lpwLength, lpwReturnCode)

Call Parameters

Parameter Description

Data String RECEIVE command parameters.

Data Length Length of Data String. NA if session option EOT is specified.

PS Position NA

Return Codes

Code Description

WHLLOK File transfer started successfully.

WHLLPARAMETERERROR Parameter error or Data Length is zero or greater

than 255.

WHLLFTXCOMPLETE File transfer complete.

WHLLFTXSEGMENTED Transfer is complete with segmented records.

WHLLSYSERROR The function failed due to a system error.

WHLLTRANSABORTED File transfer aborted, either due to the user click

ing the cancel button or because the timeout pe

riod has elapsed.

WHLLFILENOTFOUND PC file not found.

WHLLFTXCOMPLETECICS File transfer was successful (transfer to CICS).

WHLLACCESSDENIED Access denied to PC file.

WHLLMEMORY Insufficient memory.

WHLLINVALIDENVIRONMENT Invalid environment.

Remarks
Only one file transfer operation is supported per connected Host session.

The function initiates the file transfer and immediately returns control to your Windows HLLAPI application. This frees

your application to perform other tasks while the file transfer is occurring. Once initiated the function will regularly

post WinHLLAPIAsyncFileTransfer messages to the window specified by hWnd. These messages will notify the

WinHLLAPI application of the status of the transfer and send a final message when the transfer is complete.

wParm

Is the status indicator: the high byte contains the Session ID, the low byte contains the status. If the low

byte is zero, the file transfer is still in progress. If the low byte is one, the file transfer has completed.

181

Emulator Programming

182

lParm

If the low byte of wParm is zero (in progress), lParm is the number of bytes transferred. If the low byte

wParm is one (completed), lParm is the completion code.

WinHLLAPICancelAsyncRequest
WinHLLAPI Extension FunctionsAsynchronous FunctionsWinHLLAPICancelAsyncRequestThis function cancels an outstanding asynchronous function launched by a call to WinHLLAPIAsync().

Syntax
int WinHLLAPICancelAsyncRequest (HANDLE hAsyncTask, WORD wFunction)

Parameters
hAsyncTask

The handle returned by WinHLLAPIAsync() when the function was initiated.

wFunction

The function number of the asynchronous task to cancel. Because this parameter is required for

revision 1.1 but not in 1.0, it is optional.

With this function, any asynchronous task previously initiated by a call to WinHLLAPIAsync() may be canceled while

still outstanding.

Returns
The return value indicates if the specified function was, in fact, canceled. If the function was canceled then the return

value is WHLLOK (0). If the outstanding asynchronous function was not cancelled, one of the following codes will be

returned.

WHLLINVALID

hAsyncTask is not a valid task handle.

WHLLALREADY

The asynchronous task specified by hAsyncTask has already completed.

Initialization and Termination Functions
Initialization/Termination FunctionsWinHLLAPI Extension FunctionsInitialization/Termination FunctionsgeneralgeneralThe following section describes the initialization and termination functions of WinHLLAPI programming support.

WinHLLAPI Startup
WinHLLAPI Extension FunctionsInitialization/Termination FunctionsWinHLLAPI StartupThis function is used to register the application with the WinHLLAPI implementation and should be called before any

other call to the WinHLLAPI implementation. This implementation supports Versions 1.0 and 1.1 of the WinHLLAPI

specification. The WinHLLAPI application should negotiate version compatibility with this function.

Chapter 4. WinHLLAPI Extension Functions

Syntax
int WinHLLAPIStartup(WORD wVersionRequired, LPWHLLAPIDATA lpData)

Parameters
wVersionRequired

This is the version required by the WinHLLAPI application. The low byte contains the major version

number and the high byte contains the minor version (or revision) number.

lpData

This is a pointer to a WHLLAPIDATA structure which will receive the implementations version number

and a string describing the WinHLLAPI implementation provider. The WHLLAPIDATA structure is defined

as:

#define WHLLDESCRIPTION_LEN 127
typedef struct tagWHLLAPIDATA
{
 WORD wVersion;
 Char szDescription[WHLLDESCRIPTION_LEN + 1];
}WHLLAPIDATA, * PWHLLAPIDATA, FAR *LPWHLLAPIDATA;

Returns
The return value indicates success or failure of registering the WinHLLAPI application with the implementation. If

registration was successful, the return value is WHLLOK (zero). Otherwise, it is one of the following:

WHLLSYSNOTREADY

Indicates that the underlying network subsystem is unavailable.

WHLLVERNOTSUPPORTED

Indicates that the version requested is not provided by this implementation. This implementation

supports Versions 1.0 and 1.1 only.

WinHLLAPI Cleanup
WinHLLAPI Extension FunctionsInitialization/Termination FunctionsWinHLLAPI CleanupThe WinHLLAPI specification recommends that this function be used by the WinHLLAPI application to de-register

from the WinHLLAPI implementation.

Syntax
BOOL WinHLLAPICleanup()

Returns
Returns TRUE if the unregistration was successful. Otherwise, it returns FALSE.

183

Emulator Programming

184

Blocking Routines
Blocking RoutinesWinHLLAPI Extension FunctionsBlocking RoutinesgeneralThe following sections describe the blocking routines supported by WinHLLAPI programming.

Note: Although blocking routines are supported for WinHLLAPI compliance, use of them is not

recommended. Use of the WinHLLAPIAsync functions are the recommended method for asynchronous

processing.

WinHLLAPIIsBlocking
WinHLLAPI Extension FunctionsBlocking RoutinesWinHLLAPIIsBlockingThis function tells the calling WinHLLAPI application thread whether it is in the process of executing a blocking call. A

blocking call is any synchronous function that takes a long time to execute and does not return until complete. There

are five blocking calls in this implementation of WinHLLAPI. The blocking calls are: Get Key (51), Wait (4), Pause (18),

Send File (90), and Receive File (91).

Syntax
BOOL WinHLLAPIIsBlocking()

Returns
If the WinHLLAPI application thread is in the middle of a blocking call, the function returns TRUE, otherwise, it returns

FALSE.

Remarks
Because the default blocking-hook allows messages to be processed during blocking calls, it is possible to call the

blocking call again.

WinHLLAPISetBlockingHook
WinHLLAPI Extension FunctionsBlocking RoutinesWinHLLAPISetBlockingHookThis function sets an application-defined procedure to be executed while waiting for the completion of a blocking

call. A blocking call is any synchronous function that takes a long time to execute and does not return until complete.

There are five blocking calls in this implementation of WinHLLAPI. The blocking calls are: Get Key (51), Wait (4),

Pause (18), Send File (90), and Receive File (91).

Syntax
FARPROC WinHLLAPISetBlockingHook(FARPROC lpfnBlockingHook)

Parameters
lpfnBlockingHook

This is a pointer to the new blocking procedure.

Chapter 4. WinHLLAPI Extension Functions

Description
The WinHLLAPI implementation has a default blocking procedure that consists of nothing more than a message

handler. This default mechanism is shown in the following example:

BOOL DefaultBlockingHook
{
 MSG msg;

 if (PeekMessage (&msg, NULL, 0, 0, xfPM_NOREMOVE))
 {
 if(msg.message = = WM_QUIT)
 {
 return FALSE;
 }
 PeekMessage (&msg, NULL, 0, 0, PM_REMOVE);
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
return TRUE;
}

The blocking hook is implemented on a per-thread basis. A blocking hook set by this function will stay in effect for the

thread until it is replaced by another call to WinHLLAPISetBlockingHook() or until the default is restored by a call to

WinHLLAPIUnhookBlockingHook().

The Blocking function must return FALSE if it receives a WM_QUIT message so WinHLLAPI can return control to the

application to process the message and terminate gracefully. Otherwise, the function should return TRUE.

Returns
This function returns a pointer to the blocking function being replaced.

WinHLLAPIUnhookBlockingHook
WinHLLAPI Extension FunctionsBlocking RoutinesWinHLLAPIUnhookBlockingHookThis function restores the default blocking-hook for the calling thread.

Syntax
BOOL WinHLLAPIUnhookBlockingHook()

Returns
This function returns TRUE if the default blocking mechanism was successfully restored, otherwise it returns FALSE.

WinHLLAPICancelBlockingCall
WinHLLAPI Extension FunctionsBlocking RoutinesWinHLLAPICancelBlockingCallThis function cancels an executing blocking call in the current thread. A blocking call is any synchronous function that

takes a long time to execute and does not return until complete. There are five blocking calls in this implementation

of WinHLLAPI. The blocking calls are Get Key (51), Wait (4), Pause (18), Send File (90), and Receive File (91). If one of

these is blocking calls are cancelled, the cancelled function will return WHLLCANCEL.

185

Emulator Programming

186

Syntax
int WinHLLAPICancelBlockingCall()

Returns
The return value indicates if the specified function was, in fact, canceled. If the function was canceled, then the return

value is WHLLOK (0). If there are no outstanding blocking functions, then the following return code will be returned:

WHLLINVALID

Indicates that there is no blocking call currently executing.

Chapter 5. PCSAPI Functions
Z and I Emulator for Windows provides an API set, which is defined here and called PCSAPI. Whereas EHLLAPI is

used to manage the interaction between a workstation application program and host systems after the session is

established, the PCSAPI can be used to control the Z and I Emulator for Windows session itself.

How to Use PCSAPI
You can write application programs using the PCSAPI in C or C++. To develop a PCSAPI application, do the following:

1. Prepare source code and add the appropriate PCSAPI calls.

2. Include the header file PCSAPI.H in the application program.

3. Compile the source code.

4. Link the resultant .OBJ files with the appropriate object file or libraries.

You must also link it with the PCSAPI import library, PCSCALLS.LIB for 16-bit and PCSCAL32.LIB for 32-bit.

Page Layout Conventions
All PCSAPI function calls are presented in the same format so that you can quickly retrieve the information you need.

The format is:

• Function Name

◦ Function Type

◦ Parameter Type and Description

◦ Return Code

Function Type
“Function Type” shows the type of the function in the following format:

TYPE FunctionName(TYPE Parameter1, ...)

Parameter Type and Description
“Parameter Type and Description” lists the type and describes each of the parameters to be specified in the PCSAPI

function call.

Return Code
“Return Code” lists the codes that must be received by your program after a call to the PCSAPI function.

187

Emulator Programming

188

pcsConnectSession
3270 5250 VT

Yes Yes Yes

The pcsConnectSession function starts the communications with a host session specified by the short session ID.

The session must already be started. This call is equivalent to the Communications → Connect menu item on the

emulator session panel.

Function Type
BOOL WINAPI pcsConnectSession(char cShortSessionID)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

• The session has not started.

• An incorrect session ID was specified.

