
HCL OneTest™ UI
10.2.3 Documentation

May 2022

ii

Special notice

Before using this information and the product it supports, read the information in Notices on page mdcxvii.

Contents
Chapter 1. Release Notes..6

Product description... 6
What's New...6
Deprecated capabilities... 9
Removed capabilities...9
Installing the product...10
Known issues... 10
Contacting HCL support..10

Chapter 2. System Requirements.............................. 12
Hardware.. 13
Operating systems...14
Host prerequisites... 17
Recording and playback support............................ 20
Supported software... 25

Chapter 3. Getting Started Guide...............................30
HCL OneTest™ UI overview..................................... 30
Task flow for Setting up HCL OneTest™ UI.............33
Creating a project.. 35
Getting started in the UI Test perspective..............35

Task flow for testing web applications........... 35
Task flow for standard accelerated functional
testing... 38
Task flow for advanced accelerated functional
testing... 38
Task flows for testing mobile
applications.. 39
Task flows for testing Windows desktop
applications.. 41

Getting started in the Functional Test
perspective... 41

The Functional Test perspective..................... 42
Importing a sample functional test
project... 42
Task flow for testing applications...................43
Task flow for testing Java applications.......... 45
Task flow for testing HTML applications........47
Task flow for testing Eclipse applications...... 49
Task flow for testing SAP applications...........51
Task flow for testing Flex applications........... 53
Using the Functional Test perspective of HCL
OneTest™ UI on Linux...................................... 55

Task flow for integrating HCL OneTest™ UI and HCL
OneTest™ API... 57

Chapter 4. Tutorials...59
Tutorials for testing in the UI Test perspective...... 59

Lesson 1: Recording a test scenario...............60
Lesson 2: Adding a verification point..............61
Lesson 3: Running the test..............................63

Lesson 4: Viewing test results........................ 63
Lesson 5: Modularize the test script...............67
Lesson 6: Abstracting data by using a
dataset.. 69
Lesson 7: Associating the dataset with the
test...69
Lesson 8: Running multiple test scripts in a
sequence...73
Lesson 9: Adding a loop..................................74

Tutorials for testing in the Functional Test
perspective... 75

Get started with functional testing using
simplified scripts..76
Create a functional test using Java
scripts..90
Perform a data-driven functional test using
Java scripts.. 110
Test Adobe Flex application..........................119
Test GEF applications....................................124
Extend HCL OneTest™ UI capabilities using
Proxy SDK... 127

Chapter 5. Samples... 133
Sample project to test a Java application............133

Functional testing of a Java application sample
project... 134

A HCL OneTest™ UI project to test an HTML
application..135

Testing the sample.. 136
Functional testing proxy SDK technology
samples.. 136

ButtonProxy.. 137
JFormattedTextFieldProxy.............................139
CheckBoxProxy...141
Button OverrideProxy..................................... 143
JSpinnerProxy...145
TreeProxy.. 147
Flex control proxy...149

Chapter 6. Administrator Guide............................... 151
Installation..151

Installation requirements...............................151
Installing the product using Installation
Manager.. 152
Installation of the product by using the stand-
alone installer... 174
Uninstallation of the product by using the
stand-alone installer.......................................226
Upgrading and migrating............................... 234

License management.. 237
License descriptions......................................238
License configuration.................................... 238

iii

Contents | iv

iv

Collecting usage metrics data...................... 242
Starting HCL OneTest™ UI from the command
line...243
Integrations in UI Test perspective.......................243

Integration plugin compatibility matrix......... 243
Testing with Ant... 244
Integration with Azure DevOps for UI
tests...253
EGit integration...271
Integration with IBM® Engineering Workflow
Management...280
Integration with Engineering Test
Management...282
Integration with Jenkins................................ 291
Testing with Maven..313
Integration with Micro Focus ALM................325
Integration with HCL OneTest™ API.............. 337
Testing with UrbanCode Deploy....................345

Integrations in Functional Test perspective......... 358
Integration plugin compatibility matrix......... 358
Testing with Ant... 359
Integration with Azure DevOps for functional
tests...360
Testing with Cucumber..................................368
Integrating and running Functional Test
scripts in Micro Focus Application Life Cycle
Management...377
Testing with IBM® Engineering Test
Management...378
Integration with Jenkins................................ 393
Testing with Maven..402
Integration with IBM® Engineering Workflow
Management...405
Testing with Tivoli Composite Application
Manager.. 409
Testing with IBM® UrbanCode™ Deploy...... 409

Chapter 7. Test Author Guide.................................. 413
Testing in the UI Test perspective........................ 413

Testing web applications...............................413
Testing mobile applications.......................... 517
Testing Windows desktop applications........ 534
Recording SAP tests...................................... 541
Working with Selenium or Appium tests.......549
Compound tests...553
Accelerated Functional Tests........................561
Working with keywords..................................579

Testing in the Functional Test perspective.......... 582
Preparing the functional test environment... 582
Managing functional test projects................ 658
Working with functional test scripts (Windows-
only)...664

Working with verification points....................698
Driving functional tests with external data... 730
Managing functional test assets.................. 747
Testing terminal-based applications.............749
Troubleshooting issues................................. 833

Extending the UI Test perspective with custom
code.. 834

Creating custom Java™ code........................ 834
Test execution services interfaces and
classes.. 836
Reducing the performance impact of custom
code...839
Custom code examples.................................839

Extending the Functional Test perspective.......... 865
HCL OneTest™ UI proxy SDK......................... 865
Customizing a script template...................... 951
Using the API to edit functional test
scripts... 963

Experimental Features...1008
Chapter 8. Test Execution Specialist Guide............1009

Configuration of test runs from the UI Test
perspective...1009

Configuration of Web UI test runs...............1009
Configuration of mobile test runs............... 1042
Configuration of Windows test runs........... 1103
Configuration of AFT Suite runs..................1105
Running a test on multiple browsers and
devices simultaneously............................... 1127
Configuration of test runs from the command
line...1130

Configuration of test runs from the Functional Test
perspective...1176

Running scripts.. 1177
Restoring the test environment before
playback..1178
Configuring how to handle unexpected
windows during playback............................ 1179
Inserting dynamic test objects....................1180
Enabling the dynamic find feature.............. 1181
Using ScriptAssure.......................................1182
Ambiguous object recognition in functional
testing... 1183
Playback Monitor... 1184
Pausing or stopping script playback...........1185
Running a script from HCL OneTest™ UI.....1185
Running functional tests for HTML applications
by using the Web UI engine.........................1187
Running a script from the Microsoft™ Edge
browser... 1188
Debugging scripts.. 1189
Screen snapshot on playback failure of
functional tests.. 1190

Contents | v

Chapter 9. Test Manager Guide............................. 1191
Publishing test result to HCL OneTest™ Server..1191
Publishing specific results to the server............ 1192
Unified reports... 1193

Exporting unified reports............................. 1197
Languages supported for PDF export.........1198

Results for tests in UI Test perspective............. 1198
UI Test Statistical report..............................1198
Evaluating desktop Web UI results............. 1200
Customizing reports.................................... 1206
Export test results..1214
Evaluating mobile test run results...............1218
Logs overview.. 1219

Results for tests in Functional Test
perspective...1224

Functional test logs..................................... 1224
Logging page..1225
Setting log preferences............................... 1227
Disabling enhanced log results...................1228
Viewing logs in the Projects view............... 1228
Viewing Dojo logs.. 1229
Renaming and deleting logs........................1229
Log Extension...1229

Chapter 10. Troubleshooting................................. 1234
Troubleshooting in the UI Test perspective........1234

Support information for HCL OneTest™ Studio
...1234
Frequently Asked Questions........................1234
Unable to play back Web UI tests when certain
web applications are redirected to a different
URL..1236
HCL OneTest™ UI error messages.............. 1237

Troubleshooting in the Functional Test perspective
.. 1264

Troubleshooting functional tests in Mozilla
Firefox browsers.. 1264
Unable to test eclipse-based applications..1267
Ambiguous object recognition in functional
testing... 1267
Screen snapshot on playback failure of
functional tests.. 1268
Tips and tricks for functional testing HTML
applications.. 1268
Java applets in HTML pages...................... 1272
Standard properties available for functional
testing HTML objects.................................. 1274
Uninstalling HCL OneTest™ UI cleanly........ 1277
Problems with object recognition............... 1278
Troubleshooting issues in SAP tests.......... 1280
Problems with environment enablement....1281
Handling exceptions.................................... 1281

Collecting HCL OneTest™ UI error logs.......1283
Viewing trace files within HCL OneTest™
UI... 1283
AutoPD Collection artifacts in IBM® Support
Assistant...1284
Frequently asked questions........................ 1284
HCL OneTest™ UI error messages.............. 1294

Chapter 11. Reference Guide.................................1419
Reference for the UI Test perspective................ 1419

Mobile test preferences...............................1419
Mobile test reference...................................1420

Reference for the Functional Test perspective.. 1422
Test application domain support................ 1423
Command line interface.............................. 1449
UI reference.. 1456

Security Considerations.. mdcxvi
Security Considerations for HCL OneTest™ UImdcxvi

Notices...mdcxvii
Index...1621

v

6

Chapter 1. Release notes for HCL OneTest™ UI
This document contains information about what's new, installation instructions, known problems in and contact

information of HCL Customer Support.

Contents

• Product description on page 6

• What's New on page 6

• Deprecated capabilities on page 9

• Removed capabilities on page 9

• Installing the product on page 10

• Known issues on page 10

• Contacting HCL Support on page 10

Product description
HCL OneTest™ UI is a GUI test automation tool that is used to accelerate the functional and regression testing. It

provides a flexible environment to test the desktop and web applications very efficiently. It is used to test a wide range

of applications that includes HTML, web, native and hybrid mobile, SAP, Java, Power Builder, and Windows desktop

applications. HCL OneTest™ UI is available in two integrated development environments (IDE): Eclipse and Microsoft

Visual Studio .NET. The Eclipse integration supports both Java and simplified (non-programming) method of scripting

while the Microsoft Visual Studio .NET integration supports Microsoft Visual Basic .NET scripting language. See

Product overview on page 30.

What's New
• Support to record and play back Web UI tests in the private mode of web browsers

You can now record and play back Web UI tests in the private mode of web browsers such as Google Chrome,

Microsoft Edge, Mozilla Firefox, or Opera.

See Recording a Web UI test on page 425 and Running tests in the private or incognito mode on page 1029.

You can also use the command line to run tests in the private mode. See Running Web UI tests in the private

mode from the command line on page 1152.

• Support to run an AFT Suite on mobile clouds

Chapter 1. Release notes for HCL OneTest™ UI

You can now run an AFT Suite that contains mobile tests on mobile devices that are connected to the mobile

clouds. You can also run an AFT Suite to run the mobile tests simultaneously on devices that are connected to

multiple mobile cloud platforms.

See Accelerated Functional Tests on page 561 and Configuration of AFT Suite runs on page 1105.

• Recording UI tests of web applications that are enabled with Content Security Policy

You can now record UI tests in Google Chrome and Microsoft Edge for web applications that are enabled with

Content Security Policy.

• Resource monitoring of mobile devices and applications

You can now use HCL OneTest™ UI to capture resource monitoring metrics of Android applications, devices,

or emulators, or iOS applications or devices. You can enable HCL OneTest™ UI to capture the resource

monitoring metrics when the following types of tests are run:

◦ Single mobile test run on a single device.

◦ Single mobile test run on multiple devices in parallel.

◦ Single mobile test run on a single device from the command line.

◦ Compound tests with multiple mobile tests or at least one mobile test run on a single device.

See Running mobile tests for iOS mobile applications on page 1069 and UI Test Statistical report on

page 1198.

• Conversion of unassociated datapools to datasets in FT projects

Previously, the shared but unassociated datapools from functional test projects, which were created in the

older version of HCL OneTest™ UI, did not display in the workbench after you opened the projects in the newer

version. Now, such datapools are converted and displayed as datasets in your project.

• Healing Web UI tests through the command line

You can now enable the self-healing feature when you run Web UI tests or compound tests from the

command line. HCL OneTest™ UI identifies UI changes in the application under test and heals the test for a

successful run. See Overview of guided healing and self-healing on page 466.

• Exporting unified reports to multiple formats through the command line

Previously, you were able to export the unified report in any one supported format at a time from the

command line.

You can now export unified reports for functional and Web UI tests in all the supported formats such as xml,

pdf, and html simultaneously by using a single option from the command line. See Configuration of test runs

from the command line on page 1130.

7

HCL OneTest™ UI

8

• Updated integration plugins for Web UI tests

You can now use the following additional options when you run Web UI tests by using the integration plugins:

Integration Plugins

Parameters Azure

DevOps

HCL® Ur

banCode™

Deploy

MicroFo

cus ALM
Ant Jenkins Maven

Export stats

format

Exportstat

shtml

Import

Labels

Publish

Publish for

Publish Re

ports

For more information on parameters of the integration plugins, read the following topics:

◦ Integration with Azure DevOps for UI tests on page 253

◦ Testing with UrbanCode Deploy on page 345

◦ Integration with Micro Focus ALM on page 325

◦ Testing with Ant on page 244

◦ Integration with Jenkins on page 291

◦ Testing with Maven on page 313

• Viewing test run results on the Azure test plans dashboard

When you use the HCL OneTest™ Studio Azure extension in Azure pipelines to run tests on HCL OneTest™ UI,

you can view the test results on the Jobs page.

Additionally, you can now view the results of the test runs on the test plans dashboard by setting up test

plans with test cases for your project in Azure. You must also provide details about the Azure server, your

personal access token, the Azure project, the test case, and the test plan while you configure the test run for

the test results to display on the test plans dashboard. See Running UI tests in an Azure DevOps Pipeline on

page 256 and Running functional tests in an Azure DevOps Pipeline on page 363.

Chapter 1. Release notes for HCL OneTest™ UI

Deprecated capabilities
You can find information about the capabilities that are deprecated in this release and are planned for a removal in a

future release.

Note: You can contact the HCL Client Support team if you have any concerns.

• Support for the following operating systems is deprecated:

◦ Ubuntu 18.04 LTS

◦ Windows 7 Enterprise

◦ Windows 7 Professional

◦ Windows 7 Ultimate

◦ Android 10

◦ iOS 13

• Support for the following software are deprecated:

◦ .Net Applications 3.5, 4, and 4.5.2

◦ SAP GUI 7.6

• Support for the following browser is deprecated:

◦ Google Chrome 84 to 90

◦ Microsoft Edge 84 and 90

◦ Mozilla Firefox 78 to 88

◦ Opera 70 to 76

Removed capabilities
The following features that were announced in previous releases as deprecated are now removed in this release:

• Support for the following operating systems is removed:

◦ RHEL 7.7, 7.8, 8.0, 8.1, 8.2, 8.3

• Support for the following software is removed:

◦ Eclipse 4.4 and 4.6

◦ IBM Java 6 and 7

◦ Oracle Java 6, 7, 9 and 10

◦ Sun Java 6.0/1.6

◦ Adobe Flex SDK 3.2 and 4.0

◦ Power Builder 12.5

◦ SAP GUI 7.5 compilation 2

◦ Appium 1.16 and 1.17

◦ Rational ClearCase 8.0.1

9

HCL OneTest™ UI

10

Note: Support for the use of the HCL OneTest™ UI IDE plugin to connect and use IBM®

Rational® ClearCase® from HCL OneTest™ UI is deprecated.

◦ Rational Quality Manager 6.0.3 and 6.0.5

◦ Rational Team Concert 6.0.3, 6.0.4, and 6.0.5

• Support for the following browser version is removed:

◦ Google Chrome 78 to 83

◦ Microsoft Edge 80 to 83

◦ Mozilla Firefox 69, 70, 72 to 77

◦ Mozilla Firefox ESR 68

◦ Opera 67 to 69

Installing the product
For installation instructions, see Installing HCL OneTest UI on page 160.

Remember: You cannot upgrade the product to the latest version. You must uninstall the existing version of

the product before you install the latest version of the product.

Known issues
You can find information about the known issues identified in this release of HCL OneTest™ UI.

Product Download document Knowledge base

HCL OneTest™ UI Release document Knowledge articles

Known problems are documented in the download document and in the form of individual tech notes in the Support

Knowledge Base. See the Support Knowledge Base.

The knowledge base is continually updated as issues are discovered and resolved. By searching the knowledge base,

you can quickly find workarounds or solutions to issues.

Contacting HCL support
• For technical assistance, contact HCL Customer Support.

• Before you contact HCL support, you must gather the background information that you might need to describe

your problem. When you describe a problem to the HCL support specialist, be as specific as possible and

include all relevant background information so that the specialist can help you solve the problem efficiently.

To save time, know the answers to these questions:

https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0098602
https://support.hcltechsw.com/csm?id=kb_search
https://support.hcltechsw.com/csm

Chapter 1. Release notes for HCL OneTest™ UI

◦ What software versions were you running when the problem occurred?

◦ Do you have logs, traces, or messages that are related to the problem?

◦ Can you reproduce the problem? If so, what steps do you take to reproduce it?

◦ Is there a workaround for the problem? If so, be prepared to describe the workaround.

11

12

Chapter 2. System Requirements
This document includes information about hardware and software requirements for HCL OneTest™ UI.

Contents

• Hardware on page 13

◦ Linux on page 13

◦ Mac on page 14

◦ Windows on page 14

• Operating systems on page 14

◦ Linux on page 15

◦ Mac on page 16

◦ Windows on page 16

◦ Mobile on page 17

• Host prerequisites on page 17

◦ Development tools on page 18

◦ Web browsers on page 18

◦ Virtualization management on page 19

• Recording and playback support on page 20

◦ Eclipse runtime environment on page 20

◦ Java SDK on page 21

◦ Product Specific or Mixed Content on page 21

◦ Terminal emulation on page 23

◦ Web browsers on page 23

• Supported software on page 25

◦ Development tools on page 25

◦ Device clouds on page 28

◦ Integration Middleware on page 28

Disclaimers

This report is subject to the Terms of Use and the following disclaimers:

The information contained in this report is provided for informational purposes only. While efforts were made to

verify the completeness and accuracy of the information contained in this publication, it is provided AS IS without

warranty of any kind, express or implied, including but not limited to the implied warranties of merchantability, non-

infringement, and fitness for a particular purpose. In addition, this information is based on HCL's current product

plans and strategy, which are subject to change by HCL without notice. HCL shall not be responsible for any direct,

indirect, incidental, consequential, special or other damages arising out of the use of, or otherwise related to, this

report or any other materials. Nothing contained in this publication is intended to, nor shall have the effect of, creating

any warranties or representations from HCL or its suppliers or licensors, or altering the terms and conditions of the

applicable license agreement governing the use of HCL software.

Chapter 2. System Requirements

References in this report to HCL products, programs, or services do not imply that they will be available in all

countries in which HCL operates. Product release dates and/or capabilities referenced in this presentation may

change at any time at HCL's sole discretion based on market opportunities or other factors, and are not intended to

be a commitment to future product or feature availability in any way. Discrepancies found between reports and other

HCL documentation sources may or may not be attributed to different publish and refresh cycles for this tool and

other sources. Nothing contained in this report is intended to, nor shall have the effect of, stating or implying that any

activities undertaken by you will result in any specific sales, revenue growth, savings or other results. You assume

sole responsibility for any results you obtain or decisions you make as a result of this report.

Notwithstanding the Terms of Use users of this site are permitted to copy and save the reports generated from this

tool for such users own internal business purpose. No other use shall be permitted.

Hardware
You can find information about the hardware requirements for HCL OneTest™ UI.

Contents

• Linux on page 13

• Mac on page 14

• Windows on page 14

Linux

Hardware Requirement Notes

Disk space 10 GB

Memory 8 GB

Processor 1.86 GHz Intel Pentium 4 or later for

best results

• Long test runs require large amount of disk space.

You must ensure that there is adequate disk space

before running tests.

• Disk space consumption can be reduced by selecting

the degree of logging in a test run.

• For best results with long test runs or AFT test runs,

you must use 16 GB of RAM.

• For best results with long test runs or large AFT runs,

you must use 2.30 GHz or higher Intel Core 2 Duo

processor.

13

HCL OneTest™ UI

14

Mac

Hardware Requirement Notes

Disk space 10 GB

Memory 16 GB

Processor Intel Core i5 - 2.9 GHz or later for

best results

• Long test runs require large amount of disk space.

You must ensure that there is adequate disk space

before running tests.

• Disk space consumption can be reduced by selecting

the degree of logging in a test run.

Windows

Hardware Requirement Notes

Disk space 10 GB

Memory 8 GB

Processor 1.86 GHz Intel Pentium 4 or later for

best results

• Long test runs require large amount of disk space.

You must ensure that there is adequate disk space

before running tests.

• Disk space consumption can be reduced by selecting

the degree of logging in a test run.

• For best results with long test runs or AFT test runs,

you must use 16 GB of RAM.

• For best results with long test runs or large AFT runs,

you must use 2.30 GHz or higher Intel Core 2 Duo

processor.

Operating systems
You can find the operating systems that are supported, organized by operating system family for HCL OneTest™ UI.

Contents

• Linux on page 15

• Mac on page 16

• Windows on page 16

• Mobile on page 17

Bit version support

Different parts of a product might run on the same operating system but support different application bitness.

Chapter 2. System Requirements

For example one part of the product might run only in 32-bit mode, whereas another might support 64-bit tolerate

mode.

Bitness Description

32 The product or part of the product runs as a 32-bit application in the 32-bit platforms listed as

supported.

64-Tolerate The product or part of the product runs as a 32-bit application in the 64-bit platforms listed as

supported.

64-Exploit The product or part of the product runs as a 64-bit application in the 64-bit platforms listed as

supported.

Linux

Components

Operating system Hardware Bitness

Function

al test

Web

UI test Mobile Notes

Red Hat Enterprise Lin

ux (RHEL) 7.9

x86-64 64-Exploit

Red Hat Enterprise Lin

ux (RHEL) 8.4

x86-64 64-Exploit

Red Hat Enterprise Lin

ux (RHEL) 8.5

x86-64 64-Exploit

Ubuntu 18.04 LTS x86-64 64-Exploit
Deprecated in 10.2.3.

Ubuntu 20.04 LTS x86-64 64-Exploit

15

HCL OneTest™ UI

16

Mac

Components

Operating system Hardware Bitness Functional test Web UI test Mobile

macOS Catalina 10.15 x86-64 64-Exploit

macOS BigSur 11.6
x86-64 64-Exploit

Windows

Components

Operating system Hardware Bitness

Function

al test

Web

UI test Mobile Notes

Windows 7 Enterprise x86-64 32, 64-Ex

ploit

Windows 7 Professional x86-64 32, 64-Ex

ploit

Windows 7 Ultimate x86-64 32, 64-Ex

ploit

Deprecated in 10.2.3.

This operating system

is no longer in service.

Windows 10 Enterprise x86-64 32, 64-Ex

ploit

Windows 10 Pro x86-64 32, 64-Ex

ploit

Windows 11 Pro x86-64 32, 64-Ex

ploit

Windows Server 2016 x86-64 32, 64-Ex

ploit

Chapter 2. System Requirements

Components

Operating system Hardware Bitness

Function

al test

Web

UI test Mobile Notes

Windows Server 2019 x86-64 32, 64-Ex

ploit

Mobile

Components

Operating system Functional test Web UI test Mobile

Notes

Android 10
Deprecated in

10.2.3.

Android 11

Android 12

iOS 13
Deprecated in

10.2.3.

iOS 14

iOS 15

Host prerequisites
You can find the host prerequisites that support the operating capabilities for HCL OneTest™ UI.

Contents

• Development Tools on page 18

• Web browsers on page 18

• Virtualization management on page 19

17

HCL OneTest™ UI

18

Development tools

Components

Development Tool Version Functional test Web UI test Notes

Appium 1.22

Microsoft .NET Framework
3.5

2015 and future

fix packs

2017 and future

fix packs

Microsoft Visual Studio

2019 and future

fix packs

Required to use HCL

OneTest™ UI from this

Integrated Develop

ment Environment

(IDE).

Licensing

License Server Version HCL OneTest™ UI

2017.02
FlexNet Operations LLS

2021.05

Web browsers

The browsers listed in the following table can be used to view the contents of various assets in a testing project such

as a recording session, configured applications, datasets, reports, and so on. You must refer to the Recording and

Playback Support on page 23 section to view the list of browsers along with their versions that are supported to

record and play back tests.

Chapter 2. System Requirements

Components

Browser Version Functional test Web UI test Notes

Apple Safari 12 or later Not Applicable

Google Chrome 78 or later

Microsoft Edge 80 or later

Mozilla Firefox (including

ESR versions)

68 or later

Opera 67 or later

Virtualization management

Components

Container Version Functional test Web UI test Notes

Docker Community Edition (CE) 19.3 Deprecated

from 10.2.0.

Docker Community Edition (CE) 20.1 and future fix

packs

1.25 and future fix

packs

1.26 and future fix

packs

Deprecated

from 10.2.0.

Docker Compose

1.27 and future fix

packs

19

HCL OneTest™ UI

20

Components

Container Version Functional test Web UI test Notes

1.29 and future fix

packs

Recording and playback support
The recording and playback support section specifies the software that HCL OneTest™ UI 10.2.3 supports to record

and play back tests.

Contents

• Eclipse runtime environment on page 20

• Java SDK on page 21

• Product Specific or Mixed Content on page 21

• Terminal emulation on page 23

• Web browsers on page 23

Eclipse runtime environment

Components

Functional test Web UI test Mobile

Supported soft

ware Version

Record Play

back

Record Play

back

Record Play

back Notes

4.7 to

4.8

4.17

4.19

Eclipse

4.21 to

4.22

Supported only on

Windows

Chapter 2. System Requirements

Java SDK

Components

Functional test Web UI test Mobile

Supported soft

ware Version
Record

Play

back
Record

Play

back
Record

Play

back Notes

IBM Java 8 To test applications

based on IBM Java.

8

11

Oracle Java

17

To test applications

based on Oracle

Java.

8

11

OpenJDK

17

To test applications

based on Open

JDK.

Product Specific or Mixed Content

Components

Functional test Web UI test Mobile

Supported software Version Record Playback Record Playback Record Playback Notes

Adobe Flex SDK 4.5 Deprecated

from 10.2.0.

Adobe Reader
XI

21

HCL OneTest™ UI

22

Components

Functional test Web UI test Mobile

Supported software Version Record Playback Record Playback Record Playback Notes

5 Not ap

plicable

Not ap

plicable

Deprecated

from 10.2.2.

Microsoft Visual Ba

sic

6 Not ap

plicable

Not ap

plicable

7.6 Not ap

plicable

Not ap

plicable

Deprecated in

10.2.3.

SAP GUI

7.7 Not ap

plicable

Not ap

plicable

To record and

playback tests

of SAP appli

cations built

with the SAP

GUI client.

Supported via

HCL OneTest™

Performance

extension.

12.6
Power Builder

2017

3.5

4

.Net applications

4.5.2

Deprecated in

10.2.3.

Chapter 2. System Requirements

Components

Functional test Web UI test Mobile

Supported software Version Record Playback Record Playback Record Playback Notes

4.6.1

Terminal emulation

Components

Functional test Web UI test Mobile

Supported software Version Record Playback Record Playback Record Playback Notes

zSeries 3270

iSeries
5250

Supported via

the terminal

emulator ap

plication pack

aged with the

product.

Web browsers

Components

Functional test Web UI test Mobile

Supported software Version Record Playback Record Playback Record Playback Notes

12

13

Apple Safari

14

Apple Safari

support on

desktop in

cludes device

modes.

23

HCL OneTest™ UI

24

Components

Functional test Web UI test Mobile

Supported software Version Record Playback Record Playback Record Playback Notes

15

Google Chrome
84 to 90 Deprecated in

10.2.3.

Google Chrome
91 to

101

Google

Chrome

browser sup

port on desk

top includes

device modes.

Microsoft Internet

Explorer
11 Deprecated

from 10.2.0.

84

86 to 90

Deprecated in

10.2.3.

Microsoft Edge

91 to

101

78 to 88 Deprecated in

10.2.3.

Mozilla Firefox

89 to

100

Mozilla Firefox ESR
78

Chapter 2. System Requirements

Components

Functional test Web UI test Mobile

Supported software Version Record Playback Record Playback Record Playback Notes

91

70 to 76 Deprecated in

10.2.3.

77

Opera

83 to 85

Supported software
The supported software section specifies the additional software that HCL OneTest™ UI supports.

Capabilities:

• Development tools on page 25

• Device clouds on page 28

• Integration Middleware on page 28

Development tools

ComponentsSupported software

Version
Function

al test Web UI test

Notes

Appium 1.18 and

future fix

packs

To execute Appium scripts

as part of a compound test.

Deprecated in 10.2.3.

25

HCL OneTest™ UI

26

ComponentsSupported software

Version
Function

al test Web UI test

Notes

1.19 and

future fix

packs

1.20.0 and

future fix

packs

1.21 and

future fix

packs

1.22 and

future fix

packs

To execute Appium scripts

as part of a compound test.

Cucumber Latest ver

sion

To integrate Cucumber fea

tures with test scripts.

eGit 4.10 and

future fix

packs

Supports Eclipse source

control.

7.0.1 and

future fix

packs

IBM® Engineering Test

Management (formerly

known as IBM® Rational®

Quality Manager)

7.0.2 and

future fix

packs

To execute test scripts

from ETM.

Chapter 2. System Requirements

ComponentsSupported software

Version
Function

al test Web UI test

Notes

7.0.1 and

future fix

packs

IBM® Engineering Work

flow Management (former

ly known as IBM® Ratio

nal® Team Concert™

7.0.2 and

future fix

packs

Supports Eclipse shell shar

ing.

HCL OneTest™ Perfor

mance
10.2.3 Supports Eclipse shell shar

ing, facilitates Low Inten

sity Performance Test

ing and larger Accelerated

Functional Testing.

IBM® Rational® Quality

Manager
6.0.6

To execute test scripts

from IBM® Rational® Qual

ity Manager.

IBM® Rational Team Con

cert

6.0.6
Supports Eclipse shell shar

ing.

HCL OneTest™ Studio 10.2.3 To integrate with HCL

OneTest™ API and

run tests.

3Selenium

4

To execute Selenium

scripts from a compound

test.

27

HCL OneTest™ UI

28

Device clouds

Components

Supported device clouds Version

Function

al test Web UI test Notes

Perfecto Mobile Cloud Latest re

lease

BitBar Cloud Latest re

lease

pCloudy Cloud Latest re

lease

To execute mobile web

tests on the cloud.

Integration Middleware

Components

Supported software Version

Function

al test Web UI test Notes

Apache Ant 1.9 and later To initiate the test runs

through Ant.

Azure DevOps Latest re

lease

To initiate the test runs

from Azure.

7.1.0.1

7.1.1.1

7.1.2.1

HCL Launch

7.2.1.0

To initiate the test runs

from HCL Launch.

Chapter 2. System Requirements

Components

Supported software Version

Function

al test Web UI test Notes

Micro Focus ALM 12.6

6.0.1

7.0.2

7.1.1.1

7.1.2.1

IBM UrbanCode Deploy

7.2.1.0

To initiate the test runs

from UrbanCode Deploy.

2.235.1

2.263.3

2.277.4

2.289.3

2.303.3

Jenkins

2.339

To initiate the test runs

from Jenkins.

Maven 3.5 and later To initiate the test runs

through Maven.

29

30

Chapter 3. Getting Started Guide
This guide provides an overview of HCL OneTest™ UI. You can find the task flows to get you started with HCL

OneTest™ UI. This guide is intended for new users.

Before you can perform the various tasks described in the Getting Started Guide and the other guides, you must install

HCL OneTest™ UI. See Installation on page 151.

Before you start using HCL OneTest™ UI, see HCL OneTest UI overview on page 30.

You can find information about getting started in the following perspectives of HCL OneTest™ UI:

• Getting started in the UI Test perspective on page 35

• Getting started in the Functional Test perspective on page 41

HCL OneTest™ UI overview
HCL OneTest™ UI is an object-oriented automated functional testing tool that tests HTML, including HTML 5, Java,

Windows, .NET, Visual Basic, SAP, Silverlight, Eclipse, Siebel, Flex, Ajax, Dojo, GEF and PowerBuilder applications. With

its ability to test HTML 5-based applications and UI frameworks, HCL OneTest™ UI also tests the user interface of

Web applications on the desktop and on mobile devices.

HCL OneTest™ UI runs on Windows® and Linux® platforms, while the HTML5-based testing features run on Mac OS,

in addition to Windows® and Linux®.

Two perspectives: Functional Test and UI Test

When you work in the Eclipse IDE, you work in the context of a perspective, that is, a set of pre-defined views

and editors. HCL OneTest™ UI includes two perspectives that you can use to do your testing: the Functional Test

perspective and the UI Test perspective.

The Functional Test perspective

The Functional Test perspective is the same perspective that has always been available in HCL OneTest™ UI. Use it to

test native applications or hybrid applications that sometimes include embedded web technologies. You can also use

HCL OneTest™ UI to test Adobe® PDF documents, and zSeries®, iSeries®, pSeries®, and mainframe applications.

The Functional Test perspective in HCL OneTest™ UI is available in two integrated development environments (IDE)

and two scripting languages for advanced users.

• HCL OneTest™ UI, Eclipse Integration uses the Java™ language.

• HCL OneTest™ UI Microsoft Visual Studio .NET Integration uses the VB.NET language and the Microsoft®

Visual Studio .NET development environment.

Chapter 3. Getting Started Guide

The UI Test perspective

The other testing perspective that is available to you in the HCL OneTest™ UI Eclipse IDE is the UI Test perspective.

The UI Test perspective includes support for HTML5 and several HTML 5-based UI frameworks. You can use the UI

Test perspective to test browser-based Web applications from a desktop or laptop computer or from a mobile device

by capturing UI actions against the HTML controls on web pages. In addition, you can manage Selenium Java™ tests,

Appium Java™ tests, and create compound tests with multiple test types, including functional tests, Web UI tests,

mobile tests, Selenium and Appium tests. The capabilities provided in the UI Test perspective are not available in the

Microsoft™ Visual Studio .NET environment.

HCL OneTest™ UI technology and features in the Functional Test perspective

The object-oriented recording technology in the HCL OneTest™ UI Functional Test perspective lets you generate

functional testing scripts for automated testing quickly by recording against the application under test. HCL OneTest™

UI uses object-oriented technology to identify controls or objects by their internal properties and not by screen

coordinates. If the location or text of a control or the object changes, HCL OneTest™ UI can still find it during

playback.

The object testing technology in HCL OneTest™ UI enables you to test any controls or object in the application under

test, including the control properties and data.

In HCL OneTest™ UI, you have the option to capture snapshots of the application controls while recording the

simplified functional test script. The captured application visuals are displayed in the Application View. You can use

the application visuals to modify the simplified functional testing scripts and insert or edit verification points without

opening the test application.

While working with the HCL OneTest™ UI Eclipse Integration or HCL OneTest™ UI, Microsoft Visual Studio .NET

Integration, the test object maps are used and the application visuals are not available. When you record a functional

test script, HCL OneTest™ UI automatically creates a test object map for the application under test. The test object

map lists the test objects available in the application, whether they are currently displayed or not. The object map

provides a quick way to add objects to a functional test script. Since the test object map contains recognition

properties for each object, you can easily update the recognition information in one central location. Any functional

test scripts that use this test object map also share the updated information.

During recording you can insert verification points into the script to confirm the state of a control or an object

across builds of the application under test. The verification point captures object information (based on the type

of verification point) and stores it in a baseline data file. The information in this file becomes the baseline of the

expected state of the object during subsequent builds. HCL OneTest™ UI has an object properties verification point

and five data verification points (menu hierarchy, table, text, tree hierarchy, and list). You can use the Verification Point

Comparator to analyze differences across builds and update the baseline file.

HCL OneTest™ UI features platform-independent and browser-independent test playback. For example, you can

record a functional test script on Windows® and play it back on Linux®. You can record a functional test script using

Firefox or Internet Explorer. Because the functional testing script contains no references to the browser used during

31

HCL OneTest™ UI

32

recording, you can play back the functional test script using any of the supported versions of Firefox or Internet

Explorer.

HCL OneTest™ UI Proxy SDK for the Functional Test perspective

With HCL OneTest™ UI proxy software development kit (SDK) you can extend automated functional testing support

for application user interface controls (GUI test objects), beyond what is provided by default.

HCL OneTest™ UI integrations

Both perspectives support integration with various products such as Rational® Quality Manager, Rational Team

Concert™, IBM Urban Code Deploy, Jenkins, and Ant. The Functional Test perspective also provides support for

Cucumber.

Rational Team Concert™ integration: You can integrate HCL OneTest™ UI with Rational Team Concert™ and manage

functional test assets using any of these source control management tools.

Rational® Quality Manager integration: HCL OneTest™ UI can be integrated with IBM® Rational® Quality Manager by

configuring the adapter and execute the functional test scripts from Rational® Quality Manager.

IBM Urban Code Deploy, Jenkins, Cucumber, and Ant provide additional ways to run functional test scripts.

HCL OneTest™ UI Extension for Terminal-based Applications in the Functional Test
perspective

HCL OneTest™ UI Extension for Terminal-based Applications supports functional testing of zSeries® (Mainframe

such as TN3270, TN3270E), iSeries® (AS/400® such as TN5250) and pSeries® (Virtual Terminals such as VT

default, VT100, VT420-7, VT420-8, VT UTF-8). HCL OneTest™ UI Extension for Terminal-based Applications tool

helps you create test scripts to automate the functional testing of host application test cases. It provides a rich set

of capabilities to test host attributes, host field attributes and screen flow. It uses terminal verification points and

properties, as well as synchronization code to identify the readiness of terminal for user input.

Accelerating the test effort with distributed testing in the UI Test perspective

The HCL OneTest™ UI UI Test perspective helps you accelerate the test effort by providing ways to distribute test

execution across multiple browsers and multiple computers simultaneously. Here are some of the capabilities

provided by the UI Test perspective:

• The ability to run a single Web UI test on multiple browsers and mobile devices simultaneously

• The ability to run multiple Web UI tests on multiple browsers and mobile devices simultaneously

• The ability to run multiple Web UI tests across multiple remote computers simultaneously (Requires

integration with HCL OneTest™ Performance)

• The ability to run multiple Web UI and compound tests simultaneously, both from the IDE and the command

line

• The ability to run Web UI tests in the cloud

Chapter 3. Getting Started Guide

• The ability to record a Web UI test in one browser and play it back in another browser or on a mobile device

• The ability to test mobile Web applications on mobile devices

Test mobile web applications in the UI Test perspective

The UI Test perspective includes support for testing browser-based web application that are developed using pure

web technologies, such as HTML 5, CSS3, and JavaScript libraries, such as Dojo Mobile and JQuery Mobile. Web

applications are developed to run in multiple browsers and are platform-independent.

You can also perform mobile application testing using the Appium test automation framework or in a device cloud

environment. You can run JUnit Appium tests in an Appium framework.

Task flow for Setting up HCL OneTest™ UI
The diagram in this topic shows the task flow for setting up HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the task flow for functional testing using HCL OneTest™ UI.

33

HCL OneTest™ UI

34

1. Click this area to get information about software requirements for installation on page 151

2. Click this area to get information about installation on page 160

3. Click this area to get information about the supported version of JREs on page 1437

4. Click this area to get information about the supported browsers on page 1434

5. Click this area to get information to verify if the test environment is enabled automatically on page 582

6. Click this area to get information about manually enabling the environment on page 582

7. Click this area to get information about the task flow for testing applications

Chapter 3. Getting Started Guide

Note: Check the compatibility between the operating systems, browsers, and JREs when you set up HCL

OneTest™ UI.

Creating a project
The tests that you create, and the assets associated with the tests, reside in a project on your desktop. You can

create the project separately, or you can simply record a test, which automatically creates a project named testproj.

1. Select File > New > Web UI Test Project or Functional Test Project.

Result

The Create a Project window opens.

2. In the Project Name field, enter a name for the project.

3. Select Use default location.

4. Optional: Click Next and select the folders to create in the new project.

These folders organize your files by asset (Tests, Results, and so on).

5. Click Finish.

Result

After you click finish, you are prompted to record a test.

What to do next

You can create a test from a new recording or from an existing recording, or you can click Cancel to create a test

project without recording a test.

Getting started in the UI Test perspective
With the UI Test perspective, you can find information and task flows to create and run functional tests for web

applications.

You can find information to begin testing in the UI Test perspective as Tutorials. See Getting started with the Web UI

Testing tutorial.

You can find the following task flows that you can use when you want to test in the UI Test perspective:

Task flow for testing web applications
The diagrams in this topic shows the standard task and advanced work flows for testing the web applications in HCL

OneTest™ UI.

Task flow for standard Web UI test

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the standard task flow for testing web applications using HCL OneTest™ UI.

35

HCL OneTest™ UI

36

1. Click this area to get information about recording Web UI tests on page 413

2. Click this area to get information about inserting data verification points on page 701

3. Click this area to get information about playing back the Web UI tests on page 1009

4. Click this area to get information about evaluating results on page 1200

5. Click this area to get information about Guided Healing on page 467

Task flow for standard Web UI test

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the advanced task flow for testing web applications using HCL OneTest™ UI.

Chapter 3. Getting Started Guide

1. Click this area to get information about recording Web UI tests on page 413

2. Click this area to get information about inserting data verification points on page 701

3. Click this area to get more information about creating dataset on page 736

4. Click this area to get more information about adding conditions on page 444

5. Click this area to get more information about adding a loop to the test on page 442

6. Click this area to get more information about working on the test scripts on page 450

7. Click this area to get more information about modularizing tests on page 446

8. Click this area to get information about playing back the Web UI tests on page 1009

9. Click this area to get information about evaluating results on page 1200

10. Click this area to get information about Guided Healing on page 467

37

HCL OneTest™ UI

38

Task flow for standard accelerated functional testing
The diagram in this topic shows the standard task flow for the accelerated functional testing for Web UI applications

using HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the standard task flow for accelerated functional testing using HCL OneTest™ UI

1. Click this area to get information about recording Web UI tests on page 413

2. Creating a compound test on page 554

3. Configuration of test runs from the command line on page 1130

4. Exporting report counters automatically

Task flow for advanced accelerated functional testing
The diagram in this topic shows the advanced task flow for the accelerated functional testing for Web UI applications

using HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the advanced task flow for accelerated functional testing using HCL OneTest™ UI

Chapter 3. Getting Started Guide

1. Click this area to get information about recording Web UI tests on page 413

2. Creating a compound test on page 554

3. 4 on page 562

4. Creating an Accelerated Functional Test asset on page 561

5. Configuration of test runs from the command line on page 1130

Task flows for testing mobile applications
You can find information about the tasks that you must perform to test Android mobile applications or iOS mobile

applications.

Task flow for testing Android mobile applications

You must follow the tasks in this task flow to test Android mobile applications.

39

HCL OneTest™ UI

40

Tasks More information

1 Complete the prerequisite tasks before you record a

test for Android mobile applications.

Prerequisite tasks for recording Android mobile ap

plications on page 517

2 Configure an Android mobile application. Configuring Android applications for mobile tests

on page 520

3 Record a mobile test for Android mobile application. Recording mobile tests for Android applications on

page 522

4 Edit a mobile test. Editing a mobile test on page 533

Run the recorded test for Android mobile applications

from any of the following locations:

Computer that runs HCL OneTest™ UI. Running mobile tests on an Android device or em

ulator connected to a computer that runs HCL

OneTest UI on page 1044

Remote agent computer. Running mobile tests on an Android device or em

ulator connected to a remote agent computer on

page 1046

BitBar Cloud. Running mobile tests on Android devices on BitBar

Cloud on page 1048

Perfecto Mobile Cloud. Running mobile tests on Android devices on Per

fecto Cloud on page 1050

5.1

pCloudy Cloud. Playing back mobile tests on Android devices on

pCloudy Cloud on page 1053

5.2 Alternatively, run the recorded test for Android mobile

applications from the command line interface.

Running mobile tests for Android applications

from the command-line on page 1157

6 View the test report. Viewing unified reports on page 1193

Task flow for testing iOS mobile applications

You must follow the tasks in this task flow to test iOS mobile applications.

Tasks More information

1 Complete the prerequisite tasks before you record a

test for iOS mobile applications.

Prerequisite tasks for recording iOS tests on

page 528

2 Configure an iOS application. Configuring the iOS applications on page 529

3 Record a mobile test for iOS application. Recording mobile tests for iOS applications on

page 530

Chapter 3. Getting Started Guide

Tasks More information

4 Edit a mobile test. Editing a mobile test on page 533

Run the recorded test for iOS mobile applications from

any of the following locations:

Computer that runs HCL OneTest™ UI. Running mobile tests on an iOS device or simulator

connected to a computer that runs HCL OneTest UI

on page 1070

Remote agent computer. Running mobile tests on an iOS device or simulator

connected to a remote computer on page 1072

BitBar Cloud. Running mobile tests on iOS devices on BitBar

Cloud on page 1074

Perfecto Mobile Cloud. Running mobile tests on iOS devices on Perfecto

Cloud on page 1076

5.1

pCloudy Cloud. Running mobile tests on iOS devices on pCloudy

Cloud on page 1078

5.2 Alternatively, run the recorded test for iOS mobile ap

plications from the command line interface.

Running mobile tests for iOS applications from the

command-line on page 1166

6 View the test report. Viewing unified reports on page 1193

Task flows for testing Windows desktop applications
You can find information about the tasks that you must perform to test Windows desktop applications.

You must follow the tasks in this task flow to test Windows desktop applications.

Tasks More information

1 Configure a Windows desktop application. Configuring applications for tests on page 417

2 Record a Windows test for the configured application. Recording a Windows test on page 536

3 Edit a Windows test. Editing a Windows test on page 540

4 Play back a Windows test. Running a Windows test on page 1104

5 View the test report. Unified reports on page 1193

Getting started in the Functional Test perspective
With the Functional Test perspective, you can find information and task flows to create and run functional tests for

native or hybrid applications.

41

HCL OneTest™ UI

42

You can find information to begin testing in the Functional Test perspective as Tutorials. See Tutorial for getting

started with Functional Testing.

You can find the following task flows that you can use when you want to test in the Functional Test perspective:

The Functional Test perspective
The Functional Test perspective has components that are displayed automatically when you start HCL OneTest™ UI:

the product menu, toolbar, Projects view, Script (simplified) editor, Java™ editor, Script Explorer, Console view, Tasks

view, Application view, Keyword view, Properties view, and the status bar.

Click a component for more information.

• Menu on page 1483

• Toolbar on page 1498

• Projects view on page 660

• Script editor on page 1611

• Java Editor on page 1505

• Script Explorer on page 1535

• Application View on page 1610

• Keyword View on page 392

• Properties view: Properties view - General page on page 1612, Properties View- Playback page on

page 1614, Properties View - Log page on page 1614 and Properties View - Advanced page.

• Console View on page 1466

• Tasks View on page 1558

• Status bar -- the product uses the status bar at the bottom of the Test Perspective to display messages.

For more information on perspectives and views, see the online Workbench User Guide.

Importing a sample functional test project
One way to get started quickly with HCL OneTest™ UI is to import the sample functional test project that is provided

with HCL OneTest™ UI. The sample project includes sample test scripts that you can use. When you import the

sample project, it is copied to your Eclipse workspace.

1. Start HCL OneTest™ UI and click File > Import.

2. In the Import wizard, expand Functional Test, select Sample Functional Test project, and click Next.

3. In the Review project content page, view the project and scripts that are going to be imported and click Finish.

Result

A sample Functional Test project named FunctionalTesterDemo opens in the Project Explorer.

4. To re-import the sample project, repeat Step 1 and Step 2 You will be prompted whether to overwrite the

sample project in your workspace or to create a new sample project.

Chapter 3. Getting Started Guide

Task flow for testing applications
The diagram in this topic shows the task flow for testing the application using HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the task flow for functional testing using HCL OneTest™ UI.

43

HCL OneTest™ UI

44
1. Click this area to get information about the supported domains and the controls for functional testing on

page 1423

2. Click this area to get information about the proxy SDK on page 865

3. Click this area to get information about setting functional test preferences on page 633

4. Click this area to get information about enabling the functional test environment on page 582

5. Click this area to get information about configuring the application for testing on page 603

6. Click this area to get information about creating a functional test project on page 659

7. Click this area to get information about recording a simplified script on page 665

8. Click this area to get information about inserting verification points using the application visuals on

page 727

9. Click this area to get information about inserting a data-driven commands into a scripts by using an

application visual on page 737

10. Click this area to get information about inserting an application control into the script by using an application

visual on page 672

11. Click this area to get information about switching to Java scripting on page 674

12. Click this area to get information about recording a Java test script on page 676

13. Click this area to get information about inserting verification points on page 698

14. Click this area to get information about inserting data driven commands on page 732

15. Click this area to get information about using test object maps to insert additional controls to the script

16. Click this area to get information about running the scripts on page 1185

17. Click this area to get information about viewing functional test results in the logs on page 1228

Chapter 3. Getting Started Guide

Note: HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can

directly record functional test scripts without enabling components manually. The automatic enablement

takes place under certain conditions and has limitations. For more information about the conditions and

limitations, see Automatically enabled environment for functional testing on page 582.

Basic tester: A basic tester can record functional test scripts that are generated as simplified test scripts. The

tester does not require programming knowledge to edit the functional test scripts. The tester can switch to Java

scripting, and use the Insert Java Code Snippet or Insert Java Method features that are available in the simplified

script editor. The tester then starts to work with the Java test script directly. You can use the application visuals to

insert verification points, data-driven commands, and additional controls for testing.

Advanced tester with scripting knowledge: A tester with Java or Visual Basic programming knowledge can either

record functional test scripts or create the test scripts manually. You can use the test object maps to update the

objects and insert additional objects for testing.

Developers: A developer who knows theHCL OneTest™ UI framework and programming based on the proxy

framework can write proxies for adding support to test the controls that are not supported by default for functional

testing.

Task flow for testing Java applications
The diagram in this topic shows the task flow for testing the Java application using HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the task flow for testing Java applications using HCL OneTest™ UI.

45

HCL OneTest™ UI

46

1. Click this area to get information about the supported Java versions on page 1437

2. Click this area to get information about enabling the JRE on page 586

3. Click this area to get information about enabling the SWT application on page 602

4. Click this area to get information about configuring the application for testing on page 603

5. Click this area to get information about enabling the JRE on page 586

6. Click this area to get information about configuring the application for testing on page 603

7. Click this area to get information about creating a functional test project on page 659

8. Click this area to get information about recording a simplified script on page 665

9. Click this area to get information about inserting verification points using the application visuals on

page 727

10. Click this area to get information about inserting a data-driven commands into a scripts by using an

application visual on page 737

11. Click this area to get information about inserting an application control into the script by using an application

visual on page 672

12. Click this area to get information about switching to Java scripting on page 674

13. Click this area to get information about recording a Java test script on page 676

14. Click this area to get information about inserting verification points on page 698

15. Click this area to get information about inserting data driven commands on page 732

16. Click this area to get information about using test object maps to insert additional controls to the script

17. Click this area to get information about running the scripts on page 1185

18. Click this area to get information about viewing functional test results in the logs on page 1228

Chapter 3. Getting Started Guide

Note:

HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can directly

record functional test scripts without enabling components manually. The automatic enablement takes place

under certain conditions and has limitations. For more information about the conditions and limitations, see

Automatically enabled environment for functional testing on page 582.

Basic tester: A basic tester can record functional test scripts that are generated as simplified test scripts. The

tester does not require programming knowledge to edit the functional test scripts. The tester can switch to Java

scripting, and use the Insert Java Code Snippet or Insert Java Method features that are available in the simplified

script editor. The tester then starts to work with the Java test script directly. You can use the application visuals to

insert verification points, data-driven commands, and additional controls for testing.

Advanced tester with scripting knowledge: A tester with Java or Visual Basic programming knowledge can either

record functional test scripts or create the test scripts manually. You can use the test object maps to update the

objects and insert additional objects for testing.

Task flow for testing HTML applications
The diagram in this topic shows the task flow for testing the HTML application using HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the task flow for testing HTML applications using HCL OneTest™ UI.

47

HCL OneTest™ UI

48

1. Click this area to get information about the supported browsers and their versions on page 1434

2. Click this area to get information about the supported Dojo controls for functional testing on page 1428

3. Click this area to get information about enabling the browser on page 588

4. Click this area to get information about enabling the JRE on page 586

5. Click this area to get information about configuring the application for testing on page 603

6. Click this area to get information about setting the option for testing Ajax-based web application on

page 1426

7. Click this area to get information about creating a functional test project on page 659

8. Click this area to get information about recording a simplified script on page 665

9. Click this area to get information about inserting a data-driven commands into a scripts by using an

application visual on page 737

10. Click this area to get information about inserting an application control into the script by using an application

visual on page 672

11. Click this area to get information about switching to Java scripting on page 674

12. Click this area to get information about recording a Java test script on page 676

13. Click this area to get information about inserting verification points on page 698

14. Click this area to get information about inserting data driven commands on page 732

15. Click this area to get information about using test object maps to insert additional controls to the script

16. Click this area to get information about running the scripts on page 1185

17. Click this area to get information about viewing functional test results in the logs on page 1228

Chapter 3. Getting Started Guide

Note: HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can

directly record functional test scripts without enabling components manually. The automatic enablement

takes place under certain conditions and has limitations. For more information about the conditions and

limitations, see Automatically enabled environment for functional testing on page 582.

Basic tester: A basic tester can record functional test scripts that are generated as simplified test scripts. The

tester does not require programming knowledge to edit the functional test scripts. The tester can switch to Java

scripting, and use the Insert Java Code Snippet or Insert Java Method features that are available in the simplified

script editor. The tester then starts to work with the Java test script directly. You can use the application visuals to

insert verification points, data-driven commands, and additional controls for testing.

Advanced tester with scripting knowledge: A tester with Java or Visual Basic programming knowledge can either

record functional test scripts or create the test scripts manually. You can use the test object maps to update the

objects and insert additional objects for testing.

Task flow for testing Eclipse applications
The diagram in this topic shows the task flow for testing the Eclipse application using HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the task flow for testing Eclipse applications using HCL OneTest™ UI.

49

HCL OneTest™ UI

50

1. Eclipse support on page 1430

2. Click this area to get information about enabling the JRE on page 586

3. Click this area to get information about enabling the SWT application on page 602

4. Click this area to get information about configuring the application for testing on page 603

5. Click this area to get information about enabling the Eclipse platform on page 599

6. Click this area to get information about configuring the application for testing on page 603

7. Click this area to get information about enabling the Eclipse platform on page 600

8. Click this area to get information about configuring the application for testing on page 603

9. Click this area to get information about enabling the GEF application on page 615

10. Click this area to get information about configuring the application for testing on page 603

11. Click this area to get information about creating a functional test project on page 659

12. Click this area to get information about recording a simplified script on page 665

13. Click this area to get information about inserting verification points using the application visuals on

page 727

14. Click this area to get information about inserting a data-driven commands into a scripts by using an

application visual on page 737

15. Click this area to get information about inserting an application control into the script by using an application

visual on page 672

16. Click this area to get information about switching to Java scripting on page 674

17. Click this area to get information about recording a Java test script on page 676

18. Click this area to get information about inserting verification points on page 698

19. Click this area to get information about inserting data driven commands on page 732

20. Click this area to get information about using test object maps to insert additional controls to the script

21. Click this area to get information about running the scripts on page 1185

22. Click this area to get information about viewing functional test results in the logs on page 1228

Chapter 3. Getting Started Guide

Note: HCL OneTest™ UIautomatically enables the environments for functional testing. As a result, you can

directly record functional test scripts without enabling components manually. The automatic enablement

takes place under certain conditions and has limitations. For more information about the conditions and

limitations, see Automatically enabled environment for functional testing.

Basic tester: A basic tester can record functional test scripts that are generated as simplified test scripts. The

tester does not require programming knowledge to edit the functional test scripts. The tester can switch to Java

scripting, and use the Insert Java Code Snippet or Insert Java Method features that are available in the simplified

script editor. The tester then starts to work with the Java test script directly. You can use the application visuals to

insert verification points, data-driven commands, and additional controls for testing.

Advanced tester with scripting knowledge: A tester with Java or Visual Basic programming knowledge can either

record functional test scripts or create the test scripts manually. You can use the test object maps to update the

objects and insert additional objects for testing.

Task flow for testing SAP applications
The diagram in this topic shows the task flow for testing the SAP application using HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the task flow for testing Java applications using HCL OneTest™ UI.

51

HCL OneTest™ UI

52

1. Click this area to get information about the supported SAP GUI version for functional testing on page 1445

2. Click this area to get information about the supported SAP WebDynPro controls for functional testing on

page 1445

3. Click this area to get information about enabling the SAP GUI scripting on page 612

4. Click this area to get information about enabling the SAP server on page 612

5. Click this area to get information about configuring the application for testing on page 603

6. Click this area to get information about enabling the browser on page 588

7. Click this area to get information about enabling the JRE on page 586

8. Click this area to get information about configuring the application for testing on page 603

9. Click this area to get information about enabling the browser on page 588

10. Click this area to get information about enabling the JRE on page 586

11. Click this area to get information about enabling the applications with WebDynPro controls on page 614

12. Click this area to get information about configuring the application for testing on page 603

13. Click this area to get information about creating a functional test project on page 659

14. Click this area to get information about recording a simplified script on page 665

15. Click this area to get information about inserting verification points using the application visuals on

page 727

16. Click this area to get information about inserting a data-driven commands into a scripts by using an

application visual on page 737

17. Click this area to get information about inserting an application control into the script by using an application

visual on page 672

18. Click this area to get information about switching to Java scripting on page 674

19. Click this area to get information about recording a Java test script on page 676

20. Click this area to get information about inserting verification points on page 698

21. Click this area to get information about inserting data driven commands on page 732

22. Click this area to get information about using test object maps to insert additional controls to the script

23. Click this area to get information about running the scripts on page 1185

24. Click this area to get information about viewing functional test results in the logs on page 1228

Chapter 3. Getting Started Guide

Basic tester: A basic tester can record functional test scripts that are generated as simplified test scripts. The

tester does not require programming knowledge to edit the functional test scripts. The tester can switch to Java

scripting, and use the Insert Java Code Snippet or Insert Java Method features that are available in the simplified

script editor. The tester then starts to work with the Java test script directly. You can use the application visuals to

insert verification points, data-driven commands, and additional controls for testing.

Advanced tester with scripting knowledge: A tester with Java or Visual Basic programming knowledge can either

record functional test scripts or create the test scripts manually. You can use the test object maps to update the

objects and insert additional objects for testing.

Task flow for testing Flex applications
The diagram in this topic shows the task flow for testing the Flex application using HCL OneTest™ UI.

Although the diagram implies that each task is completed sequentially, you can do many of the tasks at the same

time.

The diagram shows the task flow for testing Java applications using HCL OneTest™ UI. For information about the Flex

testing process, see Flex applications testing process on page 616

53

HCL OneTest™ UI

54 1. Click this area to get information about setting up the development environment for testing Flex applications

on page 618

2. Click this area to get information about enabling a Flex application for testing on page 616

3. Click this area to get information about enabling the flex application using the user interface on page 621

4. Click to get information about using the compiler to enable the flex application on page 622

5. Click this area for instructions to create an HTML wrapper on page 627

6. Click this area to get information about embedding the .swf file in the HTML page on page 627

7. Click this area to get information about providing an enabled flex application for testing on page 628

8. Click this area to get information about configuring the non-enabled flex application for testing on page 629

9. Click this area to get information about deploying the Runtime Loader files on page 631

10. Click this area for instructions to provide the URL of the runtime loader test page to the test team on

page 631

11. Click this area for instructions to set up the test environment on page 618

12. Click this area for instructions to set up the test environment on page 618

13. Click this are to get information about compiling the Flex application with the Functional Test agent and the

Flex automation libraries on page 621

14. Click this area for instructions to create an HTML wrapper on page 627

15. Click this area to get information about embedding the .swf file in the HTML page on page 627

16. Click this area to get information about providing an enabled Flex application for testing on page 628

17. Click this area to get information about compiling the Runtime loader with the Functional Test agent and the

Flex automation libraries on page 629

18. Click this area to get information about deploying the Runtime loader files and Flex applications to the web

server on page 631

19. Click this area for instructions to provide the URL of the runtime loader test page to the test team on

page 631

20. Click this area for instructions to set up the test environment on page 618

21. Click this area for information about the process to test the enabled flex application on page 620

22. Click this area for information about testing enabled flex application that is deployed to the web server on

page 628

23. Click this area for information about testing enabled flex application on a local test computer on page 628

24. Click this area for instructions to set up the test environment on page 618

25. Click this area for information about testing non-enabled flex applications on page 631

26. Click this area to get information about creating a functional test project on page 659

27. Click this area to get information about recording a simplified script on page 665

28. Click this area to get information about inserting verification points using the application visuals on

page 727

29. Click this area to get information about inserting a data-driven commands into a scripts by using an

application visual on page 737

30. Click this area to get information about inserting an application control into the script by using an application

visual on page 672

31. Click this area to get information about switching to Java scripting on page 674

32. Click this area to get information about recording a Java test script on page 676

33. Click this area to get information about inserting verification points on page 698

34. Click this area to get information about inserting data driven commands on page 732

35. Click this area to get information about using test object maps to insert additional controls to the script

36. Click this area to get information about running the scripts on page 1185

37. Click this area to get information about viewing functional test results in the logs on page 1228

Chapter 3. Getting Started Guide

Basic tester: A basic tester can record functional test scripts that are generated as simplified test scripts. The

tester does not require programming knowledge to edit the functional test scripts. The tester can switch to Java

scripting, and use the Insert Java Code Snippet or Insert Java Method features that are available in the simplified

script editor. The tester then starts to work with the Java test script directly. You can use the application visuals to

insert verification points, data-driven commands, and additional controls for testing.

Advanced tester with scripting knowledge: A tester with Java or Visual Basic programming knowledge can either

record functional test scripts or create the test scripts manually. You can use the test object maps to update the

objects and insert additional objects for testing.

Developers: A developers enables the Flex applications for testing and provides it to the testers for functional testing.

Using the Functional Test perspective of HCL OneTest™ UI on Linux
For the Functional Test perspective, most features are supported on Linux®, except for recording the scripts. This

topic provides an overview about how HCL OneTest™ UI behaves on Linux.

Testing applications on Linux

Test scripts

All of the functionality of the product works on Linux except for the recorder. You can test the applications on Linux®

in two different ways.

• Record functional test script on Windows® and export it to Linux®. You can then play back on Linux®.

• You can launch the browser on Linux by adding the step startBrowser("Chrome", <url>); or

startBrowser("Firefox", <url>); in the test script.

Note:

◦ Do not add or enable the browser using the options available in the Enable Environments

wizard.

◦ To launch the browser, use StartBrowser() instead of StartApp().

• Ensure that you pass the fully qualified URL (with the protocol) as a parameter to startBrowser(). For example,

http://www.ibm.com/.

• You can write the test scripts using the Test Object Insert tool. Instead of creating an object map through

recording, populate it outside by opening the map and select objects in the test application. For information,

see Creating a New Test Object Map.

See the API Reference Help and the Advanced Topics on page 963 for examples of scripting to solve certain

problems.

Verification points

55

http://www.ibm.com/

HCL OneTest™ UI

56

You can also insert verification points without recording, by opening the Verification Point wizard from the Script

Explorer.

Launcher scripts

HCL OneTest™ UI provides the following scripts that can be executed from the command-line:

• To start HCL OneTest™ UI: <installation directory>/ft_starter

• To set the test environment variable: source <installation directory>/FunctionalTester/bin/rtsetup

dataset functionality

The datasets functionality works on Linux®, but there may be slight differences.

Java™ and HTML support

On Linux®, you can only test Java™ and HTML applications. Some Linux® GUI applications, like those developed with

Motiff, are not supported.

Installing the product on Linux®

When you install the HCL OneTest™ UI package, the only feature you can install on Linux® is HCL OneTest™ UI, Eclipse

Integration. Before you install the product on Linux, make sure that you have the following libraries on your machine.

• libXm.so.4

• libstdc++.so.5

• libXp.so.6

• gtk2.i686

• gtk2-engines.i686

• PackageKit-gtk-module.i686

• PackageKit-gtk-module.x86_64

• libcanberra-gtk2.x86_64

• libcanberra-gtk2.i686

Starting the test application outside the script

If you start your test application on Linux® outside HCL OneTest™ UI (not using a startApp command or other script

call), you must first set the environment variables. You must make sure that the LD_PRELOAD and FT_INSTALL_DIRECTORY

are properly set in the environment from which they start the test application, else HCL OneTest™ UI will not be able to

properly play back scripts against the application.

Set up the following variables depending upon the shell that you are using.

export FUNCTIONAL_TESTER_DIR= <FT installation directory> For e.g, /opt/caspian

export FT_CUSTOMIZATION_DIRECTORY=$FUNCTIONAL_TESTER_DIR/bin/customization

Chapter 3. Getting Started Guide

export FT_CONFIGURATION_DIRECTORY=$FUNCTIONAL_TESTER_DIR/bin/configuration

export FT_INSTALL_DIR=$FUNCTIONAL_TESTER_DIR/bin

export FT_ECLIPSE_DIR=$FUNCTIONAL_TESTER_DIR/eclipse

export FT_JRE=$FUNCTIONAL_TESTER_DIR/eclipse/jre

export LD_PRELOAD=$FUNCTIONAL_TESTER_DIR/bin/libftevent.so

For Linux platforms that are based on GTK + 2.18 and higher, setGDK_NATIVE_WINDOWS=true

For HTML based test applications, the LD_LIBRARY_PATH must be set to the browser installation directory.

Note: Alternatively, you can use rtsetup script to set all the functional tester environment variables. Refer to

the Launcher scripts section.

Enabling JREs on Linux®

To run the enabler for enabling the JREs on Linux®, you must have root privileges.

Functionality not supported on Linux

Recorder

You cannot record on Linux®. You can record scripts on Windows® and then play them back on Linux®.

Tutorials

The tutorials provided with HCL OneTest™ UI involve recording scripts. To learn the product functionality, do the

tutorials on the Windows® platform. You can play back the scripts you recorded using the tutorial on Linux®.

Task flow for integrating HCL OneTest™ UI and HCL OneTest™ API
You can run integration tests in HCL OneTest™ UI by using HCL OneTest™ UI Extension for HCL OneTest™ API. In HCL

OneTest™ UI, you can create a compound test to run the integration tests by using agents.

To integrate tests, you must install HCL OneTest™ UI Extension for HCL OneTest™ API. Also, to execute the tests

remotely, you must install HCL OneTest™ Performance Agent and HCL OneTest™ API Agent.

After you installed the required software, you must set the environment variable and connect to the integration

project. To open the HCL OneTest™ API project from HCL OneTest™ UI Test Navigator, you must set the path to the

execution file in the HOT-API Integration preferences. Later, you must create a compound test and play back the test

to evaluate the results.

57

HCL OneTest™ UI

58

Chapter 4. Tutorials
You can learn to start using HCL OneTest™ UI by reviewing the information in the Tutorials for the UI Test perspective

and Functional Test perspective.

You can find the following tutorials:

• Tutorials for testing in the UI Test perspective on page 59.

• Tutorials for testing in the Functional Test perspective on page 75.

Tutorials for testing in the UI Test perspective
You can use the tutorials to get started with testing in the UI Test perspective in HCL OneTest™ UI.

Prerequisites

Before you can get started with testing by using the tutorials, you must have completed the following tasks:

• Installed HCL OneTest™ UI. See Installation on page 151.

• Verified the system requirements specified for HCL OneTest™ UI. See System Requirements on page 12.

Be sure to start HCL OneTest™ UI on a new workspace.

Testing in the UI Test perspective

In the UI Test perspective, you record tests from web applications. The UI Test perspective provides you a recording

and natural language scripting environment to test browser applications that use HTML5 and JQuery. You can test on

Internet Explorer, Mozilla Firefox, Google Chrome, or Safari browsers.

A web application includes many user scenarios. For example, on an e-commerce website many users only browse

the products, some of the users sign in and add products to the cart, and a few of them purchase the products and

sign out of the web site.

In this tutorial, you learn how to record a test scenario on the web application and generate the test, modify the test

script, run the test, and view results. You can use http://www.ibm.com/software as the application under test (AUT).

You can find the following tutorials that you can use to get started with testing in the UI Test perspective:

• Lesson 1: Recording a test scenario on page 60

• Lesson 2: Adding a verification point on page 61

• Lesson 3: Running the test on page 63

• Lesson 4: Viewing test results on page 63

• Lesson 5: Modularize the test script on page 67

• Lesson 6: Abstracting data by using a dataset on page 69

• Lesson 7: Associating the dataset with the test on page 69

59

HCL OneTest™ UI

60

• Lesson 8: Running multiple test scripts in a sequence on page 73

• Lesson 9: Adding a loop on page 74

Lesson 1: Recording a test scenario
With the UI Test perspective, you can initiate the recording of a specific test scenario on your web application.

Typically, you would create smaller test scenarios for better maintenance. When you start a recording, HCL OneTest™

UI automatically captures the actions that you do on the web application. To ensure that the recorder captures each

action correctly, wait till the web pages are loaded completely. You can later remove this extra ‘waiting time’ (Think

time) that is spent in the recording when you play back a test. After you stop the recording, the test is generated.

About this task

Do not change the browser preferences, including JavaScript settings. Recording and playing back UI scripts in a

browser requires that JavaScript be enabled.

You need an IBM ID to sign in. To sign up for an IBM ID, click here.

To record a test scenario:

1. In the UI Test perspective, click File > New > Test From Recording. Alternatively on the toolbar, click the New

Test From Recording icon.

2. Click Create a test from a new recording, select UI Test, and click Next.

3. To create a test project, click the Create the parent folder icon.

4. Specify myProj in the Project name field and click Finish.

5. Specify bm-web in the Test name field and click Next.

6. Select Mozilla Firefox and click Next.

7. Accept the default settings on the Mozilla Firefox Recorder Settings page and click Finish. The browser page

opens with the welcome text.

8. In the browser address field, type www.ibm.com/software. This is your application under test.

9. Record the following use case:

a. Click the person icon and click Sign in.

b. Enter you IBM ID credentials and click Sign in.

https://www.ibm.com/account/us-en/signup/register.html
http://www.ibm.com/software

Chapter 4. Tutorials

c. Search for Rational Test Workbench.

d. In the search results, click Rational Test Workbench .

e. On the product page, click Pricing.

f. Stop the recording at this point. To stop the recording, in the Recording Control view, click the Stop

icon or close the browser window. The test is generated and the test script would look like this:

Results

In this lesson, you learned how to record a test scenario in your web application. With the generated test script, in the

next lesson, you will learn how to use the Test Editor to modify the script.

Lesson 2: Adding a verification point
In this lesson, you will learn how to add a verification point to a test step.

Before you begin

Before you start creating verification points, please see you need to see how to work with the Test Editor.

About this task

Verification points verify that an expected behavior occurred during a run, or verify the state of a control or an object.

When you create a verification point, you capture information about a control or an object in the application to

61

HCL OneTest™ UI

62

establish that as baseline information for comparison during playback. When you run a test, the property is compared

to see whether any changes have occurred in the application.

Verification points are useful for identifying possible defects when an application has been upgraded. An error is

reported if the expected behavior did not occur. You can create verification points for any object properties, such as

label, color, and count, and you can verify that an object property is enabled, that it has focus, whether it is clickable,

and other such states.

There are many ways to create a verification point. You can create it from the Test Contents area of the editor, from

the screen capture in the SmartShot View, or from the Properties area in the SmartShot View. This tutorial shows

how to create a verification point by dragging the content from the Properties area to the Test Contents area of the

editor.

To create a verification point:

1. Select Click on Hyperlink whose content is Pricing test step in the test editor. The corresponding screen

capture and its properties are displayed in the SmartShot View.

2. In the Properties area, right-click the Content name with the value of 'Pricing', and select 'Create verification

point for Content'. Alternatively, you can create the verification point from Pricing image in the SmartShot

area.

3. To save the changes, click File > Save.

Results

The verification step is created.

Chapter 4. Tutorials

In this lesson, you have learned how to create a verification point. The test will verify that the value of the product

added to the shopping cart is equal to the value in this verification point.

Lesson 3: Running the test
After modifying the test script, you can now run the test to check if the test scenario is played back successfully.

About this task

To run a test:

1. In the test editor, click Run Test.

2. To run the test in the Test Execution perspective, click Yes.

3. From the Run using column, select Firefox and click Finish.

Results

At the end of the test run, the UI Report, the Statistical report, and the Log is displayed. In the next lesson you will

learn what to look for in the reports.

Lesson 4: Viewing test results
The reports display whether the test run was successful. The UI Report is the primary report for a Web UI test. It

displays each of the steps with the screenshot of the UI and the overall response time. If a test run fails, the error

message is displayed against the step in the report.

63

HCL OneTest™ UI

64

The report is placed in the Results folder of the Test Navigator view. You can view the report later by double-clicking

the report in the Test Navigator.

The test log contains a record of events that occurred during a test run, and the status of each verification point. To

view the test log, right-click a test result in the Test Navigator view and click Display test log.

Chapter 4. Tutorials

The test log sets a verdict for each run as follows:

• Pass indicates that all test steps and verification points matched or received the expected response. For

example, a verification point is set to PASS when the expected response is received during playback. If your

test does not contain verification points, PASS means that the steps found the UI controls and there was no

timeout.

• Fail indicates that at least one test step did not find a UI control, verification point did not match the expected

response, or there was a time out.

• Error indicates that the test failure was caused by factors outside of the test script such as system issues or

unhandled exceptions.

• The verdict is set to Inconclusive only when the test did not execute and gave test result.

To find the error message in the log, click the Events tab. The step that caused error would be highlighted with a red

cross mark.

In addition to testing the functionality of the web application, HCL OneTest™ UI also captures performance data of

the application. If you ran the test with the Firefox browser, like you did for this tutorial, the Step Performance report

displays the response time for each step. With this report, you can identify which step or user action caused more

delay than others.

65

HCL OneTest™ UI

66

From the Step Performance report, you can drill down further to view the breakdown of the response time for each

step. For example, in the screenshot above, the seventh step took 67,092 milliseconds. For further analysis of the

step, right-click it and select Display Step Response Time Contributions.

You can see that the time taken by the request on the application is more than the time taken outside of the

application such as on network and server.

You, as a tester, can show this report to the development team to help them identify the cause of the delay by

debugging the application on the specific step.

Now that the test script works fine, you can modularize it for better maintenance.

Chapter 4. Tutorials

Lesson 5: Modularize the test script
In this tutorial, you recorded a test scenario in which you signed in to the web site, browsed for a product, and saw

pricing details. In the actual scenario, you would have also recorded how to purchase, check out the product, and

sign out of the website. You would have done that to avoid recording the same application multiple times. However,

maintaining a big test script with a lot of data can be difficult. After the recording, you can modularize the test script

by splitting it at appropriate steps and thereby creating meaningful chunks of test scripts. For example, for the test

scenario in this tutorial, you can split the ‘Sign in’ and ‘Choosing the product’ steps and create two test scripts out of

it. You can then add these scripts to a Compound Test to run in sequence.

To modularize the test script:

1. Select the steps from ‘Click on Edit text … where you entered ‘rational test workbench’ in the Search field to

Close browser window in the test script, both inclusive.

2. Right-click the selection and click Split UI actions.

3. The Refactoring test window opens. On the right side of the Refactoring test window, under After Refactoring,

examine the changes to be performed as a result of the split. Then, click Next. The selected steps are added

to a newly created node called the In application.

67

HCL OneTest™ UI

68

You will now add the steps that are in the In application node to a new test script.

To create an empty test and copy these steps to it, proceed as follows:

◦ 1. Click File > New > New Test.

◦ In File name, type ibm-web-purchase and click Next.

◦ In Description, type Test script to purchase and click Next.

◦ Select the UI Test Feature check box and click Finish.

◦ From the ibm-web test script, right-click the In application node and click Cut.

◦ In the ibm-web-addtocart test script, right-click the root node and click Paste.

◦ Click File > Save.

Results

You have now moved the Choosing the product test steps from ibm-web test script to ibm-web-purchase. Note that

you cannot run the ibm-web-purchase test script independently. You can run it only as part of a compound test.

Now, you will create a dataset and add data that will be used by the test.

Chapter 4. Tutorials

Lesson 6: Abstracting data by using a dataset
When you record a test, you perform a sequence of steps that you expect a user to perform. When you run this test,

it uses the same data that you used during recording. However, in a real-life scenario, although a user might follow

the same steps, the data that they enter into the application might be different at different point of time. To vary the

data in the test, you use a data pool, which contains variable data. At run time, this variable data is substituted for the

actual data in the recorded test.

About this task

For this tutorial, you recorded a test in which you searched for ‘HCL OneTest™ Studio’ and saw pricing. Now, you will

create a dataset that will consist of HCL OneTest™ UI, HCL OneTest™ Performance, and HCL OneTest™ API. When you

run the test, it will also search for these products.

To create a dataset:

1. In the Test Navigator view, right-click myProj and click myProj > New > dataset

2. In Name, type Productsdataset and click Next.

3. In Variables (or columns), type 1 for product name.

4. In Records (or rows), type 3 and click Finish. You entered 3 because your dataset will contain three products

in three rows.

5. You are asked whether to open the dataset editor. Click Yes.

6. In the dataset editor, click Variable1:String and change the column name to ProductName.

7. Click each cell and enter data.

8. Press Ctrl + S to save the changes.

Results

After creating dataset, you must associate it to the test so that you can substitute the recorded values with the values

from dataset.

Lesson 7: Associating the dataset with the test
By default, at run time, the data pool values are accessed sequentially. You can specify whether the test uses the data

pool values randomly or in a shuffled manner. If you have a long list of data pool values that are used by multiple tests

from the same workspace, you can share a data pool.

About this task

Context for the current task

To associate the dataset with the test:

69

HCL OneTest™ UI

70

1. In the ibm-web-purchase test script, select the test step where you enter ‘rational test workbench’ in the Search

field.

2. In the User Action Details section, right-click ‘rational test workbench’ and click Substitute > Select Data

Source.

3. In the Select Data Source dialog box, click Add Dataset.

4. Select the dataset that you created and click the ProductName column. Click Finish.

Chapter 4. Tutorials

5. Select the ProductName check box and click Select.

71

HCL OneTest™ UI

72

6. You are prompted to do more substitutions. Click Cancel. Note that the color of ‘rational test workbench’ value

has now changed to green. This change indicates that the value is substituted.

7. Repeat these steps for the other occurrence of ‘Rational Test Workbench’ in the test script.

8. To save the changes, press Ctrl + S.

Results

You have learned how to associate the test values with the dataset values. Your test will now run with substituted

values during the search for a product.

In the next lesson, you will create a compound test and run the two test scripts in sequence.

Chapter 4. Tutorials

Lesson 8: Running multiple test scripts in a sequence
You can create compound tests to help you organize smaller tests into scenarios that can then be run end-to-end. You

can combine tests from different extensions to achieve end-to-end flow.

About this task

Each test may do a part of the scenario. Each test may also run in a different domain, for example, on different web

browsers. A typical example of a compound test is an online buying workflow. You may have built smaller tests for

each part of an online purchase transaction, such as log on, log out, view item, add to cart, and check out. You can

combine these tests into a single flow in a compound test. When the compound test is run, its individual tests are run

in sequence.

To create a compound test and add test scripts to it:

1. Click FileNewCompound Test.

2. In File name, type CompoundTest and click Finish. The compound test is created.

3. In the compound test, click the Add button and select Test.

73

HCL OneTest™ UI

74

4. Select ibm-web and ibm-web-addtocart test scripts and click

OK.

5. Click File >

Save.

Results

You have created a compound test that consists of two test scripts. In the next lesson, you will add a loop to the

compound test so that the entire test runs three times picking one row each time.

Lesson 9: Adding a loop
You will add a loop to the test so that the test is repeated to fetch all of the values from the data pool. Because your

dataset has three entries, the test must run at least three times.

About this task

Context for the current task

Chapter 4. Tutorials

To add a loop:

1. In the Compound Test editor, select both the test scripts and click Insert > Loop.

2. To confirm adding a loop, click Yes.

3. In the Compound Test editor, click Loop and in Loop name, type ProductLoop.

4. In the Duration area, ensure Count-based is selected and for iterations type 3.

5. To save the changes, click File > Save. The compound test is now under the

loop.

6. To run the test, click Run Compound Test. The compound test is run three times and takes the values from a

row for each run.

Results

You have added the compound test in a loop that will run for three times. Each run will fetch one row from the data

pool.

Tutorials for testing in the Functional Test perspective
You can use the tutorials to get started with testing in the Functional Test perspective in HCL OneTest™ UI.

Prerequisites

Before you can get started with testing by using the tutorials, you must have completed the following tasks:

• Installed HCL OneTest™ UI. See Installation on page 151.

• Verified the system requirements specified for HCL OneTest™ UI. See System Requirements on page 12.

Be sure to start HCL OneTest™ UI on a new workspace.

Testing in the Functional Test perspective

You can find the following tutorials that you can use to get started with testing in the Functional Test perspective:

• Get started with functional testing using simplified scripts on page 76

• Create a functional test using Java scripts on page 90

• Perform a data-driven functional test using Java scripts on page 110

75

HCL OneTest™ UI

76

• Test Adobe Flex application on page 119

• Test GEF applications on page 124

• Extend HCL OneTest UI capabilities using Proxy SDK on page 127

Get started with functional testing using simplified scripts
This tutorial introduces you to simplified test scripts and the application visuals and helps you get started with

HCL OneTest™ UI for testing applications. It uses a sample Java™ application that is installed with the product for

functional testing.

Learning objectives

During this tutorial, you learn to perform these tasks:

• Create functional test projects and record simplified test scripts

• Data-drive a test

• Create verification points

• Modify test scripts

• Work with application visuals

• Insert a Java custom code snippet

• Play back test scripts

Time required

60 minutes

Introduction: Get started with functional testing using simplified scripts
In this tutorial, you learn to create simplified test scripts, work with application visuals, and get started with functional

testing. You review use cases for testing and performing basic functional testing operations. This tutorial uses the

sample application provided with HCL OneTest™ UI in performing all the tasks.

The tutorial is divided into eight lessons that must be completed in sequence for the tutorial to work correctly.

Learning objectives

You learn how to perform these tasks:

• Create functional test projects

• Record simplified test scripts

• Data-drive a functional test

• Work with verification points

• Use application visuals

• Modify simplified test scripts

• Insert custom code

• Play back test scripts

Chapter 4. Tutorials

Time required
This tutorial requires approximately 60 minutes to finish. If you explore other concepts related to this tutorial, it might

take longer to complete.

Skill level
This is an introductory tutorial. Typically, users with little or no experience with HCL OneTest™ UI can perform the

tasks.

Lesson 1: Set up HCL OneTest™ UI
IBM provides a Java™ Runtime Environment (JRE) that is installed and enabled for testing Java™ applications. Use

this JRE for the tutorial. When you want to test your own Java™ or HTML applications, run the enabler and configure

your environments and applications. For more information about these setup tasks, see the Getting Started with HCL

OneTest™ UI wizard in the First Steps section of the product Welcome. For now, you do not need to do anything to use

the preconfigured JRE to continue.

Set logging options

About this task

HCL OneTest™ UI provides several logging options. For this tutorial, use the HTML log.

1. Click Window > Open Perspective > Other to open the functional test perspective.

2. In the Open Perspective dialog box, select the Functional Test option.

3. To verify that HTML logging is set, click Window > Preferences.

4. In the left pane of the Preferences window, expand Functional Test > Playback, and click Logging.

5. Select html as the Log type, and then click OK.

Results

This setting opens the HTML log automatically after you play back a script.

Create a functional test project

About this task

Before you can start recording the test scripts, create a functional test project.

1. Click File > New > Functional Test Project.

2. In Project name, type SimplifyTutorial (no spaces).

3. In Project location, type C:\FTproject.

The directory is created.

4. Click Finish. Show Me

Results

You can see the SimplifyTutorial project in the Functional Test Projects view, which is the left pane in the Functional

Test perspective.

77

docs/files/les2_createproj.mp4

HCL OneTest™ UI

78

Enable simplified scripting and application visuals feature

About this task

You can generate simplified test scripts and Java™ test scripts. With the simplified test scripts and application visuals

feature enabled, you can switch to Java™ scripting, if required but not vice versa. Before you start recording the

scripts, enable the simplified scripting and the application visual features.

1. To verify that the feature is enabled, click Window > Preferences.

2. In the left pane of the Preferences window, expand Functional Test, and then click Simplified scripting.

3. On the Simplified Scripting page, select Enable Simplified Scripting.

4. On the Application Visuals page, select the Enable capturing of application visuals, Insert Data Driven

Commands, and Enable capturing of verification on test data options.

5. Click Apply, and then click OK.

Lesson 2: Record a simplified test script
In this lesson, you record a simplified test script by using the recorder to test the Java application that is installed with

the product.

Begin recording

1. To start recording, click the Record a Functional Test Script icon () in the Functional Test toolbar.

2. Select the SimplifyTutorial project that you created in Lesson 1.

3. In Script name, type Order.

Do not select the Add script to Source Control, if it is available.

4. Click Next.

When you create a test script, a test dataset and other test assets are created. Use the defaults for Private

Test dataset and Sequential. A private test dataset is associated with only one script and is not available to

any other scripts. When you use the sequential order, the test script accesses dataset records in the order that

they are arranged in the dataset.

5. Click Finish.

Result

The HCL OneTest™ UI window automatically minimizes, and the Recording Monitor is displayed.

Learn more about Recording Monitor: The HCL OneTest™ UI Recording Monitor toolbar is displayed

every time you begin recording a simplified script. You can minimize the monitor if you do not want

to see the monitor on the screen. You can also resize the monitor. Click the Display Monitor icon

() to view the monitor messages. Leave the monitor displayed during this tutorial. The monitor

Chapter 4. Tutorials

displays messages for every action that you perform during your recording session, such as starting

and pausing the recording, starting an application or browser, clicking within an application, inserting

verification points, and inserting other items into the script.

Start the application and record the actions

About this task

Next, open the ClassicsJavaA application and record placing an order in the application.

1. To start the test application, click the Start Application icon ().

2. In the Start Application window, select ClassicsJavaA, and then click OK.

Result

The tutorial sample application, ClassicsCD, opens. If the recording monitor is in front of the application, you

can drag it to the lower right corner of the screen.

3. Click the plus sign (+) next to Bach to open the list of CDs for sale by that composer, and then click Violin

Concertos.

4. Click Details page to view the description of the album.

5. Click Place Order.

6. In the Member Logon window, keep the default settings of Existing Customer and Trent Culpito

7. Type xxxx in the Password field.

8. Click OK.

9. In the Place an Order window, type 1234 1234 1234 1234 in the Card Number field, and then type 12/12 in the

Expiration Date field. Show Me

Lesson checkpoint

About this task

In this lesson you learned these tasks:

• How to start recording a test script

• How to use recording monitor

• How to open the test application

Lesson 3: Perform a data-driven test
In this lesson, you insert data-driven actions into the test script and populate a dataset with the data from the sample

application.

About this task

A dataset is a collection of related data records. A dataset supplies data values to the variables in a test script during

test-script playback.

79

docs/files/les2_record.mp4

HCL OneTest™ UI

80

1. In the recording monitor toolbar, click Insert Data Driven Commands ().

Result

The recording pauses.

2. On the Insert Data Driven Actions page, drag the Object Finder () to the title bar of the Place an Order

window on the ClassicsCD application.

Result

The entire Place an Order window is outlined with a red border.

3. Release the mouse button.

Result

On the Data Drive Actions page, the Data Driven Commands table displays the information about the selected

controls.

Add descriptive headings to the data

About this task

Now add descriptive headings to the dataset that you created. Descriptive headings make it easier to add data to the

dataset.

1. In the Data Driven Commands table, change the Variable column by replacing the Item text with Composer.

Chapter 4. Tutorials

2. Repeat sequentially, to replace each cell in the Variable column with a descriptive name for each heading in

the Variable field. Use the text in the following variables list for descriptive names.

Note: Do not use spaces in Variable names. Typically, you review the application to determine the

appropriate headings for each row, but we have done that for you in the following variables list. Use

these names to replace variables in the presented order:

◦ Composer

◦ Item

◦ Quantity

◦ CardNo

◦ CardType

◦ ExpiryDate

◦ Name

◦ Street

◦ CityStateZip

◦ Phone

3. Click OK.

Result

The dataset has descriptive headings that make it easier to add data later. In a later lesson, you add data to

the dataset after you finish recording the test script.

Lesson checkpoint

About this task

You learned these tasks:

• How to record a data-driven test script

• How to use datasets

• How to change the variable names in the dataset

Lesson 4: Create a verification point with a dataset reference
In this lesson, you create a verification point with a dataset reference to check that the price for the CD is correct in

the ClassicsCD application.

About this task

What is a verification point?: A verification point captures object information and literal values from the

application under test and stores it as the baseline for comparison during playback. When you play back a

script, a verification point captures the object information again to compare it to the baseline and see whether

81

HCL OneTest™ UI

82

any changes have occurred, either intentionally or unintentionally. Comparing the actual object information in

a script to the baseline is useful for identifying possible defects.

You use a dataset reference instead of a literal value for the value that you are testing in the verification point. Using

datasets with verification points gives you more flexibility to test realistic data with your test scripts.

1. On the Recording toolbar, click Insert Verification Point or Action Command ().

Result

2. In the Verification Point and Action wizard, drag the Object Finder () to $14.99, which is next to Sub-Total in

the ClassicsCD application.

Result

The amount, $14.99, is outlined with a red border.

3. If the Select an Action page is not displayed, click Next.

4. On the Select an Action page, click Perform Data Verification Point to test whether the price of the CD

changes.

5. Click Next.

6. On the Insert Verification Point Data Command page, type Price in Verification Points Name, and click Next.

7. On the Verification Point Data page toolbar, click Convert Value to dataset Reference () to use a dataset

instead of a literal value in a verification point. (If you cannot see Convert Value to dataset Reference on the

toolbar, make the page larger by dragging a corner of the page).

Result

The dataset Reference Converter dialog box opens.

8. In dataset Variable, type Price to replace the newVariable value as the heading in the dataset.

9. Select Add value to new record in dataset to add the Price variable to the existing dataset record that you

created in the previous exercise.

10. Click OK.

11. Click Finish.

Chapter 4. Tutorials

Place the order and close the ClassicsCD application

1. In the ClassicsCD application, click Place Order to place the order, and then click OK to close the message

that confirms your order.

2. Click X in the upper right corner of the ClassicsCD application to close the application.

Stop recording

On the Recording toolbar, click Stop Recording () to write all recorded information to the test script.

Results

The test script is displayed in the script editor window.

Lesson checkpoint

About this task

In this lesson, you learned about verification points, creating a verification point while recording, and converting a

value to a dataset reference.

83

HCL OneTest™ UI

84

Lesson 5: Add data to the dataset
In this lesson, you add data to the dataset to test the ClassicsCD sample application by placing more orders for the

CD.

About this task

To display the Test dataset editor, click Window > Show view > Other. In the Show view dialog box, expand

Functional Test, click Test dataset and then click OK.

The dataset editor opens to the right of the script editor, and looks like this table:

Composer Item Quantity Card# CardType ExpDate Name Street CityStZip Phone Price

0 Bach Violin Concer

tos

1 1234 1234

1234 1234

Visa 12/12 Trent Culpito 75 Wall St. Ny, Ny 12212 212-552-1867 $14.99

1. Position your mouse pointer in the dataset editor, and then press Enter to add a row after the first row.

2. To save time, copy the data from row 0 in the dataset into the empty row that you created.

a. Position the mouse pointer in the row 0 cell, right-click, and then click Copy.

b. Position the mouse pointer in the row 1 cell, right-click, and then click Paste.

c. Click Yes to paste the data into the empty row.

3. Change the value in the Quantity, Card#, CardType, and ExpDate columns to test the ClassicsCD sample

application by placing more orders for the CD.

a. In row 1, in the Quantity column, select the cell, and type 2.

b. In row 1, in the Card# column, select the cell, and type 9999 9999 9999 9999.

c. In row 1, in the CardType column, select the cell, and select Amex from the list.

d. In row 1, in the ExpDate column, select the cell, and type 12/13.

Result

The data in the dataset looks like this table:

Composer Item Quantity Card# CardType ExpDate Name Street CityStZip Phone Price

0 Bach Violin Con

certos

1 1234 1234

1234 1234

Visa 12/12 Trent Culpito 75 Wall St. Ny, Ny 12212 212-552-1867 $14.99

1 Bach Violin Con

certos

2 9999 9999

9999 9999

Amex 12/13 Trent Culpito 75 Wall St. Ny, Ny 12212 212-552-1867 $14.99

4. In the Test dataset editor, click X to close the dataset editor, and then click Yes to save the changes you made

to the dataset.

Lesson 6: Play back the test script
In this lesson, you play back the script and look at some parts of the application interface. Because the script you

recorded is the active script, that script plays back when you click the playback button.

About this task

Chapter 4. Tutorials

Each time you play back a script with an associated dataset, the script accesses one record in the dataset. When

you create a dataset reference for a verification point, the verification point uses the dataset reference to access

a variable in that record. During playback, the variable in the dataset is substituted for the dataset reference. The

variable in the dataset is compared to the test results.

1. To play back the script, click Run Functional Test Script () on the toolbar.

2. In the Select Log window, keep the default log name Order, and then click Next.

3. Select the Iterate Until Done option from the dataset Iteration Count list to access all the records in the

dataset; then click Finish.

Result

HCL OneTest™ UI window is minimized, and the playback monitor is displayed. As the script is executed,

messages are displayed in the playback monitor. HCL OneTest™ UI plays back all of your recorded actions,

such as the application starting, the actions you performed on the application, and enters data from the

dataset.

When playback is finished, the HTML log displays the results of the test run. Each event listed in the log

includes Pass in the event headings in green.

A log is a file that contains the record of events that occur while a script is played back. A log includes the

results of all verification points that are run that can be used to test the application.

4. Close the log.

View the simplified script and the application visuals

About this task

After recording a script and playing it back, look at the Functional Test perspective in more detail.

85

HCL OneTest™ UI

86

1. If the Functional Test window is minimized, restore it.

The generated simplified script is displayed in the Script editor.

To the left of the Script editor is the Functional Test Projects view, which lists any functional test projects

to which you are currently connected. All the scripts within each project are listed below the project name.

This Projects view provides another way to navigate to different scripts. When you double-click a script in the

Projects view, it opens in the script window and becomes the active script.

2. In the script editor, click the test line Click PlaceOrder.

The application visual of the PlaceOrder is displayed in the Application View. The controls of the application

and their properties are captured when you record the simplified script. The application visuals are displayed

in the Application View. The application visual highlights the PlaceOrder control in blue. You can click each

test line in the script and view the corresponding application visual in the Application View. The Thumbnails

pane in the Application View displays the application visuals of all the test scripts in the project that are

captured while recording scripts. Notice that when you point the mouse over any of the thumbnails, the

snapshot is zoomed and displayed.

3. Move the mouse pointer over any control in the displayed application visual, right-click, and select Insert

Comment to insert any comments on the control.

This feature is useful when you want to check the state of the control or make a note about the control for

later reference.

4. Click Java editor to view the corresponding Java code of the test script.

Notice that each test line of the simplified script is added as a comment to the corresponding Java code. This

comment method makes it easier to map the simplified scripts and the Java code. Do not directly edit the

Java code in the Java editor, because changes to the Java code are not shown in the simplified script. If you

want to switch to Java scripting to use some of the functions not provided by simplified scripting, then you

can use the Insert Custom Code feature and insert the required Java script.

5. Click Script to continue working with the simplified script in the script editor.

Chapter 4. Tutorials

Lesson checkpoint

About this task

In this lesson you learned about the Functional Test perspective and how to play back a test script.

Lesson 7: Edit the simplified script by using the application visuals
In this lesson, you learn to edit the simplified script by using the application visuals.

About this task

The application controls and their data and property details are captured during recording. The captured details are

displayed as application visuals in the Application View. You can modify the test script to test additional application

controls or create or edit verification points by selecting the application controls in the application visuals without

opening the application under test.

Insert a verification point by using the application visual

About this task

You create a verification point on the Composers tree to test whether all the composers and the CDs are listed. This

verification point was not inserted when you recorded the test script. Instead of rerecording the script or opening the

test application, you add the verification point to the test script from the application visual.

1. Select the test line Click tree2 at Composers->Bach->Location((Plus_Minus)(the second line in the test

script).

The application visual that highlights the Composers tree region in blue is displayed in the Application View.

2. Point to the Composers tree region. The region is highlighted in red.

3. Right-click, and select Insert Verification Point > Data Verification Point.

The test line Verify data in tree2 is added to the script editor (after the second test line).

Add an additional control to the test

About this task

In the Member Logon window, you did not record the Remember Password field for testing. Add the missing

Remember Password control to the test script for testing.

1. Select the test line Type xxxx in the script editor.

The Member Logon application visual is displayed in the Application View.

2. Point to the Remember Password control in the application visual.

The Remember Password control is highlighted in red.

3. Right-click and select "Insert Remember Password" control > select.

The Select Remember Password test line is inserted to the test script.

Modify the test line in the script editor and the properties

About this task

87

HCL OneTest™ UI

88

You can modify the test line in the script editor and also specify details such as the playback parameters and log

information for the test line execution in the Properties view. Now, disable the test line for viewing the details of the

album and specify the information that must be displayed in the log during the execution of the data verification for

the list of composers control.

1. Select the test line Click Album at Details in the script editor.

2. Right-click and select Enable/Disable Action to disable the test line.

This test line is not executed during the next playback.

3. Select the test line Verify data in tree2 that was inserted to the script using the application visual.

4. Click Log page in the Properties view and select Control Snapshot to view the state of the control during

execution. This snapshot is displayed in the playback log.

Lesson 8: Insert Java custom code
You can switch to Java scripting if you want to insert Java codes to perform additional operations such as extending

an API or any functions that cannot be performed directly in the simplified script editor.

About this task

To use both the simplified script and the Java scripting, you must use the Insert Java Code Snippet or Insert Java

Method feature available in the simplified script editor and switch to Java scripting. If you modify the Java script

directly without using these features, the Java script changes are lost and the simplified script is executed during

playback.

In this lesson, you insert a Java code snippet so that HCL OneTest™ UI waits until the Password control in the

Member Logon window is displayed in the application during playback and then test the control.

You can enable the option to wait for the control to be displayed for a test line in the Playback page in the Properties

view. But in this tutorial, to understand the process of inserting a custom Java code, you perform the following steps:

1. Select the test line Click Password in the script editor.

(The first test line in the Member Logon group.)

2. Right-click and select Insert Java Code Snippet.

Result

The test line Click here to tag the Java snippet test line is inserted after the Click Password.

3. Select the inserted test line and replace the test line text by typing Wait for control.

4. Drag the Wait for the control test line and drop it above the Click Password test line so that Java code is

executed before the password control is tested.

Result

Chapter 4. Tutorials

5. Click File > Save to save the simplified script.

6. Click Java editor that is displayed next to the Script editor.

Notice that Wait for control is displayed as comments with the start and the end point for inserting the Java

code in the Java editor.

7. Type the Java code password().waitForExistence(); within the start and the end comment section.

Result

8. Click File > Save to save the Java script.

Play back the script

About this task

Play back the test script and verify the results of the modified test script.

1. To play back the script, click Run Functional Test Script () on the toolbar.

2. In the Select Log window, keep the default log name Order, and then click Next.

3. Select the Iterate Until Done option from the dataset Iteration Count list to access all the records in the

dataset; then click Finish.

Result

HCL OneTest™ UI plays back the modified script. During playback, notice that the click action on the Details

page of the Album is not executed.

When playback is finished, the HTML log displays the results of the test run. Each event listed in the log

includes Pass in the event headings in green. You can also view the snapshot of the composers list.

Lesson checkpoint

About this task

In this lesson you learned how to modify the simplified test script and insert a Java custom code snippet to a

simplified script.

89

HCL OneTest™ UI

90

Summary: Get started with functional testing using simplified scripts
This tutorial has shown you how to set up HCL OneTest™ UI for testing, recording and playing back simplified scripts,

creating verification points, performing data-driven tests, and editing the scripts using the application visuals.

Lessons learned

By completing this tutorial, you learned how to:

• Create a functional test project and record simplified test scripts

• Create verification points

• Perform a data-driven test

• Use application visuals and edit the script

• Insert a Java custom code snippet

• Play back test scripts

Create a functional test using Java scripts
This HCL OneTest™ UI tutorial walks you through the major use cases for creating and playing back functional tests

that use Java scripts. This comprehensive tutorial uses a sample Java™ application that is installed with the product.

Learning objectives

After completing this tutorial, you will be able to do the following tasks:

• Create a functional test project and record a Java test script

• Work with verification points, object maps, and regular expressions in Java test script

• Use a comparator to update a verification point in the Java test script

• Play back a Java test script

• Perform regression tests with Java test scripts

Time required

45 minutes

Related information

Perform a data-driven functional test using Java scripts on page 110

Sample project to test a Java application on page 133

Introduction: Create a functional test using Java scripting
This tutorial teaches you how to get started using HCL OneTest™ UI and walks you through the major use cases for

testing and performing basic operations. This tutorial uses the sample application provided with HCL OneTest™ UI to

perform all the tasks.

Chapter 4. Tutorials

The HCL OneTest™ UI tutorial is divided into 10 lessons that must be completed in sequence for the tutorial to work

properly.

Learning objectives
After completing this tutorial, you will be able to:

• Create a functional test project and record a Java test script

• Work with verification points, object maps, and regular expressions

• Use a comparator to update a verification point

• Play back a script

• Perform regression tests

Note: Consider printing the tutorial before you begin and using the printed copy as you work through the

lessons.

Time required
This tutorial should take approximately 45 minutes to finish. If you explore other concepts related to this tutorial, it

could take longer to complete.

Prerequisites
This is an introductory tutorial. You should be able to perform the tasks with little or no experience with HCL

OneTest™ UI.

Lesson 1: Set up HCL OneTest™ UI
IBM® provides a Java™ Runtime Environment (JRE) that is installed and enabled for testing Java™ applications. Use

this JRE for the tutorial. When you want to test your own Java™ or HTML applications, you must run the enabler and

configure your environments and applications. For more information on these set-up tasks, see the Getting Started

with HCL OneTest™ UI wizard in the First Steps section of the product Welcome. For now you do not need to do

anything to use the preconfigured JRE to continue.

About this task

Start HCL OneTest™ UI and then perform the following tasks before you record your first test script.

Set logging options

About this task

HCL OneTest™ UI provides several logging options. We will use the HTML log.

1. Click Windows > Open Perspective > Other to open the functional test perspective. In the Open Perspective

dialog box, select the Functional Test option.

2. To verify that HTML logging is set, click Window > Preferences.

3. In the left pane of the Preferences window, expand Functional Test, then Playback, and click Logging.

91

HCL OneTest™ UI

92

4. Select html as the Log type.

5. Click OK.

Results

This setting opens the HTML log automatically after you play back a script.

Disable simplified scripting and application visuals feature

About this task

HCL OneTest™ UI provides you the option to generate simplified test scripts and Java test scripts. If you are familiar

with Java scripting, you can disable the simplified scripting and application visuals feature and start recording the

test script. In this tutorial, we will work with Java test scripts. Before you start recording the scripts, disable the

simplified scripting and application visual features.

1. To verify whether the feature is enabled, click Window > Preferences.

2. In the left pane of the Preferences window, expand Functional Test, then Simplified scripting.

3. In the Simplified Scripting page, clear the Enable Simplified Scripting checkbox.

4. In the Application Visuals page, clear all the options listed in the page for the application visuals.

5. Click Apply and then OK.

Create a functional test project

About this task

Before you can start recording, you must create a functional test project.

1. In the HCL OneTest™ UI menu, click File > New > Functional Test Project.

2. Under Project name, type FTtutorial (no spaces).

3. Under Project location, type C:\FTproject.

HCL OneTest™ UI creates this directory.

4. Click Finish.

Results

The FTtutorial project is now visible in the Functional Test Projects view, which is the left pane in the Functional Test

perspective.

Lesson 2: Record a script
In this lesson, you will record a script using the HCL OneTest™ UI Recording Monitor.

Begin recording

About this task

You are now ready to begin recording.

Chapter 4. Tutorials

1. To start recording, click the Record a Functional Test Script button in the Functional Test toolbar.

2. Select the FTtutorial project that you just created.

3. In the Script name field, type Classics (the name of the application you will be using).

4. Do not select the Add script to Source Control option if it is available.

5. Click Finish.

Result

The HCL OneTest™ UI window automatically minimizes, and the Recording Monitor is displayed.