• Call failed.

pcsDisconnectSession
3270 5250 VT

Yes Yes Yes

The pcsDisconnectSession function stops the communications link with a host session specified by the short

session ID. This only disconnects the link; it does not stop the session. This call is equivalent to the Communications

→ Disconnect menu item on the emulator session panel.

Function Type
BOOL WINAPI pcsDisconnectSession(char cShortSessionID)

Chapter 5. PCSAPI Functions

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

• The session has not started.

• An incorrect session ID was specified.

• Call failed.

pcsQueryConnectionInfo
3270 5250 VT

Yes No No

The pcsQueryConnectionInfo function returns information about the Telnet connection of the specified host session.

The resulting information is returned into the buffer supplied by the application.

Function Type
BOOL WINAPI pcsQueryConnectionInfo(char cShortSessionID, CONNECTIONINFO *ConnectionInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

CONNECTIONINFO *ConnectionInfo

Pointer to a CONNECTIONINFO structure where the connection info data will be returned.

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

189

Emulator Programming

190

Return Code Meaning

• The session has not started.

• An incorrect session ID was specified.

• The session specified was not a supported connection type for this

API (not Telnet).

ConnectionInfo
The CONNECTIONINFO structure will be filled with the information about the host connection, consisting of the

following information:

Structure Information

Host name States the name of the currently connected Telnet host.

LU name States the LU name currently assigned.

Port number States the host port number being used for the connection.

SSL indicator Indicates a Secure Connection (1 = secure; Ø = not secure).

Note: This API is valid only with the 32-bit version of PCSAPI, and only works for Telnet connections.

Example
typedef struct_CONNECTIONINFO
{ //Description of a connection @WD06A
 char hostName[63]; //telnet host name @WD06A
 char reserved[1]; //reserved @wD06A
 int portNumber; //host port number @WD06A
 char luName[17]; //LU name @WD06A
 char reserved2[3]; //reserved @WD06A
 BOOL sslIndicator; //Secure Connection @WD06A
 indicator
 char reserved3[256]; //reserved @WD06A
}CONNECTIONINFO;

pcsQueryEmulatorStatus
3270 5250 VT

Yes Yes Yes

The pcsQueryEmulatorStatus function returns the status of the host session specified by the short session ID.

Function Type
ULONG WINAPI pcsQueryEmulatorStatus(char cShortSessionID)

Chapter 5. PCSAPI Functions

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

Return Code
The return code value should be processed bit-significantly, that is, by either one of the following values or an ORed

value out of the following values:

Return Code Value Meaning

PCS_SESSION_STARTED 0x00000001 Specified session has start

ed. When this bit is off, the

specified session has not

started or an incorrect ses

sion ID was specified.

PCS_SESSION_ONLINE 0x00000002 Specified session is online

(connected). When this bit is

off, the specified session is

offline (disconnected).

PCS_SESSION_API_ENABLED 0x00000004 API (EHLLAPI) is enabled on

the specified session. If this

bit is off, API is disabled on

this session.

pcsQuerySessionList
3270 5250 VT

Yes Yes Yes

The pcsQuerySessionList function returns a list of all the current host sessions. The application must supply an array

of SESSINFO structures as defined in the PCSAPI.H file, and a count of the number of elements in the array. This

function fills in the structures with information about each session and returns the number of sessions found.

If the array has fewer elements than there are host sessions, then only the supplied elements of the array are filled in.

The function always returns the actual number of sessions, even if the array is too small.

An application can call this function with zero array elements to determine how many sessions exist. A second call

can then be made to obtain the session information.

Function Type
ULONG WINAPI pcsQuerySessionList(ULONG Count, SESSINFO *SessionList)

191

Emulator Programming

192

Parameter Type and Description
ULONG Count

Number of elements in the SessionList array.

SESSINFO *SessionList

Pointer to an array of SESSINFO structures as defined in PCSAPI.H.

Return Parameters
Return Code

Total number of Z and I Emulator for Windows sessions. This may be greater than or less than the

Count parameter.

SessionList

The array of SESSINFO structures is filled with information about the host sessions. Sessions may

be placed in the list in any order. Each SESSINFO structure contains the following fields (defined in

PCSAPI32.H)

Name

A union of char and ULONG which contains the session ID (A–Z). In the current

implementation of Z and I Emulator for Windows, only the lower byte (char) is used, the

other bytes are returned as zero.

Status

A combination of bit flags which indicate the current status of the session. The flags

(PCS_SESSION_*) are defined in the following table.

The status value should be processed bit-significantly, that is, by either one of the following values or an ORed value

out of the following values:

Return Code Meaning

PCS_SESSION_STARTED The session is running. If this flag is not set, all others

are undefined.

PCS_SESSION_ONLINE The session has established a communications link to

the host (this is, the session is connected).

PCS_SESSION_API_ENABLED The session is enabled for programming APIs. If this

flag is not set, the EHLLAPI and Host Access Class Li

brary APIs cannot be used on this session.

Example
ULONG NumSessions, i; // Session counters
SESSINFO *SessList; // Array of session information structures
// Find out number of sessions that exist

Chapter 5. PCSAPI Functions

NumSessions = pcsQuerySessionList (0,NULL);
if (NumSessions == 0) {
 printf("There are no sessions.");
 exit;
}

// Allocate array large enough for all sessions
SessList = (SESSINFO *)malloc(NumSessions * sizeof(SESSINFO));
memset(SessList, 0x00, NumSessions * sizeof(SESSINFO));

// Now read actual session info
pcsQuerySessionList(NumSessions, SessList);

for (i=0; i<NumSessions; i++) {
 if ((SessList[i].Status & PCS_SESSION_STARTED) &&
 (SessList[i].Status & PCS_SESSION_ONLINE)) {

 printf("Session %c is started and connected.",
 SessList[i].Name.ShortName);
 }
}

exit;

pcsQueryWorkstationProfile
3270 5250 VT

Yes Yes Yes

The pcsQueryWorkstationProfile function returns the workstation profile name that has been used to invoke the host

session. To specify the host session, the short session ID must be used. The workstation profile name is copied to

the work buffer supplied by the application.

Function Type
BOOL WINAPI pcsQueryWorkstationProfile(char cShortSessionID, PSZ lpBuffer)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

PSZ lpBuffer

Work buffer to copy a null-terminated workstation profile name. The buffer must be large enough to

contain a fully qualified file name.

193

Emulator Programming

194

Return Code

Return Code Meaning

TRUE Function ended successfully.

FALSE It means one of the following things:

• The session has not started.

• An incorrect session ID was specified.

pcsSetLinkTimeout
3270 5250 VT

Yes Yes Yes

The pcsSetLinkTimeout function sets the idle timeout of a Telnet link which is SSCP owned. This function has no

effect on non-TN connections or connections which are not in SSCP owned state. If the timeout value is set to zero

the link will not time out. Otherwise the link will time out (disconnect) after being idle in SSCP-owned state for the

number of minutes specified.

Function Prototype
ULONG WINAPI pcsSetLinkTimeout(char cShortSessionID, USHORT Timeout)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

USHORT Timeout

Timeout value in minutes. A value of zero disables timeout.

Return Code

Return Code Meaning

PCS_SUCCESSFUL The function ended successfully.

PCS_SYSTEM_ERROR A system error occurred.

pcsStartSession
3270 5250 VT

Yes Yes Yes

Chapter 5. PCSAPI Functions

The pcsStartSession function starts a host session by using a specified workstation profile. A short session ID can

also be specified.

Function Type
ULONG WINAPI pcsStartSession(PSZ lpProfile, char cShortSessionID, USHORT fuCmdShow)

Parameter Type and Description
PSZ lpProfile

Path and complete filename of the profile to load. Path is optional but complete filename must be

specified (.ws extension is not assumed).

char cShortSessionID

Presentation space short session ID. Space or NULL indicates the next available session ID.

USHORT fuCmdShow

Specifies how the window is to be displayed. One of the following values from PCSAPI.H:

• PCS_HIDE

• PCS_SHOW

• PCS_MINIMIZE

• PCS_MAXIMIZE

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

PCS_USED_ID 2 The specified short session ID is already used.

PCS_INVALID_PROFILE 3 An error was made in specifying the workstation profile, or the win

dow parameter was not valid.

PCS_SYSTEM_ERROR 9 A system error occurred.

pcsStopSession
3270 5250 VT

Yes Yes Yes

The pcsStopSession function stops a host session specified by the short session ID.

195

Emulator Programming

196

Function Type
BOOL WINAPI pcsStopSession(char cShortSessionID, USHORT fuSaveProfile)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

USHORT fuSaveProfile

This parameter can be one of the following values:

fuSaveProfile Value Meaning

PCS_SAVE_AS_PROFILE 0 Save the profile as specified in the current profile.

PCS_SAVE_ON_EXIT 1 Save the profile on exit.

PCS_NOSAVE_ON_EXIT 2 Do not save the profile on exit.

Return Code

Return Code Meaning

TRUE The function ended successfully.

FALSE It means one of the following things:

• The session has not started.

• An incorrect session ID was specified.

Page Setup Functions
The PCSAPI functions listed in this section enable you to control and retrieve the Z and I Emulator for Windows

emulator session Page Setup settings.

Restrictions
If the following restrictions are not satisfied, the API will fail. The return code indicates the reason for the failure.

• The host session specified in the argument cShortSessionID should not be in PDT mode.

• The host session should not be printing when the API is invoked.

• The File → Page Setup dialog should not be in use.

Some members in the PAGEINFO structure might be valid or supported only for specific session types. If a restriction

is not specified, then that member is valid or supported for the following session types:

• 3270 display

• 3270 printer

Chapter 5. PCSAPI Functions

• 5250 display

• ASCII VT

5250 printer sessions are not supported.

pcsGetPageSettings

3270 5250 VT

Yes Yes Yes

The pcsGetPageSettings function retrieves the host session page settings values (similar to the File → Page Setup

dialog settings). Only the settings in the Text tab of the dialog are supported.

Function Type
ULONG WINAPI pcsGetPageSettings(char cShortSessionID, PAGEINFO * const pPageInfo, ULONG * const

pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

PAGEINFO * const pPageInfo

Pointer to PAGEINFO structure, where the page settings are returned.

nFlags

Combination of bit flags that indicates which members in the structure are valid. These

flags can be used independently or by ORing them together to restore the property page

(defined in PCSAPI32.H). The flags, along with the corresponding valid members in the

structure, are as follows:

Flag

Valid members in the structure

PCS_PAGE_CPI

nCPI

PCS_PAGE_LPI

nLPI

PCS_PAGE_FACE_NAME

szFaceName

PCS_PAGE_MPL

nMPL

197

Emulator Programming

198

PCS_PAGE_MPP

nMPP

nCPI

The number of characters printed per inch.

LOWORD is the actual CPI value.

If Font CPI is configured in the session, HIWORD is 1. If Font CPI is not configured,

HIWORD is 0.

nLPI

The number of lines printed per inch.

LOWORD is the actual LPI value.

If Font LPI is configured in the session, HIWORD is 1. If Font LPI is not configured, HIWORD

is 0.

szFaceName

Face name of the printer font. This must be a null-terminated string.

nMPL

Maximum number of lines that can be printed per page.

This is also called MPL (Maximum Print Lines). Supported range is 1 to 255.

nMPP

Maximum number of characters that can be printed per line.

This is also called MPP (Maximum Print Position). Supported range is 1 to 255.

ULONG * const pErrorInfo

Not used. This must be set to NULL by the caller.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 Not supported for the host session type.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING 4 Page settings cannot be obtained because host session

was printing.

PCS_PDT_MODE 5 Page settings cannot be obtained because host session is

in PDT mode.

PCS_SYSTEM_ERROR 9 A system error occurred.

Chapter 5. PCSAPI Functions

Example
{
 ULONG Rc = 0;
 PAGEINFO *PageInfo;

 PageInfo = (PAGEINFO *) malloc(sizeof(PAGEINFO));
 memset(PageInfo, 0, sizeof(PAGEINFO));

 PageInfo->nFlags = PCS_PAGE_CPI | PCS_PAGE_LPI | PCS_PAGE_FACE_NAME|
 PCS_PAGE_MPL | PCS_PAGE_MPP;

 Rc = pcsGetPageSettings('A', PageInfo, NULL);

 if (Rc == PCS_SUCCESSFUL) {
 printf("CPI = %d,
 LPI = %d,
 FaceName = %s,
 MPL = %d,
 MPP = %d\n",
 LOWORD(PageInfo->nCPI),
 LOWORD(PageInfo->nLPI),
 PageInfo->szFaceName,
 PageInfo->nMPL,
 PageInfo->nMPP);

 if (HIWORD(PageInfo->nCPI))
 printf("FontCPI\n");
 else
 printf("No FontCPI\n");

 if (HIWORD(PageInfo->nLPI))
 printf("FontLPI\n");
 else
 printf("No FontLPI\n");

 } else
 printf("Failure. Return code = %d\n", Rc);
 free(PageInfo);
}

pcsRestorePageDefaults

3270 5250 VT

Yes Yes Yes

The pcsRestorePageDefaults function restores the system default values of the Page Setup property pages defined

in the nFlags field. This is equivalent to clicking Default in the property pages of the File → Page Setup dialog. Only the

settings in the Text tab are supported.

199

Emulator Programming

200

Function Type
ULONG WINAPI pcsRestorePageDefaults(char cShortSessionID, ULONG nFlags)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

ULONG nFlags

The following flag describes the name of the specified Page Setup dialog property page. This flag can

be bitwise ORed to restore the property page (defined in PCSAPI32.H).

PCS_PAGE_TEXT

This flag describes the Text property page. This is the only property page currently

supported.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 The nFlags parameter has one or more options that are not

valid for the host session type. No settings were restored.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING 4 Page settings cannot be changed because host session

was printing.

PCS_PDT_MODE 5 Page settings cannot be changed because host session is

in PDT mode.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{
 ULONG Rc = 0;

 Rc = pcsRestorePageDefaults('A', PCS_PAGE_TEXT);

 if (Rc != PCS_SUCCESSFUL)
 printf("Failure. Return code = %d\n", Rc);
}

Chapter 5. PCSAPI Functions

pcsSetPageSettings

3270 5250 VT

Yes Yes Yes

The pcsSetPageSettings function sets the host session page settings. This is similar to configuring the File → Page

Setup dialog settings. Only the settings in the Text tab are supported.

Note:

1. CPI, LPI, and FontSize are dependent on the FaceName configured in the host session. If this API is

used to set CPI, LPI, FontSize, and FaceName together, FaceName is set first, then the dependent

properties.

2. If this API is used to set FaceName and the dependent properties in separate invocations, set

FaceName first, then set CPI, LPI and FontSize. Otherwise, each time FaceName is set, query CPI, LPI

and FontSize and ensure that they have the desired values.

3. If CPI, LPI, or FontSize are set before FaceName, then different values for CPI, LPI, or FontSize might

be configured in the host session. This might occur if the current CPI, LPI, or FontSize values are not

valid for the new FaceName set.

Function Type
ULONG WINAPI pcsSetPageSettings(char cShortSessionID, const PAGEINFO * const pPageInfo, ULONG * const

pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

const PAGEINFO * const pPageInfo

Pointer to PAGEINFO structure, where the page settings are mentioned.

nFlags

Combination of bit flags that indicates which members in the structure are valid. These

flags can be used independently or by ORing them together to restore the property page

(defined in PCSAPI32.H). The flags, along with the corresponding valid members in the

structure, are as follows:

Flag

Valid members in the structure

201

Emulator Programming

202

PCS_PAGE_CPI

nCPI

PCS_PAGE_LPI

nLPI

PCS_PAGE_FACE_NAME

szFaceName

PCS_PAGE_MPL

nMPL

PCS_PAGE_MPP

nMPP

nCPI

The number of characters printed per inch.

To select Font CPI, set the HIWORD of nCPI to 1. LOWORD of nCPI will be ignored.

To select a particular CPI value, do the following:

1. Set the HIWORD of nCPI to 0.

2. Set the LOWORD of nCPI to the actual CPI value.

nLPI

The number of lines printed per inch.

To select Font LPI, set the HIWORD of nLPI to 1. LOWORD of nLPI will be ignored

To select a particular LPI value, do the following:

1. Set the HIWORD of nLPI to 0.

2. Set the LOWORD of nLPI to the actual LPI value.

szFaceName

Face name of the printer font. This must be a null-terminated string.

nMPL

Maximum number of lines that can be printed per page.

This is also called MPL (Maximum Print Lines). Supported range is 1 to 255.

nMPP

Maximum number of characters that can be printed per line.

This is also called MPP (Maximum Print Position). Supported range is 1 to 255.

Chapter 5. PCSAPI Functions

ULONG * const pErrorInfo

Contains the extended error info when the API fails with the return code of PCS_FAILURE. If the detailed

error information is not needed, this flag must be set to NULL by the caller.

This is a combination of bit flags that describe which members of the PAGEINFO structure could not be

set successfully. The flags that are defined in PCSAPI32.H are as follows:

Flag

Valid members in the structure

PCS_PAGE_CPI

Only nCPI is not valid.

PCS_PAGE_LPI

Only nLPI is not valid.

PCS_PAGE_FACE_NAME

Only szFaceName is not valid.

PCS_PAGE_MPL

Only nMPL is not valid.

PCS_PAGE_MPP

Only nMPP is not valid.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 Function ended successfully.

PCS_INVALID_ID 1 Incorrect session ID was specified.

PCS_INVALID_SESS_TYPE 2 Not supported for the host session type.

PCS_DIALOG_IN_USE 3 Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING 4 Page settings cannot be changed because host session

was printing.

PCS_PDT_MODE 5 Page settings cannot be changed because host session is

in PDT mode.

PCS_FAILURE 6 Host session page settings are not fully applied. This could

be because invalid data was given for some or all fields in

the PAGEINFO structure.

Examine pErrorInfo for details about settings that are not

applied.

PCS_SYSTEM_ERROR 9 A system error occurred.

203

Emulator Programming

204

Example
{
 ULONG Rc = 0, Error = 0;
 PAGEINFO *PageInfo;

 PageInfo = (PAGEINFO *) malloc(sizeof(PAGEINFO));
 memset(PageInfo, 0, sizeof(PAGEINFO));

 PageInfo->nFlags = PCS_PAGE_CPI | PCS_PAGE_LPI |
 PCS_PAGE_FACE_NAME| PCS_PAGE_MPL |
 PCS_PAGE_MPP;
 PageInfo->nCPI = MAKELONG(10, 0);
 PageInfo->nLPI = MAKELONG(8, 0);
 PageInfo->nMPL = 40;
 PageInfo->nMPP = 60;
 strcpy(PageInfo->szFaceName, "CourierPS");

 Rc = pcsSetPageSettings('A', PageInfo, &Error);

 if (Rc != PCS_SUCCESSFUL) {
 printf("Failure. Return code = %d\n", Rc);
 printf("Following members could not be set : ");

 if (Rc == PCS_FAILURE) {
 if (Error & PCS_PAGE_CPI) printf(" nCPI");
 if (Error & PCS_PAGE_LPI) printf(" nLPI");
 if (Error & PCS_PAGE_FACE_NAME) printf(" szFaceName");
 if (Error & PCS_PAGE_MPL) printf(" nMPL");
 if (Error & PCS_PAGE_MPP) printf(" nMPP");
 printf("\n");
 }
 }
 free(PageInfo);
}

Printer Setup Functions
The PCSAPI functions listed in this section enable you to control and retrieve the Z and I Emulator for Windows

emulator session Printer Setup settings.

Restrictions
If the following restrictions are not met, the API will fail. The return code indicates the reason for the failure.

• The host session should not be printing when the API is invoked.

• The File → Printer Setup dialog should not be in use.

Chapter 5. PCSAPI Functions

pcsGetPrinterSettings

3270 5250 VT

Yes Yes Yes

The pcsGetPrinterSettings function retrieves the host session printer settings (similar to the File → Printer Setup

dialog settings).

Function Type
ULONG WINAPI pcsGetPrinterSettings(char cShortSessionID, PRINTINFO * const pPrintInfo, ULONG * const

pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

PRINTINFO * const pPrintInfo

Pointer to PRINTINFO structure, where the printer settings are specified.

nFlags

Must be set to 0. This is ignored.

nBufSize

Size of the buffer allocated for the following fields:

• lpPDTFile

• lpPrtToDskAppFile

• lpPrtToDskSepFile

• lpPrinterName

If more than one of these members is retrieved in a single API call, then the caller must

allocate the same size for all the buffers and pass that size in this member.

If this member is set to 0, the fields are ignored. The maximum size required for the

buffers of the fields is returned in nSizeNeeded.

nSizeNeeded

The value of this member is determined by conditions related to the following fields:

• lpPDTFile

• lpPrtToDskAppFile

• lpPrtToDskSepFile

• lpPrinterName

205

Emulator Programming

206

The conditions are as follows:

• The value is the number of bytes needed, if the size of the buffer allocated by the

caller is not big enough to return the fields listed above.

• The value is the maximum size of the required buffer, if more than one of the fields

listed above are obtained by the caller.

• If nBufSize is set to 0 by the caller, this member contains the maximum size

required for the buffers of the fields listed above.

bPromptDialog

Possible values are as follows:

• If TRUE, the Printer Setup dialog is shown before printing.