Learn more about Recording Monitor: The HCL OneTest™ UI Recording Monitor is displayed every

time you begin recording. You can minimize the monitor if you don't want it to be visible on the screen,

and you can also resize it. You can also click the Display Toolbar Only button (), which hides the

recording monitor and shows only the toolbar. Click the Display Monitor button () to bring it back.

Leave the monitor displayed during this tutorial. The monitor displays messages for every action

performed during your recording session, such as starting and pausing the recording, starting an

application or browser, clicking within an application, inserting verification points, and inserting other

items into the script.

6. Click the Monitor Message Preferences toolbar button . You can use these options any time to control the

appearance of the text in the monitor.

7. Click Cancel.

8. Click the Insert Script Support Commands toolbar button .

Result

This opens the Script Support Functions window, which allows you to call another script, insert a log entry,

insert a timer, insert a sleep command (a delay), or insert a comment into your script.

9. Click Close.

Start the application

1. To start the test application, click the Start Application toolbar button .

2. In the Start Application window, select ClassicsJavaA and then click OK.

Result

The HCL OneTest™ UI Tutorial sample application, ClassicsCD, opens. If the Recording Monitor is in front of

the application, you can drag it to the lower right corner of the screen.

Record actions

About this task

You are going to record placing an order in this application.

93

HCL OneTest™ UI

94

1. Click the + next to Haydn to expand the folder in the Composers tree.

2. In the list, click Symphonies Nos. 94 & 98.

3. Click the Place Order button.

4. In the Member Logon window, keep the default settings of Existing Customer and Trent Culpito. Do not click

either of the password fields at this time.

5. Click OK.

6. In the card number field, enter a credit card number. You must use the valid format of four sets of four digits

here, for instance, 7777 7777 7777 7777.

7. In theexpiration date field, enter a valid format expiration date, 06/09.

Note: Date can be same or later than the system date.

8. Click Place Order.

9. Click OK in the order confirmation message window.

Lesson 3: Create verification points
In this lesson, you will record verification points to test objects. Verification points verify that a certain action has

taken place, or verify the state of an object.

About this task

You can create a Properties verification point, Image verification point or nine types of Data verification points.

When you create a verification point, you capture information about an object in the application to establish baseline

information for comparison during playback.

Create a data verification point

About this task

You will record a Data verification point to capture the tree of composers.

1. In the Recording Monitor, click the Insert Verification Point or Action Command button .

2. In the Select an Object page of the Verification Point and Action Wizard, clear the After selecting an object

advance to next page option if it is selected.

3. Use the Object Finder) to select the Composers tree in the application. Click the Object Finder and drag

it over the tree. While holding down the mouse button, you will see that the entire tree is outlined with a red

border and the object name is displayed javax.swing.JTree in a screen tip next to the red border. When you

release the mouse button to make the selection, notice that the recognition properties for the object are listed

in the grid at the bottom of the Select an Object page.

4. Click Next.

5. In the Select an Action page, make sure Perform Data Verification Point is selected and click Next.

6. In the Insert Verification Point Data Command page, in the Data Value field, select the Tree Hierarchy test.

This test captures information about the entire tree hierarchy.

7. In the Verification Point Name field, type Classics_tree and click Next.

Chapter 4. Tutorials

8. The Verification Point Data page displays the captured data in a grid in the right pane. If a check mark appears

in the box beside an item, that item will be tested. By default, all items are selected. Leave them checked. If

they are not selected, click the Check All button.

9. Click Finish.

Create an image verification point

About this task

You can insert an image verification point to confirm that the appropriate album is displayed for the selected CD.

1. In the Recording Monitor, click the Insert Verification Point or Action Command button .

2. In the Select an Object page of the Verification Point and Action Wizard, clear the After selecting an object

advance to next page option if it is selected.

3. Use the Object Finder to select the Album image in the application. Click the Object Finder and drag it over

the album image. While holding down the mouse button, you will see that the album image outlined with a red

border and the object name is displayed javax.swing.JLabel in a screen tip next to the red border. When you

release the mouse button to make the selection, notice that the recognition properties for the object are listed

in the grid at the bottom of the Select an Object page.

4. Click Next.

5. In the Select an Action page, selectPerform Image Verification Point and click Next.

6. In the Insert Image Verification Point Command page, type Album_image as the Verification Point Name.

7. Make sure that the option Select full image is selected and click Next.

8. The Verification Point Data page displays the captured image in the right pane. Click Finish.

Create a properties verification point

About this task

You can now insert a different verification point to confirm that the order is for the correct customer. A Properties

verification point captures the text in the confirmation screen.

1. In the ClassicsCD application, click Order > View Existing Order Status. Do not click either of the password

fields at this time.

2. Click OK.

You will test the label "Order for Trent Culpito" in the View Existing Orders window.

3. In the Recording Monitor, click the Insert Verification Point or Action Command button .

4. In the Select an Object page, select the After selecting an object advance to next page option.

5. Drag the Object Finder over the label "Order for Trent Culpito" to select it. While holding down the mouse

button, note that the label is outlined with a red border and the object name is displayed javax.swing.JLabel).

After you select the object, the Select an Action page opens because you selected the advance to next page

option.

6. Select Perform a Properties Verification Point, which is the second action from the top, and then click Next.

7. On the Insert Properties Verification Point Command page, confirm that the Include Children field is set to

None.

95

HCL OneTest™ UI

96

8. Under Verification Point Name, accept the suggested default.

9. Leave the Use standard properties option selected and then click Next.

On the Verification Point Data page, the test object properties and their values are displayed in a grid format.

You can choose which properties to test in the Property column and can edit the property values in the Value

column.

Learn more about selecting object properties: By default, none of the properties are selected. To

test object properties, choose the properties that you want to test by selecting each property. The

properties you select are tested each time you play back a script with this verification point. You can

select all properties in the list by clicking the Check All toolbar button above the grid. Use the Uncheck

All button to clear all properties. For best results when using a Properties verification point, test only

the properties you are interested in. In this case, only the text property is of interest to determine

whether the order is for the correct customer.

10. In the Property column select the text, opaque, and visible properties to test them during playback. You may

have to click the check box twice for the selection to persist.

11. Click Finish.

12. In the ClassicsCD View Existing Orders window, click Close.

Test the password fields

About this task

Now let us place another quick order to test the password fields that we did not test earlier.

1. Expand the Haydn folder in the composers tree.

2. Click Symphonies Nos. 94 & 98.

3. Click the Place Order button.

4. In the Member Logon window, keep the default settings of Existing Customer and Trent Culpito.

5. This time, type xxxx in the Password field.

6. Select the Remember Password option.

7. Click OK.

8. Type a valid card number number and expiration date, for instance, 7777 7777 7777 7777, expiration 06/09.

9. Click Place Order.

10. Click OK in the order confirmation message box.

11. Close the ClassicsCD application by clicking the x button.

12. Click the Stop Recording button) on the Recording toolbar.

Results

When you stop recording, HCL OneTest™ UI closes the recording monitor and then writes your script and object map

to your project directory. The HCL OneTest™ UI window is restored and the script is displayed in the main window.

Chapter 4. Tutorials

Lesson 4: Play back the script
In this lesson, you will play back the script and look at some parts of the HCL OneTest™ UI interface. Because the

script you just recorded is the active script, that script will play back when you click the playback button.

1. To play back the script, click the Run Functional Test Script button on the Functional Test toolbar.

2. In the Select Log window, keep the default log name Classics and then click Finish.

Result

HCL OneTest™ UI is minimized, and the Playback Monitor starts in the upper-right corner of your screen. As

the script plays back, messages are displayed in the Playback Monitor. HCL OneTest™ UI plays back all of

your recorded actions, such as the application starting, the actions you performed on the application, and the

verification points.

When playback is finished, the HTML log displays the results of the test run in a separate window. Each event

listed in the log should include Pass in the event headings in green. Notice that the two verification points that

you recorded are listed.

3. Close the log.

Now that you have successfully recorded a script and played it back, let us look at the Functional Test

perspective in more detail.

4. If the Functional Test window is minimized, restore it.

When you have multiple scripts, HCL OneTest™ UI displays all open scripts in a project in the Java™ Editor (the

script window).

Learn more about Java Editor: Throughout the script, notice the information about the script shown at

the top in light blue and prefixed by asterisks. This information comes from the script template, which

you can modify. For more information about modifying the script template, see the HCL OneTest™ UI

Help.

Notice that HCL OneTest™ UI adds a short comment to the script in green characters to identify the

object that the following lines refer to. This information makes it easier to navigate the script. Strings

passed as arguments to methods during recording, including user inputs, are bright blue.

When your cursor hovers over certain areas of the script, HCL OneTest™ UI displays useful information

in a pop-up text box. For example, for a helper method, you see the description property set in the

object map followed by the recognition properties of the object. The hover feature is controlled by

97

HCL OneTest™ UI

98

Preferences. To turn it off or modify what is shown, click Window > Preferences, then choose Java >

Editor and click the Hovers tab. The hover feature is on by default.

To the left of the Java™ Editor (the script window) is the Functional Test Projects view, which lists any HCL

OneTest™ UI projects to which you are currently connected. All scripts within each project are listed below the

project name. This Projects view provides another way to navigate to a different script. When you double-click

a script in the Projects view, it opens in the script window and becomes the active script.

To the right of the Java™ Editor is the Script Explorer, which lists the verification points and object map of the

active script. From the Script Explorer, you can start the Verification Point Editor to display and edit verification

points and start the object map editor to display and edit object maps. For more information about the Script

Explorer or the other parts of the Functional Test perspective, such as the Tasks View and Console View, see

the HCL OneTest™ UI Help.

Lesson 5: View verification points and object maps
In this lesson, you will learn how to view and modify the properties of verification points and object maps.

Chapter 4. Tutorials

View verification points

About this task

You can examine and modify the data inside a verification point.

1. In HCL OneTest™ UI, verify that your script, Classics.java, is still the active script in the Java™ Editor.

2. The three verification points you recorded should be listed in the Script Explorer to the right of the script. If

necessary, click the plus sign (+) next to Verification Points to expand the list.

3. Double-click Classics_tree.

This is the first verification point that you recorded, on the list of composers. The Verification Point Editor

starts; you can update verification point data for future playbacks.

Updating verification points: Data verification points have six possible display types. This is a Data

(tree) verification point. The object type is a tree, in this case, a javax.swing.JTree. To edit the data in

this tree, double-click any of the sub-items in the tree to open a small edit box where you can make

changes. Use the check boxes beside each item to indicate whether you want this item to be tested

in future playbacks. To learn more about using the Verification Point Editor, see the HCL OneTest™ UI

Help.

4. Close the Verification Point Editor.

View object maps

About this task

You can examine and modify the data inside the object map.

1. In the Script Explorer, expand the Test Objects folder.

The first item, Private Test Object Map, is the object map for this script. The individual objects listed under

Private Test Object Map are references to objects that were acted on during recording.

2. Double-click Private Test Object Map () to open it.

99

HCL OneTest™ UI

100

Object map types: When you record a script, HCL OneTest™ UI creates an object map for the

application under test. Each script is associated with an object map file. The map file can be private

-- associated with one script exclusively -- or shared among many scripts. When you recorded the

script, HCL OneTest™ UI used the default setting (private map). The object map contains properties

for each object, and you can easily update the information in one central location. Then, any scripts

that reference that object also share the updated information.

3. Expand the top-level object Java: Frame: logFrame1: javax.swing.JFrame.

The frame object includes the logon dialog box. The radio buttons, password fields, and action button are

listed beneath the frame object.

4. Click one of the objects.

Notice that the recognition properties are displayed in the grid below the object tree. The object map also

provides a quick way to add object references to a script. In the object map menu, you can click Test Object >

Insert Object(s) to add objects. You can also perform other operations from the object map, such as changing

the weight of a recognition property and editing recognition properties and values. We'll perform several

advanced procedures using the object map later in the tutorial.

5. In the object map menu, click Preferences > Clear State On Close.

The Clear State On Close command is a toggle menu item and should be on by default, so you will be clearing

it. If it were left on, all objects would be accepted when you close the map. We want to do that in a later step

when we return to the object map to make changes.

6. Close the object map. Do not save any changes you may have made.

Lesson 6: Perform regression tests
In this lesson, you will execute your script on a different build. When you have a new build of an application, you can

run the automated test you recorded by playing back your script on the new build. To execute your script on the new

build, you must change the name of the application in your script. (You would not need to do this on a development

project; you do it here to simulate getting a new build of the application.)

1. In the Java™ Editor (script window), verify that your script (Classics.java) is the active script.

At the top of the script, beneath the template information, note the start application command:

startApp("ClassicsJavaA");

2. Change the "A" to "B".

Java™ code is case-sensitive, and so be sure to use an uppercase B. You do not need to save or compile the

script for the change to take effect. It is done automatically when you run the script.

3. Click the Run Functional Test Script toolbar button to play back the script.

4. In the Select Log window, select Classics and then click Finish.

Chapter 4. Tutorials

You will be prompted to overwrite the log.

5. Click Yes.

Result

The script begins to play back quickly, but slows near the end on the Member Logon window. That is because

Build B of the application has different text in the field beside the check box. HCL OneTest™ UI is looking for

an object that matches the recognition properties recorded in Build A. We'll show how to fix this problem later

in the tutorial.

6. When the log opens after playback, look at the messages. You should see two failures and one warning in the

log. (Keep the log open in preparation for lesson 7.)

The properties verification point (OrderForTrentCulpito_standa) and the image verification point

(Album_image) failed because of a change in the application. Next, we'll see how to update the verification

point baseline to fix this. An object recognition warning was generated for the password check box field. We'll

also show how to fix that in the object map using a regular expression in a later section of the tutorial.

Did you notice that the main screen of ClassicsB looks different from ClassicsA? That difference did

not cause the script to fail, however. The same objects are present but in a different location on the two

applications. This did not cause a failure because HCL OneTest™ UI uses robust recognition methods to

locate the objects. For example, it does not rely on superficial properties such as screen coordinates to find

objects. Instead, it uses internal recognition properties. This method allows for flexibility in the user interface

design, without requiring that you alter or re-record your scripts.

Lesson 7: Use the Comparator to update a verification point
You can use the Verification Point Comparator to compare verification point data after you play back a script.

Verification points provide a baseline of the properties or data of an object. If the verification point fails on a

subsequent build of an application, you have found a defect or an intentional change to the application. If the change

is intentional, you can update the information in the verification point so that the test continues to be valid for future

builds.

Before you begin

At the end of lesson 6, you left the log open. If you closed the log, reopen it by double-clicking on the log name in the

Projects view.

1. In the log, click the View Results link at the end of the failed image verification point entry. The event heading

is "Verification Point (Album_image)."

Result

The HCL OneTest™ UI Verification Point Comparator displays your verification point data. Notice that the

Comparator banner includes the name of your verification point.

Problems with the comparator?: If the comparator does not open or you get an error message, you

need to enable the Java™ plug-in of your browser. For the instructions to do that, see the topic called

101

HCL OneTest™ UI

102

"Enabling the Java™ Plug-in of a Browser" in the "Before You Record" section of the HCL OneTest™ UI

Help.

When a verification point fails, the Comparator shows the expected and the actual values to help you analyze

the differences. You can then load the baseline file and edit it or update it with the values from the actual file.

Failures are displayed in red.

When you created the verification point on ClassicsA, the captured album image is based on the object

javax.swing.JLabel. When you played back the script on ClassicsB, since the height and the width of the

object javax.swing.JLabel is different, the image verification point failed. So you must update the baseline file

to change the object to match ClassicsB.

2. Click the Load Baseline to Edit button () on the Comparator toolbar.

3. Click the Replace Baseline with actual value button () on the Comparator toolbar.

The actual image is loaded as the baseline image.

4. Close the Comparator.

5. In the log, click the View Results link at the end of the failed properties verification point entry. The event

heading is "Verification Point (OrderforTrentCulpito_standard)."

6. Scroll to the text property.

When you created the verification point on ClassicsA, the banner title was "Order for Trent Culpito." When

you played back the script on ClassicsB, the banner title was "Orders for Trent Culpito." "Orders" is correct,

because a customer might have multiple orders in the Orders window. So you must update the baseline file to

change the text to match ClassicsB.

You can only edit the baseline file.

7. Click the Load Baseline to Edit button () on the Comparator toolbar.

Notice that the left Value column displays the Baseline Value now.

8. Instead of scrolling to the text property, you can click the Jump to First Difference button () above the

Property column. The four navigation buttons help you locate the differences between the baseline and actual

files.

You can update the baseline file in two ways. You can edit that cell of the grid, adding the letter 's' to the word

"Order," or you can use the Replace Baseline command. Replacing the baseline replaces all values from the

baseline file with the values from the actual file. In general, if you need to edit only one or a few values, you

should edit the individual values.

9. This test has only one difference to update, so click the Replace Baseline with actual value button () on the

Comparator toolbar.

Both values in the text property now match and the property no longer appears in red. For more information

about using the Comparator, see the HCL OneTest™ UI Help.

10. Close the Comparator.

Chapter 4. Tutorials

Now we will play back the script again to confirm the verification point passes, given the updated baseline

value for the failure.

11. Close the log.

12. Click the Run Functional Test Script button on the HCL OneTest™ UI toolbar.

13. Select the Classics log and then click Finish.

14. Click Yes if prompted to overwrite the log.

Result

HCL OneTest™ UI pauses on the Member Logon window because you did not fix that recognition problem yet.

At the end of playback, HCL OneTest™ UI displays the log. The verification point now passes! See how easy it

is to use the Comparator to update object data and properties to account for changes in the application under

test.

15. Leave the log open.

Lesson 8: Update the object map
In this lesson, you will fix the object recognition warning by using the object map. You will also use a regular

expression for more flexible object recognition.

About this task

When you see a recognition failure or warning, look at the log message. At the end of lesson 7, you left the log open.

If it is not open, open it by double-clicking the log in the Projects view. One warning remains in the log. The event

heading is Object Recognition is weak (above the warning threshold).

1. Look at the ObjectLookedFor and objectFound fields in the warning section near the bottom of the log.

In ClassicsA, the name of the password field is Remember Password. In ClassicsB it is Remember The

Password. When you played back the script on ClassicsB, the object recognition did not match exactly

because of this difference.

2. Look at the Line Number field in the log. Note the number and close the log to return to HCL OneTest™ UI.

3. Click anywhere in the script window, and then click Navigate > Go to Line.

4. Type the line number from the log failure message, and then click OK.

Result

The cursor moves to the left margin of that line number.

Note: You can also find the line number by looking at the indicator in the bottom of the HCL OneTest™

UI window. For example: "43:9" refers to position 9 on line 43.

The line in your script should be:

RememberPassword().clickToState(SELECTED);

103

HCL OneTest™ UI

104

This line represents your click action on the password check box. This line in the script shows which object is

failing. Now you can look for that object in the object map.

5. To find the object, return to the list of Test Objects in the Script Explorer (right pane).

You should see rememberPassword listed under the Test Objects folder.

View the object recognition properties in the object map

1. Double-click the rememberPassword object to open it in the object map.

2. Click Test Object > Accept All on the object map menu. If the command is grayed out, don't do anything.

Result

Notice that all the objects change to black text. The text is blue (to indicate new objects) until you accept the

objects in a map. You should accept the objects the first time you look at a newly created object map.

3. If the password check box object is not selected in the map, select it. (It is the object called Java: checkBox:

checkRemember: javax.swing.JCheckBox.)

4. Look at the recognition properties listed in the Recognition tab at the bottom of the object map.

Result

You can see that this is the object from ClassicsA, because it says Remember Password in the text property. This

is the "old" object. However, when you played back the script on ClassicsB, the text for that object changed, so

HCL OneTest™ UI recognizes it as a "new" object. You want to use the new object properties in this case, so

you must add it to the map.

Add the new object to the map

About this task

To add the new object to the map, open ClassicsB and then open the Member Logon window.

1. Click Applications > Run in the object map menu.

2. Select ClassicsJavaB. (Be sure to pick B).

3. Click OK.

4. In ClassicsCD, select any CD and then click Place Order.

Result

The Member Logon window opens.

5. Move the object map lower on your screen, if necessary, to see all of it. In the object map menu, click Test

Object > Insert Object(s).

This is the same as the Object Finder tool in the Select an Object page of the Verification Point Wizard.

6. Clear the After selecting an object advance to next page check box if it is selected.

7. Use the Object Finder tool to select the Remember the Password check box in the Member Logon window.

After you select the check box, you'll see that the text property is now Remember The Password. Stretch the

borders of the object map, if necessary, to see the properties.

Chapter 4. Tutorials

8. On the Select an Object page, click Next.

9. Don't change anything on the Select Object Options page, and then click Finish.

Result

The new check box object is now shown in the object map.

10. Click another object and notice that the new item is listed in blue and the word "New" is displayed at the

beginning of the line.

Result

Now both the old and the new objects are listed in the map. You want to unify the two objects and take the

properties from each that you want for the new object.

Unify the objects

1. To unify the objects, click the old object (the original check box labeled CheckBox: checkRemember) and

then drag it onto the new object in the list. Position the tip of the cursor arrow over the new object before you

release the mouse button. Then, release the mouse button.

Result

The Unify Test Objects wizard opens.

2. Widen the Unify wizard if necessary to see more of the information in the lower sections.

Result

In the lower left section, the original object's properties are shown. It should be labeled "Source:

RememberPassword." That is what the text was on the check box in ClassicsA. In the lower right section, it

should be labeled "Target: RememberThePassword." That is what the text is on the check box in ClassicsB.

Because you dragged the old object to the new object, the new object's recognition properties are filled in at

the top of the wizard. In general, HCL OneTest™ UI puts the new properties at the top if they are the preferred

properties. However, some old administrative properties might be preferred. For example, HCL OneTest™ UI

retains regular expressions in the old property set. To use a property from the old object, double-click that

property in the grid of the old object and it will be copied up into the unified object. In this case, we want to use

all the properties of the new object, which are already filled in.

3. Click Next.

Result

All scripts that are affected by this change in the object map are listed. Only one script, Classics, is affected.

4. Click Finish.

5. In the object map, click the File > Save menu on the object map toolbar to save the changes you made and

then close the object map.

Play back the script again

About this task

105

HCL OneTest™ UI

106

Now we'll play back the script again on ClassicsB to confirm that it passes.

1. Close both dialog boxes of ClassicsCD.

2. In HCL OneTest™ UI, click Run Functional Test Script on the toolbar.

3. Select the Classics log and then click Finish.

Result

The script now passes with no warnings! Notice that the playback no longer pauses on the password check

box object because the recognition properties now match.

This object unification feature is an easy way to update scripts when recognition properties of an object

intentionally change. One of the major advantages of this feature is that if your object map is being used by

many scripts, you could update them all when you make the change in the wizard. Instead of manually editing

multiple scripts, you can make a change once in the map and the change propagates automatically to all

scripts that use it. This feature can save you time.

Another way to update recognition properties: There is also an easier way to update the recognition

properties of a test object should they change. Instead of using the Unify wizard as described in

this exercise, from the Object Map you can select the test object whose recognition properties you

want to update. Right-click the test object as it is displayed in the Object Map tree and select Update

Recognition Properties from the pop-up menu. You will need to have the test application running

when this action is performed so that HCL OneTest™ UI can get the updated recognition properties.

You would only use this update method if you do not want to use any properties of the old object.

4. Close the log.

Lesson 9: Change the Recognition Preferences
In the previous lesson, you saw how you can update the recognition properties of an object when they change.

Another factor you can change is the recognition weights that HCL OneTest™ UI uses during playback. You use the

ScriptAssure™ recognition preferences to set this. The label object that you tested with the second verification point

can demonstrate how this works.

1. On the HCL OneTest™ UI menu, click Window > Preferences.

2. Click Functional Test > Playback > ScriptAssure.

3. Click the Advanced button.

Notice that one of the default settings is Warn if accepted score is greater than: 10000. A score of 10000

indicates that one important property can be wrong. Let's lower the score to 5000 and see what happens.

4. Select the Use Default check box beside this field.

5. Then type 4000 in the field and then click OK.

6. Play back the script on ClassicsB again.

Result

Chapter 4. Tutorials

The log now contains a warning for the label object. The reason given in the objectFound field, is that the

recognition score is 10000. This discrepancy was caused by changing the word "Order" to "Orders" in the label.

7. Close the log.

8. Restore the default value for the recognition score:

a. Click Window > Preferences.

b. Click Functional Test > Playback > ScriptAssure.

c. Click the Advanced button.

d. Select the Use Default check box beside the Warn if accepted score . . . field.

Result

This will change the 4000 back to 10000.

e. Click OK

f. Play back the script again.

Result

Now the warning is gone and everything passes.

g. Close the log.

Results

This lesson showed how you can tweak the recognition score in order to achieve the sensitivity that you want for

object recognition. For more information about using ScriptAssure™, see the HCL OneTest™ UI Help.

Lesson 10: Use regular expressions
The last thing you will do using the object map is convert a property value to a regular expression. In this case, the

regular expression provides more flexibility in the object recognition.

About this task

We just saw how the script passes completely on ClassicsB. That was the goal because the changes made to the

application in ClassicsB are correct. So the script is now in the state you want it to be in going forward. Now when you

play the script back against ClassicsA, it fails because of the changes made earlier. You might want to allow more

than one variant of an object to pass. You might have a dynamic object or have several versions of your application

with slightly different versions of an object, in which both are correct. You can use a regular expression to allow more

than one version of a property value, such as text, to accommodate this scenario.

Open the object map and unify the objects

1. To play back against ClassicsA, edit the startApp command at the top of the script and change the B to an A.

2. Click Run Functional Test Script on the Functional Test toolbar.

107

HCL OneTest™ UI

108

During playback, HCL OneTest™ UI pauses a little on the password check box object, but eventually it finishes.

The script now gives a warning. Notice in the log that it's the same object, the rememberPassword test object.

3. Close the log and then open the object map from the password check box object as you did in Lesson 8, by

double-clicking rememberPassword in the Script Explorer.

4. In the object map, open the application by clicking Applications > Run. Select ClassicsJavaA and then click

OK.

5. Pick any CD and click Place Order in ClassicsCD to open the Member Logon window.

6. Add the new object to the map by clicking Test Object > Insert Object(s).

7. Use the Object Finder to select the password check box in the Member Logon window in the application.

8. Click Next, and then click Finish.

9. In the top pane of the object map, drag the old check box object to the new check box object to unify the

objects.

10. Widen the Unify Test Objects wizard by dragging one of the sides outward to make the fields longer, if

necessary.

You will use two different regular expressions: one on the name property and one on the text property.

The unified object is shown in the Unified Test Object Properties grid (top pane); the name property has a

value of checkRemember.

Convert a property value to a regular expression

1. In the top pane, right-click the checkRemember value and then click Convert Value to Regular Expression.

Result

HCL OneTest™ UI designates the value as a regular expression by the "xy" icon in front of the value text.

2. Double-click the name value again so that you can edit the field.

3. Delete the word check and then edit the remainder to read: [rR]emember.

4. Click outside the cell.

This pattern allows the word "remember" with either an uppercase "R" or lowercase "r" to pass. This is

important because the comparisons are case-sensitive, and only an exact match will pass. The value of the

text property is "Remember Password".

5. Right-click the Remember Password value and then select Convert Value to Regular Expression to convert it.

6. Double-click the value and edit it to read: Remember.*Password. You are removing the space and adding the

period (.) and asterisk (*) characters.

7. Click another cell.

The "." allows any character to appear in that position. In one version of the application, there is a space

between the two words in this property, and in the other version there is no space. This pattern covers both

cases.

8. Click Next, and then click Finish.

9. Click File > Save in the object map to save the changes, and then close the object map.

Chapter 4. Tutorials

10. Close ClassicsCD.

11. Play back the script again on ClassicsA. The image verification point and the properties verification point fails.

Result

The image verification point fails because the height and the weight of the objectjavax.swing.JLabel is

different. The properties verification point is expected to fail because the text Orders for Trent Culpito was

never changed to a regular expression. The object recognition warning on ClassicsA is no longer in the log.

12. Close the log.

13. Change the startApp command to play back ClassicsB, and then run the script.

Result

The object recognition also passes on ClassicsB Regular expressions offer more flexible recognition for an

object that has different properties in different versions of an application, and both are recognized during

playback. For more information about regular expressions, see the HCL OneTest™ UI Help.

Summary: Create functional tests
This tutorial has shown you how to set up HCL OneTest™ UI for testing, recording and playing back scripts, creating

verification points and using the Verification Point Comparator to update object properties or data, and several ways

to use the object map to your advantage.

Lessons learned
By completing this tutorial, you learned how to:

• Create a Functional Test project

• Record a script against actions on your test application

• Start your test application properly while recording

• Create verification points

• Play back scripts

• Use the Functional Test log

• Update verification points using the Comparator

• Update the object map

• Change recognition preferences for an object

• Use regular expressions for more flexibility in object recognition

Additional resources
If you want to learn more about the topics covered in this tutorial, consult the following resources:

• Product Help

• API Reference

• Welcome Page

109

HCL OneTest™ UI

110

Perform a data-driven functional test using Java scripts
In this tutorial, you will learn how to create a data-driven functional test using the HCL OneTest™ UI data-driven test

wizard.

Data-driven testing puts a layer of abstraction between the data and the test script, eliminating literal values in the

test script. Because data is in a dataset and separated from the test script, you can:

• Modify test data without affecting the test script

• Add new test cases by modifying the data, not the test script

• Share the test data with many test scripts

Learning objectives

After completing this tutorial, you will be able to:

• Create a project and record a Java test script

• Data-drive a test

• Add descriptive headings to the data

• Create a verification point with a dataset reference

• Add data to the dataset

• Play back the test

Time required

30 minutes.

Related information

Create a functional test using Java scripts on page 90

Introduction: Perform a data-driven functional test using Java scripts
In this tutorial, you will learn how to create a data-driven test using a variety of realistic data to test the application

with the HCL OneTest™ UI data-driver wizard.

You will use the ClassicsCD sample application to create a project and record a Java test script to verify that the

ClassicsCD sample application correctly totals an order. You will also create a verification point with a dataset

reference to check that the total amount of the order is correct in the Classics CD application.

Learn more about datasets: A dataset is a collection of related data records. A dataset supplies data values

to the variables in a test script during test script playback. Data-driven testing uses data from an external file,

a dataset, as input to a test.

The diagram on the left shows a test script that uses data with hard-coded, literal references in the test script.

The diagram on the right shows a data-driven test script that uses data from an external file, a dataset.

Chapter 4. Tutorials

Hard-coded test script Data-driven test script

Learning objectives

After completing this tutorial, you will be able to:

• Create a project and record a Java test script

• Data-drive a test

• Add descriptive headings to the data

• Create a verification point with a dataset reference

• Add data to the dataset

• Play back the test

Time required
This tutorial should take approximately 30 minutes to finish. If you explore other concepts related to this tutorial, it

could take longer to complete.

Lesson 1: Create a project and record a test script
In this lesson, you will use the Classics CD sample application to create a new project and start recording a test to

verify that the sample application correctly totals the amount of music CDs purchased.

About this task

111

HCL OneTest™ UI

112

What is a project?: A project is a collection of test assets such as test scripts, object maps, verification

points, and datasets, that can facilitate the testing of one or more software components. You must create a

functional test project before you can record a test.

Disable simplified scripting and application visuals feature

About this task

HCL OneTest™ UI provides you the option to generate simplified test scripts and Java test scripts. If you are familiar

with Java scripting, you can disable the simplified scripting and application visuals feature and start recording the

test script. In this tutorial, we will work with Java test scripts. Before you start recording the scripts, disable the

simplified scripting and application visual features.

1. To verify whether the feature is enabled, click Window > Preferences.

2. In the left pane of the Preferences window, expand Functional Test, then Simplified scripting.

3. In the Simplified Scripting page, clear the Enable Simplified Scripting checkbox.

4. In the Application Visuals page, clear all the options listed in the page for the application visuals.

5. Click Apply and then OK.

Create a project

About this task

Create a project to store the test assets that you need to test the Classics CD sample application.

1. Click Windows > Open Perspective > Other to open the functional test perspective . In the Open Perspective

dialog box, select the Functional Test option.

2. Click File > New > Functional Test Project.

3. Type DataDriveTutorial for the name of the new project.

4. Click Finish.

Start recording

About this task

Start recording a test script to verify that when a customer orders a music CD, the total amount charged to the credit

card is the correct amount listed in the application.

1. On the Functional Test toolbar, click Record a Functional Test Script .

2. Type OrderTotal for the name of the test script.

3. Click Next.

Result

When you create a test script, HCL OneTest™ UI creates a test dataset and other test assets. Use the defaults

for Private Test dataset and Sequential. A private test dataset is associated with only one script and is not

Chapter 4. Tutorials

available to any other scripts. When you use the sequential order, the test script accesses dataset records in

the order that they appear in the dataset.

4. Click Finish.

Result

The HCL OneTest™ UI window minimizes and the Recording Monitor opens.

Start the ClassicsCD application

About this task

Start the ClassicsCD application and navigate through the application to the dialog box that you will data-drive.

1. On the Recording toolbar, click Start Application().

2. If necessary, click the Application Name arrow to see the options, and then select ClassicsJavaA - java.

3. Click OK.

ClassicsJavaA is build 1 of the sample application, ClassicsCD, which comes with HCL OneTest™ UI.

4. In the ClassicsCD application, under Composers, double-click Schubert to open the list of CDs for sale by that

composer, and then click String Quartets Nos. 4 & 14.

5. Click Place Order.

6. Click OK to close the Member Logon window.

7. In the Place an Order window, type 1234567890 in the Card Number field and then type 09/09 in the Expiration

Date field.

Result

Proceed to Lesson 2. We will data-drive a test by populating the data from this dialog box.

Lesson 2: Data-drive a test
In this lesson, you will use the data-driver to populate a dataset with data from the sample application. A dataset is

a collection of related data records. A dataset supplies data values to the variables in a test script during test script

playback.

1. On the Recording toolbar, click Insert Data Driven Commands .

Result

The recording pauses.

2. In the Insert Data Driven Actions page, use the mouse to drag the Object Finder () to the title bar of the

Place an Order window on the ClassicsCD application.

Result

HCL OneTest™ UI outlines the entire Place an Order window with a red border.

3. Release the mouse button.

Result

In the Data Drive Actions page, under the DataDriven Commands table, information about the selected objects

are displayed.

113

HCL OneTest™ UI

114

Results

You can hover over a row in this table to view the line of code that HCL OneTest™ UI inserts into the test script to data-

drive the test script.

Lesson 3: Add descriptive headings to the data
In this lesson, you will add descriptive headings to the dataset you created in the previous lesson. Descriptive

headings make it easier to add data to the dataset.

1. In the Data Driven Commands table, under the Variable header, replace ItemText with Composer.

2. Repeat sequentially, replacing each cell in the Variable column with a descriptive name for each heading in the

Variable field. Use the text in the following variables list as descriptive names.

Note: Do not use spaces in Variable names. Typically, you would look at the application to determine

the appropriate headings for each row, but we have done that for you in the following variables list:

Variable

Composer

Item

Chapter 4. Tutorials

Variable

Quantity

CardNo

CardType

ExpiryDate

Name

Street

CityStateZip

Phone

HCL OneTest™ UI automatically updates the test script as you change each of the Variable names.

3. Click OK.

Results

Now the dataset has descriptive headings that make it easier to add more data. You will add more data to the dataset

after you finish recording the test script.

Lesson 4: Create a verification point with a dataset reference
In this lesson, you create a verification point with a dataset reference to check that the price for the CD is correct in

the ClassicsCD application.

About this task

What is a verification point?: A verification point captures object information and literal values from the

application-under-test and stores it as the baseline for comparison during playback. When you play back the

script, a verification point captures the object information again to compare it to the baseline and see if any

changes have occurred, either intentionally or unintentionally. Comparing the actual object information in a

script to the baseline is useful for identifying potential defects.

You will use a dataset reference instead of a literal value for the value that you are testing in the verification point.

Using datasets with verification points gives you more flexibility to test realistic data with your test scripts.

Create a verification point with a dataset reference

1. On the Recording toolbar, click Insert Verification Point or Action Command .

Result

2. In the Verification Point and Action Wizard, use the mouse to drag the Object Finder to $18.99, which is

next to "Sub-Total" in the Classics CD application.

Result

115

HCL OneTest™ UI

116

HCL OneTest™ UI outlines $18.99 with a red border.

3. If the Select an Action page is not displayed, click Next.

4. In the Select an Action page, click Perform Data Verification Point to test whether the price of the CD

changes.

5. Click Next.

6. In the Insert Verification Point Data Command page, click Next.

7. On the Verification Point Data page toolbar, click Convert Value to dataset Reference () to use a dataset

instead of a literal value in a verification point. (If you cannot see the Convert Value to dataset Reference

button on the toolbar, make the page larger by dragging a corner of the page).

Result

The dataset Reference Converter dialog box opens.

8. In the dataset Variable field, type Price to replace the newVariable for the heading in the dataset.

9. Select the Add value to new record in dataset check box to add the Price to the existing dataset record you

created in the previous exercise.

10. Click OK.

11. Click Finish.

Place the order and close the ClassicsCD application

1. In the ClassicsCD application, click Place Order to place the order, and then click OK to close the message

confirming your order.

2. Click X in the upper right corner of the Classics CD application to close the application.

Stop recording

On the Recording toolbar, click Stop Recording () to write all recorded information to the test script.

Results

The test script is displayed in the editor window.

Chapter 4. Tutorials

Lesson 5: Add data to the dataset
In this lesson, you will add data to the dataset to test the ClassicsCD sample application by placing more orders for

the CD.

1. In the Script Explorer, double-click Test dataset and then double-click Private Test dataset. In the test script

editor, double-click the Test dataset tab to expand the dataset editor so that you can work.

Result

The dataset editor opens and should look similar to the following table:

Composer Item Quantity Card# CardType ExpDate Name Street CityStZip Phone Price

0 Schubert String Quar

tets Nos. 4

& 14

1 1234567890 Visa 09/09 Trent Culpito 75 Wall St. Ny, Ny 12212 212-552-1867 $18.99

2. Position your mouse pointer in the dataset editor, then click Enter to add a row after the first row.

3. To add a second empty row, right-click Insert Record.

To save time, copy the data from row 0 in the dataset into the two empty rows that you created in steps 2 and

3.

4. Position the mouse pointer in the row 0 cell, right-click, and then click Copy.

5. Position the mouse pointer in the row 1 cell, right-click, and then click Paste.

6. Click Yes to paste the data into the empty row.

7. Position the mouse pointer in the row 2 cell, right-click, and then click Paste.

8. Click Yes to paste the data into the empty row.

9. Change the value in the Quantity column to test the ClassicsCD sample application by placing more orders for

the CD:

a. In row 1, in the Quantity column, select the cell and type 2.

b. In row 2, in the Quantity column, select the cell and type 3.

Result

The data in the dataset should look like the following table:

Composer Item Quantity Card# CardType ExpDate Name Street CityStZip Phone Price

0 Schubert String Quar

tets Nos. 4

& 14

1 1234567890 Visa 09/09 Trent Culpito 75 Wall St. Ny, Ny 12212 212-552-1867 $18.99

1 Schubert String Quar

tets Nos. 4

& 14

2 1234567890 Visa 09/09 Trent Culpito 75 Wall St. Ny, Ny 12212 212-552-1867 $18.99

117

HCL OneTest™ UI

118

Composer Item Quantity Card# CardType ExpDate Name Street CityStZip Phone Price

2 Schubert String Quar

tets Nos. 4

& 14

3 1234567890 Visa 09/09 Trent Culpito 75 Wall St. Ny, Ny 12212 212-552-1867 $18.99

10. On the Test dataset tab, click X to close the dataset editor, and then click Yes to save the changes you made

to the dataset.

Lesson 6: Play back the test
In this lesson, you will play back the test you just recorded to see how easy it is to use a variety of data from a dataset

to test the application.

About this task

Each time you play back a script with an associated dataset, the script accesses one record in the dataset. When

you create a dataset reference for a verification point, the verification point uses the dataset reference to access

a variable in that record. During playback, HCL OneTest™ UI substitutes the variable in the dataset for the dataset

reference and compares the variable in the dataset to the actual results.

During playback you can view the script name, the script line number that is executing, status icons, and a description

of the action in progress in the Playback Monitor.

1. To play back the test script, click Script > Run.

2. In the Select log window, click Next.

3. Click the dataset Iteration Count arrow and then scroll to select Iterate Until Done to access all three records

in the dataset.

4. Click Finish to use the default log name.

Result

The HCL OneTest™ UI window minimizes, and the Playback Monitor is displayed in the upper-right area of your

screen. Messages appear in the Playback Monitor as HCL OneTest™ UI plays back all of the recorded actions

in the test script and enters data from the dataset.

When the test script finishes playing back, HCL OneTest™ UI displays a log with the test results. A log is a

file that contains the record of events that occur while playing back a script. A log includes the results of all

verification points executed that can be used to test the application.

5. Click X to close the log.

Summary: Create a data-driven test
This tutorial has shown you how to create a data-driven test.

You have created a data-driven test script, created descriptive headings for the data collected, added data to the

dataset, created a data verification point with a dataset reference, played back a test script, and viewed the log.

Chapter 4. Tutorials

Lessons learned

By completing this tutorial, you learned how to:

• Create a project and record a test script

• Data-drive a test

• Add descriptive headings to the data

• Create a verification point with a dataset reference

• Add data to the dataset

• Play back the test

Additional resources

If you want to learn more about the topics covered in this tutorial, see the Data-Driving Tests section of the HCL

OneTest™ UI Help.

Test Adobe Flex application
This tutorial walks you through the steps to enable your Adobe Flex application, and test the enabled Flex application

from a local test computer using HCL OneTest™ UI. The steps are based on the roles that Flex developers and testers

perform.

HCL OneTest™ UI supports testing the functional aspects of Flex applications. You can record and playback scripts

against Flex based user interfaces inside a web browser.

Learning objectives
After completing this tutorial, you will be able to use HCL OneTest™ UI to test your Flex applications.

Time required
30 minutes

Related information

Tutorial: Create a functional test on page 90

Tutorial: Create a data-driven functional test on page 110

Introduction: Test Adobe Flex application
In this tutorial, you will learn how to enable a Flex application for functional testing and test the enabled Flex

application using HCL OneTest™ UI.

The tutorial is divided into two modules that must be completed in sequence to work properly.

Learning objectives

After completing this tutorial, you will be able to:

119

HCL OneTest™ UI

120

• Set up the development and testing environment

• Enable the Flex application for functional testing

• Test the enabled Flex application using HCL OneTest™ UI

Time required
This tutorial takes approximately 30 minutes to finish. If you explore other concepts related to this tutorial, it might

take longer to complete.

Module 1: Enable the Flex application for testing
In this module, you learn how to enable the Flex application for functional testing by compiling the Flex 2.0 application

with functional testing agent (rft.swc) and Flex automation framework libraries.

This module is intended for Flex application developers.

Learning objectives

After you complete the lessons in this module you will understand how to do the following:

• Set up the development environment

• Configure the Flex application

Time required

This module takes approximately 15 minutes to complete.

Prerequisites

Before you begin, verify that the following software is installed in your computer:

• Adobe Flex SDK 2.0.1 or later

• Adobe Flex automation framework

Lesson 1: Set up the development environment
In this lesson, you set up the development environment for enabling the Flex application for functional testing.

About this task

To set up the development environment for Flex 2.0:

Note: The automation framework is a part of Flex Builder for Flex 3.0, 3.2 and 4.0. Therefore, the following

steps need not be performed for Flex 3.0, 3.2 and 4.0. However, for Flex 3.3, 3.4, and 3.5, the automation

libraries are not bundled. Use the automation libraries of Flex 3.2. Copy the _rb.swc files from the Flex 3.2

locale directory to the locale directory of Flex 3.3, 3.4, and 3.5 SDK. For data visualization in Flex 3.3, 3.4, 3.5,

Chapter 4. Tutorials

and 4.0, also ensure that you include the datavisualization.swc file for Flex 3.3, Flex 3.4, Flex 3.5, and Flex 4.0

that is available in the Adobe site.

1. Copy the automation_agent.swc file from C:/Program Files/Adobe/frameworks/libs directory to

C:/Program Files/Adobe/Flex SDK 2/frameworks/libs directory.

2. Copy the automation_agent_rb.swc file from C:/Program Files/Adobe/frameworks/locale/en_US

directory to C:/Program Files/Adobe/Flex SDK 2/frameworks/locale/en_US directory.

Important: This path is for en_US locale. If you are using a different locale, replace en_US with that

locale.

Results

Now you are ready to configure the Flex application.

Lesson 2: Configure the Flex application
In this lesson, you use the Flex user interface to setup the configuration parameters for the Flex application.

About this task

To configure the Flex application:

1. Click Configure > Configure Applications for Testing.

2. Click Add in the Application Configuration Tool window.

3. Select Flex Application, and click Next.

4. Select Configure Flex application setup, and click Next.

5. Click Local Application.

6. Specify the Flex application parameters.

a. Select the required Flex version from Flex SDKs list.

b. Select Compile-time from the Enablement type list.

c. Click Browse to select the Flex application in .as or .mxml format.

d. Select Dependency Files check box, if required.

e. Click Add and browse to the dependency files.

f. Select Additional Libraries check box.

g. Click Add and browse to the libraries.

h. Click Browse and select the SWF target location.

i. Select the Generate HTML Page checkbox, and click Finish.

Results

The selected Flex application and its detailed information is displayed in the Application Configuration Tool window.

Pass the generated HTML page to the tester to test the HTML page using HCL OneTest™ UI.

121

HCL OneTest™ UI

122

Module 2: Test the Flex application
In this module, you learn how to test the functionality of the enabled Flex application that is provided by the developer.

This module is intended for testers and describes the steps for testing the enabled Flex application using HCL

OneTest™ UI.

Learning objectives

After you complete the lessons in this module you will understand how to do the following tasks:

• Set up the testing environment

• Test the enabled Flex application from a local test computer

Time required

This module takes approximately 15 minutes to complete.

Prerequisites

Before you begin, verify that the following software is installed:

• HCL OneTest™ UI 8.0

• Microsoft Internet Explorer 6.0, 7.0 or 8.0

• Adobe Flash Player ActiveX control version 9.0.28.0 or later

Lesson 1: Assign trust designations
In this lesson, you assign trust designations to enable the file to be trusted.

About this task

To test the application from a local test computer, the application-under-test has to be a trusted application. The

paths to individual files or directories can be assigned trust designations. This renders that all the files in each

selected directory and any of its subdirectories are trusted.

1. Create a folder named FlashPlayerTrust in C:\WINDOWS\system32\Macromed\Flash.

2. Create a file named Flex without any file extension.

3. Enter the path of the Flex application in the Flex file.

Chapter 4. Tutorials

4. Save the file.

Note: After completing this lesson, proceed to Lesson 3 if you are testing Flex 3.x applications. If you

are testing Flex 4.0 applications, specify security settings for the application before proceeding to

Lesson 3. For instructions to do this, see Lesson 2.

Lesson 2: Security settings for Flex 4.0 applications
In this lesson, you specify security settings for Flex 4.0 applications.

About this task

Use this lesson only if you are testing Flex 4.0 applications. This lesson is not required if you are testing Flex 3.x

applications.

To specify security settings for Flex 4.0 applications:

1. Open the Flex application in Flash Player, in your browser.

2. Right-click the application and select Settings to access Settings Manager.

3. Select the Privacy tab.

4. Click Advanced.

Result

Adobe Flash Player launches a new browser window and loads the Settings Manager help page.

5. Click Global Security Settings panel link.

Result

The Global Security Settings window opens.

6. Add your application directory into secured or trusted directory. In the Always trust files in these locations

drop down menu, click Add location. Browse for the location.

Note: For more information about setting the security configuration, see the Adobe® website.

Lesson 3: Test enabled Flex application from a local test computer
In this lesson, you test the functionality of the enabled Flex application that is embedded in an HTML wrapper on a

local computer.

About this task

To test the enabled Flex application on a local computer:

1. Get the HTML wrapper from the developer.

2. Open the HTML page in a web browser.

123

http://publib.boulder.ibm.com/infocenter/rfthelp/v8r2/topic/com.ibm.rational.test.ft.flex.tutorial.doc/topics/module2/ft_flex_lesson2-2_test_local.html
http://publib.boulder.ibm.com/infocenter/rfthelp/v8r2/topic/com.ibm.rational.test.ft.flex.tutorial.doc/topics/module2/ft_flex_lesson2-2_security_settings_flex4.html

HCL OneTest™ UI

124

3. Start HCL OneTest™ UI for testing the HTML application that contains the embedded Flex application.

Note: You can also test the enabled Flex application that are deployed on a web server. For more

information, see the online help.

Summary: Test Adobe Flex application
This tutorial has shown you how to enable a Flex application for functional testing, and test the enabled Flex

application using HCL OneTest™ UI.

Lessons learned

By completing this tutorial, you learned how to perform the following tasks:

• Identify the roles played by the Flex Application developer and tester for successful automation of Flex

applications

• Set up the development and testing environment

• Enable the Flex application for testing by compiling the Flex application with functional testing agent and Flex

automation framework libraries.

• Test the enabled Flex application from a local test computer

Additional resources

If you want to learn more about the topics that are covered in this tutorial, consult the following resources:

• HCL OneTest™ UI Help

• HCL OneTest™ UI Welcome Page

Test GEF applications
The movies in this tutorial show you how to use HCL OneTest™ UI to test applications that are based on the Graphical

Editing Framework (GEF). It also shows how HCL OneTest™ UI works with GEF objects.

Learning objectives

This tutorial is divided into two modules and each module is divided into lessons. After an overview of the GEF

objects in the application under test, you will watch these tasks being performed:

• Enabling GEF applications.

• Testing the function of GEF objects using HCL OneTest™ UI.

• Creating data, image and properties verification points on the GEF objects, given that HCL OneTest™ UI

recognizes the GEF edit parts and palettes.

• Identifying GEF test objects using the scroll logic.

• Identifying GEF palette objects.

• Configuring object recognition properties.

Chapter 4. Tutorials

Time required

This tutorial requires approximately 45 minutes to finish. If you explore other concepts related to this tutorial, it might

take longer to complete.

Introduction: Test GEF applications
This tutorial is designed for HCL OneTest™ UI to test the function of Graphical Editing Framework (GEF) objects that

are implemented using GEF. For this tutorial, GEF objects were created using IBM® Rational® Systems Developer

Version 7.0.5 (the application under test). The HCL OneTest™ UI test object map lists the GEF objects in the

application under test. The test object map contains recognition properties for each GEF object.

Learning objectives

This tutorial is divided into two modules and each module is divided into lessons. You will see how to test GEF

applications using HCL OneTest™ UI.

Time required

This tutorial requires approximately 45 minutes to finish. If you explore other concepts related to this tutorial, it might

take longer to complete.

Skill level

Intermediate and advanced

Audience

This tutorial is divided into two modules.

1. Module 1 provides an overview of the GEF objects in the application under test and shows you how to enable

the GEF application.

2. Module 2 shows how to extend HCL OneTest™ UI capabilities to test the GEF applications.

Module 1: Test GEF applications
This module will give you an overview of the Graphical Editing Framework (GEF) objects that are created in IBM

Rational Systems Developer, which is the application under test. You will also see how to enable GEF applications and

create verification points to test the GEF objects. In this module you will observe how HCL OneTest™ UI recognizes

the GEF edit parts in the application under test.

Learning objectives

After you complete the lessons in this module, you will have an overview of GEF objects in the application under test

and see these tasks performed:

125

HCL OneTest™ UI

126

• Enabling GEF applications.

• Testing the function of GEF objects by using HCL OneTest™ UI.

• Creating data, image and properties verification points on the GEF objects, given that HCL OneTest™ UI

recognizes the GEF edit parts and palettes.

Time required

This module requires approximately 25 minutes to finish.

Lesson 1: Overview of GEF objects in the application under test
HCL OneTest™ UI can now recognize objects in the application under test that supports GEF applications. For this

tutorial, we are using IBM Rational Systems Developer Version 7.0.5.3 that supports Graphical Editing Framework

(GEF) as the application under test. In Rational Systems Developer, we have inserted class diagrams that represents

log files using the palette. Using HCL OneTest™ UI, we will test the functionality of these class diagrams. In this

lesson, you will have an overview of the GEF objects that are inserted in Rational Systems Developer.

About this task

Show Me

Lesson 2: Enabling a GEF application
Before testing GEF applications using HCL OneTest™ UI, you must enable the application under test for functional

testing. In this lesson, you will see how to enable the test applications that supports Graphical Editing Framework for

functional testing.

Lesson 3: Recording a functional test script
In this lesson, you will see how to record a functional test script to test the functionality of the Graphical Editing

Framework (GEF) application. You will watch the recording behavior of HCL OneTest™ UI as data, image, and

properties verification points are created on the GEF objects and displayed in the functional test script.

Module 2: Applying HCL OneTest™ UI capabilities to GEF objects
In this module, you see how HCL OneTest™ UI capabilities are applied to Graphical Editing Framework (GEF) objects.

HCL OneTest™ UI identifies GEF objects that are not visible in the work area. It also recognizes GEF palettes in the

application under test. You will see how to make the functional test scripts more resilient to changes by configuring

object recognition properties.

Learning objectives

After you complete the lessons in this module, you will understand how to perform these tasks:

• Identifying GEF test objects using the scroll logic.

• Identifying GEF palette objects.

• Configuring object recognition properties.

docs/files/mod1_lesson1.mp4

Chapter 4. Tutorials

Time required

This module requires approximately 20 minutes to complete.

Lesson 1: Identifying GEF test objects using the scroll logic
In this lesson, you will observe how HCL OneTest™ UI identifies Graphical Editing Framework (GEF) test objects that

are not displayed in the IBM Rational Systems Developer work area. If the test objects are moved beyond the work

area after recording the script, HCL OneTest™ UI scrolls beyond the work area and identifies the GEF test objects

during playback. For example: When you change the resolution of the screen from 1024 x 720 to 800 x 600, the test

objects in the work area is hidden. HCL OneTest™ UI scrolls beyond the work area and identifies these test objects

during playback.

Lesson 2: Identifying GEF palette objects
In this lesson, you will observe how HCL OneTest™ UI identifies the Graphical Editing Framework (GEF) palette objects

and displays them as tree items in the script. You can use any of the GEF palette features to create the GEF objects.

In this lesson, the zoom palette feature is being used.

Lesson 3: Configure object recognition properties
In this lesson, you will see how to customize object recognition properties in the object library before you record

scripts. Customizing the object recognition properties helps make the script resilient to changes in the application

under test.

Summary: Test GEF applications
This tutorial has shown you how to test applications based on the Graphical Editing Framework (GEF) using HCL

OneTest™ UI.

Lessons learned

By completing this tutorial, you learned how to perform these tasks:

• Enabling the GEF applications.

• Testing the function of the GEF objects using HCL OneTest™ UI.

• Creating data, image and properties verification points on the GEF objects, given that HCL OneTest™ UI

recognizes GEF edit parts and palettes.

• Identifying GEF test objects using the scroll logic

• Identifying GEF palette objects.

• Configuring object recognition properties.

Extend HCL OneTest™ UI capabilities using Proxy SDK
The movies in this tutorial show you how to extend the HCL OneTest™ UI proxies using the proxy SDK.

127

HCL OneTest™ UI

128

This tutorial shows you how to extend the HCL OneTest™ UI proxies using the proxy SDK to change the recording

behavior for a button object. It uses Microsoft® Visual Studio Integrated Development Environment to create .NET

classes and a sample .NET application that is a part of the .NET samples.

Learning objectives
This tutorial shows you how to extend a HCL OneTest™ UI proxy. Specifically, you will learn how to perform the

following:

• Create and build a proxy project

• Create a customization file to map the proxy to an AUT control

• Deploy the proxy

• Verify the new proxy by recording a functional test script

Time required
40 minutes

Module 1: Extend HCL OneTest™ UI capabilities using Proxy SDK
The movies in this module show you how to extend the Functional Tester proxies using Proxy SDK.

Learning objectives

This tutorial shows you how to extend a HCL OneTest™ UI proxy. Specifically, you learn how to perform these tasks:

• Create and build a proxy project

• Create a customization file to map the proxy to the control of an application_under_test

• Deploy the proxy

• Verify the new proxy by recording a functional test script

Time required

This module requires approximately 25 minutes to finish.

Introduction: Extend HCL OneTest™ UI capabilities using Proxy SDK
This tutorial is designed to introduce you to HCL OneTest™ UI Proxy SDK.

Learning objectives

This tutorial is divided into five lessons. You will learn to extend the HCL OneTest™ UI proxies using the Proxy SDK.

• Record a functional test script to observe the existing recording behavior with the default proxy class used by

a button.

• Create a proxy class and build a dll file

• Create a customization file to map the proxy control

Chapter 4. Tutorials

• Deploy the binaries into the HCL OneTest™ UI customization folder

• Verify the new proxy by recording a functional test script

This tutorial is intended for the advanced users familiar with HCL OneTest™ UI framework and has knowledge of .NET

programming.

Time required

This tutorial should take approximately 30 minutes to finish. If you explore other concepts related to this tutorial, it

could take longer to complete.

Lesson 1: Record a functional test script
In this lesson, you will record a functional test script to observe the recording behavior with the default proxy class

used by a button.

About this task

Show Me

Lesson 2: Create and build a proxy project
In this lesson you will learn how to create and build a proxy project.

About this task

Show Me

Lesson 3: Create a customization file to map the proxy to an AUT control
In this lesson, you will learn how to create a customization file and map the proxy to an AUT control.

About this task

Show Me

Lesson 4: Deploy the proxy
In this lesson, you will learn how to deploy the .jar and .rftcust files to the Functional Tester customization folder.

About this task

Show Me

Lesson 5: Verify the new proxy by recording a functional test script
In this lesson, you will record a functional test script similar to lesson 1 and verify the new proxy. You will view the

difference in the recording behavior when the new proxy class is used by the button object.

About this task

Show Me

129

docs/files/lesson1.mp4
docs/files/lesson2.mp4
docs/files/lesson3.mp4
docs/files/lesson4.mp4
docs/files/lesson5.mp4

HCL OneTest™ UI

130

Module 2: Develop proxies using Proxy SDK wizards
The movies in this tutorial show you how to develop HCL OneTest™ UI proxy with the Proxy SDK wizards. You can

create proxy stubs using the Proxy SDK wizards.

Learning objectives

This tutorial shows you how to extend a HCL OneTest™ UI proxy. Specifically, you will learn how to perform these

tasks:

• Create a proxy project

• Create a proxy class and build it

• Export the proxy package

• Import the proxy package

• Verify the new proxy by recording a functional test script

Time required

This module requires approximately 30 minutes to finish.

Introduction: Develop proxies with Proxy SDK wizards
This module demonstrates how you can use the Proxy SDK Wizards to create proxy classes, map controls to the

proxy, create template proxy code, and deploy the proxy. This works only in case of domain extensions implemented

in Java™. Using the export and import options available in the Proxy SDK Wizards, you can create a proxy package

and automate the deployment and loading of the proxy in HCL OneTest™ UI respectively.

Learning objectives

This tutorial is divided into six lessons. In the tutorial you learn to extend Functional Tester capabilities by using the

Proxy SDK wizard to test the custom control. In this tutorial you learn to perform these tasks:

• Record a functional test script

• Create a proxy project

• Create a proxy class and build it

• Export the proxy package

• Import the proxy package

• Verify the custom proxy

Time required

This tutorial requires approximately 30 minutes to finish. If you explore other concepts that are related to this tutorial,

it might take longer to complete.

Skill level

Advanced

Chapter 4. Tutorials

Audience

This tutorial is intended for advanced users who are familiar with HCL OneTest™ UI Proxy SDK and who have

knowledge of Java programming.

Lesson 1: Record a functional test script
In this lesson, you watch the recording of a functional test script and observe the default proxy class name of the

custom tree control. For this tutorial, you see how to use the sample interface that contains the TreeApp application

for recording.

About this task

Show Me

Lesson 2: Create a proxy project
In this lesson, you see how to create a proxy project.

About this task

Show Me

Lesson 3: Create a proxy class
In this lesson, you see how to create a proxy class and build it.

About this task

Show Me

Lesson 4: Export the proxy package
In this lesson, you see how to export the proxy package to the folder that the user specified. You can use the export

wizard to export proxy resources to a compressed (.zip) file.

About this task

Show Me

Lesson 5: Import the proxy package
In this lesson, you see how to import the items in a proxy package into HCL OneTest™ UI or any computer. The jar file

and the .rftcust file is imported into the HCL OneTest™ UI customization folder, for example, C:\Documents and

Settings\All Users\Application Data\IBM\RFT.

About this task

Show Me

Lesson 6: Verify the custom proxy
In this lesson, you see how to record a functional test script similar to lesson 1 and verify the new proxy. You will see

the change in class name after deploying the new proxy.

131

docs/files/proxy_lesson1.mp4
docs/files/proxy_lesson2.mp4
docs/files/proxy_lesson3.mp4
docs/files/proxy_lesson4.mp4
docs/files/proxy_lesson5.mp4

HCL OneTest™ UI

132

About this task

Show Me

Summary: Extend Functional Tester capabilities using Proxy SDK
This tutorial has shown you how to create a proxy project, build and deploy the proxies and verify the new proxy by

recording a functional test script.

Lessons learned

By completing this tutorial, in Module1, you learned how to:

• Create and build a proxy project

• Create a customization file to map the proxy to the control of an application_under_test

• Deploy the proxy

• Verify the new proxy by recording a functional test script

In Module 2, you learned how to:

• Create a proxy project

• Create a proxy class and build it

• Export the proxy package

• Import the proxy package

• Verify the new proxy by recording a functional test script

Additional resources

If you want to learn more about the topics covered in this tutorial, consult the following resources:

• Functional Tester Proxy SDK Help

• Functional Tester Proxy SDK Samples

docs/files/proxy_lesson6.mp4

Chapter 5. Samples
You can find the sample project that you can use with HCL OneTest™ UI to test the functionality of an application.

Sample project to test a Java application
The sample functional test project is created using the first few lessons of the "Create a functional test" tutorial . You

can look at the test assets while you do the tutorial or after you complete it.

Time required: 15 minutes

The sample project contains the script, verification points, object map, and other files that are created when you

complete lesson 3 of the tutorial. This sample script does not contain the image verification point. For reference, you

can look at the script or other assets to compare them with your own, or actually play back the script. The tutorial

script is called ClassicsSample.

Click to enlarge image

The ClassicsCD sample application

133

HCL OneTest™ UI

134

Related reference

Task flow for testing Java applications on page 45

Related information

Get the sample

Functional testing of a Java application sample project on page 134

Create a functional test using Java scripts on page 90

Functional testing of a Java application sample project
To use these examples, copy the testobject and superscript directories and their contents into a functional test

project.

To use one of the superscripts, set the helper superclass property for a script to the full class name of the

superscript. For example, to use the ExtensionScript superclass, for a script called "X":

1. Right-click "X" in the Functional Test Projects View and then select Properties from the popup menu.

2. In the Properties for X.java window, select Functional Test Script in the list on the left.

3. Finally, set the text in the edit box labeled Helper superclass to superscript.ExtensionScript.

You can also modify your project preferences so that all newly created scripts in the project will extend this

superscript. To define a default helper superscript for a project, perform these steps:

1. Right-click the project and then select Properties from the menu.

2. Then, set the text field in the Functional Test Project labeled New Script Helper superclass.

After completing these steps, your X.java script can make use of the additional methods of ExtensionScript such as

getClipboardText(), setClipboardText(), clipboardVP(), etc.

Class

Pack

age Description

Extension

Script

su

per

script

Provides some general utility methods.

HtmlScript su

per

script

Provides a handler to automatically dismiss unexpected active HTML dialogs.

WindowScript su

per

script

Provides some useful methods for getting around problems with native Microsoft® Win

dows® Applications.

docs/files/FTSample.zip

Chapter 5. Samples

Class

Pack

age Description

SwtScript su

per

script

Provides some useful methods for testing SWT-based applications. Note that this implemen

tation makes use of WindowScript, which is Microsoft-Windows specific. This class will not

work on Linux®.

EclipseScript su

per

script

Provides some methods that may be useful when testing plugins running inside the Eclipse

platform (see http://www.eclipse.org/). Note that this code makes use of internal Eclipse

classes, and consequently might break with future versions of Eclipse. This class illustrates

invoking static methods in the SUT and using custom test objects.

WorkbenchT

estObject

testo

bjec

t.e

clipse

A test object for the Eclipse (see http://www.eclipse.org/) shell Workbench.

WorkbenchWin

dowTestObject

testo

bjec

t.e

clipse

A test object for the Eclipse (see http://www.eclipse.org/) shell WorkbenchWindow.

Workbench

PageTestOb

ject

testo

bjec

t.e

clipse

A test object for the Eclipse (see http://www.eclipse.org/) shell WorkbenchPage.

A HCL OneTest™ UI project to test an HTML application
This is a sample functional test project that contains various functional test scripts for testing an HTML application.

In this sample project, the IBM® Rational® Team Concert™ web client is used as an application under test.

Time required: 15 minutes

Prerequisite: You must open the help from HCL OneTest™ UI to import the samples into your workspace.

HCL OneTest™ UI supports testing HTML applications that contain various types of controls. It also supports testing

Dojo controls in an HTML application. In this sample project, the test scripts are for testing the function of an HTML

application that contains various types of HTML controls such as text, check box, list, links and Dojo controls.

The sample functional test project contains simplified test scripts and the corresponding Java test scripts. After you

import the project into your workspace, you can view the test scripts and the corresponding application visuals, the

dataset, and the object maps.

Importing the sample

135

HCL OneTest™ UI

136

1. To import the sample into HCL OneTest™ UI workspace, click Get the sample.

2. Open the Functional Test perspective to view the imported functional test project.

3. To view both the simplified test script and the corresponding Java script, click Windows > Preferences.

4. Select the Enable the simplified script option.

Related reference

Task flow for testing HTML applications on page 47

Related information

Testing the sample on page 136

Get the sample

Download Rational Team Concert from jazz.net

Testing the sample
The functional test project contains simplified test scripts. You can view the simplified test scripts and the Java

scripts.

Application under test: The IBM® Rational® Team Concert™ web client is used as an application under test.

To run the functional test script against the IBM® Rational® Team Concert™ web client, you must set up Rational®

Team Concert™ for project-management activities.

If you do not have a set up for Rational® Team Concert™, you can obtain a trial version of Rational® Team Concert™

from Jazz.net. Register your details and download Rational® Team Concert™ from the Jazz.net web site, and set it

up for project-management activities.

You can then, modify certain test lines in the functional test script according to your setup and run the sample test

script against Rational® Team Concert™ to observe HTML testing.

This project contains the following two sample functional test scripts:

• CreateDefect: This functional test script creates a defect in Rational® Team Concert™. Some of the values

that must be specified in the fields for creating a defect are data-driven. You can add values to the dataset,

modify the script according to your setup, and run the script to test the application.

• CreateQuery: This functional test script creates a query that lists work items that match certain conditions in

Rational® Team Concert™. Some of the values that must be specified in the fields for creating the query are

data-driven. You can add values to the dataset, modify the script according to your setup, and run the script to

test the application.

Functional testing proxy SDK technology samples
Functional testing proxy SDK samples are simple examples of proxy source code and applications under test (AUT).

docs/files/FT_CLM_Sample.zip
http://jazz.net/downloads/

Chapter 5. Samples

These samples explain different implementations of HCL OneTest™ UI proxy APIs.

ButtonProxy
The ButttonProxy sample has two HCL OneTest™ UI proxies. There is one button control each for the Abstract

Window Toolkit (AWT) and the Java foundation class (JFC). The sample works with the application-under-test (AUT)

sample.

Time required: 15 minutes

Prerequisite: You must open the help from HCL OneTest™ UI to import the samples into your workspace.

Importing samples

1. To import the sample into the Eclipse workspace, click Get the sample. You must import all the samples that

are provided here into your workspace.

2. Open the Java perspective to view the imported samples.

The proxy sample contains the following files:

◦ Proxy source files

▪ ButtonProxy\src\sdk\samples\awt\ExtendedButtonProxy.java

▪ ButtonProxy\src\sdk\samples\jfc\ExtendedJButtonProxy.java

▪ ButtonProxy\ButtonProxy.rftcust

◦ Eclipse project files

▪ ButtonProxy\.project

◦ Proxy binary files

▪ ButtonProxy\ButtonProxy.jar

▪ ButtonProxy\ButtonProxy.rftcust

The AUT sample contains the following files:

◦ Eclipse project files

▪ ButtonApp\.project

◦ AWT button application-under-test files

▪ ButtonApp\src\AWTButtonApp.java

▪ ButtonApp\bin\AWTButtonApp.class

◦ JFC or swing button application-under-test files

▪ ButtonApp\src\JButtonApp.java

▪ ButtonApp\bin\JButtonApp.class

3. Test the button proxy sample on page 138.

137

HCL OneTest™ UI

138

Related information

Get the proxy sample

Get the application sample

Testing the button proxy sample on page 138

Testing the button proxy sample
This proxy sample explains how to write a simple proxy, map proxies to controls, deploy proxies, and verify how

proxies work.

Test the button application sample to view the default value of the button control

1. Open the AWTButtonApp.java and JButtonApp.java files that are available in the imported ButtonApp

project folder.

2. Open the Functional Test perspective.

3. Run the AWTButtonApp.java script. The sample button application is displayed.

4. To test the button control, record a functional test script and click the button control of the sample

application.

5. Open the test object map. Notice that the Proxy Class Name (#proxy) property under Administrative

properties for java.awt.Button is .java.awt.ButtonProxy. This is the default value for this control.

6. Similarly run the JButtonApp.java script. The sample button application is displayed.

7. To test the button control, record a functional test script and click the button control of the sample

application.

8. Open the test object map. Notice that the Proxy Class Name (#proxy) property under Administrative

properties for javax.swing.JButton is .java.jfc.AbstractButtonProxy. This is the default value for this control.

9. Notice that the button click action is recorded as button.Click()

Deploy the binary files

1. Open the Java perspective.

2. From the ButtonProxy project, copy the ButtonProxy.jar and the ButtonProxy.rftcust to the

customization directory. The default location for the customization directory is C:\ProgramData\HCL

\HCLOneTest\customization.

Verify the proxy deployment

After deploying the proxy, you can now verify the value of the control.

1. Restart HCL OneTest™ UI

2. Open the ButtonApp application as mentioned in the earlier section.

3. Record a functional test script to test the buttons of the sample application.

docs/files/buttonproxy.zip
docs/files/buttonapp.zip

Chapter 5. Samples

4. Open the test object map. Notice that the Proxy Class Name (#proxy) property under Administrative

properties for java.awt.Button and javax.swing.JButton are sdk.sample.awt.ExtendedButtonProxy and

sdk.sample.swt.ExtendedJButtonProxy respectively. This proxy sample extends the proxy method public

String getDescriptiveName() to change the TestObject descriptive names for the java.awt.Button and

javx.swt.JButton controls.

5. Notice that after you deploy the proxies, the click actions on java.awt.Button and javax.swing.JButton controls

are recorded as button_button.click() and jbutton_button().click() respectively as the proxy changes the

descriptive name given to the TestObject for these two controls

JFormattedTextFieldProxy
This JFormattedTextFieldProxy sample explains how create a new proxy class add new control properties and control

data. The sample works with the application-under-test (AUT) sample.

Time required: 15 minutes

Prerequisite: You must open the help from HCL OneTest™ UI to import the samples into your workspace.

Importing samples

1. To import the sample into the Eclipse workspace, click Get the sample. You must import all the samples that

are provided here into your workspace.

2. Open the Java perspective to view the imported samples.

The proxy sample contains the following files:

◦ Proxy source files

▪ JFormattedTextFieldProxy\src\sdk\samples\jfc\JFormattedTextFieldProxy.java

▪ JFormattedTextFieldProxy\JFormattedTextFieldProxy.rftcust

◦ Eclipse project files

▪ JFormattedTextFieldProxy\.project

◦ Proxy binaries

▪ JFormattedTextFieldProxy\JFormattedTextFieldProxy.jar

▪ JFormattedTextFieldProxy\JFormattedTextFieldProxy.rftcust

The AUT sample contains the following files:

◦ Eclipse project files

▪ JFormattedTextFieldApp\.project

◦ Application-under-test files

▪ JFormattedTextFieldApp\JFormattedTextFieldApp.java

▪ JFormattedTextFieldApp\JFormattedTextFieldApp.class

3. Test the JFormattedTextField proxy sample on page 140.

139

HCL OneTest™ UI

140

Related information

Get the proxy sample

Get the application sample

Testing the sample on page 140

Testing the sample
This proxy sample explains how to extend a proxy to add more control properties and control data.

Test the application sample to view the default value of the text control

1. Open the JFormattedTextFieldApp.java file that is available in the imported

JFormattedTextFieldApp project folder.

2. Open the Functional Test perspective.

3. Run the JFormattedTextFieldApp.java script. The sample application is displayed.

4. To test the text control, record a functional test script and record a data verification point and properties

verification point on any of the control in the sample application.

5. Notice that there is no separate proxy for javax.swing.JFormattedTextFieldProxy. Properties that are specific

to the JFormattedTextFieldProxy control, for example, format string and unformatted value are not available

for the getProperties() method. These values are also unavailable for data verification points.

6. Run testObject.getProperty("unformattedValue"). This throws the error message, Properties not found.

Extended capabilities in the proxy code

Added more control properties

Along with the default control properties that are provided, more control properties are added by extending the

java.util.Hashtable getProperties() and Object getProperty(String propertyName) proxy methods.

Added more control data

Along with the default control data types that are provided, more control data are added by extending the

java.util.Hashtable getTestDataTypes() and ITestData getTestData(String testDataType) proxy methods.

Deploy the binary files

1. Open the Java perspective.

2. From the JFormattedTextFieldProxy project, copy the JFormattedTextFieldProxy.jar and the

JFormattedTextFieldProxy.rftcust to the customization directory. The default location for the customization

directory is .

docs/files/jformattedtextfieldproxy.zip
docs/files/jformattedtextfieldapp.zip

Chapter 5. Samples

Verify the proxy deployment

1. Restart HCL OneTest™ UI

2. After you deploy the proxies, running testObject.getProperty("unformattedValue") returns a valid property.

3. Before you deploy the proxies, data verification on the javx.swt.JFormattedTextField control returns only two

data types. After you deploy the proxies, an additional data type Unformatted Value is included. You can also

verify that the additional data type is present by using the getTestDataTypes() and getTestData("value") APIs.

CheckBoxProxy
This CheckBoxProxy sample explains how to create a new proxy class and new TestObjects and then map them to

the javax.swing.JCheckBox control. The sample works with the application-under-test (AUT) sample.

Time required: 15 minutes

Prerequisite: You must open the help from HCL OneTest™ UI to import the samples into your workspace.

Importing samples

1. To import the sample into the Eclipse workspace, click Get the sample. You must import all the samples that

are provided here into your workspace.

2. Open the Java perspective to view the imported samples.

The proxy sample contains these files:

◦ Proxy source files

▪ CheckBoxProxy\src\sdk\sample\jfc\ExtendedCheckBoxProxy.java

▪ CheckBoxProxy\CheckBoxProxy.rftcust

◦ TestObjects source files

▪ ExtendedToggleGUITestObject\src\sdk\sample\ExtendedToggleGUITestObject.java (Java

TestObject)

▪ ExtendedToggleGUITestObject\SDK\Sample\ExtendedToggleGUITestObje ct.cs (.NET

TestObject. See .NET CheckBox ProxySDK sample)

▪ ExtendedToggleGUITestObject\ExtendedToggleGUITestObject.rftcust (Customization file for

both Java and .NET TestObjects)

◦ Eclipse project files

▪ CheckBoxProxy\.project

▪ ExtendedToggleGUITestObject\.project

◦ Binary files

▪ CheckBoxProxy\CheckBoxProxy.jar (Proxy Jar)

▪ CheckBoxProxy\CheckBoxProxy.rftcust (Proxy Customization file)

▪ ExtendedToggleGUITestObject\ExtendedToggleGUITestObject.jar (Java TestObject Jar)

▪ ExtendedToggleGUITestObject\ExtendedToggleGUITestObject.dll (.NET TestObject assembly)

▪ ExtendedToggleGUITestObject\ExtendedToggleGUITestObject.rftcust (Customization file for

both Java and .NET TestObject)

141

HCL OneTest™ UI

142

◦ The AUT sample contains the following files:

▪ Eclipse project files

▪ CheckBoxApp\.project

▪ Application-under-test files

▪ CheckBoxApp\src\JCheckBoxApp.java

▪ CheckBoxApp\bin\JCheckBoxApp.class

3. Test the check box proxy sample on page 142.

Related information

Get the proxy sample

Get the application sample

Get the ExtendedToggleGUITestObject proxy sample

Testing the CheckBoxProxy sample on page 142

Testing the CheckBoxProxy sample
This proxy sample explains how to create a simple proxy class and a new TestObject for a CheckBox control

Test the check box application sample to view the default value of the control

1. Open the JCheckBoxApp.java file that is available in the imported CheckBoxApp project folder.

2. Open the Functional Test perspective.

3. Run the JCheckBoxApp.java script. The sample application is displayed.

4. To test the button control, record a functional test script and click the button control of the sample

application.

5. Open the test object map. Notice that the Proxy Class Name (#proxy) and Test Object Class Name

(#testobject) property under Administrative properties for the check box is .java.jfc.JCheckBoxProxy and

ToggleGUITestObject respectively. This is the default value for this control.

6. Also, notice that the check() and uncheck() methods are unavailable for the checkbox TestObject.

Extended Capabilities: Creating a new TestObject

In this sample proxy, a new TestObject is created and mapped to CheckBoxProxy proxy to add the check() and

uncheck() methods. This proxy also extends the public String getTestObjectClassName() proxy method to return the

canonical name of the newly created TestObject so that all javax.swing.JCheckBox controls have new TestObjects.

docs/files/checkboxproxy.zip
docs/files/checkboxapp.zip
docs/files/extendedtoggleguitestobject.zip

Chapter 5. Samples

Note: You create a new TestObject only when you want the control to expose new methods that are not

available in the existing HCL OneTest™ UI TestObject.

Deploy the binary files

1. Open the Java perspective.

2. From the CheckBoxProxy and ExtendedToggleGUITestObject projects, copy the CheckBoxProxy.jar,

CheckBoxProxy.rftcust, ExtendedToggleGUITestObject.jar, and ExtendedToggleGUITestObject.rftcust to

the customization directory. The default location for the customization directory is C:\ProgramData\HCL

\HOTUI\customization.

Note: You must manually add the ExtendedToggleGUITestObject.jar file to the HCL OneTest™ UI

project, if a compilation error is displayed in the HCL OneTest™ UI script for the check box control.

Deploy the binary files

Copy the CheckBoxProxy.jar, CheckBoxProxy.rftcust, ExtendedToggleGUITestObject.jar, and

ExtendedToggleGUITestObject.rftcust files to the customization directory and restart HCL OneTest™ UI to test the

sample application-under-test (AUT).

Verify the proxy and TestObject deployment

You can test the javax.swing.JCheckBox control, which the CheckBoxApp AUT provides.

1. Restart HCL OneTest™ UI

2. After you deploy the proxies, the administrative property values change to the following for the checkbox

TestObject:

Administrative property Value

Proxy Class Name (#proxy) SDK.Sample.ExtendedCheckBoxProxy

Test Object Class Name (#testob

ject)

ExtendedToggleGUITestObject

3. After you deploy the proxies, the check() and uncheck() methods are available for the checkbox TestObject.

Button OverrideProxy
This ButtonOverrideProxy sample explains how you can extend the recording behavior of HCL OneTest™ UI, add more

properties and set up a simple value manager and value class. This sample proxy is written for the java.awt.Button

control. The sample works with the application-under-test sample (AUT).

Time required: 15 minutes

The proxy sample contains the following files:

143

HCL OneTest™ UI

144

• Proxy source files

◦ ButtonOverrideProxy\src\sdk\sample\awt\ButtonOverrideProxy.java

◦ ButtonOverrideProxy\src\sdk\sample\value\SimpleValue.java

◦ ButtonOverrideProxy\src\sdk\sample\value\SimpleValueManager.java

◦ ButtonOverrideProxy\ButtonOverrideProxy.rftcust

• Eclipse project files

◦ ButtonOverrideProxy\.project

• Proxy binary files

◦ ButtonOverrideProxy\ButtonOverrideProxy.jar

◦ ButtonOverrideProxy\ButtonOverrideProxy.rftcust

The AUT sample contains the following files:

• Eclipse project files

◦ ButtonApp\.project

• Application-under-test files

◦ ButtonApp\src\AWTButtonApp.java

◦ ButtonApp\bin\AWTButtonApp.class

Related information

Get the proxy sample

Get the application sample

Examples you can use on page 144

Extend HCL OneTest UI capabilities using Proxy SDK on page 127

Examples you can use
This proxy sample explains how to extend a proxy to add more properties, set up a simple value class and value

manager, and extend the recording behavior of HCL OneTest™ UI.

Extended Capabilities : Adding more properties

This proxy sample extends the proxy methods public java.util.Hashtable getProperties() and public Object

getProperty(String propertyName) to add a new property simpleValue.

Note: It is not mandatory to have value classes and value managers for all additional properties.

Set up a simple value class and value manager

This proxy sample returns a user-defined data type (value class and value manager) as a return value for the property

simpleValue.

docs/files/buttonoverrideproxy.zip
docs/files/buttonapp.zip

Chapter 5. Samples

Extend the record capability

This proxy sample extends the public void processSingleMouseEvent(IMouseActionInfo action) method to extend

the recording behavior so that single clicks are recorded as doubleclick() methods and double-clicks are recorded as

click() methods.

Deploy the binary files

Copy the ButtonOverrideProxy.jar and ButtonOverrideProxy.rftcust files to the customization directory and then

restart HCL OneTest™ UI to test the sample application-under-test (AUT).

Verify the added property and value class

You can test the java.awt.Button and javx.swt.JButton controls, provided as part of the AWTButtonApp and JButtonApp

AUTs.

• Before you deploy the proxies, run testObject().getProperty("simpleValue"). This throws the error message,

simpleValue is not a valid property.

• After you deploy the proxies, run testObject().getProperty("simpleValue"). This returns the value, FuBar.

Verify the recording behavior

• Before you deploy the proxies, the java.awt.Button records single-clicks as button.click() and double-clicks

as button.doubleClick().

• After you deploy the proxies, the java.awt.Button records single-clicks as button.doubleClick() and double-

clicks as button.Click(). The click() and doubleClick() methods are swapped.

JSpinnerProxy
This JSpinnerProxy sample explains how to extend recording behavior of a control with SubItems, and support the

playback for the extended recording behavior. The sample works with the application-under-test (AUT) sample.

Time required: 15 minutes

The proxy sample contains the following files:

• Proxy source files

◦ JSpinnerProxy\src\sdk\sample\jfc\JSpinnerProxy.java

◦ JSpinnerProxy\JSpinnerProxy.rftcust

• Eclipse project files

◦ JSpinnerProxy\.project

• Proxy binary files

◦ JSpinnerProxy\JSpinnerProxy.jar (Proxy Jar)

◦ JSpinnerProxy\JSpinnerProxy.rftcust (Proxy Customization file)

The AUT sample contains the following files:

145

HCL OneTest™ UI

146

• Eclipse project files

◦ JSpinnerApp\.project

• Application-under-test files

◦ JSpinnerApp\src\JSpinnerApp.java

◦ JSpinnerApp\bin\JSpinnerApp.class

Related information

Get the proxy sample

Get the application sample

Examples you can use on page 146

Examples you can use
This proxy sample explains how to extend the recording behavior of a control with SubItems and support for the

corresponding playback.

Extended Capabilities: Recording controls with SubItems

This proxy sample extends the processSingleMouseEvent() proxy API to modify the recording behavior of a spin

control. Although a spin control has two buttons and one text control as its children, from a testing perspective it

must be treated as a single control with no children appearing in the TestObject Map. (In the TestObjectMap, the

buttons and the text are treated as SubItems.) The processSingleMouseEvent() implementation sets methods with

suitable SubItems, for example atButton("UP") or atButton("DOWN") as parameters for recording. Also note that

although there are child objects for the spin control, you must make sure they are not listed as separate TestObjects.

Therefore, the getChildAtPoint() and getChildren() APIs are extended to return null values. These child objects are

treated as SubItems.

Playback Support

To support playback for each SubItem that is introduced during recording, HCL OneTest™ UI looks for the

screen rectangle for each SubItem through the proxy. The SubItem rectangle can be provided by extending

java.awt.Rectangle getScreenRectangle(Subitem subitem) proxy API.

Deploy the binaries

Copy the JSpinnerProxy.jar and JSpinnerProxy.rftcust files to the customization directory and restart HCL OneTest™

UI to test the sample application-under-test (AUT).

Verify the recording behavior

You can verify the recording behavior of the spin control:

docs/files/jspinnerproxy.zip
docs/files/jspinnerapp.zip

Chapter 5. Samples

• Before you deploy the proxies, when you record results of the up and down buttons of JSpinner, the clicks are

recorded as button.click(), where each up and down control is treated as a separate control.

• After you deploy the proxies, clicking on the up button is recorded as spinner().click(atButton("UP")).

Notice that the buttons are treated and recorded as SubItems and not as separate TestObjects.

Verify the playback behavior

• Before you deploy the proxies, playing back user actions with SubItems, for example

spinner().click(atButton("UP")) throws an exception, Point not found.

• After you deploy the proxies, playing back user actions with SubItems work fine.

TreeProxy
This TreeProxy sample explains how to extend recording behavior of a control with SubItems, and support the

playback for the extended recording behavior. The sample works with the application-under-test (AUT) sample. To

view the samples, you must import the tree proxy, tree application and the tree custom control for which the proxy is

being written into your workspace.

Time required: 15 minutes

Prerequisite: You must open the help from HCL OneTest™ UI to import the samples into your workspace.

Importing samples

1. To import the sample into the Eclipse workspace, click Get the sample. You must import all the samples that

are provided here into your workspace.

2. Open the Java perspective to view the imported samples.

The proxy sample contains these files:

◦ Proxy source files

▪ TreeProxy\src\sdk\sample\jfc\ExtendedJTreeProxy.java

▪ TreeProxy\src\TreeProxy.rftcust

◦ Eclipse project files

▪ TreeProxy\.project

◦ Proxy binary files

▪ TreeProxy\TreeProxy.jar

▪ TreeProxy\TreeProxy.rftcust

The application-under-test sample contains these files:

◦ Eclipse project files

▪ TreeApp\.project

◦ Application-under-test files

▪ TreeApp\src\sdk\sample\jfc\CustomTreeSample.java.

▪ TreeApp\bin\sdk\sample\jfc\CustomTreeSample.class

147

HCL OneTest™ UI

148

The tree custom control contains these files:

◦ ExtendedTreeControl\src\sdk\sample\jfc\ExtendedJTree.java

3. Test the tree proxy sample on page 148.

Related information

Get the proxy sample

Get the application sample

Get the tree custom control

Testing the sample on page 148

Testing tree proxy sample
With this proxy sample you learn how to write a simple proxy, map proxies to controls (handled internally), deploy

proxies, and verify that the proxies work.

Test the tree application sample to view the default value of the tree control

1. Open the CustomTreeSample.java file that is available in the imported TreeApp project folder.

2. Open the Functional Test perspective.

3. Run the CustomTreeSample.java script. The sample tree application is displayed.

4. To test the tree controls, record a functional test script and click the tree controls of the sample application.

5. Open the test object map. Notice that the Proxy Class Name (#proxy) property under Administrative

properties for CustomTree is .java.jfc.JTreeProxy. This is the default value for this control.

Deploy the binary files

1. Open the Java perspective.

2. From the TreeProxy project, copy the TreeProxy.jar and the TreeProxy.rftcust to the customization

directory. The default location for the customization directory is

Verify the proxy deployment

After deploying the proxy, you can now verify the value of the control.

1. Restart HCL OneTest™ UI

2. Open the CustomTreeSample application as mentioned in the earlier section.

3. Record a functional test script to test the tree controls of the sample application.

4. Open the test object map. Notice that the Proxy Class Name (#proxy) property under Administrative

properties for CustomTree is sdk.sample.jfc.ExtendedJTreeProxy. This is the newly developed proxy for the

CustomTree control.

docs/files/jtreeproxy.zip
docs/files/jtreeapp.zip
docs/files/jextendedtreecontrol.zip

Chapter 5. Samples

Flex control proxy
This FlexCustomControl sample explains how to extend the recording behavior of a control with SubItems and

support the playback for the extended recording behavior. The sample works with the application under test sample.

To view the samples, import the flex proxy for which the proxy is being written into your workspace.

Time required: 15 minutes

Prerequisite: You must open the help from HCL OneTest™ UI to import the samples into your workspace.

Importing samples

1. To import the sample into the Eclipse workspace, click Get the sample. You must import all the samples that

are provided here into your workspace.

2. Open the Java perspective to view the imported samples.

The proxy sample contains these files:

◦ Proxy source files

▪ FlexCustomControl\src\sdk\sample\flex\FlexCustomControlProxy.java

▪ FlexCustomControl\src\sdk\sample\flextestobject

\FlexCustomControlTestObject.java

▪ FlexCustomControl\src\FlexCustomControl.rftcust

◦ Eclipse project files

▪ FlexCustomControl\.project

◦ Proxy binary files

▪ FlexCustomControl\FlexCustomControl.jar

▪ FlexCustomControl\FlexCustomControl.rftcust

The application under test sample contains these files:

◦ Eclipse project file: FlexCustomControlApp\.project

◦ Application under test files: FlexCustomControlApp\mypage.htm

3. Test the flex proxy sample on page 149

Related information

Get the the flex custom control proxy sample

Get the flex custom control application sample

Testing the flex proxy sample on page 149

Testing the flex proxy sample
With this proxy sample you learn how to write a simple proxy, map proxies to controls (handled internally), deploy

proxies, and verify that the proxies work.

To test the sample, complete these procedures:

149

docs/files/flexcustomcontrol.zip
docs/files/flexcustomcontrolapp.zip

HCL OneTest™ UI

150

1. Open the application file mypage.htm located at <installation_folder>\HCLOneTest

\FunctionalTester\Flex\flexcustomcontrolapp.zip after unzipping it.

2. Add the sample application path to the trusted directory C:\WINDOWS\system32\Macromed\Flash

\FlashPlayerTrust\ by creating a file without an extension. For example, create a file named Flex in the

trusted directory and add the file path of the sample application C:\Program Files\HCL\HCLOneTest

\FunctionalTester\Flex\flexcustomcontrolapp\mypage.htm to it.

3. Copy the contents of the ClassInfo tag in C:\Program Files\HCL\HCLOneTest\FunctionalTester

\Flex\flexcustomcontrolapp\FlexCustom.xml file into <installation_folder>\bin

\FlexEnv.xml file.

4. Invoke the sample Flex application and try recording on it.

Deploy the binary files

Deploy the FlexCustomControl.jar and FlexCustomControl.rftcust files to the customization directory.

For example, C:\ProgramData\HCL\HCLOneTest\customization. Close HCL OneTest™ UI, all Java enabled

applications and browsers so that the new customization class is loaded. Restart HCL OneTest™ UI to test the sample

application under test.

Verify the proxy deployment

You can test the controls that are provided as part of the FlexCustomControlApp application under test by verifying

the proxy class name before and after deployment.

• Before you deploy the proxies, notice that the Proxy Class Name (#proxy) property under Administrative

properties for FlexCustomControl is .flex.FlexObjectProxy . This is the default value for this control. Before

you deploy the proxies, notice that the event method is captured as follows:

flex_FlexCustomControl().performAction("Select","Food");

• After you deploy the proxies, sdk.sample.flex.FlexCustomControlProxy is the newly developed proxy for the

FlexCustomControl control. After you deploy the proxies notice also that the event method is captured as

follows:

Select("Food");

Chapter 6. Administrator Guide
This guide describes how to install HCL OneTest™ UI software. After you install the software, you can perform

administration tasks such as license configuration and integration with other products. This guide is intended for

administrators.

Installation
You can find information about the installation of HCL OneTest™ UI.

Installation requirements
This section details hardware, software, and user privilege requirements that must be met in order to successfully

install and run HCL OneTest™ UI.

Hardware and Software requirements
Before you install the product, verify that your system meets the hardware and software requirements.

For a complete list of system requirements, see HCL OneTest UI 10.1.0 system requirements.

User privileges requirements
You must have a user ID that meets the following requirements before you can install HCL OneTest™ UI.

• Your user ID must not contain double-byte characters.

• For Windows®, the user privileges required for installing depend on the version of Windows® on your

computer:

◦ For Microsoft® Windows®, you must log in to the Administrator account (or run as Administrator;

right-click the program file or shortcut and select Run as Administrator) to perform the following

tasks:

▪ Install or update Installation Manager

▪ Install or update a product offering

▪ Install a license key for your product by using Installation Manager

• For Linux®: You must be able to log in as root.

Note: On Ubuntu, you must ensure that the environment variables that are set while installing the

products are retained when you open HCL OneTest™ UI and the application-under-test.

• If you log on as a non-administrator user, you can run HCL OneTest™ UI and also test applications.

Administrator access is only required for installing HCL OneTest™ UI.

151

https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0079930

HCL OneTest™ UI

152

Installing the product using Installation Manager
In this section, you will learn the pre-installation, installation, and post-installation tasks to install the product by using

Installation Manager.

Installation terminology
Understanding these terms can help you take full advantage of the installation information and your HCL OneTest™

UI.

These terms are used in the installation topics.

Installation directory

The location of product artifacts after the package is installed.

Package

An installable unit of a software product. Software product packages are separately installable units

that can operate independently from other packages of that software product.

Package group

A package group is a directory in which different product packages share resources with other

packages in the same group. When you install a package using Installation Manager, you can create a

new package group or install the packages into an existing package group. (Some packages cannot

share a package group, in which case the option to use an existing package group is unavailable.)

Repository

A storage area where packages are available for download. A repository can be disc media, a folder on a

local hard disk, or a server or web location.

Shared directory

In some instances, product packages can share resources. These resources are located in a directory

that the packages share.

Planning the installation
Read all the topics in this section before you begin to install or update any of the product features. Effective planning

and an understanding of the key aspects of the installation process can help ensure a successful installation.

Installation roadmap
The installation roadmap lists the high-level steps for installing your product.

Roadmap for installing HCL OneTest™ UI

Perform these tasks to install HCL OneTest™ UI:

Chapter 6. Administrator Guide

1. Verify that your user ID meets the requirements for installing the product. on page 151

2. Review the rest of the planning information on page 154.

3. Complete any necessary pre-installation tasks. on page 158

4. Install the product. on page 160.

Note:

◦ To install HCL OneTest™ UI on multiple computers, you can use the silent installation

mechanism to install the package quickly. For information, see Installing silently topics in the

Installation Manager information center

Installation Manager overview
Installation Manager is a program for installing, updating, and modifying packages. It helps you manage the

applications, or packages, that it installs on your computer. Installation Manager does more than install packages: It

helps you keep track of what you have installed, determine what is available for you to install, and organize installation

directories.

Installation Manager provides tools that help you keep packages up to date, modify packages, manage the licenses

for your packages, and uninstallation packages.

You can download the most recent version of Installation Manager from Installation Manager downloads. Installation

Manager is required to install each HCL product. You will need to create an account on jazz.net before you can

download the software.

Installation Manager includes six wizards that make it easy to maintain packages:

• The Install wizard walks you through the installation process. You can install a package by simply accepting

the defaults or you can modify the default settings to create a custom installation. Before you install, you get

a complete summary of your selections throughout the wizard. Using the wizard you can install one or more

packages at one time.

• The Update wizard searches for available updates to packages that you have installed. An update might be a

released fix, a new feature, or a new version of the product. Details of the contents of the update are provided

in the wizard. You can choose whether to apply an update.

• The Modify wizard helps you modify certain elements of a package that you have already installed. During

the first installation of the package, you select the features that you want to install. Later, if you require other

features, you can use the modify packages wizard to add them to your package. You can also remove features

and add or remove languages.

• The Roll Back wizard helps you to revert to a previous version of a package.

• The Uninstall wizard removes a package from your computer. You can uninstall more than one package at a

time.

For more information about Installation Manager, visit the Installation Manager help.

153

http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/t_silentinstall_overview.html
http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/t_silentinstall_overview.html
https://jazz.net/downloads/ibm-installation-manager/
https://www.ibm.com/support/knowledgecenter/SSDV2W/im_family_welcome.html

HCL OneTest™ UI

154

Installation considerations
Part of planning entails making decisions about installation locations, working with other applications, extending

Eclipse, upgrading, migrating, and configuring help content.

Planning what features to install
You can customize your software product by selecting which features of HCL OneTest™ UI to install.

When you install the HCL OneTest™ UI product package by using Installation Manager, the installation wizard displays

the features in the available product package. From the features list, you can select which to install. A default set

of features is selected for you (including any required features). Installation Manager automatically enforces any

dependencies between features and prevents you from clearing any required features.

Note: After you finish installing the package, you can still add or remove features from your software product

by running the Modify Packages wizard in Installation Manager. See Modifying installations on page 173 for

more information.

HCL OneTest™ UI installation features
You can choose to install some of the features of HCL OneTest™ UI. Some features are selected for installation by

default. If a feature already exists in your shared resources directory, you cannot install that feature again.

Feature Description Selected for installation by default

Select Edition (Eclipse IDE) Provides an automated function

al and regression testing of Win

dows®, .NET, Java™, HTML 5, Siebel,

SAP, AJAX, PowerBuilder, Flex,

Dojo, GEF, Visual Basic applica

tions, Adobe® PDF documents, and

zSeries®, iSeries®, and pSeries® ap

plications through the Eclipse IDE.

You can install a full licensed edition,

which is available for Web UI testing.

The .NET Framework 1.1 or 2.0 is re

quired for testing Siebel and SAP ap

plications.

Yes

HCL OneTest™ UI Extension for Sele

nium/Appium

Provides the ability to run Seleni

um/Appium tests.

Yes

Microsoft® Visual Studio .NET Inte

gration

Provides components to enable Visu

al Basic .NET scripting through the

Microsoft Visual Studio 2015, 2017,

No

Chapter 6. Administrator Guide

Feature Description Selected for installation by default

or 2019 integrated development envi

ronment (IDE).

Note: Microsoft Visual Studio

integration for HCL OneTest™

UI might not get installed

if the mandatory prerequi

sites are not installed, or if

Microsoft Visual Studio is not

installed properly. For more

information, see Unable to

install HCL OneTest™ UI Ex

tension for Microsoft Visual

Studio 2015, 2017 & 2019.

Java 8 OpenJDK with Eclipse OpenJ9 Provides the Java 8.0 binaries re

quired for HCL OneTest™ UI.

Notes:

• If you want to shell

share HCL OneTest™

UI along with oth

er products that uti

lize OpenJDK, you

must select Java 8

OpenJDK with Eclipse

OpenJ9 for only one

of the shell shared

products. You must

not install multiple in

stances of OpenJDK

in the same package

group.

Yes

Note: HCL OneTest™ UI supports integration with Rational® Quality Manager for remote execution of test

scripts. You can enable HCL OneTest™ UI integration with Rational® Quality Manager by configuring the

155

https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430

HCL OneTest™ UI

156

adapter that is installed by default when you install HCL OneTest™ UI. For more information, see Rational

Quality Manager integration overview.

Extending an existing Eclipse IDE
When you install the HCL OneTest™ UI product package, you can choose to extend an Eclipse integrated development

environment (IDE) already installed on your computer by adding the functions that the HCL OneTest™ UI package

contains.

The HCL OneTest™ UI package that you install using IBM® Installation Manager is bundled with a version of

the Eclipse IDE or workbench; this bundled workbench is the base platform for providing the functionality in the

Installation Manager package. However, if you have an existing Eclipse IDE on your workstation, then you have the

option to extend it, that is, add to the IDE the additional functionality provided in the HCL OneTest™ UI package.

To extend an existing Eclipse IDE, in the Location page of the Install Packages wizard, select the Extend an existing

Eclipse IDE option.

Important: To enable users who do not have Administrator privileges to work with HCL OneTest™ UI in the

Windows® operating system, do not install Eclipse inside the Program Files directory (C:\Program Files\).

You might extend your existing Eclipse IDE, for example, because you want to gain the functionality provided in the

HCL OneTest™ UI package, but you also want to have the preferences and settings in your current IDE when you work

with the functionality from the HCL OneTest™ UI package. You also might want to work with plug-ins that you have

installed that already extend the Eclipse IDE.

Your existing Eclipse IDE must be version 4.6.3 for the latest updates from eclipse.org to be extended. Installation

Manager checks that the Eclipse instance you specify meets the requirements for the installation package.

Note: You might need to update your Eclipse version in order to install updates to HCL OneTest™ UI. Refer to

the update release documentation for information on changes to the prerequisite Eclipse version.

Extending an existing Eclipse IDE
When you install the HCL OneTest™ UI product package, you can choose to extend an Eclipse integrated development

environment (IDE) already installed on your computer by adding the functions that the HCL OneTest™ UI package

contains.

The HCL OneTest™ UI package that you install using IBM® Installation Manager is bundled with a version of

the Eclipse IDE or workbench; this bundled workbench is the base platform for providing the functionality in the

Installation Manager package. However, if you have an existing Eclipse IDE on your workstation, then you have the

option to extend it, that is, add to the IDE the additional functionality provided in the HCL OneTest™ UI package.

To extend an existing Eclipse IDE, in the Location page of the Install Packages wizard, select the Extend an existing

Eclipse IDE option.

Chapter 6. Administrator Guide

Important: To enable users who do not have Administrator privileges to work with HCL OneTest™ UI in the

Windows® operating system, do not install Eclipse inside the Program Files directory (C:\Program Files\).

You might extend your existing Eclipse IDE, for example, because you want to gain the functionality provided in the

HCL OneTest™ UI package, but you also want to have the preferences and settings in your current IDE when you work

with the functionality from the HCL OneTest™ UI package. You also might want to work with plug-ins that you have

installed that already extend the Eclipse IDE.

Your existing Eclipse IDE must be version 4.6.3 for the latest updates from eclipse.org to be extended. Installation

Manager checks that the Eclipse instance you specify meets the requirements for the installation package.

Note: You might need to update your Eclipse version in order to install updates to HCL OneTest™ UI. Refer to

the update release documentation for information on changes to the prerequisite Eclipse version.

Installation repositories
Installation Manager retrieves product packages from specified repository locations.

If the Installation Manager is started directly, you must specify an installation repository that contains the product

packages that you want to install. See Setting repository preferences in Installation Manager on page 157.

Some organizations bundle and host their own product packages on their intranet. Your system administrators will

need to provide you with the correct URL.

Setting repository preferences in Installation Manager
When you download and install Installation Manager separately, you must specify the repository preference (the

URL for the directory that contains the product package) in Installation Manager before you can install the product

package.

Before you begin

Before starting the installation process, be sure to obtain the installation package repository URL from your

administrator.

To add, edit, or remove a repository location in Installation Manager:

1. Start Installation Manager.

2. On the Start page of Installation Manager, click File > Preferences, and then click Repositories.

Result

The Repositories page opens, showing any available repositories, their locations, and whether they are

accessible.

3. On the Repositories page, click Add Repository.

4. In the Add repository window, type the URL of the repository location or browse to it and set a file path.

157

HCL OneTest™ UI

158

5. Click OK. If you provided an HTTPS or restricted FTP repository location, then you will be prompted to enter a

user ID and password.

Result

The new or changed repository location is listed. If the repository is not accessible, a red x is displayed in the

Accessible column.

6. Click OK to exit.

What to do next

Note: For Installation Manager to search the default repository locations for the installed packages, ensure

the preference Search service repositories during installation and updates on the Repositories preference

page is selected. This preference is selected by default.

Preinstallation tasks
Before you install the product, you might need to prepare or configure your computer.

Increasing the number of file handles on Linux workstations

About this task

Important: For best results, increase the number of file handles available for HCL OneTest™ UI, because it uses more

than the default limit of 1024 file handles per process. (A system administrator might need to make this change.)

Exercise caution when following these steps to increase your file descriptors on Linux®. Failure to follow the

instructions correctly might result in a computer that will not start correctly. For best results, have your system

administrator perform this procedure.

1. Log in as root. If you do not have root access you will need to obtain it before continuing.

2. Change to the etc directory

3. Use the vi editor to edit the initscript file in the etc directory. If this file does not exist, type vi initscript to

create it.

Important: If you decide to increase the number of file handles, do not leave an empty initscript file on your

computer. If you do so, your machine will not start up the next time that you turn it on or restart.

4. On the first line, type ulimit -n 4096 (the key here is that the number is significantly larger than 1024, the

default on most Linux computers). Caution: do not set this too high, because it can seriously impact system-

wide performance.

5. On the second line, type eval exec "$4".

6. Save and close the file after making sure you have done steps 4 and 5.

Chapter 6. Administrator Guide

Note: Ensure you have followed the steps correctly, as not doing this correctly will result in a machine

that does not boot.

7. Optional: Restrict your users or groups by modifying the limits.conf file in the etc/security directory. Both

SUSE Linux Enterprise Server (SLES) Version 9 and Red Hat Enterprise Linux Version 4.0 have this file by

default. If you do not have this file, you might consider a smaller number in step 4 above (for example, 2048).

You need to do this so that most users have a reasonably low limit on the number of allowable open files per

process. If you used a relatively low number in step 4, it is less important to do this. However, if you choose

to set a high number in step 4, refraining from establishing limits in the limits.conf file can seriously impact

computer performance.

The following is a sample limits.conf file that restricts all users and then sets different limits for others

afterwards. This sample assumes you set descriptors to 8192 in step 4 earlier.

* soft nofile 1024

* hard nofile 2048

root soft nofile 4096

root hard nofile 8192

user1 soft nofile 2048

user1 hard nofile 2048

Note that the * in the example above sets the limits for all users first. These limits are lower than the limits

that follow. The root user has a higher number of allowable descriptors open, while user1 is in between the

two. Make sure you read and understand the documentation contained within the limits.conf file before

making your modifications.

What to do next

For more information on the ulimit command, refer to the man page for ulimit.

Verifying and extracting electronic images
After you download the installation files, you must extract the electronic image from the compressed file before you

can install HCL OneTest™ UI. You may want to verify the completeness of the downloaded files before extracting the

image.

About this task

If you select the Download Director option for downloading the installation file, the Download Director applet

automatically verifies the completeness of each file that it processes.

Extracting the downloaded files

About this task

Extract each compressed file to the same directory.

159

HCL OneTest™ UI

160

Installing software
This section provides the instructions for installing Installation Manager and the product as well as installation

verification.

To install your product, follow the procedures and information in these topics.

Installing HCL OneTest™ UI
To get started, you must install HCL OneTest™ UI.

Before you begin

• Your computer must have met the system requirements and completed the preinstallation tasks.

• If you want to install the HCL OneTest™ UI on Linux machine, the following libraries must be available on your

machine.

◦ libstdc++.so.6

◦ libXp.so.6

◦ libgtk-x11-2.0.so.0

◦ libXtst.so.6

◦ libXt.so.6

◦ libstdc++.so.5

◦ libXft.so.2

◦ libXm.so.4

• To install HCL OneTest™ UI on Red Hat Linux Enterprise (RHEL) 8.0 and later, you must have completed one of

the following tasks:

◦ Installed libnsl.so.1 on your computer

◦ Created a soft link to libnsl.so.2 by running the following command:sudo ln -s /usr/lib64/libnsl.so.2 /

usr/lib64/libnsl.so

• To install HCL OneTest™ UI on a computer with Ubuntu operating system, you must have installed libxm4

and libxp6 packages.

◦ Add deb http://security.ubuntu.com/ubuntu precise-security main to /etc/apt/sources.list

◦ From the terminal, pass these commands:

$ sudo apt-get update and $ sudo apt-get install libxm4 libxp6

Note: You must install HCL OneTest™ UI using either root user or Sudo access.

• To install HCL OneTest™ UI on the Windows® operating system and integrate it with Microsoft Visual Studio

IDE, you must have installed the correct version of Microsoft Visual Studio.

Note: Microsoft Visual Studio integration for HCL OneTest™ UI might not get installed if the mandatory

prerequisites are not installed, or if Microsoft Visual Studio is not installed properly. For more

Chapter 6. Administrator Guide

information, see Unable to install HCL OneTest™ UI Extension for Microsoft Visual Studio 2015, 2017

& 2019.

• You cannot upgrade to the latest version of the product. You must uninstall the existing version of the product

before installing the latest version of the product.

• HCL Software manages software licensing and downloads through the License and Delivery Portal. You

must have ordered software and followed the instructions that you received to activate your entitlement and

download the software from the Portal. These instructions help you complete the following steps:

◦ Order the software. Gather the URL and login credentials for the HCL® License & Delivery portal.

◦ Log in to the Portal.

◦ Create a User associated with your account.

◦ Create a Device to host the license server and record the server ID that is returned when the device is

created.

Important: The server ID uniquely identifies your company’s entitlement and must be kept

secure.

◦ Map your entitlement to the license server Device.

◦ Download the software.

• Download and install Installation Manager.

• To install the product on a Windows computer, install Oracle JDK 8.

• If you were using the IBM testing product and want to reuse the test assets in the HCL testing product, follow

these instructions:

◦ From the IBM testing product, export all the test assets with dependencies.

◦ Uninstall the IBM testing product.

◦ Install the HCL testing product by following the instructions in this topic.

◦ Import the test assets with dependencies to the HCL workspace.

To install HCL OneTest™ UI on Windows® or Linux® operating systems:

1. Start Installation Manager and from File > Preferences > Repositories, add a new repository link by pointing to

the setup disk of the product.

2. On the Installation Manager Start page, click Install.

The Install Packages page lists all the packages found in the repositories that Installation Manager searched.

If two versions of a package are discovered, only the most recent, or recommended version of the package is

displayed. If Installation Manager is not installed on your computer, it is listed on the Install Packages page

with HCL OneTest™ UI.

161

https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

162

a. To display all versions of the packages that Installation Manager finds, click Show all versions.

Note: To search the predefined IBM update repository locations for the installed packages,

ensure that Search service repositories during installation and updates check box is selected

on the Repositories preference page. This preference is selected by default.

If updates for the HCL OneTest™ UI package are found, then they are displayed on the Installation

Packages list on the Install Packages page. The latest updates are displayed by default.

b. To find other versions, fixes and extensions for the available packages in the update repository

locations, click Check for Other Versions, Fixes and Extensions.

c. To view all updates found for the available packages, click Show all versions.

d. To display a package description under Details, click the package name. If additional information

about the package is available, such as a readme file or release notes, a More info link is included

at the end of the description text. To fully understand the package you are installing, review all

information beforehand.

3. Select HCL OneTest UI, the required version, and IBM® Installation Manager, if necessary and click Next.

Updates that have dependencies are automatically selected and cleared together.

Note: If you install multiple packages simultaneously, then all the packages will be installed into the

same package group.

4. On the Licenses page, read the license agreement for the selected package.

If you select multiple packages to install, each package might contain a license agreement. On the left side of

the License page, click each package version to display its license agreement. The package versions that you

selected to install (for example, the base package and update) are listed under the package name.

a. If you agree to the terms of all of the license agreements, click I accept the terms of the license

agreements.

b. Click Next to continue.

5. On the Location page, type the path for the shared resources directory in the Shared Resources Directory field,

or accept the default path. The shared resources directory contains resources that can be shared by one or

more package groups. Click Next to continue.

Important: If you are installing HCL OneTest™ UI on Windows®, and do not have Windows®

Administrator privileges to work with HCL OneTest™ UI, you must not choose a directory inside the

Program Files directory (C:\Program Files\).

The default path is:

Chapter 6. Administrator Guide

◦ For Windows®: C:\Program Files\HCL\HCLIMShared

◦ For Linux®:/opt/HCL/HCLIMShared

Important: You can specify the shared resources directory only the first time when you install a

package. You must use your largest disk partition to ensure adequate disk space is available for the

shared resources of future packages. You cannot change the directory location unless you uninstall all

packages.

6. Also, on the Location page, specify whether to create a package group and install the HCL OneTest™ UI

package into a new package group or use an existing package group to shell-share with another offering. A

package group represents a directory in which packages share resources with other packages in the same

group. To create a new package group:

a. Click Create a new package group.

b. Type the path for the installation directory for the package group.

The name for the package group is created automatically.

The default path is as follows:

▪ For Windows®: C:\Program Files\HCL\HCLOneTest

▪ For Linux®: /opt/HCL/HCLOneTest

Note: If you are installing HCL OneTest™ UI on a Linux® machine, ensure that you do not

include any spaces in the directory path.

c. Click Next to continue.

7. On the next Location page, you can choose to extend an existing Eclipse IDE already installed on your system,

adding the functionality in the packages that you are installing.

Note: You must have Eclipse 3.6.2 with the latest updates from eclipse.org to select this option.

Choose from:

◦ If you do not want to extend an existing Eclipse IDE, click Next to continue.

◦ To extend an existing Eclipse IDE:

a. Select Extend an existing Eclipse.

b. In the Eclipse IDE field, type or navigate to the location of the folder containing the eclipse

executable file (eclipse.exe or eclipse.bin). Installation Manager checks whether the Eclipse

IDE version is valid for the package that you are installing. The Eclipse IDE JVM field displays

the Java™ Virtual Machine (JVM) for the IDE that you specified.

c. Click Next to continue.

8. On the Features page under Languages, select the languages for the package group, and then click Next.

163

HCL OneTest™ UI

164

The corresponding national language translations for the user interface and documentation for the HCL

OneTest™ UI package is installed.

9. Select the package features that you want to install.

a. Select or clear features in the packages. Installation Manager automatically enforces any

dependencies with other features and displays the updated download size and disk space

requirements for the installation.

Feature Description

Select Edition (Eclipse IDE) Provides an automated functional and regres

sion testing of Windows®, .NET, Java™, HTML 5,

Siebel, SAP, AJAX, PowerBuilder, Flex, Dojo, GEF,

Visual Basic applications, Adobe® PDF docu

ments, and zSeries®, iSeries®, and pSeries® ap

plications through the Eclipse IDE. You can install

a full licensed edition, which is available for Web

UI testing. The .NET Framework 1.1 or 2.0 is re

quired for testing Siebel and SAP applications.

HCL OneTest™ UI Extension for Selenium/Appium Provides the ability to run Selenium/Appium

tests.

Microsoft® Visual Studio .NET Integration Provides components to enable Visual Ba

sic .NET scripting through the Microsoft Visual

Studio 2015, 2017, or 2019 integrated develop

ment environment (IDE).

Note: Microsoft Visual Studio integra

tion for HCL OneTest™ UI might not get

installed if the mandatory prerequisites

are not installed, or if Microsoft Visual

Studio is not installed properly. For more

information, see Unable to install HCL

OneTest™ UI Extension for Microsoft Vi

sual Studio 2015, 2017 & 2019.

Note: Uninstalling Microsoft Visual Stu

dio: If you want to uninstall your existing

Microsoft Visual Studio, you must first re

move the Microsoft Visual Studio .NET

Integration of HCL OneTest™ UI using the

Modify option in Installation Manager.

https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430
https://www-01.ibm.com/support/docview.wss?uid=ibm10885430

Chapter 6. Administrator Guide

Feature Description

You must then uninstall Microsoft Visual

Studio.

Windows Desktop Application Testing (Next Gen

eration)

The Windows Desktop Application Testing (Next

Generation) option, which is a default selection,

provides the necessary prerequisites to test the

Windows desktop applications. The Developer

mode is enabled automatically when you restart

your computer, if it was not enabled earlier.

Java 8 OpenJDK with Eclipse OpenJ9 Provides the Java 8.0 binaries required for HCL

OneTest™ UI.

Notes:

▪ If you want to shell share HCL

OneTest™ UI along with other

products that utilize OpenJDK,

you must select Java 8 Open

JDK with Eclipse OpenJ9 for only

one of the shell shared products.

You must not install multiple in

stances of OpenJDK in the same

package group.

Jazz Eclipse Client for Rational Team Con

cert/Rational Quality Manager

Manages functional test assets using the Jazz

source control management provided by the Jazz

Eclipse Client.

You must have a compatible version of Rational

Team Concert or Rational Quality Manager serv

er setup to use the Jazz source control manage

ment. You must also have a platform that is also

supported by the Rational Team Concert client.

b. Optional: To see the dependency relationships between features, select Show Dependencies.

c. Optional: Click a feature to view its brief description under Details.

d. Click Next to continue.

165

HCL OneTest™ UI

166

10. On the Summary page, review your choices before installing the HCL OneTest™ UI package. If you want to

change the choices that you made on previous pages, click Back and make your changes. When you are

satisfied with your installation choices, click Install to install the package.

Result

A progress indicator shows the percentage of the installation completed.

11. When the installation process is complete, a message confirms the success of the process.

a. Click View log file to open the installation log file for the current session in a new window.

b. Click Finish.

After you install the product, the UI Test Agent runs automatically on your computer until you manually stop

the UI Test Agent. Depending on the operating system of your computer, the UI Test Agent works as follows:

◦ Windows: The UI Test Agent runs automatically and you can find the UI Test Agent in the system tray

of your computer.

◦ Linux: You must set the environment variable to run the UI Test Agent automatically. The UI Test Agent

continues to run in the background. See the related information.

◦ macOS: You must set the environment variable to run the UI Test Agent automatically. You can find the

UI Test Agent on the toolbar of your computer. See the related information.

What to do next

Start the product as a root user or Sudo access for the first time. When you start the product, apply the product

license key.

To start using the Visual Studio Integration feature, open the Visual Studio application and click File > New >

Functional Test Project. The connector window opens within the Visual Studio and you can access the HCL OneTest™

UI environment.

To create a project, you must enable Java in the product.

Related information

Enabling Java environments on page 586

Modifying installations on page 173

Exporting functional test project items on page 663

Importing functional test project items on page 663

Installing HCL OneTest™ UI in silent mode
In silent mode installation, you can install HCL OneTest™ UI from the command line by using response files rather

than using the Installation Manager graphical user interface.

Before you begin

You must have completed the following tasks:

Chapter 6. Administrator Guide

• Uninstalled the existing version of the product before you install the latest version.

About this task

You can install HCL OneTest™ UI from the HCL FlexNet Operations Portal.

To install HCL OneTest™ UI in silent mode:

1. Create a response file that contains the commands and inputs for the installation process.

2. Install HCL OneTest™ UI by using the response file and Installation Manager installer:

Choose from:

◦ If you have already installed Installation Manager:

a. Change to the following directory: eclipse\tools. For example: cd C:\Program Files\IBM

\Installation Manager\eclipse\tools.

b. Enter the installation command:

▪ On Windows™ systems: imcl.exe input response_file_path_and_name -log

log_file_path_and_name -acceptLicense

▪ On Linux™ systems:./imcl input response_file_path_and_name -log

llog_file_path_and_name -acceptLicense

Hardware and Software requirements on page 151

Creating a response file manually on page 167

Working in silent mode with IBM Installation Manager

Creating a response file manually
To silently install HCL OneTest™ UI, you can use a response file that contains the data required to install the product.

Before you begin

View the sample response file and know the parameters that you must change for your installation environment. For

more information, see Sample response file. on page 168

For complete details about response files and silent installation, see the response file section in the Installation

Manager information center.

1. Open the Sample response file topic to view the sample code. You can also find the sample response

files in the product install location\hclonetest\RQMAdapter\RTLM_BuildForgeScripts

\SampleResponse location.

2. Copy the code from the sample response file to a text editor and save it as a .xml file.

3. Edit the required parameters that are specific to your installation environment and save the file.

What to do next

Installing HCL OneTest UI in silent mode on page 166

167

https://HCLSoftware.flexnetoperations.com/flexnet/operationsportal/logon.do
http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/t_silentinstall_overview.html
http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/c_silent_response_files.html
http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/c_silent_response_files.html
http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/c_silent_response_files.html
http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/c_silent_response_files.html

HCL OneTest™ UI

168

Sample response file
You can use the sample response file in this topic to install HCL OneTest™ UI. You must modify the parameter values

for your installation environment. For instructions to create a response file, see Creating a response file manually on

page 167.

Response file: A response file is an XML file that contains the data required to complete installation

operations silently. Installation Manager uses response files to complete installation operations silently.

You can record a response file by recording preferences and installation actions in the graphical user

interface of Installation Manager. Alternatively, you can create a response file manually by using the

documented list of response file commands and preferences.

You can use one response file to install, update, or uninstall multiple products. For more information about

response files, see the response file section in the Installation Manager information center.

Sample response file for installing HCL OneTest™ UI

<?xml version='1.0' encoding='UTF-8'?>
<agent-input>
<variables>
<variablename='sharedLocation'value='C:\Program Files\HCL\HCLIMShared'/>
</variables>
<server>
<repositorylocation='C:\HOTUI\Disk1'/>
</server>
<profileid='HCL OneTest'installLocation='C:\Program Files\HCL\HCLOneTest'>
<datakey='cic.selector.arch'value='x86_64'/>
<datakey='user.RPT_MX_VALUE'value='-Xmx4095m'/>
<datakey='user.RPT_MX_VALUE_ORACLE'value='-Xmx4095m'/>
</profile>
<install>
<!-- HCL OneTest™ UI 10.0.2 -->
<offeringprofile='HCL
 OneTest'id='com.hcl.onetest.ui'version='10.0.2.FTO10_HCL-I20190614_0929'features='com.ibm.rpt.sdpcore,c
om.ibm.rpt.doc-isv,com.ibm.rst.selenium,com.ibm.rtw.webgui,com.ibm.rtw.rft.integration,com.hcl.openj9.jd
k,com.ibm.rft.net2017,com.ibm.rpt.rit.integration'/>
</install>
<preferencename='com.ibm.cic.common.core.preferences.eclipseCache'value='${sharedLocation}'/>
<preferencename='com.ibm.cic.agent.ui.displayInternalVersion'value='true'/>
</agent-input>

Sample response file for upgrading HCL OneTest™ UI

<?xml version="1.0" encoding="UTF-8"?>
<!--The "acceptLicense" attribute has been deprecated. Use "-acceptLicense" command line option to
 accept license agreements.-->
<agent-input acceptLicense='true'>
<server>
<repository location='C:\HOTUI\disk1\'/>
</server>
<profile id='HCL Products' installLocation='C:\Program Files\HCL\HCLOneTest'>
<data key='eclipseLocation' value='C:\Program Files\HCL\HCLOneTest'/>
<data key='user.import.profile' value='false'/>

http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/c_silent_response_files.html
http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/c_silent_response_files.html
http://publib.boulder.ibm.com/infocenter/install/v1r4/topic/com.ibm.silentinstall12.doc/topics/c_silent_response_files.html

Chapter 6. Administrator Guide

<data key='cic.selector.os' value='win32'/>
<data key='cic.selector.ws' value='win32'/>
<data key='cic.selector.arch' value='x86'/>
<data key='user.help.option' value='remote'/>
<data key='user.help.url' value=''/>
<data key='cic.selector.nl' value='en'/>
</profile>
<<install modify='false'>
<offering id='HCL Products' id='com.hcl.onetest.ui' version=''10.0.2.FTO10_HCL-I20190614_092'
 profile='HCL Products' features='com.ibm.rft.agent,com.ibm.rft.java,com.ibm.rft.net2010'
 installFixes='none'/>
</install>
<preference name='com.ibm.cic.common.core.preferences.eclipseCache' value='C:\Program
 Files\HCL\HCLIMShared'/>
<preference name='com.ibm.cic.common.core.preferences.connectTimeout' value='30'/>
<preference name='com.ibm.cic.common.core.preferences.readTimeout' value='45'/>
<preference name='com.ibm.cic.common.core.preferences.downloadAutoRetryCount' value='0'/>
<preference name='offering.service.repositories.areUsed' value='true'/>
<preference name='com.ibm.cic.common.core.preferences.ssl.nonsecureMode' value='false'/>
<preference name='com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication'
 value='false'/>
<preference name='http.ntlm.auth.kind' value='NTLM'/>
<preference name='http.ntlm.auth.enableIntegrated.win32' value='true'/>
<preference name='com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts' value='true'/>
<preference name='com.ibm.cic.common.core.preferences.keepFetchedFiles' value='false'/>
<preference name='PassportAdvantageIsEnabled' value='false'/>
<preference name='com.ibm.cic.common.core.preferences.searchForUpdates' value='false'/>
<preference name='com.ibm.cic.agent.ui.displayInternalVersion' value='false'/>
</agent-input>

Required parameters to modify
Based on your installation setup, you must edit parameters in your response file. The following tables show the

parameters to modify.

Table 1. Parameters that must be modified based on your installation setup

Attributes Description

acceptLicense After you read and agree to the license terms, set the acceptLicense

attribute value to 'true'.

repository location Specify the path of the HCL OneTest™ UI repository (disk1).

profile installLocation and id Specify the HCL OneTest™ UI installation location.

features Specify the features that you want to install with the Java scripting.

Possible values:

• com.ibm.rft.net2015: To install the Microsoft® Visual Stu

dio .NET 2015 Integration feature of HCL OneTest™ UI.

• com.ibm.rft.net2017: To install the Microsoft® Visual Stu

dio .NET 2017 Integration feature of HCL OneTest™ UI.

169

HCL OneTest™ UI

170

Table 1. Parameters that must be modified based on your installation setup (continued)

Attributes Description

• com.ibm.rft.net2019: To install the Microsoft® Visual Stu

dio .NET 2019 Integration feature of HCL OneTest™ UI.

Note: You can only install one version of Microsoft Vi

sual Studio Integration at a time.

Note: For information about the features and the prerequi

sites, see HCL OneTest UI installation features on page 154.

Post-installation tasks
After you have installed your product package, complete the post-installation tasks or configure your product package

as required.

Post-installation checklist
After you have installed your product, complete several tasks to configure and verify the installation.

About this task

Review the following information and ensure the post-installation steps are completed as required.

Verify your installation and ensure that you can start your product.

Deploying the help content of Functional Tester in Visual Studio IDE
When you install HCL OneTest™ UI in Visual Studio IDE, the help content of Functional Tester also gets installed. You

must then deploy this help content in Microsoft Help Viewer to access it from the Help menu of Visual Studio IDE.

Before you begin

You must have installed the following software:

• HCL OneTest™ UI in Visual Studio IDE. See Installing the product in Visual Studio IDE on page 180.

• Microsoft Help Viewer. Refer to Microsoft Help Viewer Installation.

About this task

After you deploy the help content of Functional Tester in Visual Studio IDE, you can refer to the following content:

• Details about HCL OneTest™ UI proxy SDK

• Details about the product and functional testing

• Functional Tester API reference

• Functional Tester Proxy SDK API reference

https://docs.microsoft.com/en-us/visualstudio/help-viewer/installation?view=vs-2019

Chapter 6. Administrator Guide

1. Open Visual Studio.

2. Click Help > Add and Remove Help Content.

The Help Viewer dialog is displayed.

3. Select the Disk option in the installation source.

4. Click to select the source location of the help content.

The Open dialog is displayed.

5. Go to <install_directory>\FunctionalTester\vsnet\MSDNHelp\VS2010.

For example, the help content can be located in C:\Program Files\HCL\HCLOneTest

\FunctionalTester\vsnet\MSDNHelp\VS2010.

6. Select the helpcontentsetup.msha file, and then click Open.

The the help content of Functional Tester is displayed.

7. Close the Help Viewer dialog.

Results

You have deployed the help content of Functional Tester to display in Visual Studio IDE.

What to do next

You can view the deployed help content by clicking Help > View Help in Visual Studio IDE.

Installation in the shell sharing mode
You can install HCL OneTest™ UI in the same package group with the other supported Eclipse-based products. These

products share a common environment, or they are shell shared. Shell shared products have a common installation

directory, <install_directory>\IBM\SDP. HCL OneTest™ UI installs as a perspective in the UI of the product with

which it is shell-shared.

Prerequisites

You must be familiar with the installation and licensing of the following products that are compatible for installation

in the shell shared mode with HCL OneTest™ UI:

Compatible product Refer to

IBM® Engineering Workflow Management Installing IBM® Engineering Workflow Management

HCL OneTest™ Performance Installing HCL OneTest™ Performance

IBM® Rational® Team Concert™ Installing IBM® Rational® Team Concert™

Shell sharing with IBM® Engineering Workflow Management

You can install HCL OneTest™ UI in the shell sharing mode with Engineering Workflow Management Client Extension

for Eclipse 4.x by using the following method:

171

https://www.ibm.com/docs/en/elm/7.0.2?topic=installing-change-configuration-management-application
https://www.ibm.com/docs/en/elm/7.0.2?topic=installing-change-configuration-management-application
https://www.ibm.com/docs/en/elm/7.0.2?topic=installing-change-configuration-management-application
https://www.ibm.com/docs/en/elm/7.0.2?topic=installing-change-configuration-management-application
https://help.blueproddoc.com/onetest/hclonetestperformance/10.2.3/docs/topics/t_start_install_launchpad.html
https://help.blueproddoc.com/onetest/hclonetestperformance/10.2.3/docs/topics/t_start_install_launchpad.html
https://help.blueproddoc.com/onetest/hclonetestperformance/10.2.3/docs/topics/t_start_install_launchpad.html
https://help.blueproddoc.com/onetest/hclonetestperformance/10.2.3/docs/topics/t_start_install_launchpad.html
https://help.blueproddoc.com/onetest/hclonetestperformance/10.2.3/docs/topics/t_start_install_launchpad.html
https://www.ibm.com/docs/en/elm/6.0.6?topic=samples-installing-rational-team-concert-clients
https://www.ibm.com/docs/en/elm/6.0.6?topic=samples-installing-rational-team-concert-clients
https://www.ibm.com/docs/en/elm/6.0.6?topic=samples-installing-rational-team-concert-clients
https://www.ibm.com/docs/en/elm/6.0.6?topic=samples-installing-rational-team-concert-clients
https://www.ibm.com/docs/en/elm/6.0.6?topic=samples-installing-rational-team-concert-clients
https://www.ibm.com/docs/en/elm/6.0.6?topic=samples-installing-rational-team-concert-clients
https://www.ibm.com/docs/en/elm/6.0.6?topic=samples-installing-rational-team-concert-clients
https://www.ibm.com/docs/en/elm/6.0.6?topic=samples-installing-rational-team-concert-clients

HCL OneTest™ UI

172

1. Add the repositories of HCL OneTest™ UI and Engineering Workflow Management Client Extension in the IBM

Installation Manager to install the products together in the shell sharing mode.

2. Select HCL OneTest™ UI and Engineering Workflow Management Client Extension to install the products

together.

Shell sharing with HCL OneTest™ Performance

You can install HCL OneTest™ Performance with HCL OneTest™ UI in any sequence for the shell sharing mode. You

can use one of the following methods:

If Then

HCL OneTest™ UI is

not installed

You must follow these steps:

1. Add the repositories of HCL OneTest™ UI and HCL OneTest™ Performance in the IBM

Installation Manager to install the products together in the shell sharing mode.

2. Select HCL OneTest™ UI and HCL OneTest™ Performance to install the products to

gether in a package group.

HCL OneTest™ UI is

already installed

You must follow these steps:

1. Install HCL OneTest™ Performance and while installing HCL OneTest™ Performance,

consider the following points:

◦ Choose the IMShared directory where HCL OneTest™ UI is already installed.

◦ Choose the SDP directory where HCL OneTest™ UI is already installed.

Shell sharing with IBM® Rational® Team Concert™

You can install HCL OneTest™ UI in the shell sharing mode with Rational® Team Concert™ 6.06 Client Extension for

Eclipse by using the following method:

If Then

HCL OneTest™ UI is

not installed

You must follow these steps:

1. Add the repositories of HCL OneTest™ UI and Rational® Team Concert™ Client Ex

tension in the IBM Installation Manager to install the products together in the shell

sharing mode.

2. Select HCL OneTest™ UI and Rational® Team Concert™ Client Extension to install

the products together.

HCL OneTest™ UI is

already installed
Install Rational® Team Concert™ Client Extension and while installing it, choose the SDP di

rectory where HCL OneTest™ UI is already installed.

Chapter 6. Administrator Guide

Modifying installations
The Modify Packages wizard in the IBM® Installation Manager enables you to change the language and feature

selections of an installed product package. You can also use the Modify Packages wizard to install new features that

might be included in a package update, such as a refresh pack.

Before you begin

By default, Internet access is required unless the repository preferences points to a local update site. See the

Installation Manager help for more information.

Note:

• Before you modify HCL OneTest™ UI, close the Eclipse and Visual Studio IDEs, as well as any open

web browsers, and all other applications that are enabled by HCL OneTest™ UI.

• Before you modify HCL OneTest™ UI, close all programs that were installed using Installation Manager.

1. From the Start page of the Installation Manager, click the Modify icon.

2. In the Modify Packages wizard, select the installation location for the HCL OneTest™ UI product package and

click Next.

3. On the Modify page, under Languages, select the languages for the package group, then click Next.

The corresponding national language translations for the user interface and documentation for the packages

will be installed. Note that your choices apply to all packages installed under this package group.

4. On the Features page, select the package features that you want to install or remove.

a. To learn more about a feature, click the feature and review the brief description under Details.

b. If you want to see the dependency relationships between features, select Show Dependencies. When

you click a feature, any features that depend on it and any features that are its dependents are shown

in the Dependencies window. As you select or exclude features in the packages, Installation Manager

will automatically enforce any dependencies with other features and display updated download size

and disk space requirements for the installation.

5. When you are finished selecting features, click Next.

6. On the Summary page, review your choices before modifying the installation package, and then click Modify.

7. Optional: When the modification process completes, click View Log File to see the complete log.

Uninstalling HCL OneTest™ UI
The Uninstall Packages option in the Installation Manager enables you to uninstall packages from a single installation

location. You can also uninstall all the installed packages from every installation location.

Before you begin

You must have completed the following tasks before you uninstall HCL OneTest™ UI:

173

HCL OneTest™ UI

174

• Logged in to the system using the same user account that you used to install the product packages.

• Closed the Eclipse and Visual Studio IDEs, as well as any open web browsers, and all other applications that

are enabled by HCL OneTest™ UI.

To uninstall HCL OneTest™ UI using Installation Manager

1. Close the programs that you installed using Installation Manager.

2. On the Start page click Uninstall Packages.

3. In the Uninstall Packages page, select the HCL OneTest™ UI product package that you want to uninstall. Click

Next.

4. In the Summary page, review the list of packages that will be uninstalled and then click Uninstall.

Result

The Complete page is displayed after the uninstallation finishes.

5. Click Finish to exit the wizard.

Installation of the product by using the stand-alone installer
This guide intended for an administrator and describes how to install the product by using stand-alone installer on

different operating systems.

You can install the product by using any of the following methods:

• GUI mode

• Console mode

• Silent mode

Installation of the product on Windows systems
You can find information about installing the product software on Windows system by using the stand-alone installer.

You can install the product by using any of the following methods:

• GUI mode

• Silent mode

Installing the product in the GUI mode on Windows systems
To get started with the desktop client on Windows system, you can install the product in the GUI mode by using the

stand-alone installer.

Before you begin

Chapter 6. Administrator Guide

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling the product in the GUI mode on

Windows systems on page 226.

◦ Verified the software and hardware requirements. See System Requirements on page 12.

◦ Cleared files from the Temp directory, restarted the computer, and started stand-alone installer as an

Administrator.

About this task

The 32-bit stand-alone installer of HCL OneTest™ UI supports only SAP extension. The test extensions such as SAP,

Citrix, and Siebel are supported only for 32-bit stand-alone HCL OneTest™ Performance installer and 32-bit shell-

shared installer that are installed on Windows system 64-bit operating system. You cannot update, modify, or roll back

the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por

tuguese

Brazil

• Sim

pli

fied

Chi

nese

• Eng

lish

• Tra

di

tion

al

Chi

nese

• Eng

lish

• Japan

ese

• Eng

lish

• Czech

• Eng

lish

• Hun

gari

an

• Pol

ish

• Ko

re

an

• Eng

lish

• Turk

ish

• Eng

lish

• Russ

ian

• Eng

lish

175

HCL OneTest™ UI

176

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the product installer file and select Run as Administrator.

The GUI window is displayed.

3. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

4. Read through the details on the Introduction window, and then click Next.

5. Read the license agreement carefully, select the I accept checkbox, and then click Next.

6. Read the Microsoft Software license agreement carefully, and then select the I accept check box to install

the execution agent that provides you with the necessary prerequisites to test the hybrid and native mobile

applications, and Windows desktop applications. Click Next to continue.

Note: After the installation, the execution agent starts automatically whenever you start HCL

OneTest™ UI.

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: You must select any other directory if the default directory is not empty. The default locations

for 32-bit and 64-bit installers are as follows:

◦ For 32-bit: C:\Program Files(x86)\HCL

◦ For 64-bit: C:\Program Files\HCL

8. Read through the installation details and, then click Install.

9. Click Done after the installation of the product is complete.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 237.

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

Creating a properties file on Windows systems
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 177 through 4 on

page 177.

• Copying the contents of the sample properties file to your local properties file. See step 5 on page 177.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Run the following command to generate the properties file:

<installer_file.exe> -r <location of the installer.properties file>

For example, HCL-OneTest-UI-Windows-x64-v10.1.0.0.exe -r C:\users\Downloads\installer.properties

5. Create your properties file by copying the content of the following sample properties file:

#Host Name
Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=C:\\Program Files\\HCL

Results

You have generated or created the properties file.

What to do next

177

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

178

You can install the product by using the silent mode method.

Installing the product in the silent mode on Windows systems
To get started with the desktop client, you can install the product on Windows system by using the silent mode

installation method.

Before you begin

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling the product in the silent mode on

Windows systems on page 227.

◦ Deleted the installer.properties file generated from the previous installation if you are installing

a newer version of the product.

◦ Created a properties file that contains the inputs for the installer during the installation process. See

Creating a properties file on Windows systems on page 177.

◦ Verified the software and hardware requirements. See System Requirements on page 12.

◦ Cleared files from the Temp directory, restarted the computer, and started stand-alone installer as an

Administrator.

About this task

The 32-bit stand-alone installer of HCL OneTest™ UI supports only the SAP extension. The SAP, Citrix, and Siebel tests

are supported only for 32-bit stand-alone HCL OneTest™ Performance installer and 32-bit shell-shared installer that

are installed on Windows system 64-bit operating system. You cannot update, modify, or roll back the product by

using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Extract the downloaded installer file.

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can run the following command to install HCL OneTest™ UI 10.2.0 in French:

HCL-OneTest-UI-Windows-x64-v10.2.0.0.exe -i silent -l fr -f C:\users\Downloads\installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

Notes:

179

HCL OneTest™ UI

180

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt

file to know more about the problem that occurred during the installation process. The error

log is located at \<installation directory>\Logs.

Result

You can verify the status of the installation of the product by checking the log file at \<installation

directory>\Logs.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 237.

Installing the product in Visual Studio IDE
To integrate HCL OneTest™ UI with the Microsoft Visual Studio and start using HCL OneTest™ UI in the Visual Studio

environment, you must first install HCL OneTest™ UI by using the stand-alone installer.

Before you begin

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have installed the appropriate version of Visual Studio with which you want to integrate HCL

OneTest™ UI.

• Verified the software and hardware requirements. See System Requirements on page 12.

Chapter 6. Administrator Guide

Note: Integration of HCL OneTest™ UI with Microsoft Visual Studio might not be successful if the

mandatory prerequisite software and hardware are not installed, or if Microsoft Visual Studio is not

installed properly. For more information, refer to Unable to install HCL OneTest™ UI Extension for

Microsoft Visual Studio 2015, 2017 & 2019

About this task

You must install the 64-bit installer on the Windows system 64-bit operating system. You cannot update, modify, or

roll back the product by using the stand-alone installer.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Right-click the .exe file and select Run as Administrator.

The GUI window is launched.

3. On the Introduction window, read through the details, and click Next.

4. Read the license agreement carefully, select the I accept check box and then click Next.

5. Browse the location or directory where you want to install the product and click Next.

Note: You must select a different directory if the default directory is not empty. The default location

for the 64-bit installer is C:\Program Files\HCL.

6. Select the version of the Visual Studio with which you want to integrate the product, and then click Next.

7. Read through the installation details and click Install.

8. Click Done after the installation is complete.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 237.

To start using the Visual Studio Integration feature, open the Visual Studio application and click File > New >

Functional Test Project. The connector window opens within the Visual Studio and you can access the HCL OneTest™

UI environment.

Deploying the help content of Functional Tester in Visual Studio IDE
When you install HCL OneTest™ UI in Visual Studio IDE, the help content of Functional Tester also gets installed. You

must then deploy this help content in Microsoft Help Viewer to access it from the Help menu of Visual Studio IDE.

Before you begin

181

https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0089417
https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0089417
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

182

You must have installed the following software:

• HCL OneTest™ UI in Visual Studio IDE. See Installing the product in Visual Studio IDE on page 180.

• Microsoft Help Viewer. Refer to Microsoft Help Viewer Installation.

About this task

After you deploy the help content of Functional Tester in Visual Studio IDE, you can refer to the following content:

• Details about HCL OneTest™ UI proxy SDK

• Details about the product and functional testing

• Functional Tester API reference

• Functional Tester Proxy SDK API reference

1. Open Visual Studio.

2. Click Help > Add and Remove Help Content.

The Help Viewer dialog is displayed.

3. Select the Disk option in the installation source.

4. Click to select the source location of the help content.

The Open dialog is displayed.

5. Go to <install_directory>\FunctionalTester\vsnet\MSDNHelp\VS2010.

For example, the help content can be located in C:\Program Files\HCL\HCLOneTest

\FunctionalTester\vsnet\MSDNHelp\VS2010.

6. Select the helpcontentsetup.msha file, and then click Open.

The the help content of Functional Tester is displayed.

7. Close the Help Viewer dialog.

Results

You have deployed the help content of Functional Tester to display in Visual Studio IDE.

What to do next

You can view the deployed help content by clicking Help > View Help in Visual Studio IDE.

Changing the language of the product on Windows systems
When you want to use the product in a different language other than the display language of your computer, then you

can change the language of the product by using the command-line interface.

About this task

https://docs.microsoft.com/en-us/visualstudio/help-viewer/installation?view=vs-2019

Chapter 6. Administrator Guide

Important: After you changed the language and closed the application for any reason, the product displays in

the language that is set in your computer if you re-open the product.

For example, consider the display language of your computer is set as French and you change the language of the

product to Japanese by using the command-line interface. When you close the product and open it again, the product

displays in the French language.

1. Right-click the Command Prompt application and select Run as Administrator.

2. Run the following command to change the directory to a location where you installed the product:

cd <directory path>

For example, cd C:\Program Files\HCL\HCLOneTest

3. Run the following command to change the language of the product:

eclipse.exe -nl <language_code>

Where <language_code> is the code of your preferred language.

The following table lists the language codes that you might want to choose during the installation:

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

For example, eclipse.exe -nl ja

Result

The product opens in the Japanese language.

Results

You have changed the language of the product until you restart the product.

Installation of the product software on Linux
You can find information about installing the product software on Linux by using the stand-alone installer.

You can install the product software by using any of the following methods:

183

HCL OneTest™ UI

184

• GUI mode

• Console mode

• Silent mode

Installing the product in the GUI mode on Linux
To get started with the desktop client on Linux, you can install the product in the GUI mode by using the stand-alone

installer.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling the product in the GUI mode on Linux on

page 229.

• Installed Konsole on your computer. The Konsole application is required to enable the shortcut icon of the

product after installation. You can install Konsole by running the apt-get install konsole command in the

terminal.

Note: You need not install Konsole on the computer that is running RHEL 8 or later.

• Verified that the following libraries are available on your computer, if you want to install HCL OneTest™ UI:

◦ libnsl.so.1

◦ libstdc++.so.6

◦ libXp.so.6

◦ libgtk-x11-2.0.so.0

◦ libXtst.so.6

◦ libXt.so.6

◦ libstdc++.so.5

◦ libXft.so.2

◦ libXm.so.4

Note: For more information on the library dependencies on Linux, refer to Library dependency on

Linux.

• Created a soft link to libnsl.so.2 by running the following command:

sudo ln -s /usr/lib64/libnsl.so.2 /usr/lib64/libnsl.so

• Verified the software and hardware requirements. See System Requirements on page 12.

About this task

https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en
https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en

Chapter 6. Administrator Guide

You cannot update, modify, or roll back the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por

tuguese

Brazil

• Sim

pli

fied

Chi

nese

• Eng

lish

• Tra

di

tion

al

Chi

nese

• Eng

lish

• Japan

ese

• Eng

lish

• Czech

• Eng

lish

• Hun

gari

an

• Pol

ish

• Ko

re

an

• Eng

lish

• Turk

ish

• Eng

lish

• Russ

ian

• Eng

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to extract the zip file:

unzip <filename>

Result

The GUI window is displayed.

4. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

185

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

186

The drop-down list displays the languages based on the display language that is set on your computer.

5. Read through the details on the Introduction window, and then click Next.

6. Read the license agreement carefully, select the I accept checkbox, and then click Next.

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: The default installation directory is /opt/HCL.

8. Read through the installation details and, then click Install.

9. Click Done after the installation of the product is complete.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 237.

Installing the product in the console mode on Linux
To install the product on Ubuntu and Red Hat Enterprise Linux (RHEL) operating systems where GUI mode is not

supported, you can use the console-mode installation method.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling the product in the console mode on Linux on

page 229.

• Installed Konsole on your computer. The Konsole application is required to enable the shortcut icon of the

product after installation. You can install Konsole by running the apt-get install konsole command in the

terminal.

Note: You need not install Konsole on the computer that is running RHEL 8 or later.

• Verified that the following libraries are available on your computer, if you want to install HCL OneTest™ UI:

◦ libnsl.so.1

◦ libstdc++.so.6

◦ libXp.so.6

◦ libgtk-x11-2.0.so.0

◦ libXtst.so.6

◦ libXt.so.6

◦ libstdc++.so.5

Chapter 6. Administrator Guide

◦ libXft.so.2

◦ libXm.so.4

Note: For more information on the library dependencies on Linux, refer to Library dependency on

Linux.

• Verified the software and hardware requirements. See System Requirements on page 12.

About this task

In console mode, the installation process is an interactive and text-based. You can install the product in the console

mode only on the Ubuntu and RHEL operating systems.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the appropriate number during

the installation of the product.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por

tuguese

Brazil

• Sim

pli

fied

Chi

nese

• Eng

lish

• Tra

di

tion

al

Chi

nese

• Eng

lish

• Japan

ese

• Eng

lish

• Czech

• Eng

lish

• Hun

gari

an

• Pol

ish

• Ko

re

an

• Eng

lish

• Turk

ish

• Eng

lish

• Russ

ian

• Eng

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

187

https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en
https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

188

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory from root to the directory where you downloaded the

installer zip file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to extract the downloaded zip file:

unzip <product package name>

For example, unzip HCL-OneTest-UI-Linux-x64-v10.1.0.0.zip

5. Run the following command to begin the installation process:

./<installer_name.bin> -i console

For example, ./HCL-OneTest-UI-Linux-x64-v10.1.0.0.bin -i console

The command-line interface displays the list of preferred languages based on the display language that is set

on your computer.

Note: To identify the display language of your computer, the command-line interface displays an arrow

mark (->) that precedes the name of the language.

6. Enter a number to select your preferred language, and then Enter.

Result

The installation instructions are displayed in your preferred language.

7. Review the license agreement and perform the following actions:

◦ Read the license agreement by pressing any key along with the Enter key to continue reading the

license agreement.

◦ At any time, press 0 (zero) along with the Enter key to go to the end of the license agreement.

◦ After you read the license agreement, enter Y to accept the license agreement and continue with the

installation.

Note: You can type N if you want to cancel the installation.

8. Provide the path where you want to install the product and perform the following steps:

Chapter 6. Administrator Guide

a. Press Enter to install the product in the default path: /opt/HCL.

b. Enter the complete path of the directory and press Enter to install the product in the new directory

path.

Note: You can type Back and press Enter to go to the previous step if you want to modify your inputs

during the installation process.

9. Review the pre-installation summary, and then press Enter to continue with the installation process.

10. Press Enter to exit the installer.

Result

Note: If the installation of the product is not successful, you can check the errors that occurred during

the installation in the log file. The log file is available at the location: /opt/HCL/Logs.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 237.

Creating a properties file on Linux
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 189 through 4 on

page 190 .

• Copying the contents of the sample properties file to your local properties file. See 5 on page 190.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <path of the downloaded folder>

189

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

190

For example, cd Downloads/

4. Run the following command to generate the properties file:

<installer_file.bin> -r <location of the installer.properties file>

For example,

For example, HCL-OneTest-UI-Linux-x64-v10.1.0.0.bin -r /root/Downloads/installer.properties

5. Create your properties file by copying the content of the following sample properties file:

#Host Name
Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=/opt/HCL

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing the product in the silent mode on Linux
To get started with the product, you can install the product on Linux by using the silent mode installation method.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling the product in the silent mode on Linux on

page 230.

• Deleted the installer.properties file generated from the previous installation if you are installing a

newer version of the product.

• Created a properties file that contains the inputs for the installer during the installation process. See Creating

a properties file on Linux on page 189.

• Verified the software and hardware requirements. See System Requirements on page 12.

• Verified that the following libraries are available on your computer, if you want to install HCL OneTest™ UI:

◦ libnsl.so.1

◦ libstdc++.so.6

Chapter 6. Administrator Guide

◦ libXp.so.6

◦ libgtk-x11-2.0.so.0

◦ libXtst.so.6

◦ libXt.so.6

◦ libstdc++.so.5

◦ libXft.so.2

◦ libXm.so.4

Note: For more information on the library dependencies on Linux, refer to Library dependency on

Linux.

About this task

You cannot update, modify, or roll back the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to extract the downloaded zip file:

unzip <product package name>

For example, unzip HCL-OneTest-UI-Linux-x64-v10.1.0.0.zip

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can run the following command to install HCL OneTest™ UI 10.2.0 in French:

191

https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en
https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

192

HCL-OneTest-UI-Linux-x64-v10.2.0.0.bin -i silent -l fr -f /root/Downloads/installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt to

know more about the problem that occurred during the installation process. The error log is

located at /<installation directory>/Logs.

Result

You can verify the status of the installation of the product by checking the log file at /<installation

directory>/Logs.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 237.

Increasing the number of file handles on Linux™ workstations
For best product performance, increase the number of file handles above the default setting of 1024 handles.

About this task

Chapter 6. Administrator Guide

Important: Before you work with your product, increase the number of file handles. Most of the products use

more than the default limit of 1024 file handles per process. A system administrator might need to make this

change.

Exercise caution when using the following steps to increase your file descriptors on Linux™. If the instructions are not

followed correctly, the computer might not start correctly.

1. Log in as root.

If you do not have root access, you must obtain it before continuing.

2. Change to the etc directory.

Attention: If you decide to increase the number of file handles in the next step, do not leave an empty

initscript file on your computer. If you do so, your computer will not start up the next time that you

turn it on or restart.

3. Use the vi editor to edit the initscript file in the etc directory. If this file does not exist, type vi initscript

to create it.

4. On the first line, type ulimit -n 30000.

The point is that 30000 is significantly larger than 1024, the default value on most Linux™ computers.

Important: Do not set the number of handles too high, because doing so can negatively impact

system-wide performance.

5. On the second line, type eval exec "$4".

6. Save and close the file after making sure that you have completed steps 4 and 5.

Note: Ensure that you follow the steps correctly. If this procedure is not completed correctly, your

computer will not start.

7. Optional: Restrict the number of handles available to users or groups by modifying the limits.conf file in

the etc/security directory.

If you do not have this file, consider using a smaller number in step 4 in the previous procedure (for example,

2048). Do this so that most users have a reasonably low limit on the number of open files that are allowed per

process. If you use a relatively low number in step 4, it is less important to do this. However, if you set a high

number in step 4 earlier and you do not establish limits in the limits.conf file, computer performance can

be significantly reduced.

The following sample limits.conf file restricts all users, and then sets different limits for others

afterwards. This sample assumes that you set handles to 8192 in step 4 earlier.

193

HCL OneTest™ UI

194

* soft nofile 1024

* hard nofile 2048

root soft nofile 4096

root hard nofile 8192

user1 soft nofile 2048

user1 hard nofile 2048

Note that the * in the preceding example sets the limits for all users first. These limits are lower than the limits

that follow. The root user has a higher number of allowable handles open, while the number that is available to

user1 is between the two. Make sure that you read and understand the documentation that the limits.conf

file contains before making changes.

What to do next

For more information on the ulimit command, see the main page for ulimit in the Linux™ documentation.

Changing the language of the product on Linux
When you want to use the product in a different language other than the display language of your computer, then you

can change the language of the product by using the command-line interface.

About this task

Important: After you changed the language and closed the application for any reason, the product displays in

the language that is set in your computer if you re-open the product.

For example, consider the display language of your computer is set as French and you change the language of the

product to Japanese by using the command-line interface. When you close the product and open it again, the product

displays in the French language.

1. Open the terminal and log in as a root user.

2. Run the following command to change the directory to a location where you installed the product:

cd <directory path>

For example, cd root/HCL-OneTest

3. Run the following command to change the language of the product:

./eclipse -nl <language_code>

Where <language_code> is the code of your preferred language.

The following table lists the language codes that you might want to choose during the installation:

Chapter 6. Administrator Guide

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

For example, ./eclipse -nl ja

Result

The product opens in the Japanese language.

Results

You have changed the language of the product until you restart the product.

Installation of HCL OneTest™ Performance Agent by using the stand-alone installer
To get started with HCL OneTest™ Performance Agent, you must install the product on Windows system or Linux or

macOS by using the stand-alone installer.

You can install the product by using any of the following methods:

• GUI mode

• Console mode

• Silent mode

Installation of the Agent on Windows systems
You can find information about installing HCL OneTest™ Performance Agent on Windows system by using the stand-

alone installer.

You can install the Agent by using any of the following methods:

• GUI mode

• Silent mode

195

HCL OneTest™ UI

196

Installing Agent in the GUI mode on Windows systems
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts the

application under test or to run multiple Web UI tests. When you want to run the test scripts on any computer, you

must install HCL OneTest™ Performance Agent.

Before you begin

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling Agent in the GUI mode on Windows

systems on page 227.

◦ Verified the software and hardware requirements. See System Requirements on page 12.

◦ Cleared files from the Temp directory, restarted the computer, and started stand-alone installer as an

Administrator.

About this task

All 32-bit test extensions such as SAP, Citrix, and Siebel are supported only for 32-bit HCL OneTest™ Performance

Agent. The product installer does not support the following features:

• Updates, modifications, or rollback

• Shell sharing in Eclipse

• Sharing of common components

• Integration with Visual Studio for HCL OneTest™ UI

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

Chapter 6. Administrator Guide

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por

tuguese

Brazil

• Sim

pli

fied

Chi

nese

• Eng

lish

• Tra

di

tion

al

Chi

nese

• Eng

lish

• Japan

ese

• Eng

lish

• Czech

• Eng

lish

• Hun

gari

an

• Pol

ish

• Ko

re

an

• Eng

lish

• Turk

ish

• Eng

lish

• Russ

ian

• Eng

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

If you do not want to configure the agent during the installation of the product, then you can leave the configuration

fields blank. Later, when you decide to configure the agent, you can update the parameter values in the

Majordomo.config file. The Majordomo.config file is at the following location:

\HCL\HCLoneTest\Majordomo.config

Note: The URL Alias parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Right-click the product installer file and select Run as Administrator.

The GUI window is displayed.

3. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

4. Read through the details on the Introduction window, and then click Next.

5. Read the license agreement carefully, select the I accept checkbox, and then click Next.

6. Read the Microsoft Software license agreement carefully, and then select the I accept check box to install

the execution agent that provides you with the necessary prerequisites to test the hybrid and native mobile

applications, and Windows desktop applications. Click Next to continue.

197

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

198

Note: After the installation, the execution agent starts automatically when you run AFT test suites and

it stops after the playback is completed.

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: You must select any other directory if the default directory is not empty. The default locations

for 32-bit and 64-bit installers are as follows:

◦ For 32-bit: C:\Program Files(x86)\HCL

◦ For 64-bit: C:\Program Files\HCL

8. Optional: Perform the following steps to configure the agent:

a. Specify the values for the following parameters for HCL OneTest™ UI:

Field name Description Example

Host name The hostname of HCL OneTest™ UI. localhost

Port The port number of HCL OneTest™ UI. 7080

b. Specify the values for the following parameters for HCL OneTest™ Server:

Field name Description Example

Host name The hostname of HCL OneTest™ Server.

Note:

▪ The hostname of HCL OneTest™ Serv

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname

of HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win

dows/system32/drives/etc/host

localhost

Port The port number of HCL OneTest™ Server. 443

Chapter 6. Administrator Guide

Field name Description Example

Token An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUzI1NiIsInR

URL Alias The name of the URL Alias that you provided during the

creation of the team space in HCL OneTest™ Server.

testteam

9. Read through the installation details and, then click Install.

10. Click Done after the installation of the product is complete.

Results

You have installed the agent on your computer.

Creating the properties file on Windows systems for HCL OneTest™ Performance
Agent
To install HCL OneTest™ Performance Agent in the silent mode, you must first create a properties file that contains

the data required to install the product. Alternatively, you can generate the properties file by using the stand-alone

installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 199 through 4 on

page 199.

• Copying the contents of the sample properties file to your local properties file. See step 5 on page 200.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Run the following command to generate the properties file:

<installer_file.exe> -r <location of the installer.properties file>

199

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

200

For example, HCL-OneTest-Performance-Agent-Windows-x64-v10.1.0.0.exe -r C:\users\Downloads

\installer.properties

5. Create your properties file by copying the content of the following sample properties file:

Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=C:\\Program Files\\HCL

#HCL Load Generation Agent Configuration
#---------------------------------------
WORKBENCH_HOSTNAME=<host name of HCL OneTest UI>
WORKBENCH_PORT=7080
SERVER_HOSTNAME=<host name of server>
SERVER_PORT=6969
SERVER_TOKEN=<server token>
SERVER_URL_ALIAS=<name of the URL alias for the team space>

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing Agent in the silent mode on Windows systems
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts the

application under test or to run multiple Web UI tests. When you want to run the test scripts on any computer, you

must install HCL OneTest™ Performance Agent.

Before you begin

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have completed the following tasks:

Chapter 6. Administrator Guide

◦ Uninstalled the previous version of the product. See Uninstalling Agent in the silent mode on Windows

systems on page 228.

◦ Deleted the installer.properties file generated from the previous installation if you are installing

a newer version of the product.

◦ Created a properties file that contains the inputs for the installer during the installation process. See

Creating the properties file on Windows systems for HCL OneTest Performance Agent on page 199.

◦ Verified the software and hardware requirements. See System Requirements on page 12.

◦ Cleared files from the Temp directory, restarted the computer, and started stand-alone installer as an

Administrator.

About this task

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

If you decided to configure the agent, later, then you can update the parameter values in the Majordomo.config file.

The Majordomo.config file is at the following location:

\HCL\HCLoneTest\Majordomo.config

Note: The SERVER_URL_ALIAS parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Extract the downloaded product installer file.

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can run the following command to install HCL OneTest™ Performance Agent 10.2.0 in

French:

201

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

202

HCL-OneTest-Performance-Agent-Windows-x64-v10.2.0.0.exe -i silent -l fr -f C:\users\Downloads

\installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt

file to know more about the problem that occurred during the installation process. The error

log is located at \<installation directory>\Logs.

Result

You can verify the status of the installation of the product by checking the log file at \<installation

directory>\Logs.

Results

You have installed the product on your computer.

Installation of the Agent on Linux
You can find information about installing HCL OneTest™ Performance Agent on Linux by using the stand-alone

installer.

You can install the Agent by using any of the following methods:

Chapter 6. Administrator Guide

• GUI mode

• Console mode

• Silent mode

Installing Agent in the GUI mode on Linux
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts the

application under test or to run multiple Web UI tests. When you want to run the test scripts on any computer, you

must install HCL OneTest™ Performance Agent.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling Agent in the GUI mode on Linux on

page 230.

• Verified the software and hardware requirements. See System Requirements on page 12.

About this task

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por

tuguese

Brazil

• Sim

pli

fied

Chi

nese

• Eng

lish

• Tra

di

tion

al

Chi

nese

• Eng

lish

• Japan

ese

• Eng

lish

• Czech

• Eng

lish

• Hun

gari

an

• Pol

ish

• Ko

re

an

• Eng

lish

• Turk

ish

• Eng

lish

• Russ

ian

• Eng

lish

203

HCL OneTest™ UI

204

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

If you do not want to configure the agent during the installation of the product, then you can leave the configuration

fields blank. Later, when you decide to configure the agent, you can update the parameter values in the

Majordomo.config file. The Majordomo.config file is at the following location:

/HCL/HCLoneTest/Majordomo.config

Note: The URL Alias parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Open the terminal and log in as a root user.

3. Run the following command to extract the zip file:

unzip <filename>

Result

The GUI window is displayed.

4. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

5. Read through the details on the Introduction window, and then click Next.

6. Read the license agreement carefully, select the I accept checkbox, and then click Next.

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: The default installation directory is /opt/HCL.

8. Optional: Perform the following steps to configure the agent:

a. Specify the values for the following parameters for HCL OneTest™ UI:

Field name Description Example

Host name The hostname of HCL OneTest™ UI. localhost

Port The port number of HCL OneTest™ UI. 7080

b. Specify the values for the following parameters for HCL OneTest™ Server:

Field name Description Example

Host name The hostname of HCL OneTest™ Server. localhost

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

Field name Description Example

Note:

▪ The hostname of HCL OneTest™ Serv

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname

of HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win

dows/system32/drives/etc/host

Port The port number of HCL OneTest™ Server. 443

Token An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUzI1NiIsInR

URL Alias The name of the URL Alias that you provided during the

creation of the team space in HCL OneTest™ Server.

testteam

9. Read through the installation details and, then click Install.

10. Click Done after the installation of the product is complete.

Results

You have installed the agent on your computer.

Installing Agent in the console mode on Linux
To install the HCL OneTest™ Performance Agent on Ubuntu and Red Hat Enterprise Linux (RHEL) operating systems

where GUI mode is not supported, you can use the console-mode installation method.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling the product in the console mode on Linux on

page 229.

• Installed Konsole on your computer. The Konsole application is required to enable the shortcut icon of the

product after installation. You can install Konsole by running the apt-get install konsole command in the

terminal.

205

HCL OneTest™ UI

206

Note: You need not install Konsole on the computer that is running RHEL 8 or later.

• Verified that the following libraries are available on your computer, if you want to install HCL OneTest™ UI:

◦ libnsl.so.1

◦ libstdc++.so.6

◦ libXp.so.6

◦ libgtk-x11-2.0.so.0

◦ libXtst.so.6

◦ libXt.so.6

◦ libstdc++.so.5

◦ libXft.so.2

◦ libXm.so.4

Note: For more information on the library dependencies on Linux, refer to Library dependency on

Linux.

• Verified the software and hardware requirements. See System Requirements on page 12.

About this task

In console mode, the installation process is an interactive and text-based. You can install the product in the console

mode only on the Ubuntu and RHEL operating systems.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the appropriate number during

the installation of the product.

The following languages are displayed in the drop-down list based on the display language of your computer:

https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en
https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en

Chapter 6. Administrator Guide

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por

tuguese

Brazil

• Sim

pli

fied

Chi

nese

• Eng

lish

• Tra

di

tion

al

Chi

nese

• Eng

lish

• Japan

ese

• Eng

lish

• Czech

• Eng

lish

• Hun

gari

an

• Pol

ish

• Ko

re

an

• Eng

lish

• Turk

ish

• Eng

lish

• Russ

ian

• Eng

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

If you do not want to configure the agent during the installation of the product, then you can leave the configuration

fields blank. Later, when you decide to configure the agent, you can update the parameter values in the

Majordomo.config file. The Majordomo.config file is at the following location:

/HCL/HCLoneTest/Majordomo.config

Note: The URL Alias parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory from root to the directory where you downloaded the

installer zip file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to extract the product installer zip file:

unzip <product package name>

For example, unzip HCL-OneTest-Performance-Agent-Windows-x64-v10.2.0.0.zip

The command-line interface displays the list of preferred languages based on the display language that is set

on your computer.

207

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

208

Note: To identify the display language of your computer, the command-line interface displays an arrow

mark (->) that precedes the name of the language.

5. Enter a number to select your preferred language, and then Enter.

Result

The installation instructions are displayed in your preferred language.

6. Run the following command to begin the installation process:

./<filename.bin> -i console

For example, ./HCL-OneTest-Performance-Agent-Windows-x64-v10.2.0.0.bin -i console

7. Review the license agreement and perform the following actions:

◦ Read the license agreement by pressing any key along with the Enter key to continue reading the

license agreement.

◦ At any time, press 0 (zero) along with the Enter key to go to the end of the license agreement.

◦ After you read the license agreement, enter Y to accept the license agreement and continue with the

installation.

Note: You can type N if you want to cancel the installation.

8. Provide the path where you want to install the product and perform the following steps:

a. Press Enter to install the product in the default path: /opt/HCL.

b. Enter the complete path of the directory and press Enter to install the product in the new directory

path.

Note: You can type Back and press Enter to go to the previous step if you want to modify your inputs

during the installation process.

9. Optional: Perform the following steps to configure the agent:

a. Specify the values for the following parameters for HCL OneTest™ UI:

Field name Description Example

Host name The hostname of HCL OneTest™ UI. localhost

Port The port number of HCL OneTest™ UI. 7080

b. Specify the values for the following parameters for HCL OneTest™ Server:

Chapter 6. Administrator Guide

Field name Description Example

Host name The hostname of HCL OneTest™ Server.

Note:

▪ The hostname of HCL OneTest™ Serv

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname

of HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win

dows/system32/drives/etc/host

localhost

Port The port number of HCL OneTest™ Server. 443

Token An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUzI1NiIsInR

URL Alias The name of the URL Alias that you provided during the

creation of the team space in HCL OneTest™ Server.

testteam

10. Review the pre-installation summary, and then press Enter to continue with the installation process.

11. Press Enter to exit the installer.

Result

Note: If the installation of the product is not successful, you can check the errors that occurred during

the installation in the log file. The log file is available at the location: /opt/HCL/Logs.

Results

You have installed the agent on your computer.

Note: If the installation of the product is not successful, you can check the errors that occurred during the

installation in the log file. The log file is available at the location: /opt/HCL/Logs.

What to do next

You must enter the license key when you open the product. See License management on page 237.

209

HCL OneTest™ UI

210

Creating the properties file on Linux for HCL OneTest™ Performance Agent
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 210 through 4 on

page 210.

• Copying the contents of the sample properties file to your local properties file. See 5 on page 210.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to generate the properties file:

<installer_file.bin> -r <location of the installer.properties file>

For example,

For example, HCL-OneTest-Performance-Agent-Linux-x64-v10.1.0.0.bin -r /root/Downloads/installer.properties

5. Create your properties file by copying the content of the following sample properties file:

Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=/opt/HCL

#HCL Load Generation Agent Configuration
#---------------------------------------
WORKBENCH_HOSTNAME=<host name of HCL OneTest UI>
WORKBENCH_PORT=7080

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

SERVER_HOSTNAME=<host name of server>
SERVER_PORT=6969
SERVER_TOKEN=<server token>
SERVER_URL_ALIAS=<name of the URL alias for the team space>

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing Agent in the silent mode on Linux
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts the

application under test or to run multiple Web UI tests. When you want to run the test scripts on any computer, you

must install HCL OneTest™ Performance Agent.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling Agent in the silent mode on Linux on

page 232.

• Installed Konsole on your computer. The Konsole application is required to enable the shortcut icon of the

product after installation. You can install Konsole by running the apt-get install konsole command in the

terminal.

Note: You need not install Konsole on the computer that is running RHEL 8 or later.

• Deleted the installer.properties file generated from the previous installation if you are installing a

newer version of the product.

• Created a properties file that contains the inputs for the installer during the installation process. See Creating

the properties file on Linux for HCL OneTest Performance Agent on page 210.

• Verified the software and hardware requirements. See System Requirements on page 12.

• Verified that the following libraries are available on your computer, if you want to install HCL OneTest™ UI:

◦ libnsl.so.1

◦ libstdc++.so.6

◦ libXp.so.6

◦ libgtk-x11-2.0.so.0

◦ libXtst.so.6

◦ libXt.so.6

◦ libstdc++.so.5

211

HCL OneTest™ UI

212

◦ libXft.so.2

◦ libXm.so.4

Note: For more information on the library dependencies on Linux, refer to Library dependency on

Linux.

About this task

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

If you decided to configure the agent, later, then you can update the parameter values in the Majordomo.config file.

The Majordomo.config file is at the following location:

/HCL/HCLoneTest/Majordomo.config

Note: The SERVER_URL_ALIAS parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to extract the downloaded zip file:

unzip <product package name>

For example, unzip HCL-OneTest-Performance-Agent-Linux-x64-v10.1.0.0.zip

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can run the following command to install HCL OneTest™ Performance Agent 10.2.0 in

French:

HCL-OneTest-Performance-Agent-Linux-x64-v10.2.0.0.bin -i silent -l fr -f /root/Downloads/installer.properties

The following table lists the language codes that you might want to choose during the installation:

https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en
https://www.ibm.com/developerworks/community/blogs/qualitymanagement/entry/rft_libraries_dependency_on_linux?lang=en
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt

file to know more about the problem that occurred during the installation process. The error

log is located at /<installation directory>/Logs.

Result

You can verify the status of the installation of the product by checking the log file at /<installation

directory>/Logs.

Results

You have installed the product on your computer.

Installation of the Agent on macOS
You can find information about installing HCL OneTest™ Performance Agent on macOS by using the stand-alone

installer.

You can install the Agent by using any of the following methods:

• GUI mode

• Silent mode

213

HCL OneTest™ UI

214

Installing Agent in the GUI mode on macOS
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts the

application under test or to run multiple Web UI tests. When you want to run the test scripts on mac machine, you

must install HCL OneTest™ Performance Agent.

Before you begin

• You must have elevated privileges access.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling Agent in the GUI mode on macOS on

page 233.

◦ Verified the software and hardware requirements. See System Requirements on page 12.

About this task

All 32-bit test extensions such as SAP, Citrix, and Siebel are supported only for 32-bit HCL OneTest™ Performance

Agent. The product installer does not support the following features:

Note: When you run a test or schedule by using HCL OneTest™ Performance Agent on macOS, by default, the

majordomo.log file is stored in the $TMPDIR.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

Chapter 6. Administrator Guide

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por

tuguese

Brazil

• Sim

pli

fied

Chi

nese

• Eng

lish

• Tra

di

tion

al

Chi

nese

• Eng

lish

• Japan

ese

• Eng

lish

• Czech

• Eng

lish

• Hun

gari

an

• Pol

ish

• Ko

re

an

• Eng

lish

• Turk

ish

• Eng

lish

• Russ

ian

• Eng

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

If you do not want to configure the agent during the installation of the product, then you can leave the configuration

fields blank. Later, when you decide to configure the agent, you can update the parameter values in the

Majordomo.config file. The Majordomo.config file is at the following location:

/Application/HCL/HCLOnetest/Majordomo.config

Note: The URL Alias parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Extract the downloaded product installer file.

3. Double-click the installer to initiate the installation process.

The GUI window is displayed.

4. Initiate the GUI installation from the command line by completing the following steps:

a. Change the directory to where you have downloaded the installer by running the following command:

cd <directory path>

By default, the package is downloaded to /Users/Applications/HCL. For example, cd HCL-

OneTest-UI-Mac-v10.1.2.app/Contents/MacOS/

b. Run the following command to initiate the product installation:

./<product name>

For example, ./HCL-OneTest-UI-Mac-v10.1.2

215

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

216

5. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

6. Read through the details on the Introduction window, and then click Next.

7. Read the license agreement carefully, select the I accept checkbox, and then click Next.

8. Browse for the location or directory where you want to install the product, and then click Next.

Note: By default, the product is installed at the following location: /Applications/HCL.

9. Optional: Perform the following steps to configure the agent:

a. Specify the values for the following parameters for HCL OneTest™ UI:

Field name Description Example

Host name The hostname of HCL OneTest™ UI. localhost

Port The port number of HCL OneTest™ UI. 7080

b. Specify the values for the following parameters for HCL OneTest™ Server:

Field name Description Example

Host name The hostname of HCL OneTest™ Server.

Note:

▪ The hostname of HCL OneTest™ Serv

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname

of HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win

dows/system32/drives/etc/host

localhost

Port The port number of HCL OneTest™ Server. 443

Chapter 6. Administrator Guide

Field name Description Example

Token An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUzI1NiIsInR

URL Alias The name of the URL Alias that you provided during the

creation of the team space in HCL OneTest™ Server.

testteam

10. Read through the installation details and, then click Install.

11. Click Done after the installation of the product is complete.

Results

You have installed the agent on your computer.

Creating the properties file on macOS for HCL OneTest™ Performance Agent
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 217 through 4 on

page 217 .

• Copying the contents of the sample properties file to your local properties file. See 5 on page 217.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Run the following command to generate the properties file:

<installer_file.exe> -r <location of the installer.properties file>

For example, HCL-OneTest-Performance-Agent-AMC-x64-v10.1.0.0.exe -r C:\users\Downloads

\installer.properties

5. Create the properties file by copying the content of the following sample properties file:

217

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

218

Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=/Applications/HCL

#HCL Load Generation Agent Configuration
#---------------------------------------
WORKBENCH_HOSTNAME=<host name of HCL OneTest UI>
WORKBENCH_PORT=7080
SERVER_HOSTNAME=<host name of server>
SERVER_PORT=6969
SERVER_TOKEN=<server token>
SERVER_URL_ALIAS=<name of the URL alias for the team space>

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing Agent in the silent mode on macOS
To get started with HCL OneTest™ Performance Agent on macOS, in addition to the GUI mode, you can also use the

silent installation method to install the product.

Before you begin

• You must have elevated privileges access.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling Agent in the GUI mode on macOS on

page 233

◦ Deleted the installer.properties file generated from the previous installation if you are installing

a newer version of the product.

◦ Verified the software and hardware requirements. See System Requirements on page 12.

◦ Created a properties file that contains the inputs for the installer during the installation process. See

Creating the properties file on macOS for HCL OneTest Performance Agent on page 217.

About this task

Chapter 6. Administrator Guide

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

If you decided to configure the agent, later, then you can update the parameter values in the Majordomo.config file.

The Majordomo.config file is at the following location:

/Application/HCL/HCLOnetest/Majordomo.config

Note: The SERVER_URL_ALIAS parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Open the terminal and log in as an administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd /Users/username/Downloads

4. Extract the downloaded installer file.

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can install HCL OneTest™ Performance Agent in French by running the following command:

HCL-OneTest-Performance-Agent-MAC-x64-v10.2.0.0.app -i silent -l fr -f /Users/Applications/HCL/

installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

219

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

220

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt

file to know more about the problem that occurred during the installation process. The error

log is located at /<installation directory>/Logs.

Result

You can verify the status of the installation of the product by checking the log file at /<installation

directory>/Logs.

Results

You have installed the product on your computer.

Installation of the product software on macOS
You can find information about installing the product software on macOS by using the stand-alone installer.

You can install the product software by using any of the following methods:

• GUI mode

• Silent mode

Installing the product in the GUI mode on macOS
To get started with the desktop client on macOS, you can install the product in the GUI mode by using the stand-alone

installer.

Before you begin

• You must have elevated privileges access.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling the product in the GUI mode on

macOS on page 232.

◦ Verified the software and hardware requirements. See System Requirements on page 12.

Chapter 6. Administrator Guide

About this task

You cannot update, modify, or roll back the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por

tuguese

Brazil

• Sim

pli

fied

Chi

nese

• Eng

lish

• Tra

di

tion

al

Chi

nese

• Eng

lish

• Japan

ese

• Eng

lish

• Czech

• Eng

lish

• Hun

gari

an

• Pol

ish

• Ko

re

an

• Eng

lish

• Turk

ish

• Eng

lish

• Russ

ian

• Eng

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Extract the downloaded product installer file.

3. Double-click the installer to initiate the installation process.

The GUI window is displayed.

4. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

221

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

222

The drop-down list displays the languages based on the display language that is set on your computer.

5. Read through the details on the Introduction window, and then click Next.

6. Read the license agreement carefully, select the I accept checkbox, and then click Next.

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: By default, the product is installed at the following location: /Applications/HCL.

8. Read through the installation details and, then click Install.

9. Click Done after the installation of the product is complete.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 237.

Creating a properties file on macOS
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 222 through 4 on

page 222.

• Copying the contents of the sample properties file to your local properties file. See 5 on page 223.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as an administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd /Users/username/Downloads

4. Run the following command to generate the properties file:

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

<installer_file.app> -r <location of the installer.properties file>

For example, HCL-OneTest-UI-MAC-x64-v10.1.0.0.app -r /Users/Applications/HCL/installer.properties

5. Create the properties file by copying the content of the following sample properties file:

#Host Name
Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=/Applications/HCL

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing the product in the silent mode on macOS
To get started with the product, you can install the product on macOS by using the silent mode installation method.

Before you begin

• You must have elevated privileges access.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling the product in the silent mode on

macOS on page 233.

◦ Deleted the installer.properties file generated from the previous installation if you are installing

a newer version of the product.

◦ Created a properties file that contains the inputs for the installer during the installation process. See

Creating a properties file on macOS on page 222.

◦ Verified the software and hardware requirements. See System Requirements on page 12.

About this task

You cannot update, modify, or roll back the product by using the stand-alone installer.

223

HCL OneTest™ UI

224

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as an administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd /Users/username/Downloads

4. Extract the downloaded the product installer file.

5. Run the following command to start the installation process:

<installer_file.app> -i silent -l <language_code> -f <location of the properties file>

For example, you can install the product in French by running the following command:

HCL-OneTest-UI-MAC-x64-v10.2.0.0.app -i silent -l fr -f /Users/Applications/HCL/installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

Notes:

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt to

know more about the problem that occurred during the installation process. The error log is

located at /<installation directory>/Logs.

Result

You can verify the status of the installation of the product by checking the log file at \<installation

directory>\Logs.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 237.

Changing the language of the product on macOS
When you want to use the product in a different language other than the display language of your computer, then you

can change the language of the product by using the command-line interface.

About this task

Important: After you changed the language and closed the application for any reason, the product displays in

the language that is set in your computer if you re-open the product.

For example, consider the display language of your computer is set as French and you change the language of the

product to Japanese by using the command-line interface. When you close the product and open it again, the product

displays in the French language.

1. Open the terminal and log in as an administrator.

2. Run the following command to change the directory to a location where you installed the product:

cd <directory path>

For example, cd /Users/Applications/HCL/HCL-OneTest

3. Run the following command to change the language of the product:

./eclipse -nl <language_code>

225

HCL OneTest™ UI

226

Where <language_code> is the code of your preferred language.

The following table lists the language codes that you might want to choose during the installation:

Lan

guages

Chi

nese

(Sim

pli

fied)

Chi

nese

(Tra

di

tion

al)

Czech Eng

lish

FrenchGer

man

Hun

gari

an

Ital

ian

Japan

ese

Kore

an

Pol

ish

Por

tuguese

(Brazil)

Russ

ian

Span

ish

Turk

ish

Lan

guage

codes

zh_

CN

zh_

TW

cz en fr de hu it ja ko pl pt_

BR

ru es tr

For example, ./eclipse -nl ja

Result

The product opens in the Japanese language.

Results

You have changed the language of the product until you restart the product.

Uninstallation of the product by using the stand-alone installer
When you no longer require the product, you can use the stand-alone installer to uninstall the products that you have

installed.

Uninstalling the product on Windows systems
You can find information about uninstalling the product on Windows system by using either the stand-alone installer.

You can uninstall the product by using any of the following methods:

• GUI mode

• Silent mode

Uninstalling the product in the GUI mode on Windows systems
When you want to remove the product on a Windows system computer, use the uninstall option. You can choose to

uninstall the product by using any one of the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

Chapter 6. Administrator Guide

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. On the Start menu, click Add or remove programs option.

2. On the Apps & Features page, click the product software that you want to remove.

3. Click Uninstall.

A dialog appears with the warning message.

4. In the dialog, click Uninstall and follow the on-screen instructions.

The product is removed from your system.

Results

You have uninstalled the product from your computer.

Uninstalling the product in the silent mode on Windows systems
When you no longer require a version of the product, you can uninstall the product automatically without manual

intervention by using the command prompt option.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Right-click the Command Prompt application and select Run as Administrator.

2. Change to the directory where the product is installed by running the following command:

cd <directory path>

For example, cd C:\Program Files\HCL\Uninstall

3. Start the uninstallation process by running the following command:

Uninstall-HCL-OneTest-UI.exe -uninstall -i silent

Results

You have uninstalled the product from your computer.

Uninstalling Agent in the GUI mode on Windows systems
When you want to remove HCL OneTest™ Performance Agent on a Windows system computer, use the uninstall

option. You can choose to uninstall the product by using any one of the uninstallation methods regardless of the

mode of installation.

227

HCL OneTest™ UI

228

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. On the Start menu, click Add or remove programs option.

2. On the Apps & Features page, click the product software that you want to remove.

3. Click Uninstall.

A dialog appears with the warning message.

4. In the dialog, click Uninstall and follow the on-screen instructions.

The product is removed from your system.

Results

You have uninstalled the agent from your computer.

Uninstalling Agent in the silent mode on Windows systems
When you no longer require HCL OneTest™ Performance Agent, you can uninstall it automatically without manual

intervention by using the command prompt option. You can choose to uninstall the product by using any one of the

uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Right-click the Command Prompt application and select Run as Administrator.

2. Change to the directory where the product is installed by running the following command:

cd <directory path>

For example, cd C:\Program Files\HCL\Uninstall

3. Start the uninstallation process by running the following command:

Uninstall-HCL-OneTest-Performance-Agent.exe -uninstall -i silent

Results

You have uninstalled the product from your computer.

Chapter 6. Administrator Guide

Uninstalling the product on Linux
You can find information about uninstalling the product on Linux by using the stand-alone installer.

You can uninstall the product by using any of the following methods:

• GUI mode

• Console mode

• Silent mode

Uninstalling the product in the GUI mode on Linux
When you want to remove the product on Linux machine, use the uninstall option. You can choose to uninstall the

product by using any one of the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as root user.

2. Click Applications > Programming > Uninstall.

3. On the Uninstall screen, click Uninstall and follow the on-screen instructions.

4. Uninstall the product by running the following commands in the terminal, if you are a non-root user:

<installation directory>/Uninstall
sudo ./Uninstall-HCL-OneTest-UI

Results

You have uninstalled the product from your computer.

Uninstalling the product in the console mode on Linux
When you no longer want to use the product installed on Ubuntu or Red Hat Enterprise Linux (RHEL) operating

system, you can uninstall the product in the console mode.

Before you begin

• You must be a root user.

• You must close browsers and other applications that are enabled by the product before you uninstall the

product.

229

HCL OneTest™ UI

230

1. Open a terminal and change the current directory to the installation directory by running the following

command:

cd <directory path>/<installation folder>/Uninstall

For example, cd /opt/HCL/OneTest-UI/Uninstall

2. Run the following command to uninstall the product:

./Uninstall-HCL-OneTest-UI -uninstall -i console

3. Read the details about the uninstallation process, and then press Enter.

4. Exit the console mode by pressing Enter after the product is uninstalled.

Results

You have uninstalled the product from your computer.

What to do next

You can reinstall the product when you want to upgrade the product to the latest version. You can also reinstall the

product if the previous installation is unsuccessful. See Installing the product in the console mode on page 186.

Uninstalling the product in the silent mode on Linux
When you no longer require a version of the product, you can uninstall the product automatically without manual

intervention by using the command prompt option.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as a root user.

2. Change the directory to where you have installed the product by entering the following command:

cd <directory path>

For example, cd /opt/HCL/Uninstall-HCL-OneTest-UI

3. Initiate the uninstallation process by entering the following command:

./Uninstall-HCL-OneTest-UI -uninstall -i silent

Results

You have uninstalled the product from your computer.

Uninstalling Agent in the GUI mode on Linux
When you want to remove HCL OneTest™ Performance Agent on Linux machine, use the uninstall option.

Chapter 6. Administrator Guide

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as root user.

2. Click Applications > Programming > Uninstall.

3. On the Uninstall screen, click Uninstall and follow the on-screen instructions.

4. Uninstall the product by running the following commands in the terminal, if you are a non-root user:

<installation directory>/Uninstall
sudo ./Uninstall-HCL-OneTest-UI

Results

You have uninstalled the agent from your computer.

Uninstalling Agent in the console mode on Linux
When you no longer want to use HCL OneTest™ Performance Agent installed on Ubuntu or Red Hat Enterprise Linux

(RHEL) operating system, you can uninstall HCL OneTest™ Performance Agent in the console mode.

Before you begin

• You must be a root user.

• You must close browsers and other applications that are enabled by the product before you uninstall the

product.

1. Open a terminal and change the current directory to the installation directory by running the following

command:

cd <directory path>/<installation folder>/Uninstall

For example, cd /opt/HCL/OneTest-Performance-Agent/Uninstall

2. Run the following command to uninstall the product:

./Uninstall-HCL-OneTest-Performance-Agent -uninstall -i console

3. Read the details about the uninstallation process, and then press Enter.

4. Exit the console mode by pressing Enter after the product is uninstalled.

Results

You have uninstalled the agent from your computer.

What to do next

231

HCL OneTest™ UI

232

You can reinstall the product when you want to upgrade the product to the latest version. You can also reinstall the

product if the previous installation is unsuccessful. See Installing Agent in the console mode on Linux on page 205.

Uninstalling Agent in the silent mode on Linux
When you no longer require HCL OneTest™ Performance Agent, you can uninstall the product automatically without

manual intervention using the command prompt option. You can choose to uninstall the product by using any one of

the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as a root user.

2. Change the directory to where you have installed the product by entering the following command:

cd <directory path>

For example, cd /opt/HCL/Uninstall-HCL-OneTest-Performace-Agent

3. Initiate the uninstallation process by entering the following command:

./Uninstall-HCL-OneTest-Performance-Agent -uninstall -i silent

Results

You have uninstalled the product from your computer.

Uninstalling the product on macOS
You can find information about uninstalling the product on macOS by using either the stand-alone installer.

You can uninstall the product by using any of the following methods:

• GUI mode

• Silent mode

Uninstalling the product in the GUI mode on macOS
When you no longer require the product, you can uninstall the product in the GUI mode by using the stand-alone

installer. You can choose to uninstall the product by using any one of the uninstallation methods regardless of the

mode of installation.

Before you begin

You must have completed the following tasks:

Chapter 6. Administrator Guide

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Go to the directory where the product is installed.

2. Double-click the Uninstall-HCL-OneTest-UI file and follow the on screen instructions.

The product is uninstalled from your computer.

Results

You have uninstalled the product from your computer.

Uninstalling the product in the silent mode on macOS
When you no longer require a version of the product, you can uninstall it by using the silent mode method. You can

choose to uninstall the product by using any one of the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as an administrator.

2. Change to the directory where the product is installed by entering the following command:

cd <directory path>

For example, cd Applications/HCL/Uninstall-HCL-HCL-OneTest-UI/Contents/MacOS

3. Start the uninstallation process by running the following command:

/Uninstall-HCL-OneTest-UI -uninstall -i silent

Results

You have uninstalled the product from your computer.

Uninstalling Agent in the GUI mode on macOS
When you no longer require HCL OneTest™ Performance, you can uninstall the product in the GUI mode by using the

stand-alone installer.

Before you begin

You must have completed the following tasks:

233

HCL OneTest™ UI

234

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Go to the directory where the product is installed.

2. Double-click the Uninstall-HCL-OneTest-UI file and follow the on screen instructions.

The product is uninstalled from your computer.

Results

You have uninstalled the agent from your computer.

Uninstalling Agent in the silent mode on macOS
When you no longer require HCL OneTest™ Performance Agent, you can uninstall it in the silent mode. You can

choose to uninstall the product by using any one of the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as an administrator.

2. Change to the directory to where the product is installed by entering the following command:

cd <directory path>

For example, cd Applications/HCL/Uninstall-HCL-HCL-OneTest-Performance-Agent/Contents/MacOS

3. Start the uninstallation process by running the following command:

/Uninstall-HCL-OneTest-Performance-Agent -uninstall -i silent

Results

You have uninstalled the product from your computer.

Upgrading and migrating
When you want to use the enhanced functionality of HCL OneTest™ UI, you must upgrade to the latest version of the

product software.

Updating HCL OneTest™ UI
For some releases, you can install updates for packages that were installed with Installation Manager. Package

updates provide fixes and updates to installed features and might also include new features that you can install using

the Modify Packages wizard.

Chapter 6. Administrator Guide

Before you begin

By default, Internet access is required unless your repository preferences points to your local update site.

Each installed package has the location embedded for its default IBM® update repository. For Installation Manager to

search the IBM® update repository locations for the installed packages, the preference Search service repositories

during installation and updates on the Repositories preference page must be selected. This preference is selected by

default.

See the Installation Manager help for more information.

Note:

• Close all programs that were installed using Installation Manager.

• Close Eclipse, as well as any open web browsers, and all other applications that are enabled by HCL

OneTest™ UI.

About this task

You can update your software in two ways:

• Online mode: This method requires an internet connection. Installation Manager connects to the IBM update

repositories that are preconfigured when the product is installed, and downloads and installs the update

package.

• Offline mode: While connected to the internet, download the package from the IBM update repository and

extract the files to a temporary location. Then in offline mode, run Installation Manager and update the

installation.

1. From the Start page of the Installation Manager, click Update.

2. If IBM® Installation Manager is not detected on your system or if an older version is already installed, then you

must continue with the installation of the latest release. Follow the instructions in the wizard to complete the

installation of IBM® Installation Manager

3. In the Update Packages wizard, select the location of the package group where the HCL OneTest™ UI product

package you want to update is installed or select the Update All check box, and then click Next.

Installation Manager searches for updates in its repositories and the predefined update sites for HCL

OneTest™ UI. A progress indicator shows the search is taking place.

4. If updates for a package are found, then they are displayed in the Updates list on the Update Packages page

under the selected package. Only recommended updates are displayed by default. Click Show all to display all

updates found for the available packages.

a. To learn more about an update, click the update and review its description under Details.

b. If additional information about the update is available, a More info link will be included at the end of

the description text. Click the link to display the information in a browser. Review this information

before installing the update.

235

HCL OneTest™ UI

236

5. Select the updates that you want to install or click Select Recommended to restore the default selections.

Updates that have a dependency relationship are automatically selected and cleared together.

6. Click Next to continue.

7. On the Licenses page, read the license agreements for the selected updates. On the left side of the License

page, the list of licenses for the updates you selected is displayed; click each item to display the license

agreement text.

a. If you agree to the terms of all the license agreements, click I accept the terms of the license

agreements.

b. Click Next to continue.

8. On the Features page, select the package features that you want to install or remove.

a. To learn more about a feature, click the feature and review the brief description under Details.

b. If you want to see the dependency relationships between features, select Show Dependencies. When

you click a feature, any features that depend on it and any features that are its dependents are shown

in the Dependencies window. As you select or exclude features in the packages, Installation Manager

will automatically enforce any dependencies with other features and display updated download size

and disk space requirements for the installation.

9. On the Summary page, review your choices before installing the updates.

a. If you want to change the choices you made on previous pages, click Back, and make your changes.

b. When you are satisfied, click Update to download and install the updates. A progress indicator shows

the percentage of the installation completed.

Note: During the update process, Installation Manager might prompt you for the location of the

repository for the base version of the package. If you installed the product from CDs or other media,

they must be available when you use the update feature.

10. Optional: When the update process completes, a message that confirms the success of the process is

displayed near the top of the page. Click View log file to open the log file for the current session in a new

window. You must close the Installation Log window to continue.

11. Click Finish to close the wizard.

12. Optional: Only the features that you already have installed are updated using the Update wizard. If the update

contains new features that you would like to install, run the Modify wizard and select the new features to

install from the feature selection panel.

Migrating test assets from earlier versions of Functional Tester
Follow these instructions to learn about migrating test assets from earlier versions of Functional Tester.

Enabling

Before you upgrade Functional Tester, close the Eclipse and Visual Studio IDEs, as well as any open web browsers,

and all other applications that are enabled by Functional Tester.

Chapter 6. Administrator Guide

As part of the upgrade, the first time you run the Enabler you will get a message informing you that Java™

environments that were previously enabled will be automatically disabled. You must then enable Java environments

that you want to use for testing. Web browsers that were previously enabled will remain that way. Click Configure >

Enable Environments for Testing on the product menu to run the Enabler. For more information on using the Enabler,

see Enabling Java™ Environments on page 586. You must disable the next generation plug-in for existing JREs

associated with browsers before upgrading.

Migrating test assets from earlier versions of HCL OneTest™ UI

All test assets from earlier versions of HCL OneTest™ UI, including projects, scripts, object maps, and verification

points, work with the current version of the product. However, scripts that you record with the current version of the

product will not play back on earlier versions. When you play back a script that was recorded with a previous version,

a warning message is displayed in the log file. To view the log file without the warning message, you must disconnect

the project, and connect again.

To connect to the project:

1. Right-click the functional test project, and click Disconnect Project. The project is removed from the

Functional Test Projects view.

2. Click File > Connect to a Functional Test Project.

3. Click Browse to browse to the project location path. The project name is displayed in the Project name field

when you browse to the project location path.

4. Click Finish. A dialog box prompting you to upgrade the project from the older version and connect again is

displayed.

5. Click Yes to confirm. Click Cancel if you want to disconnect from the project.

License management
Licensing for HCL OneTest™ UI is administered through HCL Software License & Download portal. This portal is a

FlexNet-based web application that helps to manage software entitlements and licenses.

When a software order is placed and acknowledged, a software entitlement is created. You must then follow the

instructions in the Software Order Acknowledgment document that you receive to activate your entitlement, create

devices, and download the software from the portal.

The license portal provides both software distribution and management of your software entitlements that are

purchased from HCL Software. The portal provides control and flexibility on how to consume your licenses. An

organization identifies one of its resources as a License Manager (also called Tech or Portal Admin) who is familiar

with the language of licenses.

For more information about the HCL Software License & Download portal, you can refer to the following knowledge

articles:

237

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

238

• What is the HCL Software License & Download portal (FlexNet portal)?

• How to find HCL Product Releases in HCL Software License & Download portal

• Managing Users on the HCL Software License & Download portal

If you do not have access to the internet, you can install and configure a Local License Server (LLS).See Configuring

licenses by using a Local License Server on page 240.

License descriptions
The usage of base product and test extensions are enabled by floating licenses, whereas schedule runs can be

enabled by either floating or consumption-based licenses. With floating licenses, multiple users can use the product;

however, the total number of concurrent users cannot exceed the number of floating licenses you purchase.

When a software order is placed and acknowledged, a software entitlement is created for the user. You can then

create devices and map the software entitlement with the devices through the HCL® License & Delivery portal. Every

device is associated to a server ID. This server ID is applied in the product. Multiple software entitlements can be

created based on the requirements.

You can use any of these licenses according to your requirements:

Product licenses

• Floating license to use the product:

To use the product, you need a HCL OneTest™ UI floating license or you can also use a HCL OneTest™ Studio

floating license. A floating license is checked out when you use the product and is returned to HCL® License &

Delivery portal when the license is not used for 15 minutes.

• Floating licenses for test extensions:

For HCL OneTest™ Performance, in addition to the license for product usage, if you use SOA, SAP, Citrix, and

Siebel test extensions, you need separate software entitlements. You can map all the entitlements to one

server ID. With HCL OneTest™ Studio license, you can use the above test extensions without the need for

separate entitlements. A license is checked out from the time the product is opened by the user. The license

remains checked out until the user closes the product. When the user closes the product, after 15 minutes, the

license is returned to the HCL® License & Delivery portal.

License configuration
To start using a product, you must first apply a license.

When you start the product for the first time, a licensing dialog box is displayed. Specify the server ID that was

provided to you or copy the ID from the HCL® License & Delivery portal. When you submit the server ID, the product

connects with the HCL® License & Delivery portal to verify it and if there is a license available, it is checked out so

that you can use the product. If the license is not available, a message is displayed about it. In most cases, you must

not change the server URL in the licensing dialog.

https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0073344
https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0010149
https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0072851
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

Notes:

• If the license is not used for 15 minutes, the license is returned to the server for others to consume it.

If the product looses connectivity to the HCL® License & Delivery portal, you can use the product for

two hours only if the server ID that you entered last time is correct.

• After the product installation, when you apply the license to the product, the license information

is cached in a system directory. If there are any permission issues accessing the directory or the

directory is deleted, there can be licensing error when starting the product. The workaround is to

create an environment variable HCL_ONETEST_LICENSING_STORAGE and specify a directory path. The

licensing information is now stored in the new directory. For example,

You can also apply the license after you open the product by using any of the following methods based on your

requirement:

• Configuring licenses by using a cloud-based License Server on page 240

• Configuring licenses by using a Local License Server on page 240

• Configuring licenses by using a Proxy Server on page 241

To apply the license without opening the product, add the licensing parameters as environment variables:

Variables Values

HCL_ONETEST_LICENSING_URL https://hclsoftware.compliance.flexnetoperations.com

HCL_ONETEST_LICENSING_ID Enter your server ID. The ID is a 12-character alphanu

meric identifier.

When running the tests from command line, you do not have to specify any licensing argument. However, when

running a schedule for HCL OneTest™ Performance or accelerated/distributed tests for HCL OneTest™ UI in an

uninterrupted mode, you must specify vmargs -Dhptcostconfirm argument in the command. The uninterrupted

mode refers to any of the non-GUI based test execution scenarios such as the following use cases:

• Running a test from the command line

• Running a test with Jenkins

239

https://hclsoftware.compliance.flexnetoperations.com

HCL OneTest™ UI

240

• Running a test with Ant

• Running a test with IBM® UrbanCode™ Deploy

• Running a test with IBM® Rational® Quality Manager

Configuring licenses by using a cloud-based License Server
You can apply license by using a cloud-based License Server to use HCL OneTest™ UI.

1. Open HCL OneTest™ UI.

2. Click Windows > Preferences > Test > HCL Licensing.

3. Select the Server Type as Cloud.

4. Enter the URL of the License Server in the Server URL field.

5. Enter the ID of the License Server in the Server ID field.

6. Click Test Connection to verify the connection to the License Server.

7. Click Apply to configure the license.

Results

You have configured the license to use HCL OneTest™ UI. The HCL Licensing dialog box displays the following

information:

• The number of Virtual Users (VUs)

• The number of VU Execution hours

• The number of floating licenses

What to do next

You can work with HCL OneTest™ UI.

Configuring licenses by using a Local License Server
You might not be able to connect your computer to the internet due to certain restrictions. In such cases, you can

configure a Local License Server (LLS) behind a firewall to use HCL OneTest™ UI.

Before you begin

You must have completed the following tasks:

• Installed and started the LLS. For more information, refer to the HCL Software License & Download portal

documentation.

• Imported a self-signed certificate into OneTest Java key store if you installed the LLS by using the self-signed

certificate and used an HTTPS protocol to check out licenses from the LLS.

Note: You can run the following commands to import the certificate into OneTest Java key store:

https://hclsoftware.flexnetoperations.com/flexnet/help/OperationsPortal/Content/helplibrary/opspManDevicesCreateDevice.htm

Chapter 6. Administrator Guide

cd <install_dir>\HCL\HCLOneTest\jdk\bin
keytool -printcert -sslserver <LLS_host>:<LLS_port> -rfc | keytool -import -noprompt
 -alias hclfnls -keystore "<install_dir>\HCL\HCLOneTest\jdk\jre\lib\security\cacerts"
 -storepass changeit

You must replace <LLS_host> and <LLS_port> with the hostname and port number of the LLS.

Important: If you used an HTTP protocol to check out licenses from the LLS, you do not

require to import the self-signed certificate.

• Mapped entitlements of software with the LLS to serve your requests. For more information, refer to the HCL

Software License & Download portal documentation.

1. Open HCL OneTest™ UI.

2. Click Windows > Preferences > Test > HCL Licensing.

3. Select the Server Type as Local.

4. Replace the URL of the cloud-based License Server with the URL of your LLS in the Server URL field.

Remember: You must enter the URL of the LLS in the following format:

http://myserver:portNumber/request

5. Click Test Connection to verify the connection to the LLS.

6. Click Apply to configure the license.

Results

You have configured the license to use HCL OneTest™ UI. The HCL Licensing dialog box displays the following

information:

• The number of Virtual Users (VUs)

• The number of VU Execution hours

• The number of floating licenses

What to do next

You can work with HCL OneTest™ UI.

Configuring licenses by using a Proxy Server
You can connect directly to a cloud-based license server when you start HCL OneTest™ UI for the first time. As an

alternative, you can configure HCL OneTest™ UI to use a Proxy Server.

241

https://hclsoftware.flexnetoperations.com/flexnet/help/OperationsPortal/Content/helplibrary/opspManDevicesMapByActID.htm
https://hclsoftware.flexnetoperations.com/flexnet/help/OperationsPortal/Content/helplibrary/opspManDevicesMapByActID.htm

HCL OneTest™ UI

242

1. Open HCL OneTest™ UI.

2. Click Windows > Preferences > Test > HCL Licensing.

3. Select the Server Type as Cloud or Local.

4. Select the Use Proxy Server checkbox and specify the Host and Port of the Proxy Server.

5. Optional: Select the Provide Credentials checkbox and specify the User Name and Password if login

credentials are required to access the Proxy Server.

6. Click Test Connection to verify the connection to the Proxy Server.

7. Click Apply to configure the license.

Results

You have configured the license to use HCL OneTest™ UI. The HCL Licensing dialog box displays the following

information:

• The number of Virtual Users (VUs)

• The number of VU Execution hours

• The number of floating licenses

What to do next

You can work with HCL OneTest™ UI.

Collecting usage metrics data
To provide an insight into the usage patterns of the product itself and not necessarily the application that it is testing,

the usage metrics are collected. The product can collect the metrics about the usage of the tool including and not

limited to the number of tests executed, the number of actions performed against an application under test, the

number of successful versus failed actions, verification points, and so on.

Before you begin

• Ensure that HCL® Quality Server is installed. See the HCL® Quality Server documentation for the installation

instructions.

• Ensure that the license key is applied. See License configuration on page 238

About this task

When you collect usage metrics, the data is collected for internal use to provide you better services. For example, in a

Web UI test, all user actions such as click, enter text, and so on are counted and collected. No information about the

application under test is collected.

1. Click Window > Preferences > Test > Rational Test Control Panel > HCL Quality Server.

2. Specify the IP address or host name of the computer where HCL® Quality Server server is installed.

Chapter 6. Administrator Guide

Note: If the IP address or host name is not specified, depending on the license key setting, a warning

message might be logged every time you run a test, the test execution itself might be blocked, or the

tests can be executed without any warning messages.

3. Click Test Connection to check whether the connection is established. Click OK if the connection is

established.

Starting HCL OneTest™ UI from the command line
You can start HCL OneTest™ UI from the desktop environment or a command-line interface.

• For Windows®: To start HCL OneTest™ UI, Eclipse Integration from the command line, type:

<FT installation directory>\eclipse.exe -product com.ibm.rational.rft.product.ide

• For Windows®: To start HCL OneTest™ UI Microsoft Visual Studio .NET Integration, from the command line,

type:

"<Visual Studio installation directory>\Common7\IDE\devenv.exe"

• For Linux®: To start HCL OneTest™ UI from the command line, close the terminal from where you installed

HCL OneTest™ UI, start a new terminal and type:

<product installation directory>\ft_starter

This is required because product environment variables are set during installation. These environment

variables are not available to the shell that started the installation process, and therefore it is recommended

that you use a new terminal.

Note:

◦ On Ubuntu, you must ensure that the environment variables that are set while installing the

products are retained when you open HCL OneTest™ UI and the application-under-test.

◦ When you launch HCL OneTest™ UI on Linux, a terminal window opens. You must not close the

terminal window manually when the application is in use. When you quit the application, the

terminal window closes automatically.

Integrations in UI Test perspective
In this section, you will learn about the supported integrations for the Web UI Test perspective.

Integration plugin compatibility matrix
You can find information about the versions of the integration plugins that are required to integrate Jenkins, Ant,

HCL® Launch, and IBM® UrbanCode™ Deploy with HCL OneTest™ UI.

243

HCL OneTest™ UI

244

The following table lists the versions of the integration plugins for the UI Test persepctive.

Note: You must download the required version of the integration plugin from the HCL® License & Delivery

portal based on the existing version of HCL OneTest™ UI. You can then integrate Jenkins, Ant, HCL® Launch,

and IBM® UrbanCode™ Deploy with HCL OneTest™ UI.

HCL OneTest™

UI version

Ant plugin version Jenkins plu

gin version

IBM® UrbanCode™

Deploy plugin version
HCL® Launch

plugin version

10.1.0
HOT-UI-Web

UI-Ant-6.0

HOT-UI-WebUI-Jenk

ins-8.0

HOT-UI-Web

UI-UCD-6.0

HOT-UI-Web

UI-LAUNCH-6.0

10.1.1
HOT-UI-Web

UI-Ant-6.0

HOT-UI-WebUI-Jenk

ins-9.0

HOT-UI-Web

UI-UCD-7.0

HOT-UI-Web

UI-LAUNCH-7.0

10.1.2
HOT-UI-Web

UI-Ant-6.0

HOT-UI-WebUI-Jenk

ins-9.0

HOT-UI-Web

UI-UCD-7.0

HOT-UI-Web

UI-LAUNCH-7.0

10.1.3
HOT-UI-Web

UI-Ant-6.0

HOT-UI-WebUI-Jenk

ins-9.0

HOT-UI-Web

UI-UCD-7.0

HOT-UI-Web

UI-LAUNCH-7.0

10.2.0
HOT-UI-Web

UI-Ant-6.0

HOT-UI-WebUI-Jenk

ins-9.0

HOT-UI-Web

UI-UCD-8.0

HOT-UI-Web

UI-LAUNCH-8.0

10.2.1
HOT-UI-Web

UI-Ant-7.0

HOT-UI-WebUI-Jenk

ins-10.0

HOT-UI-Web

UI-UCD-8.0

HOT-UI-Web

UI-LAUNCH-8.0

10.2.2
HOT-UI-Web

UI-Ant-8.0

HOT-UI-WebUI-Jenk

ins-10.0

HOT-UI-Web

UI-UCD-8.0

HOT-UI-Web

UI-LAUNCH-8.0

10.2.3
HOT-UI-Web

UI-Ant-8.0

HOT-UI-WebUI-Jenk

ins-11.0

HOT-UI-Web

UI-UCD-10.1

HOT-UI-Web

UI-LAUNCH-10.1

Testing with Ant
You can use Ant to run compound tests and Web UI tests from the command-line interface.

Before you begin

You must have completed the following tasks:

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

• Installed Installation Manager.

• Installed HCL OneTest™ UI.

• Verified that you have test assets residing within HCL OneTest™ UI.

• Downloaded the HCL OneTest™ UI Web UI Ant plugin 8.0 from the HCL® License & Delivery portal on to the

computer where you install the product.

• Added Ant to the PATH environment variable.

About this task

To run Web UI tests on Mac OS, you must add an environment variable that points to the installation directory of HCL

OneTest™ UI.

For example, export TEST_WORKBENCH_HOME=/opt/HCL/HCLOneTest.

Note: For Windows™ and Linux®, the environment variable is set when you install the product.

1. Extract the following files from the downloaded ant plugin:

◦ HOT-UI-WebUI-Ant-x.0.jar

Where, x is the version number of the Ant plugin.

◦ ExecuteWebUIFunctionalTest.xml

◦ README.txt

2. Open the ExecuteWebUIFunctionalTest.xml file and provide required parameter values.

You must provide the values for the following required parameters:

◦ name

◦ workspace

◦ project

◦ suite

If you include these required parameters in a configuration file and use the Configfile parameter to specify the

complete file path, then these parameters are not required.

Remember: You must consider the following requirements:

◦ Enter the parameter values within the double quotation marks.

◦ Ensure that the special characters in the parameter values do not break the validation of the

XML file. For example, you must enter the & character as &.

For example,

245

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

246

<webui name="test1" workspace="C:\workspace" projectname="TestProject" suite="Tests/test1.testsuite"

results="Results/test1_on_anttask" />

Note: You can add an additional <webui> task and provide the details for each test to run multiple

tests simultaneously.

The following table explains each parameter in detail.

Parameter Description

Required

name The name of the test for the particular test product.

workspace The complete path to the Eclipse workspace.

projectname The path, including the file name of the project relative to the workspace.

suite The path, including the file name of the test to run relative to the project. A test can be a Web

UI test, compound test, or an Accelerated Functional Test.

Note: You must provide the file name along with the file extension if you are using an

Accelerated Functional Test suite.

Optional

configfile The complete path to a file that contains the parameters for a test run.

exportReport The option to export the unified report of UI tests to the file formats such as PDF, HTML, and

XML.

Note: The exported XML file is a JUnit XML file. You can view this file in applications

that support JUnit reporting formats.

The command syntax is as follows:

exportReport="type=<reporttype>;format=<file type1,file type2,file type3>;folder<destination

folder path>;filename=<name of the exported file>"

For example, to export the report to only the pdf format, you can use exportReport "type=uni

fied;format=pdf;folder=Exportedreport102;filename=testreport

If you want to export the report to multiple formats, you can specify the file formats as com

ma-separated values. The file type value can be in uppercase or lowercase.