• If FALSE, the Printer Setup dialog is not shown before printing.

bPDTMode

Possible values are as follows:

• If TRUE, the host session is in PDT mode.

• If FALSE, the host session is in non-PDT mode (GDI mode).

lpPDTFile

Must be set to NULL if the caller is not interested in getting this member. The PDT file is

returned if this is not a null pointer. This must point to the buffer of size nBufSize allocated

by the caller.

When the API returns, this member contains one of the following:

• The fully qualified path name of the session PDT file.

• An empty string ("") if no PDT file is configured in the session.

• A truncated file name if the buffer size is not sufficient. The member nSizeNeeded

contains the size of the buffer needed.

nPrtMode

This is an enumerated value that indicates the PrintMode of the connection. The enum

data type PRINTMODE is defined in PCSAPI32.H. The nPrtMode setting must be one of

the following:

• PrtToDskAppend (Print to Disk-Append mode)

This is equivalent to selecting the Append option in the host session Printer Setup

→ Printer → Print to Disk dialog.

• PrtToDskSeparate (Print to Disk-Separate mode)

Chapter 5. PCSAPI Functions

This is equivalent to selecting the Separate option in the host session Printer

Setup → Printer → Print to Disk dialog.

• WinDefaultPrinter (Windows Default Printer mode)

This is equivalent to selecting the Use Windows Default Printer option in the host

session Printer Setup dialog.

• SpecificPrinter (Specific Printer mode)

This is equivalent to selecting a printer in the host session Printer Setup dialog,

while leaving Use Windows Default Printer unchecked.

lpPrtToDskAppFile

Must be set to NULL if the caller is not interested in getting this member. The Print to

Disk-Append file is returned if this is not a null pointer. This must point to the buffer of size

nBufSize allocated by the caller.

When the API returns, this member contains one of the following:

• The fully qualified path name of the session Print to Disk-Append file.

• An empty string ("") if no Print to Disk-Append file is configured for the session.

• A truncated file name if the buffer size is not sufficient. The nSizeNeeded member

contains the size of the buffer needed.

lpPrtToDskSepFile

Must be set to NULL if the caller is not interested in getting this member. The Print to

Disk-Separate file is returned if this is not a null pointer. This must point to the buffer of

size nBufSize allocated by the caller.

When the API returns, this member contains one of the following:

• The fully qualified path name of the session Print to Disk-Separate file.

• An empty string ("") if no Print to Disk-Separate file is configured for the session.

• A truncated file name if the buffer size is not sufficient. The nSizeNeeded member

contains the size of the buffer needed.

lpPrinterName

Must be set to NULL if the caller is not interested in getting this member. The name of the

printer is returned if this is not a null pointer. This must point to the buffer of size nBufSize

allocated by the caller.

When the API returns, this member has one of the following:

• The name of the specific printer configured in the session, if the host session

nPrtMode is SpecificPrinter.

• The name of the Windows default printer configured in the session, if the host

session nPrtMode is WinDefaultPrinter.

207

Emulator Programming

208

• An empty string (""), if the host session nPrtMode is PrtToDskAppend or

PrtToDskSeparate.

• A truncated printer name, if the buffer size is not sufficient. nSizeNeeded has the

size of the buffer needed.

PrinterName must have the following format:

<Printer name> on <Port Name>

For example:

• IBM InfoPrint 40 PS on Network Port

• HP LaserJet 4050 Series PCL 6 on LPT1

ULONG * const pErrorInfo

This is filled with the extended error info when the API fails with the return code of PCS_FAILURE.

pErrorInfo must be set to NULL by the caller, if the details of errors are not needed.

The following section describes the flags that are defined in PCSAPI32.H.

Flags for the pErrorInfo member of the PRINTINFO structure
PCS_PRINT_PRINTMODE_ERROR

PrintMode is not configured in the host session.

PCS_PRINT_PDTFILE_SIZEERR

The buffer size is not sufficient for lpPDTFile, so the file name is truncated. The nSizeNeeded member

contains the actual size of the buffer required to return the PDT file.

PCS_PRINT_DSKAPPFILE_SIZEERR

The buffer size is not sufficient for lpPrtToDskAppFile, so the file name is truncated. The nSizeNeeded

member contains the actual size of the buffer required to return the Print to Disk-Append file.

PCS_PRINT_DSKSEPFILE_SIZEERR

The buffer size is not sufficient for lpPrtToDskSepFile, so the file name is truncated. The nSizeNeeded

member contains the actual size of the buffer required to return the Print to Disk-Separate file.

PCS_PRINT_PRINTERNAME_SIZEERR

The buffer size is not sufficient for lpPrinterName, so the printer name is truncated. The nSizeNeeded

member contains the actual size of the buffer required to return the printer name.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

Chapter 5. PCSAPI Functions

Return Code Value Meaning

PCS_DIALOG_IN_USE
3

Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING
4

The printer settings could not be changed because the

host session was printing. The application must retry later

PCS_FAILURE

6

Some printer settings could not be retrieved successful

ly. pErrorInfo contains detailed error information on which

settings could not be retrieved.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{
 ULONG Rc = 0, Error=0, Size;
 PRINTINFO *PrintInfo;

 PrintInfo = (PRINTINFO *) malloc(sizeof(PRINTINFO));
 memset(PrintInfo, 0, sizeof(PRINTINFO));

 PrintInfo->nBufSize = 0;

 Rc = pcsGetPrinterSettings('A', PrintInfo, &Error);
 if (Rc != PCS_SUCCESSFUL)
 printf("Failure. Return code = %d\n", Rc);
 else {
 Size = PrintInfo->nSizeNeeded;
 PrintInfo->nBufSize = Size;
 PrintInfo->lpPDTFile = (char *)malloc(sizeof(char) * Size);
 PrintInfo->lpPrtToDskAppFile = (char *)malloc(sizeof(char) * Size);
 PrintInfo->lpPrtToDskSepFile = (char *)malloc(sizeof(char) * Size);
 PrintInfo->lpPrinterName = (char *)malloc(sizeof(char) * Size);
 Rc = pcsGetPrinterSettings('A', PrintInfo, &Error);

 if (Rc != PCS_SUCCESSFUL)
 printf("Failure. Return code = %d, Extended Error = 0x%08x\n", Rc, Error);
 else {
 if (PrintInfo->bPromptDialog)
 printf("PromptDialog\n");
 else
 printf("No PromptDialog\n");
 if (PrintInfo->bPDTMode)
 printf("PDT Mode\n");
 else
 printf("Not PDT Mode\n");

 switch(PrintInfo->nPrtMode) {

 case PrtToDskAppend:
 printf("Print to Disk-Append Mode\n");
 break;
 case PrtToDskSeparate:
 printf("Print to Disk-Separate Mode\n");
 break;

209

Emulator Programming

210

 case SpecificPrinter:
 printf("Specific Printer Mode\n");
 break;
 case WinDefaultPrinter:
 printf("Windows Default Printer Mode\n");
 break;
 }
 if (PrintInfo->lpPDTFile[0] == '\0')
 printf("No PDT File configured\n");
 else
 printf("PDT File = %s\n", PrintInfo->lpPDTFile);
 if (PrintInfo->lpPrtToDskAppFile[0] == '\0')
 printf("No Disk Append File configured\n");
 else
 printf("DiskAppend File=%s\n", PrintInfo->lpPrtToDskAppFile);
 if (PrintInfo->lpPrtToDskSepFile[0] == '\0')
 printf("No Disk Separate File configured\n");
 else
 printf("DiskSeparate File=%s\n", PrintInfo->lpPrtToDskSepFile);
 if ((PrintInfo->nPrtMode == SpecificPrinter) ||
 (PrintInfo->nPrtMode == WinDefaultPrinter))
 printf("Printer = %s\n", PrintInfo->lpPrinterName);
 }
 free(PrintInfo->lpPDTFile);
 free(PrintInfo->lpPrtToDskAppFile);
 free(PrintInfo->lpPrtToDskSepFile);
 free(PrintInfo->lpPrinterName);
 }
 free(PrintInfo);
}

pcsSetPrinterSettings

3270 5250 VT

Yes Yes Yes

The pcsSetPrinterSettings function controls the host session printer settings (similar to the File → Printer Setup

dialog settings).

Function Type
ULONG WINAPI pcsSetPrinterSettings(char cShortSessionID, const PRINTINFO * const pPrintInfo, ULONG * const

pErrorInfo)

Parameter Type and Description
char cShortSessionID

Presentation space short session ID.

const PRINTINFO * const pPrintInfo

Pointer to PRINTINFO structure, where the printer settings are mentioned.

Chapter 5. PCSAPI Functions

nFlags

Combination of bit flags that indicates which members in the structure are valid. These

flags can be used independently or by ORing them together to restore the property page

(defined in PCSAPI32.H). The flags, along with the corresponding valid members in the

structure, are as follows:

Flag

Valid members in the structure

PCS_PRINT_PDT

bPDTMode, lpPDTFile

PCS_PRINT_PRINTMODE

nPrtMode, lpPrtToDskAppFile, lpPrtToDskSepFile, lpPrinterName

PCS_PRINT_PROMPT_DIALOG

bPromptDialog

nBufSize

Must be set to 0. This is ignored.

nSizeNeeded

Must be set to 0. This is ignored.

bPromptDialog

Possible values are as follows:

• If TRUE, the Printer Setup dialog is shown before printing.

• If FALSE, the Printer Setup dialog is not shown before printing.

bPDTMode

Possible values are as follows:

• If TRUE, the connection is set to PDT mode.

• If FALSE, the connection is set to non-PDT mode (GDI mode).

lpPDTFile

Used only if bPDTMode is set to TRUE. This is ignored if bPDTMode is set to FALSE.

This is a null-terminated string containing the name of the PDT file and must be one of the

following:

• NULL

The PDT file that is currently configured in the connection is used. If there is no

PDT file already configured in the connection, the API fails with an exception.

211

Emulator Programming

212

• File name, without the path

lpPDTFile in the PDFPDT subfolder in the Z and I Emulator for Windows installation

path is used.

• Fully qualified path name of the file

If lpPDTFile does not exist, the API fails.

nPrtMode

This is an enumerated value that indicates the PrintMode of the connection. The enum

data type PRINTMODE is defined in PCSAPI32.H. The nPrtMode setting must be one of

the following:

• PrtToDskAppend (Print to Disk-Append mode)

This is equivalent to selecting the Append option in the host session Printer Setup

→ Printer → Print to Disk dialog.

• PrtToDskSeparate (Print to Disk-Separate mode)

This is equivalent to selecting the Separate option in the host session Printer

Setup → Printer → Print to Disk dialog.