For example, to export the report to all the supported formats, you can use

Chapter 6. Administrator Guide

Parameter Description

exportReport "type=unified;format=pdf,xml,html;folder=Exportedreport102;filename=testre

port

The report in different file formats use the same file name that is specified in the command.

exportstatre

portlist

A comma-separated list of absolute paths to custom report format files (.view files) to use

when exporting statistical report data with the exportstats option.

exportstats The complete path to a directory that can be used to store exported statistical report data.

exportstatsfor

mat

The option to specify a format for the result that you want to export along with the export

stats option. You must use at least one of the following parameters with the exportstatsfor

mat option:

◦ simple.csv

◦ full.csv

◦ simple.json

◦ full.json

◦ csv

◦ json

For example, exportstats="<local_dir_path>" exportstatsformat="simple.json"

You can add multiple arguments separated by a comma.

For example, exportstats="<local_dir_path>" exportstatsformat="simple.json, full.csv"

When you want to export both simple and full type of test results in a json or csv format, you

can specify json or csv as the arguments in the command. When the test run completes, the

test result exports to simple.json and full.json files.

For example, exportstats="<local_dir_path>" exportstatsformat="json"

exportstatshtml The complete path to a directory that can be used to export web analytic results. The results

are exported in the specified directory. Analyze the results on a web browser without using

HCL OneTest™ UI.

imports When you want to run Web UI tests that are in a source control system such as Git from a

computer that runs the desktop product, you can clone the project resources in the remote

repository to your computer. You can use an empty workspace folder on your computer to

import the UI Test project resources and then run the tests. The desktop product is enabled

to run the Web UI tests without the need of the workspace in the cloned repository or your

247

HCL OneTest™ UI

248

Parameter Description

existing workspace. You must use the workspace argument to precede the imports argu

ment.

Note: You can use this argument in the following scenarios:

◦ You do not want to use your existing workspace.

◦ You do not want to use the workspace cloned from a remote repository.

To run UI tests contained in UI Test projects that are in a remote repository, you must per

form the following steps:

a. Clone the remote repository that contains the UI Test project to your computer.

b. Create an empty workspace on your computer.

c. Add the following command to the ExecuteWebUIFunctionalTest.xml file:

name="<test_name>" workspace="<path_of_empty_workspace>" project="<project_

name>" imports="<path_to_cloned_project_folder>" suite="<test_name>"

For example,

name="test1" workspace="C:\workspace" project="UIProject1" imports="d:\work

\UIProject1" suite="Test1"

imsharedloc The complete path to HCLIMShared location, if it is not at the default location.

labels
The option to add labels to the test results when the test run is complete. You can add multi

ple labels to a test result separated by a comma.

For example, labels =“label1, label2”

When you run test assets then the same labels are displayed on the UI Test Statistical Report

in HCL OneTest™ UI.

If you have set Publish result after execution as Always or Prompt in the HCL OneTest™ UI

preferences (Window > Preferences > Test > HCL OneTest Server) and use labels option,

then the Results page of HCL OneTest™ Server displays the same label for the specific test

asset.

Note:

Chapter 6. Administrator Guide

Parameter Description

◦ When you run tests by using the double quotation marks ("") for the labels pa

rameter, then the labels in the test result do not include the double quotation

marks.

◦ To work around this problem, you must create a command-line config file,

and then run the test by using the configfile parameter.

◦ When you use the configfile parameter to run tests, then labels provided in

the configuration file take precedence over the labels provided in the Exe

cuteWebUIFunctionalTest.xml file.

overwrite Determines whether a result file with the same name is overwritten. The default value is

false, which means the result file cannot be overwritten and a new result file is created.

protocolinput The option to run a Web UI test in parallel on different browsers.

protocolinput="all.available.targets.in.parallel=all"

protocolinput="all.available.targets.in.parallel=chrome,ff,ie"

Note: If you use the protocolinput argument, you must not use the equivalent

vmargs arguments:

vmargs="-Dall.available.targets.in.parallel=all"
vmargs "-Dall.available.targets.in.parallel=browser1,browser2,browser3"

publish The option to publish test results to HCL OneTest™ Server.

You must provide the URL and offline user token of the server in Window > Preferences >

Test > Rational Test Automation Server > HCL One Test Server of HCL OneTest™ UI before

you use the publish parameter in the test script.

Use the following arguments with the publish parameter:

◦ To specify the project name, use any of the following formats:

▪ serverURL #project.name=projectName&teamspace.name=name_of_the _

teamspace

▪ serverURL #project.name=projectName&teamspace.alias=name_of_the _

teamspace_alias

You must consider the following points while providing the project name:

249

HCL OneTest™ UI

250

Parameter Description

▪ If the project name is not specified, then the value of the Project parameter

is used.

▪ If you have a project with the same name in different team spaces, then

you can append either the &teamspace.name=name_of_the _teamspace or

&teamspace.alias==name_of_the_teamspace_alias options.

For example:

name="test1" workspace="C:/Users/IBM/rationalsdp/workspace1"
 project="proj1"
suite="Tests/testHttp.testsuite"
 publish="https://
localhost:5443#project.name=test&teamspace.name=ts1"

Where:

▪ https://localhost:5443 is the URL of the server.

▪ test is the name of the project.

▪ ts1 is the name of the team space.

▪ While providing the name of the team space or team space alias, you must

replace the ampersand (&) character with & as shown in the preceding

example.

▪ If the name of the project or team space contains a special character, then

you must replace it with %<Hex_value_of_special_character>.

For example, if the name of the team space is Initial Team Space, then you

must provide it as Intial%20Team%20Space.

Where, %20 is the hexadecimal value of the space character.

◦ To avoid publishing of reports, use no.

You can use the no option if you do not want to publish test results after the run. This

option is useful if the product preferences are set to publish the results, but you do

not want to publish them.

For example:

name="test1" workspace="C:/Users/IBM/rationalsdp/workspace1"
 project="proj1"
suite="Tests/testHttp.testsuite" publish="no"

If you do not use the configfile parameter to run the tests, then the values provided in the

test script always take precedence over the Results options set in the product preferences

(Window > Preferences > Test > HCL One Test Server > Results).

Chapter 6. Administrator Guide

Parameter Description

The Reports information section on the Output window displays the names of the report

along with its corresponding URLs in the following conditions:

◦ When you configured the URL of HCL OneTest™ Server in preferences of HCL

OneTest™ UI (Window > Preferences > Test > HCL One Test Server.

◦ When you set Publish result after execution as Always or Prompt in the preferences

of HCL OneTest™ UI (Window > Preferences > Test > HCL One Test Server > Re

sults).

publish_for
The option to publish test results to HCL OneTest™ Server based on the completion status of

the tests. You must use the publish_for parameter along with the publish parameter.

The following are the available options that you can use for the publish_for parameter:

◦ ALL - This is the default option. You can use this option to publish test results for any

text execution verdict.

◦ PASS - You can use this option to publish test results for the tests that have passed.

◦ FAIL - You can use this option to publish test results for the tests that have failed.

◦ ERROR - You can use this option to publish test results for the tests that included er

rors.

◦ INCONCLUSIVE - You can use this option to publish test results for the inconclusive

tests.

You can add multiple parameters separated by a comma.

For example:

name="test1" workspace="C:/Users/IBM/rationalsdp/workspace1" project="proj1"
suite="Tests/testHttp.testsuite"
 publish="https://localhost:5443#project.name=test&teamspace.name=ts1"
publish_for="FAIL,ERROR"

publishreports The option to publish test results in HCL OneTest™ Server. The values that you can use with

publishreports are as follows:

◦ FT - This is an identifier for Functional Test Report. You can use this value to pub

lish the unified report if it is available for the selected test. See Unified reports on

page 1193.

◦ STATS - This is an identifier for Statistics Report. You can use this value to publish

the web analytics report if it is available for the selected test. See UI Test Statistical

report on page 1198.

◦ TESTLOG - This is an identifier for Test Log. You can use this value to publish the test

log if it is available for the selected test. See Logs overview on page 1219.

You must use the publishreports parameter along with the publish parameter.

251

HCL OneTest™ UI

252

Parameter Description

For example:

name="test1" workspace="C:/Users/IBM/rationalsdp/workspace1" project="proj1"
suite="Tests/testHttp.testsuite"
 publish="https://localhost:5443#project.name=test&teamspace.name=ts1"
publishreports="STATS, TESTLOG"

The values specified here override the values selected in Window > Preferences > Test >

HCL One Test Server > Results of HCL OneTest™ UI.

You can prefix the value with “!” to publish the reports except for the specified one in the test

script.

For example,

name="test1" workspace="C:/Users/IBM/rationalsdp/workspace1" project="proj1"
suite="Tests/testHttp.testsuite"
 publish="https://localhost:5443#project.name=test&teamspace.name=ts1"
publishreports="!TESTLOG"

All the reports except the TESTLOG report is published to HCL OneTest™ Server after execut

ing the command.

results The name of the results file. The default result file is the test name with a time stamp ap

pended.

swapdatasets For a test, the default value is the dataset specified in the test editor.

You must use the swapdatasets option to replace dataset values during a test run. You must

ensure that both original and new datasets are in the same workspace and have the same

column names. You must also include the path to the dataset.

For example: /project_name/ds_path/ds_filename.csv:/project_name/ds_

path/new_ds_filename.csv. You can swap multiple datasets that are saved in a differ

ent project by adding multiple paths to the dataset separated by a semicolon (;).

usercomments The option to add text within the double quotation mark (“”) to display it in the User Com

ments row of the report.

Note:

Chapter 6. Administrator Guide

Parameter Description

◦ When you run tests by using the double quotation marks ("") for the usercom

ments parameter, then the User Comments row of a report does not contain

double quotation marks.

◦ To work around this problem, you must create a command-line config file,

and then run the test by using the configfile parameter.

varfile The complete path to the XML file that contains the variable name and value pairs.

vmargs To pass Java™ virtual machine arguments.

3. Open a command prompt and navigate to the directory where you downloaded the Ant plugin.

Note:

You must close HCL OneTest™ UI before you run the test.

4. Enter ant -f ExecuteWebUIFunctionalTest.xml to run the test.

Results

You have run the test by using the Ant plugin.

What to do next

You can view that the Ant execution output is logged into the logfile.txt file, and a test log is created in a temp

directory called HOT-UI-WebUI-Ant-x.0.

Integration with Azure DevOps for UI tests
When you use Azure DevOps for continuous integration and continuous deployment of your application, you can

create tests for your application in HCL OneTest™ UI and run those tests in Azure DevOps pipelines. You can integrate

Azure DevOps with HCL OneTest™ UI by using the HCL OneTest Studio extension that is available in the Visual Studio

Marketplace portal.

Prerequisites

Before you integrate Azure DevOps with HCL OneTest™ UI, you must have completed certain tasks. See Prerequisites

for Azure DevOps Integration on page 254.

Overview

You can use the HCL OneTest Studio extension that enables you to select any type of test created in HCL OneTest™ UI

that you can add to your task for the job in the Azure DevOps pipelines.

253

HCL OneTest™ UI

254

Running tests

Click the link to the task information for the type of tests that you want to run from the following types:

• For AFT Suites, Compound Tests, or Web UI tests, see Integration with Azure DevOps for UI tests on

page 253.

• For functional tests, see Integration with Azure DevOps for functional tests on page 360.

Prerequisites for Azure DevOps integration with HCL OneTest™ UI
Before you integrate Azure DevOps with HCL OneTest™ UI by using the HCL OneTest Studio extension, you must have

completed certain tasks.

• You must have installed HCL OneTest™ UI on a computer running Windows™ or Linux®.

• You must have created an organization and a project in Azure DevOps for running jobs in Azure DevOps

pipelines. For more information refer to Creating an organization.

You can now follow the tasks listed in the task flow table to integrate Azure DevOps with HCL OneTest™ UI. See Task

flow for integrating Azure DevOps on page 254.

Task flow for integrating Azure DevOps with HCL OneTest™ UI
The table shows the task flow for integrating Azure DevOps with HCL OneTest™ UI by using the HCL OneTest Studio

extension. You must perform these tasks in sequence as listed in the following table. The table also provides you the

links to the information about the tasks.

Tasks More information

1 Create any or all of the following types of tests in HCL

OneTest™ UI to test your application:

• Accelerated Functional Testing (AFT) Suites

• Web UI tests

• Compound tests

• Traditional functional tests

Testing in the UI Test perspective on

page 413

2 Access the Visual Studio Marketplace portal and

search for the latest version of the HCL OneTest Studio

extension.

Visual Studio Marketplace

3 Install the HCL OneTest Studio extension. Installing the HCL OneTest Studio ex

tension on page 255

4 Run tests in an Azure DevOps pipeline. Running tests in an Azure DevOps

Pipeline on page 256

https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/create-organization?toc=/azure/devops/organizations/toc.json&bc=/azure/devops/organizations/breadcrumb/toc.json&view=azure-devops
https://marketplace.visualstudio.com/azuredevops

Chapter 6. Administrator Guide

Related information

Integration with Azure DevOps for UI tests on page 253

Installing the HCL OneTest Studio extension
You must install the HCL OneTest Studio extension in your Azure DevOps organization before you use the extension

to run tests for your application in an Azure DevOps pipeline. The HCL OneTest Studio extension supports running of

tests created in HCL OneTest™ UI.

Before you begin

You must have access to the Visual Studio Marketplace portal.

About this task

After you install the HCL OneTest Studio extension from the Visual Studio Marketplace portal in your Azure DevOps

organization, you can use the extension to run tests for your application in an Azure DevOps pipeline.

1. Log in to the Visual Studio Marketplace portal, if you are not already logged in.

2. Click the Azure DevOps tab.

3. Search for the HCL OneTest Studio extension.

4. Click the HCL OneTest Studio extension.

5. Click Get it free.

Result

The Visual Studio Marketplace portal for the HCL OneTest Studio extension is displayed.

6. Select the organization where you want to run your test from the Select an Azure DevOps Organization list.

7. Click Install.

Result

The installation is completed.

8. Click Proceed to organization.

Result

The Organization page in Azure DevOps is displayed.

9. Click Organization settings > Extensions.

Result

The HCL OneTest Studio extension is displayed as an installed extension.

Results

You installed the HCL OneTest Studio extension in your Azure DevOps organization.

What to do next

255

HCL OneTest™ UI

256

You can add tests that you created in HCL OneTest™ UI to your task, and then run the tests in an Azure DevOps

pipeline. See Running UI tests in an Azure DevOps Pipeline on page 256.

Running UI tests in an Azure DevOps Pipeline
After you create the tests in HCL OneTest™ UI for the application that you are testing, and after you install the HCL

OneTest Studio extension in your organization, you can run the tests in Azure DevOps pipelines.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest Studio extension in your organization. See Installing the HCL OneTest Studio

extension on page 255.

• Installed an agent in your pipeline. See Azure Pipelines agents.

• Created test cases under test plans if you want to view results of the test runs on the Test Plans dashboard.

About this task

After you add the HCL OneTest Studio extension in your Azure DevOps organization, you can use an existing pipeline

or create a new one to add HCL OneTest™ UI test tasks. You can install an agent or use the one that you installed in

your default agent pool. You can add the HCL OneTest™ UI tests to your task for the agent job, configure the task, and

then run the task in the Azure DevOps pipeline.

If you have created test cases under test plans in your Azure DevOps project, you can provide the details of the Azure

DevOps URL, test plan, test case, and your personal access token (PAT) while you configure the test job in a pipeline

so that you can view the results of the test run on your Test Plan dashboard.

1. Open your Organization page in Azure DevOps and perform the following steps:

a. Click the project you want to use.

b. Initialize the repository by performing the following steps:

i. Click Repos from the left pane.

ii. Click Initialize from the Initialize with a README or gitignore section.

Note: Select the Add a README check box if it is not selected.

c. Click Pipelines from the left pane.

d. Click Create Pipeline.

e. Click Use the classic editor to create a pipeline without YAML.

f. Verify the project, repository, and branch for manual and scheduled builds, and then click Continue.

g. Click Empty job.

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops&tabs=browser

Chapter 6. Administrator Guide

2. Select Pipeline and complete the following steps:

a. Change the name for the build pipeline if required.

b. Select the Agent pool for your build pipeline.

You can use the agent from the default agent pool or use the one you have installed.

c. Select the Agent Specification for the agent if required.

3. Add a task to the agent job by completing the following steps:

a. Click the Add Task icon for the agent job.

Result

The Add tasks pane is displayed.

b. Search for the HCL tasks defined in the HCL OneTest Studio extension.

Result

The tasks that you can select are displayed.

Depending on the type of test that you have created in HCL OneTest™ UI, you can select the type of

task.

You must use the following table to identify the task you must select:

257

HCL OneTest™ UI

258

Type of test Task to select

▪ AFT suites

▪ Web UI tests

▪ Compound tests

HCL OneTest™ UI Task

c. Select the HCL OneTest UI option, and then click Add to add the task to the agent job.

Result

The selected task is added to the agent job and it is displayed with a warning that some settings

require attention. You must configure the settings mentioned in Step 4 on page 258.

You can also remove the tasks that are not required in your job. Select the tasks in the list that you

want to remove. You can then right-click the tasks, and click Remove selected task(s) to remove them.

4. Configure the settings by performing the following steps:

a. Select the task version from the list if required.

b. Follow the action for the Web UI task by referring to the following table:

Note: All the required fields are marked with an asterisk (*) in the UI.

Note:

You must provide the values for the following required fields:

▪ Workspace Location

▪ Project Name

▪ Test Suite Name

If you include these required parameters in a configuration file and use the Configuration File

field to specify the complete file path, then these values are not required.

Field Description Action

Display

name

Displays the name of the selected task. Enter the name of the task.

Testcase

Type

The type of test to execute. Select Web UI from the Testcase Type

list.

Product

Path

The fully qualified path to the HCL

OneTest™ UI. This path must exist on the

agent computer.

Enter the complete path of HCL OneTest™

UI.

Chapter 6. Administrator Guide

Field Description Action

Import The complete path to the project folder

that is cloned from a source control sys

tem or remote repository.

Enter the complete path to the project

folder that is cloned from a source control

system or remote repository. When you

use this option, you can specifiy a name

for the new workspace to be created to

run the imported test assets.

IMShared

Path

The path to the IMShared folder on your

local computer.

Enter the complete path to the location of

the HCLIMShared folder. For example, C:

\Program Files\HCL\HCLIMShared

Workspace

Location

The complete path to the Eclipse work

space.

Enter the complete path of the Eclipse

workspace.

Project

Name

The name of the project containing the

test.

Enter the name of the project containing

the test.

Test Suite

Name

The name of a test within the project to

use. A test can be a Web UI test, Perfor

mance schedule, compound test or AFT

suites.

Enter the name of the test that you want

to run.

VM Argu

ments

Java™ virtual machine arguments to pass

in.
Enter the Java™ virtual machine argu

ments.

Note: You can add multiple virtual

machine arguments files separat

ed by a comma.

Labels The option to add labels to the test results

when the test run is complete.

Enter the labels to be added to the test re

sults when the test run is complete. You

can add multiple labels to a test result

separated by a comma.

For example, “label1, label2”

When you run test assets then the same

labels are displayed on the UI Test Statis

tical Report in HCL OneTest™ UI.

If you have set Publish result after exe

cution as Always or Prompt in the HCL

OneTest™ UI preferences (Window > Pref

erences > Test > HCL OneTest Server)

259

HCL OneTest™ UI

260

Field Description Action

and use the Labels option, then the Re

sults page of HCL OneTest™ Server dis

plays the same label for the specific test

asset.

Note:

▪ When you run tests by us

ing the double quotation

marks ("") for the Labels

field, then the labels in

the test result do not in

clude the double quotation

marks.

▪ To work around this prob

lem, you must create a

command-line config file,

and then run the test by

using the Configuration

File field.

▪ When you use the Con

figuration File field to run

tests, then labels provid

ed in the configuration file

take precedence over the

labels provided in the La

bels field.

Var File The complete path to the XML file that

contains the variable name and value

pairs.

Enter the complete path to the location of

the variable file.

Dataset

Override

For a test, the default value is the dataset

specified in the test editor.

Use the Dataset Override option to re

place dataset values during a test run. If a

test is associated with a dataset, you can

replace the dataset at run time while initi

ating the run from the command line.

Note:

You must use the Dataset Over

ride option to replace the dataset

Chapter 6. Administrator Guide

Field Description Action

values during a test run. You must

ensure that both original and new

datasets are in the same work

space and have the same column

names. You must also include the

path to the dataset.

For example,

/project_name/ds_path/ds_file

name.csv:/project_name/ds_

path/new_ds_filename.csv.

You can swap multiple datasets

that are saved in a different

project by adding multiple paths

to the dataset separated by a

semicolon (;).

For example,

/project_name1/ds_path/ds_fi
lename.csv:/project_name1/ds
_path/new_ds_filename.csv;
/project_name2/ds_path/ds_fi
lename.csv:/project_name2/ds
_path/new_ds_filename.csv

Configura

tion File

The complete path to a file that contains

the parameters for a test run.

Enter the complete path of the file that

contains the parameters for a test run.

Results The name of the results file. The default

name of the result file is the test name

with a time stamp appended.

Enter a folder name that is relative to the

project to store the test results. For exam

ple, -results folder/resultname.

Overwrite Determines whether a results file with the

same name is overwritten. The default

value false indicates that the new results

file is created.

Set the value as true to overwrite the ex

isting file and retain the same file name.

Export Stats The complete path to export the report to

the format specified in the Export stats

format field.

Enter the values separated by comma to

export those values to the CSV format.

Export stat

report list

The option to list the reports that you

want to export in place of the default re

Enter the list of report IDs separated by

comma.

261

HCL OneTest™ UI

262

Field Description Action

ports, or the reports that are selected un

der Preferences.

Export stats

html

The option to view and analyze the results

on a web browser without using the test

workbench.

You can provide the complete path to a

directory to export web analytic results.

If you run multiple tests, do not provide a

value in this field.

User Com

ments

The option to add and display your com

ments in the report.

Enter the text within double quotation

mark to display it in the User Comments

row of the report.

Note:

▪ When you run tests by us

ing the double quotation

marks ("") for the User

Comments field, then the

User Comments row of a

report does not contain

double quotation marks.

▪ To work around this prob

lem, you must create a

command-line config file,

and then run the test by

using the Configuration

File field.

Protocol In

put

The option to run a Web UI test in parallel

on different browsers.

Enter the browsers on which you want to

run the Web UI test in parallel.

Export Re

port

The option to export the unified report to

other file formats such as PDF, XML, and

HTML.

Enter the following details in the text field:

type=<report type>;format=<file type>;fold

er=<destination folder path>;file

name=<name of the exported file>

Export stats

format

The option to specify a format for the re

port that you want to export.
Specify a format for the report that you

want to export. You must use the Export

stats parameter along with the Export

stats format parameter.

Chapter 6. Administrator Guide

Field Description Action

You must use at least one of the following

formats:

▪ simple.csv

▪ full.csv

▪ simple.json

▪ full.json

▪ csv

▪ json

For example,

Export stats = <local_dir_path>

Export stats format = json

You can add multiple formats for the re

port separated by a comma (,).

If you want to export both the simple and

full reports in a json or csv format, you

can specify json or csv as the format in

the field.

The reports are saved to the location

specified in the Export stats field.

publish The option to publish test results to HCL

OneTest™ Server.

Specify the server URL and project name

to publish test results to HCL OneTest™

Server.

You must provide the URL and offline user

token of the server in Window > Prefer

ences > Test > Rational Test Automa

tion Server > HCL One Test Server of HCL

OneTest™ UI before you use the publish

parameter in the test script.

Use the following arguments with the

publish parameter:

263

HCL OneTest™ UI

264

Field Description Action

▪ To specify the project name, use

any of the following formats:

▪ serverURL

#project.name=pro

jectName&teamspace

.name=name_of_the _

teamspace

▪ serverURL

#project.name=pro

jectName&teamspace

.alias=name_of_the _team

space_alias

You must consider the following

points while providing the values:

▪ If the project name is not

specified, then the value of

the Project Name parame

ter is used.

▪ If you have a project with

the same name in different

team spaces, then you can

append either the &team

space.name=name_of_

the _teamspace or &team

space.alias==name_of_

the_teamspace_alias op

tions.

For example:

Workspace Location =
 C:/Users/IBM/rational
sdp/workspace1
Project Name = proj1
Test Suite Name =
 Tests/testHttp.testsu
ite
publish =
 https://localhost:544
3#project.name=test&te
amspace.name=ts1

Chapter 6. Administrator Guide

Field Description Action

Where:

▪ https://local

host:5443 is the

URL of the server.

▪ test is the name of

the project.

▪ ts1 is the name of

the team space.

▪ If the name of the project

or team space contains

a special character, then

you must replace it with

%<Hex_value_of_special_

character>.

For example, if the name

of the team space is Ini

tial Team Space, then

you must provide it as In

tial%20Team%20Space.

Where, %20 is the hexa

decimal value of the space

character.

▪ You must not include the

double quotation marks

("") while providing the val

ue for the Publish field.

▪ To avoid publishing of reports, use

no.

You can use the no option if you

do not want to publish test results

after the run. This option is useful

if the product preferences are set

to publish the results, but you do

not want to publish them.

265

HCL OneTest™ UI

266

Field Description Action

For example:

Workspace Location =
 C:/Users/IBM/rationalsdp/wor
kspace1
Project Name = proj1
Test Suite Name =
 Tests/testHttp.testsuite
publish = no

If you do not use the Config File field to

run the tests, then the values provided in

the Publish field always take precedence

over the Results options set in the prod

uct preferences (Window > Preferences >

Test > HCL One Test Server > Results).

The Reports information section on the

Output window displays the names of the

report along with its corresponding URLs

in the following conditions:

▪ When you configured the URL of

HCL OneTest™ Server in prefer

ences of HCL OneTest™ UI (Win

dow > Preferences > Test > HCL

One Test Server.

▪ When you set Publish result after

execution as Always or Prompt in

the preferences of HCL OneTest™

UI (Window > Preferences > Test >

HCL One Test Server > Results).

publish_for The option to publish test results to HCL

OneTest™ Server based on the completion

status of the tests.

Specify the option to publish test results

to HCL OneTest™ Server based on the

completion status of the tests. You must

use the publish_for parameter along with

the publish parameter.

The following are the available options

that you can use for the publish_for para

meter:

Chapter 6. Administrator Guide

Field Description Action

▪ ALL - This is the default option.

You can use this option to publish

test results for any text execution

verdict.

▪ PASS - You can use this option to

publish test results for the tests

that have passed.

▪ FAIL - You can use this option to

publish test results for the tests

that have failed.

▪ ERROR - You can use this option

to publish test results for the tests

that included errors.

▪ INCONCLUSIVE - You can use this

option to publish test results for

the inconclusive tests.

You can add multiple parameters separat

ed by a comma.

For example:

Workspace Location =
 C:/Users/IBM/rationalsdp/workspace1
Project Name = proj1
Test Suite Name =
 Tests/testHttp.testsuite
publish =
 https://localhost:5443#project.name
=test&teamspace.name=ts1
publish_for = FAIL,ERROR

publishre

ports

The option to publish test results in HCL

OneTest™ Server.

Specify the option to publish test results

in HCL OneTest™ Server. The values that

you can use with publishreports are as

follows:

▪ FT - This is an identifier for Func

tional Test Report. You can use

this value to publish the unified

report if it is available for the se

lected test. See Unified reports on

page 1193.

▪ STATS - This is an identifier for

Statistics Report. You can use this

value to publish the web analytics

267

HCL OneTest™ UI

268

Field Description Action

report if it is available for the se

lected test. See UI Test Statistical

report on page 1198.

▪ TESTLOG - This is an identifier

for Test Log. You can use this val

ue to publish the test log if it is

available for the selected test. See

Logs overview on page 1219.

You must use the publishreports parame

ter along with the publish parameter.

For example:

Workspace Location =
 C:/Users/IBM/rationalsdp/workspace1
Project Name = proj1
Test Suite Name =
 Tests/testHttp.testsuite
publish =
 https://localhost:5443#project.name
=test&teamspace.name=ts1
publishreports = STATS, TESTLOG

The values specified here override the val

ues selected in Window > Preferences >

Test > HCL One Test Server > Results of

HCL OneTest™ UI.

You can prefix the value with “!” to publish

the reports except for the specified one in

the test script.

For example,

Workspace Location =
 C:/Users/IBM/rationalsdp/workspace1
Project Name = proj1
Test Suite Name =
 Tests/testHttp.testsuite
publish =
 https://localhost:5443#project.name
=test&teamspace.name=ts1
publishreports = !TESTLOG

All the reports except the TESTLOG report

is published to HCL OneTest™ Server after

executing the command.

Chapter 6. Administrator Guide

Field Description Action

Azure Dev

Ops Project

URL

The URL of the test project in the organi

zation on the Azure DevOps server.

Note: You must enter the details

for this option if you have creat

ed test cases under Test plans in

your Azure project and want to

view the test results on the Test

Plans Dashboard.

Enter the URL of the test project in the or

ganization on the Azure DevOps server in

the following format:

https://<host>/<orgname>/<project

Name>

You must use this option with the follow

ing options:

▪ Azure DevOps PAT

▪ Test Plan Name

▪ Test Case Name

Azure Dev

Ops PAT
Your personal access token (PAT) of the

Azure server where the test project that

contains the test plan is hosted. You can

also add your token to a secret variable

and specify the variable name in the fol

lowing form:

$(variable_name)

Note: The token must have read

and write access.

Enter your personal access token.

You must use this option with the follow

ing options:

▪ Azure DevOps Project URL

▪ Test Plan Name

▪ Test Case Name

Test Plan

Name

The name of the test plan in the Azure

server.

Enter the name of the test plan.

You must use this option with the follow

ing options:

▪ Azure DevOps Project URL

▪ Azure DevOps PAT

▪ Test Case Name

Test Case

Name

The name of the test case in the Azure

server.

Enter the name of the test case.

You must use this option with the follow

ing options:

▪ Azure DevOps Project URL

▪ Azure DevOps PAT

▪ Test Plan Name

269

HCL OneTest™ UI

270

c. Expand Control Options and configure the settings for your task if required.

d. Expand Output Variables and configure the settings for your task if required.

5. Select the following options:

a. Click Save to save the configured settings for the task.

Note: The task is not queued for a run.

You can save the task to a build pipeline and opt to run the build at a later time.

b. Click Save & queue to save the configurations and queue the run in the pipeline.

Result

The Run pipeline dialog box is displayed.

6. Complete the following steps:

a. Enter a comment for the test in the Save comment field.

b. Select the agent that you configured for the test from the Agent pool list.

c. Select the agent specification from the Agent Specification list for the agent if required.

d. Select the branch from the Branch/tag list.

e. Add the variables and demands for the task run from the Advanced Options pane if required.

f. Select the Enable system diagnostics check box for a detailed log view.

g. Click Save and run.

Result

The pipeline summary page displays the progress of the job run.

Results

You have run the tests for the application you are testing, in the Azure DevOps pipeline.

What to do next

• You can open the job to view the task logs from the pipeline summary page.

• You can click Test Plans to view the test result if you specified the values for Azure DevOps Project URL,

Azure DevOps PAT, Test Plan Name, and Test Case Name.

• You must click the task to open the Task page to view the test results.

• You can access the report URLs to view the test execution information at any point of time. The report URLs

are the HCL OneTest™ Server URLs where the reports are stored.

Chapter 6. Administrator Guide

In HCL OneTest™ UI, if the HCL OneTest™ Server URL is configured in Window > Preferences > Test > HCL

OneTest Server and Publish result after execution is set as Always in Window > Preferences > Test > HCL

OneTest Server > Results, then the logs in the Task page also displays the names of the published report

along with its corresponding URLs.

Related information

Configuration of test runs from the command line on page 1130

EGit integration
You can store your test assets in the remote Git repository and use EGit for version control operations. EGit is an

Eclipse plugin for the Git version control system.

When you install HCL OneTest™ UI, EGit is part of the product. To avoid the clutter, EGit is a separate Eclipse

perspective in HCL OneTest™ UI. For more information about EGit, refer to EGit User Guide documentation.

You can click Windows > Perspective > Open Perspective > Other > Git to open the Git perspective within HCL

OneTest™ UI.

Refer to the following topics to learn more about EGit integration with HCL OneTest™ UI.

Importing test assets from the remote Git repository
You can import the test assets from the remote Git repository to HCL OneTest™ UI and run it to test the performance

of the application.

Before you begin

You must have completed the following tasks:

• Stored test assets of an application under test in the remote Git repository.

• Cloned the remote Git repository. For more information refer to the EGit User Guide documentation.

1. Open HCL OneTest™ UI.

2. Click File > Import > Git, and then click the expand icon .

3. Select Projects from Git, and then click Next.

4. Select the Existing local repository option, and then click Next.

Result

The list of all cloned remote Git repositories is displayed.

5. Select a remote Git repository from the list that has test assets, and then click Next.

6. Select one of the following options and perform the steps described in the table based on your requirement:

271

https://wiki.eclipse.org/EGit/User_Guide
https://wiki.eclipse.org/EGit/User_Guide#Working_with_remote_Repositories

HCL OneTest™ UI

272

Options Descriptions Steps

Import existing

Eclipse projects
Select this option to choose projects that

you want to import from the remote Git

repository to HCL OneTest™ UI.

Note: If your project folder con

tains the .project file, only then

the wizard displays the project

that is available for the selection.

Perform the following steps:

a. Select Import existing Eclipse

projects, and then click Next.

b. Select the checkbox to choose the

projects from the list.

c. Click Finish to import the projects.

The imported project is displayed in the

Test Navigator pane.

Import as general

project
Select this option to choose a project that

does not have a .project file in your

project folder. When you select this op

tion, a .project file is created within the

project folder.

Perform the following steps:

a. Click Import as general project,

and then click Next.

b. Enter a name for the project in the

Project name field.

c. Click Finish.

Results

You have imported test assets from the remote Git repository.

Pulling the changes from the remote Git repository
You must make your local repository up-to-date by pulling the latest changes in the remote Git repository before you

committ and push your updated test assets to the Git repository.

Before you begin

You must have completed the following tasks:

• Cloned the remote Git repository. For more information refer to the EGit User Guide documentation.

• Ensured that any of your team members have updated the test assets and committed those files to the

remote Git repository.

About this task

When you updated any of the test assets in your project, you might see merge conflicts errors while pulling the

changes, if other members are also working on the same project.

https://wiki.eclipse.org/EGit/User_Guide#Working_with_remote_Repositories

Chapter 6. Administrator Guide

1. Open HCL OneTest™ UI.

2. Go to Windows > Perspective > Open Perspective > Other.

Result

The Open Perspective window is displayed.

3. Select the Git option from the list, and then click Open.

Result

The Git perspective view is displayed.

4. Right-click the remote Git repository from the list, and then select Pull.

Results

You have pulled the new changes from the remote Git repository to your existing local Git repository.

What to do next

You can publish your changes to the remote Git repository. See Publishing test assets to the remote Git repository on

page 273.

Publishing test assets to the remote Git repository
When you create or update any test assets in HCL OneTest™ UI, you can publish your changes to the remote Git

repository. Therefore, when you publish test assets, other members in the project can use your test assets in their test

run, if required.

Before you begin

You must have completed the following tasks:

• Created or updated test assets in HCL OneTest™ UI.

• Made the local repository up-to-date by pulling the changes from the remote Git repository. See Pulling the

changes from the remote Git repository on page 272.

About this task

You can either publish only the updated test asset files or entire project to the remote Git repository.

1. Open HCL OneTest™ UI.

2. Locate the test assets files or projects that you updated from the Test Navigator pane.

3. Right-click the test assets or project, and then click Team > Commit.

Result

The Git Staging view is displayed.

4. Select the updated test asset files from the Unstaged Changes pane.

5. Click or to select a specific file or all the files from the Unstaged Changes pane to the Staged

Changes pane.

6. Enter a message in the Commit Message pane.

7. Click Commit and Push.

273

HCL OneTest™ UI

274

Result

The Push Result dialog box is displayed with the status of the commit to the remote Git repository.

Results

You have published test assets to the remote Git repository.

Techniques for troubleshooting issues in EGit
You might encounter issues while working with EGit in HCL OneTest™ UI. You can find the information about certain

issues and how to resolve them.

Warning: When you initialize a new Git repository for a project in an Eclipse perspective, a .gitignore

file is created in the project folder. While you commit the contents of a project to the Git repository, the

.gitignore file ignores the report files. You can specify additional file types in the .gitignore file so that

those file types are ignored when you commit the project contents to the Git repository.

The following topics provide more information about EGit integration issues, their causes, and the resolutions to fix

the issues while you work with the Git perspective in HCL OneTest™ UI.

Error: Missing library files in the project
After you pull a project in the Git perspective, Project is missing the required Library error is displayed in the

Verify Problems tab. This error occurs due to the .classpath file which is specific to a workspace or system. The

.classpath file needs to be pointed to the newly imported location.

You can perform the following steps to resolve the missing library issue:

1. Go to Windows > Perspective > Open Perspective > Other.

2. Select the Java perspective.

3. Expand the project from the Test Navigator pane.

4. Navigate to Java Build Path > Libraries.

5. Delete all the jar files that are missing after you pull the changes.

Note: The files are marked with a red cross.

6. Play back the project.

The required jar files are added to the project.

Chapter 6. Administrator Guide

Git merge conflicts
Web UI test projects contain certain metafiles and test assets in binary form. When you work in a collaborative

test creation environment, you might encounter Git merge conflicts while you commit test assets to the remote Git

repository.

When you view a project in the File Explorer, the folder structure is displayed as follows:

The metafiles such as .project, .classpath, assets.xml, and the test assets must be committed to the remote Git

repository for seamless collaboration. Due to the specialized format of information in the metafiles and test assets

being binary files, the Git merges cannot happen automatically. You must resolve the resulting merge conflicts

manually, if any.

Best practices to minimize the merge conflicts

You must adhere to the following best practices to minimize the merge conflicts when you commit test assets to the

remote Git repository:

275

HCL OneTest™ UI

276

• Refrain from working on the same test assets to the extent, if possible.

• Ensure that the team members coordinate and work closely with other members while making changes on the

same test assets. Thereby, if there are any merge conflicts on binary files, those errors can be identified and

addressed at the earliest.

• Keep the local Git repository up-to-date with the remote upstream branch by pulling in changes periodically.

The local Git branch must be made up-to-date with the master branch by re-basing frequently.

• Use the descriptive messages for your commits, so that other members can refer to those messages to

resolve merge conflicts efficiently.

Conflict management: errors in assets.xml
In a collaborative work environment, the merge conflicts in assets.xml arise despite best efforts when you pull the

changes from the remote upstream.

The project includes a metafile called assets.xml that contains a list of all test asset files in a project along with their

dependencies in an XML format. The assets.xml file is automatically generated by HCL OneTest™ UI from the contents

of the project. The assets.xml file is refreshed each time you modify the files in the project. These changes in the

assets.xml file are the most common source of merge conflicts.

The following image displays the merge conflicts when you attempt to perform a pull request on the local Git

repository by using the Git perspective:

You can perform the following steps to resolve the merge conflicts in the assets.xml file:

Chapter 6. Administrator Guide

1. Click Close to dismiss the merge conflict result dialog box.

2. Click Window > Show View > Other.

3. Expand Git, and then select Git Staging.

4. Click Open.

The conflicting files are displayed in the Unstaged Changes pane.

5. Right-click the project from the Test Navigator pane, and then click Refresh.

When you refresh the project, the assets.xml file is updated to include the local files in the project and also

files that were pulled down from the remote upstream.

6. Go to the Git Staging view, and then move the files from Unstaged Changes to Staged Changes by using the

Add selected files to the index or icon.

7. Enter a message in the Commit Message pane, and then click Commit and Push.

The Push Result dialog box is displayed with the status of the commit to the remote Git repository.

277

HCL OneTest™ UI

278

Conflict management: errors in test assets
When multiple users edit and commit the same set of test assets, then while you pull or push changes to the remote

Git repository, a merge conflict occurs.

Consider two users are working on the same VU Schedule called MyVUSchedule1.testsuite. One of the users

committed and pushed changes to the remote Git repository. Later, when the other user tries to commit and push

changes, the commit fails with the following error message:

The error occurs because the remote Git repository contains changes pushed by the other user that are not present

in the local branch. To push the changes, the changes in the remote Git repository must be pulled down to the local

repository.

You can perform the following steps to resolve the merge conflicts in test assets:

1. Go to the Git perspective view, and then right-click the remote Git repository from the list.

2. Select Pull from the list to make your local Git repository up-to-date.

The Pull Request window is displayed.

3. Expand the commits fetched from the remote Git repository, and then expand each commit to view the list of

changed files in them.

Chapter 6. Administrator Guide

Note: You must make a note of the test assets listed in the Pull Request window that were modified

locally.

4. Examine the Git Staging view to find the conflicting or unmerged files.

Note: The conflicting files are marked with a red icon.

5. Right-click the conflicted test assets, and then select the Replace With option.

6. Select one of the following options based on your requirement:

◦ Theirs:commitID commitmessage

◦ Ours:commitID commitmessage

Since MyVUSchedule1.testsuite is binary, the remote and local changes must have to be merged manually. If

necessary, you must first discuss with the user who authored or committed the changes. If their changes are

extensive and the locally performed changes are relatively minor, you can overwrite the local version with the

remote by selecting Theirs:commit ID commit message. You can then do the local changes again.

Alternatively, if the local changes are extensive when compared to the changes in the remote branch, then you

can overwrite the remote version by selecting the Ours:commit ID commit message option. Later, you must

manually redo the remote changes on the local copy.

279

HCL OneTest™ UI

280

7. Redo the changes that were broken because of the replace action.

8. Move the files from Unstaged Changes to Staged Changes by using the Add selected files to the index or

 icon.

9. Enter a message in the Commit Message pane, and then click Commit and Push.

The Push Result dialog box is displayed with the status of the commit to the remote Git repository.

Integration with IBM® Engineering Workflow Management
You can manage test assets with Jazz™ source control management by integrating HCL OneTest™ UI with

Engineering Workflow Management, formerly known as Rational® Team Concert™ eclipse client.

Introduction

You can use Engineering Workflow Management eclipse client to connect to compatible Jazz™ servers, including

Engineering Workflow Management servers. You must have a compatible version of Engineering Workflow

Management server setup to use Jazz™ source control management. For information about compatible versions, see

System Requirements on page 12.

Use this feature to do the following tasks:

• Access Engineering Workflow Management eclipse client.

• Manage the test assets by using Jazz™ source control management.

If you have installed the Engineering Workflow Management eclipse client, see the Getting Started section of

the Engineering Workflow Management IBM Documentation to learn more about using Engineering Workflow

Management.

To access work items, you can switch to the Work Items perspective by clicking Window > Open Perspective > Work

Items.

Chapter 6. Administrator Guide

Installing Engineering Workflow Management client

You must have a Jazz.net account to download and install Engineering Workflow Management. You can register for

a Jazz.net account at https://jazz.net/pub/user/register.jsp and then, download Engineering Workflow Management

from the Jazz site.

Notes:

• From V7.0 or later, Rational® Team Concert™ is renamed to Engineering Workflow Management.

Tips:

• You must install Engineering Workflow Management by using Installation Manager in the same

package group as HCL OneTest™ UI.

• Both the Engineering Workflow Management and HCL OneTest™ UI must use the same workspace.

To find the appropriate Engineering Workflow Management Installation Manager extension installer, perform the

following steps:

1. Access the Engineering Workflow Management Download page from https://jazz.net/downloads/workflow-

managementIBM® Engineering Workflow Management Download page.

2. Click on the required version that you want to download.

3. Select the All Downloads tab to view other download options, including an extension or offline (local)

installers, and then search for extension install.

Tracking defects with IBM® Engineering Workflow Management
You can submit defects to Engineering Workflow Management from HCL OneTest™ UI. By default, the test log editor

uses Bugzilla as the defect tracking site. You must configure the product to use Engineering Workflow Management

for defect tracking.

1. Click Window > Preferences > Test > Test Log Editor.

Result

The Test Log Editor preferences window opens.

2. Specify the URL of Engineering Workflow Management server in the Submit URL, Search URL, and Open URL

fields.

Contact the administrator of the Engineering Workflow Management server for more information.

Example

281

https://jazz.net/pub/user/register.jsp
https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management

HCL OneTest™ UI

282

The following are the example of URLs, where the name of the Engineering Workflow Management server is

evm.example.com and the name of the project is projectname:

Table 2. Example of Engineering Workflow Management Server URL

Field

names
Field values

Submit

URL

https://ewm.example.com:9443/jazz/web/projects/projectname#ac

tion=com.ibm.team.workitem.newWorkItem

Search

URL

https://ewm.example.com:9443/jazz/web/projects/projectname#action=jaz

z.viewPage&id=com.ibm.team.workitem

Open

URL

https://ewm.example.com::9443/jazz/web/projects/projectname#ac

tion=com.ibm.team.workitem.viewWorkItem&id=

Note: You must change the URLs, if there is change in name of the Engineering Workflow

Management server.

Related information

Test log overview on page 1220

Integration with Engineering Test Management
You can integrate IBM® Engineering Test Management (formerly known as IBM® Rational® Quality Manager) with

HCL OneTest™ UI to initiate test runs from Engineering Test Management.

To run tests from Engineering Test Management, you must configure the default adapter that is installed when you

install HCL OneTest™ UI.

You can run the adapter in the following modes:

• GUI

• CLI

Engineering Test Management reports

When you run a test script from Engineering Test Management, the default report that is displayed during a test run is

attached to the results of Engineering Test Management. You can customize the reports based on your requirements.

See Customizing reports on page 1206.

If you use Engineering Test Management 4.0 or later, you can view and analyze the test reports in Engineering Test

Management. You can analyze the test reports while the test is in running state and after the test run is complete. You

Chapter 6. Administrator Guide

can click the Analyze Results Interactively using HCL OneTest UI option from the Execution Results dialog box to

view the test reports in Engineering Test Management.

The result completion state that is reported to Engineering Test Management reflects the overall verdict of the test

log that is associated with the run. See Test log overview on page 1220. In many cases, a test might contain a

failed verification point, but still is considered as passed. You can view the attached report in the execution result of

Engineering Test Management, and then set the execution results status accordingly.

You can view the full run results from within HCL OneTest™ UI by opening HCL OneTest™ UI in the workspace that is

configured to be used by the adapter.

If the adapter is running from the command line, you must stop the adapter before opening HCL OneTest™ UI. When

HCL OneTest™ UI is opened, you can access the full test reporting and test log capabilities. The test results for the

runs that are initiated from Engineering Test Management are under the Engineering Test Management Results page.

Known limitations

• You cannot run tests from Engineering Test Management with encrypted datasets. When using such datasets,

a password prompt is not displayed in the adapter service or in the command-line interface. The use of

encrypted datasets are not recommended in the GUI mode, because it requires user interaction with HCL

OneTest™ UI to initiate test runs from Engineering Test Management.

• You can start only one adapter per product installation on a given computer. If you use multiple adapters on

the same computer, it requires you to install each product as its own software package in its own directory. If

you want to run multiple adapters on the same computer, you must ensure that adapters are using different

workspaces.

For information about using Engineering Test Management, refer to the IBM Engineering Lifecycle Management

documentation.

Refer to the following topics to learn more about integrating Engineering Test Management with HCL OneTest™ UI.

Configuring the Engineering Test Management adapter
You must configure the Engineering Test Management adapter to establish a successful connection between HCL

OneTest™ UI and Engineering Test Management.

Before you begin

• You must have the following information:

◦ The URL of the Engineering Test Management server.

◦ A user credential and valid license to access Engineering Test Management.

◦ The user account must be added to the project area that is being accessed by the adapter with write

permissions to the project.

283

https://www.ibm.com/docs/en/elm/7.0.3?topic=engineering-test-management

HCL OneTest™ UI

284

• You must have added -Dhptcostconfirm and -DCMDLINE_PORT=999 to the eclipse.ini file before

you run a compound test or accelerated functional test that consume VU-Hours from Engineering Test

Management.

The eclipse.ini file must be available at the installation directory of HCL OneTest™ UI.

For more information about Engineering Test Management, refer to the IBM Engineering Lifecycle Management

documentation.

1. Open HCL OneTest™ UI.

2. Click Window > Preferences > Quality Manager Adapter.

3. Enter the following information of the Engineering Test Management:

Fields Actions

Server URL
Enter the URL of Engineering Test Management.

For example, https://<hostname>:<portnumber>/qm

Note: If you rename the Engineering Test Management server, you must per

form the following tasks:

a. Update the Engineering Test Management server name in the hosts

file with a new name.

b. Update the Server URL field with the new name.

c. Configure the adapter to point to the new URL.

Adapter name
Enter a unique name to identify the Engineering Test Management adapter. The En

gineering Test Management adapter uses the name of the computer as the default

name of the adapter.

Project area
Enter the name of the project area in Engineering Test Management.

4. Select one of the following Authentication type from the drop-down list to connect to Engineering Test

Management:

Authentication type Actions

Username and

Password
Perform the following steps:

https://www.ibm.com/docs/en/elm/7.0.3?topic=engineering-test-management

Chapter 6. Administrator Guide

Authentication type Actions

a. Enter the username associated with Engineering Test Management in the User

ID field.

b. Enter the password associated with the username of Engineering Test Man

agement in the Password field.

KERBEROS
Click Browse to locate and select the kerberos.ini file in the Configuration File

field.

Note: The kerberos.ini file is automatically created when you set up Ker

beros.

For example, on Windows systems, you can locate the file in the c:\windows\kr

b5.ini. The file name and the location might change based on the operating sys

tems.

SSLCERT
Perform the following steps:

a. Enter the location of the SSL certificate keystore in the Certificate Location

filed.

b. Enter the keystore password in the Password field.

Note: The expected format of the keystore is p12. The keystore must contain

the client certificate that the adapter uses when you authenticate with Engi

neering Test Management.

SMARTCARD Select a certificate from the drop-down list from the Certificate Selection field.

5. Optional: Select the Enable Proxy checkbox to connect through a proxy computer and perform the following

steps to enter the Proxy Details of the computer:

a. Enter the hostname of the proxy computer in the Host field.

b. Enter the port number of the proxy computer in the Port field.

c. Enter the username and password of the proxy computer in the User and Password fields.

6. Click Apply and Close to save and close the configuration.

Results

You have configured the details of Engineering Test Management on HCL OneTest™ UI.

What to do next

285

HCL OneTest™ UI

286

You must start the adapter either from HCL OneTest™ UI or command-line interface to run Web UI tests.

Related information

Connecting and disconnecting the Engineering Test Management adapter from the GUI mode on

page 286

Starting and stopping the Engineering Test Management adapter from the command line on page 288

Importing test assets into Engineering Test Management on page 289

Configuring the workspace directory of the adapter
You must configure the workspace directory of the adapter to start or stop the Engineering Test Management adapter

from command-line interface.

About this task

If the Use resources that are local to a test machine option is set in Engineering Test Management, then the

WORKSPACE_DIR must be set to the same workspace where your test assets are located.

1. Locate the adapter.config file in the product_install_dir \HOT-PERF_RQMAdapter\config\

directory.

Where product_install_dir is the directory where HCL OneTest™ UI is installed.

For example, C:\Program Files\HCL\HCLOneTest.

2. Edit the WORKSPACE_DIR variable in the adapter.config file to point to the same test workspace that you

want the adapter to use.

For example, WORKSPACE_DIR= C:\Users\username\HCL\HCLOneTest\my_adapter_workspace.

Results

You have configured the workspace directory of the adapter.

What to do next

You can start or stop the Engineering Test Management adapter from command-line interface.

Connecting and disconnecting the Engineering Test Management adapter from the
GUI mode
You can use the Quality Manager Adapter view to connect, disconnect, and view adapter activities from HCL

OneTest™ UI.

Before you begin

You must have configured the Engineering Test Management adapter. See Configuring the Engineering Test

Management adapter on page 283.

About this task

Chapter 6. Administrator Guide

In the GUI mode, when a script is run from Engineering Test Management, you can see the test run in progress inside

HCL OneTest™ UI as though the test were run manually in HCL OneTest™ UI.

Push buttons to connect and disconnect to the Engineering Test Management server are located in the upper-right

corner of Quality Manager Adapter view. This view also has a local preferences menu that you can use to control

some behavior of the GUI mode adapter. If you see errors or warnings, use the Error Log view for further investigation.

Note: You must not use HCL OneTest™ UI while the adapter is running. If you do so, you might interfere with

the ability of the adapter to run test scripts. You must stop the adapter before you open HCL OneTest™ UI.

The following image displays the activities of the adapter in the Quality Manager Adapter view:

1. Open HCL OneTest™ UI.

2. Click Window > Show View > Quality Manager Adapter.

3. Perform the following actions either to connect or disconnect the adapter:

◦ Click the Connect to RQM icon to connect the adapter.

◦ Click the Disconnect from RQM icon to disconnect the adapter.

Results

You have connected or disconnected the Engineering Test Management adapter from HCL OneTest™ UI.

287

HCL OneTest™ UI

288

Related information

Configuring the Engineering Test Management adapter on page 283

Starting and stopping the Engineering Test Management adapter from the command line on page 288

Importing test assets into Engineering Test Management on page 289

Starting and stopping the Engineering Test Management adapter from the
command line
You can use the command-line interface to start, stop, and view activities of the Engineering Test Management

adapter that you configured in HCL OneTest™ UI.

Before you begin

You must have performed the following tasks:

• Configured the adapter in HCL OneTest™ UI. See Configuring the Engineering Test Management adapter on

page 283.

• Configured the workspace directory of the adapter. See Configuring the workspace directory of the adapter on

page 286.

About this task

When you run test assets from the command-line interface, the adapter activities are printed to the adapter.log file

that can be accessed from product_install_dir\HOT-UI_RQMAdapter\logs.

To print the current status of the adapter, you must navigate to the product_install_dir\HOT-UI_RQMAdapter

\bin directory, and then you can run the RQMAdapter.bat STATUS command.

Where, product_install_dir is the installation directory of HCL OneTest™ UI.

Warning: You must not use HCL OneTest™ UI while the adapter is running. You must stop the adapter before

you open HCL OneTest™ UI for any reason.

1. Open a command-line interface.

2. Navigate to the product_install_dir\HOT-PERF_RQMAdapter\bin\ directory.

3. Perform the following step either to start or stop the adapter:

◦ Run the following command to start the adapter from the command line:

Operating system Command to be run

Windows™ RQMAdapter.bat START

Linux™ RQMAdapter.sh START

Chapter 6. Administrator Guide

◦ Run the following command to stop the adapter from the command line:

Operating system Command to be run

Windows™ RQMAdapter.bat STOP

Linux™ RQMAdapter.sh STOP

Results

You have started or stopped the Engineering Test Management adapter from the command-line interface.

Related information

Configuring the Engineering Test Management adapter on page 283

Connecting and disconnecting the Engineering Test Management adapter from the GUI mode on

page 286

Importing test assets into Engineering Test Management on page 289

Importing test assets into Engineering Test Management
You can import the functional tests into Engineering Test Management by using an adapter.

Before you begin

The adapter must be running on a computer where the test assets are located.

About this task

The names of script types, HCL OneTest™ UI, and HCL OneTest™ Studio, are compatible with HCL OneTest™ UI, and

HCL OneTest™ Studio products.

1. Log in to Engineering Test Management.

2. Click Construction > Import Test Scripts.

3. Select one of the following test scripts in the Script Type field:

a. HCL OneTest™ UI to import a functional test from HCL OneTest™ UI.

b. HCL OneTest™ Studio to import a Web UI test from HCL OneTest™ UI or import a test from HCL

OneTest™ Studio.

4. Select Use test resources that are local to a test machine, and click Select Adapter.

5. Select the computer on which the adapter is running, and click Next.

6. Enter the name of the project in the Project Path field, and then click Go.

289

HCL OneTest™ UI

290

Note: You must specify only the project name and not the entire path to the project.

7. Select the test assets that you want to import, and then click Finish.

8. Select those test assets to import again, and then click Import.

Results

You have imported the test assets to Engineering Test Management by using the adapter.

Related information

Configuring the Engineering Test Management adapter on page 283

Connecting and disconnecting the Engineering Test Management adapter from the GUI mode on

page 286

Starting and stopping the Engineering Test Management adapter from the command line on page 288

Testing shared assets with Rational Quality Manager on page 290

Testing shared assets with Rational® Quality Manager
You can make test projects and assets shareable in Rational® Quality Manager. By sharing assets, any computer

with your product, that is connected to Rational® Quality Manager can execute a test or schedule.

Before you begin

When you are working with tests from a remote shared location, HCL OneTest™ UI uses a local workspace for the

Rational® Quality Manager adapter. This adapter workspace is different from normal workspaces because the test

assets are stored remotely. This means that every asset that is related to the test is downloaded from the shared

location into the local workspace before execution. The following limitations apply:

• Assets in the adapter workspace might be deleted or overwritten with newer versions when updates are made

to the shared location.

• If you change the shared location in the adapter workspace, the entire project is removed from the adapter

workspace.

• Test results are stored in a different project, called RQM_Results, and are never deleted. The Rational®

Quality Manager test result page links to the correct location.

Note: Do not edit test assets in the adapter workspace because you might lose your work. You must use

these assets only for running tests.

If you are using source control and want to include only the minimum required assets, then include the following files:

Chapter 6. Administrator Guide

• All *.testsuite tests files

• The /src directory if you use custom code

• All *.dp dataset files

• All *.location location files

• All digital certificates

• All WSDL and SOA security files

Note: All other assets, such as test results, are not required.

Custom code Java™ classes in the shared assets cannot use libraries that are outside the workspace. If your custom

code must use such a library, then copy the library into the project, and update the classpath to use the local copy.

1. Create a shared directory on the computer that hosts the UNC file system that contains the test projects to

share.

Example

For example, create a directory called: C:\MyRemoteWorkspace.

2. Copy the test projects to share into the shared directory.

If a project is stored in source control software, then copy it from there.

3. Check that the Rational® Quality Manager server can access the shared directory by using UNC paths.

Example

For example, the \\MyServer\RPTRemoteAssets\ path must be mapped to the C:

\MyRemoteWorkspace directory.

4. In Rational® Quality Manager, specify the directory that contains the actual test projects that are located in

the shared directory.

5. Verify that you have correctly specified the UNC shared directory by browsing for the shared resource. Ensure

that the first dialog box contains the projects at the first level.

You must not have intermediate directories between the UNC shared directory and the project directory.

Related information

Configuring the Engineering Test Management adapter on page 283

Importing test assets into Engineering Test Management on page 289

Integration with Jenkins
You can use the HCL OneTest™ UI Jenkins plugin to run tests on a Jenkins server.

To automate testing with Jenkins, you must configure Jenkins primary server and Jenkins secondary server.

This configuration provides a single Jenkins installation on the Jenkins primary server to host multiple Jenkins

291

HCL OneTest™ UI

292

secondary server for building and running tests. For more information about the Jenkins primary and secondary

server relationship, refer to the Jenkins documentation.

You must install the required version of the HCL OneTest™ UI Jenkins plugin on the Jenkins primary server, and install

HCL OneTest™ UI on the Jenkins secondary server, where you create tests.

You can use either the Jenkins Freestyle project or the Pipeline project to run test assets from Jenkins. With

Freestyle project, you can create a build step from the Jenkins UI to run the test assets. Whereas the Pipeline project

uses a simple text scripts based on the Groovy programming language. You can define pipeline scripts during the

configuration of the Pipeline project by using any of the following methods:

• Pipeline script: In this method, you can directly enter a script in the field provided within the Jenkins UI or you

can select a sample Pipeline script from the drop-down list.

• Pipeline script from SCM: In this method, you can create a script with a Groovy editor and then commit the

script file into the Git repository.

For more information about the Jenkins Pipeline, refer to the Jenkins documentation.

Refer to the following topics to learn more about integrating Jenkins with HCL OneTest™ UI in the UI Test perspective:

Environment variables
You can add environment variables on the Jenkins server to run the Jenkins build by referring to environment

variables.

You can add an environment variable on the Jenkins server by navigating to Manage Jenkins > Configure System >

Global properties. You can enter the variable name by using any of the following methods for the corresponding text

fields in the Run HCL OneTest UI test step:

• Use the dollar sign ($) followed by the variable name.

For example, $workspace

• Use the dollar sign ($) followed by the variable name between braces.

For example, ${workspace}

The HCL OneTest™ UI Jenkins plugin uses the actual value while running the job.

For example, if you add the environment variable named workspace with the value C:\Users\HCL\workspace1,

then you can use $workspace or ${workspace} as input to the Workspace field when running tests. During the run time,

$workspace or ${workspace} is substituted with its corresponding value C:\Users\HCL\workspace1.

Task flows for running test assets from Jenkins
You can perform certain tasks to run test assets from the Jenkins Freestyle project or the Pipeline project.

https://www.jenkins.io/doc/book/managing/nodes/#components-of-distributed-builds
https://www.jenkins.io/pipeline/getting-started-pipelines/

Chapter 6. Administrator Guide

The following table lists the task flows for running test assets from the Jenkins Freestyle project:

Tasks More information

Install the HCL OneTest™ UI Web UI Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 293

Configure the Freestyle project.
Configuring the Freestyle project on page 294

Run HCL OneTest™ UI UI tests on Jenkins.
Running tests from Jenkins on page 312

You can perform the following tasks to run test assets from the Jenkins Pipeline project by using the sample script:

Tasks More information

Install the HCL OneTest™ UI Web UI Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 293

Create a pipeline script from the Jenkins UI.
Creating a pipeline script from Jenkins on page 302

Configure the Pipeline project.
Configuring the Pipeline project by using the sample

script on page 310

Run HCL OneTest™ UI UI tests on Jenkins.
Running tests from Jenkins on page 312

You can perform the following tasks to run test assets from the Jenkins Pipeline project by using the script from

Source Code Management (SCM):

Tasks More information

Install the HCL OneTest™ UI Web UI Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 293

Create a pipeline script and commit the script to the Git

repository.

For more information, refer to the Jenkins documenta

tion.

Configure the Pipeline project.
Configuring the Pipeline project by using the script from

SCM on page 311

Run HCL OneTest™ UI UI tests on Jenkins.
Running tests from Jenkins on page 312

Installing the plugin on the Jenkins primary server
You must install the HCL OneTest™ UI Web UI Jenkins plugin to run UI test assets from the Jenkins server.

293

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/

HCL OneTest™ UI

294

Before you begin

You must have completed the following tasks:

• Verified that you have a Jenkins primary server and secondary server.

• Downloaded the HCL OneTest™ UI Web UI Jenkins plugin 9.0 from the HCL® License & Delivery portal.

1. Log in to the Jenkins server.

Result

The Jenkins dashboard is displayed.

2. Click Manage Jenkins > Manage plugins, and then click Advanced tab.

3. Click Choose File and then locate and open the HCL OneTest™ UI Web UI Jenkins plugin.

4. Click Upload.

Result

The HCL OneTest™ UI Web UI Jenkins plugin is displayed in the Installed tab.

5. Perform the following steps to provide Random TCP Ports for Java™ Network Launch Protocol (JNLP) agents:

a. Click Manage Jenkins from the Jenkins dashboard.

b. Click Configure Global Security from the Security section.

c. Click Random from the Agents section.

d. Click Save to save and apply the changes.

Results

You have installed the HCL OneTest™ UI Web UI Jenkins plugin on the Jenkins primary server.

What to do next

You can run the test from the Jenkins server. See Running tests from Jenkins on page 312.

Configuring the Freestyle project
You must configure a Freestyle project to add a build step, and then run test assets from Jenkins.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ UI Web UI Jenkins plugin on the Jenkins primary server. See Installing the plugin

on the Jenkins primary server on page 293.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

• Created a Jenkins Freestyle project.

About this task

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://www.jenkins.io/doc/book/managing/nodes/#creating-agents

Chapter 6. Administrator Guide

When you create a Freestyle project in the Jenkins server, you must select the Restrict where this project can be run

checkbox and enter the name of the labels that you provided during the creation of Agent in the Label Expression

field.

1. Open the Jenkins Freestyle project, and then click Configure.

2. Click the Build tab, and then click Add build step.

3. Select the Run HCL OneTest UI - Web UI test option from the drop-down list.

4. Provide the details about the test run for the fields as listed in the following table.

You must provide the values for the following required fields:

◦ Workspace

◦ Project

◦ Test Suite Name

If you include these required parameters in a configuration file and use the Config File field to specify the

complete file path, then these values are not required.

Field Description

Required

Name
The name of the Jenkins build step.

Workspace
The complete path to the Eclipse workspace.

Project
The path, including the file name of the project relative to the workspace.

Test Suite Name
The path, including the file name of the test to run related to the project.

Note: You must provide the file name along with the file extension if you are using an

Accelerated Functional Test suite.

To run multiple tests of the same project sequentially, you must specify the test names sep

arated by a comma.

Optional

IMShared Loca

tion
The complete path to HCLIMShared location, if it is not the default location.

Import The complete path to the project folder that is cloned from a source control system or re

mote repository. When you use this option, you can specifiy a name for the new workspace

to be created to run the imported test assets.

295

HCL OneTest™ UI

296

Field Description

Var File
The complete path to the XML file that contains the variable name and value pairs.

Config File
The complete path to a file that contains the parameters for a test run.

Results File
The name of the results file.

The default result file is the test or schedule name with a time-stamp appended. The results

file is stored in the Results directory. If you are running multiple tests, do not provide a name

for the results file.

Overwrite Re

sults File
Determines whether a result file with the same name is overwritten. The default value is true,

which means the result file can be overwritten.

VM Args
The option to pass Java™ virtual machine arguments.

Protocol Input
The option to run a Web UI test in parallel on different browsers.

For example, Protocol Input is all.available.targets.in.parallel=allProtocol Input is all.avail

able.targets.in.parallel=chrome,ff,ie

Note: If you use the Protocol Input argument, you must not use the equivalent VM

Args arguments:

VM Args = -Dall.available.targets.in.parallel=all
VM Args = -Dall.available.targets.in.parallel=browser1,browser2,browser3

Dataset Override
For a test, the default value is the dataset specified in the test editor.

Note: You must use the Dataset Override option to replace the dataset values dur

ing a test run. You must ensure that both original and new datasets are in the same

workspace and have the same column names. You must also include the path to the

dataset.

For example,

/project_name/ds_path/ds_filename.csv:/project_name/ds_path/new_ds_filename.csv

You can swap multiple datasets that are saved in a different project by adding multiple paths

to the dataset separated by a semicolon (;).

Chapter 6. Administrator Guide

Field Description

Labels
The option to adds labels to test results when the test run is complete.

You can add multiple labels to a test result separated by a comma.

For example, “label1, label2”

When you run test assets then the same labels are displayed on the UI Test Statistical Report

in HCL OneTest™ UI.

If you have set Publish result after execution as Always or Prompt in the HCL OneTest™ UI

preferences (Window > Preferences > Test > HCL OneTest Server) and use the Labels op

tion, then the Results page of HCL OneTest™ Server displays the same label for the specific

test asset.

Note:

◦ When you run tests by using the double quotation marks ("") for the Labels

field, then the labels in the test result do not include the double quotation

marks.

◦ To work around this problem, you must create a command-line config file,

and then run the test by using the Config File field.

◦ When you use the Config File field to run tests, then labels provided in the

configuration file take precedence over the labels provided in the Labels field.

Exported Statis

tical Report Data

File

The complete path to a directory to store exported statistical report data.

If you do not supply a value for Exported Statistical Report Data File, the logs will be saved

in Jenkins workspace/temp directory.

Custom Report

Format Files
A comma-separated list of absolute paths to custom report format files (.view files) to use

when exporting statistical report data with the Export Statistical Report Data File option.

Exported Statis

tical Report in

html

The complete path to a directory to export web analytic results. Analyze the results on a web

browser without using the test workbench. If you run multiple tests, do not provide a value in

this field. The web analytic results will be exported to the Jenkins workspace.

User Comments
The text to be displayed in the User Comments row of the report.

Add text within the double quotation mark (“”)

Note:

297

HCL OneTest™ UI

298

Field Description

◦ When you run tests by using the double quotation marks ("") for the User

Comments field, then the User Comments row of a report does not contain

double quotation marks.

◦ To work around this problem, you must create a command-line config file,

and then run the test by using the Config File field.

Export stats for

mat
The field to specify a format for the report that you want to export. You must use the Export

ed Statistical Report Data File parameter along with the Export stats format parameter.

You must use at least one of the following formats:

◦ simple.csv

◦ full.csv

◦ simple.json

◦ full.json

◦ csv

◦ json

For example,

Exported Statistical Report Data File = <local_dir_path>

Export stats format = json

You can add multiple formats for the report separated by a comma (,).

If you want to export both the simple and full reports in a json or csv format, you can specify

json or csv as the format in the field.

The reports are saved to the location specified in the Exported Statistical Report Data File

field.

Export Report The option to export the unified report of UI tests to the file formats such as PDF, HTML, and

XML.

Note: The exported XML file is a JUnit XML file. You can view this file in applications

that support JUnit reporting formats.

After you select this checkbox, you must choose the following details from the drop-down

lists and enter the details:

Chapter 6. Administrator Guide

Field Description

◦ Type: Select unified from the list.

◦ Format: Select one of the following formats:

▪ xml

▪ pdf

▪ html

Note: You must select xml as the format to view the Test Result Analyzer

(TRA) reports. If you select the format as html or pdf, you cannot view the

TRA-based report.

◦ Directory: Enter the directory path where you want to save the exported file.

◦ File Name: Enter a name for the exported file.

Publish The option to publish test results to HCL OneTest™ Server.

You must provide the URL and offline user token of the server in Window > Preferences >

Test > Rational Test Automation Server > HCL One Test Server of HCL OneTest™ UI before

you use the Publish parameter in the test script.

Use the following arguments with the Publish parameter:

◦ To specify the project name, use any of the following formats:

▪ serverURL #project.name=projectName&teamspace.name=name_of_the _

teamspace

▪ serverURL #project.name=projectName&teamspace.alias=name_of_the _

teamspace_alias

You must consider the following points while providing the project name:

▪ If the project name is not specified, then the value of the Project parameter

is used.

▪ If you have a project with the same name in different team spaces, then

you can append either the &teamspace.name=name_of_the _teamspace or

&teamspace.alias==name_of_the_teamspace_alias options.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1

299

HCL OneTest™ UI

300

Field Description

Test Suite Name = Tests/testHttp.testsuite
Publish =
 https://localhost:5443#project.name=test&teamspace.name=ts1

Where:

▪ https://localhost:5443 is the URL of the server.

▪ test is the name of the project.

▪ ts1 is the name of the team space.

▪ If the name of the project or team space contains a special character, then

you must replace it with %<Hex_value_of_special_character>.

For example, if the name of the team space is Initial Team Space, then you

must provide it as Intial%20Team%20Space.

Where, %20 is the hexadecimal value of the space character.

◦ To avoid publishing of reports, use no.

You can use the no option if you do not want to publish test results after the run. This

option is useful if the product preferences are set to publish the results, but you do

not want to publish them.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = no

If you do not use the Config File parameter to run the tests, then the values provided in the

test script always take precedence over the Results options set in the product preferences

(Window > Preferences > Test > HCL One Test Server > Results).

The Reports information section on the Output window displays the names of the report

along with its corresponding URLs in the following conditions:

◦ When you configured the URL of HCL OneTest™ Server in preferences of HCL

OneTest™ UI (Window > Preferences > Test > HCL One Test Server.

◦ When you set Publish result after execution as Always or Prompt in the preferences

of HCL OneTest™ UI (Window > Preferences > Test > HCL One Test Server > Re

sults).

PublishFor
The option to publish test results to HCL OneTest™ Server based on the completion status of

the tests. You must use the PublishFor parameter along with the Publish parameter.

Chapter 6. Administrator Guide

Field Description

The following are the available options that you can use for the PublishFor parameter:

◦ ALL - This is the default option. You can use this option to publish test results for any

text execution verdict.

◦ PASS - You can use this option to publish test results for the tests that have passed.

◦ FAIL - You can use this option to publish test results for the tests that have failed.

◦ ERROR - You can use this option to publish test results for the tests that included er

rors.

◦ INCONCLUSIVE - You can use this option to publish test results for the inconclusive

tests.

You can add multiple parameters separated by a comma.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = https://localhost:5443#project.name=test&teamspace.name=ts1
PublishFor = FAIL,ERROR

Publish reports The option to publish test results in HCL OneTest™ Server. The values that you can use with

Publish reports are as follows:

◦ FT - This is an identifier for Functional Test Report. You can use this value to pub

lish the unified report if it is available for the selected test. See Unified reports on

page 1193.

◦ STATS - This is an identifier for Statistics Report. You can use this value to publish

the web analytics report if it is available for the selected test. See UI Test Statistical

report on page 1198.

◦ TESTLOG - This is an identifier for Test Log. You can use this value to publish the test

log if it is available for the selected test. See Logs overview on page 1219.

You must use the Publish reports parameter along with the Publish parameter.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = https://localhost:5443#project.name=test&teamspace.name=ts1
Publish reports = STATS, TESTLOG

The values specified here override the values selected in Window > Preferences > Test >

HCL One Test Server > Results of HCL OneTest™ UI.

You can prefix the value with “!” to publish the reports except for the specified one in the test

script.

301

HCL OneTest™ UI

302

Field Description

For example,

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = https://localhost:5443#project.name=test&teamspace.name=ts1
Publish reports = !TESTLOG

All the reports except the TESTLOG report is published to HCL OneTest™ Server after execut

ing the command.

5. Optional: Click Add build step again, and provide details for the next test to run multiple tests under the same

job.

6. Click Save.

Results

You have configured the Freestyle project by adding the build step.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 312.

Creating a pipeline script from Jenkins
You must create a pipeline script to run test assets from the Jenkins Pipeline project.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ UI Web UI Jenkins plugin on the Jenkins primary server. See Installing the plugin

on the Jenkins primary server on page 293.

• Created a Jenkins Pipeline project.

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

3. Click Pipeline Syntax to generate a pipeline script.

4. Select the step: General Build Step option from the drop-down list in the Sample Step field.

5. Select the Run HCL OneTest UI - Web UI test option from the drop-down list in the Build Step field.

6. Provide the details about the test run for the fields as listed in the following table.

You must provide the values for the following required fields:

◦ Workspace

◦ Project

◦ Test Suite Name

Chapter 6. Administrator Guide

If you include these required parameters in a configuration file and use the Config File field to specify the

complete file path, then these values are not required.

Field Description

Required

Name
The name of the Jenkins build step.

Workspace
The complete path to the Eclipse workspace.

Project
The path, including the file name of the project relative to the workspace.

Test Suite Name
The path, including the file name of the test to run related to the project.

Note: You must provide the file name along with the file extension if you are using an

Accelerated Functional Test suite.

To run multiple tests of the same project sequentially, you must specify the test names sep

arated by a comma.

Optional

IMShared Loca

tion
The complete path to HCLIMShared location, if it is not the default location.

Import The complete path to the project folder that is cloned from a source control system or re

mote repository. When you use this option, you can specifiy a name for the new workspace

to be created to run the imported test assets.

Var File
The complete path to the XML file that contains the variable name and value pairs.

Config File
The complete path to a file that contains the parameters for a test run.

Results File
The name of the results file.

The default result file is the test or schedule name with a time-stamp appended. The results

file is stored in the Results directory. If you are running multiple tests, do not provide a name

for the results file.

Overwrite Re

sults File
Determines whether a result file with the same name is overwritten. The default value is true,

which means the result file can be overwritten.

303

HCL OneTest™ UI

304

Field Description

VM Args
The option to pass Java™ virtual machine arguments.

Protocol Input
The option to run a Web UI test in parallel on different browsers.

For example, Protocol Input is all.available.targets.in.parallel=allProtocol Input is all.avail

able.targets.in.parallel=chrome,ff,ie

Note: If you use the Protocol Input argument, you must not use the equivalent VM

Args arguments:

VM Args = -Dall.available.targets.in.parallel=all
VM Args = -Dall.available.targets.in.parallel=browser1,browser2,browser3

Dataset Override
For a test, the default value is the dataset specified in the test editor.

Note: You must use the Dataset Override option to replace the dataset values dur

ing a test run. You must ensure that both original and new datasets are in the same

workspace and have the same column names. You must also include the path to the

dataset.

For example,

/project_name/ds_path/ds_filename.csv:/project_name/ds_path/new_ds_filename.csv

You can swap multiple datasets that are saved in a different project by adding multiple paths

to the dataset separated by a semicolon (;).

Labels
The option to adds labels to test results when the test run is complete.

You can add multiple labels to a test result separated by a comma.

For example, “label1, label2”

When you run test assets then the same labels are displayed on the UI Test Statistical Report

in HCL OneTest™ UI.

If you have set Publish result after execution as Always or Prompt in the HCL OneTest™ UI

preferences (Window > Preferences > Test > HCL OneTest Server) and use the Labels op

tion, then the Results page of HCL OneTest™ Server displays the same label for the specific

test asset.

Note:

Chapter 6. Administrator Guide

Field Description

◦ When you run tests by using the double quotation marks ("") for the Labels

field, then the labels in the test result do not include the double quotation

marks.

◦ To work around this problem, you must create a command-line config file,

and then run the test by using the Config File field.

◦ When you use the Config File field to run tests, then labels provided in the

configuration file take precedence over the labels provided in the Labels field.

Exported Statis

tical Report Data

File

The complete path to a directory to store exported statistical report data.

If you do not supply a value for Exported Statistical Report Data File, the logs will be saved

in Jenkins workspace/temp directory.

Custom Report

Format Files
A comma-separated list of absolute paths to custom report format files (.view files) to use

when exporting statistical report data with the Export Statistical Report Data File option.

Exported Statis

tical Report in

html

The complete path to a directory to export web analytic results. Analyze the results on a web

browser without using the test workbench. If you run multiple tests, do not provide a value in

this field. The web analytic results will be exported to the Jenkins workspace.

User Comments
The text to be displayed in the User Comments row of the report.

Add text within the double quotation mark (“”)

Note:

◦ When you run tests by using the double quotation marks ("") for the User

Comments field, then the User Comments row of a report does not contain

double quotation marks.

◦ To work around this problem, you must create a command-line config file,

and then run the test by using the Config File field.

Export stats for

mat
The field to specify a format for the report that you want to export. You must use the Export

ed Statistical Report Data File parameter along with the Export stats format parameter.

You must use at least one of the following formats:

◦ simple.csv

◦ full.csv

305

HCL OneTest™ UI

306

Field Description

◦ simple.json

◦ full.json

◦ csv

◦ json

For example,

Exported Statistical Report Data File = <local_dir_path>

Export stats format = json

You can add multiple formats for the report separated by a comma (,).

If you want to export both the simple and full reports in a json or csv format, you can specify

json or csv as the format in the field.

The reports are saved to the location specified in the Exported Statistical Report Data File

field.

Export Report The option to export the unified report of UI tests to the file formats such as PDF, HTML, and

XML.

Note: The exported XML file is a JUnit XML file. You can view this file in applications

that support JUnit reporting formats.

After you select this checkbox, you must choose the following details from the drop-down

lists and enter the details:

◦ Type: Select unified from the list.

◦ Format: Select one of the following formats:

▪ xml

▪ pdf

▪ html

Chapter 6. Administrator Guide

Field Description

Note: You must select xml as the format to view the Test Result Analyzer

(TRA) reports. If you select the format as html or pdf, you cannot view the

TRA-based report.

◦ Directory: Enter the directory path where you want to save the exported file.

◦ File Name: Enter a name for the exported file.

Publish The option to publish test results to HCL OneTest™ Server.

You must provide the URL and offline user token of the server in Window > Preferences >

Test > Rational Test Automation Server > HCL One Test Server of HCL OneTest™ UI before

you use the Publish parameter in the test script.

Use the following arguments with the Publish parameter:

◦ To specify the project name, use any of the following formats:

▪ serverURL #project.name=projectName&teamspace.name=name_of_the _

teamspace

▪ serverURL #project.name=projectName&teamspace.alias=name_of_the _

teamspace_alias

You must consider the following points while providing the project name:

▪ If the project name is not specified, then the value of the Project parameter

is used.

▪ If you have a project with the same name in different team spaces, then

you can append either the &teamspace.name=name_of_the _teamspace or

&teamspace.alias==name_of_the_teamspace_alias options.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish =
 https://localhost:5443#project.name=test&teamspace.name=ts1

Where:

307

HCL OneTest™ UI

308

Field Description

▪ https://localhost:5443 is the URL of the server.

▪ test is the name of the project.

▪ ts1 is the name of the team space.

▪ If the name of the project or team space contains a special character, then

you must replace it with %<Hex_value_of_special_character>.

For example, if the name of the team space is Initial Team Space, then you

must provide it as Intial%20Team%20Space.

Where, %20 is the hexadecimal value of the space character.

◦ To avoid publishing of reports, use no.

You can use the no option if you do not want to publish test results after the run. This

option is useful if the product preferences are set to publish the results, but you do

not want to publish them.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = no

If you do not use the Config File parameter to run the tests, then the values provided in the

test script always take precedence over the Results options set in the product preferences

(Window > Preferences > Test > HCL One Test Server > Results).

The Reports information section on the Output window displays the names of the report

along with its corresponding URLs in the following conditions:

◦ When you configured the URL of HCL OneTest™ Server in preferences of HCL

OneTest™ UI (Window > Preferences > Test > HCL One Test Server.

◦ When you set Publish result after execution as Always or Prompt in the preferences

of HCL OneTest™ UI (Window > Preferences > Test > HCL One Test Server > Re

sults).

PublishFor
The option to publish test results to HCL OneTest™ Server based on the completion status of

the tests. You must use the PublishFor parameter along with the Publish parameter.

The following are the available options that you can use for the PublishFor parameter:

Chapter 6. Administrator Guide

Field Description

◦ ALL - This is the default option. You can use this option to publish test results for any

text execution verdict.

◦ PASS - You can use this option to publish test results for the tests that have passed.

◦ FAIL - You can use this option to publish test results for the tests that have failed.

◦ ERROR - You can use this option to publish test results for the tests that included er

rors.

◦ INCONCLUSIVE - You can use this option to publish test results for the inconclusive

tests.

You can add multiple parameters separated by a comma.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = https://localhost:5443#project.name=test&teamspace.name=ts1
PublishFor = FAIL,ERROR

Publish reports The option to publish test results in HCL OneTest™ Server. The values that you can use with

Publish reports are as follows:

◦ FT - This is an identifier for Functional Test Report. You can use this value to pub

lish the unified report if it is available for the selected test. See Unified reports on

page 1193.

◦ STATS - This is an identifier for Statistics Report. You can use this value to publish

the web analytics report if it is available for the selected test. See UI Test Statistical

report on page 1198.

◦ TESTLOG - This is an identifier for Test Log. You can use this value to publish the test

log if it is available for the selected test. See Logs overview on page 1219.

You must use the Publish reports parameter along with the Publish parameter.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = https://localhost:5443#project.name=test&teamspace.name=ts1
Publish reports = STATS, TESTLOG

The values specified here override the values selected in Window > Preferences > Test >

HCL One Test Server > Results of HCL OneTest™ UI.

You can prefix the value with “!” to publish the reports except for the specified one in the test

script.

For example,

309

HCL OneTest™ UI

310

Field Description

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = https://localhost:5443#project.name=test&teamspace.name=ts1
Publish reports = !TESTLOG

All the reports except the TESTLOG report is published to HCL OneTest™ Server after execut

ing the command.

7. Click Generate Pipeline Script and copy the script that you created for the build step to use it in the sample

script.

Note:

You need this generated script to enter in step 5.c on page 311 in the following topic:

Configuring the Pipeline project by using the sample script

Results

You have created the pipeline script.

What to do next

You can configure the Pipeline project by using the Pipeline script option. See Configuring the Pipeline project by

using the sample script on page 310.

Configuring the Pipeline project by using the sample script
You can configure a Pipeline project directly from the Jenkins UI by using the sample pipeline scripts to run test

assets from Jenkins.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ UI Web UI Jenkins plugin on the Jenkins primary server. See Installing the plugin

on the Jenkins primary server on page 293.

• Created a pipeline script. See Creating a pipeline script from Jenkins on page 302.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents

Chapter 6. Administrator Guide

3. Select the Pipeline script option in the Definition field.

4. Select the sample script from the drop-down list.

For example, if you select Hello Word from the drop-down list, then the sample script is displayed as follows:

5. Perform the following steps to edit the sample script:

a. Replace the agent any in the script with the name of the label that you provided when you created the

Agent.

For example, if you provided a name of the label as win10_1022, then edit the script as follows:

agent {label 'win10_1022'}

b. Provide a name for the stage in the script.

For example, stage('Run UI Demo')

c. Specify the script that you created in step 7 on page 310 in place of “echo ‘Hello Word’”.

6. Click Save.

Results

You have configured the Pipeline project by using the Pipeline script option.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 312.

Configuring the Pipeline project by using the script from SCM
You can configure the Pipeline project to use the pipeline script from the Source Code Management (SCM), and then

run test assets from the Jenkins Pipeline project.

Before you begin

You must have completed the following tasks:

311

HCL OneTest™ UI

312

• Installed the HCL OneTest™ UI Web UI Jenkins plugin on the Jenkins primary server. See Installing the plugin

on the Jenkins primary server on page 293.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

• Created a pipeline script and committed the script to the Git repository. For more information, refer to the

Jenkins documentation.

• Been granted administrator permission of the Jenkins server to add credentials into Jenkins.

• Added your GitHub credentials into Jenkins. For more information about adding global credentials, refer to the

Jenkins documentation.

• Created a Jenkins Pipeline project.

About this task

If your pipeline scripts are complex, you can then write the script outside of Jenkins UI. You must commit that script

file into your Git repository. During the Pipeline build process, Jenkins checks out the script file from the Git repository

and runs your Pipeline project.

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

3. Select the Pipeline script from SCM option in the Definition field.

4. Select the Git option from the drop-down list in the SCM field.

5. Enter the URL of the Git repository in the Repository URL field where you stored your pipeline script.

6. Select the credentials of the Git repository from the drop-down list.

7. Optional: Enter the branch name of the Git repository in the Branch Specifier field.

8. Enter the path of the script that you stored in the Git repository in the Script path field.

9. Click Save.

Results

You have configured the Pipeline project by using the Pipeline script from the SCM option.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 312.

Running tests from Jenkins
You can run test assets either from the Jenkins Freestyle or the Pipeline project on the Jenkins server to test an

application under test.

Before you begin

You must have completed the following tasks:

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://www.jenkins.io/doc/book/using/using-credentials/#configuring-credentials

Chapter 6. Administrator Guide

• Verified that you have test assets residing within HCL OneTest™ UI.

• Configured the Freestyle project, if you want to run test assets from the Freestyle project. See Configuring the

Freestyle project on page 294.

• Configured the Pipeline project either by using the Pipeline script or Pipeline script from SCM, if you want to

run test assets from the Pipeline project. See Configuring the Pipeline project by using the sample script on

page 310 or Configuring the Pipeline project by using the script from SCM on page 311.

• Downloaded the latest Test Results Analyzer plugin from the Jenkinsci repository. For more information

about the Test Results Analyzer plugin, refer to the Jenkins documentation.

• Installed the Test Results Analyzer plugin on the Jenkins server. For more information about installing the

plugin, refer to the Jenkins documentation.

About this task

After the test run is complete, you can view the test results in a tabular format when you use the Jenkins Test Results

Analyzer plugin. With a TRA-based report, you can filter the results based on the status of the build. The status of the

builds can be PASSED, FAILED, and SKIPPED. You can also identify the failed build from the TRA-based report and take the

required action to resolve the build errors. The TRA report also represents the build information in Line, Bar, and Pie

graphs so that you can easily read the data.

Note: You can view the TRA-based reports only when you run Web UI tests.

1. Log in to the Jenkins server.

Result

The Jenkins dashboard is displayed.

2. Open your Jenkins Freestyle or Pipeline project from the list.

3. Click Build Now to run the test assets from Jenkins.

Results

You have run the test from the Jenkins server.

What to do next

You can view the build logs by clicking the build number from the Build History pane, and then selecting the Console

Output option.

You can also view the history of test results in a tabular format by clicking the Test Results Analyzer option. The TRA

reports are available only for Web UI test assets.

Testing with Maven
Starting from 9.2.0, you can use the Maven plug-in that is provided with the testing product to run tests as part of your

Maven build. Apache Maven is a software build tool based on the concept of a project object model (POM).

313

https://github.com/jenkinsci/test-results-analyzer-plugin/tags
https://plugins.jenkins.io/test-results-analyzer/
https://www.jenkins.io/doc/book/managing/plugins/#advanced-installation

HCL OneTest™ UI

314

Before you begin

• You must have installed HCL OneTest™ UI and set an environment variable that points to the installation

location.

For Mac OS, add an environment variable that points to the installation directory of the product: export

TEST_WORKBENCH_HOME=/opt/HCL/HCLOneTest

For Windows™ and Linux®, this environment variable is set when you install the product.

• You must have installed Maven from V3.2.0 and set up an environment variable that points to the M2_HOME

installation directory.

Introduction

To automate testing with Maven, you must configure a pom.xml file and launch your tests from the command line

using Maven command. You can either use your own pom.file, or one that is delivered with the product.

Three files are delivered with the product installation in the <product install location>\HCLOneTest

\maven2\ folder:

• pomCustomSurefireSample.xml for Windows, Linux and macOS.

• pomMojoExecPluginSample_Linux.xml for Linux and MacOS.

• pomMojoExecPluginSample_Windows.xml for Windows.

The files contain all types of dependencies as well as arguments required to execute the test scripts. For information

on the supported arguments, see Supported options in Maven on page 316.

There are two methods to run tests with Maven.

Method 1

With this method, you can run one or several tests. If you use your own pom.xml file, edit it with the following lines

and indicate which test(s) must be executed, otherwise, use the pomCustomSurefireSample.xml file as follows:

• Copy the pomCustomSurefireSample.xml to a directory.

• Edit the file and update the lines, enter the name and location of the test(s) that must be run. If the product

is installed on a different drive or a different location, or if HCLIMShared location has been changed, enter

the correct path to the HCLIMShared plug-in folder. For aftsuite attribute, you can input aft xml file as the

parameter value.

<!--test suite="soa" project="AA" plugins="C:/Program Files/HCL/HCLIMShared/plugins"/-->
 importzip="c:/MavenTrial/Tests.zip" workspace="C:/TmpDir"/--> <!-- To publish, the user
 need to place the offline token authentication in the environment before --> <!--test
 suite="Wikipedia.testsuite" project="OutOfWsp" workspace="C:/Runtimes/runtime-RptMvn"
 publish="https://<Server>#project.name=<ProjectToPublish>" publish_for="ALL"/--><!--
 When the project name exists in two different team spaces, the conflict can be
 solved be adding teamspace.alias or teamspace.name as shown below --><!--test
 suite="Wikipedia.testsuite" project="OutOfWsp" workspace="C:/Runtimes/runtime-RptMvn"

Chapter 6. Administrator Guide

 publish="https://<Server>#project.name=<ProjectToPublish>&teamspace.alias=<TeamSpaceAlias>"
 publish_for="ALL"/--><!--test suite="Wikipedia.testsuite"
 project="OutOfWsp" workspace="C:/Runtimes/runtime-RptMvn"
 publish="https://<Server>#project.name=<ProjectToPublish>&teamspace.name=<TeamSpaceName>"
 publish_for="ALL"/--><!--test suite="testSources/Test1.testsuite"/-->

• Run Maven to update the pom file version command and use the plug-in version currently available on

delivered repositories.

mvn versions:update-properties -Dincludes=com.hcl.products.test.it -f pomCustomSurefireSample.xml

• Run the test(s).

mvn clean verify -f pomCustomSurefireSample.xml

Fail safe reports are generated in the target directory,especially in target/failsafe-reports/

<ProjectName>/<TestName>_<timestamp>.txt that will contain the screen capture of the execution.

Method 2

With this method, no Maven report is generated. If you use your own pom.xml file, copy the following lines and

provide your parameter values. Otherwise, you can use the pomMojoExecPluginSample_Linux.xml or

pomMojoExecPluginSample_Windows.xml sample file.

Example with the pomMojoExecPluginSample_Windows.xml sample file:

• Copy pomMojoExecPluginSample_Windows.xml to a directory.

• Edit the file and update the arguments to reflect which test to execute. If the product is installed on a different

drive or a different location, or if HCLIMShared location has been changed, update the two last lines with the

path to the HCLIMShared plug-in folder.

<argument>/C</argument>
 <argument>${pt-plugin-cmdline}</argument>
 <argument>-workspace</argument>
 <argument>C:\Runtimes\runtime-RptMvn</argument>
 <argument>-project</argument>
 <argument>AA</argument>
 <argument>-suite</argument>
 <argument>Test1.testsuite</argument>
 <argument>-plugins</argument>
 <argument>C:/Program Files/HCL/HCLIMShared/plugins</argument>

• In the argument tags, instead of the -suite option, you can use the -aftsuite option and input the aft xml file as

the parameter value in the subsequent argument tag to run the AFT test.

For example, in the preceding template, <argument>-suite</argument>

<argument>Test1.testsuite</argument> can be replaced with <argument>-aftsuite</

argument> <argument>aftfile.xml</argument>.

• Run the test.

For Windows

315

HCL OneTest™ UI

316

mvn clean verify -f pomMojoExecPluginSample_Windows.xml

For Linux or MacOS:

mvn clean verify -f pomMojoExecPluginSample_Linux.xml

Related information

https://maven.apache.org/index.html

Supported options in Maven

Exemple

You must provide the values for the following required parameters:

• workspace

• project

• suite

If you include these required parameters in a configuration file and use the configfile parameter to specify the

complete file path, then these parameters are not required.

Exemple

The following table lists all the supported options with description:

Option Description

Required

workspace The complete path to the Eclipse workspace.

project The path, including the file name of the project relative to the workspace.

suite The path, including the file name of the test relative to the project. A test can be a Web UI test

or a compound test.

Optional

aftsuite The path, including the file name of the xml file to run an AFT test. The aftsuite option accepts

aft XML as the parameter value. It supports only one aft XML as input.

For example, aftsuite="aftinput"

https://maven.apache.org/index.html

Chapter 6. Administrator Guide

Option Description

Note: You must provide the file name along with the file extension to run an Acceler

ated Functional Test suite.

configfile The option to specify the complete path to a file that contains the parameters for a test run.

Each parameter must be on a single line. To create a configuration file, you must use an editor

that does not wrap lines. Any parameter, whether required or optional, can be set in the con

figuration file. The command line parameters override the values in this file.

Notes:

• If you are creating a config file manually, the file must be in the UTF-8 for

mat. You must not use quotation marks in this file even for values that contain

spaces.

• You can create command line config file from the desktop client, which you can

use while running tests from Maven. See Creating a command-line config file

on page 1145. This option is available only for Web UI and compound tests.

compare The option to export the result in the compare mode. You must use this option with export

statshtml and execsummary. The value can be paths to the runs and are relative to the work

space. You must separate the paths by a comma.

exportlog The option to specify the file path to store the exported test log.

You can provide multiple parameter entries when running multiple tests. You must use a colon

to separate the parameter entries.

For example: exportlog c:/logexport.txt:c:/secondlogexport.txt

If there are multiple suite option entries with a single exportlog parameter entry, then the

exportlog option generates the appropriate number of test logs by appending 0, 1, 2, and so

on to the exportlog option entry name.

For example: suite="sampletest1:sampletest2:sampletest3" exportlog="c:/logexport.txt "

The command generates the following test logs:

• logexport_0.txt

• logexport_1.txt

• logexport.txt

317

HCL OneTest™ UI

318

Option Description

exportstatreportlist The option to specify a comma-separated list of report IDs along with exportstats or export

statshtml to list the reports that you want to export in place of the default reports, or the re

ports selected under Preferences.

To view this setting, navigate to Window > Preferences > Test > Performance Test Reports

> Export Reports.

To copy the report IDs list into your command line, navigate to Window > Preferences > Test

> Performance Test Reports > Export Reports.

Under Select reports to export, select the required reports, and click Copy ID to clipboard. You

can then paste the clipboard content on to your editor.

exportstats The option to export reports in comma-separated values (CSV) format, with the file name

derived from the report name. This directory can be relative to the project or a directory on

your file system. If the exportstatreportlist option is not specified, the reports specified on the

Export Reports page of the Performance Test Report preferences are exported.

exportstatshtml The option to export web analytic results to the specified directory. You can then analyze the

results on a web browser without using the test workbench.

overwrite
Determines whether a result file with the same name is overwritten. The default value, false,

indicates that the new result file is created. If the value is true, the file is overwritten and retains

the same file name. You must use double quotes “” for values true or false.

plugins The complete path to the folder that contains the plugins. Typically, on Windows operating

systems, this folder is located at C:\Program Files\HCL\HCLIMShared\plugins.

You must specify the path if the folder is at a different location.

protocolinput The option to run a Web UI test in parallel on different browsers.

protocolinput="all.available.targets.in.parallel=all"

protocolinput="all.available.targets.in.parallel=chrome,ff,ie"

Note: If you use the protocolinput argument, you must not use the equivalent vmargs

arguments:

vmargs="-Dall.available.targets.in.parallel=all"
vmargs "-Dall.available.targets.in.parallel=browser1,browser2,browser3"

quiet The option to turn off any message output from the launcher and return to the command shell

when the run or the attempt is complete.

Chapter 6. Administrator Guide

Option Description

results The name of the results file. The default result file name is the test name with a time stamp ap

pended. You must specify a folder name that is relative to the project to store the test results.

For example, results="folder/resultname"

usercomments
The text to be displayed in the usercomments row of the report.

Add text within the double quotation mark (“”)

Note:

• When you run tests by using the double quotation marks ("") for the usercom

ments field, then the usercomments row of a report does not contain double

quotation marks.

• To work around this problem, you must create a command-line config file, and

then run the test by using the configfile field.

varfile The complete path to the XML file that contains the variable name and value pairs.

To run a Web UI test on a different browser than that was used for the recording, specify the

predefined variable. For more information, see Defining a variable to run a test with a selected

browser on page 437.

vmargs
The option to pass Java™ virtual machine arguments.

You can use the -vmargs option in the following scenarios:

• To specify the Java™ maximum heap size for the Java™ process that controls the com

mand line playback, use the -vmargs option with the -Xmx argument.

For example, when you use-vmargs -Xmx4096m, specify a maximum heap size of

4096m. This method is similar to specifying -Xmx4096m in the eclipse.ini file for the

workbench when playing back the test from the user interface.

• To collect the response time data for the app itself and for the server and network

and display them in different bar charts, use -vmargs "-De2e.collect=true". For desk

top-based web applications, the response time data is captured and displayed by de

fault.

319

HCL OneTest™ UI

320

Option Description

• To execute tests in parallel on all mobile devices, which are in passive mode, connect

ed to the workbench and ready for playback, use -vmargs "-Dall.available.targets.in

.parallel=true".

• To execute tests in parallel on all supported desktop browsers and connected mobile

devices, use -vmargs "-Dall.available.targets.in.parallel=all".

• To execute tests in parallel on selected desktop browsers and connected mobile de

vices, use -vmargs "-Dall.available.targets.in.parallel=browser1,browswer2,browser3".

You must separate browser names with a comma. For example, firefox, ff, chrome, ie,

ie64, safari, "-Dall.available.targets.in.parallel=browser1,browser2,browser3".

publish The option to publish test results to HCL OneTest™ Server.

You must provide the URL and offline user token of the server in Window > Preferences > Test

> Rational Test Automation Server > HCL One Test Server of HCL OneTest™ UI before you

use the publish parameter in the test script.

Use the following arguments with the publish parameter:

• To specify the project name, use any of the following formats:

◦ serverURL #project.name=projectName&teamspace.name=name_of_the _

teamspace

◦ serverURL #project.name=projectName&teamspace.alias=name_of_the _

teamspace_alias

You must consider the following points while providing the project name:

◦ If the project name is not specified, then the value of the Project parameter

is used.

◦ If you have a project with the same name in different team spaces, then you

can append either the &teamspace.name=name_of_the _teamspace or &team

space.alias==name_of_the_teamspace_alias options.

For example:

name="test1" workspace="C:/Users/IBM/rationalsdp/workspace1"
project="proj1" suite="Tests/testHttp.testsuite"
publish="https://
localhost:5443#project.name=test&teamspace.name=ts1"

Where:

Chapter 6. Administrator Guide

Option Description

▪ https://localhost:5443 is the URL of the server.

▪ test is the name of the project.

▪ ts1 is the name of the team space.

◦ While providing the name of the team space or team space alias, you must

replace the ampersand (&) character with & as shown in the preceding

example.

◦ If the name of the project or team space contains a special character, then you

must replace it with %<Hex_value_of_special_character>.

For example, if the name of the team space is Initial Team Space, then you must

provide it as Intial%20Team%20Space.

Where, %20 is the hexadecimal value of the space character.

• To avoid publishing of reports, use no.

You can use the no option if you do not want to publish test results after the run. This

option is useful if the product preferences are set to publish the results, but you do

not want to publish them.

For example:

name="test1" workspace="C:/Users/IBM/rationalsdp/workspace1"
 project="proj1"
suite="Tests/testHttp.testsuite" publish="no"

If you do not use the configfile parameter to run the tests, then the values provided in the test

script always take precedence over the Results options set in the product preferences

(Window > Preferences > Test > HCL One Test Server > Results).

The Reports information section on the Output window displays the names of the report along

with its corresponding URLs in the following conditions:

• When you configured the URL of HCL OneTest™ Server in preferences of HCL OneTest™

UI (Window > Preferences > Test > HCL One Test Server.

• When you set Publish result after execution as Always or Prompt in the preferences

of HCL OneTest™ UI

(Window > Preferences > Test > HCL One Test Server > Results).

321

HCL OneTest™ UI

322

Option Description

publish_for
The option to publish test results to HCL OneTest™ Server based on the completion status of

the tests. You must use the publish_for parameter along with the publish parameter.

The following are the available options that you can use for the publish_for parameter:

• ALL - This is the default option. You can use this option to publish test results for any

text execution verdict.

• PASS - You can use this option to publish test results for the tests that have passed.

• FAIL - You can use this option to publish test results for the tests that have failed.

• ERROR - You can use this option to publish test results for the tests that included

errors.

• INCONCLUSIVE - You can use this option to publish test results for the inconclusive

tests.

You can add multiple parameters separated by a comma.

For example:

name="test1" workspace="C:/Users/IBM/rationalsdp/workspace1"
project="proj1" suite="Tests/testHttp.testsuite"
publish="https://localhost:5443#project.name=test&teamspace.name=ts1"
 publish_for="FAIL,ERROR"

eclipsehome
The option to provide the complete path of the directory that contains eclipse.exe.

For example, C:\Program Files\HCL\HCLOneTest

importzip
The option to import the project as test assets with dependencies into your workspace.

For example,

workspace="C:/Users/IBM/rationalsdp/workspace1" project="proj1"
eclipsehome="C:\Program Files\HCL\HCLOneTest"
plugins="C:\Program Files\HCL\HCLIMShared\plugins"
suite="Tests/testHttp.testsuite" importzip="D:\assets\test.zip"

execsummary
The option to export all of the reports for the test run in a printable format, also known as an

executive summary, to the local computer. You must specify the path to store the executive

summary.

execsummaryreport
This option to export a specific report as an executive summary for the test run to the local

computer. You must specify the ID of the report to export as execsummaryreport <reportID>.

For example, to export an HTTP performance report, specify http.

Chapter 6. Administrator Guide

Option Description

Note: You must use this option along with execsummary.

To copy the report IDs list into your command line, navigate to Window > Preferences > Test

> Performance Test Reports > Export Reports.

Under Select reports to export, select the required reports, and click Copy ID to clipboard. You

can then paste the clipboard content on to your command line editor.

swapdatasets
For a test, the default value is the dataset specified in the test editor.

You must use the swapdatasets option to replace dataset values during a test run. You must

ensure that both original and new datasets are in the same workspace and have the same

column names. You must also include the path to the dataset.

For example: /project_name/ds_path/ds_filename.csv:/project_name/ds_

path/new_ds_filename.csv. You can swap multiple datasets that are saved in a different

project by adding multiple paths to the dataset separated by a semicolon (;).

exportReport
The option to export the unified report of UI tests to the file formats such as PDF, HTML, and

XML.

Note: The exported XML file is a JUnit XML file. You can view this file in applications

that support JUnit reporting formats.

The command syntax is as follows:

exportReport "type=<reporttype>;format=<file type1,file type2,file type3>;folder<destination

folder path;filename=<name of the exported file>"

For example, to export the report to only the pdf format, you can use exportReport "type=uni

fied;format=pdf;folder=Exportedreport102;filename=testreport"

If you want to export the report to multiple formats, you can specify the file formats as com

ma-separated values. The file type value can be in uppercase or lowercase.

For example, to export the report to all the supported formats, you can use

exportReport "type=unified;format=pdf,xml,html;folder=Exportedreport102;filename=testre

port"

The report in different file formats use the same file name that is specified in the command.

323

HCL OneTest™ UI

324

Option Description

labels
The option to add labels to the test results when the test run is complete. You can add multiple

labels to a test result separated by a comma.

For example, labels =“label1, label2”

When you run test assets then the same labels are displayed on the UI Test Statistical Report

in HCL OneTest™ UI.

If you have set Publish result after execution as Always or Prompt in the HCL OneTest™ UI

preferences

(Window > Preferences > Test > HCL OneTest Server) and use labels option, then the Results

page of HCL OneTest™ Server displays the same label for the specific test asset.

Note:

• When you run tests by using the double quotation marks ("") for the labels

parameter, then the labels in the test result do not include the double quotation

marks.

• To work around this problem, you must create a command-line config file, and

then run the test by using the configfile parameter.

• When you use the configfile parameter to run tests, then labels provided in the

configuration file take precedence over the labels provided in the Execute

WebUIFunctionalTest.xml file.

exportstatsformat
The option to specify a format for the result that you want to export along with the exportstats

option. You must use at least one of the following parameters with the exportstatsformat

option:

• simple.csv

• full.csv

• simple.json

• full.json

• csv

• json

For example, exportstats="<local_dir_path>" exportstatsformat="simple.json"

Chapter 6. Administrator Guide

Option Description

You can add multiple arguments separated by a comma.

For example, exportstats="<local_dir_path>" exportstatsformat="simple.json, full.csv"

When you want to export both simple and full type of test results in a json or csv format, you

can specify json or csv as the arguments in the command. When the test run completes, the

test result exports to simple.json and full.json files.

For example, exportstats="<local_dir_path>" exportstatsformat="json"

Exemple

Integration with Micro Focus ALM
You can integrate HCL OneTest™ UI with Micro Focus Application Lifecycle Management (ALM) to run test assets

from Micro Focus ALM.

When you have Micro Focus ALM to manage the life cycle of your application under test, you can create test scripts

to run it from Micro Focus ALM. You must use the content of the available template from the installation directory

of HCL OneTest™ UI to create test scripts. The template is based on Microsoft VBScript and supports VAPI-XP test

scripts. You can then run those test scripts from Micro Focus ALM and analyze the test results. For information about

Micro Focus ALM, refer to ALM Help Center.

The following table lists the tasks that you must perform to run test assets from Micro Focus ALM:

Tasks More information

Create Web UI tests in HCL OneTest™ UI to test your ap

plication.

See Creating Web UI tests on page 413.

Install Micro Focus ALM. For more information about the installation of Micro Fo

cus ALM, refer to the ALM Help Center.

For more information about specific versions of soft

ware requirements, see Integration Middleware on

page 28.

Create a test script in Micro Focus ALM. See Creating a test script in Micro Focus ALM on

page 326.

Copy the content of the template file and configure the

test script in Micro Focus ALM.

See Configuring test scripts in Micro Focus ALM on

page 327.

Run test assets as test scripts from Micro Focus ALM. See Running tests from Micro Focus ALM on

page 336.

325

https://admhelp.microfocus.com/alm/en/12.60/online_help/Content/UG/c_alm_roadmap.htm
https://admhelp.microfocus.com/alm/en/12.60/online_help/Content/installation_guides_main_page.htm

HCL OneTest™ UI

326

Creating a test script in Micro Focus ALM
You must create a VAPI-XP-TEST type of test script on Micro Focus Application Lifecycle Management (ALM) to

provide the details of the Web UI tests.

Before you begin

• You must be familiar with the Micro Focus ALM application.

• You must have performed the following tasks:

◦ Installed Micro Focus ALM. For more information about the installation of Micro Focus ALM, refer to

the ALM Help Center.

◦ Been granted access to the Micro Focus ALM server.

1. Log in to the Micro Focus ALM portal, if you are not already logged in.

The Micro Focus ALM dashboard is displayed.

2. Create a test by performing the following steps:

a. Expand Testing from the left pane, and then click Test Plan.

b. Select a folder from the available list to create a new test.

c. Click the New Test icon to create a new test.

d. Enter a name for the test in the Test Name field.

e. Select VAPI-XP-TEST as test type from the Type drop-down list, and then click OK.

Result

The VAPI-XP Wizard is displayed.

3. Select VBScript from the Script Language drop-down list.

4. Enter a name for the script in the Script Name field.

The default name of the script is entered as script. You can change it by entering a new name.

5. Click Next, and then select COM/DCOM Server Test as a test type.

6. Click Finish.

Results

You have created the VAPI-XP-TEST test script in Micro Focus ALM.

What to do next

You must configure the test script to add the required parameter values of the Web UI test. See Configuring test

scripts in Micro Focus ALM on page 327.

https://admhelp.microfocus.com/alm/en/12.60/online_help/Content/installation_guides_main_page.htm

Chapter 6. Administrator Guide

Configuring test scripts in Micro Focus ALM
You must configure the test script that you created in Micro Focus Application Lifecycle Management (ALM) to run

the Web UI tests.

Before you begin

You must have performed the following tasks:

• Created a test script in Micro Focus ALM. See Creating a test script in Micro Focus ALM on page 326.

• Copied the content of the template file.

About this task

You can navigate to the alm directory to copy the content of the template file. The alm directory resides within the

installation directory of HCL OneTest™ UI. The name of the template file is WebUI_ALM_Windows.txt and you can

access the file from the following location:

Installation_dir\HCL\HCLOneTest\alm

For example, C:\Program Files\HCL\HCLOneTest\alm

You must provide the values for the following required parameters:

• Workspace

• Project

• TestSuiteName

If you include these required parameters in a configuration file and use the ConfigFile parameter to specify the

complete file path, then these parameters are not required.

Important:

You must enter the parameter values within the double quotation marks. If the values of the parameter

contain the double quotation marks, then the values must be enclosed in another double quotation marks. For

example, if you want to add a label for a test result as "perf mon", then you must enter the parameter value in

the script as follows:

Labels = ""perf mon""

1. Log in to the Micro Focus ALM portal, if you are not already logged in.

The Micro Focus ALM dashboard is displayed.

2. Expand Testing from the left pane, and then click Test Plan.

3. Select a test script from the folder that you want to configure.

4. Click the Test Script tab.

327

HCL OneTest™ UI

328

5. Paste the content of the WebUI_ALM_Windows.txt file that you copied in the space provided in the Test

Script tab.

6. Enter the parameter values that are required for your test run in the script by referring to the following table:

Parameter Description

Required

Workspace Use this parameter to enter the complete path of the

Eclipse workspace.

Project Use this parameter to enter the name of the project

that has test assets.

TestSuiteName Use this parameter to enter the name of the test as

sets.

For example,

Workspace =
 "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"

Optional

ConfigFile Use this parameter to provide the complete path to a

configuration file that contains the parameters for a

test run.

ExportReport Use this option to export the unified report of UI tests

to the file formats such as PDF, HTML, and XML.

Note: The exported XML file is a JUnit XML

file. You can view this file in applications that

support JUnit reporting formats.

The command syntax is as follows:

exportReport "type=<reporttype>;format=<file

type1,file type2,file type3>;folder<destination folder

path>;filename=<name of the exported file>

For example, to export the report to only the pdf for

mat, you can use

exportReport "type=unified;format=pdf;folder=Export

edreport102;filename=testreport

Chapter 6. Administrator Guide

Parameter Description

If you want to export the report to multiple formats,

you can specify the file formats as comma-separat

ed values. The file type value can be in uppercase or

lowercase.

For example, to export the report to all the supported

formats, you can use exportReport "type=unified;for

mat=pdf,xml,html;folder=Exportedreport102;file

name=testreport

The report in different file formats use the same file

name that is specified in the command.

ExportStatReportlist Use this parameter to provide a comma-separated

list of absolute paths to custom report format files

(.view files) that you can use to export statistical re

port data with ExportStatsFile.

ExportStatsFile Use this parameter to provide the complete path to a

directory that you can use to store exported statisti

cal report data.

ExportStatsHtml Use this parameter to provide the complete path to a

directory that you can use to export web analytic re

sults. The results are exported to the specified direc

tory. You can analyze the results on a web browser

without opening HCL OneTest™ UI.

IMSharedLocation Use this parameter to enter the complete path to the

HCLIMShared location.

Labels Use this parameter to add labels to test results when

the test run is complete. You can add multiple labels

to a test result separated by a comma (,).

For example,

Workspace =
 "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Labels = "label1, label2"

When you run test assets, then the labels that you

added are displayed on the UI Test Statistical Report

in HCL OneTest™ UI.

329

HCL OneTest™ UI

330

Parameter Description

The Results page of HCL OneTest™ Server displays

the label that you added in the Labels parameter for

the specific test asset in the following condition:

◦ When you set Publish result after execution

as Always or Prompt in the preferences of

HCL OneTest™ UI (Windows > Preferences >

Test > HCL OneTest Server > Results).

Note:

◦ When you run tests by using the dou

ble quotation marks ("") for the Labels

parameter, then the labels in the test

result do not include the double quo

tation marks.

◦ To work around this problem, you

must create a command-line config

file, and then run the test by using the

ConfigFile parameter.

◦ When you use the ConfigFile parame

ter to run tests, then labels provided

in the configuration file take prece

dence over the labels provided in the

test script.

OverwriteResultsFile Set this parameter value to true or false to deter

mine whether a result file with the same name must

be overwritten or not.

The default value is true.

Publish Use this option to publish test results to HCL

OneTest™ Server from Microfocus ALM.

You must provide the URL and offline user token of

the server in Window > Preferences > Test > HCL

One Test Server of HCL OneTest™ UI before you use

the Publish parameter in the test script.

Use the following arguments with the Publish para

meter:

Chapter 6. Administrator Guide

Parameter Description

◦ To specify the project name, use any of the

following formats:

▪ serverURL #project.name=project

Name&teamspace.name=name_of_

the _teamspace

▪ serverURL #project.name=project

Name&teamspace.alias=name_of_the

_teamspace_alias

You must consider the following points while

providing the project name:

▪ If the project name is not specified,

then the value of the Project parame

ter is used.

▪ If you have a project with the same

name in different team spaces, then

you can append either the &team

space.name=name_of_the _team

space or &teamspace.alias==name_

of_the_teamspace_alias options.

For example:

Workspace =
 "C:/Users/IBM/rationalsdp/works
pace1"
Project = "proj1"
TestSuiteName =
 "Tests/testHttp.testsuite"
Publish =
 "https://localhost:5443#project
.name=test&teamspace.name=ts1"

Where:

▪ https://localhost:5443 is the

URL of the server.

▪ test is the name of the project.

▪ ts1 is the name of the team

space.

331

HCL OneTest™ UI

332

Parameter Description

▪ If the name of the project or team

space contains a special character,

then you must replace it with %<Hex_

value_of_special_character>.

For example, if the name of the team

space is Initial Team Space, then you

must provide it as Intial%20Team

%20Space.

Where, %20 is the hexadecimal value

of the space character.

◦ To avoid publishing of reports, use no.

You can use the no option if you do not want

to publish test results after the run. This op

tion is useful if the product preferences are

set to publish the results, but you do not want

to publish them.

For example:

Workspace =
 "C:/Users/IBM/rationalsdp/workspace1"
Project = "proj1"
TestSuiteName =
 "Tests/testHttp.testsuite"
Publish = "no"

If you do not use the Config File parameter to run the

tests, then the values provided in the test script al

ways take precedence over the Results options set

in the product preferences (Window > Preferences >

Test > HCL One Test Server > Results).

The Reports information section on the Output win

dow displays the names of the report along with its

corresponding URLs in the following conditions:

◦ When you configured the URL of HCL

OneTest™ Server in preferences of HCL

OneTest™ UI (Window > Preferences > Test >

HCL One Test Server.

Chapter 6. Administrator Guide

Parameter Description

◦ When you set Publish result after execution

as Always or Prompt in the preferences of

HCL OneTest™ UI (Window > Preferences >

Test > HCL One Test Server > Results).

Publish_for
Use this parameter to publish test results to HCL

OneTest™ Server from Micro Focus ALM based on

the completion status of the tests. You must use the

Publish_for parameter along with the Publish para

meter.

The following are the available options that you can

use for the Publish_for parameter:

◦ ALL - This is the default option. You can use

this option to publish test results for any text

execution verdict.

◦ PASS - You can use this option to publish test

results for the tests that have passed.

◦ FAIL - You can use this option to publish test

results for the tests that have failed.

◦ ERROR - You can use this option to publish

test results for the tests that included errors.

◦ INCONCLUSIVE - You can use this option to

publish test results for the inconclusive tests.

You can add multiple parameters separated by a

comma.

For example:

Workspace =
 "C:/Users/IBM/rationalsdp/workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Publish =
 "https://localhost:5443#project.name=test&tea
mspace.name=ts1"
Publish_for = "FAIL,ERROR"

Publishreports Use this option to publish test results in HCL

OneTest™ Server. The values that you can use with

Publishreports are as follows:

333

HCL OneTest™ UI

334

Parameter Description

◦ FT - This is an identifier for Functional Test

Report. You can use this value to publish the

unified report if it is available for the selected

test. See Unified reports on page 1193.

◦ STATS - This is an identifier for Statistics Re

port. You can use this value to publish the

web analytics report if it is available for the

selected test. See UI Test Statistical report on

page 1198.

◦ TESTLOG - This is an identifier for Test Log.

You can use this value to publish the test

log if it is available for the selected test. See

Logs overview on page 1219.

You must use the Publishreports parameter along

with the Publish parameter.

For example:

Workspace =
 "C:/Users/IBM/rationalsdp/workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Publish =
 "https://localhost:5443#project.name=test&tea
mspace.name=ts1"
Publishreports = "STATS, TESTLOG"

The values specified here override the values select

ed in Window > Preferences > Test > HCL One Test

Server > Results of HCL OneTest™ UI.

You can prefix the value with “!” to publish the reports

except for the specified one in the test script.

For example,

Workspace =
 "C:/Users/IBM/rationalsdp/workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Publish =
 "https://localhost:5443#project.name=test&tea
mspace.name=ts1"
Publishreports = "!TESTLOG"

Chapter 6. Administrator Guide

Parameter Description

All the reports except the TESTLOG report is pub

lished to HCL OneTest™ Server after executing the

command.

ProtocolInput
Use this option with additional arguments as follows:

◦ To run a Web UI test in parallel on different

browsers:

ProtocolInput = "all.available.targets.in.paral

lel=all"

ProtocolInput = "all.available.targets.in.paral

lel=chrome,ff,ie"

Note: If you use the ProtocolInput op

tion, you must not use the following

equivalent VMArgs arguments:

VMArgs
 "-
Dall.available.targets.in.parall
el=all"
VMArgs
 "-
Dall.available.targets.in.parall
el=browser1,browswer2,browser3"

◦ To specify the Web UI preferences such as

highlighting the page element and capturing

screens:

For example, ProtocolInput = "webui.high

light=<value>;webui.report.screenshots=<val

ue>" where webui.highlight specifies whether

the page element must be highlighted and

webui.report specifies whether the screens

must be captured while playing back the test

in the browser.

Quiet
Use this parameter to turn off any message output

from the launcher and return to the command shell

when the run or the attempt is complete.

335

HCL OneTest™ UI

336

Parameter Description

ResultsFile Use this parameter to provide a different name to the

result file.

The default name of the result file is the name of the

test or schedule with a timestamp appended.

UserComments Use this parameter to display comments that you

added in the UserComments row of a report.

Note:

◦ When you run tests by using the dou

ble quotation marks ("") for the User

Comments parameter, then the User

Comments row of a report does not

contain double quotation marks.

◦ To work around this problem, you

must create a command-line config

file, and then run the test by using the

ConfigFile parameter.

VarFile Use this parameter to provide a complete path to the

XML file that contains the variable name and value

pairs.

VMArgs Use this parameter to pass Java™ virtual machine ar

guments.

7. Click the Save icon.

Results

You have configured the test script by adding the required parameter values for the test run.

What to do next

You can run test assets from Micro Focus ALM. See Running tests from Micro Focus ALM on page 336.

Running tests from Micro Focus ALM
You can run test assets from Micro Focus Application Lifecycle Management (ALM) to run the Web UI tests in HCL

OneTest™ UI.

Before you begin

You must have completed the following tasks:

Chapter 6. Administrator Guide

• Created a test script in Micro Focus ALM. See Creating a test script in Micro Focus ALM on page 326.

• Configured the test script in Micro Focus ALM. See Configuring test scripts in Micro Focus ALM on

page 327.

• Optional: Generated offline user token to publish test results to HCL OneTest™ Server. For more information

refer to Managing access to the server in the HCL OneTest™ Server Documentation.

About this task

After the test run is complete, you can access the report to view the test run information. The Reports information

section on the Output window displays the names of the report along with its corresponding URLs in the following

conditions:

• When you configured the URL of HCL OneTest™ Server in the preferences of HCL OneTest™ UI (Windows >

Preferences > Test > HCL OneTest Server).

• When you set Publish result after execution to Always or Prompt in the preferences of HCL OneTest™ UI

(Windows > Preferences > Test > HCL OneTest Server > Results).

1. Log in to the Micro Focus ALM portal, if you are not already logged in.

The Micro Focus ALM dashboard is displayed.

2. Expand Testing from the left pane, and then click Test Plan.

3. Open the test script that you want to run.

4. Click the Test Script tab.

Result

The test script is displayed.

5. Click the Execute Script icon to run the test script.

Results

You have run the Web UI test scripts from Micro Focus ALM.

What to do next

You can view the test result details that are displayed in the Output window of Micro Focus ALM.

Integration with HCL OneTest™ API
You can use HCL OneTest™ API extension to run API tests from HCL OneTest™ UI. You can either import the projects

from HCL OneTest™ API or manage them from HCL OneTest™ UI by establishing the connection between the

products. You can also create a compound test to run the tests by using the Agents.

Before you begin

You must have completed the following tasks:

337

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/com.hcl.test.server.tester.doc/topics/t_tester_access_token.html

HCL OneTest™ UI

338

• Installed HCL OneTest™ API Extension for HCL OneTest™ API.

• Installed HCL OneTest™ Performance Agent and HCL OneTest™ API Agent to run tests remotely. When you

install HCL OneTest™ API, you must have selected the This Agent will only run probes option.

• Defined the environment variable INTEGRATION_TESTER_AGENT_HOME on each location where the Agent is

installed, and have pointed to the root installation directory of HCL OneTest™ API Agent.

Note: The environment variables INTEGRATION_TESTER_HOME and

INTEGRATION_TESTER_AGENT_HOME are automatically created when you install HCL OneTest™ API

10.2.2 or later.

Setting environment variable

You must set the environment variable INTEGRATION_TESTER_AGENT_HOME and point it to the HCL OneTest™ API

Agent installation directory if you are using HCL OneTest™ API Agent 10.2.1 or earlier.

1. Run the following command to set the environment variable on Windows:

INTEGRATION_TESTER_AGENT_HOME = C:\Program Files\HCL\HCLProducts\Agent

2. Run the following commands to set the environment variable on Linux:

INTEGRATION_TESTER_AGENT_HOME=/opt/HCL/HOT-API-Agent
export INTEGRATION_TESTER_AGENT_HOME
echo $INTEGRATION_TESTER_AGENT_HOME

If the environment variable is not set, the compound or schedule test run fails with an error message as depicted in

the following image:

Connecting to an existing API project

When you connect both the products any change or delete action made in one product workspace is reflected on the

other product workspace, if both the products are installed on your machine.

Warning: If you delete a project from the Test Navigator, be sure that the option Delete project contents on

disk is not selected in the Delete Resources dialog, otherwise the project would be deleted in HCL OneTest™

API if it is connected.

Chapter 6. Administrator Guide

• In HCL OneTest™ UI, right-click on the Test Navigator, select New > Other > HCL OneTest API > Connect to an

HCL OneTest API Project and click Next.

• In the wizard page, click Browse and select the root folder that contains the project.

If the path contains a project, its name should automatically appear in Project Name and the Finish button

should be enabled.

339

HCL OneTest™ UI

340

Setting HCL OneTest™ API preferences

To be able to open an HCL OneTest™ API project from HCL OneTest™ UI Test Navigator, you need to have both the

products installed on the same computer, and you must set the path to the execution file in the Preferences.

• In HCL OneTest™ UI, click Window > Preferences > Test > HIT Integration.

• Click Browse and set the installation path to HCL OneTest™ API execution file. On Windows, the default

location can be C:\Program Files\HCL\IntegrationTester.exe.

• Click Apply and OK.

Chapter 6. Administrator Guide

Opening HCL OneTest™ API resources from the Test Navigator

• Once the preferences are set, you can open an HCL OneTest™ API project.

• In the Test Navigator, open the project root node and children nodes, and at any level, right-click and select

Open in HCL OneTest API Workbench.

341

HCL OneTest™ UI

342

If HCL OneTest™ API is automatically detected, the workspace opens for the selected resources.

If HCL OneTest™ API is not detected, a dialog opens on a Preference page where you need to verify the path to

the execution file.

• Warning: HCL OneTest™ API cannot open more than one project at a time. If you have another project

open, an error is displayed. In that case, close HCL OneTest™ API and try to open the project again.

Importing HCL OneTest™ API project

If both the products are not installed on the same machine, you can import an HCL OneTest™ API project in your

workspace. Another reason for the import is when you have HCL OneTest™ API installed but you do not want

to connect to the HCL OneTest™ API project. In that case, the project is duplicated, any updates in one product

workspace is not reflected in the workspace of the other product.

• To import an HCL OneTest™ API project:

• Right-click on the Test Navigator, choose Import and select Existing project into workspace.

• Choose Select root directory or Select archive file; select a project to import and click Finish.

The selected project appears in the Test Navigator and the compound test editor automatically opens.

Modifying HCL OneTest™ API environments in UI Test perspective

In the compound test, you can select HCL OneTest™ API tests and change the environment of each test. The

environments are set in HCL OneTest™ API, you can only change the selection from the edited compound test.

• Open the compound editor and select a test.

• In the HCL OneTest™ API details, you can browse and change the properties of the selected test. The Test

path, the Environments and Description are automatically updated accordingly.

Chapter 6. Administrator Guide

• To select another environment for the Integration Tester test, use the dropdown menu.

Alternatively, you can change the environment selection for a test for a collection of tests:

• Right-click on the tree at any level under a node in the compound test and select Replace HCL OneTest API

Environments.

• In the Set Invocation Tester Environments wizard, the first page displays the list of projects that use the

selected environment and the number of tests from project that use this environment in the compound test.

• Select another used environment in the dropdown list. Click Finish. The new choice applies to the selected

node and its children.

Next step is to create a compound test in HCL OneTest™ UI to run the test. See Running HCL OneTest API tests on

page 344.

To map the tags in HCL OneTest™ API with variables in HCL OneTest™ UI, you must follow these steps:

1. Click the HCL OneTest™ API test that contains the tags that you want to map.

The HCL OneTest™ API tags are displayed in the Integration Test Details pane.

2. Click the tag that you want to map with the variable in HCL OneTest™ UI.

343

HCL OneTest™ UI

344

3. Click the Ellipses button inline with the tag that you want to map with a variable.

The Variable Selection dialog box is displayed.

4. Select the variable, and then click OK.

The tag is mapped to the selected variable and it is displayed in the Variable column.

Note: While you map a tag in HCL OneTest™ API test to a variable in HCL OneTest™ UI, you can map only tags

that contain the string value to variables. You cannot map a tag that contains multiple values to a variable in

HCL OneTest™ UI.

You can add a dataset mapper in the compound test for tests that are using multiple tags. See Adding Dataset

Mapper on page 497 to map tags in the HCL OneTest™ API tests with the variable values of HCL OneTest™ UI.

Running HCL OneTest™ API tests
You can use HCL OneTest™ UI Extension for HCL OneTest™ API to run API tests.

You also have the option to just import the projects to HCL OneTest™ UI from HCL OneTest™ API, add the tests to a

compound test to run them. You can either use HCL OneTest™ Performance Agent or HCL OneTest™ API Agent to

generate the load. You need a compound test that contains the HCL OneTest™ API tests.

If you update API tests in HCL OneTest™ UI and want to apply the updates back to HCL OneTest™ API, you must install

HCL OneTest™ API and define the path to its installation directory to set the connection.

You can find the following use cases to work with API tests in HCL OneTest™ UI:

• You have installed both the products and then you connect to the API project. Alternatively, you open the API

resource directly from the Test Navigator view, and then work directly with the sources files.

• HCL OneTest™ API is not installed and you import the projects in the workspace of HCL OneTest™ UI.

Note: The imported tests must be edited in HCL OneTest™ API. Similarly, the compounds tests must

be edited in HCL OneTest™ UI.

Running the compound test

Click Run Compound Test.

After the run completes, the HCL OneTest™ API report displays statistics on the executed sequences and Timed

Sections if some are defined in the tests.

Chapter 6. Administrator Guide

Testing with UrbanCode Deploy
With the HCL OneTest™ UI plugin for IBM® UrbanCode™ Deploy, you can automate the execution of tests and

compound tests.

Before you begin

You must have completed the following tasks:

• Installed HCL OneTest™ UI and IBM® UrbanCode™ Deploy agent on the computer where the tests will be run.

• Downloaded the HCL OneTest™ UI UCD plugin HOT-UI-WebUI-UCD-8.0 from the HCL® License & Delivery portal.

• Installed IBM® UrbanCode™ Deploy server and deploy the plugin on the server. For information, refer to the

UrbanCode Deploy documentation.

• Installed IBM® UrbanCode™ Deploy Agent and connect it to IBM® UrbanCode™ Deploy server. For more

information refer to the UrbanCode Deploy documentation.

• Ensured that HCL OneTest™ UI is not running.

• Ensured that all the devices are set to the passive mode and the playback-ready apk files are installed to

initiate the mobile test runs.

Note:

345

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://www.ibm.com/docs/en/urbancode-deploy
https://www.ibm.com/docs/en/urbancode-deploy

HCL OneTest™ UI

346

◦ To run tests on Mac OS, you must add an environment variable that points to the installation

directory of the product, for example, export TEST_WORKBENCH_HOME=/opt/HCL/HCLOneTest. For

Windows™, this environment variable is already defined.

◦ If you installed the product on Windows using the stand-alone installer (not using Installation

Manager), you must specify the environment variable that points to the installation directory of

the product. For example, export TEST_WORKBENCH_HOME=C:\Program Files\HCL\HCLOneTest

About this task

As a tester, you might have a large number of regression tests to run on the latest build of the product. Instead of

manually running the tests on every new build, you can install the latest build on the IBM® UrbanCode™ Deploy Agent

computer and let IBM® UrbanCode™ Deploy launch the tests for you.

After deploying the IBM® UrbanCode™ Deploy plugin on the server, create the component and its processes,

applications and its processes, the environments, and the resources. For information about how to create these

different pieces, see IBM® UrbanCode™ Deploy documentation.

To create the workflow:

1. To create a workflow for the newly created component process, click the component process. The Tools view

displays the available plugin steps.

2. From HCL OneTest UI Web UI > Run an HCL OneTest UI - Web UI test to the design space.

3. Specify the properties for the step. For information about the properties, see Properties of Steps on

page 349.

4. After you configure the step properties, save the step by clicking Save.

Exemple

A typical process will look like the following snapshot:

http://www.ibm.com/support/knowledgecenter/SS4GSP/ucd_welcome.html

Chapter 6. Administrator Guide

A process with multiple tests will look like the following snapshot:

347

HCL OneTest™ UI

348

If you have installed multiple products on one target machine, either in the same or different package groups, you can

use a single process that includes steps from different products. You must install the plugins of all of the products

that you want to use. The process will look like the following snapshot:

Chapter 6. Administrator Guide

Properties of Steps
You must set the properties of steps to run the tests.

Input properties for the test run step

You must provide the values for the following required fields:

• Workspace

• Project

• Test Suite Name

If you include these required parameters in a configuration file and use the Config File field to specify the complete

file path, then these values are not required.

Field Description

Required

Name Enter the name of the step.

349

HCL OneTest™ UI

350

Field Description

Workspace Enter the complete path to the Eclipse workspace.

Project Enter the path, including the file name of the project rela

tive to workspace.

Test Suite Name Enter the path, including the file name, of the test to run

relative to the project. A test can be a Web UI test, com

pound test, or Accelerated Functional Test. To run multi

ple tests sequentially, specify test names separated by

comma.

Optional

IMShared Location Enter the complete path to the location of the

HCLIMShared folder. For example, C:\Program Files

\HCL\HCLIMShared

Import Enter the complete path to the project folder that is

cloned from a source control system or remote reposi

tory. When you use this option, you can specifiy a name

for the new workspace to be created to run the imported

test assets in the Workspace field.

Var File Enter the complete path to the XML file that contains the

variable name and value pairs.

Config File Enter the complete path to a file that contains the para

meters for a test run.

Results File Enter the name of the results file. The default result file is

the test name with a time stamp appended.

Overwrite Results file Determines whether a results file with the same name

is overwritten. The default value is true which indicates

that the results files can be overwritten.

Number of Virtual Users For a schedule, the default value is the number of users

specified in the schedule editor. For a test, the default

value is one user. Overrides the default number of users,

if required.

VM Args Java™ virtual machine arguments to pass in.

Protocol Input Use this argument to run a Web UI test in parallel on dif

ferent browsers.

-protocolinput "all.available.targets.in.parallel=all"

Chapter 6. Administrator Guide

Field Description

-protocolinput "all.available.targets.in.paral

lel=chrome,ff,ie"

Note: If you use the -protocolinput argument,

you must not use the equivalent -vmargs argu

ments:

-vmargs
 "-Dall.available.targets.in.parallel=all"
-vmargs
 "-
Dall.available.targets.in.parallel=browser
1,browser2,browser3"

Dataset Override For a test, the default value is the dataset specified in the

test editor.

Note:

You must use the Dataset Override option to re

place the dataset values during a test run. You

must ensure that both original and new datasets

are in the same workspace and have the same

column names. You must also include the path

to the dataset.

For example,

/project_name/ds_path/ds_file

name.csv:/project_name/ds_path/new_ds_file

name.csv.

You can swap multiple datasets that are saved

in a different project by adding multiple paths to

the dataset separated by a semicolon (;).

For example,

/project_name1/ds_path/ds_filename.csv:/pr
oject_name1/ds_path/new_ds_filename.csv;
/project_name2/ds_path/ds_filename.csv:/pr
oject_name2/ds_path/new_ds_filename.csv

Exported HTTP Test log File Enter the complete path to a file in which to store the ex

ported HTTP test log.

351

HCL OneTest™ UI

352

Field Description

Exported Statistical Report Data File Enter the complete path to the directory in which to store

exported statistical report data.

Custom Report Format Files A comma-separated list of absolute paths to custom re

port format files (.view files) to use when exporting sta

tistical report data with the -exportstats option.

User Comments Enter the text within double quotation mark to display it

in the User Comments row of the report.

Note:

• When you run tests by using the double

quotation marks ("") for the User Com

ments field, then the User Comments row

of a report does not contain double quo

tation marks.

• To work around this problem, you must

create a command-line config file, and

then run the test by using the Config File

field.

Export Report Specify the values to export the unified report of UI tests

to the file formats such as PDF, HTML, and XML.

Enter the following details in the text field:

type=<report type>;format=<file type>;folder=<destination

folder path>;filename=<name of the exported file>

For example, type=unified;format=pdf,xml,html;fold

er=E:\temp\logs;filename=UCDExecutionReport

When you choose to export the report to all the support

ed formats, the report in different file formats use the

same file name that is specified in the field.

Exportstatsformat
Specify a format for the report that you want to export.

You must use the Exported Statistical Report Data File

parameter along with the Export stats format parameter.

You must use at least one of the following formats:

Chapter 6. Administrator Guide

Field Description

• simple.csv

• full.csv

• simple.json

• full.json

• csv

• json

For example,

Exported Statistical Report Data File
 = <local_dir_path>

Export stats format = json

You can add multiple formats for the report separated by

a comma (,).

If you want to export both the simple and full reports in a

json or csv format, you can specify json or csv as the for

mat in the field.

The reports are saved to the location specified in the Ex

ported Statistical Report Data File field.

Labels Enter the labels to be added to the test results when the

test run is complete. You can add multiple labels to a

test result separated by a comma.

For example, “label1, label2”

When you run test assets then the same labels are dis

played on the UI Test Statistical Report in HCL OneTest™

UI.

If you have set Publish result after execution as Always

or Prompt in the HCL OneTest™ UI preferences (Window

> Preferences > Test > HCL OneTest Server) and use the

Labels option, then the Results page of HCL OneTest™

Server displays the same label for the specific test asset.

Note:

353

HCL OneTest™ UI

354

Field Description

• When you run tests by using the double

quotation marks ("") for the Labels field,

then the labels in the test result do not in

clude the double quotation marks.

• To work around this problem, you must

create a command-line config file, and

then run the test by using the Config File

field.

• When you use the Config File field to run

tests, then labels provided in the configu

ration file take precedence over the labels

provided in the Labels field.

Exportstatshtml Enter the complete path to a directory to export web an

alytic results. The results are exported to the specified

directory. You can then analyze the results on a web

browser without using the test workbench.

Publish Specify the server URL and project name to publish test

results to HCL OneTest™ Server.

You must provide the URL and offline user token of

the server in Window > Preferences > Test > Rational

Test Automation Server > HCL One Test Server of HCL

OneTest™ UI before you use the publish parameter in the

test script.

Use the following arguments with the Publish parameter:

• To specify the project name, use any of the fol

lowing formats:

◦ serverURL #project.name=project

Name&teamspace.name=name_of_the _

teamspace

◦ serverURL #project.name=project

Name&teamspace.alias=name_of_the _

teamspace_alias

You must consider the following points while pro

viding the project name:

Chapter 6. Administrator Guide

Field Description

◦ If the project name is not specified, then

the value of the Project parameter is

used.

◦ If you have a project with the same

name in different team spaces, then

you can append either the &team

space.name=name_of_the _teamspace or

&teamspace.alias==name_of_the_team

space_alias options.

For example:

Workspace =
 C:/Users/IBM/rationalsdp/workspa
ce1
Project = proj1
Test Suite Name =
 Tests/testHttp.testsuite
Publish =
 https://localhost:5443#project.nam
e=test&teamspace.name=ts1

Where:

▪ https://localhost:5443 is the URL

of the server.

▪ test is the name of the project.

▪ ts1 is the name of the team

space.

◦ If the name of the project or team space

contains a special character, then you

must replace it with %<Hex_value_of_spe

cial_character>.

For example, if the name of the team

space is Initial Team Space, then you

must provide it as Intial%20Team

%20Space.

Where, %20 is the hexadecimal value of

the space character.

• To avoid publishing of reports, use no.

355

HCL OneTest™ UI

356

Field Description

You can use the no option if you do not want to

publish test results after the run. This option is

useful if the product preferences are set to pub

lish the results, but you do not want to publish

them.

For example:

Workspace =
 C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish = no

If you do not use the Config File parameter to run the

tests, then the values provided in the test script always

take precedence over the Results options set in the prod

uct preferences (Window > Preferences > Test > HCL

One Test Server > Results).

The Reports information section on the Output window

displays the names of the report along with its corre

sponding URLs in the following conditions:

• When you configured the URL of HCL OneTest™

Server in preferences of HCL OneTest™ UI (Win

dow > Preferences > Test > HCL One Test Serv

er.

• When you set Publish result after execution as

Always or Prompt in the preferences of HCL

OneTest™ UI (Window > Preferences > Test >

HCL One Test Server > Results).

Publish_for
Specify the option to publish test results to HCL

OneTest™ Server based on the completion status of the

tests. You must use the Publish_for parameter along

with the Publish parameter.

The following are the available options that you can use

for the Publish_for parameter:

Chapter 6. Administrator Guide

Field Description

• ALL - This is the default option. You can use this

option to publish test results for any text execu

tion verdict.

• PASS - You can use this option to publish test re

sults for the tests that have passed.

• FAIL - You can use this option to publish test re

sults for the tests that have failed.

• ERROR - You can use this option to publish test

results for the tests that included errors.

• INCONCLUSIVE - You can use this option to pub

lish test results for the inconclusive tests.

You can add multiple parameters separated by a com

ma.

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish =
 https://localhost:5443#project.name=test&teamspa
ce.name=ts1
Publish_for = FAIL,ERROR

Publishreports Specify the option to publish test results in HCL

OneTest™ Server. The values that you can use with Pub

lishreports are as follows:

• FT - This is an identifier for Functional Test Re

port. You can use this value to publish the unified

report if it is available for the selected test. See

Unified reports on page 1193.

• STATS - This is an identifier for Statistics Report.

You can use this value to publish the web analyt

ics report if it is available for the selected test.

See UI Test Statistical report on page 1198.

• TESTLOG - This is an identifier for Test Log. You

can use this value to publish the test log if it is

available for the selected test. See Logs overview

on page 1219.

You must use the Publishreports parameter along with

the Publish parameter.

357

HCL OneTest™ UI

358

Field Description

For example:

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish =
 https://localhost:5443#project.name=test&teamspa
ce.name=ts1
Publishreports = STATS, TESTLOG

The values specified here override the values selected in

Window > Preferences > Test > HCL One Test Server >

Results of HCL OneTest™ UI.

You can prefix the value with “!” to publish the reports ex

cept for the specified one in the test script.

For example,

Workspace = C:/Users/IBM/rationalsdp/workspace1
Project = proj1
Test Suite Name = Tests/testHttp.testsuite
Publish =
 https://localhost:5443#project.name=test&teamspa
ce.name=ts1
Publishreports = !TESTLOG

All the reports except the TESTLOG report is published to

HCL OneTest™ Server after executing the command.

Related information

Creating an Accelerated Functional Test asset on page 561

Integrations in Functional Test perspective
In this section, you will learn about the supported integrations for the Functional Test perspective.

Integration plugin compatibility matrix
You can find information about the versions of the integration plugins that are required to integrate Jenkins, Ant,

HCL® Launch, and IBM® UrbanCode™ Deploy with HCL OneTest™ UI.

The following table lists the versions of the integration plugins for the Functional Test persepctive.

Chapter 6. Administrator Guide

Note: You must download the required version of the integration plugin from the HCL® License & Delivery

portal based on the existing version of HCL OneTest™ UI. You can then integrate Jenkins, Ant, HCL® Launch,

and IBM® UrbanCode™ Deploy with HCL OneTest™ UI.

HCL OneTest™

UI version

Ant plugin version Jenkins plu

gin version

IBM® UrbanCode™

Deploy plugin version
HCL® Launch

plugin version

10.1.0
HOT-UI-Ant-3.0 HOT-UI-Jenkins-5.0 HOT-UI-UCD-5.0 HOT-UI-LAUNCH-5.0

10.1.1
HOT-UI-Ant-3.0 HOT-UI-Jenkins-6.0 HOT-UI-UCD-5.0 HOT-UI-LAUNCH-5.0

10.1.2
HOT-UI-Ant-3.0 HOT-UI-Jenkins-6.0 HOT-UI-UCD-5.0 HOT-UI-LAUNCH-5.0

10.1.3
HOT-UI-Ant-3.0 HOT-UI-Jenkins-6.0 HOT-UI-UCD-5.0 HOT-UI-LAUNCH-5.0

10.2.0
HOT-UI-Ant-3.0 HOT-UI-Jenkins-6.0 HOT-UI-UCD-5.0 HOT-UI-LAUNCH-5.0

10.2.1
HOT-UI-Ant-3.0 HOT-UI-Jenkins-6.0 HOT-UI-UCD-5.0 HOT-UI-LAUNCH-5.0

10.2.2
HOT-UI-Ant-3.0 HOT-UI-Jenkins-6.0 HOT-UI-UCD-5.0 HOT-UI-LAUNCH-5.0

10.2.3
HOT-UI-Ant-3.1 HOT-UI-Jenkins-7.1 HOT-UI-UCD-5.2 HOT-UI-LAUNCH-5.2

Testing with Ant
You can use ant to run functional tests from the command line. Starting with version 2.0 of the ant plugin, you can run

multiple tests simultaneously. Version 2.0 of the ant plugin is supported in HCL OneTest™ UI 9.2 and newer.

Before you begin

• Install Installation Manager.

• Install HCL OneTest™ UI.

• Verify that you have a functional test residing within an Eclipse workspace on the computer where HCL

OneTest™ UI is installed.

• Be sure ant is installed and added to the PATH environment variable.

• Download the ant plugin for HCL OneTest™ UI from HCL® License & Delivery portal and install Ant on to the

computer where HCL OneTest™ UI is installed.

359

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

360

1. Extract the following files from the downloaded plugin:

◦ HOT-UI-Ant-2.0.jar

◦ ExecuteFunctionalTest.xml

◦ README.txt

2. Open the ExecuteFunctionalTest.xml file and provide parameter values, as shown in the following

example:

<ft name="test1" projectDir="C:\workspace\Project" scriptName="Script1" />

To run multiple tests, add additional <ft> tasks and provide details for each test.

The following table explains each parameter.

Parameter Description

-name Required. Name of the test.

- projectDir Required. The fully qualified path to the HCL OneTest™ UI project directory. Use '\\' or

'/' as the file separator.

- scriptName Required. The name of the script to be run.

- logFormat Optional. The format of the logs that are created when the script is run. The options

are: Default, XML, HTML, text, and TPTP.

- iterationCount Optional. The number of dataset iterations to be run.

- userArgs Optional. Additional playback arguments, if any.

3. Open a command prompt as an administrator or a root user. This applies even when you have logged into a

test machine with administrator privileges.

4. Navigate to the download directory and verify that it includes the ExecuteFunctionalTest.xml file.

5. Type ant -f ExecuteFunctionalTest.xml to start test execution.

When ant execution completes, a test result is displayed. Ant execution output is logged into the

logfile.txt file, and a test log is created in a temp directory under HOT-UI-Ant-2.0 from where the ant

command is executed.

Integration with Azure DevOps for functional tests
When you use Azure DevOps for continuous integration and continuous deployment of your application, you can

create tests for your application in HCL OneTest™ UI and run those tests in Azure DevOps pipelines. You can integrate

Azure DevOps with HCL OneTest™ UI by using the HCL OneTest Studio extension that is available in the Visual Studio

Marketplace portal.

Prerequisites

Before you integrate Azure DevOps with HCL OneTest™ UI, you must have completed certain tasks. See Prerequisites

for Azure DevOps Integration on page 361.

Chapter 6. Administrator Guide

Overview

You can use the HCL OneTest Studio extension that enables you to select any type of test created in HCL OneTest™ UI

that you can add to your task for the job in the Azure DevOps pipelines.

Prerequisites for Azure DevOps integration with HCL OneTest™ UI
Before you integrate Azure DevOps with HCL OneTest™ UI by using the HCL OneTest Studio extension, you must have

completed certain tasks.

• You must have installed HCL OneTest™ UI on a computer running Windows™ or Linux®.

• You must have created an organization and a project in Azure DevOps for running jobs in Azure DevOps

pipelines. For more information refer to Creating an organization.

You can now follow the tasks listed in the task flow table to integrate Azure DevOps with HCL OneTest™ UI. See Task

flow for integrating Azure DevOps on page 361.

Task flow for integrating Azure DevOps with HCL OneTest™ UI
The table shows the task flow for integrating Azure DevOps with HCL OneTest™ UI by using the HCL OneTest Studio

extension. You must perform these tasks in sequence as listed in the following table. The table also provides you the

links to the information about the tasks.

Tasks More information

1 Create any or all of the following types of tests in HCL

OneTest™ UI to test your application:

• Accelerated Functional Testing (AFT) Suites

• Web UI tests

• Compound tests

• Traditional functional tests

Testing in the Functional Test per

spective on page 582

2 Access the Visual Studio Marketplace portal and

search for the latest version of the HCL OneTest Studio

extension.

Visual Studio Marketplace

3 Install the HCL OneTest Studio extension. Installing the HCL OneTest Studio ex

tension on page 362

4 Run tests in an Azure DevOps pipeline. Running tests in an Azure DevOps

Pipeline on page 363

Related information

Integration with Azure DevOps for functional tests on page 360

361

https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/create-organization?toc=/azure/devops/organizations/toc.json&bc=/azure/devops/organizations/breadcrumb/toc.json&view=azure-devops
https://marketplace.visualstudio.com/azuredevops

HCL OneTest™ UI

362

Installing the HCL OneTest Studio extension
You must install the HCL OneTest Studio extension in your Azure DevOps organization before you use the extension

to run tests for your application in an Azure DevOps pipeline. The HCL OneTest Studio extension supports running of

tests created in HCL OneTest™ UI.

Before you begin

You must have access to the Visual Studio Marketplace portal.

About this task

After you install the HCL OneTest Studio extension from the Visual Studio Marketplace portal in your Azure DevOps

organization, you can use the extension to run tests for your application in an Azure DevOps pipeline.

1. Log in to the Visual Studio Marketplace portal, if you are not already logged in.

2. Click the Azure DevOps tab.

3. Search for the HCL OneTest Studio extension.

4. Click the HCL OneTest Studio extension.

5. Click Get it free.

Result

The Visual Studio Marketplace portal for the HCL OneTest Studio extension is displayed.

6. Select the organization where you want to run your test from the Select an Azure DevOps Organization list.

7. Click Install.

Result

The installation is completed.

8. Click Proceed to organization.

Result

The Organization page in Azure DevOps is displayed.

9. Click Organization settings > Extensions.

Result

The HCL OneTest Studio extension is displayed as an installed extension.

Results

You installed the HCL OneTest Studio extension in your Azure DevOps organization.

What to do next

You can add tests that you created in HCL OneTest™ UI to your task, and then run the tests in an Azure DevOps

pipeline. See Running functional tests in an Azure DevOps Pipeline on page 363.

Chapter 6. Administrator Guide

Running functional tests in an Azure DevOps Pipeline
After you create the tests in HCL OneTest™ UI for the application that you are testing, and after you install the HCL

OneTest Studio extension in your organization, you can run the tests in Azure DevOps pipelines.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest Studio extension in your organization. See Installing the HCL OneTest Studio

extension on page 362.

• Installed an agent in your pipeline. See Azure Pipelines agents.

About this task

After you add the HCL OneTest Studio extension in your Azure DevOps organization, you can use an existing pipeline

or create a new one to add HCL OneTest™ UI test tasks. You can install an agent or use the one that you installed in

your default agent pool. You can add the HCL OneTest™ UI tests to your task for the agent job, configure the task, and

then run the task in the Azure DevOps pipeline.

If you have created test cases under test plans in your Azure DevOps project, you can provide the details of the Azure

DevOps URL, test plan, test case, and your personal access token (PAT) while you configure the test job in a pipeline

so that you can view the results of the test run on your Test Plan dashboard.

1. Open your Organization page in Azure DevOps and perform the following steps:

a. Click the project you want to use.

b. Initialize the repository by performing the following steps:

i. Click Repos from the left pane.

ii. Click Initialize from the Initialize with a README or gitignore section.

Note: Select the Add a README check box if it is not selected.

c. Click Pipelines from the left pane.

d. Click Create Pipeline.

e. Click Use the classic editor to create a pipeline without YAML.

f. Verify the project, repository, and branch for manual and scheduled builds, and then click Continue.

g. Click Empty job.

2. Select Pipeline and complete the following steps:

a. Change the name for the build pipeline if required.

b. Select the Agent pool for your build pipeline.

363

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops&tabs=browser

HCL OneTest™ UI

364

You can use the agent from the default agent pool or use the one you have installed.

c. Select the Agent Specification for the agent if required.

3. Add a task to the agent job by completing the following steps:

a. Click the Add Task icon for the agent job.

Result

The Add tasks pane is displayed.

b. Search for the HCL tasks defined in the HCL OneTest Studio extension.

Result

The tasks that you can select are displayed.

Depending on the type of test that you have created in HCL OneTest™ UI, you can select the type of

task. You must use the following table to identify the task you must select:

Type of test Task to select

Functional test scripts
HCL OneTest UI Task

c. Select the HCL OneTest UI Task option, and then click Add to add the task to the agent job.

Result

Chapter 6. Administrator Guide

The selected task is added to the agent job and it is displayed with a warning that some settings

require attention. You must configure the settings mentioned in Step 4 on page 365.

You can also remove the tasks that are not required in your job. Select the tasks in the list that you

want to remove. You can then right-click the tasks, and click Remove selected task(s) to remove them.

4. Configure the settings by performing the following steps:

a. Select the task version from the list if required.

b. Follow the action for the functional tester task by referring to the following table:

Note: All mandatory fields are marked with an asterisk (*) in the UI.

Field Description Action

Display

name

Displays the name of the selected task. Enter the name of the task.

Testcase

Type

The type of test to execute. Select Traditional (Java) from the Test

case Type list.

Product

Path
The fully qualified path to the HCL

OneTest™ UI. This path must exist on the

agent computer.

Enter the complete path of HCL OneTest™

UI.

Project

Name

The name of the project containing the

test.

Enter the name of the project containing

the test.

Project Di

rectory

The path where the project containing the

test is located on your computer.

Enter the complete path to the location of

the project containing the test. For exam

ple, D:\Projects\

Test Suite

Name
The name of the functional test script that

you execute without the file extension.

Enter the name of the script that you want

to run. For example, script1.

Log Format The format of the script logs. Select the format of the script log from

the list.

365

HCL OneTest™ UI

366

Field Description Action

Note: By default, Default is select

ed.

Iteration

Count
The number of datasets iterations to be

run.

Enter the number that you want for the

dataset iterations.

User Argu

ments
You can specify additional arguments that

you want to run in the test.

Specify any arguments for the test run.

For example, you can specify the playback

arguments, if applicable in your test.

Azure Dev

Ops Project

URL

The URL of the test project in the organi

zation on the Azure DevOps server.

Note: You must enter the details

for this option if you have creat

ed test cases under Test plans in

your Azure project and want to

view the test results on the Test

Plans Dashboard.

Enter the URL of the test project in the or

ganization on the Azure DevOps server in

the following format:

https://<host>/<orgname>/<project

Name>

You must use this option with the follow

ing options:

▪ Azure DevOps PAT

▪ Test Plan Name

▪ Test Case Name

Azure Dev

Ops PAT
The personal access token (PAT) of the

Azure server where the test project that

contains the test plan is hosted. You can

also enter the variable for the encrypted

PAT that you create in Azure DevOps.

Note: The token must have read

and write access.

Enter your personal access token.

You must use this option with the follow

ing options:

▪ Azure DevOps Project URL

▪ Test Plan Name

▪ Test Case Name

Test Plan

Name

The name of the test plan in the Azure

server.

Enter the name of the test plan.

You must use this option with the follow

ing options:

▪ Azure DevOps Project URL

▪ Azure DevOps PAT

▪ Test Case Name

Chapter 6. Administrator Guide

Field Description Action

Test Case

Name

The name of the test case in the Azure

server.

Enter the name of the test case.

You must use this option with the follow

ing options:

▪ Azure DevOps Project URL

▪ Azure DevOps PAT

▪ Test Plan Name

c. Expand Control Options and configure the settings for your task if required.

d. Expand Output Variables and configure the settings for your task if required.

5. Select the following options:

a. Click Save to save the configured settings for the task.

Note: The task is not queued for a run.

You can save the task to a build pipeline and opt to run the build at a later time.

b. Click Save & queue to save the configurations and queue the run in the pipeline.

Result

The Run pipeline dialog box is displayed.

6. Complete the following steps:

a. Enter a comment for the test in the Save comment field.

b. Select the agent that you configured for the test from the Agent pool list.

c. Select the agent specification from the Agent Specification list for the agent if required.

d. Select the branch from the Branch/tag list.

e. Add the variables and demands for the task run from the Advanced Options pane if required.

f. Select the Enable system diagnostics check box for a detailed log view.

g. Click Save and run.

Result

The pipeline summary page displays the progress of the job run.

Results

You have run the tests for the application you are testing, in the Azure DevOps pipeline.

367

HCL OneTest™ UI

368

What to do next

• You can open the job to view the task logs from the pipeline summary page.

• You can click Test Plans to view the test result if you specified the values for Azure DevOps Project URL,

Azure DevOps PAT, Test Plan Name, and Test Case Name.

• You must click the task to open the Task page to view the test results.

• You can access the report URLs to view the test execution information at any point of time. The report URLs

are the HCL OneTest™ Server URLs where the reports are stored.

In HCL OneTest™ UI, if the HCL OneTest™ Server URL is configured in Window > Preferences > Test > HCL

OneTest Server and Publish result after execution is set as Always in Window > Preferences > Test > HCL

OneTest Server > Results, then the logs in the Task page also displays the names of the published report

along with its corresponding URLs.

Related information

Configuration of test runs from the command line on page 1130

Testing with Cucumber
Starting with HCL OneTest™ UI 9.2, you can take advantage of Cucumber integration to create, annotate, and run

functional test scripts that can be easily understood by all members of the team.

About Cucumber

Cucumber is a software testing tool that fosters better communication among domain experts, business analysts,

testers, and developers by providing everyone a clear view of the testing effort. Cucumber is based on the principles

of behavior-driven development (BDD). See Behavior Driven Development for more information.

A functional test script for the Eclipse version of HCL OneTest™ UI is a collection of Java™ methods. You must be

able to read and understand the Java™ code to completely understand the test script. With Cucumber integration,

anyone can understand the test script because the flow of the test is described in simple, English statements within a

Cucumber feature file.

Note: HCL OneTest™ UI datasets are not supported in Cucumber feature files. However, Cucumber provides

support for its own dataset-like data structures.

The basic steps for using Cucumber with HCL OneTest™ UI are as follows:

1. Create a Feature file, a text file with a .feature extension.

2. Create a Runner File, an empty functional test script, and annotate the Class in the test script with

@FTCucumberOptions annotations. Any functional test script that is annotated becomes a runner file.

https://www.agilealliance.org/glossary/bdd/#q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'bdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)

Chapter 6. Administrator Guide

3. Provide Step definitions using Cucumber annotations, such as @When, @Given, @Then, and so on.

4. Run the Runner File, either from HCL OneTest™ UI or from the command line.

Requirements

Before using the Cucumber integration in HCL OneTest™ UI, you must set up Cucumber. There are two ways to set up

Cucumber:

• By downloading the required Cucumber jar files, and copying them to the customization folder

• By running a Maven command to set up Cucumber automatically (Starting in 9.2.1)

Manual setup

To set up Cucumber manually, add the following Cucumber-related jar files to the HCL OneTest™ UI Customization

directory, which on Windows™ is located at C:\ProgramData\HCL\HOTUI\customization .

• cucumber-core-1.2.5.jar

• cucumber-java-1.2.5.jar

• cucumber-jvm-deps-1.0.5.jar

369

HCL OneTest™ UI

370

• gherkin-2.12.2.jar

• cucumber-html-0.2.3.jar

You can download these jar files from the Central Maven repository at https://mvnrepository.com by searching for

them one by one. All of the Cucumber-related libraries are grouped under the info.cukes group in the Maven

repository at https://mvnrepository.com/artifact/info.cukes. The version numbers vary, depending on when you

download the files.

Automated setup in 9.2.1 using Maven

To set up Cucumber with Maven:

1. Verify that you have an Internet connection.

2. You must have installed Maven and set up an environment variable that points to the M2_HOME directory. For

more details about setting up Maven, see Testing with Maven on page 313.

3. Verify that the pom_dependency_cucumber.xml file is available from your Maven setup.

4. Run the following command in your command prompt window:

mvn -f <path to pom_dependency_cucumber.xml file> dependency:copy-dependencies
 -DoutputDirectory=<FT Customization Directory> -Dmdep.stripVersion=true

For example:

mvn -f “C:\Users\Win10\Desktop\pom_dependency_cucumber.xml” dependency:copy-dependencies
 -DoutputDirectory=“C:\ProgramData\HCL\HOTUI\customization” -Dmdep.stripVersion=true

This command downloads the required Cucumber jars into the HCL OneTest™ UI Customization directory.

Depending on the speed of your Internet connection, this command can take several minutes to complete.

Cucumber feature file

The Cucumber feature file is a text file. It provides an abstraction layer that shields the non-technical user from the

underlying code. A feature file describes one feature, but can describe multiple scenarios or test cases. It follows a

Given-When-Then format, as follows:

• (Given) some context

• (When) some action is carried out

• (Then) a particular set of observable consequences are obtained.

For example:

• Given the login page is displayed for the application.

• When user attempts to log in with incorrect credentials.

• Then user should be re-prompted for credentials.

• Reset password link should be displayed.

The feature files are saved in a folder named features inside the functional test project.

https://mvnrepository.com
https://mvnrepository.com/artifact/info.cukes
docs/files/pom_dependency_cucumber.zip

Chapter 6. Administrator Guide

A sample feature file that contains four scenarios is as follows:

Cucumber Runner file

A HCL OneTest™ UI Cucumber Runner file is a functional test script that includes @FTCucumberOptions

annotations. The @FTCucumberOptions annotations must be declared outside of the class definition, as shown in

the following figure:

371

HCL OneTest™ UI

372

Use the Run button in HCL OneTest™ UI to run the Runner file, or use the command line. For Cucumber command line

options, see https://cucumber.io/docs/cucumber/api/ and look for List configuration options

Cucumber Step Definitions

The Step Definition file is a functional test script that contains the code behind each Cucumber annotation in the

feature file, that is the @Given, @When, and @Then annotations. An example of a step definitions file for HCL

OneTest™ UI Cucumber integration is as follows:

https://cucumber.io/docs/cucumber/api/

Chapter 6. Administrator Guide

Reports

Two kinds of reports are available:

• Default Cucumber logs

• Extent reports (requires 9.2.1)

Default Cucumber logs

When you run a HCL OneTest™ UI test script with Cucumber annotations, the log files that are generated contain

color-coding to indicate the pass-fail status of each step, as shown in the following example:

373

HCL OneTest™ UI

374

In this example, the steps in red indicate a failure, while the step in blue indicates that the step was not run due to the

failure of the previous steps.

The log files also indicate the start point and end point of the feature and each scenario.

Extent reports (requires 9.2.1)

Starting with 9.2.1, you can run the Maven command to enhance Cucumber reporting. For more details about running

the Maven command, see pom_dependency_extent.xml. After running this command, you will see an extra option for

viewing Extent reports at the end of test execution in the HCL OneTest™ UI logs, as shown in the following image:

To view the Extent reports, you can run the following command in a command prompt window:

mvn -f <path to pom_dependency_extent.xml file> dependency:copy-dependencies -DoutputDirectory=<FT
 Customization Directory> -Dmdep.stripVersion=true

For example:

mvn -f "C:\Users\Win10\Desktop\pom_dependency_extent.xml" dependency:copy-dependencies
 -DoutputDirectory="C:\ProgramData\HCL\HOTUI\customization" -Dmdep.stripVersion=true

Note: The Extent reporting feature is optional. If you run the Extent command, which resolves the

dependencies for the Cucumber Extent Report, then the extra link for the Extent report is included in the HCL

docs/files/pom_dependency_extent.zip

Chapter 6. Administrator Guide

OneTest™ UI logs only if you have selected html in the Log type list, otherwise the link for the Extent report is

not included.

Running a feature file with default options

Here is sample code for running a feature file with default options:

@FTCucumberOptions(cucumberOptions =
 {
 "cuketest2.feature" // just providing the folder to the feature files will also work fine.
 })

Here are the default options for the other required parameters for the preceding example:

--glue '' --plugin pretty --plugin html:CukeLogs --plugin json:CukeLogs/abc.json --monochrome";

Required annotations for making a functional test script integrate with Cucumber

Cucumber annotations must be applied to the class. Cucumber options that are passed must be in the same format

they would be passed in the Cucumber command line interface. The required annotations include --glue and the

.feature file that needs to be run.

• --glue: Specifies where glue code (step definitions, hooks and plugins) are loaded from. In this case, a blank

string ("") as a value to glue tells HCL OneTest™ UI to search for the step definitions inside all folders in the

functional tester project. Duplicate steps lead to exceptions.

• The feature file is in a folder named Features inside the functional test project .

@code
@FTCucumberOptions(cucumberOptions =
 {
 "--glue", "",
 "Features\\ValidateOrderFeature.feature"
 })

Exemple

Providing a folder for the feature files

Run all feature files in the folder named features inside the functional test project.

@FTCucumberOptions(cucumberOptions =
 {
 "--glue", "",
 "Features"
 })

Exemple

375

HCL OneTest™ UI

376

Providing more than one feature file

Here is an example with more than one feature file:

 @FTCucumberOptions(cucumberOptions =
 {
 "--glue", "",
 "Features\\PlaceOrder.feature",
 "Features\\ValidateOrder.feature",
 })

Exemple

Providing two glue (step definition) options

In this case, the step definitions are present in two different folders packages inside the project.

@FTCucumberOptions(cucumberOptions =
 {
 "--glue", "com.package1", //Folder inside project- com/package1
 "--glue", "com.package2", //Folder inside project- com/package2
 "Features\\ValidateOrderFeature.feature"
 })

Command-line options for running functional test scripts with Cucumber

• Option 1: -datastore <datastore> -usecucumberoptionscli -playback CucumberRunnerScript

• Option 2: -datastore <datastore> -cucumberoptionscli “All Cucumber options as single entry” -playback

CucumberRunnerScript

Option 1 assumes you have already added FTCucumberOptions annotations to the functional test script class (a

Runner Script). HCL OneTest™ UI uses these annotations to run as Cucumber.

With Option 2, any options in the Runner Script are ignored, but command-line options are honored.

Option 1 example:-datastore “C:\work\RFT_WS2\Cuketest3” -usecucumberoptionscli -playback

steps.CucumberRunnerScript

Options 2 example: -datastore “C:\work\RFT_WS2\Cuketest3” -cucumberoptionscli “--glue 'steps' C:\work

\RFT_WS2\Cuketest3\cuketest2.feature” -playback steps.CucumberRunnerScript

The value for key cucumberoptionscli is a single value between double quotes. All of the Cucumber-related

command line options go as a single value.

The value for (--glue) is either no value between single quotes for all packages (') or for specific packages, values

between single quotes, for example, 'steps'. For more than one glue entry, specify separate entries as follows: --

glue 'steps' --glue 'moreSteps'.

Chapter 6. Administrator Guide

Note: Be sure to run these commands from inside the project directory or use the absolute path for the

cucumber options feature file and step definition file.

Integrating and running Functional Test scripts in Micro Focus Application Life
Cycle Management
To obtain test result details, you can integrate and run Functional Test scripts in Micro Focus Application Lifecycle

Management by using a ready-made template available in the HCL OneTest™ UI installation directory.

About this task

The Functional Test template is available in the HCL OneTest™ UI installation directory. You must copy the contents of

the template to a new VAPI-XP VBScript test script in Micro Focus Application Lifecycle Management, add your test

script details into the VAPI-XP VBScript test script, and run the test script.

1. Navigate to the directory HCL\HCLOneTest\alm in the HCL OneTest™ UI installation directory.

You can use FT_ALM_Windows.txt file for Functional Test scripts.

2. Copy the contents of the template.

3. From Micro Focus Application Lifecycle Management, create a VAPI-XP Vbscript test script.

4. Paste the template content to the VAPI-XP Vbscript test script.

5. Enter the test details in the VAPI-XP Vbscript test script by referring to the following table:

Field Description

Name Required. The name of the HCL OneTest™ UI test.

Project Directory Required. The fully qualified path to the HCL OneTest™ UI project directo

ry. You must use '\\' or '/' as the file separator.

Script Name Required. The name of the script to be run.

Log Format Optional. The format of the script run logs. The options are Default, XML,

HTML, text, and TPTP.

Iteration Count Optional. The number of dataset iterations to be run.

User Arguments Optional. Additional playback arguments, if any. If there are multiple argu

ments, you must use a comma to separate them.

6. Run the VAPI-XP Vbscript test script.

Results

The test result details are displayed in the Output window of Micro Focus Application Lifecycle Management.

377

HCL OneTest™ UI

378

 Testing with IBM® Engineering Test Management
HCL OneTest™ UI can be integrated with IBM® Engineering Test Management. You can execute the functional test

scripts from HCL OneTest™ UI.

HCL OneTest™ UI can be integrated with Engineering Test Management using an adapter. The functional test adapter

is installed by default when you install HCL OneTest™ UI. After installing HCL OneTest™ UI, you must configure and

run the adapter. The adapter receives messages from IBM® Engineering Test Management and runs functional test

scripts when requested from a user through the IBM® Engineering Test Management. After test run, the adapter

uploads the execution log to the IBM® Engineering Test Management server.

Test scripts are created and associated with keywords using HCL OneTest™ UI. These keywords are created and

defined in IBM® Engineering Test Management. You can manage and execute functional test scripts and view test

logs from IBM® Engineering Test Management.

If a functional test script depends on external JARs, and you want to run the test script from IBM® Engineering Test

Management, you must place the test script in the HCL OneTest™ UI customization folder. .

Configuring and running HCL OneTest™ UI adapter for IBM® Engineering Test
Management
You can integrate HCL OneTest™ UI with Engineering Test Management by using an adapter. The adapter is available

in the HCL OneTest™ UI installation directory. You can run the tests that you create by using HCL OneTest™ UI in

Engineering Test Management after you configure and start the adapter.

Before you begin

• If you are a Engineering Test Management user, you must have appropriate permissions to use the HCL

OneTest™ UI adapter for Engineering Test Management.

• You must have a Connector client access license or a license that supersedes the Connector client access

license. For more information, refer to Client access license management in the Engineering Lifecycle

Management Solution knowledge center.

https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.1/com.ibm.jazz.repository.web.admin.doc/topics/c_license_mgmt_over.html

Chapter 6. Administrator Guide

• You must have modified the hosts file and map the host name of the Engineering Test Management server

to its IP address if the host name of your Engineering Test Management server is not registered with the DNS

server.

Important: You must configure and start the adapter through the command-line interface to connect

the adapter to the Engineering Test Management server through a proxy server. For information, see

Related Links.

1. Complete the following steps based on the operating system:

◦ For Windows operating systems, navigate and click configureadapter.bat from the directory path

FunctionalTester> RQMAdapter in the HCL OneTest™ UI installation directory.

◦ For Linux operating systems, navigate to the directory path FunctionalTester> RQMAdapter in

the HCL OneTest™ UI installation directory from the terminal, and then run the following command:

./configureadapter

The HCL OneTest UI Adapter dialog box is displayed.

2. Complete the following steps from the Connection Information tab:

a. Enter the server URL of Engineering Test Management in the Server URL field.

Note: The URL that you enter in the Server URL field must match with the public URI of the

Engineering Test Management server. You can view the public URI on the administrator page

of the Engineering Test Management server.

b. Select the mode that you want to use to authenticate the connection with the Engineering Test

Management server from the Authentication Type drop-down list.

You can select any of the options in the following table, and then complete the steps for that option:

Option Description

Username and

Password
You can establish the connection with the Engineering Test Management server

by using the user ID and password.

Complete the following actions:

Field Action

User ID Enter the user ID that you use to log in to Engineering Test

Management

Password Enter the password that you use to log in to Engineering Test

Management.

379

HCL OneTest™ UI

380

Option Description

Field Action

Project area
Select the required project area in the Engineering Test Man

agement server from the drop-down list.

Note: This field is populated with the project names

that are on the Engineering Test Management server

and the project names are displayed after the connec

tion is established.

Important: You must select the project from the drop-

down list and not type the project name.

Save pass

word

Select this option to save your Engineering Test Management

password.

KERBEROS
You can establish the connection with the Engineering Test Management server

by using the Kerberos initialization file (krb5.ini).

Complete the following actions:

Field Action

Configuration

File

Click Browse and select the krb5.ini file.

Project area
Select the required project area in the Engineering Test Man

agement server from the drop-down list.

Note: This field is populated with the project names

that are on the Engineering Test Management server

and the project names are displayed after the connec

tion is established.

Important: You must select the project from the drop-

down list and not type the project name.

Save pass

word

Select this option to save your Engineering Test Management

password.

Chapter 6. Administrator Guide

Option Description

SSLCERT
You can establish the connection with the Engineering Test Management server

by using an SSL certificate.

Complete the following actions:

Field Action

Certificate Lo

cation

Click Browse and select the SSL certificate.

Note: The certificate must be a .p12 file.

Password Enter the password that you use to log in to Engineering Test

Management.

Project area
Select the required project area in the Engineering Test Man

agement server from the drop-down list.

Note: This field is populated with the project names

that are on the Engineering Test Management server

and the project names are displayed after the connec

tion is established.

Important: You must select the project from the drop-

down list and not type the project name.

SMARTCARD
You can establish the connection with the Engineering Test Management server

by using a smart card.

Notes:

▪ Smart card authentication is only available in Windows operating

systems.

▪ The computer must be connected to the smart card reader be

fore you select this option. You must also insert the smart card

into the smart card reader. HCL OneTest™ UI reads the aliases

from the smart card and prompts for the smart card PIN when

the adapter connects to Engineering Test Management.

Complete the following actions:

381

HCL OneTest™ UI

382

Option Description

Field Action

Certificate Lo

cation

Select the smart card certificate from the drop-down list.

Project area
Select the required project area in the Engineering Test Man

agement server from the drop-down list.

Note: This field is populated with the project names

that are on the Engineering Test Management server

and the project names are displayed after the connec

tion is established.

Important: You must select the project from the drop-

down list and not type the project name.

c. Enter the adapter name in the Adapter Name field.

d. Click Apply.

3. Click Start Adapter to start the connection between HCL OneTest™ UI and Engineering Test Management.

Note: You can view the status of the connection by clicking the Adapter Console tab. You can stop the

connection by clicking Stop Adapter.

Related information

Using the adapter to connect to IBM Engineering Test Management through a proxy server on

page 384

Configuring and running the adapter using the command-line interface
Integration with HCL OneTest™ UI is implemented through the use of an adapter. The functional test adapter is

installed by default when you install HCL OneTest™ UI. You can configure and start the adapter using the command-

line interface.

Before you begin

If you are a Engineering Test Management user, ensure that you have the appropriate permissions, including

execute permissions, to access the HCL OneTest™ UI adapter for Engineering Test Management. If you do not have

Chapter 6. Administrator Guide

administrator rights then use the Connector Client Access license. You can obtain this license from the Engineering

Test Management administrator.

If the host name of the Engineering Test Management server is not registered with the DNS server, modify the hosts

file and map the host name of the Engineering Test Management server to its IP address.

Note: If the adapter connects to the Engineering Test Management server through a proxy server, configure

and start the adapter through the command-line interface using the instructions in Configuring and running

the adapter through a proxy server on page 384.

1. At the prompt, type the following command-line arguments to run the configureadapter.bat

configuration batch file:configureadapter.bat -repository https://<rqmserver>:<port>/qm -user <userid>

-password <password> -adapter <adapter name> [-projectArea <projectArea>] [-configfile <configuration

file>] [-interactive <true/false>]

where:

◦ <rqmserver> is the host name of the Engineering Test Management server.

◦ <port> is the port where the Engineering Test Management server is running.

◦ <userid> is a registered user ID in Engineering Test Management that has the license to run the

adapter.

◦ <password> is the password for the user ID that was used.

◦ <adapter name> is the name you give your adapter and by which the Engineering Test Management

web UI will identify this instance of the adapter.

◦ <projectArea> is the name or alias of the project to which you are logging on. If the name contains

spaces, enclose the name in double quotation marks.

◦ <configuration file> is the file from which the settings for this adapter must be read. The

adapter name is mandatory when you use this option.

◦ [-interactive <true/false>]: If you set this value to true, the HCL OneTest™ UI Adapter

dialog box opens if you have not specified values for any of the command-line arguments. You can

then specify the missing value in the HCL OneTest™ UI Adapter dialog box.

Note: If the Engineering Test Management server is renamed, complete these steps:

a. If you have an entry for the Engineering Test Management server in the hosts file, update it

with the new server name.

b. Update the <rqmserver> argument with the new server name.

c. Configure the adapter again to point to the new URL

2. Start the adapter by running the startadapter.bat batch file, which is in the same location as the

configureadapter.bat file. Type the following command-line arguments at the prompt: startadapter.bat

-repository https://<rqmserver>:<port>/qm -user <userid> -password <password> -adapter <adapter name>

-projectArea <project area> [-configfile <configuration file>]

where:

383

HCL OneTest™ UI

384

◦ <rqmserver> is the host name of the Engineering Test Management server.

◦ <port> is the port where the Engineering Test Management server is running.

◦ <userid> is a registered user ID in Engineering Test Management that has the license to run the

adapter.

◦ <password> is the password of the user ID used

◦ <adapter name> is the name you give your adapter and by which the Engineering Test Management

web UI will identify this instance of the adapter.

◦ <projectArea> is the name or alias of the project to which you are logging on. If the name contains

spaces, enclose the name in double quotation marks.

◦ <configuration file> is the file from which the settings for this adapter must be read. The

adapter name is mandatory when you use this option.

Using the adapter to connect to IBM® Engineering Test Management through a
proxy server
You can use the adapter to connect to the Engineering Test Management server through a proxy server. You must

configure the credentials for the proxy server from the command-line interface.

Before you begin

If you are a Engineering Test Management user, ensure that you have the appropriate permissions, including

execute permissions, to access the HCL OneTest™ UI adapter for Engineering Test Management. If you do not have

administrator rights then use the Connector Client Access license. You can obtain this license from the Engineering

Test Management administrator.

If the host name of the Engineering Test Management server is not registered with the DNS server, modify the hosts

file and map the host name of the Engineering Test Management server to its IP address. Additionally, map the host

name of the proxy server through which the adapter connects to the Engineering Test Management server to the

proxy IP address.

About this task

If the adapter connects to the Engineering Test Management server through a proxy server, you must specify the

logon credentials for the proxy server for authentication purposes. Use the command-line interface to provide the

proxy server logon credentials.

1. At the prompt, type the following command-line arguments to run the configureadapter.bat

configuration batch file:configureadapter.bat -repository https://<rqmserver>:<port>/qm -user <userid>

-password <password> -adapter <adapter name> [-projectArea <projectArea>] -proxy <proxy server

name> -proxyPort <proxy port number> -proxyUser <proxy server userid> -proxyPassword <proxy server

password> [-configfile <configuration file>] [-interactive <true/false>]

where:

◦ <rqmserver> is the host name of the Engineering Test Management server.

◦ <port> is the port where the Engineering Test Management server is running.

Chapter 6. Administrator Guide

◦ <userid> is a registered user ID in Engineering Test Management that has the license to run the

adapter

◦ <password> is the password for the user ID that was used.

◦ <adapter name> is the name you give your adapter and by which the Engineering Test Management

web UI will identify this instance of the adapter.

◦ <projectArea> is the name or alias of the project to which you are logging on. If the name contains

spaces, enclose the name in double quotation marks.

◦ <proxy server name> is the host name of the proxy server through which the adapter connects to

the Engineering Test Management server.

◦ <proxy port number> is the port where the proxy server is running.

◦ <proxy server userid> is the user ID that is used to authenticate the proxy server.

◦ <proxy server password> is the password for the proxy server authentication user ID

◦ <configuration file> is the file from which the settings for this adapter must be read. The

adapter name is mandatory when you use this option.

◦ [-interactive <true/false>]: If you set this value to true, the HCL OneTest™ UI Adapter

dialog box opens if you have not specified values for any of the command-line arguments. You can

then specify the missing value in the HCL OneTest™ UI Adapter dialog box.

Note: If the Engineering Test Management server is renamed, complete these steps:

a. If you have an entry for the Engineering Test Management server in the hosts file, update it

with the new server name.

b. Update the <rqmserver> argument with the new server name.

c. Configure the adapter again to point to the new URL

2. Start the adapter by running the startadapter.bat batch file, which is in the same location as the

configureadapter.bat file. Type the following command-line arguments at the prompt: startadapter.bat

-repository https://<rqmserver>:<port>/qm -user <userid> -password <password> -adapter <adapter name>

-projectArea <project area> -proxy <proxy server name> -proxyPort <proxy port number> -proxyUser

<proxy server userid> -proxyPassword <proxy server password> [-configfile <configuration file>]

where:

◦ <rqmserver> is the host name of the Engineering Test Management server.

◦ <port> is the port where the Engineering Test Management server is running.

◦ <userid> is a registered user ID in Engineering Test Management that has the license to run the

adapter.

◦ <password> is the password for the user ID that was used

◦ <adapter name> is the name you give your adapter and by which the Engineering Test Management

web UI will identify this instance of the adapter.

◦ <projectArea> is the name or alias of the project to which you are logging on. If the name contains

spaces, enclose the name in double quotation marks.

◦ <proxy server name> is the host name of the proxy server through which the adapter connects to

the Engineering Test Management server.

385

HCL OneTest™ UI

386

◦ <proxy port number> is the port where the proxy server is running.

◦ <proxy server userid> is the user ID that is used to authenticate the proxy server.

◦ <proxy server password> is the password for the proxy server authentication user ID

◦ <configuration file> is the file from which the settings for this adapter must be read. The

adapter name is mandatory when you use this option.

Note:

◦ For the adapter to connect to the Engineering Test Management server through the proxy

server, you must specify the proxy server name, port number and user ID.

◦ If the proxy server is renamed, complete these steps:

a. If you have an entry for the proxy server in the hosts file, update it with the new proxy

server name.

b. Update the <proxy server name> argument with the new proxy server name.

Handling inputs from IBM® Engineering Test Management in HCL OneTest™ UI
scripts
If you use IBM® Engineering Test Management to execute functional test scripts, you can make Engineering Test

Management details available to the functional test script to be used during playback.

Engineering Test Management details could include script arguments and dataset iterations. You can use one of

these methods to make Engineering Test Management details available to functional test scripts, depending on your

requirements:

• Pass Engineering Test Management details and arguments while running a specific functional test script.

These arguments are specific and local to that script alone. For information about using this method, see IBM

Engineering Test Management script arguments on page 386.

• Pass details from Engineering Test Management at a test script, test case or test suite level. You can use

execution variables to pass details at any or all of these levels. For information about this method, see IBM

Engineering Test Management execution variables on page 387.

Related information

Working with keywords in HCL OneTest UI on page 389

Testing with IBM Engineering Test Management on page 378

Configuring and running HCL OneTest UI adapter for IBM Engineering Test Management on page 378

Configuring and running the adapter using the command-line interface on page 382

Viewing keywords created in Engineering Test Management on page 390

IBM® Engineering Test Management script arguments
You can pass arguments from IBM® Engineering Test Management while running an HCL OneTest™ UI script.

Chapter 6. Administrator Guide

You can pass the following types of arguments while running functional test scripts from Engineering Test

Management:

• Script arguments: These arguments are available to a script writer within the script as arguments to the

testMain() method.

• Execution arguments: These arguments govern playback. If HCL OneTest™ UI test scripts that run from

Engineering Test Management have a dependency on a third-party library, you must consider the following

points:

◦ You must use the -projectpath or -classpath command line argument to specify a third-party library.

For example: -projectpath C:\temp\myjar.jar. See Command line interface on page 1449.

Note: Command line arguments such as -enable, -inspector, or -appconfig that are not

applicable for Engineering Test Management is not considered during playback.

◦ You can pass java properties along with execution arguments. For example, -Dmyprop=value. You can

also pass multiple java properties that are separated by space along with execution arguments. For

example, -Dmyprop1=value1 -Dmyprop2=value2 -projectpath C:\tmp\myjar.jar.

• dataset iteration: If there is a dataset associated with a script, you can pass the number of times the scripts

must run by accessing records from the dataset.

Additionally, you can pass execution task details of Engineering Test Management to a functional test script so that

information about the Engineering Test Management test cases is accessed during script execution.

To access execution task details within the testMain() method in a functional test script, you must provide the path to

the XML file that describes the Engineering Test Management execution task.

In the functional test script, you must add String path = System.getProperty("rqm.task") to get the path of the XML

file.

Note: The details Engineering Test Management that you pass using this method are specific and local to

the script. If you want to specify details from the Engineering Test Management test script, test case, or test

suite levels, you use execution variables. See IBM Engineering Test Management execution variables on

page 387.

IBM® Engineering Test Management execution variables
If you use IBM® Engineering Test Management to run functional test scripts, you can create variables for parameters

within a functional test script that is associated with a Engineering Test Management test suite, test case, or test

script. These variables, known as execution variables, can be passed to the functional test script to be used during

playback.

When the Engineering Test Management test case is run, the execution variables that have been created are obtained

by the functional test adapter and passed to the functional test script to be used on playback. Values for the

387

HCL OneTest™ UI

388

execution variables can be supplied from the command-line prompt, a text file or worksheet, or from the associated

test suite, test case, or test script. The details of the execution variables that are passed to the functional test script

are displayed on the Execution Variable tab on the Execution Results page in Engineering Test Management.

For example, to log values for data such as user name and password in a functional test script, you can create

variables for user name and password, either in Engineering Test Management or in the functional test script. When

the associated test case is run in Engineering Test Management, the functional test adapter obtains the user name

and password variables and provides them to the functional test script on playback. Values for the user name and

password execution variables can be specified at the command line prompt, in a comma-separated values (CSV)

file or text file. The values can also be specified in the associated test suite, test case or test script. Details of the

user name and password variables are displayed on the Execution Variable tab on the Execution Results page in

Engineering Test Management. The values for user name and password are displayed in the log.

Note: By using execution variables, you can pass parameters at the test script, test case or test suite levels.

To pass details only to a specific script, you can also use arguments to the testMain() method in the script.

For more information, see IBM Engineering Test Management script arguments on page 386.

Reading variables

When a Engineering Test Management test case or test script is run, the functional test adapter reads the execution

variables that were created for the test case or script and passes the variables to the functional test script playback

engine. The functional test playback engine provides the variables to the functional test script that is associated with

the Engineering Test Management test case or script. On playback, the functional test script uses the variables and

obtains values for the variables.

You must modify the functional test script to enable it to read the Engineering Test Management execution variables

during playback. This code is provided in the IVariablesManager API:

IVariablesManager vm=getVariablesManager()

You must modify functional test script to enable it to read the parameter names for the Engineering Test

Management execution variables during playback. This code is provided in the IParameter API:

IParameter name = vm.getInputParameter("name")

Creating variables

You can create execution variables within the associated functional test script.

To create execution variables within the functional test script, this code is provided in the IVariablesManager API:

IVariable <var name> = vm.createOutputVariable("<var name>", "<var value>");

Modifying variables

You can modify execution variables created in Engineering Test Management either in the test suite, test case, or test

script. You can modify execution variables created in the functional test script.

Chapter 6. Administrator Guide

Note: Execution variables created in Engineering Test Management cannot be modified in the functional test

script, but can only be read.

To modify execution variables that were created earlier in the functional test script, this code is provided in the

IVariable API and the IVariablesManager API:

<var name>.setValue("<new var value>");
vm.setOutputVariable(<var name>);

Test cases in a test suite

For test cases in a test suite, the functional test output variables for a test case, if any, are provided as input variables

for the next test case in the suite.

HCL OneTest™ UI in stand-alone mode

When HCL OneTest™ UI is in stand-alone mode without Engineering Test Management, the execution variables can be

read from the command line, or from a text file or worksheet.

Use a -var extension to enable HCL OneTest™ UI to read execution variables and their values from the command line.

For example, type:

<playbackcmd> -var "username=user1;password=pass1"

Use the -varfile extension to enable HCL OneTest™ UI to read execution variables and their values from a text file or

worksheet, for example:

<playbackcmd> -varfile <file containing values>

In the text file or worksheet, each variable name and value pair must be on a new line. If comma -separated values are

provided, they are treated as a single value.

Working with keywords
In HCL OneTest™ UI, you can associate functional test scripts with the keywords that are created in IBM® Engineering

Test Management.

Working with keywords in HCL OneTest™ UI
Keywords are defined and created in IBM® Rational® Quality Manager. In HCL OneTest™ UI, you can record a

functional test script and then associate it with the keywords that are created in Rational® Quality Manager.

Learn more about keywords: Keywords are defined and created in Rational® Quality Manager. A keyword is

a statement or group of statements that you can reuse in other test scripts. Keywords are typically composed

389

HCL OneTest™ UI

390

of script steps that reflect reusable processes. You can automate keywords through the use of functional test

scripts. For more information about keywords, see the Rational® Quality Manager Knowledge Center.

To work with keywords, you must log on to Rational® Quality Manager server. The keywords created in Rational®

Quality Manager are displayed in the HCL OneTest™ UI Keyword View. You can record a functional test script and

associate it with an keyword.

After you associate the functional test scripts to the appropriate keywords, you can play back the functional test

scripts that are associated with the keywords from Rational® Quality Manager.

Viewing keywords created in Engineering Test Management
In HCL OneTest™ UI, you can record and then associate functional test scripts with the keywords that are created in

IBM® Rational® Quality Manager. You can log on to the Rational® Quality Manager to view keywords. You can play

back the functional test script from Engineering Test Management.

1. In the Keyword View, click Logon to RQM .

2. In the Logon to Rational Quality Manager dialog box, type the URL in the RQM repository field. For example:

If Rational® Quality Manager is running in the local computer, type https://localhost:9443/qm in the

RQM repository field.

Note: If the Rational® Quality Manager server is renamed, make sure that you update the URL in the

RQM repository field with the new server name.

3. In Authentication Mode, specify the authentication type to connect to Rational® Quality Manager and click

Finish.

◦ User name and Password - Specify the user ID and password of the Rational® Quality Manager user

account.

◦ Kerberos - Select the kerberos .ini file. The file is automatically created when you set up Kerberos.

Typically, on Windows, the file would be located at c:\windows\krb5.ini. The file name and the

location would change for different operating systems.

◦ SSL Cert - Specify the location of the SSL certificate and optionally, the password. The certificate

should be a .p12 file.

◦ Smart Card - Select the smart card certificate alias. You must ensure that the workbench machine is

connected to the smart card reader and that the smart card is inserted into the reader. The product

reads the aliases from the smart card and prompts for the smart card PIN whenever the adapter

connects to Rational® Quality Manager.

4. Click Get Keywords . The connected projects keyword list is displayed in the keyword view.

a. To select a project area, click ProjectArea list.

Result

Chapter 6. Administrator Guide

Only keywords pertaining to the selected project area are displayed.

b. Click Get Keywords.

a. Optional: To search for keywords that have a specific tag, type the tag in the Search by tag field.

b. Optional: Click Get Keywords.

Result

If a large number of keywords are displayed, they are organized into pages of 50 each. Use the navigation

buttons on the toolbar to move between pages.

Associating functional test scripts with the keywords
You can automate an IBM® Rational® Quality Manager keyword by associating it with an HCL OneTest™ UI script.

You can either associate an existing functional test script with a given keyword, or record a new script against the

keyword and then associate the script. You can see the steps of a keyword when you associate an automated script.

After a keyword is automated, you can open and execute the automated script.

Before you begin

The Keyword View must be displayed in the Functional Test perspective to associate functional test scripts with

keywords. To display the Keyword View, click Window > Show View. Select Keyword View from the list, and click OK.

Recording a new functional test script for a keyword

1. Click the keyword from the keyword view list to record a script and associate it with a functional test script.

2. Right-click the keyword, and click Record .

3. Type a name for the functional test to be recorded in Script name.

By default, the keyword name is used as the functional test script name.

4. Click Finish.

Result

The Recording monitor opens and the recording starts. The keyword description is displayed in the recording

monitor. For information on recording, see the related topic on Recording a script.

Associating an existing functional test script with a keyword

1. Click the keyword from the keyword view list to associate it with a functional test script.

2. Right-click the keyword, and click Associate with FT script .

Result

The Select Script dialog box lists the existing functional test scripts for the functional test projects.

3. Select the functional test script that you want to associate from the list and click OK.

Result

The Configure shared location wizard is displayed when you associate a functional test script with the

keyword for the first time.

391

HCL OneTest™ UI

392

Note: Only Java test scripts are listed. Simplified scripts in the project, if any, are represented by their

equivalent Java test script.

4. The Configure shared location wizard specifies the shared location of the functional test project. Type the

path to the parent directory of the functional test project in the Shared location field. You can also select the

shared location from the Shared Locations already configured in RQM list box.

5. Click Finish.

Result

If you click Cancel, the project is not configured to use the shared location. In this case Rational® Quality

Manager uses the absolute path of the current project to execute the test script.

6. Copy the project that contains the keyword-associated script to the specified shared location manually. For

Rational® Quality Manager to run the script, the project with the script must be present in the shared location.

Result

When you associate a functional test script with a keyword, the script becomes the default script for the

keyword. Only a single functional test script can be associated with a keyword. When you run the keyword

from Rational® Quality Manager, the test script associated with the keyword is executed.

Running functional test scripts from Rational Quality Manager
You can either reference external resources by accessing a shared location or a local test machine. During execution

of the test scripts, the test resources are copied to the test machine if it is a shared location. However, when you

access resources in a local test machine, you are accessing resources on the path that you use.

1. In Rational® Quality Manager, create a test case.

2. Create a test script name and associate an existing test script with the test case in Rational® Quality

Manager.

3. Execute the test case and view the results of the test execution after the playback. For information, refer the

Rational® Quality Manager information center.

Keyword View
The HCL OneTest™ UI Keyword View displays the keywords. This view is displayed in the right pane of the Functional

Test perspective.

The following menu options are available when you right-click a keyword in the keyword view:

Refresh Steps

Lists the steps associated with a keyword.

Record Test

Records a functional test script for the selected keyword.

Chapter 6. Administrator Guide

Associate Test

Associates a functional test script with the keyword. Multiple functional test scripts can be associated

with a keyword.

Show Associated Tests

Shows all the functional test scripts associated with a keyword.

To view the keyword list:

• If the Keyword View is not displayed in the Functional Test perspective, click Window > Show View. Select

Keyword View from the list and click OK.

To select a project area:

• To select a project, click ProjectArea list. Only keywords pertaining to the selected project area are displayed.

Integration with Jenkins
You can use the HCL OneTest™ UI Jenkins plugin to run tests on a Jenkins server.

To automate testing with Jenkins, you must configure Jenkins primary server and Jenkins secondary server.

This configuration provides a single Jenkins installation on the Jenkins primary server to host multiple Jenkins

secondary server for building and running tests. For more information about the Jenkins primary and secondary

server relationship, refer to the Jenkins documentation.

You must install the required version of the HCL OneTest™ UI Jenkins plugin on the Jenkins primary server, and install

HCL OneTest™ UI on the Jenkins secondary server, where you create tests.

You can use either the Jenkins Freestyle project or the Pipeline project to run test assets from Jenkins. With

Freestyle project, you can create a build step from the Jenkins UI to run the test assets. Whereas the Pipeline project

uses a simple text scripts based on the Groovy programming language. You can define pipeline scripts during the

configuration of the Pipeline project by using any of the following methods:

• Pipeline script: In this method, you can directly enter a script in the field provided within the Jenkins UI or you

can select a sample Pipeline script from the drop-down list.

• Pipeline script from SCM: In this method, you can create a script with a Groovy editor and then commit the

script file into the Git repository.

For more information about the Jenkins Pipeline, refer to the Jenkins documentation.

Refer to the following topics to learn more about integrating Jenkins with HCL OneTest™ UIin the Functional Test

perspective:

393

https://www.jenkins.io/doc/book/managing/nodes/#components-of-distributed-builds
https://www.jenkins.io/pipeline/getting-started-pipelines/

HCL OneTest™ UI

394

Environment variables
You can add environment variables on the Jenkins server to run the Jenkins build by referring to environment

variables.

You can add an environment variable on the Jenkins server by navigating to Manage Jenkins > Configure System >

Global properties. You can enter the variable name by using any of the following methods for the corresponding text

fields in the Run HCL OneTest UI test step:

• Use the dollar sign ($) followed by the variable name.

For example, $workspace

• Use the dollar sign ($) followed by the variable name between braces.

For example, ${workspace}

The HCL OneTest™ UI Jenkins plugin uses the actual value while running the job.

For example, if you add the environment variable named workspace with the value C:\Users\HCL\workspace1,

then you can use $workspace or ${workspace} as input to the Workspace field when running tests. During the run time,

$workspace or ${workspace} is substituted with its corresponding value C:\Users\HCL\workspace1.

Task flows for running test assets from Jenkins
You can perform certain tasks to run test assets from the Jenkins Freestyle project or the Pipeline project.

The following table lists the task flows for running test assets from the Jenkins Freestyle project:

Tasks More information

Install the HCL OneTest™ UI Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 395

Configure the Freestyle project.
Configuring the Freestyle project on page 396

Run HCL OneTest™ UI functional tests on Jenkins.
Running tests from Jenkins on page 401

You can perform the following tasks to run test assets from the Jenkins Pipeline project by using the sample script:

Tasks More information

Install the HCL OneTest™ UI Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 395

Create a pipeline script from the Jenkins UI.
Creating a pipeline script from Jenkins on page 397

Chapter 6. Administrator Guide

Tasks More information

Configure the Pipeline project.
Configuring the Pipeline project by using the sample

script on page 399

Run HCL OneTest™ UI functional tests on Jenkins.
Running tests from Jenkins on page 401

You can perform the following tasks to run test assets from the Jenkins Pipeline project by using the script from

Source Code Management (SCM):

Tasks More information

Install the HCL OneTest™ UI Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 395

Create a pipeline script and commit the script to the Git

repository.

For more information, refer to the Jenkins documenta

tion.

Configure the Pipeline project.
Configuring the Pipeline project by using the script from

SCM on page 400

Run HCL OneTest™ UI functional tests on Jenkins.
Running tests from Jenkins on page 401

Installing the plugin on the Jenkins primary server
You must install the HCL OneTest™ UI Jenkins plugin to run test assets from the Jenkins server.

Before you begin

You must have completed the following tasks:

• Verified that you have a Jenkins primary server and secondary server.

• Downloaded the HCL OneTest™ UI Jenkins plugin 6.0 from the HCL® License & Delivery portal.

1. Log in to the Jenkins server.

Result

The Jenkins dashboard is displayed.

2. Click Manage Jenkins > Manage plugins, and then click Advanced tab.

3. Click Choose File and then locate and open the HCL OneTest™ UI Jenkins plugin.

4. Click Upload.

Result

The HCL OneTest™ UI Jenkins plugin is displayed in the Installed tab.

5. Perform the following steps to provide Random TCP Ports for Java™ Network Launch Protocol (JNLP) agents:

395

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest™ UI

396

a. Click Manage Jenkins from the Jenkins dashboard.

b. Click Configure Global Security from the Security section.

c. Click Random from the Agents section.

d. Click Save to save and apply the changes.

Results

You have installed the HCL OneTest™ UI Jenkins plugin on the Jenkins primary server.

What to do next

You can run the test from the Jenkins server. See Running tests from Jenkins on page 401.

Configuring the Freestyle project
You must configure a Freestyle project to add a build step, and then run test assets from Jenkins.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ UI Jenkins plugin on the Jenkins primary server. See Installing the plugin on the

Jenkins primary server on page 395.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

• Created a Jenkins Freestyle project.

About this task

When you create a Freestyle project in the Jenkins server, you must select the Restrict where this project can be run

checkbox and enter the name of the labels that you provided during the creation of Agent in the Label Expression

field.

1. Open the Jenkins Freestyle project, and then click Configure.

2. Click the Build tab, and then click Add build step.

3. Select the Run HCL OneTest UI test option from the drop-down list.

4. Provide the details about the test run for the fields in the following table:

Field Description

Name Required. The name of the HCL OneTest™ UI test.

Project Directory Required. The fully qualified path to the HCL OneTest™ UI project directo

ry. You must use '\\' or '/' as the file separator.

Script Name Required. The name of the script to be run.

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents

Chapter 6. Administrator Guide

Field Description

Log Format Optional. The format of the script run logs. The avaiable options are as

follows:

◦ Default

◦ none

◦ json

◦ xml

◦ html

◦ TPTP

◦ Text

Iteration Count Optional. The number of dataset iterations to be run.

User Arguments Optional. Additional playback arguments, if any. For multiple arguments,

you must enclose each argument within double quotation marks and sep

arate the arguments by providing a space between them. For example,

"password" "7891230" "20".

Project Dependencies Optional. The complete path to the project that your test depends for the

run. If there are multiple projects, you must separate each project path

with a semicolon.

5. Optional: Click Add build step again, and provide details for the next test to run multiple tests under the same

job.

6. Click Save.

Results

You have configured the Freestyle project by adding the build step.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 401.

Creating a pipeline script from Jenkins
You must create a pipeline script to run test assets from the Jenkins Pipeline project.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ UI Jenkins plugin on the Jenkins primary server. See Installing the plugin on the

Jenkins primary server on page 395.

• Created a Jenkins Pipeline project.

397

HCL OneTest™ UI

398

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

3. Click Pipeline Syntax to generate a pipeline script.

4. Select the step: General Build Step option from the drop-down list in the Sample Step field.

5. Select the Run HCL OneTest UI test option from the drop-down list in the Build Step field.

6. Provide the details about the test run for the fields in the following table:

Field Description

Name Required. The name of the HCL OneTest™ UI test.

Project Directory Required. The fully qualified path to the HCL OneTest™ UI project directo

ry. You must use '\\' or '/' as the file separator.

Script Name Required. The name of the script to be run.

Log Format Optional. The format of the script run logs. The avaiable options are as

follows:

◦ Default

◦ none

◦ json

◦ xml

◦ html

◦ TPTP

◦ Text

Iteration Count Optional. The number of dataset iterations to be run.

User Arguments Optional. Additional playback arguments, if any. For multiple arguments,

you must enclose each argument within double quotation marks and sep

arate the arguments by providing a space between them. For example,

"password" "7891230" "20".

Project Dependencies Optional. The complete path to the project that your test depends for the

run. If there are multiple projects, you must separate each project path

with a semicolon.

7. Click Generate Pipeline Script and copy the script that you created for the build step to use it in the sample

script.

Note:

Chapter 6. Administrator Guide

You need this generated script to enter in step 5.c on page 400 in the following topic:

Configuring the Pipeline project by using the sample script

Results

You have created the pipeline script.

What to do next

You can configure the Pipeline project by using the Pipeline script option. See Configuring the Pipeline project by

using the sample script on page 399.

Configuring the Pipeline project by using the sample script
You can configure a Pipeline project directly from the Jenkins UI by using the sample pipeline scripts to run test

assets from Jenkins.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ UI Jenkins plugin on the Jenkins primary server. See Installing the plugin on the

Jenkins primary server on page 395.

• Created a pipeline script. See Creating a pipeline script from Jenkins on page 397.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

3. Select the Pipeline script option in the Definition field.

4. Select the sample script from the drop-down list.

For example, if you select Hello Word from the drop-down list, then the sample script is displayed as follows:

399

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents

HCL OneTest™ UI

400

5. Perform the following steps to edit the sample script:

a. Replace the agent any in the script with the name of the label that you provided when you created the

Agent.

For example, if you provided a name of the label as win10_ft_1022, then edit the script as follows:

agent {label 'win10_ft_1022'}

b. Provide a name for the stage in the script.

For example, stage('Run UI Demo')

c. Specify the script that you created in step 7 on page 398 in place of “echo ‘Hello Word’”.

6. Click Save.

Results

You have configured the Pipeline project by using the Pipeline script option.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 401.

Configuring the Pipeline project by using the script from SCM
You can configure the Pipeline project to use the pipeline script from the Source Code Management (SCM), and then

run test assets from the Jenkins Pipeline project.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ UI Jenkins plugin on the Jenkins primary server. See Installing the plugin on the

Jenkins primary server on page 395.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents

Chapter 6. Administrator Guide

• Created a pipeline script and committed the script to the Git repository. For more information, refer to the

Jenkins documentation.

• Been granted administrator permission of the Jenkins server to add credentials into Jenkins.

• Added your GitHub credentials into Jenkins. For more information about adding global credentials, refer to the

Jenkins documentation.

• Created a Jenkins Pipeline project.

About this task

If your pipeline scripts are complex, you can then write the script outside of Jenkins UI. You must commit that script

file into your Git repository. During the Pipeline build process, Jenkins checks out the script file from the Git repository

and runs your Pipeline project.

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

3. Select the Pipeline script from SCM option in the Definition field.

4. Select the Git option from the drop-down list in the SCM field.

5. Enter the URL of the Git repository in the Repository URL field where you stored your pipeline script.

6. Select the credentials of the Git repository from the drop-down list.

7. Optional: Enter the branch name of the Git repository in the Branch Specifier field.

8. Enter the path of the script that you stored in the Git repository in the Script path field.

9. Click Save.

Results

You have configured the Pipeline project by using the Pipeline script from the SCM option.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 401.

Running tests from Jenkins
You can run test assets either from the Jenkins Freestyle or the Pipeline project on the Jenkins server to test an

application under test.

Before you begin

You must have completed the following tasks:

• Verified that you have test assets residing within HCL OneTest™ UI.

• Configured the Freestyle project, if you want to run test assets from the Freestyle project. See Configuring the

Freestyle project on page 396.

401

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://www.jenkins.io/doc/book/using/using-credentials/#configuring-credentials

HCL OneTest™ UI

402

• Configured the Pipeline project either by using the Pipeline script or Pipeline script from SCM, if you want to

run test assets from the Pipeline project. See Configuring the Pipeline project by using the sample script on

page 399 or Configuring the Pipeline project by using the script from SCM on page 400.

• Downloaded the latest Test Results Analyzer plugin from the Jenkinsci repository. For more information

about the Test Results Analyzer plugin, refer to the Jenkins documentation.

• Installed the Test Results Analyzer plugin on the Jenkins server. For more information about installing the

plugin, refer to the Jenkins documentation.

About this task

After the test run is complete, you can view the test results in a tabular format when you use the Jenkins Test Results

Analyzer plugin. With a TRA-based report, you can filter the results based on the status of the build. The status of the

builds can be PASSED, FAILED, and SKIPPED. You can also identify the failed build from the TRA-based report and take the

required action to resolve the build errors. The TRA report also represents the build information in Line, Bar, and Pie

graphs so that you can easily read the data.

Note: You can view the TRA-based reports only when you run Web UI tests.

1. Log in to the Jenkins server.

Result

The Jenkins dashboard is displayed.

2. Open your Jenkins Freestyle or Pipeline project from the list.

3. Click Build Now to run the test assets from Jenkins.

Results

You have run the test from the Jenkins server.

What to do next

You can view the build logs by clicking the build number from the Build History pane, and then selecting the Console

Output option.

You can also view the history of test results in a tabular format by clicking the Test Results Analyzer option. The TRA

reports are available only for Web UI test assets.

Testing with Maven
Starting with v9.2, you can use the Maven plug-in to run Functional Test scripts. Apache Maven is a software build

tool based on the concept of a project object model (POM). You can use the Maven plug-in that is provided to run

tests as part of your Maven build.

https://github.com/jenkinsci/test-results-analyzer-plugin/tags
https://plugins.jenkins.io/test-results-analyzer/
https://www.jenkins.io/doc/book/managing/plugins/#advanced-installation

Chapter 6. Administrator Guide

Note: This is an experimental feature in 9.2.

Introduction

To automate testing with Maven, you must configure a POM file that is delivered with the product installation package

and launch the test from command line using Maven command.

Before you begin

• You must have installed HCL OneTest™ UI and set up an environment variable that points to the installation

directory.

• You must have installed Maven and set up an environment variable that points to the M2_HOME directory.

• You must have a functional test.

Downloading FT-Maven plug-in

Maven plug-in is included in the product installation. The plug-in contains a POM.XML file. The first time you

execute this file, Maven will automatically download the plug-in from a local repository. You can use this file to

execute your tests, or use and rename the ft_pomSample.XML file sample file that is delivered in the product

package.

Configuring the sample POM file

A sample file ft_pomSample.XML file is delivered with the product installation. It is saved in /SDP/maven2

folder. The file contains all types of dependencies as well as arguments required to execute the script. You just need

to copy this file in your directory and modify below arguments, datasource and other optional values.

Note:

DataStore and script name arguments are required.

Arguments ftArgs and scriptArgs are optional, they must be used only if it is required by the script.

Arguments mentioned in the POM.XML file:

<arguments>
<argument><!-- Specify DataStore path (Mandatory) --></argument>
<argument><!-- Specify script name to be executed (Mandatory) --></argument>
<argument><!-- Provide ftArgs if any (Optional) --></argument>
<argument><!-- Provide scriptArgs if any (Optional) --></argument>
</arguments>

In the following example, the script name is Script1 and datasource (project) is drive:/MyName/Project1, so

the modified arguments are:

<arguments>
<argument>drive:/MyName/Project1</argument>
<argument>Script1</argument>

403

HCL OneTest™ UI

404

<argument><!-- Provide ftArgs if any (Optional) --></argument>
<argument><!-- Provide scriptArgs if any (Optional) --></argument>
</arguments>

Running the tests

• Maven automatically identifies the POM file. So if the .xml file name is POM.XML, then execute the tests with

the mvn test command, otherwise use the appropriate command as shown in the following table:

• Table 3. Command line to run the tests:

Command Description

mvn test If file name is POM.xml and you are in same directo

ry.

mvn test -f filename.xml If file name is other than POM.xml and you are in the

same directory

mvn test -f FULL_PATH\fileName.xml If you are in a different directory and POM.xml or use

a .xml file with other name in a different directory,

provide the full path.