• WinDefaultPrinter (Windows Default Printer mode)

This is equivalent to selecting the Use Windows Default Printer option in the host

session Printer Setup dialog.

• SpecificPrinter (Specific Printer mode)

This is equivalent to selecting a printer in the host session Printer Setup dialog,

while leaving the Use Windows Default Printer option unchecked.

lpPrtToDskAppFile

This is used only if nPrtMode is set to PrtToDskAppend.

This is a null-terminated string containing the name of the Print to Disk-Append file and

must be one of the following:

• NULL

The file that is currently configured for the PrtToDskAppend mode in the

connection is used. If there is no PDT file already configured in the connection, the

API will fail.

• File name, without the path

The user-class application data directory path is used to locate the file. If the file

exists, it is used. Otherwise, it will be created when printing is complete.

• Fully qualified path name of the file

The directory must exist in the path, or the API will fail. It is not necessary that the

file exist in the path.

Chapter 5. PCSAPI Functions

lpPrtToDskSepFile

The possible values are as follows:

• Fully qualified path name of the Print to Disk-Separate file for the session.

• An empty string ("") if no Print to Disk-Separate file is configured for the session.

• A truncated file name if the buffer size is not sufficient. The nSizeNeeded member

contains the size of the buffer needed.

lpPrinterName

This is used only if nPrtMode is set to SpecificPrinter. It is ignored otherwise. This is a null-

terminated string containing the printer name. If the printer does not exist, this member

fails.

PrinterName must have the following format:

<Printer name> on <Port Name>

For example:

• IBM InfoPrint 40 PS on Network Port

• HP LaserJet 4050 Series PCL 6 on LPT1

ULONG * const pErrorInfo

This is filled with the extended error info when the API fails with the return code of PCS_FAILURE.

pErrorInfo must be set to NULL by the caller, if the details of errors are not needed.

The following section describes the flags that are defined in PCSAPI32.H.

Flags for the pErrorInfo member of the PRINTINFO structure
PCS_PRINT_PDTMODE_ERROR

This can occur for one of one of the following reasons:

• bPDTMode is set to TRUE, lpPDTFile is set to NULL, and there is no PDT file already configured

for the host session.

• nPrtMode is set to PrtToDskAppend or PrtToDskSeparate, PCS_PRINT_PDT is not set in nFlags,

and the host session is not already in PDT mode.

• nPrtMode is set to PrtToDskAppend or PrtToDskSeparate and bPDTMode is set to FALSE.

PCS_PRINT_PDTFILE_ERROR

The file or the path specified in lpPDTFile was not found.

PCS_PRINT_PRTTODSK_FILE_ERROR

This can occur for one of one of the following reasons:

213

Emulator Programming

214

• The folder specified in the field lpPrtToDskAppFile or lpPrtToDskSepFile does not exist or does

not have write access.

• An extension is specified in the field lpPrtToDskSepFile.

PCS_PRINT_PRINTMODE_ERROR

nPrtMode cannot be set successfully. This can occur for one of the following reasons:

• The value of nPrtMode is not one of the enumerated constants of the PRINTMODE enum data

type.

• nPrtMode is set to PrtToDskAppend, lpPrtToDskAppFile is set to NULL, and there is no Print to

Disk-Append file already configured in the host session.

• nPrtMode is set to PrtToDskSeparate, lpPrtToDskSepFile is set to NULL, and there is no Print to

Disk-Separate file already configured in the host session.

• nPrtMode is set to SpecificPrinter and the printer given in the lpPrinterName field was not found.

• nPrtMode is set to WinDefaultPrinter and there is no default Windows® printer configured in the

system.

• bPDTMode is set to FALSE and PCS_PRINT_PRINTMODE is not set in nFlags, but the host

session PrintMode is PrtToDskAppend or PrtToDskSeparate.

Return Code

Return Code Value Meaning

PCS_SUCCESSFUL 0 The function ended successfully.

PCS_INVALID_ID 1 An incorrect session ID was specified.

PCS_DIALOG_IN_USE
3

Failed because the host session Page Setup or Printer Set

up dialog was in use.

PCS_PRINTING
4

The printer settings could not be changed because the host

session was printing. The application must retry later.

PCS_FAILURE

6

No host session printer settings were applied. This might

occur because invalid data was given for some or all of the

fields in the PRINTINFO structure. pErrorInfo contains de

tails about the errors.

PCS_SYSTEM_ERROR 9 A system error occurred.

Example
{
 ULONG Rc = 0, Error=0;
 PRINTINFO *PrintInfo;
 char PDTFile[] = "epson.pdt";
 char SepFile[] = "DiskSep";

 PrintInfo = (PRINTINFO *) malloc(sizeof(PRINTINFO));
 memset(PrintInfo, 0, sizeof(PRINTINFO));

Chapter 5. PCSAPI Functions

 PrintInfo->nFlags = PCS_PRINT_PDT | PCS_PRINT_PRINTMODE |
 PCS_PRINT_PROMPT_DIALOG;
 PrintInfo->nBufSize = 0;
 PrintInfo->nSizeNeeded = 0;
 PrintInfo->bPDTMode = TRUE;
 PrintInfo->lpPDTFile =
 (char *)malloc(sizeof(char) * (strlen(PDTFile)+1));
 strcpy(PrintInfo->lpPDTFile, PDTFile);
 PrintInfo->nPrtMode = PrtToDskSeparate;
 PrintInfo->lpPrtToDskSepFile =
 (char *)malloc(sizeof(char) * (strlen(SepFile)+1));
 strcpy(PrintInfo->lpPrtToDskSepFile, SepFile);
 PrintInfo->bPromptDialog = TRUE;
 Rc = pcsSetPrinterSettings('A', PrintInfo, &Error);
 if (Rc != PCS_SUCCESSFUL)
 printf("Failure. Return code = %d, Extended Error = 0x%08x\n", Rc, Error);
 free(PrintInfo->lpPDTFile);
 free(PrintInfo->lpPrtToDskSepFile);
 free(PrintInfo);
}

215

216

Chapter 6. Troubleshooting for Emulator programming
You can use the following self-help information resources and tools to help you troubleshoot problems:

• Refer to the release information for your product for known issues, workaround, and troubleshooting

information.

• Check if a download or fix is available to resolve your problem.

• Search the available knowledge bases to see if the resolution to your problem is already documented.

• If you still need help, contact HCL Software Support and report your problem.

Partial EHLLAPI input on Z and I Emulator for Windows host screen
Problem

Truncated command text was sent to a host when using HCL Z and I Emulator for Windows.

Cause

If an EHLLAPI application sends a SYSREQ key to the host and then tries to input a command onto the

host screen, sometimes only a truncated part of the command is sent to the host. This problem occurs

due to lack of synchronization between the SYSREQ processing at the Z and I Emulator for Windows

host side and the input of commands from the EHLLAPI application.

When the application sends a SYSREQ command to the host, the following situations occur:

• The OIA is updated to indicate that you are in a SSCP-LU session.

• The Z and I Emulator for Windows session sends the AO command (the SYSREQ) to the 3270

host.

As soon as the host receives the SYSREQ, it responds to Z and I Emulator for Windows with the 0x15 or

NL (NewLine) code. When Z and I Emulator for Windows processes this NL command by filling the rest

of the line with NULLs, and moving the cursor to the beginning of the next line.

A problem occurs when the EHLLAPI application continues to input various commands in the host

screen (through the SendKeys function), even before the Z and I Emulator for Windows session has

received the NL command from the host and processed it. As a result, a part of the input command is

first entered onto the screen, while the NL command is processed and the cursor is moved over to the

next line. Then the remaining part of the command is input on the next line. Thus, only the truncated

second part of the command is sent to the host, causing erroneous results.

Resolution

The solution for this problem is to force the EHLLAPI application to wait until the NL command is

received and processed, before continuing to input the commands to the host screen. Once the session

has notified the EHLLAPI application that the host response for SYSREQ has been processed, the

EHLLAPI application can then continue with its input (because the session is now in the right state to

accept new input). To accomplish this, use the following EHLLAPI function calls:

Chapter 6. Troubleshooting for Emulator programming

Start_Host_Notification (23)
Pause (18)
Set_Session_Parameters (9)
Query_Host_Update (24).

Possible code in the EHLLAPI application is as follows:

• Call Sendkeys(@A@H). This sends the SYSREQ command to the session.

• Call StartHostNotify with input B, where B indicates notification of both OIA and PS. This tells

the session to notify the EHLLAPI application when the session's OIA and/or PS is updated by

the host.

• Call Pause, specifying a sufficient timeout period. This causes the EHLLAPI application to wait

until the session notifies it of a host update to the session's OIA and/or PS. This occurs when

the session receives the most-awaited host response for the SYSREQ command. Note that if

the timeout value has been exceeded, and no host notification has been received, the Pause

function call still returns.

Also, for this Pause call to work, you must use the Set_Session_Parameters (9) function call to enable

the IPAUSE option. This is required because it tells the Pause API call to return when the host notifies

the session of an OIA and/or PS update.

If Pause has returned due to an OIA/PS update (host notification), it has a return value of 26. If this

is the case, you are ready to send the host command. Otherwise, you must wait again for the host

response.

The EHLLAPI application can continue with the command once it knows that either the OIA or the

Presentation Space (or both) has been updated by the host. The QueryHostUpdate is used to check

what was updated: that is, whether the OIA alone was updated (return code 21), or the PS alone was

updated (return code 22) or whether both the OIA and the PS were updated (return code 23).

For example, the EHLLAPI code might resemble the following part:

Send Keys(@A@H) /* Send SYSREQ command to the host */

Start Host Notification with 'B' in byte 2 /* Enable notification to EHLLAPI application
 when session's OIA and/or PS are updated */

Set Session Parms with IPAUSE option /* Allow Pause to be interrupted */

Label WW:

Pause for 15 seconds /* 15 secs is a sample time-out value */

retVal = Query Host Update /* Store return value of QueryHostUpdate() into retVal */

If (retVal = 21 or 22 or 23) /* OIA and/or PS was updated */

Send Keys("Your Input Command to host") /* Send input command to host */

else

217

Emulator Programming

218

goto (Label WW)

Stop Host Notification /* Disable host notification */

This is the most appropriate solution for this problem, because the EHLLAPI application waits for the

exact minimum time required to allow the session to receive and process the SYSREQ host response,

before sending its command input.

Another solution is to add a delay [for example, Sleep(1000)] in the EHLLAPI application between the

SYSREQ command and the subsequent command, so that the session has enough time to receive and

process the host response. However, this solution is not the best, because the delay might be too little

or might be excessive.

Refer to RFC 2355 (TN3270 Enhancements) for more information about the 3270 SYSREQ functionality.