When the tests are executed, Maven will display any type of exception if it occurs while executing the tests. The errors

are related to the following scenarios:

• File name you have provided.

• Required parameters missing.

• Any wrong argument.

• Any exception occurred while executing scripts.

FT-Maven plug-in will just indicate whether the test was executed successfully or not. Reports and logs are not

showing up once the test execution is completed. To see the reports, you need to check the log folder in HCL

OneTest™ UI log folder. The log will show in the explorer mode if it is disabled in FT-maven plug-in.

Use cases

Script including script name only, with no option.

<arguments>
<argument>drive:/MyName/Project1</argument>
<argument>Script1</argument>
</arguments>

Script including argument as option.

<arguments>
<argument>drive:/MyName/Project1</argument>
<argument>Script1</argument>
<argument>scriptArgs1 scriptArgs2 scriptArgsN</argument>
</arguments>

Chapter 6. Administrator Guide

Script including ftArgs related options only. You can add whatever options you need here.

<arguments>
<argument>drive:/MyName/Project1</argument>
<argument>Script1</argument>
<argument>-rt.log_format html -log testLogFolder -iterationCount 10</argument>
</arguments>

Script including all options.

<arguments>
<argument>drive:/MyName/Project1</argument>
<argument>Script1</argument>
<argument>-rt.log_format html -log testLogFolder -iterationCount 10</argument>
<argument> scriptArgs1 scriptArgs2 scriptArgsN</argument>
</arguments>

Integration with IBM® Engineering Workflow Management
You can manage test assets with Jazz™ source control management by integrating HCL OneTest™ UI with

Engineering Workflow Management, formerly known as Rational® Team Concert™ eclipse client.

Introduction

You can use Engineering Workflow Management eclipse client to connect to compatible Jazz™ servers, including

Engineering Workflow Management servers. You must have a compatible version of Engineering Workflow

Management server setup to use Jazz™ source control management. For information about compatible versions, see

System Requirements on page 12.

Use this feature to do the following tasks:

• Access Engineering Workflow Management eclipse client.

• Manage the functional test assets by using Jazz™ source control management.

If you have installed the Engineering Workflow Management eclipse client, see the Getting Started section of

the Engineering Workflow Management IBM Documentation to learn more about using Engineering Workflow

Management.

To access work items, you can switch to the Work Items perspective by clicking Window > Open Perspective > Work

Items.

Installing Engineering Workflow Management client

You must have a Jazz.net account to download and install Engineering Workflow Management. You can register for

a Jazz.net account at https://jazz.net/pub/user/register.jsp and then, download Engineering Workflow Management

from the Jazz site.

Notes:

405

https://jazz.net/pub/user/register.jsp
https://jazz.net/downloads/workflow-management

HCL OneTest™ UI

406

• From V7.0 or later, Rational® Team Concert™ is renamed to Engineering Workflow Management.

Tips:

• You must install Engineering Workflow Management by using Installation Manager in the same

package group as HCL OneTest™ UI.

• Both the Engineering Workflow Management and HCL OneTest™ UI must use the same workspace.

To find the appropriate Engineering Workflow Management Installation Manager extension installer, perform the

following steps:

1. Access the Engineering Workflow Management Download page from https://jazz.net/downloads/workflow-

managementIBM® Engineering Workflow Management Download page.

2. Click on the required version that you want to download.

3. Select the All Downloads tab to view other download options, including an extension or offline (local)

installers, and then search for extension install.

IBM® Engineering Workflow Management
You can use Engineering Workflow Management as your software configuration management system to maintain

functional test assets.

Using Engineering Workflow Management, you can share projects, scripts, script templates, test datasets, and object

maps across the testing team. You can manage changes in test assets in a collaborative manner to track the changes

efficiently.

Engineering Workflow Management must be purchased separately. You must install Engineering Workflow

Management using Installation Manager and then install HCL OneTest™ UI using the same package group to integrate

Engineering Workflow Management with HCL OneTest™ UI.

With Engineering Workflow Management, you can manage test assets and perform source control operations such

as these:

• Check-in files from your local workspace to your repository workspace.

• Make changes to the contents of your local workspace and check-in the files so that the local workspace and

repository workspace contain the same versions of the files. In the repository workspace, related changes are

collected as change sets so that changes in multiple files and folders can be committed in a single operation.

• Deliver the change sets to a stream so that the content in the repository workspace is made available to other

team members.

https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management
https://jazz.net/downloads/workflow-management

Chapter 6. Administrator Guide

Note: When you perform source control operations in the Functional Test Projects, the results might be

inconsistent. Perform all source control operations such as check-in and deliver from the Pending Changes

view.

Switching to Jazz source control
You can use Jazz source control management to manage functional test assets such as test object maps and scripts

to facilitate functional testing efforts. The integration is controlled by a property that is set in the ivory.properties file

in the HCL OneTest™ UI installation directory. You can use one software configuration management client type only in

a session.

About this task

To switch to Jazz source control, you must specify the software configuration management client type in the

ivory.properties file. To modify the ivory.properties file, you must have the appropriate permission.

1. Close HCL OneTest™ UI.

2. Open the ivory.properties file available in the folder <product installation directory>\Functional

Tester\bin\.

3. Set the rational.test.ft.cm.clienttype to CCRC. The default value is set to NATIVE_CC. Changing the value to

CCRC enables HCL OneTest™ UI to use source control plug-ins like Jazz source control and CCRC Eclipse plug-

ins.

4. Save the ivory.properties file, and start HCL OneTest™ UI.

Sharing a project
To manage the HCL OneTest™ UI projects by using the Jazz source control provider, you must share the project and

select Jazz source control as the repository provider. To perform source control operations on the HCL OneTest™ UI

project, the project must be in the Jazz repository workspace. When the project is shared, the project is moved to the

Jazz repository workspace.

1. Right-click the HCL OneTest™ UI project, and click Team > Share project.

2. Select Jazz Source Control on the Share project page, and click Next.

3. Specify the repository workspace component to which to move this project.

407

HCL OneTest™ UI

408

a. Choose Select a component in an existing repository workspace if you have an existing repository

workspace.

▪ To place the project in an existing component, expand the workspace, and select the

component.

▪ To place the project in a new component in an existing repository workspace, select the

workspace, click New Component, enter a name for the new component, click OK, and select

the new component in the list.

b. Choose Create a new repository workspace named if you have not created a repository workspace or

if you want to create a new one, type a name for the workspace, and click Next. Select Share with a

component from an existing stream, expand the stream, and select a component.

Note: If the Engineering Workflow Management server is renamed, make sure that you update the

hosts file with the new server name. You must also update the repository connection with the new

server name so that you can continue performing source control operations on the functional test

project. If you are using a version of the Engineering Workflow Management client that is older

than 4.0, restart the client after you update the new server name in the hosts file and the repository

connection.

4. Click Next.

5. Click Finish. The selected project is moved to the repository workspace.

Result

The project is added to a component in a repository workspace. You can perform source control operations

on the project. For more information on Jazz source control, see the Engineering Workflow Management

information center.

Merging object maps
You can merge two object maps by comparing your local copy with the repository copy of the file. HCL OneTest™ UI

merges the two object maps automatically. In cases where the object maps cannot be merged automatically, you

can manually merge the object maps. The user interface displays the two object maps to be merged. The left pane

displays the local copy and the right pane displays the server copy. The difference between the two object maps is

highlighted. You can move the contents from right to left to merge the changes.

1. In the Functional Test projects view, right-click the project and synchronize the changes.

Result

The incoming and outgoing changes are displayed in the Pending Changes view. The object map with

conflicting changes is preceded by a red icon.

2. Select the object map with conflicting changes. You can view the differences between the two files by

comparing them. The changes are highlighted in the Object Map Compare editor.

3. Merge the changes from the delivered copy with the local copy. You can take these actions:

Choose from:

Chapter 6. Administrator Guide

◦ Merge the changes individually: Select the change to be merged and click the Copy Current Change

from Right to Left button. You can move to the next change using the Next Difference button or

previous change using the Previous Difference button and merge the changes.

◦ Merge all the changes: Click the Copy All from Right to Left button to merge all the changes.

4. Click Save to save your changes.

5. Deliver the merged object map.

Testing with Tivoli Composite Application Manager
HCL OneTest™ UI can be integrated with IBM Tivoli® Composite Application Manager. You can schedule the interval

at which the application manager agent runs to track the response time and generate logs using HCL OneTest™ UI

scripts.

Before you begin

Before you start using the HCL OneTest™ UI integration feature with IBM Tivoli Composite Application Manager, verify

that the following prerequisites are met:

Database DB2®

Features and sub components
• IBM Tivoli Monitoring Tivoli Enterprise Management Server - part

(CR62TML)

• ITM Portal Server for visualization - part (CR62TML)

• ITCAM Application Management Console - part (CR7X4ML)

• ITCAM Robotic Response Time Agent - part (CR7X4ML)

Products versions The supported version of Tivoli Composite Application Manager, see Support

Matrix.

About this task

To integrate HCL OneTest™ UI with Tivoli Composite Application Manager:

1. Install HCL OneTest™ UI.

2. Install Tivoli Composite Application Manager plug-ins into the Eclipse shell so that HCL OneTest™ UI is

configured to work with application manager.

3. Click File > Export and select ITCAM under Other section to export HCL OneTest™ UI scripts to Tivoli

Composite Application Manager.

4. Schedule the script execution from Tivoli Composite Application Manager.

At the scheduled interval, application manager agent runs the scripts and transaction logs gets generated.

 Testing with IBM® UrbanCode™ Deploy
You can run functional test scripts remotely with the HCL OneTest™ UI plug-in for IBM® UrbanCode™ Deploy.

409

https://www.ibm.com/support/pages/node/5738145#:~:text=Rational%20Functional%20Tester%20(RFT)%20%2D%20Support%20Matrix
https://www.ibm.com/support/pages/node/5738145#:~:text=Rational%20Functional%20Tester%20(RFT)%20%2D%20Support%20Matrix

HCL OneTest™ UI

410

The IBM® UrbanCode™ Deploy plug-in for HCL OneTest™ UI includes steps for running functional test scripts remotely

on UrbanCode Deploy agent computers. HCL OneTest™ UI integration with UrbanCode Deploy is supported for Java

Scripting and Simplified Scripting in the Eclipse IDE. Test scripts recorded in the Visual Studio IDE are not supported.

Compatibility

This plug-in requires IBM® UrbanCode™ Deploy version 6.1 or later and HCL OneTest™ UI version 9.1 or later.

Installing plug-ins in IBM® UrbanCode™ Deploy

1. Download the installation files for the HCL OneTest™ UI plug-in for IBM® UrbanCode™ Deploy from the HCL®

License & Delivery portal.

2. Load the plugin in IBM® UrbanCode™ Deploy.

a. For automation plug-ins, click Settings> Automation Plugins, then click Load Plugin.

b. For source plug-ins, click Settings> Source Config Plugins, then click Load Plugin.

c. Enter the path to the compressed plug-in file, and then click Submit.

The plug-in is listed on either the Automation Plugins pane or the Source Config Plugins pane. After the plug-in is

installed, it is available immediately.

Input properties for running a functional test step

Run a test using HCL OneTest™ UI.

Table 4. Input properties for running a functional test step

Name Type Description Required

Iteration Count String Number of dataset itera

tions to be run.

No

Log Format Enumeration

• xml

• html

• text

• TPTP

Format of script execution

logs.

No

Project Directory String Fully qualified path to the

Functional Test project di

rectory.

Yes

Script Name String Name of the script to be ex

ecuted.

Yes

User Arguments String Additional user arguments

for playback.

No

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

Running functional tests

Use this plug-in to continuously initiate the launch of functional tests from IBM® UrbanCode™ Deploy. Before you

begin:

• Install the UrbanCode Deploy agent and connect it to the UrbanCode Deploy server. For details, see the

UrbanCode Deploy documentation.

• Install HCL OneTest™ UI on the UrbanCode Deploy agent computer and apply a valid license.

• Enable the functional testing environment (for example, Java) on the UrbanCode Deploy agent. If you intend

to test a web-based application, enable any browser supported by HCL OneTest™ UI, that is, Microsoft

Internet Explorer, Mozilla Firefox, or Google Chrome. For information about enabling the functional testing

environment, see Preparing the functional test environment on page 582.

• Configure the application to be tested (AUT) on the UrbanCode Deploy agent. For details, see Configuring

applications for testing on page 603.

• If you have stored the functional test scripts within a folder, the value of the Script Name input property should

be folder name.script name, for example, Mytests.app1test.

As a tester, you might have a large number of regression tests to be run against the latest builds of a product. Instead

of manually running the tests against every new build, you can install the latest build on an IBM® UrbanCode™ Deploy

Agent computer and let it automatically start the tests for you.

After deploying the HCL OneTest™ UI plug-in on the UrbanCode Deploy server, create a component and its processes,

applications and its processes, environments, and resources.

After deployment, the UrbanCode Deploy plug-in for HCL OneTest™ UIis available on the UrbanCode Deploy server.

The plug-in for HCL OneTest™ UI includes only a single step: Run Functional Tests.The component process runs a

functional script that is part of a HCL OneTest™ UI project previously stored on an UrbanCode Deploy agent.

To create a workflow, do the following tasks:

1. Click the component process. The Tools view displays the available plugin steps.

2. From HCL OneTest™ UI, drag the Run HCL OneTest™ UI step into the design space.

3. Specify the properties for the step. For information about the properties, see Input properties for running a

functional test step on page 410.

4. After configuring the properties, save the step.

A basic process for a functional test plug-in is shown in the following snapshot:

411

http://www-01.ibm.com/support/knowledgecenter/SS4GSP/ucd_welcome.html

HCL OneTest™ UI

412

Note:

• You must compile the functional test scripts in the Eclipse IDE before running them on UrbanCode

Deploy.

• The UrbanCode Deploy output variable called TestResult contains the overall playback result of the

test scripts. This variable helps you view the test results on UrbanCode Deploy itself rather than on the

test computer where the scripts are run.

• If the execution of a HCL OneTest™ UI script is dependent on an external .jar file, make sure you place

the .jar file in the customization folder. Adding references to the file under project properties (which is

what you normally do when playing scripts from the HCL OneTest™ UI IDE) will not suffice.

Chapter 7. Test Author Guide
This guide describes how to create test scripts and enhances them by applying different test elements such as

dataset, variables, and verification points.

Testing in the UI Test perspective
When you develop web applications, Windows-based applications, or mobile applications, you can use HCL OneTest™

UI to create functional tests for these applications. You must first record the tests and then use HCL OneTest™ UI to

run the tests before you can view the test results.

You can find the following information:

• Testing in the UI Test perspective on page 413

• Testing mobile applications on page 517

• Testing Windows desktop applications on page 534

• Recording SAP tests on page 541

• Working with Selenium or Appium tests on page 549

• Compound tests on page 553

• Accelerated Functional Tests on page 561

• Working with keywords on page 579

Testing web applications
You can test web applications in HCL OneTest™ UI by using the industry-standard browsers such as Google Chrome,

Apple Safari, Mozilla Firefox, and Microsoft Edge. You can record Web UI tests and then play back the tests to

evaluate the test results. You can also test the web applications on dual monitors when you extend the display of your

computer to a secondary monitor.

Creating Web UI tests
See the different ways to record Web UI tests. After the recording stops, the tests are generated automatically.

Web UI recording
HCL OneTest™ UI provides multiple ways to create Web UI tests using the UI Test perspective. You can create a Web

UI test that captures both functional and HTTP traffic in the same recording. In addition, you can create a Web UI test

for a web application that is already running in an instance of the Chrome, Firefox, or Safari browser. You can also

initiate a recording from a step of an existing test. You can also play back tests on Microsoft™ Edge browser but they

must be recorded on Chrome, Firefox, or Internet Explorer.

Recording a Web UI test that captures both functional and HTTP traffic in the same recording

With this style of recording, HCL OneTest™ UI starts the browser and configures the test environment before you start

the recording. This style of recording provides a unified recording capability that lets you capture both functional and

413

HCL OneTest™ UI

414

HTTP traffic in the same recording. As a result, you can generate both a Web UI functional test and an HTTP load test

from the same recording session.

Support is provided for Chrome, Firefox, and Internet Explorer on Windows™ computers, Chrome and Firefox on

Linux® computers, and Safari, Chrome, and Firefox on Macintosh computers.

Recording a Web UI test using a running browser instance

With this style of recording, you can record functional tests for web applications that are already running in an

existing browser tab or window. You cannot, however, generate HTTP load tests. To use this style of recording, you

must install a Web UI browser extension for each supported browser.

Support is provided for Chrome and Firefox on Windows™ and Linux® computers and for Safari, Chrome, and Firefox

on Macintosh computers. Internet Explorer is not supported.

Recording Web UI steps to add to an existing test

If you already have a test and want to add more steps to it, open the test and initiate the recording from a step after

which you want to add the new steps. This style of recording is useful when the task flow of an application has

changed in a newer version of the application and you want to update the existing test script.

Recording a Web UI test in the private mode of a browser

While you record Web UI tests, if you do not want the user profile that is stored in the browser to affect your test

recording, then you can use the private or incognito mode. Also, when you do not want cookies and caches of the

browser to impact your test recording, you can choose the private mode.

Variable for storing the name of the browser used to record the test

Prior to 9.1.1, you could define a variable in a test to specify the web browser to use for running the test. The feature

was available for running a test from the command line, as part of a schedule from HCL OneTest™ Performance, or

from IBM® Rational® Quality Manager. The reserved name for this variable is RTW_WebUI_Browser_Selection. However,

after defining the variable, if you ran the test from the Web UI Test perspective, the browser selected in the Run

configuration dialog box took precedence over the browser specified in the variable.

Now, HCL OneTest™ UI creates a test variable automatically whenever a new Web UI test is recorded or when an old

test is used that does not already have this variable defined.

You can use this test variable in If conditions to assign different behavior for different browsers. Doing so allows you

to create more robust tests that will run successfully in more than one browser.

During test execution, the value of the test variable is set to the name of the browser on which the test is being run. If

you select Firefox in the run wizard, the value of the variable is set to Firefox, thus ignoring the original value that was

set in the test during recording or while editing the test. For a command line or a Schedule execution, the value that

was set in the test is used, since in these cases there is no run wizard.

During test execution, an If condition accepts the following value names:

Chapter 7. Test Author Guide

• Firefox

• Chrome

• Internet Explorer

• Safari

• Microsoft™ Edge

Related information

Defining a variable to run a test with a selected browser on page 437

Adding conditional logic to tests on page 444

Prerequisites for creating tests
Before you can create a test, you must complete the prerequisite tasks.

When you use HCL OneTest™ UI to record a test for the application under test (AUT), you must ensure that you follow

the prerequisite conditions mentioned or complete the prerequisites tasks.

Find information about the conditions that are independent of the web browsers that you must complete:

• You must wait for each page to load completely when you record a test.

Note: This waiting time does not affect performance results because you can remove extra waiting

time (think time) when you configure a run to play back the test.

• You must enable the JavaScript option in a web browser to record and play back Web UI scripts.

• You must install the Mozilla Firefox, Microsoft Edge, or Google Chrome browsers on computers that run Mac

operating system at the default location of /Applications when you want to record or play back a Web UI

test.

Prerequisites for using the Google Chrome browser

You must complete the following tasks when you want to use the Google Chrome browser for recording web

applications:

• Install the Google Chrome extension for Web UI testing when you want to record web applications that run on

the Google Chrome browser. See Enabling Google Chrome for Web UI testing on page 420.

• Enable the Google Chrome Device Mode feature to emulate web applications on mobile devices when you

want to record such tests. See Recording a test with Google Chrome Device Mode on page 429.

Prerequisites for using the Microsoft Edge browser

You must complete the following task when you want to use the Microsoft Edge browser for recording web

applications:

415

HCL OneTest™ UI

416

• Install the Edge extension for Web UI testing when you want to record web applications that run on the Edge

browser. See Enabling Microsoft Edge for Web UI testing on page 422.

Prerequisites for using the Internet Explorer browser

You must complete the following tasks when you want to use the Internet Explorer browser for recording web

applications:

• Add <!DOCTYPE html> at the beginning of the HTML source of the pages to ensure that the browser always

loads the web pages in standard mode.

• Click Tools > Compatibility View Settings and clear all the selections to prevent the application from running

on a compatibility mode internally.

• Enable the HCL OneTest™ UI extension in the browser when you are recording the test with Internet Explorer

for the first time by performing any of the following actions:

◦ Click Enable in the dialog that appears the first time you start Internet Explorer after you installed HCL

OneTest™ UI.

◦ Open Internet Explorer and click Tools > Manage add-ons. Then, select RtwIEBhoWithJS Class, and

then click the Enable option.

Prerequisites for using the Mozilla Firefox browser

You must complete the following tasks when you want to use the Mozilla Firefox browser for recording web

applications:

• Install the Web UI browser extension for Firefox®. See Enabling Mozilla Firefox for Web UI testing on

page 424.

• Check the Use an alternate Firefox profile option in the Recorder Settings dialog, and select a user profile on

page 426 that is associated with the extension.

• Clear the Firefox® cache before you start the Firefox® browser so that the browser extension can run and

record the web applications.

Prerequisites for using the Safari browser

You must complete the following tasks when you want to use the Safari browser for recording web applications:

• Enable the Safari browser when you want to record Web UI tests. See Enabling the Apple Safari browser to

perform Web UI tests on macOS on page 419.

• Click the Develop > Allow Remote Automation to be able to record a test.

• Click Stop Session in the dialog that is presented when you start the recording of the web application in the

Safari browser.

Chapter 7. Test Author Guide

Configuring applications for tests
When you want to test Android, iOS, web, or Windows desktop applications, you must first configure them. You can

configure these applications in a common web interface that helps you to manage all the applications in one place.

You can use these applications anytime later to record and play back tests.

1. Go to the Web UI Test perspective in HCL OneTest™ UI.

2. Click the Application Configuration icon in the toolbar.

A browser window opens and the Application Configuration page is displayed. The page displays the list of

all applications that you have configured in HCL OneTest™ UI. You can use the filters to view the applications

based on the type.

3. Click Add and select the type of application that you want to configure.

A dialog box is displayed and fields differ based on the application type.

The application types are as follows:

◦ Android: To configure the Android applications that you want to use for mobile tests.

◦ Desktop: To configure the Windows desktop applications that you want to use for Windows test.

◦ iOS: To configure the iOS applications that you want to use for mobile tests.

◦ Web: To configure the web applications that you want to use for Web UI tests.

4. Enter the details of the application, which you want to configure, in the appropriate fields that are displayed in

the dialog box.

For example, if you want to configure a web application, then you must enter the URL of the application.

Note: You can choose a method to provide the application details for Android and iOS applications.

Select one of the following methods:

◦ Select Manually if you want to manually enter the details in each of the fields.

◦ Select From APK or From IPA if you want to fill in the application details automatically. You can

do one of the following tasks to automatically fill in the details:

▪ Browse and select the .apk or .ipa file from your local drive.

▪ Drag and drop the .apk or .ipa file from your local drive to the Application

Configuration page.

5. Click Add.

Results

The application is configured and it is listed on the Application Configuration page.

What to do next

You can perform the following actions on the configured applications:

417

HCL OneTest™ UI

418

• Edit the details of the application by clicking the Edit icon inline with the name of the application.

• Delete the application if it is no longer required by clicking the Delete icon .

• Apply the variable substitution, which is local to a test, to all the test suites that use the same application for

their tests by clicking the Update application in selected test suites icon . The changes of the URL are

then applied to all the test suites that use the web application in their tests.

Synchronizing changes of the configured applications
When you modify the details of a configured application, you can synchronize these changes to the primary

application or other tests that use the same application.

Before you begin

You must have configured the application in the Application Configuration page.

About this task

You can modify the application details either from the parent application on the Application Configuration page

or from any test that uses the configured application. You can modify the application details and synchronize the

changes in both the direction, that is, from the primary application to test suites and vice versa.

1. Access the application by performing one of the following tasks:

◦ To access the primary application on the Application Configuration page, do the following tasks:

a. Click the Application configuration icon.

The Application Configuration page is displayed.

b. Click the Edit icon inline with the application that you want to modify.

The Web application dialog box is displayed.

◦ To access the application from the test suites, do the following tasks:

a. Click the Launch application step in the Test Contents pane.

The Application Details page is displayed.

b. Click the Edit icon inline with the application that you want to modify.

The Web application page is displayed.

2. Make necessary changes to the configured application.

3. Save the changes by performing the following actions:

◦ For primary application, click Save in the Web application dialog box.

◦ For test suites, click Save to save the test suite.

4. Synchronize the application changes by selecting the other tests or primary application:

Chapter 7. Test Author Guide

◦ Perform the following actions if you modified from the primary application:

a. Expand the application details by using the down arrow.

b. Select one or more tests that you want to update.

c. Click the Synchronize icon.

◦ Perform the following actions if you modified the application details from the test suites:

a. Click the Synchronize icon.

The Update Configuration dialog box is displayed.

b. Select one or more tests that you want to update.

c. Click the Finish icon.

Results

You have synchronized the changes of the configured application with the test suites or the primary application.

Enabling the Apple Safari browser to perform Web UI tests on macOS
You can record and play back Web UI tests in the Apple Safari browser to test the web applications. To record Web UI

tests in the Safari browser, you must first enable the browser and then record tests.

About this task

The Safari browser is ready to record Web UI tests after you enable the remote automation feature and install the

Web UI extension. The Safari browser is ready to play back Web UI tests immediately after you enable the remote

automation feature.

Notes:

• The installation of Web UI extension is required only for recording and not for playing back of Web UI

tests.

• You can record tests on the web applications in Safari 12 only.

1. Enable the remote automation feature by performing the following tasks:

a. Click Safari > Preferences > Advanced tab, and then select the Show Develop Menu checkbox.

b. Click the Develop menu, and then select Allow Remote Automation.

c. Authorize the safaridriver to launch the webdriverd service, which hosts the local web server, by

running the following command manually /usr/bin/safaridriver.

d. Complete the authentication process.

2. Install the Web UI extension for the Safari browser by performing the following tasks:

a. Click Extension Builder in the Develop menu.

The Extension Builder dialog box is displayed.

b. Click the plus icon, and then click Add Extension.

419

HCL OneTest™ UI

420

c. Navigate to the WebUISafari12.safariextension folder within

the shared installation directory. For example, <IMShared>/plugins/

com.ibm.rational.test.rtw.webgui.browextension.safari_<version string>/

WebUISafari12.safariextension.

d. Click Select, and then click Run after the extension is added.

Note: The extension that is added in the Safari browser expires immediately after you quit the Safari

browser. You must add the extension again to enable the Safari browser to record the tests.

3. Verify whether the extensions are installed and the browser is enabled by performing the following steps:

a. Open the Safari browser.

b. Click Safari > Preferences > Extensions.

The added extension is displayed on the Extensions page.

Results

The Safari browser is enabled for recording and playing back Web UI tests.

What to do next

You can now record or play back a Web UI test in the Safari browser.

Related information

Running a Web UI test on page 1015

Enabling Google Chrome for Web UI testing
You must install the Google Chrome extension for Web UI testing, when you want to record web applications that run

in the Chrome browser.

About this task

You can use the extension that is available with your HCL OneTest™ UI installation or from the Chrome Web Store.

1. Select from an option to install the Google Chrome extension for Web UI testing:

◦ To install the extension from the installation package, go to Step 2 on page 420.

◦ To install the extension from the Chrome Web Store, go to Step 3 on page 421.

2. Perform the following steps to install the use the Google Chrome extension for Web UI testing that is

packaged with the product:

a. Open the Google Chrome browser.

b. Click More Tools > Extensions to open the Chrome browser extension page.

Chapter 7. Test Author Guide

c. Select the Developer Mode option.

d. Select the Load unpacked extension option.

e. Go to the WebUIExtension folder within the default shared directory of HCL OneTest™ UI.

For example, on a Windows computer, the directory could be as follows:

C:\Program
 Files\HCL\HCLOneTest\plugins\com.ibm.rational.test.rtw.webgui.browextension.chrome_version_i

d\ChromeExtension

f. Select the WebUIExtension folder, and then click OK.

3. Perform the following steps to install the use the Google Chrome extension for Web UI testing from the

Chrome Web Store:

a. Open the Google Chrome browser.

b. Enter chrome.google.com/webstore/category/extensions in the URL field, and then press Enter or click

Chrome web store.

c. Enter OneTest UI in the Search field.

d. Press Enter.

The available extensions are listed.

e. Select the HCL OneTest™ UI - Web UI extension, and then click Add to Chrome.

The Confirm New Extension dialog is displayed.

f. Click Add extension.

4. Perform the following steps if you want to record tests in the private mode of a browser:

Note: If you want to record any test in the private mode, you must configure the test by selecting the

private mode option for the browser in the HCL OneTest™ UI UI.

a. Check and ensure that you have added the HCL OneTest™ UI - Web UI extension to the default profile

of the browser (C:\Users\<username>\AppData\Local\Google\Chrome\User Data\Default).

b. Enable only the HCL OneTest™ UI - Web UI extension and disable or remove the other HCL OneTest™ UI

extension, if installed.

c. Go to Extensions > Manage Extension in the browser toolbar.

d. Select the following options that are listed for the Web UI extension:

421

https://chrome.google.com/webstore/category/extensions

HCL OneTest™ UI

422

▪ Allow in Incognito

▪ Allow access to file URLs

e. Close all open browsers. You can also check and end any browser processes that might be running in

the background.

What to do next

Verify that the Google Chrome extension for Web UI testing is installed by performing the following actions:

• Open the Chrome browser, and then open the Chrome browser extension page by clicking Customize and

control Google Chrome > More Tools > Extensions. You can find that the extension is installed.

Record a test using an existing instance of the Chrome browser. See Recording a Web UI test by using a running

browser instance on page 427 for details.

Enabling Microsoft Edge for Web UI testing
You can record UI test for a web application by using Microsoft Edge browser in a running browser instance. You

must first enable the Edge browser before you record UI tests by using the Edge browser.

About this task

For enabling the Edge browser, you must install the extension from the Chrome Web Store. Alternatively, you can also

use the extension that is bundled along with HCL OneTest™ UI.

Note: You must preferably install the extension from the Chrome Web Store and use the extension bundled

with the product only when you are unable to install from the Chrome Web Store.

1. Install the extension from the Chrome Web Store by performing the following steps:

a. Open the Microsoft Edge browser.

b. Click Setting and more icon and then select Extensions. The Extensions page is displayed.

c. Turn on the Allow extensions from other stores toggle button, if it is not enabled.

d. Click the Chrome Web Store link.

The Chrome Web Store page is displayed.

e. Enter HCL OneTest UI in the Search field and press Enter.

The search results are displayed.

f. Locate HCL OneTest UI, and then click Add to Chrome.

A confirmation dialog is displayed.

g. Click Add extension.

Chapter 7. Test Author Guide

The HCL OneTest™ UI extension is added to the Edge browser.

Note: To verify if the extension is successfully installed on the Edge browser, click Extensions

on the Edge browser. The added extension is listed the Installed Extensions section. You can

enable or disable the installed extension.

2. Alternatively, use the extension that is packaged with the product.

To install the extension:

a. Open the Edge browser extension page by clicking More Tools > Extensions.

b. Select the Developer Mode check box.

c. Click the Load unpacked extension button.

d. Navigate to the WebUIExtension folder within the default shared directory of HCL OneTest™ UI or

the location where you downloaded and saved the extension.. For example, on a Windows computer,

the directory could be as follows:

C:\Program
 Files\HCL\HCLOneTest\plugins\com.ibm.rational.test.rtw.webgui.browextension.chrome_version_i

d\ChromeExtension

e. Select the WebUIExtension folder and click OK to install the extension.

3. Perform the following steps if you want to record tests in the private mode of a browser:

Note: If you want to record any test in the private mode, you must configure the test by selecting the

private mode option for the browser in the HCL OneTest™ UI UI.

a. Check and ensure that you have added the HCL OneTest™ UI - Web UI extension to the default profile

of the browser (C:\Users\<username>\AppData\Local\Microsoft\Edge\User Data\Default).

b. Enable only the HCL OneTest™ UI - Web UI extension and disable or remove the other HCL OneTest™ UI

extension, if installed.

c. Go to Extensions > Manage Extension in the browser toolbar.

d. Select the following options that are listed for the Web UI extension:

▪ Allow in InPrivate

▪ Allow access to file URLs

e. Close all open browsers. You can also check and end any browser processes that might be running in

the background.

What to do next

423

HCL OneTest™ UI

424

You can record a test using an existing instance of the Edge browser. See Recording a Web UI test by using a running

browser instance on page 427 for details.

Enabling Mozilla Firefox for Web UI testing
Before you can record a Web UI test of a web application that is already running in the Firefox browser, you must first

install the HCL OneTest™ UI Web UI browser extension for Firefox.

About this task

If you are using Firefox v54 and later, you should install the new Firefox web extension. There are Web UI extensions

for the different versions of Firefox: for Firefox until v53, and from Firefox v54.

You can get the extension from the HCL FlexNet Operations Portal.

• Until Firefox v53: Two files are available webuirecorderextension-windows.xpi for Windows and

webuirecorderextension-linux.xpi for Linux in the Firefox folder.

• From Firefox v54 and above, the webuirecorder_webext.xpi file is available in the Firefox folder. You

can use this extension file on Windows™, on Linux™ and on Mac OS.

1. Navigate to the appropriate folder to select the Web UI browser extension for Firefox.

2. In Firefox, click Tools > Add-ons > , and then click Extensions.

3. Drag the appropriate extension file webuirecorderextension-windows.xpi ,

webuirecorderextension-linux.xpi or webuirecorder_webext.xpi to the list of extensions on the

Firefox Extensions page.

4. When prompted, select the extension, and click Install Now.

Result

Firefox displays a message indicating that the extension was installed successfully.

5. Perform the following steps if you want to record tests in the private mode of a browser:

Note: If you want to record any test in the private mode, you must configure the test by selecting the

private mode option for the browser in the HCL OneTest™ UI UI.

a. Check and ensure that you have added the HCL OneTest™ UI - Web UI extension to the default-release

profile of the browser (C:\Users\<username>\AppData\Local\Mozilla\Firefox\Profiles).

b. Enable only the HCL OneTest™ UI - Web UI extension and disable or remove the other HCL OneTest™ UI

extension, if installed.

c. Go to Add ons and themes > Extensions > Manage Extension from the browser menu.

d. Enable the following option that is listed for the Web UI extension:

https://HCLSoftware.flexnetoperations.com/flexnet/operationsportal/logon.do

Chapter 7. Test Author Guide

▪ Run in Private Windows

e. Close all open browsers. You can also check and end any browser processes that might be running in

the background.

What to do next

Record a test using an existing instance of the Firefox browser. See Recording a Web UI test by using a running

browser instance on page 427 for details.

To record a test on Mozilla® Firefox® browser 54 or later, you need to select a user profile that is associated to the

extension plug-in. For details, see Recording a Web UI test on page 425.

Recording a Web UI test
You create a Web UI test in the UI Test perspective. HCL OneTest™ UI automatically enables web browsers and

configures the test environment before you start recording tests for web applications.

Before you begin

You must have completed the following tasks:

• Read and completed the tasks mentioned in Prerequisites for creating tests on page 415 if they apply to the

test that you want to create.

• Created a project in the UI Test perspective. See Creating a Test Workbench project on page 35.

1. In the UI Test perspective, click New > Test From Recording.

Alternatively, on the toolbar, click the New Test From Recording icon .

2. Click Create a test from a new recording.

3. Select Web UI Test.

4. Click Recording Encryption Level, and then select the encryption level, if you want to encrypt sensitive data in

the application.

5. Click Next.

The Select Location page is displayed.

6. Click to select a folder from the parent folder list.

7. Type a name for the test.

8. Optional: Select Customize automatic data correlation to correlate the test data by using automatic data

correlation.

This option is useful only if you are generating a HTTP test from the Web UI recsession file and want to apply

data correlation to the HTTP test. Data correlation is not supported for a Web UI test.

9. Click Next.

The Select Client Application page is displayed.

425

HCL OneTest™ UI

426

10. Select the web browser that you want to use, and then click Next.

The type of application defines the recorder that can be used. The following client application types are

supported for recording a Web UI test:

◦ Apple Safari

◦ Google Chrome

◦ Microsoft Edge

◦ Microsoft Internet Explorer

◦ Mozilla Firefox

The Recorder Settings dialog is displayed.

11. Set the recording preferences depending on the browser that you selected:

◦ If the server requires client SSL authentication, provide the client certificate for the proxy recorder to be

authenticated by the server as though the proxy recorder were the client. Select The server requires a

specific client certificate.

To provide single certificate keystore, specify the file name and password of the server certificate

keystore. If multiple certificates are required, click Multiple certificates, and click Add to specify a

certificate keystore file name and password for each host name and port.

◦ If you selected Mozilla Firefox, you can choose to use a temporary Firefox® profile. This option starts

Firefox® without any bookmarks, plug-ins, or toolbars that might be associated with your usual profile.

Select Use an alternate Firefox profile, and then select Use a temporary Firefox profile.

Note: Do not select this option if you want to record the test in private mode.

◦ If you record a test with the web browser extension that is recommended for Firefox® 57, select a

user profile that is associated with the installed extension plug-in. Once this option checked, the web

recorder runs the Firefox® web extension to record the test.

◦ To launch the browser in the private mode for recording, select the Private Mode check box in the

Advanced section.

Note: You can record tests in the private mode in the Google Chrome, Microsoft Edge,

and Mozilla Firefox browsers. Refer to prerequisites and enabling browser topics under

Prerequisites for creating tests on page 415.

◦ To also include the HTTP traffic in the Web UI recording, in the Advanced section, click Also record

HTTP traffic. By using this option, you can later generate HTTP tests (in addition to the Web UI tests)

from the recording.

The option is enabled by default. To disable it, click change default value. In the Preferences dialog,

clear Also record HTTP traffic, click Apply and click OK.

Chapter 7. Test Author Guide

◦ Click Advanced to specify whether to use an HTTP or SOCKS proxy recorder to review and edit

network connection settings that the browser uses or to specify advanced SSL authentication

settings.

◦ Specify advanced SSL authentication settings. If you are using the SOCKS recorder, the

RptCertificate.jks certificate is used by default. Select The client requires a specific server

certificate and click Add to specify the server hostname, port, certificate database path, and

the certificate database password for each website that you are planning to test. If you select

Generate certificate, for any IP address received by the SOCK proxy that is resolved by one the server

hostnames that you listed, the SOCKS proxy uses a generated certificate signed by the RPT certificate

authority, thereby ensuring a smooth recording.

◦ If you select Override browser settings, select Accept SSL 3.0, or Accept TLS 1.0, or both.

12. Click Finish.

The Welcome page is displayed with the following details:

◦ Version of the web browser.

◦ Web applications that you added to test.

13. In the browser address field, type the address of the web application to test.

Note: If you enter the address of a secure website (one that starts with https:), your browser might

display a security alert. Depending on the security certificate for the site, you might be required to

accept a security risk to proceed with the recording.

14. After you finish the user tasks in the browser, stop the recorder. You can stop the recorder by closing the web

application under test or by clicking the Stop icon in the Recording Control view.

15. In the Data Correlation and Transformation page, set the data correlation options as appropriate and click

Finish.

This page appears if you have selected the Customize automatic data correlation option.

What to do next

When the test is generated, you can edit it in the test editor. For information, see Editing Web UI tests on page 433.

To create variable data for the test, you can use the dataset candidates suggested by the workbench when you first

open the generated test. For more information, see Viewing dataset candidates when you open a test on page 504.

Recording a Web UI test by using a running browser instance
You can create a Web UI test of a web application from the UI Test perspective using a browser that is already running

locally. For example, if you have already recorded some part of a web application, you can go back at a later time to

resume the recording Support is provided for Chrome and Firefox on Windows and Linux computers and for Safari,

Chrome and Firefox on Macintosh computers. Internet Explorer is not supported.

Before you begin

427

HCL OneTest™ UI

428

• Install the Web UI extensions for the browsers that you plan to use for testing. For instructions, see Enabling

Google Chrome for Web UI testing on page 420, Enabling Mozilla Firefox for Web UI testing on page 424,

Enabling the Apple Safari browser to perform Web UI tests on macOS on page 419, and Enabling Microsoft

Edge for Web UI testing on page 422.

• When recording a test, wait for each page to load completely. This waiting time does not affect performance

results, because you can remove extra waiting time (think time) when you play back the test.

• Do not change any browser preferences, including JavaScript settings. Recording and playing back Web UI

scripts in a browser requires that JavaScript be enabled.

• To record a test that emulates a web application on a mobile device, see Recording a test with Google Chrome

Device Mode on page 429.

1. Start a supported browser session and type the URL of the web application to test.

2. In the UI Test perspective, click New > Test From Recording. Alternatively, on the toolbar, click the New Test

From Recording icon .

3. Click Create a test from a new recording. Select Web UI Test. If you are recording sensitive data, click

Recording Encryption Level and select the encryption level to record. Click Next.

4. Optional: If you did not create a test project earlier, click the Create the parent folder icon to create a test

project. For more information, see Creating project on page 35.

5. Type a name for the test and click Next.

6. In the Select Client Application page, select Running browser instance and click Next.

7. Select the web application to test from the list of running browser instances and click Finish.

8. Return to the browser and record the test.

9. After you finish the user tasks in the browser, stop the recorder by clicking the Stop icon in the Recording

Control view.

Result

After you stop the recorder, the test is generated from the recording.

10. Optional: Open the test for editing.

What to do next

When the test is generated, you can edit it in the test editor. For information, see Editing Web UI tests on page 433.

To create variable data for the test, you can use the dataset candidates suggested by the workbench when you first

open the generated test. For more information, see Viewing dataset candidates when you open a test on page 504.

Recording Web UI steps for an existing test
If you already have a test, you can add more steps to it at a desired location by initiating the recording from a step or

from the application node. For instance, if the task flow has changed in the new version of the application that you

recorded and you want to update the existing test script, start the recording from the step after which the new steps

must be added. You can also initiate the recording from the Launch application or In application nodes of the test.

Chapter 7. Test Author Guide

1. Open the test script in which to add steps from a new recording.

2. Right-click the step after which the new steps must be added and click Insert > Steps from Recording (web).

You can also start the recording from the "Launch application", "In application", and "Window" nodes of a test

script. To do that, right-click the node and click Add > Steps from Recording (web).

3. In the Select Client Application page of the recording wizard, select a web browser or click Running Browser

Instance. Click Next.

When you select a browser, HCL OneTest™ UI configures and starts the browser for you to start the recording

from the first page of the application. When you select Running Browser Instance, you start recording the

application that is already running in a browser from the current state of the application so that you do not

need to start recording from the first page of the application..

4. Complete one of the following steps:

a. If you selected a web browser, follow the next set of instructions in Recording a Web UI test on

page 425.

b. If you selected Running Browser Instance, follow the next set of instructions in Recording Web UI

steps for an existing test on page 428.

5. After the recording is done, the test is generated. Click Close. The newly recorded steps are added after the

step from where you initiated the recording. If you initiated the recording from the application node, the new

steps are added after the application node or after the last step in the application node. All the new steps are

highlighted. To save the changes, click Save.

What to do next

You can enhance the test. See Editing Web UI tests on page 433.

Recording a test with Google Chrome Device Mode
You can use the Google Chrome Device Mode feature to emulate tests of web applications on mobile devices.

Before you begin

Read and been familiar with the following tasks:

• Recording a Web UI test on page 425

• Recording a Web UI test by using a running browser instance on page 427

About this task

You can enable the Device Mode feature in Google Chrome to use it as a browser on a mobile device. Then, you can

record a Web UI test using one of the devices listed in Google Chrome. The test is recorded as though it was recorded

on the device and later, when you run the test, the test runs as though it is run on the device.

1. Start a new Web UI recording with the Google Chrome browser. Alternatively, you can record the test by using

a running instance of Chrome.

2. In Chrome, configure the Chrome Device Mode feature to emulate a particular mobile device.

429

HCL OneTest™ UI

430

a. Select More Tools > Developer Tools by clicking the menu in the upper-right corner of the Google

Chrome window.

You can also open Developer Tools by pressing the Cntl+Shift+I keys or the F12 key (Windows only).

b. Click the Toggle device toolbar button.

c. Select the device that you want to emulate from the Responsive menu.

Chapter 7. Test Author Guide

For example, select iPhone 6. Also, ensure that the zoom level is set to 100%.

3. Load the web application under test to allow it to adjust and perform according to the device mode that is

selected.

4. Continue to record the test.

Annotating a test during recording
You can add comments, add transactions, or change a page name while you record a test. The advantage of adding

these elements during (rather than after) recording is that you can place the annotations in the test exactly where you

want. In addition, because annotations are part of the recorded test, they are regenerated when you regenerate the

test. You can also insert split points into a test during record.

1. Start recording the test. The Recorder Test Annotations toolbar opens near the top of the screen.

2. Click the appropriate icon.

You can use the Recorder Test Annotations toolbar to add comments, record synchronizations, or take screen

captures during the recording.

431

HCL OneTest™ UI

432

◦ To add a comment to the recorded test, click the Insert comment icon . You are prompted for a

comment.

◦ To add a screen capture to the recorded test, click the Capture screen icon . Screen and window

captures make your tests easier to read and help you visualize the recorded test. You can change the

settings for screen captures and add a comment to the image.

◦ To manually add a transaction folder to the recording, click the Start Transaction icon and Stop

Transaction icon to start and stop the transaction. Transactions can be nested.

◦ To insert a split point into the recorded test, click the Split point icon . With split points, you can

generate multiple tests from a single recording, which you can replay in a different order with a

schedule. See Splitting a test during recording on page 432 for more information about splitting a

test.

◦ When recording an HTTP test, to change the page name, click the Change page name icon . In

the resulting test, the page element in the test editor uses the new name, however the original name

is preserved in the Page Title Verification Point area so that page title verification points still work

correctly.

3. Close the client program to stop the recording.

4. If you inserted a split point during the recording, on the Destination page, in the Test Generation wizard,

specify the location for the split test or merge the split recordings together.

Results

The test is generated with the comments, transactions, and page names that you added.

Splitting a test during recording
You can insert split points when you record a test. Split points allow you to generate multiple tests from a single

recording that you can replay in a different order with a schedule.

To split a test during recording:

1. Start recording the test. The Recorder Test Annotations toolbar opens near the top of the screen.

2. To insert a split point into the recorded test, click the Split point button. . The Insert Split Point window is

displayed.

3. Type a name for this section of the test and click OK. You are naming the previous section of the test, not the

upcoming section of the test.

Repeat this step between recorded user actions as needed to split tests.

4. After you finish performing the user tasks in the client program, stop the recorder. You can do this by closing

the client program or by clicking the Stop button in the Recorder Control view.

If you changed the network settings of the client program as described in step 8, you can revert them to the

default settings before closing the program.

Result

The Generate Service Test wizard opens.

5. On the Destination page, specify the location for the split test or merge the split recordings together:

Chapter 7. Test Author Guide

◦ In Location, click Browse to specify the folder where the split tests are generated.

◦ Type a Test prefix that will be appended to the name of each split test. Leave blank if you do not want

the split test names to have a prefix.

◦ In the split test list, mark the split tests that you want to generate. Click Select All to generate all split

tests or Unselect All to clear the list.

◦ To merge several split tests into a single test, multi-select the tests that you want to merge by holding

the Shift key and click the Merge button.

6. Click Finish.

Results

The tests are generated using the test names that you specified.

Editing Web UI tests
With the test editor, you can view and customize a Web UI test.

The test editor displays the test scripts. The edited test displays the list of actions and UI elements recorded during

the recording phase. Actions are represented in natural language, which allows you to modify the test manually.

There are two main areas in the test editor window. The area on the left, Test Contents, displays the chronological

sequence of events in the test. The area on the right, Test Element Details, displays details about the currently

selected action in the test script. In this area you can select a graphic object, an action related to the object, and its

location. You can also define a time out and users think time to execute your test.

When actions are selected in the Test Contents list, the UI Test Data is automatically synchronized to display the

screen captures of the user interface of the app during the recording. You can use the UI Test Data to select user

interface (UI) elements and add some verification points, or variables and modify steps in the test with simplified

scripts. Or you can create or modify a set of steps manually directly in the test script.

You can add datasets, test variables, or verification points in your script.

Inserting browser navigation actions in a Web UI test
While editing a Web UI test, you can add or insert browser navigation actions, such as Back, Forward, Close,

Maximize, Refresh, Restore, GoToUrl, and several others.

Before you begin

Ensure that you have created a Web UI test from a recording and have the test script open in the test editor.

1. Open a Web UI test script and in the Test Contents area, click in the launch app node where you want the

navigation action to be inserted.

2. Click the Insert button and select Navigation action (Web). Another way is to right-click the selection or click

Options and Insert in the test editor to select the menu item.

3. In the Test Element Details section, select an item in the list of object’s actions. You can also enter a value for

the timeout.

Result

433

HCL OneTest™ UI

434

The new navigation action is inserted before the script item you had initially selected in the launch node.

4. Save the test.

Using the Go To URL action to launch another web application
You can use the Go to URL action to add a step that launches a new web application. This action inserts a new URL

into the address field of a browser window and thus redirects playback to another web application.

1. In HCL OneTest™ UI, open a Web UI test script, and in the Test Contents area, click where the navigation action

is to be inserted.

2. Click Insert and select Navigation action (Web).

The new navigation action, which is displayed initially as Error: select an action, is inserted before the step

you had initially selected.

3. In the User Action Details section, select goToUrl in the list of Object’s actions, and enter the URL for the web

application in the Value field.

Chapter 7. Test Author Guide

Result

The error in the test is replaced by the user action Go to URL. You can also enter a value for the timeout.

4. Optional: Move the new navigation action Up or Down in the test script.

5. Save the test and run it to verify the Go to URL action.

Results

After adding the Go to URL user action, you can insert additional browser navigation actions to do things such as

maximize, refresh, and restore the browser window during playback.

Simulating keyboards and special keys actions on Web and native application
windows
When you record a test, you can simulate keyboard or special keys actions on web and native application windows,

or navigation dialog boxes on browsers on Windows operating system. To simulate these actions, you can add the

navigation action PressKey or InputKeys to the test script. Starting from HCL OneTest™ UI V9.2.1.1 of the product,

you must enter the values in the correct format.

Before you begin

• You must have created a Web UI test from a recording.

• The test script must be open in the test editor.

Restriction:

• PressKey and InputKey are not supported on Mac operating system.

• Only basic key combinations such as [CTRL]+[A], [CTRL]+[C], [CTRL]+[V] that are executed in browsers

are supported.

435

HCL OneTest™ UI

436

• New key combinations are not displayed in test scripts recorded with versions earlier to V9.2.1.1.

If you want to benefit from the new key combinations in existing test scripts, you must remove the

existing test steps and add new steps.

• Double-byte characters are not supported.

• PressKey and InputKey and any other actions that use Robot APIs are not supported in the following

scenarios:

◦ Screen is locked

◦ Application being tested is minimized

◦ Remote desktop window is minimized

This restriction is applicable irrespective of whether you initiate the execution from the product,

command-line interface, or any integrations that invoke the test.

1. In the test script, place the cursor where the step must be added, and click Insert > Navigation action.

2. In the Test Element Details section, select InputKeys or PressKey in the list of objects actions.

3. For InputKeys and PressKey navigation actions, specify the string in the edit field that is automatically entered

at the playback time when the step is replayed. The PressKey navigation action is used to simulate the TAB

key or specific kind of keys. The list of supported navigation key values and their formats are as follows:

◦ Tab->[TAB]

◦ Shift->[SHIFT]

◦ Enter->[ENTER]

◦ Esc->[ESCAPE]

◦ PgUp->[PAGEUP]

◦ PgDn->[PAGEDOWN]

◦ F1 to F12 ->[F1] ….[F12]

◦ Ctrl->[CTRL]

◦ Alt->[ALT]

◦ Delete->[DEL]

◦ “=�?->[=]

◦ “-“>[-]

◦ “+�?->[+]

For example, [CTRL]+[ALT]+[S], [CTRL]+[C], [CTRL]+[V]

Chapter 7. Test Author Guide

4. Optional: Select Native System Input to simulate the input keys or special key actions at the screen level on

the active window. This option is used to handle non-HTML windows such as file browse dialogs. To interact

with file browse dialog boxes, you should keep your machine unlocked and the browser dialog box is in the

foreground.

Notes:

◦ This option is not available for AFT parallel executions where multiple browser instances are

running.

◦ This option is not available on Mozilla Firebox browser navigation.

5. Save and run the test.

Defining a variable to run a test with a selected browser
If you run a test from the command line, as part of a schedule from HCL OneTest™ Performance, or from IBM®

Rational® Quality Manager, you can define a variable in the test to specify the web browser to use for running the

test. The reserved name for the variable is RTW_WebUI_Browser_Selection. After defining the variable, if you run the test

from test workbench, the browser selected in the Run configuration dialog box takes precedence over the browser

specified in the variable.

Before you begin

437

HCL OneTest™ UI

438

Now, HCL OneTest™ UI creates a test variable automatically whenever a new Web UI test is recorded or when an old

test is used that does not already have this variable defined.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. To create a container for the test variables that you create in a test:

a. Open the test, and in the Test Contents area, at the top of the test, click Test Variables.

b. Select Add > Test Variables Containers.

Result

A container named Test Variables is created for the user-defined variables.

c. Select the container to rename it.

Result

The Test Variables Details area opens for you to type a new name in the Name field.

3. To define a variable in a test:

a. Select the newly created test variable node.

b. Click Insert > Variable Declaration.

c. Enter the name of the variable, which is a reserved name for this selection variable:

RTW_WebUI_Browser_Selection.

d. Click OK.

e. In the Visible in section, select This test only to restrict data to the current test only. Even if another

test has a variable with the same name, that variable will not change. Select All tests for this user to

share the value of this variable when the test runs in a compound test. For the variable to be shared,

both tests must have a variable with the same name and must have this option enabled.

4. Assign a specific value to the variable and initialize the variable:

a. In Initial Value, ensure that the Text option is selected.

b. Use one of the following variables to specify a browser:

Browser Variable Variable short form

Mozilla Firefox Firefox, Mozilla Firefox ff

Google Chrome Chrome, Google Chrome chrome

Internet Explorer v9 32-bit Internet Explorer, Microsoft In

ternet Explorer

ie

Internet Explorer v9 64-bit Internet Explorer, Microsoft In

ternet Explorer

ie64

Chapter 7. Test Author Guide

Browser Variable Variable short form

Internet Explorer v10 and v11 Internet Explorer, Microsoft In

ternet Explorer

ie

Microsoft Edge Edge, Microsoft Edge edge

Apple Safari Safari, Apple Safari safari

5. Save the test.

What to do next

You can now run the test from the workbench, from the command line, as part of a schedule, or from Rational®

Quality Manager.

You can use this test variable in If conditions to assign different behavior for different browsers. Doing so allows you

to create more robust tests that will run successfully in more than one browser.

Creating verification points in a test
You can create verification points for any object properties, such as label, color, and count, and you can verify that an

object property is enabled, that it has focus, whether it is clickable, and so on. You can create verification points while

recording a script or afterwards.

Before you begin

You can create verification points in the tests that are created from Android, iOS, hybrid, or web applications.

About this task

Verification points verify that an expected behavior occurred during a run, or verify the state of a control or an object.

When you create a verification point, you capture information about a control or an object in the application to

establish this as baseline information for comparison during playback. When you run a test, the property is compared

to see whether any changes have occurred in the application, either intentionally or unintentionally. This is useful for

identifying possible defects when an application has been upgraded for example. An error is reported if the expected

behavior did not occur.

To create verification points:

1. In HCL OneTest™ UI, open the test script and in the Test Contents area, click an action item for which you

want to create a verification point.

2. Click the insert button and select Verification point for Android, iOS or Web UI, depending on the target

application. Alternatively, right-click the selection or click Options and insert in the test editor to select the

menu item.

3. In the Test Element Details section select a value for the Graphic object and Verify attribute artifacts

identified as required for the action selected. Some artifacts are dependent on others, so when you select

an attribute, you must select the values required for the options related to the selected attribute. To combine

several attributes for the selected object, select the choice all of and select the objects attribute. Click the add

439

HCL OneTest™ UI

440

attribute line button to add a new attribute. You can click the remove attribute line button to remove

an attribute.

4. Optionally select the Retry verification point until attribute is verified or time out expires and enter a value for

the time out.

The values in the graphic object and attributes lists are different for web apps and Android apps.

5. Save the test.

Note: You can add image properties, other properties and values to the step using the drag and drop

method from the SmartShot View. For details, see Creating verification points from the SmartShot

View on page 441.

Creating verification points for alert, confirm, or prompt dialog box
You can create verification points in alert, confirm, or prompt dialog box of a recorded Web UI test script to validate

text messages during playback.

About this task

You can enable the Validate Text check box in the test step of alert, confirm, or prompt dialog box of a recorded Web

UI test script. After you enable this check box and play back the test script, the text message in the dialog box is

validated before the user interface action. The results are captured in the test log, mobile, and Web UI reports.

1. Record a web application with alert, confirm, or prompt dialog box.

2. In the generated test, under the Test Contents pane, create a duplicate of the required test step such as

Accept the Alert, Accept the Confirm, or Enter text and Accept the Prompt.

3. Select the required original test step.

4. Under the User Action Details pane, enter the required text and select Validate Text. This changes the original

test step to Verify that Alert text contains dialog box text, Verify that Confirm text contains dialog box text,

or Verify that Prompt text contains dialog box text according to your test step selection. This ensures that

the text message is validated before the user interface action is played back in the dialog box.

5. Save the test.

Chapter 7. Test Author Guide

Assigning a test variable to an objects property
You can assign a new value to a test variable and set it to a Mobile objects property.

Before you begin

To be able to create a variable assignment, you must first declare a variable. This task is explained in the Declaring

and assigning test variables page. Then you can set a value for the objects property, it will be used when the variable

will be executed in the test.

You can create variable assignments in all tests that are created from Android, iOS, hybrid or Web UI applications.

Note: When you run a test from the mobile client on mobile devices, it uses the same values that you used

during recording. If you modify the test script and create a dataset or variable, or if you add a condition, a

loop, custom code, references or add other statements, they are not taken into account by the mobile client at

run time. To verify that the initial recorded values are substituted with variable data, you must initiate the test

run from HCL OneTest™ UI.

About this task

This action is applicable to tests created from Android, iOS, hybrid or native mobile applications.

To create a variable assignment and set it the value to a Mobile objects property:

1. Open the test, and in the Test Contents area, select a test element.

2. Select Insert > Variable Assignment, which inserts the assignment before the selected element. The Test

Editor window opens and lists the variables available to the test.

3. Select the variable that you are assigning a value to, and, in the Set to box in the Test Element Details area,

select UI object property, set the value for the variable to Mobile objects property. Select a graphic object and

the objects property.

The values of the properties are different for web, Android and iOS apps.

4. Save the test.

Result

A set statement is added to the test, with the value you chose.

The other way is to assign a variable to an object select in the Data Mobile view but the variable must be created

before:

5. In the SmartShot View view, from the SmartShot tab or the Elements tab, right-click an object and select

Create variable assignment from the element selected. In the wizard that opens, select a variable and click

OK. The variable is added to the test suite.

Creating verification points from the SmartShot View
You can create some verification points in a test with simplified scripts by using the SmartShot View. A verification

point can be added for an object or created for the properties of the object.

441

HCL OneTest™ UI

442

Before you begin

To be able to create verification points, you must create variables in the test editor. See Declaring and assigning test

variables.

About this task

You can create verification points for any of the widgets or widget properties.

To create verification points:

1. In HCL OneTest™ UI, open the test script, and in the Test Contents area, click an action item for which you

want to create a verification point.

2. In the SmartShot View, select an object in the SmartShot tab, an item in the hierarchical list of Elements, or a

property in the table.

3. Right-click and click Create Verification Point for propertyName. Note that the properties displayed will be

limited to those available for the selected object. A new step is added to the test script for the verification

point.

4. Select a value in Graphic object and a value for the objects property in Verify attribute.

You can also modify a verification point using the drag and drop method:

5. Select a step with a verification point. In the SmartShot tab, select a property available in the table of

properties for the target object, drag the property and drop it on the test script or on the verify attribute field.

The object property and its value are showing in the test step and in the appropriate fields in the Check Action

Details area.

You can also add images as main property in a verification point with the same method. You select an image

in the SmartShot view, drag and drop it on the Identified by field.

6. Save the test.

Adding a loop
To run a test or part of a test repeatedly for a specified number of times or duration, add a loop to the test. You can

add a loop to the Launch Application node or In Application node.

About this task

When you add a loop to specific steps in a test, those steps are split to create a new In Application node. For

information about splitting a test, see Splitting test actions on page 446.

When you associate a dataset to a test and want the test to fetch data from all of the rows of a dataset, add a loop to

the test and set the loop to run infinite. You can also set the loop to run for a specific duration or number of times. For

information about associating a dataset to a test, see Associating a dataset with the test.

To add a loop to the Launch App or In App nodes:

1. In the Test editor, click the Launch Application or In Application node.

2. Click Insert > Loop.

Chapter 7. Test Author Guide

In the confirmation dialog box, click Yes.

3. In the Loop Details area, specify a name for the loop.

4. In the Loop Details area, type the number of iterations for the loop to repeat.

Option Description

Count-based Runs for the number of iterations that you select.

Time-based Runs for at least the time that you specify. The loop

always finishes the iteration. For example, if you

select a time of 1 second and a loop takes 10 sec

onds to run, the loop finishes one iteration, and then

checks the time.

Infinite Runs until the test stops.

Note: If a test includes multiple loops with dataset values and a new dataset value is required for the

first iteration of the second loop, then a dataset increment is required before the second loop runs. To

do this, you must insert a data source controller by clicking Insert > Data Source Controller before the

second loop starts and then select the required dataset. You can then select the Increment option for

the data source from the Data Source Controller Details pane that triggers the retrieval of the dataset

value to automatically choose the new dataset value.

5. Optional: Select Control the rate of iterations, and type your preferences for the pacing rate.

In specifying a number of iterations for a unit of time, you set a fixed period for the iterations to complete. If

you select Randomly vary the delay between iterations, the total delay is randomly distributed. If you clear this

check box, the same delay occurs between each iteration.

443

HCL OneTest™ UI

444

Note: Statistically, the Randomly vary the delay between iterations option sets delay amounts at

random from a negative exponential distribution with the same mean as the fixed delay value. The

negative exponential distribution has a long "tail," which means that a very small number of delays

will have very large values. Therefore, make sure that the application you are testing is not negatively

affected by long periods of inactivity (such as a timeout that disconnects the user).

Adding conditional logic to tests
You can insert IF-ELSE logic around portions of a test to make those portions run if a specific condition is met.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Select the steps to be added to the IF block, right-click and click Split Mobile or Web UI actions.

3. Click Split and create container, select If from the drop down list, and click Finish.

Result

Chapter 7. Test Author Guide

The selected steps along with the Launch Application node are moved to the If block and the rest of the steps

are added to the In Application node.

4. To add the Else block, click the If block and click Add > Condition (If) - ELSE Block.

Result

The Else block is created and the steps from the If block moves to Then node.

5. In the Test Element Details area, under Condition add conditions:

◦ Next to the First operand field, click Data Source, and then select a data source to be compared with

the string in the Second operand field, or type a value in the First operand field.

◦ In the Operator field, indicate the basis of comparison of the two operands. Note that the two

operands are strings.

◦ Next to the Second operand field, click Data Source, and select a data source to be compared with the

First operand, or type a value in the Second operand field. When the defaults are used (both operand

fields set to true and the Operator field set to Equals), the block is always processed.

6. In the Test Element Details area, under Options, choose the required comparison type by selecting or clearing

the check boxes and save the changes.

445

HCL OneTest™ UI

446

Splitting UI actions
After you record a test, you can split the test actions into multiple test segments with different nodes. With the test-

splitting capability, you can record a relatively long scenario with many functional steps against an application and

then, in the editor, modify the target apps. Then you can generate multiple tests from a single recording that you can

replay in a different order with a schedule.

To split UI actions:

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. In the test editor, select one or more actions in the test script for splitting into one or more application nodes.

You can select elements, except for variable containers, that are immediate children of the root node of the

test.

3. Right-click the selected elements, and then select Split UI actions.

4. In the refactoring test dialog box that opens, examine the changes to be performed as a result of the split. You

can leave or clear the options if you do not want certain data to be correlated.

5. Click OK.

Result

One or more app nodes In application: AppName are created in the test script from the selected test element.

6. Optionally: you can change the target app to be tested for a selected app node. To do so, select an app node,

click the Change application button and in the list of applications available, select a new app. Then select the

Starts a new instance of application selected below. To apply the change of app to the all the test nodes, that

is to the whole test suite, click the .

Result

The test nodes turns from In application: AppName to Launch application: AppName.

7. Save the test.

Optimizing the playback time of a test
When you play back a Web UI test, by default, the test collects a lot of data. This data includes screen shots, response

time breakdown data, and highlighted UI controls. The size of a test depends upon the data it contains; playback

time increases as the size of a test increases. To optimize the playback time, you can choose to collect only the data

which you need.

About this task

For example, when you play back a test, screenshots of all of the steps are captured and shown in the UI Test report.

Most of the times, you might require screenshots only for the failed steps.

Note: For the Safari browser, you can capture only the web page screenshots.

Also, if the computer on which you are playing back the test is locked or you are working on other applications on that

computer, the captured screenshots will either be dark black or belong to applications that are not relevant to the test.

When you capture only page screenshots, you can lock the screen or work on other applications on the computer.

Chapter 7. Test Author Guide

Similarly, you might be interested only in testing the functionality of the application, and the performance testing

might be covered by someone else. You can choose not to capture the response time breakdown data thereby

improving the speed of the playback of your test.

You can apply playback optimization options for the test or for the workbench (in Preferences). When you set the

optimization options for the workbench, only the desktop screenshots are captured and applied to all of the tests.

When you import a test for playback, the configurations on your workbench are used by the test. When you set the

optimization options for the test, you can choose to capture screenshots for pages or desktop. To apply playback

configurations at the test level, use the pre-defined variables and values mentioned in the table.

Table with variables for playback optimization:

Table 5. Variables for Playback Optimization

Table with variables and their description

Variables Values Description

DISABLE Stop capturing screenshots for all the

steps

webui.report.screenshots

Note: If this vari

able is not set,

desktop screen

shots for all of

PAGE* Capture the screenshots of pages for all

of the steps

447

HCL OneTest™ UI

448

Table 5. Variables for Playback Optimization

Table with variables and their description

(continued)

Variables Values Description

PAGE_ONFAIL Capture the screenshots of pages for only

the failed steps

PAGE_ONVP Capture the screenshots of pages for all

of the verification points

PAGE_ONVPFAIL Capture the screenshots of pages for only

the failed verification points

PAGE_ONFAIL_AND_VP Capture the screenshots of pages for only

the failed steps and all of the verification

points

DESKTOP Capture the screenshots of desktop for all

of the steps

DESKTOP_ONFAIL Capture the screenshots of desktop for

only the failed steps.

DESKTOP_ONVP Capture the screenshots of desktop for all

of the verification points

DESKTOP_ONVPFAIL Capture the screenshots of desktop for

only the failed verification points

the steps are cap

tured.

DESKTOP_ONFAIL_AND_VP Capture the screenshots of desktop for

only the failed steps and all of the verifica

tion points

webui.responsetime False Do not collect response time

webui.highlight False Do not highlight UI controls during play

back

Chapter 7. Test Author Guide

* If you specify the PAGE value, screenshots are captured differently on different web browsers and take more

time:

• Google Chrome

◦ ▪ The portion of the web page that is hidden under the scroll bar is not captured.

▪ The browser is in focus even when minimized.

• Internet Explorer

◦ The portion of the web page that is hidden under the scroll bar is captured but in black.

◦ The browser window resizes often while the screenshot is taken.

To apply playback optimization options for the workbench:

1. In the workbench, click Window > Preferences > Test > Test Execution > UI Test Playback.

2. Click the Report tab and select the following options as required:

◦ To capture the screenshots of only the web browser page that runs the application under test, select

the Capture browser page screenshots check box.

◦ To capture screenshots, click the Take screenshots while playing back check box is selected, and

select one of the options to take screenshot for.

◦ To highlight the recorded page elements during playback, select the Highlight the page element check

box.

3. To collect performance data, click the Desktop tab and select the Collect performance data check box. If

the check box is not selected, the response time breakdown (On App/Off App) data is not collected and the

related report is not generated.

4. Click OK.

What to do next

You can now play back the tests.

Related information

Running a Web UI test on page 1015

Optimizing Web UI load testing for scalability
Scalability denotes the number of virtual users that can be emulated on an agent machine to generate load. In a Web

UI load test, each virtual user requires one instance of a web browser to be run. Because each instance of a browser

consumes key computer resources such as memory, CPU and Network data, you must tune a few of the parameters

to comfortably run appropriate number of browser (virtual users) on an agent machine.

About this task

Here is the sample configuration of a computer that was used to determine the memory consumption:

449

HCL OneTest™ UI

450

Table 6. Sample configuration

Operating System Red Hat Enterprise Linux 6.6

System main memory 4 GB

Free memory before test run ~3 GB

Firefox (empty) memory consumption 130 MB

Firefox (medium-size app) main memory 200 MB

With this configuration, about 15-20 (300 MB / 200 MB) browser instances or virtual users can be emulated on on

agent machine. Note, the browser memory consumption may vary based on the dom size of the web applications.

Tuning parameters

By default, the playback process of the Web UI test creates a thread pool of size 10 threads. This behavior affects

the execution time when more than 10 virtual users per agent machine are emulated. This limit can be improved by

passing the =-DrptDynamicThreads parameter to the agent machines.

Also, the Web UI test playback is a java process with maximum memory limit set to 512MB through the –Xmx

argument. This parameter might yield more memory for browser instantiations.

To optimize Web UI load test:

1. In the Test Navigator view, double-click the location assets for optimization.

2. In the General Properties tab, double-click RPT_VMARGS row.

If RPT_VMARGS parameter is not available, click Add.

3. In Property Name, specify RPT_VMARGS and in Property Value specify -DrptDynamicThreads -Xmx512m.

4. Click OK and save the change.

Actions from the SmartShot View
The SmartShot View displays the screen captures that were captured during the recording of the application under

test. Use this view to display and select user interface (UI) elements and optionally add verification points to the test

script.

Adding user actions in a test from the SmartShot View
The SmartShot View offers graphical and hierarchical views of the current step in a test. It also displays a table of

properties associated with a selected object. You can also use this view to quickly create user actions, adding steps

to the test using the selected graphical elements.

Before you begin

You must have created a test from a recording and have the test script open in the test editor.

About this task

You can add actions for any of the widgets in the SmartShot view.

Chapter 7. Test Author Guide

To add a user action in a test from the SmartShot view:

1. In the Test Contents area of the test editor, click an action item.

2. In the SmartShot view, select a graphical object or the corresponding element in the hierarchical list Elements,

and then right-click and select Add user action for this element

Result

In the test editor, a step is added just before the current selected node.

3. In the Test Element Details section, select a value for the action of the object. An easier method is to drag an

object in the SmartShot view, and drop it in the test script.

4. Save the test.

Modifying a step in a test from the SmartShot View
You can modify the step targets in a test from the SmartShot View. Two options are available from the menu items.

One is used to modify an action in a test script and assign a new object as target of the action. The other option is

used to define execution variables for the selected object and give a new value to the property associated with the

object.

Before you begin

You must have created a test from a recording and have the test script open in the test editor. In the Test Contents

area you must have selected the action item for which you want to modify the step.

Note: When you run a test from the mobile client on mobile devices, it uses the same values that you used

during recording. If you modify the test script and create a dataset or variable, or if you add a condition, a

loop, custom code, references or add other statements, they are not taken into account by the mobile client at

run time. To verify that the initial recorded values are substituted with variable data, you must initiate the test

run from HCL OneTest™ UI.

About this task

You can modify a step target in a test by either assigning an object as the step target or by creating a variable

assignment from a propertyName.

To assign a new object as step target:

1. In the SmartShot view, select a graphical object or the corresponding element in the hierarchical list Elements,

and then right-click and select Use this element as step target.

Result

In the test editor, the current step target is replaced by the selected graphical object.

2. In the Test Element Details section, you can change the action or location initially specified to fit the new

target.

To assign a variable and set a new value for the objects property:

451

HCL OneTest™ UI

452

3. Select an object in the SmartShot or Elements view, and then right-click and select Create variable

assignment from propertyName.

4. In the dialog box, search for a variable that was created in your test. To do so, enter a name to filter the list of

available variables and click the one matching the name. Click OK.

5. Save the test.

Improving test script robustness
Sometimes the recorded steps in a test cannot be recognized when the test is played back, thus leading to test

failures or errors. To avoid these object recognition issues, you can change the manner in which objects are identified,

you can use object locator conditions, or apply responsive design conditions, or add a list of preferred properties

to be used during the test run. You can also perform asynchronous user actions for the steps playback to improve

the automated test reliability. That way, you improve test robustness and improve the chances that the test can be

included in an automated testing process.

One reason for step failure in a test is when a version of an application is updated. You record a test with one version

of an application. When you reuse a test on a newer version of the application, which has new buttons, for example, or

new object locations, these objects cannot be found when the test is played back. Another reason for step failure is

that data in the test has changed from the time the test was recorded (for example, the date).

You can improve the test script robustness as follows:

• By modifying the way the objects are identified in a test and choosing a more appropriate identifier:

◦ You can change the property and value used to identify the target object on a step so that it can be

found more easily when the test is replayed. See OBJECT PROPERTIES on page 452.

◦ You can modify a step target by using an image as the main property or modify the generated image.

See IMAGE RECOGNITION IN A TEST on page 455.

◦ You can replace a recognition property with a regular expression in a verification point.

• By adding object locator conditions in a step to find the target object when the test is played back. See

OBJECT LOCATION IN A TEST on page 454.

• By applying Responsive Design conditions to actions that should be played back only once. See RESPONSIVE

DESIGN CONDITION on page 456.

• By selecting Perform asynchronously while selecting click, hover or Press Enter actions.

OBJECT PROPERTIES

Object properties are captured during test recording and displayed in read-only mode in the Properties table of

the UI Test Data view. To find an object in the application-under-test during playback, HCL OneTest™ UI compares

the properties of the object that are captured during the recording with the description of the properties that are

displayed in the User Action Details area of the test editor. These properties are different for Android, iOS, or Web UI

applications.

When you select a step in a recorded test, the test editor displays the object properties on which an action is

performed. The object properties are listed in the Object identified by field, followed by the operator field and an

Chapter 7. Test Author Guide

insert field for the property value. Among the standard object identifiers, you can find Content, Class, Id, 'Xpath on

page 457 depending on the graphic object.

Figure 1. Test editor, step selected with corresponding object property, operator, and property value.

You can change these parameters (property, operator, property value) in the User Action Details area of the test

editor or from the UI Test Data view by using the context menu. When actions are selected in the Test Contents list,

the UI Test Data view is automatically synchronized to display the screen capture for the step selected. Properties

can be modified in the Screen Capture tab, in the Elements tab, or in the Properties table by using the context menu.

Figure 2. Properties can be modified from the UI Test Data View, in the Screen Capture tab, in the Elements tab, or in

Properties table by using the context menu.

For details, see Modifying the property used to identify an object in a test script on page 457.

To improve the object identification, specify the properties to be used in the test. Some applications are using

properties that are described by custom attributes, and they are not automatically detected at the test run. To

overcome this standard behavior, you can set an ordered list of the custom attributes on page 459 so that they are

identified as the main properties and used during the test execution.

OBJECT PROPERTIES

Object properties are captured during test recording and displayed in read-only mode in the Properties table of the

Mobile and Web UI Data view. To find an object in the application-under-test during playback, HCL OneTest™ UI

compares the properties of the object that are captured during the recording with the description of the properties

that are displayed in the User Action Details area of the test editor. These properties are different for Android, iOS, or

Web UI applications.

When you select a step in a recorded test, the test editor displays the object properties on which an action is

performed. The object properties are listed in the Object identified by field, followed by the operator field and an

insert field for the property value. Among the standard object identifiers, you can find Content, Class, Id, 'Xpath on

page 457 depending on the graphic object.

453

HCL OneTest™ UI

454

Figure 3. Test editor, step selected with corresponding object property, operator, and property value.

You can change these parameters (property, operator, property value) in the User Action Details area of the test

editor or from the UI Test Data view by using the context menu. When actions are selected in the Test Contents list,

the UI Test Data view is automatically synchronized to display the screen capture for the step selected. Properties

can be modified in the Screen Capture tab, in the Elements tab, or in the Properties table by using the context menu.

Figure 4. Properties can be modified from the UI Test Data View, in the Screen Capture tab, in the Elements tab, or in

Properties table by using the context menu.

For details, see Modifying the property used to identify an object in a test script on page 457.

To improve the object identification, specify the properties to be used in the test. Some applications are using

properties that are described by custom attributes, and they are not automatically detected at the test run. To

overcome this standard behavior, you can set an ordered list of the custom attributes on page 459 so that they are

identified as the main properties and used during the test execution.

OBJECT LOCATION IN A TEST

When a test is run, the graphical objects in the test must be detected automatically, but in some cases, the element

on which the action is performed might be difficult to identify. In this case, you must update the test script and give

more accurate information to locate the object on which you want to perform the action.

Here is an example: You record a test, and one step is 'Click on Edit text whose content is 'August 30th, 2013'. If the

test is played back automatically, it will fail if the date is no longer August 30, 2013. You must modify the step and

give more accurate information to locate the object on which you want to perform the action. That way, the object

can be found and used automatically when the test is run. HCL OneTest™ UI offers various ways to identify and locate

objects and increase test script reliability.

In HCL OneTest™ UI, various object location operators are available to identify objects in an application-under-test.

They are displayed in the Object location fields in the User Action Details area of the test editor. Two object locations

Chapter 7. Test Author Guide

can be used in a test step to set location conditions and find the target object in the test. For details, see Setting

object location conditions in a test script on page 461.

Figure 5.

Object location fields with the list of location operators (for Android apps in the example)

IMAGE RECOGNITION IN A TEST

When a test is recorded, the object on which an action is performed is identified by its main property, which is usually

a text property. Sometimes, text properties are not easily identifiable. This can be the case when there is no property

description or no label to identify the target element in a test step. In such cases, the test generator uses an image

property to identify the elements on the test steps.

To fix possible image recognition issues, HCL OneTest™ UI uses image correlation to recognize and manage objects

during playback. The image on which the action is performed (the reference image) is captured during the test

recording and compared with the image of the application-under-test at playback (candidate image). A recognition

threshold is used to accept an adjustable rate of differences between the reference image and the candidate image,

and evaluate if the images match. The default recognition threshold is set to 80, and the default tolerance ratio is set

to 20.

Here are some examples of test scenarios where image correlation is used:

455

HCL OneTest™ UI

456

• You record a test on a mobile phone, and play it back on a desktop. Because the image width and height

change from one device to another, test playback fails on devices that do not have the same screen ratio.

• Some target objects in the recording are no longer the same when the test is played back. Example: When a

virtual keyboard is used in a secure application, the position of the digit buttons can change from one session

of the server to the next.

In some cases, the application-under-test might contain objects that HCL OneTest™ UI cannot find.

Note: From v9.1.1, custom graphic objects are recognized. In the edited test, a custom object is

identified as a Custom Element graphic object, with name1-name2 description in the test script

.

In other cases, the image selected is inappropriate, and the test fails. In case of recognition issues at playback, you

can modify the image used to identify the target object in the test step, or you can change the threshold score and

tolerance ratio in the edited test.

Note: Images can be used in verification points for controls on the target objects in the tests. For example,

you can verify the position of a dropdown list on a screen. For details, see Creating verification points from

the SmartShot View on page 441.

If the threshold is set to 0, the candidate image that is most similar to the reference image will be selected, even if it

is not the same one. If you set the threshold to 100, the slightest difference in images will prevent image recognition.

For example, an image with different width or height, because it is re-sized when played back by a tablet device,

would not be selected if the threshold were set to 100, even if it is the same image. You can change the aspect ratio

tolerance if a test fails on devices that do not have the same screen ratio, or if the images available in the application

at playback are different from the ones available when the test is recorded.

HCL OneTest™ UI displays an image matching preview view when you set the recognition threshold in the test editor

to help you find which images might be accurate to identify the target object when the test is played back. The best

candidate images are green, images whose score is over the threshold are yellow, and are not the most appropriate,

and images whose score is under the threshold are in red. These candidate images do not match with the reference

images.

You can find the image correlation details in the test report that is displayed when test execution is complete.

For details, see Modifying a step target using an image as the main property.

RESPONSIVE DESIGN CONDITION

Some applications use Responsive Design, that is to say, the application behavior or graphic display adapts to the

target device used. For example, you find more and more applications that are designed to change the format of their

graphic elements according to the screen size or the screen orientation, or according to the version of the operating

system used, and other such parameters.

Chapter 7. Test Author Guide

Other applications require users to log in and provide their location. Still others play tutorials to explain how to use

the application the first time the application is installed and run. After that, these tutorials are not shown. These

situations can create test failures.

To fix these test failures issues, you can set execution conditions to a selection of variable actions. That way, a block

of actions are executed the first time the test is run but are not executed the next time the actions in the test are run.

This is an example of a Responsive Design condition. For details, see Creating Responsive Design conditions in a

test. This feature is available for Android applications only in version 8.7.1.

ACTIONS PERFORMED ASYNCHRONOUSLY

Some user actions such as the click, hover and Press Enter actions might produce step failures during the test

playback. From 9.2.1 release, you can select the Perform asynchronously check box so that the actions are

performed asynchronously. This option is improving reliability in the test automation scenarios.

Modifying the property used to identify an object in a test script
When a test is recorded, the property that is used in the test to identify a graphic object might be inaccurate and

cause the step to fail during the playback. You can modify an object property and its value, as well as the operator, to

improve test robustness.

About this task

You can change the value of the default identification properties for the UI controls.

Note: For the XPath default identification property that is used for UI controls, its value is calculated

automatically when recording the test, and all operators are compatible with this identification property. XPath

property can be modified but with some limitations: if the XPath value is modified with a value that is not

captured when recording the test, the Screen capture is not highlighted in the Mobile Data View and only

'equals' operator is accepted, no other values or regular expressions can be used.

You can also replace a generated text property with an image property to identify a target object. For details about

object recognition in mobile and Web UI tests, see Improving test script robustness on page 452.

To modify an object property, you can use one of the following methods: drag and drop, copy and paste, or the

context menu.

457

HCL OneTest™ UI

458

1. Click a step in the script. The object captured during the recording of this test step is highlighted in the

SmartShot view.

2. In the Properties table of the SmartShot view, select a relevant property. Click the View main property

only icon in the filter tool bar to see the main properties displayed in bold, or click the View verifiable

property only icon .

3. Drag the property to the Object Identified byfield in the test editor. Or, right-click the property in the table and

select Copy, then Paste in the Object Identified by field. Another method is to right click a property in the table,

and select Identify step target using property.

A menu item is available for each candidate property in the context menu of the SmartShot view (see Figure

2). If the newly selected property is inappropriate, a message warns you that object recognition may be

broken. The property name and its value are replaced in the Object identified by fields.

When the test is recorded, the default operator for identifying an object in a test run is equals but there are

many other operators that you can use to identify objects in a mobile or web UI application. They can be used

for verification points in a test to verify an attribute, for example. See Creating verification points from the

SmartShot View on page 441 and Creating verification points in a test on page 439.

Figure 6. Modifying the object property and value from the Properties context menu

Chapter 7. Test Author Guide

Figure 7.Modifying the property and value of an object captured during

the test recording with a candidate property from the SmartShot context

menu

4. Save and run the test to verify that the object is identified.

Related information

Modifying a step target using an image as the main property

Specifying the properties used for UI controls
By default, the Web UI tests use the standard object properties such as Content, ID, and Class, Xpath to find, identify

and locate objects for UI controls. But some applications under test use custom attributes to describe properties for

UI controls. To avoid standard behavior, you need to add them to a list of preferred identifiers and prioritize them so

that they are recognized as the main object identifiers in the application under test.

In the preferences, set a list of these properties:

1. In the test editor, click Window > Preferences > Test > Recording > Web UI Recording > Preferred object

identifiers

2. Click Add and in the dialog that opens, enter a name for the web object property so that it can be used as an

object identifier when the test is recorded and run. Then, click OK

3. Use Up and Down buttons to prioritize the attributes in the list. Click Apply and OK

459

HCL OneTest™ UI

460

4. When the list of preferred object identifiers is set, record the test. If the test was recorded before you set a list

of preferred object identifiers, you need to run it again to apply the preferences.

5. Open the test script, and check that the attributes are available in the list of properties in Object identified by.

Chapter 7. Test Author Guide

Results

Now, the custom attributes are automatically recognized when recording the test, they are listed as main object

identifiers in Object identified by and in bold, in the table of properties. You can modify the property and its value on

the test steps on page 457 as for the standard attributes.

Setting object location conditions in a test script
In some cases, recorded actions are not replayed as expected because the objects cannot be found. In the test,

multiple location operators are available to improve object recognition.

About this task

For additional details about object recognition in mobile and web UI tests, see Improving test script robustness on

page 452.

Here is an example where setting object location conditions is helpful: You record a test, and the action on a step,

Click on Edit text,, is not clearly identified, with no label, and with variable content, such as a date. When the test is

played back, the action cannot be performed because the date has changed.

461

HCL OneTest™ UI

462

Figure 8. Example of action that can fail when the test is played back.

For this test to play back successfully, you can modify the object location in the test script so the target object can be

found during test replay. For example, you can indicate that Edit text is to the right of a stable graphic object that is

easily identifiable, for example, an Edit text field whose label is city. You can proceed as follows:

1. In the test, click a test step.

2. In the User Action Details area, set Object Identified by to (automatic identification).

Figure 9. Automatic detection

3. Select a location object in the Object location field.

The Object location area expands to include indented fields for Graphic object, Object Identified by, and

Object location.

Figure 10. Select an Object location

Chapter 7. Test Author Guide

4. Select the graphic object that will be used as the reference object in the indented Graphic object field, for

example, Edit text.

Figure 11. Select a reference object

5. Select its property, for example, Text, in the indented Object Identified by field and enter its value, for example,

city.

Figure 12. Select a property and enter a value

You can verify the property description of the object in the Properties table or in the Elements tab of the UI

Test Data view.

6. Define another object location that is helpful to find the reference object. You can indicate, for example, that

the object whose value is city is located near an Analog clock whose content is Eastern time.

Figure 13. Set an object location condition with a location operator, graphic object, its properties selected and

values

7. Save and run the test to verify that the step is successful.

8. Another method of setting object location conditions is to select an object in the Screen capture tab, and to

drag it on the Object location field. That way, the property and value of the object selected are automatically

entered in the object location fields.

463

HCL OneTest™ UI

464

Figure 14. Drag the object and drop it on the Graphic Object field

9. You can also set a secondary locator condition to identify the target object on the step. The object can be

found easily if the conditions are met. This could be useful, for example, in a test using a spreadsheet or a

calculator. To set a secondary condition, you proceed as explained above. In the Secondary location field,

select a location operator, a graphic object, the object property in Identified by, an operator, and enter the

required values.

Figure 15. Set a secondary location condition, with a location operator, a graphic object selected, its properties

and values.

10. Save and run the test to verify that the step is successful.

Chapter 7. Test Author Guide

Results

When all of the steps play back successfully, the test can be used in an automated testing process.

Related information

Modifying the property that is used to identify the object in a test on page 457

Putting test assets under source control
Use version-control software, such as Rational® Team Concert™, to put the test assets under source control.

If you use a version-control software, such as Rational® Team Concert™, put the following assets under source

control to share them with the members of your team that use the same source-control product. Put the different

project assets in separate folders under the main project.

Asset File name extension Comments

Projects .project This enables the project to be seen and im

ported by another user.

Manifest and build

files

MANIFEST.MF, build.properties These are project files that are checked in.

Recording .recdata, .recsession The recording data and the session informa

tion will be part of these files.

Tests .testsuite The test script.

Managed Application .ma This is the application under test that is in

strumented with the code.

Custom code .java Put any custom code that you have written

for a test under the source control. Put this

code under the src folder for the project; for

example, in src\custom.

This code must be versioned as a single log

ical unit with the test that includes it (that is,

the code and the test should be versioned to

gether).

JavaScript .js Put any JavaScript file that you have used for

a test under the source control.

Datasets .dataset Put any Dataset that you have used for a test

under the source control.

Results .xmoebreport, .stats, .rstats, .pstats,

and .mstats

These are results assets and contain the da

ta that is used to create reports and should

465

HCL OneTest™ UI

466

Asset File name extension Comments

be under source control. Some of these as

sets are not visible in the Test Navigator. To

see these assets, in the Test Navigator view,

click the drop-down icon and select Filters

and clear the Statistics Stores check box.

You can perform the check out and check in

operations from this view. Store the results in

a separate results folder, which you can spec

ify when running a schedule or test.

Follow these guidelines:

• During a session, keep schedules and tests checked out for easy editing. When you exit Eclipse, you are

prompted to check them back in.

• Put test logs (files with the .execution file name extension) under source control, in the results folder.

• Do not put the class path file under source control.

Overview of guided healing and self-healing

As web applications undergo changes during regression testing, the application GUI is frequently modified and the

regression tests must be updated to identify possible issues, and to ensure that the new code has not affected other

parts of the software. Some changes can be easily detected such as edit box labels, but others can be more difficult

to identify, for example, the UI control properties. To help testers to identify those changes in the application and to

fix the Web UI tests accordingly, more intelligence has been added to test playback with the guided healing and self-

healing features.

You can apply guided healing and self-healing features when you initiate tests through the following interfaces:

• UI Test perspective of HCL OneTest™ UI

• Command line of HCL OneTest™ UI

Guided healing and self-healing through the UI Test perspective

To enable the guided healing feature, you must select the Collect data to update test steps option when you run your

test. Thus, data is collected during the test run. If an object is not found, HCL OneTest™ UI identifies the object that

Chapter 7. Test Author Guide

best matches its description as a possible candidate to replace the missing element and a snapshot is taken. When

the test is complete, the steps are highlighted with colors to identify which of the test steps passed and those that

require updates. Then you can check the status of each step in the edited test and update the steps manually.

Another option is available from HCL OneTest™ UI v10.0.0 to enable automatic update of the tests. It is the

Automatically update the test after the end of the execution option in the Run configuration wizard that is known

as the self-healing option. It must be selected when you run your test and enable the guided healing option. Thus,

when the test execution is complete, the test steps are automatically updated and the tester has no change to make.

It applies to Web UI tests and also to compound tests from HCL OneTest™ UI v10.0.1. When you choose this option

for a compound test, all the Web UI tests are self-healed. The hierarchy and snapshots are captured. But at the end

of the execution, the amber steps are automatically updated. The self-healing feature is particularly useful when you

have numerous test cases that remain re-usable for successive regression cycles.

Updating tests manually can be carried out as a first testing phase prior to starting using the self-healing feature. You

can update tests manually first to verify that the test steps are updated with the best candidates identified during the

playback. You can then proceed with updating tests using the automation feature.

Self-healing through the command line

You can run tests with the self-healing feature enabled from the command line by using the protocolinput option with

the autoheal attribute set to true. The autoheal attribute supports collection and auto-modification of the test data.

The sample syntax is as follows:

cmdline -workspace <workspacename> -project <projectname> -suite <suitename> -exportlog <exportlogpath>

-results autoresults -protocolinput "autoheal=true"

Updating tests by using the guided healing feature
You can update the UI changes in a Web UI test by using the guided healing feature that collects the required data

during a test run. When the test run is complete, you can view the status of each step in the edited test. Also, you can

verify whether the collected data is appropriate or not to replace the objects that need to be updated, and then make

replacements.

Before you begin

You must have completed the following tasks:

• Read about the guided healing feature. See Overview of guided healing and self-healing on page 466.

• Recorded a Web UI test. See Recording a Web UI test on page 425.

About this task

You must perform this task from the UI Test perspective. This task applies to Web UI tests.

HCL OneTest™ UI collects Web UI data during the test run and snapshots taken during the test run are used to update

the failed steps. If an object is not identified during the test run, the object whose description matches the best

467

HCL OneTest™ UI

468

is selected as the possible candidate. The test steps and the images highlighted in the test steps are indicated in

different colors to specify the status of each test step.

Note: You must set enough timeout for each test step before running the test to get proper snapshots and

enable the guided healing option. If a test step fails with Time Out Error, because of low time out values, the

snapshot of the web page might not be captured.

You can set the timeout for each step by selecting the Time out checkbox and entering the value in seconds

in the User Action Details view.

You can refer to the following table to understand the meaning of step results displayed in different colors:

The default color code of step results Description

Indica

tion of

the test

result

Green

For example, the description of the test step is displayed as fol

lows:

During the playback, the target ob

ject that matched the actual object

was found based on the correla

tion score.

The test

step is

passed.

Amber

For example, the description of the test step is displayed as fol

lows:

During the playback, the target ob

ject that matched with the actu

al object was not found. There

fore, the next closest image that

matched was identified as the tar

get object based on the correlation

score.

The test

step is

partially

passed

and you

must up

date the

step.

Red

For example, the description of the test step is displayed as fol

lows:

During the playback, no target ob

ject matched the actual object

based on the correlation score.

The test

step is

failed.

Chapter 7. Test Author Guide

Note: You can modify the default colors of test step results in Window > Preferences > Test > UI Test > Test

Step Results.

1. Click Run Test to run the recorded Web UI test from the test editor.

The Run Configuration dialog is displayed.

2. Select the Collect data to update test steps checkbox if it is cleared.

3. Click Next.

The Advanced playback options page is displayed.

4. Select the options as required for the test run, and then click Next.

The Performance Measurement page is displayed. The options on this page are applicable only for mobile

tests and they are disabled for Web UI tests.

5. Click Finish.

Result

The test run begins with the guided healing feature enabled. After the test run is complete, the Web UI test

report is displayed in the browser.

You can click a test step in the Details panel to verify whether the step is passed through the guided healing

option or not. The test steps for which the guided healing is applied are indicated with the following message

in the report:

Object not found. Action performed on the most appropriate element.

6. Perform the following actions in HCL OneTest™ UI to update the test steps for which the guided healing is

applied:

a. Click the Scan and mark test with latest result icon in the test editor to view the status of the

test steps.

b. Click the step that is in amber color.

The snapshot that is captured during the playback is displayed in the User Action Details view under

the Step results tab.

469

HCL OneTest™ UI

470

c. Click Update test step to update the test.

The new captured snapshot is copied to the SmartShot View and is displayed under the SmartShot

section. The snapshot includes the control that has a user action for the step.

Chapter 7. Test Author Guide

d. Right-click the control and select Use this element as step target to update the test step as shown in

the following example:

471

HCL OneTest™ UI

472

e. Repeat the steps from 6.a on page 469 to 6.d on page 471 for any other test steps in amber color

that were caused by changes in the UI of the application under test.

7. Save the test.

Results

You have updated the test by using the guided healing feature and the updated test can be run with no failures.

What to do next

When the snapshots are retained, the test file size increases. Therefore, you can remove the snapshots when the test

development is complete. To remove the snapshots, you must right-click the test in the Test Contents window, and

then click Delete snapshots and hierarchies.

Note: If you want to retrieve the snapshots taken during the last test run, you must select the step for which

you need to retrieve the snapshot, right-click and select Update test steps. The change applies only to the

selected step.

Related information

Editing Web UI tests on page 433

Updating tests with the self-healing feature
From HCL OneTest™ UI 10.0.0, your Web UI tests can be self-healed, and it also applies to compound tests from

10.0.1. You just have to select an option when you run your test and no more action is needed. Data is collected

during the test run and test steps are automatically updated at the end of the test execution.

Chapter 7. Test Author Guide

About this task

This task must be performed from the UI Test perspective. The self-healing feature applies to Web UI tests and

compound tests.

1. Open your test in the Test editor, and click Run.

2. To enable guided healing feature, select Collect data to update test steps in the Run configuration dialog box.

3. To enable automatic updating of the test, click Automatically update the test after the end of the execution

and click Finish.

Results

The test is updated and can be run with no failures.

Substituting the URL of an application by using Datasets
If you have the same Web UI application deployed on different servers corresponding to different phases of a project

(development, production...), or different versions of the application for example, you might want to execute the

same Web UI test on all these servers at once. Initially, one way to do so was to create web applications for all these

different servers, then create a copy of the same test and add it to a compound test that you would run. From version

9.2.1 of the product, you can use a more straightforward procedures. To switch from one server to another, you can

just edit the URL of the application and run the test on a different server. To execute tests on different environments

at once, you can substitute the URL from a dataset so that you can run the same test in a loop on different servers.

473

HCL OneTest™ UI

474

About this task

This task applies to Web UI applications only, from the UI Test perspective.

1. To switch from one server to another one while you are running your test, you need to edit the application URL

as follows:

a. In the test workbench, open the test in the Test Editor, click the Launch application root step.

b. In the Application Details pane, select the URL in the Address field and enter a new URL, or modify the

current URL. Example: Replace the . com extension with the .en extension.

2. To execute a test in different environments, use a dataset to substitute the value in the Address field, with

a variable test data, for example, you can replace the .com extension of the URL with the .en extension, as

follows:

a. Create the dataset. For more information about this subject, see Creating a dataset associated with a

test on page 489.

b. Associate the address field request in the test with a particular column in the dataset. To do so, select

the URL, right-click the URL in the field, and select Select Data Source. For more information about this

subject, see Associating a dataset with the test.

c. Once the dataset and column are selected, click Finish. In our example, there is a compound test with

two iterations of the test, one for the .en site, the other for the .com site.

d. Run the test. During the playback, you will have to check that the first iteration is replaced with the

second one.

Extension of application URL in Web UI tests

You are familiar with the feature to substitute text in the application URLs of Web UI tests. Starting from 10.1, you can

extend the application URLs with substituted text from one Web UI test to other Web UI tests. This feature reduces

your effort of manually substituting the application URLs in all your tests that have an application URL.

After you substitute a partial or an entire application URL used in a Web UI test for a particular phase of your project,

you can extend the substituted application URL to the tests used in other phases of the project.

For example, if you have a project called “abc”, then the different phases of the project might have the following

application URLs:

• https://www.abcdev.com

• https://www.abcprod.com

• https://www.abcnonprod.com

You can also have different tests in each phase that tests different pages with the same primary URL. For example,

https://www.abcprod.com/welcome.htm, https://www.abcprod.com/intro.htm.

If you want to change any part of the application URL, then you have to manually substitute the application URL in

each test that uses the URL. This feature enables you to substitute the text in the application URL in any one test. You

can then extend the substitution in the application URL across all tests that use the URL.

Chapter 7. Test Author Guide

You can use different data sources that contain text values to replace the text in the URL. You can use the following

types of data sources:

• Built-in variable

• Custom Java code

• Dataset

• Test variable

You can extend the substituted URL from a test to other tests by using either of the following methods:

• Extending the application URL from the Application Details pane on page 475

• Extending the application URL from the UI Test applications view on page 476

Restriction: The extension of application URL in Web UI tests does not work as usual when tests match the

following conditions:

• The tests have a variable that is shared

• The values of the shared variable are different in each test

The value of the shared variables in the application URL that you extend does not get updated in the

application URL of the tests that receive the extended application URL.

For example, you have declared a variable VAR that you share between two tests, A and B. The value of

the variable VAR is set as value1 for test A, and value2 for test B. If you substitute the variable VAR in the

application URL in test A, and then extend the application URL to test B, the value of the substituted variable in

the application URL of test B remains at value2 and is not replaced.

Extending the application URL from the Application Details pane
After you substitute the text in the application URL of a Web UI test, you can extend the substituted application URL to

other Web UI tests from the Applications Details pane.

1. Select the UI Test perspective from HCL OneTest™ UI.

2. Select the Web UI test from the Test Navigator pane for which you want to substitute partial or entire

application URL.

3. Select Launch application from the Test Contents pane.

The Applications Details pane is displayed.

4. Go to the URL field, select and right-click the text in the URL that you want to change.

5. Click Substitute > Select Data Source.

The Select Data Source dialog box is displayed.

6. Select the data source and click Select.

475

HCL OneTest™ UI

476

The URL text is substituted with the text in the data source and is highlighted in the Application Details pane.

Note: You can substitute different parts in the application URL with text values in different data

sources.

7. Click the Replace test application using substituted application icon.

The Replace test application using substituted application dialog box is displayed that contains the Web UI

tests with an application URL.

8. Select the tests for which you want to replace the application URL with the URL that contains the substituted

text.

9. Click Finish.

Results

You have successfully extended the application URL with the substituted text to other Web UI tests from the

Application Details pane.

Extending the application URL from the UI Test applications view
After you substitute the text in the application URL of a Web UI test, you can extend the substituted URL other Web UI

tests from the UI Test applications view.

1. Select the UI Test perspective from .

2. Select the Web UI test from the Test Navigator pane for which you want to substitute partial or entire

application URL.

3. Select Launch application from the Test Contents pane.

The Applications Details pane is displayed.

4. Go to the URL field, select and right-click the text in the URL that you want to change.

5. Click Substitute > Select Data Source.

The Select Data Source dialog box is displayed.

6. Select the data source and click Select.

The URL text is substituted with the text in the data source and is highlighted in the Application Details pane.

Note: You can substitute different parts in the application URL with text values in different data

sources.

7. Click the Update Web UI Application icon in the Application Details pane.

The UI Test applications view is displayed.

Chapter 7. Test Author Guide

You can view the following changes:

◦ The application URL that contains the substitutions is selected by default.

◦ The list of tests available to the application URL is displayed in the Available Tests pane.

◦ The tests that contain a different URL or substitution when compared to the URL that you want to

extend are displayed in italics.

8. Select the required tests in the Available Tests pane for which you want to replace the application URL with

the URL containing substitutions.

9. Click the Update application in selected test suites icon.

The Replace application in test suites dialog box is displayed.

10. Click Finish.

Results

You have successfully extended the application URL with substituted text to other Web UI tests from the UI Test

applications view.

Validating images and user interface elements by using the image property
When you play back the Web UI test, you can validate the images and user interface elements by the using the image

property. After you define a test step to use image property, during playback, HCL OneTest™ UI locates and compares

the selected image with the target objects in the web pages and finds the best matching image.

Before you begin

You must have recorded Web UI tests that contain images or user interface elements such as input controls,

navigational components, and so on.

About this task

While recording a Web UI test, the screen capture of the images and user interface elements are captured in their

original appearance. The images and web controls are captured before there is any change in their appearance

caused because of cursor movements or keyboard inputs. When you play back the Web UI test, these images in their

original appearance are used to identify the target objects appropriately. The original appearance of the images in

turn improves the correlation score that is displayed in the report.

1. Open the recorded Web UI test.

2. In the Test Contents pane, click a test step that contains images or user interface elements. The related

properties of the captured object are displayed in the Properties pane.

3. Right-click the Image property in the Properties of <object> pane to select the following options:

Option Description

Copy Copies the image that is selected in the Screen Cap

ture pane to the clipboard.

477

HCL OneTest™ UI

478

Option Description

Identify step target using property ‘Image’ Updates the test steps to recognize the target object

during the playback by using the selected images.

Note: The selected image can be changed by

using the User Action Details pane.

Create Verification Point for ‘Image’ Creates a verification point for the test step by using

the image captured in the image property.

4. Optionally, to change the image property by using the image editor in the User Action Details pane, perform

the following actions:

To do ... Click ...

Update an existing image with an image from the

clipboard to compare it with the target objects and

find the best matching image.

Add multiple images in addition to the image that is

already available in the image editor.

When the appearance of the target object varies

based on the platform and browser, you can use this

option to recognize your target object. During the

playback, HCL OneTest™ UI searches for the best

matching image based on the correlation score. This

score is displayed in the UI Test report

Add a new image from the local drive of your com

puter to compare it with the target objects to find the

best matching image.

Set the recognition threshold and the aspect ratio tol

erance parameters that define the match criteria.

Recognition threshold value specifies the match per

centage of the images. For example, if the Recog

nition threshold is 80%, then the target objects that

match the source image up to 80% of pixels are con

sidered as a match.

Aspect ratio tolerance value specifies the allowed

deviation percentage of the height-width ratio of the

Chapter 7. Test Author Guide

To do ... Click ...

images. For example, if the aspect ratio tolerance is

20% and the dimension ratio of the selected image is

1, then the target objects whose ratio varies from 0.8

to 1.2 are considered as match.

Note: By default, the Recognition threshold is

80% and the Aspect ratio tolerance is 20%.

5. Save the changes.

6. Run the Web UI changes.

Result

You have successfully configured the image and user interface elements in a recorded Web UI test. The image

and user interface elements are validated for the image that you selected in the image property when you play

back the Web UI test. The UI Test report displays the test results and the correlation score between the source

and the target objects. The correlation score determines if the test passed or failed. The test is passed if the

correlation score is greater than or equal to the recognition threshold. Otherwise, the test is failed.

Related information

Optimizing playback of the test on page 446

Defining the Image property as object identifier for Web UI tests on page 479

Applying guided healing feature for tests identified by the image property on page 480

Defining the Image property as object identifier for Web UI tests
Before you start recording Web UI tests, you can define the image property as the object identifier. When image

property is set as the object identifier, then the objects in the web application are recognized and captured as images

while recording a Web UI test.

About this task

When you generate the recorded test, you can view that all objects in all the test steps are recognized and captured

as images. These images are used for validating the target objects during playback of the tests. This feature helps to

save time and your effort when your application has lot of images and a complex UI within your application.

1. Go to WindowsPreferencesTestRecordingWeb UI Recording . The Web UI recording window is displayed.

2. In the Preferred object identifiers pane, click Add.

3. Enter image in the text box and click Ok.

Result

Now, the image property is defined as the object identifier for Web UI tests.

479

HCL OneTest™ UI

480

Results

When you play back the Web UI tests, the target objects are identified based on the images that were captured when

you recorded the Web UI test. The report displays the result based on the configuration parameters set for each

image.

What to do next

You can also add the following details to your test steps:

• New images in addition to the existing images.

• Verification point to the images.

Related information

Optimizing playback of the test on page 446

Validating images and user interface elements by using the image property on page 477

Applying guided healing feature for tests identified by the image property on page 480

Applying guided healing feature for tests identified by the image property
When you play back any Web UI tests that use the image property to match target with actual images, the tests fail

if there is a mismatch. You can use the guided healing feature that provides the capability of finding the next best

matching image so that the tests can pass.

Before you begin

You must have recorded a Web UI test. See Web UI recording on page 413.

About this task

The UI of an application might undergo changes during the development phases. When your test does not adapt

to the changes in the UI elements, the probability is high that your test might fail. When you enable guided healing

feature, during playback, if an object is not formally identified, then the next best matching image is selected as the

possible candidate. You can choose to update the images to the test either automatically or manually.

The following procedure describes about updating the images automatically.

1. Run the recorded Web UI test from the test editor.

2. 2. Select the Collect data to update test steps check box in the Run Configuration dialog box.

Result

The guided healing feature is enabled.

3. Select the Automatically update the test at the end of playback check box to update each test step with the

identified images.

4. Click Next, and then click Finish.

Chapter 7. Test Author Guide

Result

After the test run is complete, the Web UI test report is generated.

5. In the test editor pane, click the Scan and mark test with latest results icon to view the status of the test steps.

The test steps and the images highlighted in the test steps are indicated with different colors to specify the

status of each test step. You can refer to the following table to understand the meaning of each color:

Step color Explanation Indication of the test result

Green During playback, the target object

that matched the actual object

was found based on the correla

tion score.

The test step is passed.

Amber During playback, the best match

ing target object was not found.

Then, the next closest matching

image was identified as the tar

get object based on the correlation

score.

The test step is partially passed.

Result

During the playback, the test steps are updated with the newly identified images.

Results

The test steps are passed and displayed in black color.

Related information

Validating images and user interface elements by using the image property on page 477

Defining the Image property as object identifier for Web UI tests on page 479

Applying guided healing feature for tests identified by the image property on page 480

Extending Web UI tests
You can perform certain tasks to extend the Web UI tests that include advanced capabilities such as adding

JavaScript code to tests, replacing a JavaScript in a test script, and creating a custom Java code.

Adding custom JavaScript code as a test step in a Web UI test
You can manually add JavaScript files (*.js) to test scripts with defined functions. You might want to run your own

JavaScript snippet such as retrieving some data from the application, doing some actions within the application,

or validating some complex logic actions within the application for example. To be able to execute specific code in

a test, write your own JavaScript code and insert the custom JavaScript statement as a new test step in your test

script.

481

HCL OneTest™ UI

482

1. Edit the test script.

2. Select the Launch application node and click on Add or Insert button in the editor and select Custom Code

(JavaScript), as shown in the following figure. JavaScript files with .js extension are to be kept in a project of

your workspace and must be added a test step with in the launch application node.

Figure 16. Custom Code (JavaScript) menu

3. In the dialog box that opens, select a JavaScript file to be added to the test step, click OK. It is displayed

as links in Referred JavaScripts in the definition pane. A new Test Step is added to the Test script. When a

method name is provided, the test step is named Custom Code (JavaScript):method-name, otherwise it is

named Custom Code (JavaScript), see figure 2.

Figure 17. Custom code added as a test step in a Web UI test

4. Select the step to see the JavaScript custom code definition pane that contains the custom code details.

Specify the JavaScript method name to be executed in the Method field, and optionally provide the

description. Click the Update button to add multiple files. The JavaScript custom code will be executed

within the Web application. You can also delete the referred JavaScript hyperlink, or click the link to open

the JavaScript file in the editor. If the JavaScript method has some parameters to be added, specify the

parameters in the Arguments field. You can specify the arguments through static text, a variable reference, a

dataset reference, or a java custom code.

a. To enter text values, click Text button and enter the text as argument.

b. To pass test variable reference or dataset reference or JavaScript custom code return value as

parameter to JavaScript method, click Add button. Select the available data source arguments,

datasets, test variables or java custom code. The variable or dataset must be initially created, and a

return value added. See example in figure 3.

Chapter 7. Test Author Guide

Figure 18. Custom code details

Figure 19. Example of variable and dataset as arguments

5. Run the test script and see the report.

From version 9.1.1.1, you can replace a JavaScript file with an updated one and apply the changes to all

references to the JavaScript file in the test scripts where the file is called, for more details, see Replacing a

JavaScript file in a test script on page 483.

Replacing a JavaScript file in a test script
You can rename a JavaScript file in a project, delete it, or move it in the project, in all cases, the updates will apply

in all test scripts in the project. When you rename a JavaScript file that is used in a Web UI test script from the Test

Navigator, the system can automatically search for all references to the JavaScript file in the project and overwrite the

custom JavaScript file with the updated one in all the test scripts where the JavaScript file is called. It is useful when

you have multiple calls of the same JavaScript file in a single script.

483

HCL OneTest™ UI

484

To replace a JavaScript file with a new one:

a. In a project, right-click on a JavaScript file in the Test Navigator, and select Rename.

b. Enter a new name in the text field of the dialog that opens.

c. Select Update test Assets that reference the renamed resource. Click

Preview.

d. A wizard displays all references to the JavaScript files in the project. Unselect the references that should

not be updated and unselect Custom JavaScript change participant if you don't want any changes in the

associated files. Click OK. A message prompts you to accept or abort the changes.

Results

Once validated, the initial JavaScript file is replaced with the new JavaScript file in all the test scripts where it is

called.

Creating a custom JavaScript code in a Web UI test
You can use the JavaScript Custom Code option to create your own code and add that as a step in the Web UI test.

This example shows you how to create your own JavaScript code and add that as a step in the Web UI test. This

example covers a basic scenario of creating custom JavaScript code for a simple login form. You can create your

own JavaScript code according to your functionality.

Exemple

The login form has two fields namely the Username and Password.

Chapter 7. Test Author Guide

First, you must add a JavaScript file in the Web UI project and enter the code in the file. Refer to the following sample

code created for the simple login form.

//Simple JS function to fill up login page data
function simpleUserLogin(){

 console.log("Signing In...");
 //Click At User Name Edit Box
 document.getElementById("uname").click();

 //Enter the UserName
 document.getElementsByName("username")[0].value="billy";

 //Click on Password Field and Enter the password
 document.getElementsByClassName("form-control-passwd")[1].click();
 document.getElementById("password").value="Cuper@tino";

 //Click on Login button
 document.getElementsByTagName("input")[3].click();
}

Note: JavaScript provides you with set of libraries to interact with the DOM controls and you can use them

to handle user interfaces, browsers and document settings. To know more about the JavaScript code

references, see https://developer.mozilla.org/en-US/docs/Web/JavaScript.

In the Web UI project, you can update the details of the JavaScript file that you created. You have to provide the

method name and update the JavaScript file as shown in the following image..

485

https://developer.mozilla.org/en-US/docs/Web/JavaScript

HCL OneTest™ UI

486

In the preceding example code, the input values such as user name and password are already hard coded. But, if

you want to pass the input values from the WebUI test to the JavaScript code for which you want to get some return

values, you have to create another JavaScript file and call the method in the Custom Code step as shown in the

following image.

This is the sample code for defining the method that can accept values from Web UI and return values.

//username and password are being passed from the JS Custom Code step in Web UI Test & some value is
 being returned which would be stored in the variable defined in JS Custom Code step
function userloginThroughArgsAndReturnSomeValue(username, password){

Chapter 7. Test Author Guide

 var returnVar = "false";
 var userName = username;
 var pwd = password;
 console.log("Waiting for the browser load...");
 //sample code - wait for document to load based on browserState
 var myVar = true;
 while(myVar === true){
 var browserState = document.readyState;
 if(browserState.indexOf("complete") !== -1){
 myVar = false;
 }
 }

 console.log("Signing In...");
 //Enter the UserName
 document.querySelectorAll("*[name='username']")[0].click();
 document.querySelectorAll("*[id='uname']")[0].value = userName;

 //Enter the password
 document.querySelectorAll(".form-control-passwd")[1].click();
 document.getElementById("password").value=pwd;

 //Click on Login button
 var submitButtonOccurances = document.querySelectorAll("*[type='submit']").length;
 document.querySelectorAll("*[type='submit']")[0].click();

 //return some value which can be stored in a variable in JS Custom Code step in Web UI Test
 console.log("Returning some value...");

 if(submitButtonOccurances>= 1){
 returnVar = "true";
 }
 return returnVar;

}

Based on the return value, the if condition will be executed.

487

HCL OneTest™ UI

488

Providing tests with variable data (datasets)
You can produce more realistic tests by changing them to use datasets. During execution, a test that uses a dataset

replaces a value in the recorded test with variable test data that is stored in the dataset. This substitution allows each

virtual user to generate a different request to the server.

Dataset overview
Datasets provide tests with variable data during a run. When you record a test, you perform a sequence of steps that

you expect a typical user to perform. After the recording, a test is generated that captures these interactions. When

you run this test, it uses the same data that you used during recording. To vary the data in the test, you use a dataset,

that contains variable data. At run time, this variable data is substituted for the data in the recorded test.

If you need to create a dataset with many records, you can initialize the dataset by importing data from a comma-

separated-value (CSV) file. Also, you can export test data from your dataset into a CSV file to enable you to maintain

large volumes of test data as a spreadsheet for reuse. Earlier to 9.5, the dataset (formerly known as datapool) was

in .datapool format and starting from the 9.5 release, the dataset is in the csv format.

You can copy the CSV file and paste into your project to import the data from a CSV file and create a dataset.

Similarly, to export the dataset values as a CSV file, you must copy the dataset from your project and paste it into your

local machine.

Note: Alternatively, you can use the Import option available in the CSV editor to import the data from a CSV

file. For more information, see Editing datasets on page 505.

Perform the following steps should you plan to create a test that searches the HCL® website for three items: HCL

OneTest™ Performance, HCL OneTest™ UI, and IBM® Rational® Manual Tester:

Chapter 7. Test Author Guide

1. Record a test that searches for one item.

2. Create a dataset and associate it with the test. For more information, see Creating a dataset associated with a

test on page 489.

3. Associate a request in the test with a column in the dataset. For more information, see Associating a test

value with a dataset column on page 502.

4. Add a loop in the test to fetch the values from different rows of a dataset. A test without a loop fetches the

value only from the first row of the dataset.

Creating a dataset associated with a test
You can create a dataset that contains variable data for tests to use when they run. This is the preferred way to

create a dataset because the dataset is automatically associated with a test. You can create anything from an empty

dataset that contains one column, which you can edit later, to a fully functioning dataset.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. In the Test Contents area, click the name of the test.

3. In the Common Options tab, click Add Dataset.

The options listed in the following table, enable you to create anything from a simple dataset that you can edit

later to a complete dataset.

To create Do this in the Test Editor - Add Dataset window

A one-column dataset with a default access mode. In Existing datasets in workspace, select New

Dataset<testname>.csv, and click Finish. You can op

tionally name the dataset column in this session, and

you can add other columns and data later.

A one-column dataset and choose the access mode. In Existing datasets in workspace, select New

Dataset<testname>.csv, and click Next. You can op

tionally name the dataset column in this session and

you are prompted for the access mode. You can add

other columns and data later.

An association between the test and an existing

dataset.

Select the dataset. The dataset is associated with the

test, and you can optionally set the access mode in

this session.

A new, fully functioning dataset. Select a project and click Use wizard to create new

dataset.

4. Select Open mode for the dataset. This mode determines the view that virtual users have of the dataset.

Different tests can open the same dataset differently, and you can change the open mode later by opening the

test and double-clicking the dataset title.

489

HCL OneTest™ UI

490

Option Description

Shared (per test execution) (default)
When you choose the Shared (per test execution) op

tion, the virtual users running in the test share the

dataset values in sequential order.

For example, if your dataset has 10 rows, the dataset

values are taken from row 1, row 2, row 3, and so on

when you select this option.

Private
Each virtual user draws dataset values from a private

view of the dataset, with dataset rows apportioned to

each user in sequential order.

This option ensures that each virtual user gets the

same data from the dataset in the same order. Be

cause each user starts with the first row of the

dataset and accesses the rows in order, different vir

tual users will use the same row. The next row of the

dataset is used only if you add the test that is using

the dataset to a loop in the schedule with multiple it

erations.

Shared (for all test executions)
When you choose the Shared (for all test executions)

option, the virtual users running in multiple tests

share the dataset values from the current row.

For example, if your dataset has 10 rows and when

you set the current row as row 5, the dataset values

are taken from row 5 instead of row 1 when you se

lect this option. If you had set the current row as row

1 and used the dataset values until row 5, the dataset

values are retrieved from row 6 when you run the test

next time.

5. If you are setting how the test accesses the dataset during this session, select one of the following options:

Chapter 7. Test Author Guide

◦ Sequential: Rows in the dataset are accessed in the order in which they are physically stored in the

dataset file, beginning with the first row and ending with the last.

◦ Random: Rows in the dataset are accessed in any order, and any given row can be accessed multiple

times or not at all. Each row has an equal chance of being selected each time.

◦ Shuffled: Before each dataset access, the order of the rows is changed that results in a different

sequence. The rows are accessed randomly but all rows must be selected once before a row is

selected again.

6. Select one of the following options.

Option Description

Wrap when the last row is reached
By default, when a test reaches the end of a dataset

or dataset segment, it reuses the data from the

beginning. To force a test to stop at the end of a

dataset or segment, clear the Wrap when the last row

is reached check box. Forcing a stop might be use

ful if, for example, a dataset contains 15 records, you

run a test with 20 virtual users, and you do not want

the last five users to reuse information. Although the

test is marked Fail because of the forced stop, the

performance data in the test is still valid. However,

if reusing dataset data does not matter to your appli

cation, the default of wrapping is more convenient.

With wrapping, you need not ensure that your dataset

is large enough when you change the workload by

adding more users or increasing the iteration count in

a loop.

Note:

◦ With Random access order, Wrap

when the last row is reached option is

unavailable because you never reach

the end of the row.

◦ With Shuffled access order, if you

select Wrap when the last row is

reached option, you resume select

ing from the beginning of the row with

the same access order after each row

has been selected once. No more se

491

HCL OneTest™ UI

492

Option Description

lections are required if you clear the

Wrap when the last row is reached

option.

Fetch only once per user
By default, one row is retrieved from the dataset

for executing each test, and the data in the dataset

row is available to the test only for the duration of

the test. Select Fetch only once per user to specify

that every access of the dataset from any test being

run by a particular virtual user will always return the

same row.

Example

To illustrate how these options affect the rows that are returned, assume that a test contains a loop which

accesses a dataset. The loop has 2 iterations. The following table shows the row that is accessed in each

iteration:

Dataset option Iteration 1 Iteration 2

Sequential and Private row 1 row 2

Shared and Shuffled row x row y

Fetch only once per user row x row x

7. If you are creating a fully functioning dataset, you can optionally import the data from a CSV file during this

session by copying the CSV file and pasting into your project. For more information on importing dataset, see

Editing datasets on page 505.

Creating a dataset in a workspace
You can create datasets in a workspace containing variable data that tests use when they run. You can use this

method to create a dataset if you have not yet created the test that will use it.

1. Click File > New > Dataset.

2. In the New Dataset window, click the project that contains the dataset. The project is displayed in the Enter,

create, or select the parent folder field.

3. In the Name field, type the name of the dataset, and then click Next.

4. In the window for describing the dataset, add a description.

5. In the Dimensions field, specify the number of rows and columns for the dataset that you want to create.

6. Click Finish.

Chapter 7. Test Author Guide

Results

The new dataset opens in a browser. For instructions on how to add data to or edit the dataset, see Editing a dataset

on page 505.

What to do next

After you have created a dataset and added data to it, you must associate a value in the test with a column in the

dataset.

Converting an existing datapool to a dataset
Starting from 9.5 the dataset formerly known as datapool is in the CSV format. You can convert any existing datapool

to a dataset.

About this task

When you open the workspace earlier to 9.5 in HCL OneTest™ Performance 9.5, the existing datapools in the

workspace are stored in the Datapools (Legacy-Unsupported) folder as shown in the following figure.

To convert the existing datapool to a dataset:

1. In the Test Navigator, browse and select the existing datapool.

2. Right-click and select Convert to Dataset…. Verify that the name of the dataset is the name of the existing

datapool and format is .csv.

3. Click Finish. The converted datapool opens in a CSV editor.

What to do next

After you have created a dataset and added data to it, you must associate a value in the test with a column in the

dataset.

493

HCL OneTest™ UI

494

Creating datasets with multiple substitutions
Earlier to 9.2, you could substitute one dataset value at a time. Starting from 9.2, after the test is generated, you

can view all the dataset candidates, add multiple candidates as dataset values, substitute values, and create a new

dataset out of it. You can also substitute multiple dataset candidates for an existing dataset.

About this task

When you substitute multiple dataset candidates to create a new dataset, the same number of columns are created

in the dataset. The names of the candidates become the names of columns and values in the dataset. When you

substitute multiple dataset candidates in an existing dataset, the column names in the dataset are retained. If

the number of substitutions chosen was greater than the number of columns in the dataset, the extra number of

substitutions are added as columns in the dataset. For instance, if a dataset has three columns and you substitute

five dataset candidates, two new columns are created by using the names of the dataset candidates.

To create a dataset from multiple dataset candidates:

1. In the Test Editor, select the name of the test and from the Test Details section, select Common Options and

click Show Dataset Candidates.

Alternative: After the test generation when you open the test, you are prompted that “Some test data may need

to be correlated or substituted”. If you click Yes, you can see the list of dataset candidates.

2. Select the dataset candidates that you want to add as values to the dataset and click Substitute multiple

candidates.

The Add Dataset dialog box shows the list of datasets that are in the project but not associated with the test.

3. To associate an existing dataset with the test and assign the selected dataset candidates as values and

substitutions, select a dataset and click Next. To associate a new dataset with the test, click the Use wizard to

create new Dataset and click Next.

4. Select Open mode for the dataset. This mode determines the view that virtual users have of the dataset.

Different tests can open the same dataset differently, and you can change the open mode later by opening the

test and double-clicking the dataset title.

Option Description

Shared (per test execution) (default)
When you choose the Shared (per test execution) op

tion, the virtual users running in the test share the

dataset values in sequential order.

For example, if your dataset has 10 rows, the dataset

values are taken from row 1, row 2, row 3, and so on

when you select this option.

Private
Each virtual user draws dataset values from a private

view of the dataset, with dataset rows apportioned to

each user in sequential order.

Chapter 7. Test Author Guide

Option Description

This option ensures that each virtual user gets the

same data from the dataset in the same order. Be

cause each user starts with the first row of the

dataset and accesses the rows in order, different vir

tual users will use the same row. The next row of the

dataset is used only if you add the test that is using

the dataset to a loop in the schedule with multiple it

erations.

Shared (for all test executions)
When you choose the Shared (for all test executions)

option, the virtual users running in multiple tests

share the dataset values from the current row.

For example, if your dataset has 10 rows and when

you set the current row as row 5, the dataset values

are taken from row 5 instead of row 1 when you se

lect this option. If you had set the current row as row

1 and used the dataset values until row 5, the dataset

values are retrieved from row 6 when you run the test

next time.

5. If you are setting how the test accesses the dataset during this session, select one of the following options:

◦ Sequential: Rows in the dataset are accessed in the order in which they are physically stored in the

dataset file, beginning with the first row and ending with the last.

◦ Random: Rows in the dataset are accessed in any order, and any given row can be accessed multiple

times or not at all. Each row has an equal chance of being selected each time.

◦ Shuffled: Before each dataset access, the order of the rows is changed that results in a different

sequence. The rows are accessed randomly but all rows must be selected once before a row is

selected again.

6. Select one of the following options.

Option Description

Wrap when the last row is reached
By default, when a test reaches the end of a dataset

or dataset segment, it reuses the data from the

beginning. To force a test to stop at the end of a

dataset or segment, clear the Wrap when the last row

is reached check box. Forcing a stop might be use

ful if, for example, a dataset contains 15 records, you

run a test with 20 virtual users, and you do not want

495

HCL OneTest™ UI

496

Option Description

the last five users to reuse information. Although the

test is marked Fail because of the forced stop, the

performance data in the test is still valid. However,

if reusing dataset data does not matter to your appli

cation, the default of wrapping is more convenient.

With wrapping, you need not ensure that your dataset

is large enough when you change the workload by

adding more users or increasing the iteration count in

a loop.

Note:

◦ With Random access order, Wrap

when the last row is reached option is

unavailable because you never reach

the end of the row.

◦ With Shuffled access order, if you

select Wrap when the last row is

reached option, you resume select

ing from the beginning of the row with

the same access order after each row

has been selected once. No more se

lections are required if you clear the

Wrap when the last row is reached

option.

Fetch only once per user
By default, one row is retrieved from the dataset

for executing each test, and the data in the dataset

row is available to the test only for the duration of

the test. Select Fetch only once per user to specify

that every access of the dataset from any test being

run by a particular virtual user will always return the

same row.

Example

To illustrate how these options affect the rows that are returned, assume that a test contains a loop which

accesses a dataset. The loop has 2 iterations. The following table shows the row that is accessed in each

iteration:

Chapter 7. Test Author Guide

Dataset option Iteration 1 Iteration 2

Sequential and Private row 1 row 2

Shared and Shuffled row x row y

Fetch only once per user row x row x

7. Click Finish.

Adding Dataset Mapper
You can include a Dataset Mapper in a compound test or a schedule to assign the dataset values to the variables that

are defined in multiple tests. In previous releases, to apply the dataset values to multiple tests, you had to associate

the dataset to each test. The Dataset Mapper is able to map the dataset columns with the variables.

Before you begin

You must have created at least one dataset. See Creating a dataset in a workspace on page 492.

About this task

For the Dataset Mapper to fetch the test variables, in the Variable Details section of the Test editor, you must set the

Visible In field for the variable to All tests for this user. You can also fetch the variables from the custom code calls.

If the compound test or the schedule includes a Dataset Mapper that retrieves values from one dataset and a test in

the compound test or schedule is also associated with another dataset, the run uses both the datasets.

Note: When you run the schedule or compound test with a Dataset Mapper, by default the test picks up the

dataset values from the first row. For the test to pick up all of the dataset values, you must put the test in a

loop.

1. In the Schedule or compound test editor, click Add > Dataset Mapper.

2. In the Select Dataset dialog box, select a dataset to use for the tests and click OK.

To change the dataset after it is associated, in Dataset Mapper Details, click Browse and select another

dataset.

3. Select the Open mode for the dataset. This mode determines the view that virtual users have of the dataset.

This option is useful when you do a parallel test run.

Option Description

Shared (per test execution) (default)
When you choose the Shared (per test execution) op

tion, the virtual users running in the test share the

dataset values in sequential order.

497

HCL OneTest™ UI

498

Option Description

For example, if your dataset has 10 rows, the dataset

values are taken from row 1, row 2, row 3, and so on

when you select this option.

Private
Virtual users draw from a private view of the dataset,

with dataset rows apportioned to each user in se

quential order.

This option ensures that each virtual user gets the

same data from the dataset in the same order. How

ever, because each user starts with the first row of

the dataset and accesses the rows in order, different

virtual users will use the same row. The next row of

the dataset is used only if you add the test that is us

ing the dataset in a loop with more than one iteration.

Shared (for all test executions)
When you choose the Shared (for all test executions)

option, the virtual users running in multiple tests

share the dataset values from the current row.

For example, if your dataset has 10 rows and when

you set the current row as row 5, the dataset values

are taken from row 5 instead of row 1 when you se

lect this option. If you had set the current row as row

1 and used the dataset values until row 5, the dataset

values are retrieved from row 6 when you run the test

next time.

4. Select the Access mode for the dataset:

◦ Sequential: Rows in the dataset are accessed in the order in which they are physically stored in the

dataset file, beginning with the first row and ending with the last.

◦ Random: Rows in the dataset are accessed in any order, and any given row can be accessed multiple

times or not at all. Each row has an equal chance of being selected each time.

◦ Shuffled: Before each dataset access, the order of the rows is changed that results in a different

sequence. The rows are accessed randomly but all rows must be selected once before a row is

selected again.

5. Select whether the test will reuse data when it reaches the end of the dataset.

By default, when a test reaches the end of a dataset or dataset segment, it reuses the data from the

beginning. To force a test to stop at the end of a dataset or segment, clear the check box Wrap when the

Chapter 7. Test Author Guide

last row is reached. Forcing a stop might be useful if, for example, a dataset contains 15 records, you run a

test with 20 virtual users, and you do not want the last five users to reuse information. Although the test is

marked as “Fail” because of the forced stop, the performance data in the test is still valid. However, if it does

not matter to your application if data is reused, the default of wrapping is more convenient. With wrapping,

you need not ensure that your dataset is large enough when you change the workload by adding more users or

increasing the iteration count in a loop.

6. Select whether the test will make the data in the dataset record permanent for each virtual user.

By default, one row is retrieved from the dataset for each execution of a test, and the data in the dataset row

is available to the test only for the duration of the test. Select Fetch only once per user to specify that every

access of the dataset from any test being run by a particular virtual user will always return the same row.

To illustrate how these options affect the rows that are returned, assume that a test contains a loop which

accesses a dataset. The loop has two iterations. The following table shows the row that is accessed in each

iteration:

Dataset option Iteration 1 Iteration 2

Sequential and Private row 1 row 2

Shared and Shuffled row x row y

Fetch only once per user row x row x

7. In the Columns mapping table, the Column is automatically filled with the column names from the dataset.

8. To use the variable names from the test, click the cell and click the Ellipsis button and select the variable.

By default, the variable names are also created with the same names as the dataset columns.

9. If the dataset that you selected in step 2 was generated by HCL® OneTest™ Data, you can choose to update

the data by clicking Update dataset or update the data automatically for every run by selecting the Update

dataset during deployment check box.

10. To fetch all the dataset values, put the Dataset Mapper in a loop. Select the Dadtapool Mapper in the schedule

and click Insert > Loop.

11. Save the changes.

How dataset options affect values that a virtual user retrieves
The Open, Access, and Wrap modes that you select for a dataset affect the values that a virtual user retrieves.

The following table lists the most common types of datasets and the options that you select to create them.

499

HCL OneTest™ UI

500

Dataset purpose

Open

mode se

lection

Access

mode

selec

tion

Wrap mode

selection

The virtual user retrieves the value from the current row of the dataset in a ran

dom order for every attempted transaction. Note that before accessing each row

of the dataset the order of the rows is rearranged.

Shared

(for all

test exe

cutions)

Shuf

fled

Fetch on

ly once per

user

The virtual user retrieves the value from the current row of the dataset in sequen

tial order for every attempted transaction.

Shared

(for all

test exe

cutions)

Se

quen

tial

Fetch on

ly once per

user

The virtual user retrieves the value from the beginning of the row of a dataset in a

random order for every attempted transaction.

Shared

(per test

execu

tion)

Ran

dom

Wrap when

the last row

is reached

The virtual user retrieves the value from the current row of a dataset in sequential

order for every attempted transaction. When a test reaches the end of a dataset, it

reuses the data from the current row selection of the dataset.

Shared

(for all

test exe

cutions)

Se

quen

tial

Wrap when

the last row

is reached

Enabling a test to use a dataset
Before a test can use variable data from a dataset, you must update the test to include a reference to that dataset.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Right-click the test name, and click Add > Dataset.

Result

The Select Dataset File window is displayed listing the datasets available to the test. If a test is already using

a dataset, it does not appear in the list.

3. In the Existing Dataset in workspace list, click the name of the dataset that your test will use and click Next.

4. Select the Open mode for the dataset. This mode determines the view that virtual users have of the dataset.

This option is useful when you do a parallel test run.

Option Description

Shared (per test execution) (default)
When you choose the Shared (per test execution) op

tion, the virtual users running in the test share the

dataset values in sequential order.

Chapter 7. Test Author Guide

Option Description

For example, if your dataset has 10 rows, the dataset

values are taken from row 1, row 2, row 3, and so on

when you select this option.

Private
Virtual users draw from a private view of the dataset,

with dataset rows apportioned to each user in se

quential order.

This option ensures that each virtual user gets the

same data from the dataset in the same order. How

ever, because each user starts with the first row of

the dataset and accesses the rows in order, different

virtual users will use the same row. The next row of

the dataset is used only if you add the test that is us

ing the dataset in a loop with more than one iteration.

Shared (for all test executions)
When you choose the Shared (for all test executions)

option, the virtual users running in multiple tests

share the dataset values from the current row.

For example, if your dataset has 10 rows and when

you set the current row as row 5, the dataset values

are taken from row 5 instead of row 1 when you se

lect this option. If you had set the current row as row

1 and used the dataset values until row 5, the dataset

values are retrieved from row 6 when you run the test

next time.

5. Select the Access mode for the dataset:

◦ Sequential: Rows in the dataset are accessed in the order in which they are physically stored in the

dataset file, beginning with the first row and ending with the last.

◦ Random: Rows in the dataset are accessed in any order, and any given row can be accessed multiple

times or not at all. Each row has an equal chance of being selected each time.

◦ Shuffled: Before each dataset access, the order of the rows is changed that results in a different

sequence. The rows are accessed randomly but all rows must be selected once before a row is

selected again.

6. Select whether the test will reuse data when it reaches the end of the dataset.

By default, when a test reaches the end of a dataset or dataset segment, it reuses the data from the

beginning. To force a test to stop at the end of a dataset or segment, clear the check box Wrap when the

501

HCL OneTest™ UI

502

last row is reached. Forcing a stop might be useful if, for example, a dataset contains 15 records, you run a

test with 20 virtual users, and you do not want the last five users to reuse information. Although the test is

marked as “Fail” because of the forced stop, the performance data in the test is still valid. However, if it does

not matter to your application if data is reused, the default of wrapping is more convenient. With wrapping,

you need not ensure that your dataset is large enough when you change the workload by adding more users or

increasing the iteration count in a loop.

7. Select whether the test will make the data in the dataset record permanent for each virtual user.

By default, one row is retrieved from the dataset for each execution of a test, and the data in the dataset row

is available to the test only for the duration of the test. Select Fetch only once per user to specify that every

access of the dataset from any test being run by a particular virtual user will always return the same row.

To illustrate how these options affect the rows that are returned, assume that a test contains a loop which

accesses a dataset. The loop has two iterations. The following table shows the row that is accessed in each

iteration:

Dataset option Iteration 1 Iteration 2

Sequential and Private row 1 row 2

Shared and Shuffled row x row y

Fetch only once per user row x row x

8. Click Finish.

Result

A reference to the dataset is added to the test, and the Test Details area is updated with the dataset

information.

9. Save the test.

What to do next

Now that you have created a reference between the test and the dataset, the next step is to associate a value in the

test with a column in the dataset.

Associating a test value with a dataset column
After you have created a dataset and have enabled your test to use the dataset, you can associate a specific value in

the test with a specific dataset column.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Locate and click a request that contains a value to replace with variable data.

Clicking a test page displays a table that lists dataset candidates and correlated data on that page. (If

correlated data is not displayed, right-click the table and verify that Show References is selected.) References

are color coded in blue and dataset candidates are color coded in black.

Chapter 7. Test Author Guide

If the contents of the Value column corresponds exactly with column data in your dataset, click the row, and

then click Substitute. The Select Data Source window is displayed. Skip to step 6. You can ignore step 8

because the URL encoding is preselected.

Otherwise, double-click the row to navigate to the page request that contains the value to replace from a

dataset, and continue to the next step.

The value to replace from a dataset might not be listed in any page table. In this case, manually locate the

request string that includes the value.

3. If the value to replace from a dataset is part of a string that has been designated a dataset candidate, you

must remove the light green highlight: right-click and select Remove Substitution.

For example, if you searched for doe, john in your test, the dataset candidate in your test is displayed as

doe%2C+john. Suppose that you do not want to associate this candidate with a single dataset column that

contains data in the format doe, john. Instead, you want to associate doe and john with separate dataset

columns. In this case, you must first remove the substitution.

4. Highlight the value: With the left button pressed, drag your mouse over the value.

5. Right-click the highlighted value, and select Substitute > Select Data Source.

Result

The Select Data Source window is displayed.

Note: To use a dataset that is not listed, click Dataset: the Select dataset column window is displayed.

6. Click the name of the dataset variable, or column, to associate with the test value.

7. Click Select.

Result

To indicate that the association has been set, the highlighting for the selected test value turns dark green, and

the dataset table for this page is updated as shown in the example.

503

HCL OneTest™ UI

504

8. Optional: Encode variable data when it is substituted from a dataset.

If a test value contains special characters such as spaces or commas, click the row and select URL Encode.

With this option, special characters are encoded when variable data is substituted from a dataset. For

example, data that is space-separated in a dataset column might need to be encoded. When the URL encoding

is enabled, John Doe is substituted as John%20Doe. If the URL encoding is not selected, the variable data that

is substituted is literal. Do not enable URL encoding for datasets that contain data that is already encoded.

9. Optional: If you substitute an element of a page with a dataset column, to view the substitutions in the

Page Elements report, in the Test Elements Details area of the request click the Use the substituted URL in

performance reports check box.

10. Save the test.

Related information

Adding data source controller

Viewing dataset candidates when you open a test
Dataset candidates are displayed automatically when you open a test for the first time. From the dataset candidates

window you can view the dataset candidates in the test, bookmark locations of interest, and add or remove dataset

references.

1. Record a test.

Result

When the test opens for the first time in the Test Navigator, the Show Dataset Candidates window is

displayed. The Show Dataset Candidates window is displayed only if there are dataset candidates and if

Always display this dialog when a test is first opened is selected. To prevent the Show Dataset Candidates

from being displayed when a test opens, clear the Always display this dialog when a test is first opened

check box in the Show Dataset Candidates window.

2. Do one of the following:

Chapter 7. Test Author Guide

Option Description

To view details about the

dataset candidates in a test

Navigate through the Dataset Candidates field to see

them previewed in the Preview pane. Click the Next

and Previous icons to move the selection down or up

in the list of dataset candidates. Click the Show as

Tree icon to toggle between tree format and list for

mat. Click the Sort icon to sort the list of dataset can

didates. Click the Bookmark icon to bookmark a loca

tion for later review.

To select a data source for a dataset candidate Select the dataset candidate in the Dataset Candi

dates field, and then click Substitute. The Select Data

Source window opens.

To find more values in the test that have the

same value as the selected dataset candidate

Click Find More and Substitute. These values can be

reviewed and substituted interactively as needed.

To remove a substitution Select a substitution site, and then click Remove

Substitution.

3. Click Close to close the Show Dataset Candidates window and proceed to the test in the test editor.

To display the Show Dataset Candidates window again while in the test editor, click the root node of the test.

Then click the Common Options tab under Test Element Details, and then click Show Dataset Candidates.

Editing datasets
You can add, modify, remove, import, or export data from a dataset by using the CSV Editor. The working principle of

the CSV Editor is similar to that of a spreadsheet.

Before you begin

You must have created a dataset. See Creating a dataset in a workspace on page 492.

About this task

In HCL OneTest™ UI 9.5.0 or later, you can use the CSV Editor to view and edit data in the dataset. You can also view

the datasets in other editors by right-clicking the dataset and selecting the Open With option.

You can perform basic tasks in the CSV Editor by right-clicking any row, column, or cell of the dataset to organize your

data in a better way. For example, updating the data in a cell, inserting or deleting rows and columns, or renaming

column names.

When you edit the dataset in a CSV Editor, you can use the following keyboard shortcuts to control the cursor

selection in the CSV Editor:

505

HCL OneTest™ UI

506

• Tab - To move the cursor control to the next available option.

• Shift-Tab – To move the cursor control to the previous option.

• Shift+F10 – To open the context menu from the dataset cell.

Note: You cannot resize the width of rows in the CSV Editor. When you have a large amount of data in a cell,

you can right-click the cell and select Copy (or Ctrl+C), and then paste it into a text-editing program to view the

content. Alternatively, you can hover the mouse over the cell to view the content.

When you have a CSV file that has data separated from a character, then you can import that CSV file into the dataset.

You can select any of the following separator characters from the Configure Dataset window, and the selection can

be the separator character that you used in the CSV file:

• Comma

• Semicolon

• Space

• Tab

• Other

Consider that you have the data in the CSV file in the following format:

When you import the CSV file in the dataset, and then select the separator value as Semicolon, the data in the dataset

is displayed as follows:

If you want the data in its original format, that is, a semicolon (;) character to separate the data, then you can choose

any other separator value from the Configure Dataset window.

Chapter 7. Test Author Guide

Note: The default separator value is Comma.

1. Double-click the dataset that you want to edit in the Test Navigator.

Result

The dataset opens in the CSV Editor in a browser.

2. Perform the following actions to use the options available in the CSV Editor:

Options Actions

Find and Re

place

To find:

a. Click the Find and Replace icon .

b. Enter the content that you want to search in the Find field.

c. Select any or all the following options to find the search content more effectively:

▪ Select the Case sensitive check box to search the content that is the exact let

ter case of the content entered in the Find field.

▪ Select the Match entire cell contents check box to search for cells that con

tain only the characters that you have entered in the Find field.

▪ Select the Search using regular expression check box to search the pattern

that matches strings.

For example, to search a cell that contains any number between 0 to 9, do the

following:

i. Enter \d in the Find field.

ii. Select the Search using regular expression check box.

iii. Click Find.

d. Click Find. If the text is found, the cell containing that text is selected.

e. Click Find again to find further instances of the search text.

To find and replace:

a. Click the Find and Replace icon .

b. Enter the content that you want to search in the Find field.

c. Enter the content that you want to replace in the Replace field.

d. Select any or all the following options to find and replace the content more effectively:

▪ Select the Case sensitive check box to find the content that is the exact letter

case of the content entered in the Find field.

▪ Select the Match entire cell contents check box to find and replace for cells

that contain only the characters that you have entered in the Find and Replace

fields.

▪ Select the Search using regular expression check box to find and replace the

pattern that matches strings.

507

HCL OneTest™ UI

508

Options Actions

e. Click Replace to replace the individual instances.

f. Click Replace All to replace every instance of the content throughout the dataset.

Undo a. Click the Undo icon .

b. Select the recent changes from the list that you want to undo, and then click the list.

The Undo option undoes anything you do in the dataset. The CSV Editor saves the unlimited

undo-able action. You can perform the undo action even after you save your changes made to

the dataset.

Redo a. Click the Redo icon .

b. Select the recent changes from the list that you want to redo, and then click the list.

The CSV Editor saves the unlimited redo action.

Import a. Click the Import icon .

b. Click Choose File and select the CSV file that you want to import in the Import File di

alog box.

Note: If the CSV file contains test data with Unicode characters in it, you must

save the CSV file in UTF-8 format. You can then choose the CSV file and import

the test data from the CSV file into the dataset.

c. Optional. Click Overwrite to add the rows and columns from the selected CSV file

from the beginning of the dataset.

d. Optional. Click Append to add rows and columns from the selected CSV file to the end

of the dataset.

e. Optional. Select the First row contains headers check box if your CSV file contains the

header.

Export Click the Export icon to download the dataset as a CSV file.

Set as cur

rent row

Right-click any cell in a row and select Set as current row.

When rows are deleted:

If you delete any row between row 1 to current row, the current row data is taken from the

next row.

For example, when you set the current row as 6, and then you delete any row between row 1

to row 6, the current row remains at row 6, but the content of row 7 is moved to row 6.

When rows are inserted:

Chapter 7. Test Author Guide

Options Actions

If you insert any new row between row 1 to the current row, the current row data is taken from

the previous row.

For example, when you set the current row as 6, and then you insert any row between row 1 to

row 6, the current row remains at row 6, but the content of row 5 is moved to row 6.

Dataset con

figuration

settings

In the Configure Dataset window, you can set the separator value, change the row and col

umn settings, and configure the string values in the dataset.

a. Click the Menu icon , and then select the Configure option.

b. Select any of the separator values that you used in the CSV file.

The available options are Comma, Semicolon, Space, Tab, and Other. In the CSV file,

if you have any other separator characters other than the available options, then you

can select the Other option, and then can specify a value.

For example, if the data in the CSV file is separated by a character #, then select the

Other option and enter # in the field.

c. Configure the following options to change the row and column settings:

▪ Column header - Use an up-down control button to increment or decrement

the value of the column header.

▪ Data start point - Use an up-down control button to increment or decrement

the value of the data starting pointer.

▪ Current row - Use an up-down control button to increment or decrement the

value of the current row.

d. Configure the following options to change the string values in the dataset:

▪ Treat as null - Enter a string value that is to be treated as null when running

the test.

▪ Treat as empty - Enter a string value that is to be treated as empty when run

ning the test.

509

HCL OneTest™ UI

510

Options Actions

For example, when you run the test and the data 123 in the dataset to be treat

ed as empty, then you can specify 123 in the Treat as empty field.

▪ Treat empty text as null - Select this field when you want the dataset that con

tains any blank cells, and the value of those blank cells to be interpreted as

null.

e. Click Update to apply the changes.

Discard
Click the Menu icon , and then select Discard to discard the changes made to the dataset.

3. Click the Save icon to save the changes made to the dataset.

Results

You have edited the dataset.

Encrypted datasets overview
You can encrypt one or more columns in a dataset. If you want to encrypt confidential information such as a set of

passwords or account numbers that are used during a test, you can use an encrypted dataset.

Dataset columns are encrypted using the RC4 private-key algorithm. You can use only one password to encrypt

columns in any given dataset. Encrypted datasets are not supported on agent computers that are running the z/OS®

or AIX® operating systems.

Important: If you forget the password to a dataset, there is no way to recover the password.

When you run a test that uses a dataset that contains encrypted variables, you are prompted for the dataset

password. If the test uses multiple encrypted datasets, you must enter the password for every encrypted dataset that

the test uses.

When you run a test that uses a dataset with an encrypted column, the value of the column is decrypted at a run time.

The column value is sent as a cleartext string in the requests to the server. The actual values of the encrypted dataset

variables are not displayed in the test log. The test log displays asterisks for the encrypted dataset variables.

To see the actual values of variables that are sent to the server at run time, you must use custom code. You can send

the dataset column value to custom code that writes the value to a file other than the test log. If the custom code

writes to the test log using tes.getTestLogManager().reportMessage(), then asterisks are displayed instead of the

decrypted variables.

Chapter 7. Test Author Guide

Encrypting a dataset column
To secure test data, you must encrypt datasets. You can encrypt data in the columns of a dataset by using an

encryption key. When you run a test that utilizes a dataset with encrypted variables, you must enter the encryption key

for the encrypted column that the test uses.

Before you begin

You must have created a dataset. See Creating a dataset in a workspace on page 492.

1. Double-click the dataset in the Test Navigator.

Result

The dataset is displayed in a browser.

2. Right-click any cell in a column that you want to encrypt and select Encrypt column data.

Result

The Encrypt Column window is displayed.

3. Enter an encryption key in the Encryption Key field to encrypt the data in the column.

Remember: When you have already encrypted other columns in the dataset, you must enter the same

encryption key that you used previously. You can use only one encryption key to encrypt columns in a

dataset.

Important: The encryption keys you use to encrypt data in a dataset are not stored on the server nor

can be retrieved from the server. Therefore, you must remember to store the encryption keys in a

secure location. You must use the same encryption keys to view the encrypted values, to decrypt data,

or enable the use of the encrypted dataset during test runs.

4. Click Encrypt Column.

Result

Asterisks are displayed instead of actual data for the encrypted column.

Results

The dataset column is encrypted.

Decrypting a dataset column
To view the content of an encrypted dataset, you can decrypt the dataset. Removing encryption from a dataset

revokes the protection offered to the test data.

Before you begin

You must have created a dataset with at least one encrypted column. See Creating a dataset in a workspace on

page 492 and Encrypting a dataset column on page 511.

511

HCL OneTest™ UI

512

1. Double-click the dataset in the Test Navigator.

Result

The dataset is displayed in a browser.

2. Right-click encrypted cells that display the contents with asterisks, and then select Decrypt column data.

Result

The Decrypt Column window is displayed.

3. Enter the encryption key that you used to encrypt the data in the column in the Encryption Key field.

4. Click Decrypt Column.

Result

Asterisks are replaced with the actual data in the decrypted column.

Results

The encryption is now removed from the selected column in the dataset. When you run a test that uses a dataset that

contains decrypted data, the variable data is substituted for the data in the recorded test without prompting for the

encryption key.

Using a digital certificate store with a dataset
You can associate the certificates in one or more certificate stores with a dataset to use multiple digital certificates

during testing.

1. Open a test for editing. On the Common Options page, click Add Dataset.

2. Create a dataset with two columns that contains a list of the certificates in the certificate store and a list of

passphrases for the certificates. To learn more about adding datasets, see Creating a dataset in a workspace

on page 492. You can use the supplied KeyTool program to generate a list of names of certificates in a

certificate store.

3. Select Fetch only once per user.

4. Save the dataset.

5. On the Security page, under Digital Certificates, click Add.

6. Select a certificate from the certificate store that you created previously.

7. Type the passphrase for the selected certificate.

8. When prompted to dataset the digital certificate, click Yes.

9. In the Select dataset column wizard, choose the dataset that you added previously, and substitute the

appropriate columns for the certificate name and passphrase.

10. Save the test, and then add the test to a schedule.

Results

When you run this schedule, the certificates from the certificate store are submitted to the server.

Navigating between a dataset and a test
After you have created a dataset or imported a comma-separate values (CSV) file into a dataset, you can navigate

between the dataset and associated tests in the test editor. You can enlarge the test and the dataset, list the datasets

Chapter 7. Test Author Guide

that a test uses, navigate from a row in a dataset to the corresponding element in the test, see the data for a page or

request, and add or remove dataset references.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Do one of the following actions:

Option Description

Maximize the test window Double-click the test tab (for example,

). Do not click the x, or you will

close the test. To return to the default perspective,

click Window > Reset Perspective.

View the datasets that a test uses In the Test Contents area, click the first line of the

test, which is the test name.

Navigate from a row in a dataset

to its corresponding element

a. In the Test Contents area, click the test name,

which displays the dataset.

b. Expand the dataset to display the rows.

c. Double-click the row.

View the data for a page or request In the Test Contents area, click the page or request.

To add a reference to a dataset In the Test Element Details area, drag your cursor

over the candidate, right-click, and select Substitute >

Select Data Source. The Select Data Source window

opens. If you have not already added the dataset to

the test, click Dataset, and then add the new dataset.

Remove a reference to a dataset In the Test Element Details area, drag your cursor

over the reference, right-click, and select Remove

Substitution.

3. Save the test, if you have made any changes.

Frequently asked questions
This section provides answers to frequently asked questions about the HCL OneTest™ UIWeb UI extension.

FAQ: Web UI testing
This topic answers a few generic questions about using the HCL OneTest™ UI Web UI extension.

• Why should the documents be loaded in Microsoft Internet Explorer 9 Standard mode? on page 514

• Why do I see the phrase WebDriver Text displayed in the bottom right corner of the Mozilla Firefox browser

while playing back a Web UI test script? on page 514

513

HCL OneTest™ UI

514

• Why am I unable to record a Web UI test using Microsoft Internet Explorer? on page 514

• Why does it take so long to start recording a Web UI test using Firefox? on page 514

• What can I do if the browser does not start during recording? on page 514

• Why do I see variations in the recording and playback of a Web UI test on different browsers? on page 514

• Why does the recorder stop abruptly while recording in Microsoft Internet Explorer on a Windows computer?

on page 515

Why should the documents be loaded in Microsoft Internet Explorer 9 Standard mode?

The Web UI extension only supports Microsoft Internet Explorer 9 and above. You cannot record or playback the

Web UI test scripts if the documents are loaded in modes other than the Internet Explorer 9 Standard mode. This is

because the web sites that do not use <!DOCTYPE html> at the beginning of the page source render the page in Internet

Explorer 9 Quirk Mode or in an older version of Internet Explorer by default; this limitation causes the Javascript

APIs used in the Web UI extension to not work as expected. Hence, ensure that you always load the documents in

Microsoft Internet Explorer 9 Standard mode.

Why do I see the phrase WebDriver Text displayed in the bottom right corner of the Mozilla Firefox
browser while playing back a Web UI test script?

The message originates from the Selenium API that the Web UI extension uses to open the Firefox browser. The Web

UI application does not have any control over the display of the message, but it is not in any way impact the script

playback. You can ignore the message.

Why am I unable to record a Web UI test using Microsoft Internet Explorer?

In Internet Explorer, open Tools > Internet Options > Security and disable protected mode for all zones.

Why does it take so long to start recording a Web UI test using Firefox?

The delay occurs because HCL OneTest™ UI must first invoke Selenium to start the Firefox browser.

What can I do if the browser does not start during recording?

1. Check that the internet proxy settings are set correctly. (In Internet Explorer, go to Internet Options >

Connections > LAN Settings to make any necessary changes.

2. Close HCL OneTest™ UI.

3. Kill the following browser-specific processes:

◦ InternetExplorerDriver.exe

◦ ChromeDriver.exe

◦ All FireFox instances

Why do I see variations in the recording and playback of a Web UI test on different browsers?

Recording and playback of a Web UI test depends on the properties of each control on a Web page. For example,

in one browser a search button might be implemented as a text box, whereas in another browser the search button

Chapter 7. Test Author Guide

might be implemented as a jQuery control. To play back a recorded script in a different browser, you might need to

edit the control recognition properties in the recorded script or insert a suitable action.

Why does the recorder stop abruptly while recording in Microsoft Internet Explorer on a Windows
computer?

This is a limitation that the Web UI extension inherits from Selenium in case of non-admin accounts. When you are

logged in as a non-administrator on a Windows computer, ensure that the Internet Explorer runs in unprotected mode.

In Internet Explorer, open Tools > Internet Options > Security. Select Internet zone and clear the check box Enable

Protected Mode.

Troubleshooting Web UI tests
While working with Web UI tests, you might encounter problems that you can easily troubleshoot. The topics in this

section address some of these problems.

In addition to the topics listed in this section, the following resources are available to help you troubleshoot the Web

UI problems:

• Support Knowledge Base: Known problems of HCL OneTest™ UI are documented in the form of individual

tech notes in the Support Knowledge Base. As problems are discovered and resolved, the knowledge base

is updated and maintained with new information. By searching the knowledge base, you can quickly find

workarounds or solutions to problems.

• Frequently Asked Questions on page 513

Troubleshooting Web UI testing
This topic can help you troubleshoot some of the problems that you might encounter in Web UI testing.

Problem Cause Solution

At the start of recording a Web UI

test using Microsoft Internet Explor

er, the following error message pops

up: Error starting Internet Explor

er.

The browser is not properly installed

on your machine, or you are using a

version that is not supported by the

Web UI extension, or the Enable Pro

tected Mode option is not properly

set.

• Check if the Microsoft Inter

net Explorer is properly in

stalled on your machine and

you are using a version sup

ported by the Web UI exten

sion.

• Also, in the browser, go to

Tools > Internet Options > Se

curity tab and check if the En

able Protected Mode setting

is the same for all the security

zones.

515

http://www-947.ibm.com/support/entry/portal/support

HCL OneTest™ UI

516

Problem Cause Solution

You are unable to record and play

back a Web UI test using Microsoft

Internet Explorer. Typically, an object

is highlighted in a blue rectangle dur

ing recording and in a red rectangle

during playback.

The Web UI extension does not sup

port testing web pages that are ren

dered in Compatibility mode/Quirks

mode in Internet Explorer.

Perform the following steps to force

websites to open in the standards

view:

1. Open Internet Explorer.

2. Go to Tools > Compatibility

View Settings.

3. Clear the following check

boxes that force the web

pages to be rendered in com

patibility view:

◦ Include updated web

site lists from Mi

crosoft

◦ Display intranet sites

in Compatibilty View

◦ Display all websites in

Compatibility View

Recording and playback of Web UI

tests of a few websites using Mi

crosoft Internet Explorer 11 fail with

the following error: Exception thrown:

JavaScript error in async script.

The website you are testing is not

trusted.

Make sure you add the web sites to

be tested to the list of trusted web

sites as follows:

1. Open Internet Explorer.

2. Go to Tools > Internet Op

tions > Security tab.

3. Click Trusted sites and then

click Sites.

4. Type the complete address

of the website in Add this

website to the zone and click

Add.

5. Click Close and then click OK.

Playback of Web UI tests fails on

Microsoft Internet Explorer 9 and

above with the following exception:

org.openqa.selenium.StaleElementRe

ferenceException: Error setting ar

guments for script.

Some websites use cookies to store

information on your machine for au

tomatically populating forms. On

these sites, test scripts may have dif

ficulty identifying controls based on

Ensure that you delete all the cookies

before playing back your test scripts.

Chapter 7. Test Author Guide

Problem Cause Solution

the content, which results in playback

failure.

Uninstalling HCL OneTest™ UI after

recording/playing back tests with Mi

crosoft Internet Explorer or Chrome

does not automatically remove the

__SDP_PATH__ and __BRAND_

NAME__IMShared folders. Manual

removal of the folders also throws an

error message.

The application fails to close the

browser driver processes that are ini

tiated as part of recording or play

back.

Before you uninstallHCL OneTest™ UI,

ensure that you manually kill any ac

tive driver processes associated with

the browsers through the Windows

Task Manager.

Playback fails on the submenu ac

tions that are beneath the overlaid

control.

If an application has a menu with

a control overlaid on top and sub

menus beneath the overlaid control,

the recorder might capture the action

only on the overlaid control based on

the application behavior. In that case,

the submenus are not played back

automatically.

You must manually add the sub

menus to the test steps for the play

back to run successfully.

Testing mobile applications
You can test the Android or iOS mobile applications by recording and playing back mobile tests on Android devices or

emulators, iOS mobile devices or simulators by using HCL OneTest™ UI.

Testing Android applications

You can automate the testing of Android mobile applications by recording and playing back the recorded mobile

tests.

You can connect your simulators, emulators, or mobile devices to the computer, and then record the user interface

and hardware actions. You can perform the actions that you want to record by using a virtual client.

Testing Android applications
You can automate the testing of Android mobile applications in HCL OneTest™ UI by recording and playing back the

recorded mobile tests.

Prerequisite tasks for recording Android mobile applications

Before you can use HCL OneTest™ UI to record a test for an Android application by using either an Android device or

emulator, you must complete the following prerequisite tasks:

517

HCL OneTest™ UI

518

• Installed the Android SDK on the computer that you want to use for testing Android mobile applications.

• Specified the Android SDK path in HCL OneTest™ UI by clicking Window > Preferences > Test > UI Test >

Android SDK that points to the directory where the Android SDK is installed.

• Set or changed the value of the ANDROID_HOME environment variable on the computer that you want to use

for testing Android mobile applications for the following operating systems:

◦ Windows operating systems, see Setting or changing the ANDROID_HOME path in Windows operating

systems on page 1014.

◦ Linux operating systems, see Setting or changing the ANDROID_HOME path in Linux operating

systems on page 1012.

◦ Mac operating systems, see Setting or changing the ANDROID_HOME path in Mac operating systems

on page 1013.

• Connected and started the Android device that you want to use for testing Android mobile applications.

• Installed the Android application that you want to test on the Android device.

• Installed Google Chrome browser on the computer where HCL OneTest™ UI is installed.

• Configured Android applications in a common web interface. See Configuring Android applications for mobile

tests on page 520.

Recording tests for Android mobile applications

After you install the Android SDK and connect the Android device or emulator to your computer, you can then record

the user interface and hardware actions in the Android application that you want to test.

You can perform the actions that you want to record by using a virtual client of the mobile device. The actions that

you perform are captured as test steps in the test recording. You can perform the following actions in the test steps

of a mobile test recording:

• Insert user actions.

• Insert navigation actions.

• Assign variables.

• Insert verification points.

• Substitute data by using custom code or datasets.

You can create a single test or multiple tests by recording actions that you perform for different functions on the

mobile application.

See Recording mobile tests for Android applications on page 522.

You can add multiple tests to a Compound Test. You can also include the test variables or a variables file to the

Compound Test.

See Creating a compound test on page 554.

You can create an Accelerated Functional Test Suite (AFT) Suite for mobile tests in the following scenarios:

Chapter 7. Test Author Guide

• When you want to run a single mobile test on multiple devices.

• When you want to run multiple mobile tests on a single device.

• When you want to run multiple mobile tests on multiple devices that are connected on any of the following

computers or device clouds:

◦ Computer that runs HCL OneTest™ UI.

◦ Remote agent computer.

◦ BitBar Cloud.

◦ Perfecto Mobile Cloud.

◦ pCloudy Cloud.

See Creating an AFT suite for mobile tests on page 563.

Prerequisites for running tests for Android mobile applications

Before you can play back the recorded mobile test, you must complete the following tasks:

• Installed the Android SDK on the computer that you want to use for testing Android mobile applications.

• Set or changed the value of the ANDROID_HOME environment variable on the computer that you want to use

for testing Android mobile applications for the following operating systems:

◦ Windows operating systems, see Setting or changing the ANDROID_HOME path in Windows operating

systems on page 1014.

◦ Linux operating systems, see Setting or changing the ANDROID_HOME path in Linux operating

systems on page 1012.

◦ Mac operating systems, see Setting or changing the ANDROID_HOME path in Mac operating systems

on page 1013.

• Connected and started the Android device that you want to use for testing Android mobile applications.

• Installed the Android application that you want to test on the Android device.

Running tests recorded for Android mobile applications

By using HCL OneTest™ UI, you can play back the recorded mobile test on Android devices or emulators that are

connected to any of the following computers or device clouds:

• Computer that runs HCL OneTest™ UI.

• Remote agent computer.

• BitBar Cloud.

• Perfecto Mobile Cloud.

• pCloudy Cloud.

You can play back a mobile test, multiple mobile tests, a compound test, or an AFT Suite by using HCL OneTest™ UI.

After you select the test, you can select the location where the Android devices or emulators are connected and then

specify the Android device or emulator on which you want to run the test.

519

HCL OneTest™ UI

520

When you play back the Compound Test containing mobile tests, you can specify different Android devices or

emulators for each of the mobile test in the Compound Test.

See Configuration of mobile test runs on page 1042.

Viewing test results and reports

The test result is displayed as a unified report for the playing back of a mobile test. See Unified reports on

page 1193.

Troubleshooting issues when testing Android applications

If you encounter any issues when you are testing Android applications, you can refer to the problems and their

resolutions in Troubleshooting issues when testing Android applications on page 525.

Related reference

Task flows for testing mobile applications on page 39

Configuring Android applications for mobile tests
You can configure Android applications in a common web interface and use the configured applications any time later

to record mobile tests. You can record mobile tests to perform actions on Android applications and automate the

mobile tests.

1. Go to the UI Test perspective in HCL OneTest™ UI.

2. Click the Application configuration icon in the toolbar.

The Application configuration page opens in the default browser.

This page displays the list of applications that you configured in HCL OneTest™ UI.

3. Click Add and select Android.

The Android application dialog box is displayed.

4. Choose a mode for configuring the Android application. You can click one of the following modes:

◦ Manually: Click this option to manually enter the complete details of the Android application.

◦ From APK: Click this option to either drag and drop the package file .apk or browse to select the

package file of the Android application. After you drag and drop the package file in the Drop APK or

click to browse field, the details of the Android application are populated automatically.

◦ From device: Click this option to select the Android application from devices or emulators that are

connected to your computer.

5. Complete the action for each option as described in the following table:

Option Action

Device Select a device or an emulator that is connected to

your computer.

Chapter 7. Test Author Guide

Option Action

Note: This field is displayed only when you

select the From device mode.

Package

Note: This field is displayed only when you

select the Manually or From device mode.

Perform one of the following actions based on the

mode that you chose to configure the application:

◦ Manually: Enter the package name of the An

droid application that you want to configure.

◦ From device: Select the package name from

the Device list.

For example, the package name for YouTube is

com.google.Android.youtube.

You can also add an icon to the Android application

by clicking the Edit icon inline with the Package field.

This icon is prefixed to the application name.

Name
The application name is auto populated for From

APK or From device modes. You can also edit the

name as required.

For the Manually mode, enter a name for the Android

application with which you want to identify the ap

plication. This name is displayed as the Application

Name after you configure the application.

For example, the application name can be add_forms.

Activity
The activity name is used to identify the purpose of

the Android application that you want to configure.

After you enter the package name in the Package

field, the same name is auto populated in the Activity

field and it is suffixed with the text .Main Activity.

For example, if the package name is com.google.An

droid.youtube, then the Activity name is auto populat

ed as com.google.Android.youtube.MainActivity. You

can edit the text as required.

521

HCL OneTest™ UI

522

Option Action

Version Enter a number that you want to identify the version

of the mobile application used for the test.

For example, the version number can be dev_bld_

V123.

Description Enter a description for the application.

For example, the application description can be Test

add video in bld V123.

6. Click Add.

Results

You have configured the Android application.

What to do next

You can use the Android application to record the mobile tests.

Related information

https://developer.Android.com/studio/build/application-id

https://developer.Android.com/guide/components/activities/intro-activities

Recording mobile tests for Android applications
You can record a mobile test to capture the actions that you perform on Android applications. The actions are

captured as test steps.

Before you begin

You must have completed the following tasks:

• Installed the Android SDK on the computer that you want to use for testing Android mobile applications.

• Set or changed the value of the ANDROID_HOME environment variable on any of the following operating

systems:

◦ Windows, see Setting or changing the ANDROID_HOME path in Windows operating systems on

page 1014.

◦ Linux, see Setting or changing the ANDROID_HOME path in Linux operating systems on page 1012.

• Connected the mobile devices or emulators to the computer that runs HCL OneTest™ UI.

About this task

https://developer.Android.com/studio/build/application-id
https://developer.Android.com/guide/components/activities/intro-activities

Chapter 7. Test Author Guide

Generally, when you record actions on the Android application, a control on the application is identified by using one

of the control properties which is a unique identifier for that control. The following controls on the application can be

identified by using the Label property also:

• Input field

• Drop-down list

For example, if there are 3 input fields on the application screen, then these input fields are identified by using the

Label property which is unique to these input fields.

Restriction: In some Android devices, the double tap action that you perform on the lower part of the screen

is not captured while you record the test.

1. Go to the UI Test perspective in HCL OneTest™ UI.

2. Click the New Test from Recording icon in the toolbar and select Mobile Test.

The New Mobile Test From Recording dialog box is displayed.

3. Select a directory to save the test.

4. Enter the name of the test in the Test name field, and click Next.

The Select mobile application page displays the list of all mobile applications that you configured in the

Application Configuration page.

5. Select the Android application that you want to test.

Note: The real devices or the emulators that are connected to the computer are listed and you can

select any device or emulator from the list.

6. Select the device from the Select mobile device list.

7. Click Next, and then click Finish.

The application is displayed in a virtual client of both, the real mobile device or the emulator.

The recording is started in a web browser.

You can perform the actions on the selected mobile application by using the virtual client. The actions that

you perform are imitated on the device or emulator and are captured as test steps in the test.

The test steps are displayed on the Test Steps pane of the virtual client window.

The following table lists the options of the actions that you can perform in the virtual client:

Option Action when clicked

Stop recording

Stops the recording and generates the mobile test

recording

523

HCL OneTest™ UI

524

Option Action when clicked

Screen lock

Performs the lock screen action on the mobile device

or emulator

Refresh
Refreshes the virtual client if the actions that you per

form on the virtual client is not synchronized with the

mobile device

Volume up

Increases the volume on the mobile device or emula

tor

Volume down

Decreases the volume on the mobile device or emu

lator

Mute

Mutes the mobile device or emulator

Send SMS

Sends an SMS to the phone number that you specify

in the Send SMS dialog box

Make call

Calls to the phone number that you specify in the

Make a call dialog box

Overview
Displays the previously opened applications

Home
Navigates to the home screen

Back
Navigates to the previous page or window in the mo

bile application

8. Click Stop recording.

The recording of the test is stopped and the browser window is closed. The Test Generation dialog box is

displayed in the UI Test perspective.

Results

You have recorded a test for an Android mobile application.

What to do next

You can perform any of the following tasks:

• You can click Open Test in the Test Generation dialog box to view the recorded test and edit the test, if you

want to change or add the test steps or verification points. See Editing a mobile test on page 533.

• You can run the recorded test. See Running mobile tests for Android mobile applications on page 1043.

Chapter 7. Test Author Guide

Troubleshooting issues when testing Android applications
You can find information about the issues or problems that you might face while you perform mobile tests for Android

applications. Details about issues, their causes, and the resolutions that you can apply to fix the issues are described.

The troubleshooting issues are presented to you in the following table:

Problem Description Solution

When you start recording the test, the

recording does not continue and the

following error message is displayed:

Screenshot cannot be
 captured for the recording
 because the security flag
 is set for the current
 view.
To continue with the
 recording, switch to the
 non-secured view on the
 device and refresh the
 screen.

HCL OneTest™ UI needs to capture

the screens for recording the tests.

For some Android applications, be

cause the security flag is set, the

screen cannot be captured.

You must switch to the non-secured

view of the application and continue

with the recording.

When you record a mobile test on

any Android application, if there are

there two controls with the same

name, then the playback fails.

When the application screen has two

controls with the same name, during

the playback, the control that is on

the active area of the screen is iden

tified as the recorded control even

though the other control was clicked

during the recording.

For example, consider that an appli

cation has two Login buttons, one at

the top of the page and another at

the bottom of the page. While record

ing if you clicked the second Login

button and the first Login button was

not visible in the active area, during

the playback, both the Login buttons

are visible and the playback consid

ers the first Login button.

You must specify the location details

for each of the controls that have the

same name.

You must perform the following

tasks:

1. Click the step for which you

want to add the location de

tails.

The User Action Details pane

is displayed on the right side.

2. Select at the specified index

from the Object location list.

3. Enter a value in the Index

field.

For example, for the first Lo

gin button, you can enter the

value as 1 and for the second

525

HCL OneTest™ UI

526

Problem Description Solution

Login button, you can enter

the value as 2.

4. Save and run the test.

When you receive an incoming call

on the application screen, you are

not able to click on any of the op

tions that are displayed on the pop-

up frame.

When you want to record an incom

ing call action, you can initiate a call

to the device, and then you can re

spond to the call by clicking one of

the options in the pop-up frame. You

might not be able to respond to the

call because when you click the op

tions in the pop-up frame, the option

might not be clicked and the controls

below the frame are clicked.

You can add navigation actions to re

spond to the incoming call.

You must perform the following

tasks:

1. Click the step for which you

want to add a navigation ac

tion.

2. Click Insert > Navigation ac

tion.

3. Select either Accept-Call or

Decline-call in the Object's

action list, and then specify

the phone number in the from

field.

4. Save and run the test.

When you play back a Web UI test in

the Chrome browser that is installed

on an Android device, the playback

does not start and the unified report

displays an error message.

The unified report displays the fol

lowing error message:

Error in launching Chrome. The

browser might not be installed or

you are using an unsupported ver

sion.

This issue is because the version of

the Chrome browser on the Android

device is different from the version of

the Chrome driver.

You must perform the following

steps:

1. Download the appropriate

Chrome driver.

2. Provide the path and the file

name of the Chrome driver

in the environment variable

WEBDRIVER_CHROME_

DRIVER_MOBILE.

3. Go to the directory path

<installation direc

tory>/node-js/appi

um-server, and then restart

the execution agent.

Chapter 7. Test Author Guide

Testing iOS applications
You can test the native and hybrid iOS applications in HCL OneTest™ UI by recording and playing back mobile tests on

computers that run on Mac operating systems.

The following table lists the tasks that you must perform to record and run tests:

Task Description

Prerequisite tasks for recording iOS tests on page 528 You must complete the prerequisite tasks before you

record a test for iOS mobile applications.

Configuring the iOS applications on page 529 You must first configure the iOS application in HCL

OneTest™ UI to record a mobile test.

Recording mobile tests for iOS applications on

page 530
After you install the Xcode and the command line tools

for Xcode, you can connect the iOS device or simula

tor to your computer, you can then record the user inter

face and hardware actions in the iOS application that you

want to test.

You can create a single test or multiple tests by record

ing actions that you perform for different functions on

the mobile application.

Creating a compound test on page 554
You can add multiple tests to a Compound Test. You can

also include the test variables or a variables file to the

Compound Test.

Creating an AFT suite for mobile tests on page 563 You can create AFT suites and play them back on the fol

lowing computers or device clouds:

• Computer that runs HCL OneTest™ UI.

• Remote agent computer.

• BitBar Cloud.

• Perfecto Mobile Cloud.

• pCloudy Cloud.

Running mobile tests for iOS mobile applications on

page 1069

You can play back the recorded mobile test on iOS de

vices or simulators.

Running compound tests for iOS mobile applications on

page 1080

You can play back compound tests on iOS devices or

simulators.

527

HCL OneTest™ UI

528

Task Description

Viewing Unified reports on page 1193 You can view the test result that is displayed as a unified

report after the playing back of a mobile test.

Troubleshooting issues when testing iOS applications on

page 532

If you encounter any issues when you are testing iOS ap

plications, you can refer to the problems and their resolu

tions.

Related reference

Task flows for testing mobile applications on page 39

Prerequisite tasks for recording iOS tests
You can test the native and hybrid iOS applications in HCL OneTest™ UI by recording and playing back mobile tests on

computers that run on Mac operating systems.

Prerequisite tasks for recording iOS mobile applications on a simulator

Before you can use HCL OneTest™ UI to record a test for an iOS application by using a simulator, you must complete

the following tasks:

• Set up a computer that runs on the Mac operating system.

• Installed Xcode and Command Line Tools for Xcode on your computer.

Note: You might have to follow certain steps in setting up the project with Xcode if you experience

any issue while you record or play back iOS tests. See Troubleshooting issues when testing iOS

applications on page 532.

• Installed the iOS applications that you want to test on the simulator.

• Configured the iOS applications that you want to test in HCL OneTest™ UI. See Configuring the iOS

applications on page 529.

Prerequisite tasks for recording iOS mobile applications on an iOS device

Before you can use HCL OneTest™ UI to record a test for an iOS application by using an iOS device, you must

complete the following tasks:

• Set up a computer that runs on the Mac operating system.

• Installed Xcode and Command Line Tools for Xcode on your computer.

Chapter 7. Test Author Guide

Note: You might have to follow certain steps in setting up the project with Xcode if you experience

any issue while you record or play back iOS tests. See Troubleshooting issues when testing iOS

applications on page 532.

• Signed in to the WebDriverAgent Xcode project by using the Apple developer account.

Note: You must navigate to the <installation directory>/node-js/appium-server/

node_modules/appium/node_modules/appium-webdriveragent folder and then follow the

steps as described in the Setting up iOS Real Devices Tests with XCUITest portal.

• Installed the iOS applications that you want to test on the iOS device.

• Configured the iOS applications that you want to test in HCL OneTest™ UI. See Configuring the iOS

applications on page 529.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

• Provided the Apple Team ID and role details in the Apple Team ID and Role fields.

Note: To enter the details, you must go to Windows > Preferences > Test Execution > UI Test

Playback > Mobile Device tab.

• Added the iOS real devices to the same developer profile.

Related reference

Task flows for testing mobile applications on page 39

Configuring the iOS applications
In HCL OneTest™ UI, you can test the native and hybrid iOS applications on Mac operating systems. To test an iOS

application, you must first configure the iOS application. You must configure the iOS application to record a mobile

test.

1. Go to the Web UI Test perspective in HCL OneTest™ UI.

2. Click Application Configuration in the toolbar.

The Application Configuration window is displayed. This window displays the list of applications that you

have configured in HCL OneTest™ UI.

3. Click Add and select iOS.

The iOS application dialog box is displayed.

4. Choose a mode for configuring the iOS application. You can click one of the following modes:

529

https://github.com/appium/appium-xcuitest-driver/blob/master/docs/real-device-config.md

HCL OneTest™ UI

530

◦ Manually: Click this option to manually enter the complete details of the iOS application.

◦ From IPA: Click this option to either drag and drop the package file .ipa or browse to select the

package file of the iOS application. After you drag and drop the package file in the Drop IPA or click to

browse field, the details of the iOS application are populated automatically.

5. Complete the action for each option described in the following table:

Field Action

Bundle ID
Enter the bundle ID of the iOS application that you

want to test. Each iOS application contains a unique

bundle ID.

Name
Enter the name of the application that you want to

configure.

For example, FormApp.

Version
Enter a number based on which you want to identi

fy the version of the mobile application used for the

test.

For example, the version number can be dev_bld_

V102.

Description
Enter a description for the application.

For example, the application description can be Test

add video in bld V102.

6. Click Add.

Results

The iOS application is configured successfully.

What to do next

You can use the iOS application to record the mobile tests.

Recording mobile tests for iOS applications
You can record a mobile test to capture the actions that you perform on iOS applications. The actions are captured as

test steps to a mobile test recording.

Before you begin

Chapter 7. Test Author Guide

You must have completed the following tasks:

• Read and completed the prerequiste tasks listed in Prerequisite tasks for recording iOS tests on page 528.

• Ran the UI Test Agent on the default port to connect to your mobile devices or simulators.

• Installed the application under test on your mobile device or simulator.

About this task

Generally, when you record actions on the iOS application, the controls on the application are identified by using

one of the control properties which is a unique identifier for that control. The input fields on the iOS applications are

identified by using the Label property also.

If the port number of the computer on which you run the UI Test Agent is not the default port, then you must specify

the port number. To specify the port number, you must perform the following tasks:

1. Click Windows > Preferences > Test Execution > UI Test Playback > Mobile Device tab.

2. Select theHost check box.

3. Enter the port number in the Port field.

You can then perform the following steps to record a mobile test on the iOS application.

1. Go to the UI Test perspective in HCL OneTest™ UI.

2. Click the New Test from Recording icon in the toolbar and select Mobile Test.

The New Mobile Test From Recording dialog box is displayed.

3. Select a directory to save the test.

4. Enter the name of the test in the Test name field, and click Next.

The Select mobile application page displays the list of all mobile applications that you configured in the

Application Configuration page.

5. Select the iOS application that you want to test.

Note: The real devices or the simulators that are connected to the computer are listed and you can

select any device or simulator from the list.

6. Select the device from the Select mobile device list.

7. Click Next, and then click Finish.

The application is displayed in a virtual client of both, the real mobile device or the emulator.

The recording is started in a web browser.

You can perform the actions on the selected mobile application by using the virtual client. The actions that

you perform are imitated on the device or emulator and are captured as test steps in the test.

The test steps are displayed on the Test Steps pane of the virtual client window.

531

HCL OneTest™ UI

532

The following table lists the options of the actions that you can perform in the virtual client:

Option Action when clicked

Stop recording

Stops the recording and generates the mobile test

recording

Screen lock

Performs the lock screen action on the mobile device

or simulator

Refresh
Refreshes the virtual client if the actions that you per

form on the virtual client is not synchronized with the

mobile device

Volume up

Increases the volume on the mobile device or simula

tor

Volume down

Decreases the volume on the mobile device or simu

lator

Home
Navigates to the home screen

8. Click Stop recording.

The recording of the test is stopped and the browser window is closed. The Test Generation dialog box is

displayed in the UI Test perspective.

Results

You have recorded a test for an iOS mobile application.

What to do next

You can perform any of the following tasks:

• You can click Open Test in the Test Generation dialog box to view the recorded test and edit the test, if you

want to change or add the test steps or verification points. See Editing a mobile test on page 533.

• You can run the recorded test. See Running mobile tests for iOS mobile applications on page 1069.

Troubleshooting issues when testing iOS applications
You can find information about the issues or problems that you might face while you perform mobile tests for iOS

applications. Details about issues, their causes, and the resolutions that you can apply to fix the issues are described.

The troubleshooting issues are presented to you in the following table:

Chapter 7. Test Author Guide

Problem Description Solution

The UI Test Agent log displays the

following message either when the

recording or playback of iOS test

does not start: Unable to launch Web

DriverAgent because of xcodebuild

failure: xcodebuild failed with

code 65 xcodebuild error

When you start to either record or

play back the iOS test, the action

does not proceed and the UI Test

Agent log displays a message about

the XCode failure.

You must perform the following

steps;

1. Go to the location <in

stallation directo

ry path>/node-js/ap

pium-server/node_mod

ules/appium/node_mod

ules/appium-webdriver

agent, and then open Web

DriverAgent.xcodeproj.

2. Select WebDriverAgent in the

Project.

3. Click the Build Settings tab.

4. Click All and Combined in the

row next to the Build Settings

tab.

5. Set Validate Workspace value

to yes in the Build Options (i

OS)section.

Editing a mobile test
You can edit a mobile test by using the test editor. You can edit a mobile test by modifying the test steps, adding

verification points, and so on.

The test scripts are displayed in the test editor. The test steps are generated as simplified test scripts in the form of

English statements which are easy to understand. The test steps display the list of keyboard actions and UI elements

that were captured during the recording phase.

Note: Editing of a mobile test is similar to editing a Web UI test. If you are familiar with the recording, editing,

and playing back the Web UI tests, it is easy for you to test a mobile application in HCL OneTest™ UI. See

Editing Web UI tests on page 433.

The test editor has multiple views that are explained in the following table:

View name Description

Test Contents view The area at the top left is the Test Contents view.

This view displays the chronological sequence of

events in the test.

533

HCL OneTest™ UI

534

View name Description

User Action Details view The area at the top right is the User Action Details

view. This view displays details about the currently

selected action in the test script. In this area, you can

select a graphic object and specify the action related

to the object, specify how the object is identified and

its location, and other such details.

SmartShot View The area at the bottom left is the SmartShot View,

which includes two tabs: SmartShot and Elements.

The SmartShot tab displays the graphical objects

captured during the recording of each test step. To

the right is the Properties view, which shows the

properties of the selected object.

You can use the SmartShot View to perform the following actions on the mobile test:

Actions on the mobile test More information

Modifying a test step Modifying a step in a test from the SmartShot View on

page 451

Adding verification points Creating verification points in a test on page 439

Adding a loop Adding a loop on page 442

Assigning variables to an object property Assigning a test variable to an objects property on

page 441

Adding user actions in a test Adding user actions in a test

Applying the guided healing feature Overview of guided healing and self-healing on

page 466

Identifying the UI elements by using image property Validating images and user interface elements by using

the image property on page 477

Modularizing test scripts Splitting UI actions on page 446

Testing Windows desktop applications
You can configure the Windows applications to record and play back tests on the Windows desktop applications.

You can also test the Windows applications on dual monitors when you extend the display of your computer to a

secondary monitor.

HCL OneTest™ UI supports the testing of the following applications:

Chapter 7. Test Author Guide

• Windows desktop applications: The Windows desktop applications include two types of applications such as

Universal Windows Platform (UWP) and Classic Windows applications.

• Add-ins in MS Office: The Microsoft Office applications such as Word, Outlook, Access, and PowerPoint are

supported. Add-in applications which are integrated and available on the toolbar of the Office applications are

also supported.

Prerequisites for testing Windows desktop applications
You can find information about the prerequisite conditions that you must satisfy before you can test Windows

desktop applications.

Before you record and play back Windows tests, you must have completed the following actions:

• Configured the Windows desktop application. See Configuring a Windows application on page 535.

• Integrated Add-ins with the Microsoft Office application.

• Restarted your computer if you want to record the Windows test immediately after you install the product.

Tip: To run tests on your local computer, you must clear the Host checkbox in the Mobile Device tab. You can

access the checkbox from the Preferences > UI Test Playback > Mobile Device tab.

Related information

Configuring a Windows application on page 535

Recording a Windows test on page 536

Editing a Windows test on page 540

Configuring a Windows application
In HCL OneTest™ UI, you can test the native Windows desktop applications. To test the Windows applications, you

must first configure the Windows applications in the common web interface.

About this task

After you configure the Windows application in the common web interface, you can use the Windows application

anytime later to record Windows tests.

1. Go to the Web UI Test perspective.

2. Click the Application Configuration icon on the toolbar.

A browser window opens and the Application Configuration page is displayed. The page displays the list of all

applications that you configured in HCL OneTest™ UI.

3. Click Add and select Desktop.

The Desktop Application dialog box is displayed.

535

HCL OneTest™ UI

536

4. Select one of the following types of the Windows desktop application that you want to configure:

◦ EXE: Click EXE to configure classic Windows desktop applications.

◦ UWP: Click UWP to configure Universal Windows Platform (UWP) applications.

5. Enter the following detail based on the type of the Windows application:

◦ Exe path: Enter the path that contains the .exe file of the classic Windows application on your

computer.

◦ Application ID: Enter the application id of the Windows application. For example, if you want to

configure alarm app, you must enter Microsoft.WindowsAlarms_8wekyb3d8bbwe!App.

Note: To get the id of the Windows application, you must run the Windows application, and

then click Properties to copy the application id.

6. Enter a name for the Windows application in the Name field.

7. Enter the version number for the Windows application in the Version field.

8. Enter details about the Windows application in the Description field.

9. Click Advanced Options to enter more details about the Windows application.

Results

You have successfully configured a Windows application.

What to do next

You can record tests on the configured Windows application. See, Recording a Windows test on page 536.

Recording a Windows test
You can record a Windows test to capture the actions that you perform on Windows desktop applications and on the

Add-ins in Microsoft Office applications. The actions are captured as test steps in Windows tests.

Before you begin

You must have completed the tasks mentioned in Prerequisites for testing Windows desktop applications on

page 535.

About this task

Generally, when you record actions on the Windows desktop application, the controls on the application are identified

by using one of the control properties which is a unique identifier for that control. For some of the controls on the

Windows applications, when the Name property is also available the Label property is not generated. The Label

property is generated only for the following controls when the Name property is not available:

• Input field

• List

• Combo box

Chapter 7. Test Author Guide

You can record actions on multiple windows including the dialog boxes of the Windows desktop application. You can

also press Alt+Tab to navigate between the child and the main windows while recording the Windows test.

Tip:

• When you record a test on the Windows application, you must wait when the cursor is busy, and then

proceed when the cursor changes to the default state.

• When the Add-in application response time is more than expected, you can press the left Shift key

twice to synchronize the application state with HCL OneTest™ UI. The cursor is then is restored to the

default state.

Before you can perform the next action on the Add-in application, you must click on the Add-in

application once.

1. In the UI Test perspective, click New > Test From Recording.

The Windows Test Recorder is displayed.

Note: Alternatively, you can click the New Test From Recording icon on the toolbar and click Windows

Test.

2. Click Create a test from a new recording and then select Windows Test.

3. Select a project under which you want to save the Windows test, and then enter a name for the test that you

want to record.

4. Click Next.

The Select Windows application dialog box displays all the configured Windows applications.

Note: An error message is displayed if the WinAppDriver is not running. You must run the

WinAppDriver.

5. Select a Windows application from the list, and then click Finish.

The Windows application is displayed.

Note: When you record a test on a Windows application, you must ensure that the Windows

application does not overlap with the recording tool bar. Otherwise, the recording tool bar is also

captured in the recording.

6. Perform the necessary actions on the Windows application to record the test.

537

HCL OneTest™ UI

538

Tip: To capture all the steps in the test result, you must be slow while performing actions on the

Windows application.

7. Stop the recording. To stop the recording, you must close the Windows application and then click the Stop

icon in the Recording Control view.

Result

The Test Generation dialog box is displayed.

Results

You have successfully recorded a test on the Windows application.

What to do next

You can edit the generated Windows test in the test editor. For information, see Editing a Windows test on

page 540.

Supported Windows UI controls
HCL OneTest™ UI supports the testing of various standard Windows UI controls.

The following Windows UI controls are supported for a Windows test:

• Window

• Pane

• Title Bar

• Menu Item

• Image

• Button

• Drop-down list

• List Item

• Group

• Text

• Scroll Bar

• Hyperlink

• Edit

• Tab

• Tab view

• Thumb

• Combo box

• Menu bar

• Tree

• Tree item

• Radio button

Chapter 7. Test Author Guide

• Check box

• Status bar

• Slider

• Document

• Table

• Header

• Header item

• Data item

• Custom

Note: When you record Windows tests, although you can successfully capture the different types of drop-

down lists or combo boxes, certain list controls might not be captured.

The list controls, which are spanned from the application under test, do not exist as part of the application

and they are not captured correctly.

Supported keyboard and mouse actions
HCL OneTest™ UI supports the basic keyboard and mouse actions that you can perform while recording a Windows

test.

You can record actions on certain controls by performing the following tasks:

To record the action You must...

Hover over a control Move the cursor over the control, and then press the left

Shift key once.

Right-click a control Move the cursor over the control, and then right-click the

control.

Drag a control Move the cursor over the control, and then drag the con

trol.

Double-click a control Move the cursor over the control, and then double-click

the control.

Tip: During the recording of any Windows application, for certain context menus with multiple submenus or

dialog boxes, the actions that you perform on these controls might not be recorded correctly. To overcome

this issue, you can manually add the navigation actions such as presskey and inputkey to the generated test.

You can provide the keyboard strokes to the navigation actions. For more information about the navigation

actions, see Simulating keyboards and special keys actions on Web and native application windows on

page 435.

The following keyboard keys are supported for a Windows test:

539

HCL OneTest™ UI

540

• Keypress

• Ctrl+Shift+<char>

• Ctrl+Tab

• Shift+<char>

• Alt+Tab

• Ctrl+P

• Ctrl+N

• F1-F12 (with special keys)

• PgUp

• PgDn

• Enter

• Esc

• Arrow keys (Up/Down/Left/Right keys with special keys)

• Home/End/Insert/Delete (with special keys)

Editing a Windows test
You can edit the test by using the test editor. You can edit a Windows test by modifying the test steps, adding

verification points, and so on.

The test scripts are displayed in the test editor. The test steps are generated as simplified test scripts in the form of

English statements which are easy to understand. The test steps display the list of keyboard actions and UI elements

that were captured during the recording phase.

Note: The Windows test is similar to a Web UI test. If you are familiar with the recording, editing, and playing

back the Web UI tests, it is easy for you to test a Windows application in HCL OneTest™ UI. See Editing Web UI

tests on page 433.

The test editor has multiple views that are explained in the following table:

View name Description

Test Contents view The area at the top left is the Test Contents view.

This view displays the chronological sequence of

events in the test.

User Action Details view The area at the top right is the User Action Details

view. This view displays details about the currently

selected action in the test script. In this area, you can

select a graphic object and specify the action related

to the object, specify how the object is identified and

its location, and other such details.

SmartShot View The area at the bottom left is the SmartShot View,

which includes two tabs: SmartShot and Elements.

Chapter 7. Test Author Guide

View name Description

The SmartShot tab displays the graphical objects

captured during the recording of each test step. To

the right is the Properties view, which shows the

properties of the selected object.

You can use the SmartShot View to perform the following actions on the Windows test:

Actions on the Windows test More information

Modifying a test step Modifying a step in a test from the SmartShot View on

page 451

Adding verification points Creating verification points in a test on page 439

Adding a loop Adding a loop on page 442

Assigning variables to an object property Assigning a test variable to an objects property on

page 441

Adding user actions in a test Adding user actions in a test

Applying the guided healing feature Overview of guided healing and self-healing on

page 466

Identifying the UI elements by using image property Validating images and user interface elements by using

the image property on page 477

Modularizing test scripts Splitting UI actions on page 446

Recording SAP tests
When you record a test, the test creation wizard records your interactions with the SAP server, generates a test from

the recording, and opens the test for editing. You can record tests from the SAP GUI. You can also record SAP batch

input tests that can be used to produce a heavy load on the server while minimizing the processing requirements for

virtual testers.

SAP testing guidelines
Before you test the SAP applications, you must set up your test environment and incorporate these guidelines to

produce reliable SAP tests.

SAP configuration

The SAP GUI client software must be installed on the same computer as HCL OneTest™ UI. The SAP GUI client is

required for recording and running tests. For information about support of SAP GUI versions, refer to the SAP Note

1412821 - SAP GUI for Windows: Support on Windows for SAP.

541

HCL OneTest™ UI

542

The product is optimized by default for SAP GUI version 7.10 or later. To improve performance with older SAP

GUI 6.20 and 6.40 versions, when running long tests, you must change the bridge2java.dll file located in

the C:\Program Files\HCL\HCLOneTest\plugins\com.ibm.rational.test.lt.runtime.sap

\<build_identifier> directory by renaming bridge2java.dll to bridge2javaV7.dll, and then renaming

bridge2javaV6.dll to bridge2java.dll.

If you are deploying tests on remote computers to simulate a large number of users, the following software must be

installed on each remote computer:

• The SAP GUI client software, configured with the same logon properties as the client on which the tests were

recorded

• The HCL OneTest™ UI software that is provided with the product

Testing relies on the SAP Scripting API and ActiveX. Make sure that these options are selected when installing the

SAP GUI client.

Test recording and running also require that scripting be enabled on the SAP application server and on all SAP GUI

clients that are installed on remote computers. See the topic on configuring SAP for testing for more information.

Limitations

During playback of the tests, each virtual user runs SAP GUI in silent mode by default (the user interface is not

displayed on the screen). However, some modal dialog boxes from the SAP GUI might briefly flash on the screen.

Avoid recording SAP tests with the SAP GUI low speed connection setting. You cannot run with a normal speed

connection tests that you recorded with this setting.

You can have a maximum of only 50 virtual users on an agent for a SAP GUI test.

Batch input tests

You can use batch input tests to simulate a large number of virtual users while minimizing the load on the virtual user

computers.

Batch input tests access the SAP server at a low level, bypassing the SAP GUI interface, and therefore cannot contain

any verification points or SAP GUI elements. Their main purpose is to simulate a load on the server when added

to a test that already contains SAP tests. Only the SAP tests will provide accurate SAP application performance

measurement.

Batch input transactions are recorded in the SAP GUI and exported to the file system. You can then generate batch

input tests that are based on those recorded transactions.

Note: Sometimes the default values of the SAP Java Connectors (JCo) parameters are not sufficient for

the load tests. The default values require some updates both at the SAP R/3 server and client end. For the

client, in the Additional SAP Connection Properties window, you must configure the SAP JCo parameters

Chapter 7. Test Author Guide

options that are available in the test. Alternatively, you can specify the properties as RPT_VMARGS in the

agent location. For example, RPT_VMARGS=- Djco.cpic_maxconv=1000

Long duration test runs

When running long duration test schedules that exceed many hours, use the long run mode process to reduce

resource consumption with the SAP GUI client. This mode increases the reliability of long duration test runs because

a new process starts every time the specified number of SAP sessions completes. Hence, Windows resource

consumption is bare minimum. You must enable this option for each user group in the schedule.

In the long run mode, a new process is created each time the number of SAP test instances reaches the specified

number.

Cleaning the SAP work directory

In some cases, trace files are created by SAP GUI under SapWorkDir directory when running SAP tests.

You can delete these files by setting and environment variable RPT_CLEAN_SAPWORKDIR or a java VMARG

rptCleanSapWorkDir. For example:

• -DrptCleanSapWorkDir=C:\Documents and Settings\UserName\SapWorkDir

• RPT_CLEAN_SAPWORKDIR="C:\Users\UserName\AppData\Local\SAP\SAP GUI\Traces"

If you set the variable to the SapWorkDir folder location, the contents (*.trc files) of the folder are removed when

a schedule starts. If the variable is set to true or on, the product automatically searches for the SapWorkDir folder

before removing its contents. If the variable is set to false or off, no action is taken.

Recording an SAP test
You can record your interaction with the SAP GUI client to generate an SAP test. When you record, the recording

wizard opens the SAP GUI client and records all the interactions that occur between the client and the server.

Before you begin

You must have completed the following tasks:

• Verified that SAP GUI scripting is enabled on the SAP server and the SAP GUI client.

• Working SAP GUI client that you can connect to an SAP server.

• Verified that tests are stored in test projects. If your workspace does not contain a project, the test creation

wizard enables you to creates one.

• Ensured that the session that you are recording is reproducible.

For example, if you create items in SAP and do not delete them, then if items created in SAP are already exist

when the test is run, that might cause the test to not run as expected.

543

HCL OneTest™ UI

544

About this task

You must install the latest version of SAP GUI when you want to record an SAP test in HCL OneTest™ UI.

Important:

Both 64-bit and 32-bit HCL OneTest™ UI supports the SAP protocol.

1. Open HCL OneTest™ UI.

2. Click the New Test From Recording icon , and then click SAP Test.

Note: You can also click File > New > Test From Recording, and then select SAP Test. You can then

select the encryption level, if required and click Next to open the Select Location page.

Result

The Select Location page is displayed.

3. Create a test by performing the following steps:

a. Select a project, and then select a folder from the project.

b. Enter a name for the test.

c. Optionally, click Recording encryption level, and then select the encryption level when you are

recording any sensitive data.

4. Click Next.

Result

The Select Client Application page is displayed.

5. Select SAP Batch Input Recording or SAPGUI For Windows, and then click Next.

Note: When you record an SAP test by using the SAP GUI For Windows method and if you use many

split points, then steps might not split properly after the SAP recording is complete. The split action

during the SAP recording comes into effect only after an SAP request by changing the state of the

current screen. After the test generation is complete, you must use the Split Test action for splitting

the steps to different SAP tests from the test editor.

6. On the SAP Connection page, select how to connect to the SAP server:

Choose from:

◦ In most cases, select SAP Logon; then enter the description normally used by SAP Logon to identify

the server in SAP system name.

◦ If your environment does not support SAP Logon, select Server information. In Application server,

enter the host name or IP address of the server. Then specify a value for System number. Enter

information in Other options, if required. Refer to your SAP documentation for details about the other

SAP Logon options.

Chapter 7. Test Author Guide

◦ If your environment uses gateways or routers to connect to the SAP server, select Connection by

string. Click Edit to specify a valid connection string. Refer to your SAP documentation for details

about connection strings.

◦ If you have an SAP shortcut file to automate the connection, select SAP shortcut file. Click Browse to

specify the location of the file.

7. If this is the first time you record a SAP test, read the privacy warning, and select Accept.

8. Click Finish to start recording.

Result

In some cases, you might see a warning that a script is opening a connection to SAP.

9. Log on to SAP and complete the transactions to test.

For security reasons, the password cannot be recorded by the SAP test recorder. Instead, it is requested at the

end of the recording session.

10. In the SAP GUI window, perform the tasks for testing.

You can use the Recorder Test Annotations toolbar to add comments, record synchronizations, or take screen

captures during the recording.

◦ To add a comment to the recorded test, click the Insert comment icon .

◦ To add a screen capture to the recorded test, click the Capture screen icon . Screen and window

captures make your tests easier to read and help you visualize the recorded test. You can change the

settings for screen captures and add a comment to the image.

◦ To manually add a test synchronization to the recording, click the Insert synchronization icon .

◦ To insert a split point into the recorded test, click the Split point icon button. Split points allow.

With split points, you can generate multiple tests from a single recording, that you can replay in a

different order with a schedule.

11. When you have completed the transactions to be tested, stop the recorder by closing the SAP GUI or by

clicking Stop in the Recorder Control view.

12. In the Enter Password window, enter the password for the account that was used for recording.

This step is required because SAP GUI does not allow direct recording of the password.

Result

A Test Generation Progress window is displayed while the test is being generated.

The following message is displayed on the progress window: Test Generation completed.

What to do next

You can now play back the test and check the test results.

Before playing back a test, in SAP Connection Details editor, click Test Connection to test the connection to the SAP

GUI server.

545

HCL OneTest™ UI

546

Inserting a new recording into a SAP test
You can insert a new recording into a test. Use this feature to add or replace a part of a recorded session.

Before you begin

Inserting a new sequence into a test requires that the SAP session reaches the same state as is expected at the point

where the new sequence is inserted. To do this, the SAP test recorder automatically replays the existing scenario up

to the insertion point before starting the new recording.

You must install the latest version of SAP GUI when you want to record an SAP test in HCL OneTest™ UI.

1. In the test editor, select the element before which you want to insert the new recording.

It is easier to manage the new test sequence when the insertion point is at the transaction level of the test.

2. Click Insert, and then New recording.

Result

The test starts replaying up to the selected insertion point.

3. When the New Recording window is displayed, perform the sequence of actions that you want to add to the

existing test.

4. When you have finished, in the New Recording window, click Stop to stop the recording.

Result

A progress window opens while the test is generated. On completion, the Recorder Control view displays the

message, Test generation completed, and the test is updated with the new contents.

5. After the test has been updated in the Test Navigator, check that the new sequence was properly inserted into

the test, and then click File > Save to save the test or File > Revert to cancel the inserted recording.

Recording a SAP batch input test
You can record certain SAP transaction sessions from SAP GUI with SAP batch input tests recording wizard. When

you record a session, the recording wizard automatically starts a SAP GUI interface and records the transaction that

you specified. After you finish the recording, the wizard generates a SAP batch input test in HCL OneTest™ UI.

About this task

During a SAP batch input test recording, the SAP batch input test produces only a batch input transaction that you

specified. The SAP batch input tests do not contain any verification point and do not produce any performance result.

You must install the latest version of SAP GUI when you want to record an SAP test in HCL OneTest™ UI.

1. Open HCL OneTest™ UI.

2. Click the New Test From Recording icon , and then click SAP Test.

Note: You can also click File > New > Test From Recording, and then select SAP Test. You can then

select the encryption level, if required and click Next to open the Select Location page.

Result

Chapter 7. Test Author Guide

The Select Location page is displayed.

3. Create a test by performing the following steps:

a. Select a project, and then select a folder from the project.

b. Enter a name for the test.

c. Optionally, click Recording encryption level, and then select the encryption level when you are

recording any sensitive data.

4. Click Next.

Result

The Select Client Application page is displayed.

5. Select SAP Batch Input Recording, and then click Next.

6. Perform the following steps to enter the connection and transaction details provided by the SAP

administrator.

a. Enter the following details in the Connection section.

Fields Action

Client Enter the SAP client details.

User Enter the user name associated with the SAP server.

Password Enter the password associated with the user name.

Language Select your language.

Host Enter the SAP host server details.

System Number Enter the system number that corresponds to an SAP in

stance with the SAP server.

Note: For HCL OneTest™ UI, the default value is 00.

b. Click Test Connections to verify if the connection is established.

Result

The SAP Batch Connection dialog box is displayed.

A confirmation message is displayed that states that the connection is successful.

c. Click OK.

d. Enter the SAP transaction code in the Code field.

e. Click Finish.

Result

547

HCL OneTest™ UI

548

The SAP GUI window is displayed.

7. Record the batch input transaction, and then click Save.

Result

The SAP GUI Transaction page is displayed.

The page displays the details of the transaction that you recorded.

8. Click Exit.

Note: To exit the SAP GUI Transaction page, you must click Exit. If you exit the page by using any other

methods, an exception error is displayed.

9. Select the directory where you want to export the recording on your local computer, and then click Generate.

Result

The SAPGUI Security dialog box is displayed.

The dialog box displays the file path for the recording and the directory where the recording is being stored.

10. Click Allow to confirm.

Result

A Test Generation Progress window is displayed while the test is being generated.

The following message is displayed on the progress window: Test Generation completed.

Results

The SAP batch input transaction is recorded.

What to do next

You can click Open Test to open the test in HCL OneTest™ UI test editor. You can then verify the SAP transaction

details and save the test. Later, you can run the test and view the transaction details from the following pages:

• Test Log page

• Functional Test report page

Changing SAP test generation preferences
You can change how SAP tests are generated, such as how tests processes verification points, data correlation, and

pages.

1. Click Window > Preferences.

2. Expand Test > Test Generation, and then click SAP Test Generation.

3. Select the preference to change.

4. Click Apply after changing a setting.

Chapter 7. Test Author Guide

Working with Selenium or Appium tests
You can manage your Selenium or Appium Java™ tests from the UI Test perspective, where you can import and

modify the tests, add them to compound tests, and run them. You can also create new Appium Java™ tests from

the Perfecto perspective on Windows™ and Mac OS, add the tests to compound tests, and run them. Perfecto is not

currently supported on Linux®.

Supported tests: Java™-based Selenium scripts, such as JUnit 3 and 4, and Java™ main programs.

Selenium tests are run on desktop browsers, while Appium tests are used for web or native applications that run on

mobile devices.

Note: You can find more information on the Appium site.

JUnit Appium tests can be run in a Appium framework or in a Perfecto cloud environment.

• To run Appium tests in a Appium framework, the Extension for Selenium/Appium tests must be installed with

HCL OneTest™ UI on the same machine. The Extension for Appium is delivered from version 9.1.0.1 of the

product. The Appium server must be previously set up on a machine. You need to reference the server URL

in the tests to establish a connection between the workbench and the Appium server. When you run the test

from HCL OneTest™ UI, the requests are sent to the server and executed on the device that is connected to the

machine where the server is running. The Appium server can be installed with HCL OneTest™ UI on the same

computer for a local execution of the test.

• To run Appium tests on a cloud Perfecto environment from HCL OneTest™ UI, the HCL OneTest™ UI Extension

for Perfecto Mobile must be installed on the same machine. This extension is available from version 9.1.1

of the product. The test must reference the URL to the cloud, your credentials, the name and version of the

device. When you run the test from the workbench, the requests are sent to the server and executed on the

virtual device.

When you use HCL OneTest™ UI to manage Selenium or Appium tests, you can do the following operations:

• Create new Appium Java™ tests using the HCL OneTest™ UI Perfecto extension

• Import Java™ projects containing Selenium or Appium tests into the product

• Add Selenium or Appium tests to Test Workbench projects

• Add Selenium or Appium tests into larger workflows containing other tests such as performance tests. Such

larger workflows are called compound tests.

• View and modify Selenium and Appium tests

• Run Selenium or Appium tests from the Test Navigator

• Run compound tests that contain Selenium or Appium tests

• View test logs

549

http://appium.io/

HCL OneTest™ UI

550

Importing Selenium or Appium Java tests
You can import Selenium or Appium tests into HCL OneTest™ UI. The tests are then displayed in the Test Navigator

from where they can be modified and run. You can also add Selenium or Appium tests to a compound test, which is a

combination of different kinds of tests that can be managed using HCL OneTest™ UI.

From the UI Test perspective, you can:

• Import existing Selenium or Appium Java projects.

• Import a Selenium or Appium test into a Test Workbench project.

• Add a Selenium or Appium test to a compound test.

You can view Selenium or Appium tests that you imported in the Test Navigator.

Note: If the Selenium or Appium test has a compilation error, the test does not show up in the External Tests

folder of the Test Navigator view. You must fix the compilation error.

Importing a Selenium or Appium Java project into the UI Test perspective
If you have an existing Java project that contains a Selenium or Appium test, you can import it into the UI Test

perspective.

About this task

Complete these steps to import an existing Java project containing a Selenium or Appium test into the UI Test

perspective.

1. In the UI Test perspective, click Import from the File menu.

2. In the Import dialog box, expand General, select Existing Projects into Workspace and then click Next.

3. Click Browse and navigate to the root directory where the Java project is located, and then click OK.

Result

The projects in the directory you select are listed in the Projects field.

4. Select the check box next to the projects you want to import, and click Finish.

Result

The selected project is displayed in the Test Navigator. In the Logical View, the Selenium test is displayed

under the External Tests folder.

5. You can now run, view or modify the Selenium or Appium test.

Importing a Selenium or Appium test into a Test Workbench project
To work with an existing Selenium or Appium test, import it into a project in the Web UI Test perspective.

1. In the UI Test perspective, click Import from the File menu.

2. In the Import dialog box, expand General, select File System and then click Next.

3. Specify the directory in which the Selenium or Appium test resides. Click Browse.

Result

Chapter 7. Test Author Guide

By default, the Selenium or Appium test is imported into the Test Workbench project folder, displayed in the

Into folder field.