HCL Z and I Emulator for Windows VBHLLAPI sample does not run in
FDCC Windows Vista

Problem

The HCL Z and I Emulator for Windows VBHLLAPI sample uses controls provided by comdlg32.ocx,

which is not installed in the Federal Desktop Core Configuration (FDCC) of Microsoft Windows Vista.

Cause

VBHLLAPI uses ActiveX and Common Dialog controls that are provided by the Microsoft comdlg32.ocx

module. For security purposes, the FDCC of Windows Vista does not contain this particular module.

Resolution

The FDCC version of Windows Vista is customized, and changes are not recommended.

If HLLAPI samples containing VBHLLAPI need to be run, then the comdlg32.ocx module must be copied

from a standard Windows Vista machine into the \Windows\System32\ directory of the FDCC Windows

Vista installation.

Then reboot the system for the change to take effect.

Appendix A. Query Reply Data Structures Supported by
EHLLAPI
Query Reply Data Structures Supported by EHLLAPIgeneralThis appendix lists and defines the query reply structures supported by the EHLLAPI structured field interface for

PC/3270. Refer to IBM 3270 Information Display System Data Stream Programmer's Reference or, in the case of an

IBM licensed program, the documentation for the specific licensed program.

Note:

1. EHLLAPI must scan the query reply buffers to locate the destination/origin ID (DOID) self-defining

parameter (SDP) for the structured field support to work and be reliable. The DOID field is then filled in

with the assigned ID.

2. The application should build the query reply data structures in the application's private memory.

3. Only cursory checking is performed on the query reply data. Only the ID and the length of the structure

are checked for validity.

4. The 2-byte length field at the beginning of each query reply is not byte reversed.

5. Only one distributed data management (DDM) base-type connection is allowed per host session. If the

DDM connection supports the SDP for the DOID, multiple connections are allowed.

6. If a nonzero return code is received indicating that an application is already connected to the selected

session (RC 32 or 39), use that presentation space with caution. Conflicts with File Transfer, and other

EHLLAPI applications might result.

The DDM Query Reply
Query Reply Data Structures Supported by EHLLAPIThe DDM Query ReplygeneralSeveral DDM query reply formats are supported. Here are some of them:

Table 15. DDM Query Reply Base Format

Offset Length Content Meaning

0 1 word Length Length of structure

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes al

lowed in inbound transmis

sion

8–9 2 bytes LIMOUT Maximum DDM bytes al

lowed in outbound trans

mission

10 1 byte NSS Number of subsets identifi

er

219

Emulator Programming

220

Table 15. DDM Query Reply Base Format (continued)

Offset Length Content Meaning

11 1 byte DDMSS DDM subset identifier

DDM Application Name Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIThe DDM Query ReplyDDM Application Name Self-Defining ParameterThe DDM application name self-defining parameter provides the host application with the name of the application

containing control of the DDM auxiliary device. The controlling application is identified by the DOID in the Direct

Access self-defining parameter.

This self-defining parameter is optional, but it is necessary if a host application is to identify a distinct DDM auxiliary

device when more than one application is in existence at a remote workstation.

Table 16. DDM Application Name Self-Defining Parameter

Offset Length Content Meaning

0 1 byte Length Parameter length

1 1 byte X'02' DDM application name

2–n n-2 bytes NAME Name of the remote appli

cation program

NAME

The name consists of 8 characters or less and is the means by which a host application can relate to an

application in a remote workstation. It is the responsibility of the host and remote application users to

ensure that the name is understood by the application at each end.

PCLK Protocol Controls Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIThe DDM Query ReplyPCLK protocol controls Self-Defining ParameterThe PCLK Protocol Controls self-defining parameter indicates that the PCLK Protocol Controls structured field, ID =

X'1013', can be used for both inbound and outbound in data streams destined to or from the DDM auxiliary device

processor.

Table 17. DDM PCLK Auxiliary Device Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'03' PCLK protocol controls

2–3 2 bytes VERS Protocol version

VERS

The value given in VERS is used to indicate the versions of PCLK installed in the terminal at the time the

query reply is returned. For example, X'0001' indicates PCLK Version 1.1.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

Chapter 1. Query Reply Data Structures Supported by EHLLAPI

Base DDM Query Reply Formats
Query Reply Data Structures Supported by EHLLAPIThe DDM Query ReplyBase DDM Query Reply FormatsThe following query reply formats are examples of some of the Base + SDP (self-defining parameter) combinations

possible. Not all of the combinations are shown.

Table 18. Base DDM Query Reply Format with Name and Direct Access Self-Defining Parameters

Offset Length Content Meaning

0 1 word Length Length of structure (in

cludes self-defining para

meters)

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query Reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes al

lowed in inbound transmis

sion

8–9 2 bytes LIMOUT Maximum DDM bytes al

lowed in outbound trans

mission

10 1 byte NSS Number of subsets sup

ported

11 1 byte DDMSS DDM subset identifier

12 1 byte Length (n+2) Parameter length

13 1 byte X'02' DDM application name

14– (13+n) n bytes Name Name of the remote appli

cation program

14+n 1 byte X'04' Parameter length

15+n 1 byte X'01' Direct access ID

16+n – 17+n 2 bytes DOID Destination/origin ID as

signed by the subsystem

The self-defining parameters begin at offsets 12 and (14 + n) where n is the length of the application name supplied

at offset 14.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

Table 19. Base DDM Query Reply Format with Direct Access and Name Self-Defining Parameters

Offset Length Content Meaning

0 1 word Length Length of structure (in

cludes self-defining para

meters)

221

Emulator Programming

222

Table 19. Base DDM Query Reply Format with Direct Access and Name Self-Defining Parameters (continued)

Offset Length Content Meaning

2 1 byte X'81' Query reply ID

3 1 byte X'95' Query reply type

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes al

lowed in inbound transmis

sion

8–9 2 bytes LIMOUT Maximum DDM bytes al

lowed in outbound trans

mission

10 1 byte NSS Number of subsets sup

ported

11 1 byte DDMSS DDM subset identifier

12 1 byte X'04' Parameter length

13 1 byte X'01' Direct access ID

14–15 2 bytes DOID Destination/origin ID as

signed by the subsystem

16 1 byte Length (n+2) Parameter length

17 1 byte X'02' DDM application name

16+n – 17+n n bytes Name Name of the remote appli

cation program

The self-defining parameters begin at offsets 12 and 16.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

The IBM Auxiliary Device Query Reply
Query Reply Data Structures Supported by EHLLAPIIBM Auxiliary Device Query ReplygeneralThe Auxiliary Device Query Reply is used to indicate to the host application the support of an IBM auxiliary device

that uses a data stream defined by IBM, refer to IBM 3270 Information Display System Data Stream Programmer's

Reference for more details.

When the function is supported, the query reply is transmitted inbound in reply to a Read Partition structured field

specifying Query or Query List (QCODE List = X'9E', Equivalent, or All).

When a workstation supports multiple auxiliary devices, the IBM auxiliary devices query reply must be sent for each

device.

Optional Parameters
All parameters shown in the base part of the query reply must be present. Parameters not used are set to X'00'.

Chapter 1. Query Reply Data Structures Supported by EHLLAPI

At least one self-defining parameter must be present.

Table 20. IBM Auxiliary Device Base Format with Direct Access Self-Defining Parameter

Offset Length Content Meaning

0–1 1 word Length Length of structure (includes self-defining parameters)

2 1 byte X'81' Query reply ID

3 1 byte X'9E' IBM auxiliary device reply

4 1 byte

BIT 0

1–7

FLAGS

QUERY

B'1'

RES

Reserved

Read Part (Query, Query List)

Auxiliary device supports Query

Reserved, must be B'0's

5 1 byte FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes allowed in inbound transmission

8–9 2 bytes LIMOUT Maximum DDM bytes allowed in outbound transmis

sion

10 1 byte TYPE

X'01'

X'02'

Others

Type of auxiliary device supported

IBM auxiliary device display

IBM auxiliary device printer

Reserved

11 1 byte X'04' Parameter length

12 1 byte X'01' Direct access

13–14 1 word DOID Destination/origin ID assigned by the subsystem

QUERY This bit must be set to B'1' for all IBM auxiliary devices to indicate that it supports receiving a

Read Partition (Query, Query List). The host applications can then use a Read Partition directed

to the auxiliary device to determine its characteristics. The destination/origin structured field is

used to direct the Read Partition structured field to the auxiliary device.

The minimum support level for the IBM auxiliary device is to return the Null query reply in re

sponse to the Read Partition.

LIMIN States the maximum number of bytes that can be sent in an inbound transmission. A LIMIN val

ue of X'0000' indicates no implementation limit on the number of bytes transmitted inbound.

LIMOUT States the maximum number of bytes that can be sent to an IBM auxiliary device in an outbound

transmission. A LIMOUT value of X'0000' indicates no implementation limit on the number of

bytes transmitted outbound.

TYPE Identifies the auxiliary device being supported. Two values are valid. One identifies an auxiliary

display and the other identifies an auxiliary printer. All other values are reserved.

The IBM auxiliary device processor supports two self-defining parameters, 01 and 03. These are defined in Table 21:

IBM Auxiliary Device Direct Access Self-Defining Parameter on page 224.

223

Emulator Programming

224

Direct Access Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIIBM Auxiliary Device Query ReplyDirect Access Self-Defining ParameterThe direct access self-defining parameter provides the ID for use in the destination/origin structured field in the direct

access of the IBM auxiliary device.

This SDP is always required to accompany the base query reply.

Table 21. IBM Auxiliary Device Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID

The value in these bytes is used in the ID field of the destination/origin structured field to identify the

auxiliary device as the destination or origin of the data that follows.

PCLK Protocol Controls Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIIBM Auxiliary Device Query ReplyPCLK Protocol Controls Self-Defining ParameterThe presence of the PCLK protocol controls self-defining parameter indicates that the PCLK protocol controls

structured field, ID = X'1013', can be used for both inbound and outbound in data streams destined to or from the IBM

auxiliary device processor.

Table 22. IBM Auxiliary Device PCLK Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'03' PCLK protocol controls

2–3 2 bytes VERS Protocol version

VERS

The value given in VERS is used to indicate the versions of PCLK installed in the terminal at the time the

query reply is returned. For example, X'0001' indicates PCLK version 1.1.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

The Product-Defined Query Reply
Query Reply Data Structures Supported by EHLLAPIProduct-Defined Query ReplygeneralThis query reply is used by IBM products using registered subidentifiers within the X'9C' data structure. The Product-

Defined Data Stream query reply indicates support of a 3270DS workstation auxiliary device that uses an IBM

product-defined data stream. The data stream is not defined by a format architecture document having an identifiable

control point such as an architecture review board.

Chapter 1. Query Reply Data Structures Supported by EHLLAPI

When an auxiliary device supports an IBM product-defined data stream, this query reply is transmitted inbound in

reply to a Query List (QCODE List = X'9C' or All).

Optional Parameters
Query Reply Data Structures Supported by EHLLAPIProduct-Defined Query ReplyOptional ParametersAll parameters shown in the base part of the query reply and the direct access self-defining parameter must be

present.

The format of the Product-Defined query reply is as follows:

Table 23. IBM Product-Defined Query Reply Base Format

Offset Length Content Meaning

0–1 1 word Length Length of structure (in

cludes self-defining para

meters)

2 1 byte X'81' Query reply ID

3 1 byte X'9C' IBM product-defined data

stream

4–5 2 bytes FLAGS Reserved

6 1 byte REFID Reference identifier

7 1 byte SSID Subset identifier

8 1 byte X'04' Parameter length

9 1 byte X'01' Direct access

10–11 1 word DOID Destination/origin ID as

signed by the subsystem

Valid values for REFID (offset 6) and SSID (offset 7) of the Product-Defined query reply are as follows:

Table 24. Valid REFID and SSID Values for the IBM Product-Defined Query Reply

REFID SSID Product and Data Stream Documentation

X'01' 5080 Graphics System:

This reference ID indicates the 5080 Graphics System data stream

is supported by the auxiliary device. Descriptions of the 5080

Graphics Architecture, structured field, subset ID, DOID, and associ

ated function sets are defined in IBM 5080 Graphics System Prin

ciples of Operation

 X'01' X'02' 5080 HGFD Graphics Subset 5080 RS232 Ports Subset

X'02' WHIP API (replaced by SRL name when written)

This reference ID indicates that the WHIP API data stream is sup

ported by the auxiliary device. A description of the WHIP API archi

tecture is defined in IBM RT PC Workstation Host Interface Pro

gram Version 1.1 User's Guide and Reference Manual

225

Emulator Programming

226

Table 24. Valid REFID and SSID Values for the IBM Product-Defined Query Reply (continued)

REFID SSID Product and Data Stream Documentation

 X'01' WHIP Subset 1

X'03' to X'FF' All other values are reserved.

The IBM product-defined processor supports only the direct access self-defining parameter. It is defined in Table 25:

IBM Product-Defined Direct Access Self-Defining Parameter on page 226.

Direct Access Self-Defining Parameter
Query Reply Data Structures Supported by EHLLAPIProduct-Defined Query ReplyDirect Access Self-Defining ParameterThe presence of the Direct Access ID self-defining parameter indicates that the auxiliary device can be accessed

directly by using the destination/origin structured field. When multiple auxiliary devices are supported that use a

product-defined data stream, separate Product-Defined Data Stream query replies must be provided, each of which

has a unique DOID.

Table 25. IBM Product-Defined Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID

The value in these bytes is used in the ID field of the destination/origin structured field to identify the

auxiliary device as the destination or origin of the data that follows.

The Document Interchange Architecture Query Reply
Query Reply Data Structures Supported by EHLLAPIArchitecture Query ReplyThis query reply indicates the Document Interchange Architecture (DIA) function set supported. The format of the DIA

Query Reply is as follows:

Table 26. IBM DIA Base Format

Offset Length Content Meaning

0 1 word Length Length of structure (in

cludes self-defining para

meters)

2 1 byte X'81' Query reply ID

3 1 byte X'97' IBM DIA

4–5 2 bytes FLAGS Reserved

6–7 2 bytes LIMIN Maximum DDM bytes al

lowed in inbound transmis

sion

Chapter 1. Query Reply Data Structures Supported by EHLLAPI

Table 26. IBM DIA Base Format (continued)

Offset Length Content Meaning

8–9 2 bytes LIMOUT Maximum DDM bytes al

lowed in outbound trans

mission

10 1 byte NFS Number of 3-byte function

set IDs that follow

11–13 3 bytes DIAFS DIA function set identifier

14– (13+(N*3)) N*3 bytes DIAFSs Additional DIA function set

IDs

14+(N*3) 1 byte X'04' Parameter length

15+(N*3) 1 byte X'01' Direct access

16+(N*3) 1 word DOID Destination/origin ID as

signed by the subsystem

The DIA auxiliary device processor supports only the direct access self-defining parameter. It is defined in Table 27:

IBM Product-Defined Direct Access Self-Defining Parameter on page 227.

Query Reply Data Structures Supported by EHLLAPIProduct-Defined Query ReplyDirect Access Self-Defining ParameterThe presence of the direct access ID self-defining parameter indicates that the auxiliary device can be accessed

directly by using the destination/origin structured field.

Table 27. IBM Product-Defined Direct Access Self-Defining Parameter

Offset Length Content Meaning

0 1 byte X'04' Parameter length

1 1 byte X'01' Direct access ID

2–3 2 bytes DOID Destination/origin ID

DOID

The value in these bytes is used in the ID field of the destination/origin structured field to identify the

auxiliary device as the destination or origin of the data that follows.

Refer to IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this

query reply.

227

228

Appendix B. Differences from Communication Manager/2
EHLLAPI
This appendix describes the differences between EHLLAPI of Z and I Emulator for Windows and EHLLAPI for

Communication Manager/2.

The following EHLLAPI functions are different from those with the same names in Communication Manager/2. You

need to understand the differences when you use these functions:

• Set Session Parameter (9)

• Copy OIA (13)

• Copy String to PS (15)

• Storage Manager (17)

• Copy String to Field (33)

• Get Key (51)

• Window Status (104)

• Query Sessions (10)

• Connect for Structured Field (120)

• Allocate Communications Buffer (123)

• ASCII mnemonics

Set Session Parameter (9)

Set Options
Z and I Emulator for Windows does not provide the following set options provided by Communication Manager:

OLDOIA, NEWOIA

COMPCASE, COMPICASE

OLD5250OIA, NEW5250OIA

Return Parameters
When the Set Session Parameter (9) function is terminated, Communication Manager returns a length of the valid

data string as the third parameter, the data string length. However, Z and I Emulator for Windows returns a number of

the valid set options as the data string length.

EAB Option
In Communication Manager/2, a color remap affects the value of the character color in the EAB attribute copied by

Copy PS (5) or Copy PS to String (8) function when the EAB option is specified in the Set Session Parameter (9)

function.

Chapter 2. Differences from Communication Manager/2 EHLLAPI

In Z and I Emulator for Windows, however, the value of the character color in the EAB attribute depends on the

contents of the presentation space regardless of a color remap, and it is not affected by a color remap.

Copy OIA (13)
The Copy OIA (13) function has the following differences between Communication Manager/2 and Z and I Emulator

for Windows. For more information of the group and the column positions, refer to Copy OIA (13) on page 50.

• Byte Position 21

◦ Z and I Emulator for Windows returns X'F6'.

◦ Communication Manager/2 returns X'20'.

• Byte Positions 61–63

◦ Z and I Emulator for Windows does not return the printer information.

◦ Communication Manager/2 returns the printer information.

• Group 3: Shift State

Communication Manager/2 does not return the value of bit 2. Bit 2 is reserved, and bit 0 contains both the

Upper Shift and the Caps Lock.

• Group 8 Byte 1: Input Inhibited

◦ Z and I Emulator for Windows does not return bit 6 (Device not working).

◦ Communication Manager/2 can return bit 6.

• Group 8 Byte 3: Input Inhibited

◦ Z and I Emulator for Windows does not return bit 1 (Operator unauthorized) and bit 2 (Operator

unauthorized -f).

◦ Communication Manager/2 can return bits 1 and 2.

• Group 8 Byte 4: Input Inhibited

◦ Z and I Emulator for Windows does not return bit 2 (System wait).

◦ Communication Manager/2 can return bit 2.

• Group 10: Highlight Group 2

◦ Z and I Emulator for Windows does not return bit 0 (Selected).

◦ Communication Manager/2 can return bit 0.

• Group 11: Color Group 2

◦ Z and I Emulator for Windows does not return bit 0 (Selected).

◦ Communication Manager/2 can return bit 0.

• Group 13: Printer Status

◦ In Z and I Emulator for Windows, this group is reserved.

◦ Communication Manager/2 can return this group.

• Group 14: Graphics

Communication Manager/2 does not return bit 0 (Graphic cursor).

229

Emulator Programming

230

Copy String to PS (15)
In Communication Manager/2, the EAB option of the Set Session Parameter (9) function affects the Copy String to

PS function. When you specify the EAB option, pass the attribute data that has the same size as the text data to the

function with the text data.

In Z and I Emulator for Windows, however, the data to be passed is only text data regardless of EAB option. If you

want to use the same interface with Communication Manager/2, use the PUTEAB option of Set Session Parameter (9).

Storage Manager (17)
Storage Manager (17) function provided by Communication Manager/2 is not supported by Z and I Emulator for

Windows. Use the APIs provided by Windows® to allocate the memory for the applications.

Copy String to Field (33)
In Communication Manager/2, when the EAB option of the Set Session Parameter (9) function is specified, the

attribute data is passed to the function as a part of the data. Therefore, when you specify the EAB option, pass the

attribute data that has the same size as the text data to the function with the text data.

In Z and I Emulator for Windows, however, the EAB option does not affect the data contents of the Copy String to

Field (33) function. The data to be passed is not the attribute data, but only the text data. If you want to use the same

interface with Communication Manager/2, use the PUTEAB option of Set Session Parameter (9).

Get Key (51)
Communication Manager/2 returns shift state using @A, @S, or @r, if the shift state of a passed key is not a key

or function recognized by the emulator session. Z and I Emulator for Windows does not support these ASCII

mnemonics.

Window Status (104)
EHLLAPI function 104 (PM_WINDOW_STATUS) ‘query extended status’ command (0x03) will return the handle of the

emulator presentation space window. This is consistent with the definition of the function and the Communication

Manager/2 implementation. However, Z and I Emulator for Windows EHLLAPI returns the handle of the frame window.

EHLLAPI applications written for Z and I Emulator for Windows using this function need to use the parent of the

window handle returned.

Query Sessions (10)
In Communication Manager/2, the descriptor for personal computer is returned. However, the descriptor is not

returned in Z and I Emulator for Windows.

Chapter 2. Differences from Communication Manager/2 EHLLAPI

Connect for Structured Fields (120)
The event object for communication connection status provided by Communication Manager/2 is not in Z and I

Emulator for Windows.

Allocate Communications Buffer (123)
In Communication Manager/2, the maximum value of the requested buffer size is 64 KB minus 8 bytes (X'FFF8').

In Z and I Emulator for Windows, however, it is 64 KB minus 256 bytes (X'FF00').

ASCII Mnemonics
The following ASCII mnemonics are not supported in Z and I Emulator for Windows:

Mnemonics Meaning

@A@N Get Cursor

@A@O Locate Cursor

@A@X Hexadecimal

@A@Y Cmd (Function) Key

@A@a Destructive Backspace

@S@A Erase EOL

@S@B Field Advance

@S@C Field Backspace

@S@D Valid Character Backspace

@S@P POR (For sending only)

@S@T Jump to Task Manager

@/ Overrun of queue (Only in the Get Key function)

Get Request Completion (125)
Z and I Emulator for Windows does not support a blank or null session ID.

231

232

Appendix C. Notices
This information was developed for products and services offered in the United States. HCL may not offer the

products, services, or features discussed in this information in other countries. Consult your local HCL representative

for information on the products and services currently available in your area. Any reference to an HCL product,

program, or service is not intended to state or imply that only that HCL product, program, or service may be used.

Any functionally equivalent product, program or service that does not infringe any HCL intellectual property right may

be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-HCL product,

program, or service.

HCL may have patents or pending patent applications covering subject matter described in this information. The

furnishing of this information does not give you any license to these patents. You can send license inquiries, in

writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you..

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the information. HCL may make

improvements and/or changes in the product(s) and/or program(s) described in this information at any time without

notice.

Any references in this information to non-HCL documentation or non-HCL Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those documents or Web sites. The materials for those

documents or Web sites are not part of the materials for this HCL product and use of those documents or Web sites

is at your own risk.

HCL may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

Chapter 3. Notices

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this information and all licensed material available for it are provided by HCL

under terms of the HCL Customer Agreement, HCL International Programming License Agreement, or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.licensing agreement

Information concerning non-HCL products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL products. Questions on the

capabilities of non-HCL products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

Trademarks
HCL, the HCL logo, and hcl.com are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other companies.

233

	Emulator Programming
	About This Book
	Who Should Read This Book
	Where To Find More Information
	Notation

	Chapter 1. Introduction to Emulator APIs
	Using API Header Files
	Critical Sections
	Stack Size
	Windows x64 Platform Support
	Sample Programs

	Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming
	EHLLAPI Overviews
	IBM Standard EHLLAPI
	WinHLLAPI
	WinHLLAPI and IBM® Standard EHLLAPI
	IBM Enhanced EHLLAPI and IBM Standard EHLLAPI

	Languages
	EHLLAPI Call Format
	Data Structures
	Memory Allocation
	EHLLAPI Return Codes
	Compiling and Linking
	Dynamic Link Method
	Multithreading

	Presentation Spaces
	IBM® Enhanced 32-Bit Interface Presentation Space IDs
	Types of Presentation Spaces
	Size of Presentation Spaces
	Presentation Space IDs
	Host-Connected Presentation Space
	Presentation Space ID Handling
	PSID Handling for Functions Requiring Connect
	PSID Handling for Functions Not Requiring Connect

	Sharing EHLLAPI Presentation Space between Processes
	SUPER_WRITE
	WRITE_SUPER
	WRITE_WRITE
	WRITE_READ
	WRITE_NONE
	READ_WRITE
	Locking Presentation Space

	Using mouse actions to select, copy, and paste text in the Presentation Space
	ASCII Mnemonics
	General
	Get Key (51) Function
	Send Key (3) Function

	Debugging
	A Simple EHLLAPI Sample Program
	Standard and Enhanced Interface Considerations
	Host Automation Scenarios
	Scenario 1. A Search Function
	Scenario 2. Sending Keystrokes
	Scenario 3. Distributed Processing
	Scenario 4. File Transfer
	Scenario 5. Automation
	Scenario 6. Keystroke Filtering
	Scenario 7. Keyboard Enhancement

	Chapter 3. EHLLAPI Functions
	Page Layout Conventions
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Summary of EHLLAPI Functions
	Allocate Communications Buffer (123)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Cancel File Transfer (92)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Change PS Window Name (106)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Change Switch List LT Name (105)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect for Structured Fields (120)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect Presentation Space (1)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Connect Window Services (101)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Convert Position or Convert RowCol (99)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy Field to String (34)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy OIA (13)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Format of the Returned OIA Data String
	PC/3270 OIA Group Indicator Meanings and Its Image
	PC400 OIA Group Indicator Meanings and Its Image
	VT Host OIA Group Indicator Meanings and Its Image

	Copy Presentation Space (5)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy Presentation Space to String (8)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy String to Field (33)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy String to Presentation Space (15)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Copy Presentation Space to Clipboard (35)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Paste Clipboard to Presentation Space (36)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Disconnect from Structured Fields (121)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Disconnect Presentation Space (2)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Disconnect Window Service (102)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	EditKey Intercept
	Prerequisites

	Find Field Length (32)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Find Field Position (31)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Free Communications Buffer (124)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Get Key (51)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	16-Bit Interface
	32-Bit Interface
	Notes on Using This Function

	Get Request Completion (125)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Lock Presentation Space API (60)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Lock Window Services API (61)
	Prerequisite Calls
	Call Parameters
	Data String Contents
	Return Parameters
	Notes on Using This Function

	Pause (18)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Post Intercept Status (52)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Additional Field Attribute (45)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Close Intercept (42)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Communications Buffer Size (122)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Communication Event (81)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Cursor Location (7)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Query Field Attribute (14)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Host Update (24)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Session Status (22)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query Sessions (10)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Query System (20)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Return Code
	Notes on Using This Function

	Query Window Coordinates (103)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Read Structured Fields (126)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Synchronous Requests
	Asynchronous Requests

	Receive File (91)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Release (12)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Reserve (11)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Reset System (21)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using this Function

	Search Field (30)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Search Presentation Space (6)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Send File (90)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Send Key (3)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Keyboard Mnemonics

	Set Cursor (40)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Set Session Parameters (9)
	Prerequisite Calls
	Call Parameters
	Session Options
	Return Parameters

	Start Close Intercept (41)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Communication Notification (80)
	Prerequisite Calls
	Call Parameters
	Data String
	Return Parameters
	Notes on using this Function

	Start Host Notification (23)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Keystroke Intercept (50)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Start Playing Macro (110)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Close Intercept (43)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Communication Notification (82)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Host Notification (25)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Stop Keystroke Intercept (53)
	Prerequisite Calls
	Call Parameters
	Return Parameters

	Wait (4)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Window Status (104)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function

	Write Structured Fields (127)
	Prerequisite Calls
	Call Parameters
	Return Parameters
	Notes on Using This Function
	Synchronous Requests
	Asynchronous Requests
	Asynchronous Requests

	Chapter 4. WinHLLAPI Extension Functions
	Summary of WinHLLAPI Functions
	WinHLLAPI Asynchronous Functions
	WinHLLAPIAsync
	Wait (4)
	Prerequisite Functions
	Call Parameters
	Return Codes
	Remarks

	Start Host Notification (23)
	Prerequisite Functions
	Call Parameters
	Return Parameters
	Return Codes
	Remarks

	Start Close Intercept (41)
	Prerequisite Functions
	Call Parameters
	Return Parameters
	Return Code
	Remarks

	Start Keystroke Intercept (50)
	Prerequisite Functions
	Call Parameters
	Return Code
	Remarks

	Send File (90)
	Prerequisite Functions
	Call Parameters
	Return Codes
	Remarks

	Receive File (91)
	Prerequisite Functions
	Call Parameters
	Return Codes
	Remarks

	WinHLLAPICancelAsyncRequest
	Syntax
	Parameters
	Returns

	Initialization and Termination Functions
	WinHLLAPI Startup
	Syntax
	Parameters
	Returns

	WinHLLAPI Cleanup
	Syntax
	Returns

	Blocking Routines
	WinHLLAPIIsBlocking
	Syntax
	Returns
	Remarks

	WinHLLAPISetBlockingHook
	Syntax
	Parameters
	Description
	Returns

	WinHLLAPIUnhookBlockingHook
	Syntax
	Returns

	WinHLLAPICancelBlockingCall
	Syntax
	Returns

	Chapter 5. PCSAPI Functions
	How to Use PCSAPI
	Page Layout Conventions
	Function Type
	Parameter Type and Description
	Return Code

	pcsConnectSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsDisconnectSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsQueryConnectionInfo
	Function Type
	Parameter Type and Description
	Return Code
	ConnectionInfo
	Example

	pcsQueryEmulatorStatus
	Function Type
	Parameter Type and Description
	Return Code

	pcsQuerySessionList
	Function Type
	Parameter Type and Description
	Return Parameters
	Example

	pcsQueryWorkstationProfile
	Function Type
	Parameter Type and Description
	Return Code

	pcsSetLinkTimeout
	Function Prototype
	Parameter Type and Description
	Return Code

	pcsStartSession
	Function Type
	Parameter Type and Description
	Return Code

	pcsStopSession
	Function Type
	Parameter Type and Description
	Return Code

	Page Setup Functions
	Restrictions
	pcsGetPageSettings
	Function Type
	Parameter Type and Description
	Return Code
	Example

	pcsRestorePageDefaults
	Function Type
	Parameter Type and Description
	Return Code
	Example

	pcsSetPageSettings
	Function Type
	Parameter Type and Description
	Return Code
	Example

	Printer Setup Functions
	Restrictions
	pcsGetPrinterSettings
	Function Type
	Parameter Type and Description
	Flags for the pErrorInfo member of the PRINTINFO structure
	Return Code
	Example

	pcsSetPrinterSettings
	Function Type
	Parameter Type and Description
	Flags for the pErrorInfo member of the PRINTINFO structure
	Return Code
	Example

	Chapter 6. Troubleshooting for Emulator programming
	Partial EHLLAPI input on Z and I Emulator for Windows host screen
	HCL Z and I Emulator for Windows VBHLLAPI sample does not run in FDCC Windows Vista

	Appendix A. Query Reply Data Structures Supported by EHLLAPI
	The DDM Query Reply
	DDM Application Name Self-Defining Parameter
	PCLK Protocol Controls Self-Defining Parameter
	Base DDM Query Reply Formats

	The IBM Auxiliary Device Query Reply
	Optional Parameters
	Direct Access Self-Defining Parameter
	PCLK Protocol Controls Self-Defining Parameter

	The Product-Defined Query Reply
	Optional Parameters
	Direct Access Self-Defining Parameter

	The Document Interchange Architecture Query Reply

	Appendix B. Differences from Communication Manager/2 EHLLAPI
	Set Session Parameter (9)
	Set Options
	Return Parameters
	EAB Option

	Copy OIA (13)
	Copy String to PS (15)
	Storage Manager (17)
	Copy String to Field (33)
	Get Key (51)
	Window Status (104)
	Query Sessions (10)
	Connect for Structured Fields (120)
	Allocate Communications Buffer (123)
	ASCII Mnemonics
	Get Request Completion (125)

	Appendix C. Notices
	Trademarks