4. The contents of the directory you selected are displayed. Select the components you want to import.

5. To organize the imported test components under a top-level folder under the Test Workbench project, select

the Create top-level folder check box.

6. Click Finish.

Result

The imported Selenium or Appium test is displayed under the External Tests folder under the Test Workbench

project in the Test Navigator, in the Logical View.

Note: If some of the tests are not displayed in the External Tests folder, the classpaths may not have

been set properly. Ensure that the correct classpaths have been set and that the project compiles

successfully. To see the compile errors, ensure that the Show Java Content option in the Test

Navigator is enabled.

7. Run, view or modify the imported Selenium or Appium test as required.

Adding a Selenium or Appium test to a compound test
The product provides a one-stop testing environment to work with different types of tests such as Selenium, Appium,

Web UI, and functional tests. You can combine such different types of tests to form a single larger workflow, which

is called a compound test. When you run a compound test, its constituent tests are run in the defined sequence. You

can add Selenium tests to a compound test in the UI Test perspective.

Before you begin

Before adding a Selenium or Appium test to a compound test, ensure that you have imported the test into a Test

Workbench project in a workspace.

1. In the Test Navigator, double-click the compound test to which you want to add the Selenium or Appium test.

Result

The contents of the compound test are shown in the Compound Test Contents panel in the Compound Test

editor.

2. Select the compound test in the Compound Test Contents panel in the Compound Test editor, and do one of

the following:

◦ Click Add to add a Selenium or Appium test as the first element in the compound test.

◦ To insert a Selenium or Appium test before a specific element in the compound test, select the

element and click Insert.

Result

The Select Tests dialog box is opened, and the tests found in the Eclipse Client workspace are displayed.

3. Select the Selenium or Appium test you want to add to the compound test, and click OK.

551

HCL OneTest™ UI

552

Result

The Selenium or Appium test is added to the compound test, and is displayed as part of the contents of the

compound test. When you click the Selenium or Appium test in the compound test element list, its details are

displayed in the Compound Test Element Details panel in the Compound Test editor.

Viewing and modifying Selenium or Appium tests
You can view and modify Selenium or Appium tests that you have imported into the Web UI Test perspective.

About this task

You can view Selenium or Appium tests in the Logical and Resource Views in the Test Navigator. From any of these

views, you can open the test in the Java editor and view and modify the script.

Note: If the Selenium or Appium test has a compilation error, the test does not show up in the External Tests

folder of the Test Navigator view. You must fix the compilation error.

• In the Logical View of the Test Navigator, Selenium or Appium tests are listed in the External Tests folder

under the project into which they were imported. Double-click the Selenium or Appium test under the External

Tests folder to open it in the Java editor.

Result

In the Resource View, the tests under a project are displayed in the project folder. Double-click the Selenium or

Appium test to open it in the Java editor. You can modify the script in the Java editor.

• A Selenium or Appium test that is added to a compound test is displayed the Compound Test Contents panel

in the Compound Test editor.

◦ Click the Selenium or Appium test in the Compound Test Contents, to display its details in the

Compound Test Element Details panel. The name of the test, test path, source type and execution

mode are displayed.

◦ Click the name of the test in the Compound Test Element Details panel to open the test script in the

Java editor, in which you can modify the script.

Running Selenium or Appium tests
You can run Selenium or Appium tests that you have imported into a Test Workbench project. You can also run a

compound test to which you have added a Selenium or Appium test.

About this task

You can run individual Selenium or Appium tests that you have imported into a Test Workbench project from the Test

Navigator.

It is not possible to run Selenium or Appium tests within a compound test individually from the Compound Test editor.

To run such a Selenium or Appium test individually, run it from the project into which the test has been imported.

Chapter 7. Test Author Guide

1. Do one of the following:

◦ To run a Selenium or Appium test that you have imported into a Test Workbench project, select the

test from the External Tests project folder in the Logical View of the Test Navigator.

◦ To run an individual Selenium or Appium test that you have added to a compound test, select the

Selenium test from the External Tests folder of the project into which the test has been imported.

2. Click the Run As icon on the toolbar. The test runs. To run a launch configuration option, click the arrow beside

the Run As icon and select Run Configuration. Select the desired configuration option and run the test.

Results

The test runs and the run progress is shown in the Console view. When the test run is completed, the test log is

displayed.

For the tests executed in a Perfecto environment on page 549, the Perfecto Report window opens automatically

onto the Overview page where you can see the status of the compound test while it is running. When the test is

completed, you need to click Perfecto Reports in the Overview page to see the links to the Perfecto reports.

Compound tests
You can create compound tests to help you organize smaller tests into scenarios that can then be run end-to-end. You

can combine tests from different extensions to achieve end-to-end flow.

If you need to combine various tests into a single workflow or end-to-end scenario, you can organize the tests into

a compound test. Each test may perform a part of the scenario. Each test may also run in a different domain, for

example, different web browsers. A typical example of a compound test is an online buying workflow. You may have

built smaller tests for each part of an online purchase transaction, such as "log on", "log out", "view item", "add to cart",

and "check out". You can combine these tests into a single flow in a compound test. When the compound test is run,

its individual tests are run in sequence.

The types of tests you can combine into a compound test depend on the testing capabilities you have purchased. You

can also shell-share HCL OneTest™ Studio family products to add multiple tests into a compound test.

To build the scenario you require in a compound test, you can also add the following annotations:

• Comments

• Synchronization points

• Loops

• Delays

• Transaction folders

• IF-THEN-ELSE

• Tests that are mandatory, using the Finally blocks

• Tests to be run in random order, using the Random Selector

553

HCL OneTest™ UI

554

Creating a compound test
You can create a compound test to organize smaller tests into scenarios that can be run simultaneously or

sequentially. You can combine various tests to speed up and minimize the test effort.

Before you begin

You must have created or recorded more than a single test. Refer to the following tasks to create or record a test:

• Web UI tests, see Recording a Web UI test on page 425.

• Android mobile tests, see Recording mobile tests for Android applications on page 522.

• iOS mobile tests, see Recording mobile tests for iOS applications on page 530.

• Sap tests, see Recording an SAP test on page 543.

• Windows test, see Recording a Windows test on page 536.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Perform any of the following actions:

◦ If you want to create the compound test as a new project, go to step 3 on page 554.

◦ If you want to create the compound test in an existing project, go to step 4 on page 555.

3. Go to File > New > Compound test.

The New Compound Test window is displayed.

You must perform the following steps:

a. Click the Create the parent folder icon.

The New Project pane is displayed.

b. Enter a name for the project in the project name field.

By default, the test is saved in the workspace location.

Note: If you want, you can select a different location to save the project.

Clear the Use default location option, and then click Browse to select a location to save the

test.

c. Click Next, and then select the types of assets you need in your project.

d. Click Finish.

A new project is created.

e. Enter a name for the test in the File name field.

Chapter 7. Test Author Guide

f. Click Finish.

Note: The file extension testsuite is added to the file name and the compound test is

created under Compound Tests folder of the new project.

To add the individual tests to the compound tests, go to step 5 on page 555.

4. Right click on the project from the Test Navigator pane and perform the following actions.

a. Go to New > Compound test.

The New Compound Test pane is displayed.

b. Enter a file name for the test, and then click Finish.

c. Click Finish.

Note:

The file extension testsuite is added to the file name and the compound test is created

under Compound Tests folder of the selected project.

To add individual tests to Compound Tests folder, go to step 5 on page 555.

5. Click Add in the Compound Test window, and then select Test.

The Select Tests window is displayed with all the projects in workspace.

6. Select the tests.

7. Click OK.

The tests are added to the compound test.

8. Go to File > Save, to save the compound test.

Results

You have created a compound test which contains multiple tests.

What to do next

You can run the compound test on mobile devices or simulators or emulators, See Configuration of compound test

runs.

Viewing compound tests
You can view a compound test in the Compound Test Editor.

About this task

When you open a workspace, the tests and projects that reside in the workspace are listed in the Test Navigator.

You can view compound tests in the Logical and Resource Views in the Test Navigator. From any of these views, you

can open the test in the Compound Test Editor.

555

HCL OneTest™ UI

556

• In the Logical View of the Test Navigator, compound tests are listed in the Compound Tests folder under the

project into which they were imported. Double-click the compound test under the Compound Tests folder to

open it in the Compound Test Editor.

Result

In the Resource View, all tests under a project are shown in the project folder. Double click the compound test

under the project folder to open it in the Compound Test Editor.

• In the Java perspective, compound tests under a project are shown under the root project folder. Double click

the compound test under the project folder to open it in the Compound Test Editor.

• The Compound Test Editor contains two panels - the Compound Test Elements panel, where the elements

of the workflow are listed. Click one of the elements, and its details are displayed int the far right portion of

the right panel, which is the Compound Test Element Details panel. Double-click any of the test or the test

elements to view its details. The name of the test, test path, source type and execution mode are displayed.

Adding tests into a compound test
After creating a compound test, you can add the smaller test pieces that contribute to the larger workflow you are

constructing with the compound test. When you run a compound test, each of the tests added to it are invoked in the

sequence defined.

You can add many tests of the same type, or different types, to a compound test, depending on the testing

requirements.

To add tests to a compound test, complete these steps:

1. In the Test Navigator, double-click the compound test to which you want to add a test. The contents of the

compound test are shown in the Compound Test Contents panel in the Compound Test editor.

2. Do one of the following:

◦ Click Add to add a test as the first element in the compound test.

◦ To insert a test before a specific element in the compound test, select the element and click Insert.

The Select Tests dialog box is opened, and the tests found in the Eclipse Client workspace are displayed.

3. Select the test you want to add to the compound test, and click OK. The test is added to the compound test,

and is displayed as part of the elements of the compound test in the Compound Test Contents panel. When

you click the test you added, its details are displayed in the Compound Test Element Details panel in the

Compound Test editor.

4. Save your changes.

In addition to the tests that you can add to a compound test, you can also add the following elements to construct the

workflow you need:

• Comments to document the test

• Delays in the test

• Synchronization points

• Loops

• Transaction folders

Chapter 7. Test Author Guide

• Parts of the test that are mandatory

• Tests to be run in random order

Modifying a compound test
You can modify a compound test in the Compound Test Editor.

About this task

A compound test is a testing workflow comprising smaller tests and other test elements in a certain sequence. You

might want to order the tests and test elements to suit your workflow requirement, or add further tests and elements.

1. In the Test Navigator, double-click the compound test that you want to modify. Its elements are shown in the

Compound Test Contents right panel in the Eclipse Client.

2. To add a test or test element at the beginning of the compound test elements list, select the compound test

in the Compound Test Contents panel, click Add, and then click Test. To insert a test or test element into the

test, select the test element before which the insertion must be made, and click Insert.

3. Add or insert the test or test element you need, and click OK. The modified compound test displays its

updated elements in the Compound Test Contents right panel.

4. Save your changes.

Running compound tests
When you run a compound test, its test elements are run in the order defined in the compound test.

About this task

When you run a compound test, you are prompted to open the Test Execution perspective, in which details of the

test run are displayed. When the test run is complete, the Test Log displays the run results. For details about running

a compound test that contains Web UI tests on multiple browsers simultaneously, see Running a Web UI test on

page 1015.

Prior to 9.2, text execution would terminate on a fatal exception in any of the tests in a compound test. Starting from

9.2, there is a new preference to allow text execution for a compound test to continue after a fatal exception in one of

the tests. To set the preference, see Window > Preferences > Test > Test Execution > Error handling > UI Fatal Error.

1. In the Test Navigator, select the compound test to run.

2. Click the Run As icon on the toolbar. The test runs. To run a launch configuration option, click the arrow beside

the Run As icon and select Run Configuration. Select a configuration option and run the test.

Result

The Confirm Perspective Switch dialog box is opened, prompting you to switch to the Test Execution

perspective. Click Yes.

3. Select an option to run the test.

Result

The Test Execution perspective is opened and the test runs. On completion, the test log is displayed.

557

HCL OneTest™ UI

558

Results

You can work with the test log by exporting it into a flat file.

Generating compound test result reports
When a compound test run is completed, a Test Log is shown in the Test Execution perspective. You can work with

the information in the test log and also generate test result reports.

Exporting the Test Log
When a compound test run is completed, a Test Log is displayed in the Test Execution perspective.

About this task

The Test Log displays the following details:

• The General Information tab displays the name of the compound test and its description. The location of the

test log file is also shown.

• The Common Properties tab shows the verdict of the test results.

• The Verdict Summary and Verdict List tabs provide a pie chart of verdicts for different components of the test,

and a list of the first 20 verdicts. You can view details about the verdicts by clicking the links in the Verdict List

tab.

You can export the contents of the test log to a full-text file.

1. To export the contents of the test log to a full-text file, right-click the test run result under the Results folder of

the compound test, and click Export Test Log.

2. In the Export Test Log dialog box, specify where the test log should be exported to, in the Location field.

3. Select the format in which the log must be exported, from the list in the Export Format field. You can select

either Flat Text - Default Encoding or Flat Text - Unicode Encoding.

4. Click Finish.

Result

The test log is exported as a full-text file, with the test results run name, to the location you specified.

Generating a functional test report
You can generate a functional test report from the test run results as a HTML file.

About this task

When you generate a functional test report as a HTML file, the following details are displayed in the report:

• A global summary, which lists the number of tests run, verification points, defects

• A test summary which displays the name of each test, the start and end times and the verdicts.

1. Test run results are displayed under the Results folder of a project. Right-click the test run result you want to

view and click Generate Functional Test Report.

Result

Chapter 7. Test Author Guide

The Generate Functional Test Report dialog box is opened.

2. Select the parent folder in which the report must be stored.

3. By default, the name of the compound test and the date and time stamp is displayed as the name of the

report in the Name field. You can change the name.

4. Click Next.

5. Select the report template to be used. If you select the Common Functional Test Report (XSL) format, the

report is generated as a HTML file. If you select the Common Test Functional Report format, you can select

either the HTML or PDF output format.

6. Click Finish.

Result

The report is generated and displayed. The report is listed under the Functional Reports folder under the

compound test in the Test Navigator.

Creating an executive summary
You can create an executive summary or test statistics report from the test run results. Executive summaries are

generated according to the type of test.

About this task

An executive summary displays the tests and methods that were run, and their success or failure information. This

information is shown in summary charts as well as in bar graphs.

1. Under the Results folder of the project, right-click the test run result you want to view and click Create

Executive Summary.

Result

The Generate Functional Test Report dialog box is opened.

2. Select the type of test report you want to generate.

3. Click Finish.

Result

The report is generated and displayed. The report is listed under the Functional Reports folder under the

compound test in the Test Navigator.

Adding a compound test to a Test Workbench project
You can create a compound test in a test workbench project. If you have an existing compound test, you can import

the test to a test workbench project.

Creating a compound test in a test workbench project
You can create a compound test in a test workbench project.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Perform any of the following actions:

◦ If you want to create the compound test as a new project, go to step 3 on page 560.

◦ If you want to create the compound test in an existing project, go to step 4 on page 560.

559

HCL OneTest™ UI

560

3. Go to File > New > Compound test.

The New Compound Test window is displayed.

You must perform the following steps:

a. Click the Create the parent folder icon.

The New Project pane is displayed.

b. Enter a name for the project in the project name field.

By default, the test is saved in the workspace location.

Note: If you want, you can select a different location to save the project.

Clear the Use default location option, and then click Browse to select a location to save the

test.

c. Click Next, and then select the types of assets you need in your project.

d. Click Finish.

A new project is created.

e. Enter a name for the test in the File name field.

f. Click Finish.

Note: The file extension testsuite is added to the file name and the compound test is

created under Compound Tests folder of the new project.

To add the individual tests to the compound tests, go to step 5 on page 560.

4. Right click on the project from the Test Navigator pane and perform the following actions.

a. Go to New > Compound test.

The New Compound Test pane is displayed.

b. Enter a file name for the test, and then click Finish.

c. Click Finish.

Note:

The file extension testsuite is added to the file name and the compound test is created

under Compound Tests folder of the selected project.

To add individual tests to Compound Tests folder, go to step 5 on page 560.

5. Click Add in the Compound Test window, and then select Test.

Chapter 7. Test Author Guide

The Select Tests window is displayed with all the projects in workspace.

6. Select the tests.

7. Click OK.

The tests are added to the compound test.

8. Go to File > Save, to save the compound test.

Importing a compound test into a Test Workbench project
You can import a compound test into a test workbench project.

1. In the Web UI Test perspective, in the Test Navigator, right-click the test workbench project into which you

want to import the compound test and click Import.

2. In the Import dialog box, expand General in the source list, select Import test assets with dependencies and

then click Next.

3. Specify the directory in which the compound test resides. Click Browse.

Result

By default, the compound test is imported into the test workbench project folder.

4. The compound test assets in the folder you selected are displayed. Select the components you want to

import.

5. Click Finish.

Result

The imported compound test is displayed in the Compound Test Elements panel in the Compound Test editor.

Accelerated Functional Tests
When you create Web UI, mobile, or Windows tests, you can use the Accelerated Functional Test (AFT) feature in HCL

OneTest™ UI to distribute test effort during the play back of the recorded tests.

You can find the following information about creating AFT Suites:

• Creating an Accelerated Functional Test asset on page 561

• Creating an AFT suite for mobile tests on page 563

• Creating an AFT Suite for mobile tests to run the tests on BitBar cloud on page 566

• Creating an AFT Suite for mobile tests to run the tests on pCloudy cloud on page 569

• Creating an AFT Suite for mobile tests to run the tests on Perfecto cloud on page 572

• Creating an AFT Suite to run the tests on multiple mobile clouds on page 575

Creating an Accelerated Functional Test asset
You can create an Accelerated Functional Test asset while running tests by using the distributed test option. When

you create an Accelerated Functional Test asset, an XML file is generated that contains the selected tests along with

the browsers. You can also add more tests, browsers, devices, and agents to extend the tests.

Before you begin

You must have created one or more Web UI tests or compound tests.

561

HCL OneTest™ UI

562

About this task

Accelerated functional testing supports two types of parallel execution. The executions are as follows:

• Execution of a single Web UI or compound test on multiple browsers: This execution is supported on all

installed browsers such as Microsoft Internet Explorer, Microsoft Edge, Google Chrome, Mozilla Firefox, and

Apple Safari simultaneously. This combination can be specified in the XML file to execute the tests locally as

well as remotely. If you want to execute the tests remotely, you must specify the remote agents in the XML

file.

• Execution of multiple tests on multiple browsers: This execution is supported only on Mozilla Firefox and

Google Chrome browsers. It is also supported on Chrome device mode.

1. From your test navigator, select and right-click the required Web UI or compound tests for which you want to

run the distributed tests.

2. Right-click the selected tests and click Run Distributed Tests. The Run Accelerated Functional Test dialog box

containing the selected tests is displayed.

Note: This is the only method to run an AFT suite.

3. Click Add to add more tests to the distributed test. Click Remove to remove the required tests.

4. Click Save as to rerun the same set of tests that you have selected. The tests are saved as an accelerated

functional test asset and generate an XML file that you can use to run the distributed tests later.

Note: If you do not select the Save as check box, then the tests are not saved as an accelerated

functional asset and the distributed tests run only once.

5. Click Browse to select a location to save the test asset and provide a name for the test asset.

6. Click Next.

7. In the Select browser(s) dialog box, select the required browser and click Finish.

The accelerated functional test asset starts running the XML file is now created. To execute the accelerated

functional test asset by using the XML file, complete the following steps:

8. From the test navigator, right-click the accelerated functional asset XML file and click Run Distributed Tests.

The Run Accelerated Functional Test dialog box is displayed.

You can choose to select the following checkboxes:

◦ Re-run failed tests only from last playback: Select this checkbox if you want to rerun only the failed

tests from the previous playback.

Note: If this option is enabled, the failed tests are rerun only on the browsers and location on

which the test failed previously.

◦ Fix the browser-driver incompatibility: Select this checkbox to automatically resolve the

incompatibility between the browser and the driver, while you play back the AFT tests.

Chapter 7. Test Author Guide

Tip: As the playback starts only after the appropriate driver is downloaded, a timeout error

might occur if the application is not started within the time limit specified in the Time Out field.

You must increase the time in the Time Out field. To resolve this error, you can modify the

timeout value. The default timeout is 10 seconds. To modify the timeout, check the option and

enter a new value.

9. Click OK.

Results

You have created an Accelerated Functional Test asset.

Related information

Configuration of test runs from the command line on page 1130

Creating an AFT suite for mobile tests
When you want to run a single mobile test on multiple devices, multiple mobile tests on a single device, or multiple

mobile tests on multiple devices that are hosted on a local computer or remote agent computer, you can create an

Accelerated Functional Test suite (AFT) suite for mobile tests.

Before you begin

You must have completed the following tasks:

• Connected the devices and configured the emulators or simulators on the computer that runs HCL OneTest™

UI or the remote agent computer.

• Been aware of the following details:

◦ The IP address of the UI Test Agent.

◦ The port number of the UI Test Agent.

Tip: You can hover the cursor over the System Tray to verify that the UI Test Agent is running

and also view the port it uses.

About this task

To run the tests as an AFT suite, you must create an XML file where you can specify the test details. You can use this

XML file to run these tests anytime later and you can also add more tests, and devices to extend the tests.

You can refer to the following table to know the format of the device id for each of the devices that you use in the AFT

suite:

563

HCL OneTest™ UI

564

Device name Device id format

Android emulator Emulator:<Name of Android emulator with the space re

placed with underscore>

For example, if the emulator name is Pixel 2 API 30, then

device id is Emulator:Pixel_2_API_30

Android real device Android:<Name of Android real device with the space

replaced with underscore>

For example, if the real device name is Pixel 4, then de

vice is Android:Pixel_4

iOS simulator Simulator:<Name of iOS simulator_iOS version>

For example, if the iOS simulator name is iPhone 11 Pro

and iOS version is 14.4, then device id is Simulator:i

Phone 11 Pro_14.4

iOS real device iOS:<Name of iOS device_iOS version_UUID>

For example, if the iOS real device name is My

iPhone, iOS version is 14.4, and device UUID is

445f47e79c803c95cd8ef4f2429c61e0b032ab

dc, then device id is iOS:My iPhone_14.4_

445f47e79c803c95cd8ef4f2429c61e0b032abdc

Restriction:

• The AFT suite must contain either Android tests or iOS tests.

• The AFT suite must contain only mobile tests or a compound test that contains only mobile tests.

• You cannot run one or more single mobile tests and compound tests that contain a mix of mobile and

Web UI or any other supported tests in an AFT suite.

• Each group can contain only one location. You can use multiple groups to run tests on multiple

locations. You cannot have multiple groups for the same location.

• Each group can contain either mobile test scripts only or a compound test that contains mobile test

scripts.

1. Create an XML file to specify the details of the test suites, devices, and the location by performing the

following steps:

a. Click File > New > Other.

The Select a wizard dialog box is displayed.

Chapter 7. Test Author Guide

b. Select the XML File in the XML section and then click Next.

The available projects are displayed.

c. Select a project where you want to save the XML file, enter a name for the XML file in the File name

field, and then click Next.

d. Select the Create an XML file from an XML template option and click Finish.

A blank XML document opens.

e. Click the Source tab of the XML document.

f. Provide the necessary details in the XML file, and then save the file.

A sample format of the XML file is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<inits id="N3E78C8006B211EB9003B7CBBD8B707A"
type="com.ibm.rational.test.ft.aftsuite">
<group>
 <tests>
 <test path="<Path of the mobile test1>" />
 <test path="<Path of the mobile test2>" />
 </tests>
 <devices>
 <device id="<Device type1:Device id1>" />
 <device id="<Device type2:Device id2>" />
 </devices>
 <locations>
 <location host = "<local or remote host>"
 appium.server.host = "<IP address of the UI Test Agent>"
 appium.server.port = "<Port number on which UI Test Agent is running>"/>
 </locations>
</group>
<group>
 <tests>
 <test path="<Path of the mobile test3>" />
 <test path="<Path of the mobile test4>" />
 </tests>
 <devices>
 <device id="<Device type1:Device id3>" />
 <device id="<Device type2:Device id4>" />
 </devices>
 <locations>
 <location host = "<local or remote host>"
 appium.server.host = "<IP address of the UI Test Agent>"
 appium.server.port = "<Port number on which UI Test Agent is running>"/>
 </locations>
</group>
</inits>

In the following example, you can see that for each group of tests, you can specify a single location only.

For example,

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<inits id="N04408500ADA11EABD15B2C0CB4A9F45"

565

HCL OneTest™ UI

566

 type="com.ibm.rational.test.ft.aftsuite">
<group>
 <tests>
 <test path="/MobileProject1/CmpTest1.testsuite">
 </test>
 </tests>
 <devices>
 <device id="Emulator:Pixel_API_29"></device>
 <device id="Emulator:Pixel_API_30"></device>
 </devices>
 <locations>
 <location host="localhost" appium.server.host="localhost"></location>
 </locations>
</group>
<group>
 <tests>
 <test path="/MobileProject1/Tests/Copy of APIDemoDebug_Accessibility1.testsuite"></test>
 <test path="/MobileProject1/Tests/Copy of APIDemoDebug_App.testsuite"/>
 </tests>
 <devices>
 <device id="Emulator:Pixel_3a_API_29"></device>
 </devices>
 <locations>
 <location host="10.115.160.202" appium.server.host="10.115.160.202"
 appium.server.port="7082"></location>
 </locations>
</group>
</inits>

2. Click OK.

Results

You have created an AFT suite to run mobile tests.

Related information

Running mobile tests as an AFT suite on page 1094

Creating an AFT Suite for mobile tests to run the tests on BitBar cloud
When you want to run multiple mobile tests recorded on a mobile application, you can create an AFT. You can

configure the AFT Suite with details of the tests, devices to use, and the location from where the tests must be

initiated. You can then run the mobile tests on devices that are connected to the BitBar Cloud.

Before you begin

You must have completed the following tasks:

• Created or recorded mobile tests for the mobile application that you want to test.

• Set up your account to access the BitBar Cloud. You must have been issued valid credentials such as the host

name or the URL of the BitBar Cloud instance, and an API key to authenticate the connection.

Chapter 7. Test Author Guide

• Noted the IDs or names of the devices connected to the BitBar Cloud that you want to use.

• Noted the IP address of the remote agent computer if the mobile cloud is connected to the remote computer.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Go to File > New > Other

The Select a wizard dialog is displayed.

3. Perform the following actions in the Select a wizard dialog:

a. Select the XML File option in the XML folder.

b. Click Next.

The projects that contain the tests are displayed.

c. Select the project where you want to save the XML file.

d. Enter a name for the XML file in the File name field.

e. Click Next.

f. Select the Create XML file from an XML template option.

g. Click Finish.

An XML document is opened for editing in the Source view tab.

Note: Open the Source view tab if the Design view tab is displayed.

A sample of the syntax or structure of the XML is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<inits id="<any_alphanumeric_value>" type="com.ibm.rational.test.ft.aftSuite">
 <group>
 <tests>
 <test path="<path_to_mobile_test_1>"/>
 <test path="<path_to_mobile_test_2>"/>
 </tests>
 <devices>
 <device id="<name of the device 1>”/>
 </devices>
 <locations>
 <location host="<location_where_test_is_run>"/>
 </locations>
 </group>
</inits>

Refer to the following table to know the variables for the attributes mentioned in the XML sample:

Element Attribute Variable Description

inits id <any_alphanu

meric_value>

Specifies that you can enter any alpha-numeric value

that helps to identify the XML file.

test path <path_to_

mobile_test_

Specifies the path to the mobile test in your project.

567

HCL OneTest™ UI

568

Element Attribute Variable Description

1><path_to_

mobile_test_

2><path_to_mo

bile_test_3>

Note: You can find the path by right-clicking

the test, and then go to Properties > Re

source.

device id <name_of_the_

device_1>

Specifies the name or id of the device that is con

nected to the device cloud.

location host <location_

where_test_is_

run>

Specifies the location as the computer that runs the

test. The host can be the computer that is running

HCL OneTest™ UI or the remote agent computer.

4. Create the following elements in the XML document:

Note: You can copy the sample syntax and then edit the values in the UI, or you can create the

elements in the XML in the UI.

a. <group>

The start and end tags are automatically inserted.

b. Create <tests> within the <group> tag.

c. Create <test> within the <tests> tag.

d. Add the attribute path to the <test> as follows:

<test path="">

Note: All values that you enter for the attributes must be enclosed within a double quotation

mark.

e. Add additional rows for each mobile test.

f. Create <devices> within the <group> tag.

g. Create <device> within the <devices> tag.

h. Add the attribute id as follows:

<device id=""></device>

i. Create <locations> within the <group> tag.

j. Create <location> within the <locations> tag.

k. Add the attribute host as follows:

<location host=""></location>

5. Refer to the following table for the values of the attributes that you can use in the XML file:

Chapter 7. Test Author Guide

Element Attribute
Example

of a value
Explanation

test path MyPro

ject\test_1

The path in the workspace that contains the project

with the test. You can find the path of the test from

the Test Navigator by right-clicking the test, and then

clicking Properties > Resource.

Bitbar:Google

Pixel 2

The name of the Android device is Google Pixel 2

that is connected to the BitBar Cloud.

device id

Bitbar:Apple

iPhone 6s Plus

A1687 12.0.1

The name of the iOS device is Bitbar : Apple iPhone

6s Plus A1687 12.0.1 that is connected to the BitBar

Cloud.

localhost The host is localhost if the device cloud is connected

to the computer that runs HCL OneTest™ UI.

location host

1.20.30.40 The host is the IP address of the remote agent com

puter, if the device cloud is connected to the remote

agent computer.

6. Enter the values for the attributes for your tests, device, and location in the XML file.

7. Save the XML file.

Results

You have created an AFT Suite for mobile tests, which you can use to run the mobile tests on devices that are

connected to the BitBar cloud.

What to do next

You can initiate a run of the mobile tests that are in the AFT Suite. See Running mobile tests as an AFT Suite on BitBar

Cloud on page 1095.

Creating an AFT Suite for mobile tests to run the tests on pCloudy cloud
When you want to run multiple mobile tests recorded on a mobile application, you can create an AFT. You can

configure the AFT Suite with details of the tests, devices to use, and the location from where the tests must be

initiated. You can then run the mobile tests on devices that are connected to the pCloudy Cloud.

Before you begin

You must have completed the following tasks:

569

HCL OneTest™ UI

570

• Created or recorded mobile tests for the mobile application that you want to test.

• Set up your account to access the pCloudy cloud. You must have been issued valid credentials such as

the host name or the URL of the pCloudy cloud instance, the user name, and an API key to authenticate the

connection.

• Noted the IDs or names of the devices connected to the BitBar Cloud that you want to use.

• Noted the IP address of the remote agent computer if the mobile cloud is connected to the remote computer.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Go to File > New > Other

The Select a wizard dialog is displayed.

3. Perform the following actions in the Select a wizard dialog:

a. Select the XML File option in the XML folder.

b. Click Next.

The projects that contain the tests are displayed.

c. Select the project where you want to save the XML file.

d. Enter a name for the XML file in the File name field.

e. Click Next.

f. Select the Create XML file from an XML template option.

g. Click Finish.

An XML document is opened for editing in the Source view tab.

Note: Open the Source view tab if the Design view tab is displayed.

A sample of the syntax or structure of the XML is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<inits id="<any_alphanumeric_value>" type="com.ibm.rational.test.ft.aftSuite">
 <group>
 <tests>
 <test path="<path_to_mobile_test_1>"/>
 <test path="<path_to_mobile_test_2>"/>
 </tests>
 <devices>
 <device id="<name of the device 1>”/>
 </devices>
 <locations>
 <location host="<location_where_test_is_run>"/>
 </locations>
 </group>
</inits>

Refer to the following table to know the variables for the attributes mentioned in the XML sample:

Chapter 7. Test Author Guide

Element Attribute Variable Description

inits id <any_alphanu

meric_value>

Specifies that you can enter any alpha-numeric value

that helps to identify the XML file.

test path <path_to_

mobile_test_

1><path_to_

mobile_test_

2><path_to_mo

bile_test_3>

Specifies the path to the mobile test in your project.

Note: You can find the path by right-clicking

the test, and then go to Properties > Re

source.

device id <name_of_the_

device_1>

Specifies the name or id of the device that is con

nected to the device cloud.

location host <location_

where_test_is_

run>

Specifies the location as the computer that runs the

test. The host can be the computer that is running

HCL OneTest™ UI or the remote agent computer.

4. Create the following elements in the XML document:

Note: You can copy the sample syntax and then edit the values in the UI, or you can create the

elements in the XML in the UI.

a. <group>

The start and end tags are automatically inserted.

b. Create <tests> within the <group> tag.

c. Create <test> within the <tests> tag.

d. Add the attribute path to the <test> as follows:

<test path="">

Note: All values that you enter for the attributes must be enclosed within a double quotation

mark.

e. Add additional rows for each mobile test.

f. Create <devices> within the <group> tag.

g. Create <device> within the <devices> tag.

h. Add the attribute id as follows:

<device id=""></device>

i. Create <locations> within the <group> tag.

j. Create <location> within the <locations> tag.

571

HCL OneTest™ UI

572

k. Add the attribute host as follows:

<location host=""></location>

5. Refer to the following table for the values of the attributes that you can use in the XML file:

Element Attribute
Example

of a value
Explanation

test path MyPro

ject\test_1

The path in the workspace that contains the project

with the test. You can find the path of the test from

the Test Navigator by right-clicking the test, and then

go to Properties > Resource.

pcloudy:Pixel_

2_API_30

The name of the Android device is Pixel 2 API 30 that

is connected to the pCloudy Cloud.

device id

pCloudy:Apple_

iPhone8plus_

Ios_12.2.0_9d

b66

The name of the iOS device is Apple_iPhone8plus_

Ios_12.2.0_9db66 that is connected to the pCloudy

Cloud.

localhost The host is localhost if the device cloud is connected

to the computer that runs HCL OneTest™ UI.

location host

1.20.30.40 The host is the IP address of the remote agent com

puter, if the device cloud is connected to the remote

agent computer.

6. Enter the values for the attributes for your tests, device, and location in the XML file.

7. Save the XML file.

Results

You have created an AFT Suite for mobile tests, which you can use to run the mobile tests on devices that are

connected to the pCloudy cloud.

What to do next

You can initiate a run of the mobile tests that are in the AFT Suite. See Running mobile tests as an AFT Suite on

pCloudy Cloud on page 1096.

Creating an AFT Suite for mobile tests to run the tests on Perfecto cloud
When you want to run multiple mobile tests recorded on a mobile application, you can create an AFT. You can

configure the AFT Suite with details of the tests, devices to use, and the location from where the tests must be

initiated. You can then run the mobile tests on devices that are connected to the Perfecto Cloud.

Before you begin

Chapter 7. Test Author Guide

You must have completed the following tasks:

• Created or recorded mobile tests for the mobile application that you want to test.

• Set up your account to access the Perfecto Mobile Cloud. You must have been issued valid credentials such

as the host name or the URL of the Perfecto Mobile Cloud instance and the security token to authenticate the

connection.

• Noted the IDs or names of the devices connected to the BitBar Cloud that you want to use.

• Noted the IP address of the remote agent computer if the mobile cloud is connected to the remote computer.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Go to File > New > Other

The Select a wizard dialog is displayed.

3. Perform the following actions in the Select a wizard dialog:

a. Select the XML File option in the XML folder.

b. Click Next.

The projects that contain the tests are displayed.

c. Select the project where you want to save the XML file.

d. Enter a name for the XML file in the File name field.

e. Click Next.

f. Select the Create XML file from an XML template option.

g. Click Finish.

An XML document is opened for editing in the Source view tab.

Note: Open the Source view tab if the Design view tab is displayed.

A sample of the syntax or structure of the XML is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<inits id="<any_alphanumeric_value>" type="com.ibm.rational.test.ft.aftSuite">
 <group>
 <tests>
 <test path="<path_to_mobile_test_1>"/>
 <test path="<path_to_mobile_test_2>"/>
 </tests>
 <devices>
 <device id="<name of the device 1>”/>
 </devices>
 <locations>
 <location host="<location_where_test_is_run>"/>
 </locations>
 </group>
</inits>

Refer to the following table to know the variables for the attributes mentioned in the XML sample:

573

HCL OneTest™ UI

574

Element Attribute Variable Description

inits id <any_alphanu

meric_value>

Specifies that you can enter any alpha-numeric value

that helps to identify the XML file.

test path <path_to_

mobile_test_

1><path_to_

mobile_test_

2><path_to_mo

bile_test_3>

Specifies the path to the mobile test in your project.

Note: You can find the path by right-clicking

the test, and then go to Properties > Re

source.

device id <name_of_the_

device_1>

Specifies the name or id of the device that is con

nected to the device cloud.

location host <location_

where_test_is_

run>

Specifies the location as the computer that runs the

test. The host can be the computer that is running

HCL OneTest™ UI or the remote agent computer.

4. Create the following elements in the XML document:

Note: You can copy the sample syntax and then edit the values in the UI, or you can create the

elements in the XML in the UI.

a. <group>

The start and end tags are automatically inserted.

b. Create <tests> within the <group> tag.

c. Create <test> within the <tests> tag.

d. Add the attribute path to the <test> as follows:

<test path="">

Note: All values that you enter for the attributes must be enclosed within a double quotation

mark.

e. Add additional rows for each mobile test.

f. Create <devices> within the <group> tag.

g. Create <device> within the <devices> tag.

h. Add the attribute id as follows:

<device id=""></device>

i. Create <locations> within the <group> tag.

j. Create <location> within the <locations> tag.

Chapter 7. Test Author Guide

k. Add the attribute host as follows:

<location host=""></location>

5. Refer to the following table for the values of the attributes that you can use in the XML file:

Element Attribute
Example

of a value
Explanation

test path MyPro

ject\test_1

The path in the workspace that contains the project

with the test. You can find the path of the test from

the Test Navigator by right-clicking the test, and then

go to Properties > Resource.

Perfec

to:8D3E35CF16D8D827E4827AB

BCD0E582E2761CA

DA

The name of the Android device is

8D3E35CF16D8D827E4827ABBCD0E582E2761CA

DA that is connected to the Perfecto Cloud.

device id

Perfec

to:R48904T

NSAZ

The name of the iOS device is Perfecto : R48904T

NSAZ that is connected to the Perfecto Cloud.

localhost The host is localhost if the device cloud is connected

to the computer that runs HCL OneTest™ UI.

location host

1.20.30.40 The host is the IP address of the remote agent com

puter, if the device cloud is connected to the remote

agent computer.

6. Enter the values for the attributes for your tests, device, and location in the XML file.

7. Save the XML file.

Results

You have created an AFT Suite for mobile tests, which you can use to run the mobile tests on devices that are

connected to the Perfecto cloud.

What to do next

You can run the AFT suite on mobile devices connected to Perfecto mobile device clouds. See Running mobile tests

as an AFT Suite on Perfecto Cloud on page 1098.

Creating an AFT Suite to run the tests on multiple mobile clouds
When you want to run the mobile tests simultaneously on devices connected to multiple clouds, you can create an

AFT. You can configure the AFT Suite with details of the tests, devices on multiple mobile clouds, and the location

from where the tests must be initiated.

575

HCL OneTest™ UI

576

Before you begin

You must have completed the following tasks:

• Created or recorded mobile tests for the mobile application that you want to test.

• You must have set up accounts and obtained valid credentials for more than one mobile cloud.

• Noted the IDs or names of the devices connected to the mobile clouds that you want to use.

• Noted the IP address of the remote agent computer if the mobile cloud is connected to the remote computer.

About this task

To extend the test coverage you can add devices from multiple mobile clouds by creating groups in the AFT Suite.

The AFT Suite, then, can be used to run the tests simultaneously on devices connected to multiple mobile clouds.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Go to File > New > Other

The Select a wizard dialog is displayed.

3. Perform the following actions in the Select a wizard dialog:

a. Select the XML File option in the XML folder.

b. Click Next.

The projects that contain the tests are displayed.

c. Select the project where you want to save the XML file.

d. Enter a name for the XML file in the File name field.

e. Click Next.

f. Select the Create XML file from an XML template option.

g. Click Finish.

An XML document is opened for editing in the Source view tab.

Note: Open the Source view tab if the Design view tab is displayed.

A sample of the syntax or structure of the XML is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<inits id="<any_alphanumeric_value>" type="com.ibm.rational.test.ft.aftSuite">
 <group>
 <tests>
 <test path="<path_to_mobile_test_1>"/>
 <test path="<path_to_mobile_test_2>"/>
 </tests>
 <devices>
 <device id="<name of the device 1>”/>
 </devices>
 <locations>
 <location host="<location_where_test_is_run>"/>
 </locations>
 </group>
</inits>

Chapter 7. Test Author Guide

Refer to the following table to know the variables for the attributes mentioned in the XML sample:

Element Attribute Variable Description

inits id <any_alphanu

meric_value>

Specifies that you can enter any alpha-numeric value

that helps to identify the XML file.

test path <path_to_

mobile_test_

1><path_to_

mobile_test_

2><path_to_mo

bile_test_3>

Specifies the path to the mobile test in your project.

Note: You can find the path by right-clicking

the test, and then go to Properties > Re

source.

device id <name_of_the_

device_1>

Specifies the name or id of the device that is con

nected to the device cloud.

location host <location_

where_test_is_

run>

Specifies the location as the computer that runs the

test. The host can be the computer that is running

HCL OneTest™ UI or the remote agent computer.

4. Create the following elements in the XML document:

Note: You can copy the sample syntax and then edit the values in the UI, or you can create the

elements in the XML in the UI.

a. <group>

The start and end tags are automatically inserted.

You must create a separate group for each mobile clouds. Each group must contain the elements that

are mentioned in in the following steps.

b. Create <tests> within the <group> tag.

c. Create <test> within the <tests> tag.

d. Add the attribute path to the <test> as follows:

<test path="">

Note: All values that you enter for the attributes must be enclosed within a double quotation

mark.

e. Add additional rows for each mobile test.

f. Create <devices> within the <group> tag.

g. Create <device> within the <devices> tag.

h. Add the attribute id as follows:

577

HCL OneTest™ UI

578

<device id=""></device>

i. Create <locations> within the <group> tag.

j. Create <location> within the <locations> tag.

k. Add the attribute host as follows:

<location host=""></location>

5. Refer to the following table for the values of the attributes that you can use in the XML file:

Attribute Example of a value Explanation

test path MyProject\test_1 The path in the workspace that contains the

project with the test. You can find the path

of the test from the Test Navigator by right-

clicking the test, and then go to Properties >

Resource.

Bitbar:Google Pixel 2 The name of the Android device is Google

Pixel 2 that is connected to the BitBar Cloud.

BitBar

Bitbar:Apple iPhone 6s Plus

A1687 12.0.1

The name of the iOS device is Bitbar : Apple

iPhone 6s Plus A1687 12.0.1 that is connect

ed to the BitBar Cloud.

pcloudy:Pixel_2_API_30 The name of the Android device is Pixel 2 API

30 that is connected to the pCloudy Cloud.

pCloudy

pCloudy:Apple_iPhone8plus_

Ios_12.2.0_9db66

The name of the iOS device is Apple_i

Phone8plus_Ios_12.2.0_9db66 that is con

nected to the pCloudy Cloud.

Perfec

to:8D3E35CF16D8D827E4827AB

BCD0E582E2761CADA

The name of the Android device

is 8D3E35CF16D8D827E4827AB

BCD0E582E2761CADA that is connected to

the Perfecto Cloud.

Device id

Perfecto

Perfecto:R48904TNSAZ The name of the iOS device is Perfecto :

R48904TNSAZ that is connected to the Per

fecto Cloud.

localhost The host is localhost if the device cloud is

connected to the computer that runs HCL

OneTest™ UI.

location host

1.20.30.40 The host is the IP address of the remote

agent computer, if the device cloud is con

nected to the remote agent computer.

Chapter 7. Test Author Guide

6. Enter the values for the attributes for your tests, device, and location in the XML file.

7. Save the XML file.

Results

You have created an AFT Suite for mobile tests, which you can use to run the mobile tests on devices that are

connected to multiple mobile clouds.

What to do next

You can run the AFT suite on mobile devices connected to multiple mobile clouds. See Running mobile tests as an

AFT Suite on multiple mobile clouds on page 1100.

Working with keywords
In HCL OneTest™ UI, you can record and then associate Test Workbench tests with the keywords that are created in

IBM® Rational® Quality Manager. The keywords are used in manual tests in Rational® Quality Manager. When you

run a manual test that contains a keyword associated with a HCL OneTest™ Studio test, the Test Workbench test is

run on the workstation where the adapter has been started.

Viewing keywords
In HCL OneTest™ UI, you can record and then associate Test Workbench tests with the keywords that are created in

IBM® Rational® Quality Manager. To view the keywords, you must log on to Rational® Quality Manager.

1. In the Keyword View, click Logon to RQM .

2. In the Logon to Rational Quality Manager dialog box:

a. Type the URL in the RQM repository field.

For example: If Rational® Quality Manager is running in the local computer, type https://

localhost:9443/jazz in the RQM repository field.

Note: If the Rational® Quality Manager server is renamed, make sure that you update the URL

in the RQM repository field with the new server name.

b. Type a valid username and password in the Username and Password fields.

c. Click Finish.

3. Click Refresh Keywords . The connected projects keyword list is displayed in the keyword view.

a. To select a project area, click ProjectArea list.

Result

Only keywords pertaining to the selected project area are displayed.

b. Click Get Keywords.

579

HCL OneTest™ UI

580

a. Optional: To search for keywords that have a specific tag, type the tag in the Search by tag field.

b. Optional: Click Get Keywords.

Result

You can see the description of the keyword by expanding the keyword node. If the keyword is associated with

a manual test, the steps from the manual test are displayed along with the keyword description.

Use the navigation buttons on the toolbar to get the next set of keywords and to move between pages.

Associating tests with keywords
You can automate an IBM® Rational® Quality Manager keyword by associating it with a Web UI test. You can either

associate an existing test with a given keyword, or record a new test against the keyword and then associate the test.

Before you begin

The Keyword View must be displayed in the UI Test perspective to associate tests with keywords. To display the

Keyword View, click Window > Show View. Select Keyword View under the Test category, and click OK.

Recording a test for a keyword

1. Click the keyword from the keyword view list to record a script and associate it with a Web UI test.

2. Right-click the keyword, and click Record Test .

3. Type a name for the test to be recorded in Test name.

By default, the keyword name is used as the test script name.

4. Click Finish.

Result

The Recording monitor opens and the recording starts.

Associating an existing test with a keyword

About this task

You can only associate Web UI tests with a keyword. External tests like Selenium tests cannot be associated with a

keyword. However, you can associate a compound test that contains a Selenium test with a keyword.

1. Click the keyword from the keyword view list to associate it with a Web UI test.

2. Right-click the keyword, and click Associate Test .

Result

The Select Test dialog box lists the existing tests for the test projects.

3. Select the test that you want to associate from the list and click OK.

Result

The Select Test Location and Channel dialog box is displayed when you associate a test with the keyword for

the first time. This dialog box specifies the location of the test project.

4. Do one of the following:

Chapter 7. Test Author Guide

◦ To indicate that the associated test must be run locally, select Test will be run locally.

◦ To indicate that the test must be run from a shared location, select Test will be run from the shared

location.

5. If you selected Test will be run from the shared location, type the path to the parent directory of the test

project in the Select the shared location field, and ensure that you copy the project that contains the keyword-

associated test to the specified shared location manually. For Rational® Quality Manager to run the test, the

project with the test must be present in the shared location.

6. To select the channel of execution for the keyword-associated test, select the Select Channel check box and

select the required channel from the list. If no channels have been defined in Rational® Quality Manager, the

Select Channel check box and list are not available.

7. Click Finish.

Result

To view the tests associated with a keyword, right-click the keyword in the Keyword view and click Show

Associated Tests.

Running manual tests that contain keywords from Rational® Quality Manager
When you run a manual test that contains a keyword from Rational® Quality Manager, the test associated with the

keyword, if any, is run on the workstation on which the Rational® Quality Manager adapter is running.

About this task

You can either reference external resources by accessing a shared location or a local test machine. During execution

of the tests, the test resources are copied to the test machine if it is a shared location. However, when you access

resources in a local test machine, you are accessing resources on the path that you use.

1. In Rational® Quality Manager, create a test case.

2. Create a test script name and associate an existing test script with the test case in Rational® Quality

Manager.

3. Execute the test case and view the results of the test execution after the playback. For information, refer the

Rational® Quality Manager information center.

The Keyword view
The Keyword view displays the keywords created in IBM® Rational® Quality Manager. By default, this view is

displayed along with the Protocol Data and Recording Control views in HCL OneTest™ Studio.

The following menu options are available when you right-click a keyword in the keyword view:

Refresh Steps

Lists the steps associated with a keyword.

Record Test

Records a Test Workbench test for the selected keyword.

581

HCL OneTest™ UI

582

Associate Test

Associates a Test Workbench test with the keyword. Multiple tests can be associated with a keyword.

Show Associated Tests

Shows all the tests associated with a keyword.

To view the keyword list:

• If the Keyword View is not displayed in the UI Test perspective, click Window > Show View. Select Keyword

View from the Type category and click OK.

To select a project area:

• To select a project, click ProjectArea list. Only keywords pertaining to the selected project area are displayed.

Testing in the Functional Test perspective
When you develop Java, HTML, or Terminal-based applications, you can use HCL OneTest™ UI to create traditional

functional tests for these applications. You must first record the tests and then use HCL OneTest™ UI to run the tests

before you can view the test results.

You can find the following information:

• Preparing the functional test environment on page 582

• Managing functional test projects on page 658

• Working with functional test scripts (Windows-only) on page 664

• Working with verification points on page 698

• Driving functional tests with external data on page 730

• Managing functional test assets on page 747

• Testing terminal-based applications on page 749

• Troubleshooting issues on page 833

Preparing the functional test environment
This section describes the tasks you must perform to configure the functional test environment.

Automatically enabled environment for functional testing
From HCL OneTest™ UI version 9.1 onwards, HCL OneTest™ UI automatically enables the environments for functional

testing.

Typically, you prepare the functional test environment by enabling components such as browsers, associated

Java™ Runtime Environments (JREs), Java™ plug-ins, and Eclipse platforms. With automatic enablement of the test

environment, you can directly record and play back functional test scripts without enabling components manually.

Note:

Chapter 7. Test Author Guide

• Automatic enablement option is available only on Windows machine.

• When you turn on automatic enablement, ensure that in addition to the application under test only the

processes required by HCL OneTest™ UI are running on the computer.

To turn off automatic enablement in HCL OneTest™ UI Eclipse IDE version and later, click Window > Preferences >

Functional Test, then clear the Automatic enablement check box.

To turn off automatic enablement in HCL OneTest™ UI Visual Studio IDE version and later, click Tools > Options >

Functional Test the clear the Automatic Enablement check box.

The automatically enabled environment overcomes significant limitations that are seen while testing JRE versions

later than Sun JRE 1.6 Update 17.

HCL OneTest™ UI enables the components automatically only in Microsoft™ Windows™ environments, including

Federal Desktop Core Configuration (FDCC) setups. The automatic enablement takes place under certain conditions

and has limitations. Table 1 lists the components that are enabled automatically and the components that need to

be enabled manually. Table 2 lists the applications for which the test environment is enabled automatically, and the

applications for which the environment must be enabled manually.

Table 7. Scenarios for automatic enablement - components

Com

ponent

types Automatically enabled Enable manually

Browsers
• Automatic enablement is supported on Microsoft Internet Explorer for 32-

bit HCL OneTest™ UI installation.

Learn more about automatically enabled browsers:

• Any associated Java™ plug-ins for the supported browsers are also

enabled automatically.

• You can test HTML applications that contain Sun JRE applets on

automatically enabled 32-bit browsers. For this, you must replace

the contents in the java.policy file by the following code to make

sure that the browser is enabled automatically for applet testing:

grant {
permission java.security.AllPermission;
};

• Google

Chrome

browsers

• Microsoft™

Edge

• Mozilla Fire

fox

583

HCL OneTest™ UI

584

Table 7. Scenarios for automatic enablement - components (continued)

Com

ponent

types Automatically enabled Enable manually

You must also make sure that during playback, the first click must

be on the applet window.

• Testing HTML applications that contain applets that are loaded in

automatically enabled 64-bit browsers is not supported.

JREs All Sun or IBM® JREs versions 1.5 or later that are supported by HCL OneTest™ UI. All Sun or IBM® JRE

versions earlier than

1.5 that are support

ed by HCL OneTest™

UI

Table 8. Scenarios for automatic enablement - application domains

Automatically enabled environment

Enable en

vironment

manually

• HTML applications

• Dojo applications

• Java™ applications that contain Swing controls

• Java™ Abstract Window Toolkit (AWT) applications

• Java™ applications that are built by using Standard Widget Toolkit (SWT).

Learn more about automatic enablement for SWT and 64-bit AWT applications: Automat

ic enablement for SWT applications and 64-bit AWT applications has certain limitations

and requires specific conditions. The test environment is enabled automatically if both HCL

OneTest™ UI and the test applications use a JRE from the same vendor. If the JREs are from

different vendors, complete one of the following steps so that the environment is enabled au

tomatically:

• By default, HCL OneTest™ UI uses the IBM® JRE. Verify whether you can set the test

application to use the IBM® JRE. If setting the test application to use the IBM® JRE

is not possible, set HCL OneTest™ UI to use the Sun JRE that the test application us

es.

• If the test application uses Sun JRE, complete one of the following steps:

• Adobe™

Flex

ap

plica

tions

• Siebel

ap

plica

tions

• SAP

GUI

client

and

serv

er, for

test

ing

SAP

Chapter 7. Test Author Guide

Table 8. Scenarios for automatic enablement - application domains (continued)

Automatically enabled environment

Enable en

vironment

manually

◦ Copy the tools.jar file and the attach.dll file from the Sun jdk<version_

number> directory to the jre<version_number>/lib/ext directory.

◦ Start the test application with this command: java -javaagent:"<HCL

OneTest™ UI installation directory>\javaagent\FtAgent.jar"

ap

plica

tions

Limitations and workarounds in automatically enabled environments

Automatically enabled test environments have the following limitations:

• For 64-bit HCL OneTest™ UI installer, automatic enablement is not supported for Internet Explorer browser.

Dynamic enablement is supported only for 32-bit HCL OneTest™ UI installer for Internet Explorer browser.

• You cannot open the Verification Point Comparator by clicking the View Results link in the functional

test HTML log. Instead, open the corresponding project log file from the functional test project log, in the

Functional Test Projects view.

• When you test 32-bit SWT or Eclipse applications in automatically enabled environments, the first click action

is not recorded. Perform the first click twice to make sure that it is recorded.

• In an automatically enabled test environment, if you uninstall a JRE that is associated with a browser, restart

the computer, and then disable the uninstalled JRE in any browser add-ons that point to the uninstalled JRE, if

any.

• In some combinations of JREs and operating systems, when the environment is automatically enabled, the

browser shuts down unexpectedly when text is entered in a text box in an applet that is embedded in an HTML

page. To resolve this, do one of the following procedures:

◦ For Internet Explorer browsers, update the policy file with the permissions in the security folder of the

JRE that is associated with the browser.

◦ For Mozilla Firefox browsers, manually enable the browsers, and ensure that the Next-Gen plug-in is

disabled.

◦ Use the Scripting option to access elements relative to the enabled domain toplevelwindow (either

HTMLTopLevelWindow or JavaTopLevelWindow)

Before you record
Before you can start recording functional test scripts, perform the following setup and configuration tasks:

585

HCL OneTest™ UI

586

• Create a functional test project. For an overview, see the related topic on Functional Test projects.

Note: If you are part of a team, and the team already has a project set up, consider connecting to

the existing project, instead of creating a new one. For more information, see the related topic on

Connecting to a Functional Test project.

• Enable your browsers, Java environments and Eclipse platforms using the enabler.

HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can directly

record functional test scripts without enabling components manually. The automatic enablement takes place

under certain conditions and has limitations. For more information about the conditions and limitations, see

Automatically enabled environment for functional testing on page 582.

If required, you can manually enable or disable a browser, JRE or Eclipse platform, in the Enable Environments

dialog box (the enabler).

• Configure the application for testing. See Configuring Applications for Testing on page 603.

Enabling Java environments
You need to enable Java™ environments before you can use HCL OneTest™ UI to test Java™ applications. HCL

OneTest™ UI is shipped with a JRE that is automatically enabled during your installation. The JRE is called "Default

JRE." To enable other JREs, or if you install a new JRE, you must run the enabler again.

Before you begin

To enable Java™ environments, you must log on as an administrator. On Microsoft® Windows® 7 operating system,

you must also run HCL OneTest™ UI as an administrator.

About this task

In HCL OneTest™ UI, the automatic enablement check box is selected, which is the default option. When this option

is enabled, the testing environment such as web browsers, the associated Java™ Runtime Environments (JREs),

Java plug-ins, and Eclipse platforms are enabled automatically. Therefore, you can directly record the functional test

scripts without enabling the testing environment manually. The automatic enablement of the testing environment

takes place under certain conditions and limitations. For more information about the conditions and limitations on the

automatic enablement, see the related links section.

1. Click Configure > Enable Environments for Testing any time from HCL OneTest™ UI to invoke the Enable

Environments dialog box (the enabler). Click the Java Environments tab.

2. Click Search. The Search for Java™ Environments dialog box opens.

Chapter 7. Test Author Guide

a. Select one of the following search mechanisms.

▪ Quick Search can only be used on Windows® systems. It searches the Windows® registry for

the Java™ environments, and is quicker than searching your hard disk drive(s)

▪ Search All Drives scans all of your hard disk drives or partitions to locate all the Java™

environments on your system

Note: You should not use the Search All Drives option to find JREs on Linux® systems.

Instead use the Search in option and browse for the JRE.

b. Select Search in to browse to a specific drive or root directory to search.

c. After choosing one of the search mechanisms, click the Search button.

3. When the search is complete, HCL OneTest™ UI lists the JREs in the Java Environments list on the left side

of the Java™ Environments tab. The list includes the full path name of each environment. Decide which

environments you want to enable.

4. Select the environments you want to enable by clicking on them in the list. You can select multiple JREs by

using the Ctrl key while selecting. Click the Select All button if you want to enable all of the JREs.

5. Click Enable.

The selected environment(s) will be enabled for Java™ testing. The enabled environments will be indicated in

parentheses after each JRE name in the list.

6. Select a JRE to be the default, and click the Set as Default button.

7. Click Close.

Results

Notes:

• Enabling JVM:

When you run HCL OneTest™ UI for the first time, it automatically enables the JVM of your browser's

Java™ plug-in so that HTML recording works properly. If you install a different JVM, you must rerun the

enabler to enable it.

However, if you experience an error regarding the Java™ plug-in during HTML testing, or when trying

to launch the Verification Point Comparator from the HTML log, you need to make sure your plug-in is

configured properly. See Enabling the Java Plug-in of a Browser on page 607 for instructions.

• You do not have to use the Search button to add an environment. You can click the Add button instead

in Step 2. This brings up the Add Java™ Environment dialog box, which you can use to locate the new

Java™ environment. After you select it and click Add, the environment will then be added to the Java

Environments list, and you follow steps 4 - 7 to enable or disable it. If you try to add a file that is not a

Java™ environment, you will get an error and it won't be added to the list.

587

HCL OneTest™ UI

588

• If your JRE is not enabled, you will be able to tell because the Recording Monitor on page 1529 will be

blank when you try to record against a Java™ application. For this reason, leave the Recording Monitor

in view while recording. If you see this symptom, you need to run the enabler.

• To enable browsers for HTML testing, see Enabling Web Browsers on page 588.

• You can test that your JRE is enabled properly by clicking the Test button in the enabler. This

opens the JRE Tester, which reports the JRE version, JRE vendor, and whether the JRE is enabled

successfully. Click OK to close the JRE Tester.

Enabling web browsers
To test the HTML applications in HCL OneTest™ UI, you must enable web browsers. You can then record and play

back tests by using the browsers that you enabled.

Before you begin

• You must have installed either 32-bit Java or 64-bit Java on your computer based on the web browser that you

want to enable. See Enabling Java environments on page 586.

• You must have installed the 32-bit or 64-bit Oracle JRE to enable the Internet Explorer browser.

About this task

In HCL OneTest™ UI, the automatic enablement check box is selected, which is the default option. When this option

is enabled, the testing environment such as web browsers, the associated Java™ Runtime Environments (JREs),

Java plug-ins, and Eclipse platforms are enabled automatically. Therefore, you can directly record the functional test

scripts without enabling the testing environment manually. The automatic enablement of the testing environment

takes place under certain conditions and limitations. For more information about the conditions and limitations on the

automatic enablement, see the related links section.

1. Click Configure > Enable Environments for Testing in HCL OneTest™ UI.

The Enable Environments dialog box is displayed.

2. Click the Web Browsers tab and perform the following steps:

a. Click Search.

The Search for Web Browsers dialog box is displayed.

b. Search for the browser by using any of the following search methods:

Chapter 7. Test Author Guide

▪ Select Search All to find and list all the web browsers that are installed on your computer.

Note: You must not use the Search All option to find the web browsers on a Linux or

UNIX computer. Instead, you must use the Search In option and browse for the web

browsers.

▪ Select Search In to browse for all the web browsers that are installed in a specific directory.

c. Click Search.

3. Select the web browsers that you want to enable from the Web Browsers list.

Note: You can select multiple browsers by using the Ctrl key while you are selecting. Click Select All if

you want to enable all of the browsers.

4. Click Enable.

The word “enabled" is displayed along with the name of the web browser that is enabled.

5. Select a browser and then click Set as Default to set it as the default web browser.

6. Click Close.

7. Click Test to run the Browser Enablement Diagnostic Tool and verify whether the web browser is enabled

correctly.

Results

The selected web browsers are enabled for testing the HTML applications.

What to do next

You can play back the Web UI tests by using the browser that you enabled.

Related reference

Automatically enabled environment for functional testing on page 582

Related information

Enabling the Google Chrome browser on page 594

Enabling Microsoft Edge to test HTML applications
You must enable the Edge browser before you record functional tests for HTML applications.

About this task

To enable the Edge browser, you must install the extension from the Chrome Web Store. Alternatively, you can also

use the extension that is bundled along with HCL OneTest™ UI.

589

HCL OneTest™ UI

590

Note: You must preferably install the extension from the Chrome Web Store. You must use the extension

bundled with the product only when you are unable to install it from the Chrome Web Store.

1. Open HCL OneTest™ UI.

2. Click Configure > Enable Environments for Testing....

The Enable Environments dialog box is displayed.

3. Add the Edge browser to the list of web browsers in the Web Browsers tab, if it is not added.

To add the Edge browser, you must perform the following tasks:

a. Click Add.

The Add browser dialog box is displayed.

b. Browse and select the .exe file of the Edge browser.

c. Click Apply, and then click Finish.

Result

The Edge browser is added to the list of browsers under the Web Browsers tab.

4. Enable the Edge browser by performing the following tasks:

a. Select the Edge browser in the Web Browsers tab, and then click Enable.

A confirmation dialog box is displayed.

b. Click OK.

The Edge browser opens and the Chrome Web Store page is displayed.

c. Click Add to Chrome.

A confirmation dialog box is displayed.

d. Click Add Extension.

After the extension is added, the HCL OneTest™ UI icon is displayed in the browser toolbar.

5. Verify whether the Edge browser is enabled in HCL OneTest™ UI by clicking Test in the Enable Environments

dialog box.

The test result is displayed as Passed if the Edge browser is enabled successfully.

Results

You have enabled the Edge browser to record functional tests for HTML applications.

What to do next

Chapter 7. Test Author Guide

You can record a test by using the Edge browser. See Recording scripts to test HTML applications on page 679 for

details.

Setting a specific browser profile for the playback of functional HTML tests
You can set a specific browser profile in HCL OneTest™ UI that includes the extensions and settings for the browser to

run the functional HTML tests by using the Web UI engine.

About this task

You can set a specific browser profile for the following browsers:

• Google Chrome

• Mozilla Firefox

• Microsoft Edge

Note: When you set a specific browser profile for the Firefox browser, HCL OneTest™ UI creates a copy of the

profile that you set and the tests are played back in the profile copy.

1. Click Window > Preferences > Test > Test Execution > UI Test Playback.

2. Click the Browser tab.

3. Select the checkbox of the browser for which you want to set the profile path.

The Browse button for the browser is enabled.

4. Click Browse to browse and select the user profile for the browser.

5. Click Apply and Close.

Results

You have set a specific browser profile for the selected browser.

Related information

Running functional tests for HTML applications by using the Web UI engine on page 1187

Use the Profile Manager to create and remove Firefox profiles

Create a new browser user profile

Enabling multi-window support to test Functional HTML tests
You can enable multi-window support for Functional HTML tests to record the actions that you perform in multiple

windows of the same browser instance. The playing back of the test finds controls from all the active windows of

the browser instance. You can use this capability when an HTML application opens a new browser window after you

perform an action from the parent window of the application.

Before you begin

591

https://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-profiles
https://support.google.com/chrome/answer/142059?hl=en

HCL OneTest™ UI

592

You must have enabled the browser from Preferences. For information, see related links.

About this task

You can enable multi-window playback support for Google Chrome, Mozilla Firefox, and Microsoft Edge browsers.

Note: Multi-window means that a new window is opened from the existing window based on the user action.

Opening another tab in the same browser does not qualify for a multi-window.

1. Select the following check boxes in Windows> Preferences> Functional Test> Playback in HCL OneTest™ UI:

◦ Play back with Web UI Extension

◦ Play back with Web UI action

2. Click Apply.

Results

You can test Functional HTML tests that you run in multiple windows of Google Chrome, Mozilla Firefox or Microsoft

Edge browsers.

Related information

Enabling web browsers on page 588

Google Chrome browser support on page 592

Preparing for functional testing in the Google Chrome browser
You can use HCL OneTest™ UI to test HTML applications in the Google Chrome browser. To do this, you must enable

the Google Chrome browser and add the HCL OneTest™ UI extension for Google Chrome™ to the browser.

Google Chrome browser support
With HCL OneTest™ UI, you can test HTML applications that are loaded in the Google Chrome browser in Microsoft

Windows environments.

You can test HTML applications that contain the following controls:

• HTML controls

• Dojo controls in applications built using Dojo Toolkit versions 1.0, 1.1, 1.2, 1.3.2, 1.4.2, 1.5, 1.6.1, 1.7, 1.8, and

1.9

You can also perform the following actions:

Chapter 7. Test Author Guide

• Test HTML applications that are loaded in multiple browser windows or embedded frames and inline frames,

with varying zoom levels

• Record a functional test script in a Microsoft® Internet Explorer or Mozilla Firefox browser and play it back

in a Google Chrome browser, provided that the Document Object Model (DOM) is compatible with the Google

Chrome browser.

• Record a functional test script in a Google Chrome browser and play it back in a Microsoft® Internet Explorer

or Mozilla Firefox browser, provided that the Document Object Model (DOM) is compatible with the other

browsers.

• Use the manual scripting find() method while testing applications in a Google Chrome browser. To use the

manual scripting find() method, a browser instance is required. The browser instance is returned only after the

document is completely loaded and not when the browser starts.

Support for functional testing in the Google Chrome browser is version independent, so you can test HTML

applications in any version of a Google Chrome browser. Support has been validated up to Google Chrome 23.0.

The HCL OneTest™ UI Google Chrome™ extension

To perform functional testing in the Google Chrome browser, an extension is required to be added to the browser

that enables communication between HCL OneTest™ UI and the Google Chrome browser through a web server. This

extension, known as HCL OneTest™ UI for Google Chrome™, is available with your HCL OneTest™ UI installation.

Alternatively, it is also available on the Google Chrome web store. To test applications loaded in Google Chrome, you

must enable the browser.

Prerequisites for functional testing in the Google Chrome browser

Before you use HCL OneTest™ UI to test applications on the Google Chrome browser, complete these procedures:

1. In the Google Chrome browser settings, ensure that extensions are allowed, and that both Java and JavaScript

are also allowed. Do not change the default browser settings.

2. Enable the browser manually for functional testing. To do this, complete one of the following steps:

◦ Enable the browser manually from the Enable Environments dialog box in HCL OneTest™ UI. The

browser opens and you are prompted to add the HCL OneTest™ UI for Google Chrome extension to the

browser. For instructions to enable the Google Chrome browser manually, see the related task named

Enabling the Google Chrome browser.

◦ Add the HCL OneTest™ UI for Google Chrome extension to the browser from the web store. Verify

that the browser is enabled by using the Enable Environments dialog box in HCL OneTest™ UI. For

instructions to add the extension from the web store, see the related task named Adding the extension

HCL OneTest™ UI for Google Chrome. Ensure that you have an Internet connection to access the

extension from the Google Chrome web store.

3. The default web server port for communication between Google Chrome and HCL OneTest™ UI is set on the

Webserver Configuration page in the Preferences dialog box, as well as in the options for the HCL OneTest™

UI for Google Chrome extension. If this default port number is in use, you must specify an available port.

593

HCL OneTest™ UI

594

Ensure that you specify the same port in both the Preferences dialog box as well as in the options for the

extension.

4. Ensure that you start HCL OneTest™ UI before you start the application-under-test (AUT) in the Google Chrome

browser. After you start HCL OneTest™ UI, open the AUT by completing one of the following steps:

◦ Configure the AUT in the Application Configuration Tool in HCL OneTest™ UI and start the application

from there. Alternatively, you can start the AUT at the time of recording by using the Start Application

icon on the recording toolbar.

◦ To start the Google Chrome browser independent of HCL OneTest™ UI, append -allow-outdated-

plugins -allow-file-access-from-files -always-authorize-plugins to the Google

Chrome shortcut, and then start the browser.

Points to remember while testing in the Google Chrome browser

• Record an action on an application page only after the document has loaded completely.

• Ensure that you start the browser only after you start either HCL OneTest™ UI or the recording monitor.

• To record and play back on local files that can be opened in a Google Chrome browser, ensure that you select

the Allow access to file URLs check box in the extensionHCL OneTest™ UI for Google Chrome™.

Troubleshooting functional tests in the Google Chrome browser

For useful information that will help you troubleshoot problems you face while testing in the Google Chrome browser,

see Troubleshooting functional tests in the Google Chrome browser on page 597.or

Current limitations in Google Chrome testing:

• Recording on the Back and Forward buttons in the browser are not supported. Use browser-level

back() and forward() APIs to play back these actions.

• When you record a script, actions on controls in dialog boxes are recorded as click(atPoint())

relative to the dialog box. You can also use keystrokes to record on dialog box controls.

• Playback of actions on combo box drop-down controls is not supported. To play back these actions,

modify the script manually and specify the option that must be selected during playback.

• The browser-level deletecookies() API is not supported. Cookies must be deleted manually.

• Recording on tabs is not supported.

• Recording on applications built using Dojo toolkit might be slow compared to other browsers such as

Microsoft® Internet Explorer or Mozilla Firefox.

• Recording and playback is not supported in the Google Chrome browser in cases where the browser is

started with a blank home page, that is, without a home URL.

Enabling the Google Chrome browser
To use HCL OneTest™ UI to test HTML applications that run on Google Chrome browser, you must enable the Google

Chrome browser manually.

Chapter 7. Test Author Guide

About this task

You must enable the browser for recording the tests. HCL OneTest™ UI facilitates playing back the tests directly in

Chrome without enabling the browser.

You can enable the browser by using any of the following methods:

• By enabling the browser from the Enable Environments dialog box in HCL OneTest™ UI. The browser

opens and you are prompted to add the HCL OneTest™ UI for Google Chrome™ extension to the browser as

documented in the following procedure.

• By adding the HCL OneTest™ UI for Google Chrome extension to the browser from the Google Chrome web

store. You must ensure that you have an Internet connection to access the extension from the Google Chrome

web store. After adding the extension, verify that the browser is enabled by opening the Enable Environments

dialog box in HCL OneTest™ UI. For instructions to do this, see Adding the Google Chrome extension from the

Chrome Web store on page 596.

• By installing the extension that is packaged with the product if you do not have access to internet to access

the Chrome Web Store. For more information, see Adding the Google Chrome extension bundled with the

product on page 596.

1. In HCL OneTest™ UI, click Configure > Enable Environments for Testing to invoke the Enable Environments

dialog box (the enabler).

2. Click the Web Browsers tab. Add the Google Chrome browser to the Web Browsers list by doing the following:

a. Click Search. The Search for Web Browsers dialog box opens.

b. Search for the Google Chrome browser using any of the following search methods:

▪ Select Search All to let the enabler locate all the browsers on your system. HCL OneTest™ UI

scans all the hard disk drives or partitions, and lists the browsers in the Web Browsers list.

▪ Select Search In to browse to a specific disk drive or root directory to search.

c. Click the Search button.

3. On the Web Browsers tab, click Chrome in the Web Browsers list, and click Enable.

The Google Chrome browser opens and you are prompted to add the HCL OneTest™ UI for Google Chrome

extension to the browser.

4. Click Continue, and then click OK.

On the Web Browsers tab In the Enable Environments dialog box, the enabled status is indicated in

parentheses after the Google Chrome browser name in the Web Browsers list.

5. Test that the browser is enabled properly by clicking the Test button to run the Browser Enablement

Diagnostic Tool.

6. Click Finish In the Enable Environments dialog box.

Results

595

HCL OneTest™ UI

596

After you enable the Google Chrome browser, you can start testing applications that run in Google Chrome browsers.

Adding the Google Chrome extension from the Chrome Web store
To perform functional testing in the Google Chrome browser, an extension is required to be added to the browser

that enables communication between HCL OneTest™ UI and the Google Chrome browser through a web server. This

extension, known as HCL OneTest™ UI for Google Chrome™, is available with your HCL OneTest™ UI installation.

Alternatively, the extension is also available on the Google Chrome web store. To test applications loaded in Google

Chrome, you must enable the browser, which adds the extension to the browser.

Before you begin

• If you already enabled the Google Chrome browser manually through the Enable Environments for Testing

dialog box in HCL OneTest™ UI, and you want to install the latest updates to the HCL OneTest™ UI for Google

Chrome extension from the Google Chrome web store, first disable the browser by clicking Disable in the

Enable Environments for Testing dialog box, and then add the extension from the web store by completing the

procedure below.

About this task

1. In the Google Chrome browser, click the Customize and Control Google Chrome icon, and then click Settings.

2. On the Settings page, in the right pane, click Extensions.

3. Click Want to browse gallery instead. The Google Chrome web store opens.

4. In the Search field, type HCL OneTest™ UI and press Enter. The HCL OneTest™ UI for Google Chrome extension

is displayed.

5. Click Add to Chrome.

Results

The HCL OneTest™ UI for Google Chrome extension is added to the Google Chrome browser, and the browser is

enabled for functional testing.

What to do next

Verify that the browser is enabled by opening the Enable Environments dialog box in HCL OneTest™ UI. After you

verify that the browser is enabled, you can start testing applications in the Google Chrome browser.

Adding the Google Chrome extension bundled with the product
To perform functional testing in the Google Chrome browser, you must install an extension for the Chrome browser.

You can install the extension that is bundled with the product if you do not have access to the internet connection.

1. Go to the folder where the product is installed and follow these steps:

a. Navigate to the following path: FunctionalTester/bin/enabler.

b. Extract the RFTChromeExtension.crx file to the local directory.

2. Perform following steps in the Google Chrome browser:

Chapter 7. Test Author Guide

a. At the top right corner, click More > Extensions.

b. Turn on the Developer Mode.

c. Click the Load Unpacked button to browse and select the folder that you extracted.

3. Click Add to Chrome.

Results

The Google Chrome extension is added to the Google Chrome browser, and the browser is enabled for functional

testing.

Changing the web server port for communication with Google Chrome
The default web server port for communication between Google Chrome and HCL OneTest™ UI is set on the

Webserver Configuration page in the Preferences dialog box in HCL OneTest™ UI, as well as in the options for the HCL

OneTest™ UI for Google Chrome™ extension. If this default port is already in use on the workstation where you are

testing applications in Google Chrome, change it and specify an available port.

Before you begin

• Ensure that you have enabled the Google Chrome browser for functional testing.

• The web server port is used when you enable the Google Chrome browser manually in the Enable

Environments for Testing dialog box. By default, the port 9100 is set for the web server. If this port is already

in use, change it and specify an available port.

Note: If you change the port in the Options for the extension, ensure that you also make the same

change on the Webserver Configuration page on page 656 in the HCL OneTest™ UI Preferences

dialog box. For more information, see the related topic named Webserver Configuration page.

1. In the Google Chrome browser, click the Customize and Configure Chrome icon.

2. In the left pane, click Extensions.

3. Under the extension HCL OneTest™ UI for Google Chrome™, click the Options link.

4. In the Webserver Port field, change the default port (9100) and specify a different port that is available on

the workstation. If you change the port in the Options for the extension, ensure that you also make the same

change on the Webserver Configuration page on page 656 in the HCL OneTest™ UI Preferences dialog box.

5. Select the Allow access to file URLs check box if you intend to test local files that can be opened in a Google

Chrome browser.

6. Click Save.

Troubleshooting functional tests in the Google Chrome browser
If you encounter problems while testing in the Google Chrome browser, you will find useful information in this section

to resolve them.

• The Google Chrome browser is not properly enabled on page 598

• It is not possible to record on a Google Chrome browser on page 598

597

HCL OneTest™ UI

598

• Actions are recorded on the Windows domain and not in the application domain on page 598

• Problems with playing back certain actions on page 598

The Google Chrome browser is not properly enabled

If the error CRFCN0794E on page 1387 is displayed when you try to record on a Google Chrome browser, the browser

is not properly enabled. This can be due to one of the following reasons:

• No Sun Java Runtime Environment (JRE) was associated with the browser, or the associated JRE was not

enabled. To resolve this, associate Sun JRE 1.6 Update 10 or later with the Google Chrome browser, and then

verify that the browser has been enabled by opening the Enable Environments dialog box in HCL OneTest™ UI.

• The default web server port (9100) for communication between the Google Chrome browser and HCL

OneTest™ UI is being used by another application on the workstation. Change the default port and specify an

available port in both the Webserver Configuration page on page 656 in the HCL OneTest™ UI Preferences

dialog box, and in the Options for the HCL OneTest™ UI for Google Chrome™ extension. For instructions to

do this, see the related topics Changing the web server port for communication with Google Chrome and

Webserver Configuration page.

Note: Ensure that you specify the same port number in both places.

It is not possible to record on a Google Chrome browser

This problem could occur due to one of the following reasons:

• The browser was not properly enabled. Ensure that the browser is properly enabled.

• The browser was started with a blank home page, that is, without a home URL. To prevent this, always specify

a home URL for the Google Chrome browser.

Actions are recorded on the Windows domain and not in the application domain

While recording on the Google Chrome browser, actions on objects in the test application may be recorded in the

Windows domain and not in the application domain. This can occur due to one of the following reasons:

• The action was recorded before the document was loaded completely in the Google Chrome browser. To

prevent this, record an action on an application page only after the document has loaded completely.

• The browser was started before either HCL OneTest™ UI or the recording monitor was started. To prevent this,

always start the browser only after you have started either HCL OneTest™ UI or the recording monitor.

• Actions on controls in dialog boxes are recorded as click(atPoint()) relative to the dialog box. To

prevent this, use keystrokes to record on dialog box controls.

Problems with playing back certain actions

Some actions recorded on the Google Chrome browser need the script to modified, to be played back successfully.

For example

Chapter 7. Test Author Guide

• Clicking the Back and Forward buttons in the browser. To play back these actions, modify them in the

recorded script using the browser-level back() and forward() APIs.

• Actions on combo box drop-down controls. To play back these actions, modify the script manually and specify

the option that must be selected during playback.

:

Enabling the Eclipse non-p2 based applications for functional testing
If the application under test is a non-p2 Eclipse based application, you can enable the Eclipse platform for functional

testing using the Eclipse enabler.

Before you begin

HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can directly record

functional test scripts without enabling components manually. The automatic enablement takes place under certain

conditions and has limitations. For more information about the conditions and limitations, see Automatically enabled

environment for functional testing on page 582.

1. Click Configure > Enable Environments for Testing fromHCL OneTest™ UI.

2. Click the Eclipse Platforms tab.

3. Click Search. You can search for the Eclipse platforms in two ways:

Choose from:

◦ Search all drives: Searches the Eclipse platforms in all your hard disk drives

◦ Search in: Searches the Eclipse platform in the specific directory

4. Select a search mechanism and click Search.

Result

The search results are listed in the left pane of Enable Environments window.

Note: Use the Add button to browse to the Eclipse platform and add directly.

5. Select the Eclipse platform that you want to enable from the left pane of the window. The detailed information

consisting of the name and path of the selected Eclipse platform is displayed in the right pane of the window.

6. To enable support for GEF, select the GEF support checkbox.

Result

The GEF enablement plugin is copied to the plugin directory of the AUT.

7. Click Enable.

Result

The selected Eclipse platform is appended with Enabled in parentheses.

8. Click Finish.

9. If the application under test (AUT) is an Eclipse based rich client platform (RCP) application that shell shares

with HCL OneTest™ UI, do this:

599

HCL OneTest™ UI

600

a. Click Configure > Configure Applications for Testing fromHCL OneTest™ UI.

b. Click Add to add the Eclipse application, and click Next.

c. Select Executable file and click Next.

d. Browse to the application executable file, and click Open.

e. Click Finish.

The application is listed in the Applications list in the Application Configuration Tool.

f. In the Args field, specify -vmargs -Dft.testability=true.

g. Click Run to start the application.

Note: You must start an AUT that is an Eclipse based RCP application that shell shares with

HCL OneTest™ UI with the arguments -vmargs -Dft.testability=true, from the

Application Configuration Tool.

What to do next

Configuring applications for testing on page 603

Related information

Enabling the Eclipse p2- based applications for functional testing on page 600

Enabling the Eclipse p2- based applications for functional testing
If the application-under-test is based on p2-based Eclipse, you must enable the Eclipse platform for testing using the

Eclipse Software Updates feature.

Before you begin

HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can directly record

functional test scripts without enabling components manually. The automatic enablement takes place under certain

conditions and has limitations. For more information about the conditions and limitations, see Automatically enabled

environment for functional testing on page 582.

Enabling applications based on Eclipse version 3.4 and later
You can enable applications that are based on Eclipse version 3.4 and later using the Eclipse Software Updates

feature.

1. Open the application under test.

2. Click Help > Software Updates.

Chapter 7. Test Author Guide

3. Click the Available Software tab.

4. Click Add Site.

5. Click Local.

6. Browse to the EclipseEnabler directory under the FunctionalTest folder in the product installation location.

7. Click OK.

Enabling applications based on versions prior to Eclipse version 3.4
You can enable applications that are based on Eclipse versions prior version 3.4 for testing using the Eclipse Software

Updates feature.

1. Open the application under test.

2. Click Help > Software Updates > Find and Install.

3. Select Search for new features to install in the Feature Updates dialog box and click Next.

4. Click New Local Site in the Update sites to visit page.

5. Select the EclipseEnabler directory found under the FunctionalTest folder in the product installation location.

Click OK.

6. Specify the name for the local site in the Name field and click OK. The site name is listed in the Update sites to

visit page.

7. Select the site from the list and click Finish. The specified directory, along with its sub folders, is listed in the

Search Results page.

8. Select the main directory in the Search Results page and click Next.

9. In the Feature License page, select I accept the terms in the license agreement and click Next.

10. Click Finish.

You can verify that the Eclipse application is enabled for testing by checking that the

com.rational.test.ft.enabler.wsw plugin is added to the Plugins directory of the Eclipse application.

Note: Some Eclipse based RCP applications may not have the Help > Software Updates option. In this

case you can copy the com.rational.test.ft.enabler.wsw_7.0 plugin manually from the FunctionalTest

\EclipseEnabler\Plugins directory from the product installation location into the Plugins directory of

the RCP application. After doing this, restart the RCP application with the -clean option.

What to do next

Configuring applications for testing on page 603

Related information

Enabling the Eclipse non-p2 based applications for functional testing on page 599

601

HCL OneTest™ UI

602

Enabling stand-alone Standard Widget Toolkit applications
You must enable stand-alone Standard Widget Toolkit (SWT) support before using HCL OneTest™ UI to test SWT

applications in the application under test.

About this task

To enable an SWT application, you must first enable the JRE in which the application runs, and then modify the Java

code of the SWT application.

HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can directly record

functional test scripts without enabling components manually. The automatic enablement takes place under certain

conditions and has limitations. For more information about the conditions and limitations, see Automatically enabled

environment for functional testing on page 582.

1. Enable the JRE in which the SWT application runs. To do this:

a. Click Configure > Configure Applications for Testing from HCL OneTest™ UI to invoke the Enable

Environments dialog box.

b. Click the Java Environments tab.

c. Click Search. The Search for Java Environments dialog box opens.

d. Select the appropriate search mechanism, and click Search.

Result

When the search is complete, the JREs are listed in the Java Environments list.

e. Select the environment of the SWT application by clicking it on the list.

f. Click Enable and then click Close.

2. Place the rational_ft_bootstrap.jar file in the classpath. The rational_ft_bootstrap.jar is found in the C:

\Program Files\HCL\HCLOneTest\FunctionalTester\EclipseEnabler\plugins location.

3. The enableSwtUi() method must be called from the User Interface (UI) thread of the SWT application. Add this

code:

try
 {
 com.rational.test.ft.bootstrap.Bootstrap.enableSwtUi(this);
 }
 catch (Throwable e) {}

This must be called from the code that first creates the application shell.

4. Save your changes.

Chapter 7. Test Author Guide

Configuring applications for testing
You must configure your Java™, HTML, VB.NET, SAP GUI, Flex or Windows® applications for functional testing by

providing the name, path, and other information that HCL OneTest™ UI uses to start and run the application. You use

the Application Configuration Tool to configure applications.

Before you begin

Important: If you enabled Mozilla Firefox or Google Chrome browser for HCL OneTest™ UI, the latest Java

update must be associated with the browser. If not done, security messages prompt up when you open the

browser and Java will be blocked.

To add and configure your applications:

1. Open HCL OneTest™ UI and click Configure > Configure Applications for Testing. You can also open the

Application Configuration tool from the Start Application dialog box by clicking the Edit button.

2. To add a new application, click the Add button.

3. In the Add Application dialog box, select the application type, and click Next.

4. Select the type of application and the path of the application to enable it for functional testing.

For different types of domains, specify the application details as specified in the following table:

Table 9.

Domain type Application details

Java Click Browse > Open to find and select the application. The file types can be

with .class or .jar extensions.

Visual Basic .Net and

Windows®

Click Browse > Open to select any executable or batch file.

HTML Select either Local or URL. If Local, browse to an .htm or .html file. If URL, enter

the URL address.

SAP Select the SAP executable from the dropdown list. Alternatively, you can select a

SAP shortcut file with a .exe, .sal or .sap extension using the Browse button.

Note: You must have SAPGUI installed in your computer to be able to se

lect this option.

Note: To configure Flex applications for testing, see Configuring Flex application using the user

interface on page 621.

5. Click Finish.

The application will then show up in the Applications list in the Application Configuration Tool.

603

HCL OneTest™ UI

604

6. Look at the information in the Detailed Information list.

◦ For Java™ applications, the Name, Kind, Path, .class/.jar file, and Working Dir fields are automatically

filled in for you. The JRE, Classpath, and Args fields are optional, and could be filled in by you as

needed. Make any necessary edits.

◦ For HTML applications, the Name, Kind, and URL fields will be filled in. Select the default browser in

the Browser field.

◦ For SAP applications, you can specify a separate argument to use in the Args field.

7. To test if the application is configured properly for testing, select the added application from the list and click

Run.

8. Click OK to save the changes you made.

Note: You can edit the information about an application in the tool at any time.

Configuring the Java environment for testing
You must configure JREs for testing Java only when the application under test is either Internet Explorer or a Java-

based application that requires a Java distinct from the Java which is bundled with the product. The configured Java

provides path, run options, and other information that HCL OneTest™ UI needs to access and use your JREs.

1. Click Configure> Enable Environments for Testing in HCL OneTest™ UI.

2. Click the Java Environments tab.

You can use this tab to add and edit JRE configurations.

3. Add your JRE(s) by using one of the following methods:

◦ Perform the following steps to add a new JRE by using the Search method:

a. Click the Search... button.

The Search for Java Environments dialog box is displayed.

b. Choose one of the search options, and then click the Search button.

Note: You must not use the Search All Drives option to find JREs on Linux® or UNIX®

systems. Instead, you must use the Search In option and browse for the JRE. See

Enabling Java Environments on page 586 for information on the search options. The

details of the JRE are populated automatically, except for the Run Options field.

◦ Perform the following steps to add a new JRE by using the Add method:

a. Click the Add button to add a new environment manually.

The Add Java Environment dialog box is displayed.

b. Browse and select the JRE that you want to add.

You can select any directory under the root of the JRE, or the root directory itself.

Chapter 7. Test Author Guide

c. Click the Add button.

The JRE is displayed in the Java Environments list.

4. Look at the detailed information of the selected JRE that is displayed at the right-hand side.

Note: Whether you use Search or Add, the detailed information on each JRE is filled in, except for the

Run Options field. You can edit the details.

For information on fields of the Java Environments dialog box, see the related links section.

5. Select the JRE, which you want to set as the default environment for the playback, from the list, and then click

the Set as Default button.

The default JRE that you set is indicated in parentheses. You can change the default JRE any time by using

this tab. You can also override the default environment for a specific application, by indicating it in the JRE

field in the Application Configuration Tool dialog box. For more information, see the related links section.

6. Click OK or Apply to save the changes that you made.

Note: After a JRE is added, you can edit the information any time by opening this tab and selecting it

in the Java Environments list.

What to do next

You can start recording tests for the application under test.

Related reference

Application Configuration Tool on page 1457

Configuring browsers for testing
You need to configure your browsers for HTML testing with HCL OneTest™ UI. This provides name, path, and other

information that HCL OneTest™ UI needs to access and use your browsers. You use the Web Browsers tab of the

Enable Environments dialog box to do this.

About this task

To add and configure your browsers:

1. Click Configure> Enable Environments for Testing from HCL OneTest™ UI.

2. Click on the Web Browsers tab.

This tab is used to add and edit browser configurations.

3. Add your browser(s) by one of the following methods:

Search

605

HCL OneTest™ UI

606

To add a new browser by searching, click the Search button.

This opens the Search for Web Browsers dialog box. Choose one of the search options in that dialog and

click the Search button. Note: You should not use the Search All option to find browsers on Linux® or UNIX®

systems. Instead use the Search In option to locate the browser. See Enabling Web Browsers on page 588

for information on the search options. HCL OneTest™ UI will fill in all the detailed information on each browser.

Add

To add a new browser manually, click the Add button.

The Add Browser dialog appears.

Locate the directory containing the browser you want to add.

With the file selected, click the Add button.

The browser will then show up in the Web Browsers list.

4. Look at the information in the Detailed Information list. Whether you use Search or Add, HCL OneTest™ UI will

fill in all the detailed information on each browser. Make any necessary edits.

For information on these fields, see the Web Browsers tab on page 1593 of the Enable Environments dialog

box.

5. Choose which browser you want to be your default browser. It will be used in all HTML applications that have

not specified a browser. Select the browser in the list, and click the Set as Default button.

That browser will then become the default, and will be indicated in parentheses. You can change the default

any time by coming back to this tab.

6. You must click Finish or Apply to save the changes you made.

Note: Once a browser has been added, you can edit its information any time by opening this tab and

selecting it in the Web Browsers list.

Browser enablement diagnostic tool
The Browser Enablement Diagnostic Tool is used to diagnose problems you might have with enabling your browser

for HTML testing. The tool will diagnose the enablement problem and report how to solve the problem.

About this task

Use the diagnostic tool if you suspect that HTML is not being tested properly. If you are trying to record against an

HTML application, and nothing shows up in the Recording Monitor, the browser is probably not enabled properly. It

might mean that the Java™ plug-in of your browser is not enabled. If that is the case, the diagnostic tool will tell you

how to enable the browser. The tool offers quick and simple directions to solve any problem it finds.

To run the tool:

Chapter 7. Test Author Guide

1. Open the HCL OneTest™ UI Enabler by clicking Configure > Enable Environments for Testing.

2. Click the Web Browsers tab.

3. Click the Test button. The Browser Enablement Diagnostic Tool opens.

4. Click the Run Diagnostic Tests button.

Results

About this task

The Results page tells you whether the test passed or failed. If the test failed, this page will also list the problem.

Problem and solution

About this task

The Problem and Solution page will list the problem and explain how to solve it. Follow the instructions listed there

and close the tool. If you were in the process of recording a script when you ran the tool, stop recording the script and

start over. The recording should then work against an HTML application.

Details (Advanced)

About this task

The Details page list additional information about your environments. The Java Enabled field indicates whether Java™

is enabled in your browser. The JVM Information field lists information about your JVM. The General Enablement

Information field lists Java™ and HTML domain information.

Enabling the Java plug-in of a browser
The Oracle Java™ plug-in of your browser(s) must be enabled in order for some applets to be tested, and for the View

Results link that launches the Verification Point Comparator from the HTML log to work properly. If you get an error

regarding the plug-in during HTML testing, or when trying to launch the Comparator, use the following steps to fix the

problem.

About this task

HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can directly record

functional test scripts without enabling components manually. The automatic enablement takes place under certain

conditions and has limitations. For more information about the conditions and limitations, see Automatically enabled

environment for functional testing on page 582.

Note:

• The JRE that is shipped with HCL OneTest™ UI and is set as the default, is not configured with the

browser. If you do not have another JRE on your system that includes a browser plug-in, you must

install one before using HCL OneTest™ UI. Download a version of J2SE that contains a JRE and a

607

HCL OneTest™ UI

608

browser plug-in. You need a simple Java™ runtime and not a JDK or Java™ desktop. After installing the

JRE, follow the steps below to enable the plug-in.

• Java plugin can be enabled in Java 8 and earlier but it is not supported in Java 9 and later.

1. Configure your plugin to make sure your Oracle Java™ plug-in is configured properly on your system.

a. Open your Windows® Control Panel.

b. Double-click the Java Plug-in icon to open the Java™ Plug-in Control Panel.

If you have more than one plug-in listed, use the one that is version 1.4 or later.

c. In the Java™ Plug-in Control Panel, click the Browser tab.

d. Select Firefox and Microsoft® Internet Explorer.

e. Click Apply.

f. Close the Java™ Plug-in Control Panel.

g. Close the Windows® Control Panel.

2. Re-enable all your Java™ environments in HCL OneTest™ UI.

a. Disable any currently enabled environments. In HCL OneTest™ UI, click Configure > Enable

Environments for Testing to open the Enable Environments dialog box (the enabler). Click the Java

Environments tab on page 1506.

b. Click the Select All button beneath the Java™ Environments list to select all current Java™

environments.

c. Click Disable to disable them.

d. Click Search. The Search for Java™ Environments dialog box opens. Select one of the following search

mechanisms.

Quick Search can only be used on Windows® systems. It searches the Windows® registry for the

Java™ environments, and is quicker than searching your hard disk drive(s).

Search All Drives scans all of your hard disk drives or partitions to locate all the Java™ environments

on your system.

Note: You should not use the Search All Drives option to find JREs on Linux® or UNIX®

systems. Instead use the Search in option and browse for the JRE.

Select Search in to browse to a specific disk drive or root directory to search.

Chapter 7. Test Author Guide

e. After choosing one of the search mechanisms, click the Search button.

f. Select the environments you want to enable by clicking on them in the Java Environments list. Click

the Select All button beneath the list to enable all of them.

g. Click Enable.

h. If you want to change the default JRE, select your preferred default, and click the Set as Default

button.

Note: You can test that your browser plug-in is enabled properly by clicking the Test button in the Web

Browsers tab of the enabler. This opens the Browser Enablement Diagnostic Tool on page 606. If

you suspect your browser is not enabled properly, run the diagnostic tool and follow the instructions it

gives to solve the problem.

Adding references to external resources
Functional test scripts or projects may refer to or use external resources like the DLLs in .Net IDE or JAR files in

Eclipse IDE. To enable the scripts or projects to use these files, you must add references to these files in HCL

OneTest™ UI.

Adding references to functional test Java project

1. Copy the JAR files in the Functional Test customization folder. By default, the folder is available at C:

\ProgramData\HCL\OneTestUI\customization in Windows and at /etc/opt/HCL/OneTestUI/

customization in Linux.

2. Verify whether the copied JAR files are referred by the functional test project.

◦ Open HCL OneTest™ UI, right-click the functional test project and click Properties.

◦ In the Properties page, click Java Build Path. In the Libraries page, verify whether the added JAR file is

listed in the OneTest UI Customization Libraries.

◦ If the OneTest UI Customization Libraries is not displayed, right-click the functional test project and

click Reset Java Build Path.

Proxy settings for freeform DataWindow PowerBuilder controls
In HCL OneTest™ UI, from version 8.2.1 onwards, new proxies are available for recording and playback on freeform

DataWindow PowerBuilder controls in functional test scripts. By default, in a HCL OneTest™ UI 8.2.1 installation,

scripts that you recorded using the old proxies can be played back normally but any new scripts that you record will

use these new proxies.

Depending on your requirement, you can revert to using the pre-8.2.1 proxies for all scripts or use the new proxies

for the scripts. The usage of proxies for recording and playback on freeform DataWindow Powerbuilder controls in

functional test scripts are controlled by these flags in the ivory.properties file:

609

HCL OneTest™ UI

610

• rational.test.ft.pb.datawindow.freeform.usenewproxyonly

• rational.test.ft.pb.datawindow.freeform.usehybridproxy

Table 10. Flag settings for controlling proxies

Flag in the ivory.properties file

Default set

ting in HCL

OneTest™ UI 8.2.1

Setting to use only

the pre-8.2.1 proxies

Setting to use on

ly the new proxies

rational.test.ft.pb.datawindow

.freeform.usenewproxyonly

FALSE FALSE TRUE

rational.test.ft.pb.datawindow

.freeform.usehybridproxy

TRUE FALSE Setting ignored

The default setting for the two flags in a HCL OneTest™ UI 8.2.1 installation is shown in the first column of the table.

On playing back a script, the GetChildren function looks for the accessibility object references and the new proxies

added in version 8.2.1. By default, the new proxies are used only when you record a new script.

To revert to using only the pre-8.2.1 proxies, set the

rational.test.ft.pb.datawindow.freeform.usehybridproxy flag in the ivory.properties file to

FALSE. Recording and playback are reverted to using the pre-8.2.1 proxies. This setting is shown in the second

column of the table.

To use only the new proxies that were added in version 8.2.1, set the

rational.test.ft.pb.datawindow.freeform.usenewproxyonly flag in the

ivory.properties file to TRUE. This setting is shown in the third column of the table. It ignores the

rational.test.ft.pb.datawindow.freeform.usehybridproxy flag setting, and uses only the new proxies

for recording and playback. This setting is useful if you do not need to play back any existing scripts and if you are

recording only new scripts. It is also the setting which ensures the most optimal playback performance.

Note: The new proxy settings apply only to standard Win32 targets that are deployed by using PowerBuilder.

Setting up the environment for testing AJAX-based web applications
You can test AJAX-based applications in two different ways; by setting the Auto Trace option to true or by setting the

Auto Trace option to false. If you set the Auto Trace option to false, you must use the HCL OneTest™ UI APIs for AJAX

in the script by manually inserting them.

Setting the Auto Trace option to true

About this task

To test AJAX-based applications with the Auto Trace option set to true:

Chapter 7. Test Author Guide

1. Open the ivory.properties file available at: <HCL OneTest™ UI installation directory>\Functional Tester\bin\.

2. Set the rational.test.ft.html.ajax.autotrace option to true.

For example: rational.test.ft.html.ajax.autotrace = true

Setting the Auto Trace option to false

About this task

To test AJAX-based applications with the Auto Trace option set to false:

1. Open the ivory.properties file available at: <HCL OneTest™ UI installation directory>\Functional Tester\bin\.

2. Set the rational.test.ft.html.ajax.autotrace option to false.

For example: rational.test.ft.html.ajax.autotrace = false

3. In the recorded script, insert the setAjaxTrace(true) method for the required Document control to trace the

AJAX requests. For example, document_htmlDocument().setAjaxTrace(true)

4. Use the GetAjaxPendingRequests (), WaitForAjaxPendingRequests (int), GetAjaxCompletedRequests (), or

WaitForAjaxCompletedRequests () methods explicitly in the script to trace the AJAX requests.

What to do next

Note: During playback, if any action invokes an AJAX request, the subsequent action is performed only after

the request is completed. If the AJAX request completion time is more than the script playback timeout value,

use the waitforExistence() method for the Document control.

Enabling AJAX support for a pre-existing script
The HTML Document control is mapped to GuiTestObject in HCL OneTest™ UI versions prior to 7.0.0.2. The

GuiTestObject does not contain any AJAX-related APIs. To use the AJAX-related APIs, the HTML Document control

must be mapped to DocumentTestObject.

1. Open the functional test script that needs to be modified for enabling the AJAX support.

2. Click Script > Open Test Object Map. Select the Document control from the list and click Administrative tab.

3. Replace the Test Object Class Name value from GuiTestObject to DocumentTestObject. Save and close the

Test Object Map.

4. Click Script > Update Script Helper

Result

Note: By default, the HTML Document control is mapped to DocumentTestObject for enabling AJAX

support. You can disable AJAX support and map the HTML Document control to GuiTestObject by

setting the rational.test.ft.html.use.documenttestobject = false in the ivory.properties file.

Enabling SAP client and server
To use HCL OneTest™ UI to test SAP applications, you must enable the SAP client and SAP server.

611

HCL OneTest™ UI

612

Enabling SAP GUI scripting for Windows
To use HCL OneTest™ UI to test SAP GUI for Windows applications, enable the SAP GUI scripting using the SAP GUI

enabler. The SAPgui tab option is not available on Linux.

Before you begin

Ensure that you have administrator privileges to use the SAP GUI enabler.

1. Open HCL OneTest™ UI and click Configure > Enable Environments for Testing.

2. Click the SAPgui tab.

Note:

◦ If you do not have the supported version of SAP GUI client in the Windows operating system,

the SAPgui tab is disabled.

◦ The SAPgui tab is not available on Linux.

3. Click Enable. The enabled state is displayed in the State field.

4. Click Test to verify that the SAP GUI client scripting is enabled. A message that the scripting is successfully

enabled for SAP GUI is displayed.

5. Click OK and then click Finish .

Enabling SAP scripting in SAP GUI: Alternatively, you can enable the SAP scripting in the SAP GUI

application.

a. Start the SAP Logon and log in to the SAP server.

b. Click Customize Local Layout > Options

c. In the Options window, select the Scripting tab.

d. Select the Enable scripting check box.

e. Clear the Notify When a Script Attaches to a Running GUI check box and the Notify When a

Script Opens a Connection check box.

f. Save the settings and restart the SAP GUI.

What to do next

You must enable the SAP server for testing.

Enabling the SAP server
After you enable the SAP GUI client, enable the SAP server for testing by setting up scripting temporarily from the SAP

client.

About this task

The value that you set with this procedure is lost when the server is restarted.

Chapter 7. Test Author Guide

Note: If the server administrator edits the application server profile of the SAP system to include sapgui/

user_scripting = TRUE, scripting is enabled by default when the server is restarted.

To enable the SAP server for enabling the scripting:

1. Start the SAP Logon and log in to the SAP server.

2. Start a RZ11 transaction.

3. Type sapgui/user_scripting in the Maintain Profile Parameters window.

4. Click Display.

5. Click Change value in the Display Profile Parameter Attributes window.

6. Type TRUE in the New value field.

7. Save the settings and log off from the SAP GUI.

8. Exit the SAP Logon program.

Tip: In SAP you can change the network connection mode to any server. The two connection modes

are: High Speed Connection (LAN) and Low Speed Connection (Reduced Network Traffic). Although,

functional testing works in both the modes, a script recorded using High Speed Connection plays back

only in that mode. This is also true for the Low Speed Connection mode. You must play back your SAP

script in the same network connection mode at which you recorded. High Speed Connection mode

provides the best results, because it provides the most valid recognition properties.

Note: The SAP server scripting setting is temporary. If the SAP server is restarted, you must again

enable the SAP server for testing.

What to do next

You can now create a functional test project and start recording scripts to test the application.

Enabling SAP GUI for HTML applications for functional testing
Objects in SAP GUI for HTML applications contain many dynamically-changing properties, for example .url, .href,

and .id. While playing back functional test scripts against these applications, the value of one or more object

recognition properties may change causing a high ScriptAssure score that results in script failure. HCL OneTest™ UI

provides a mechanism to convert the recognition property value to a regular expression for those values that change

dynamically. Finding each object's dynamic recognition property and converting it into a regular expression becomes

cumbersome while testing SAP GUI for HTML applications.

Perform the following tasks to make it easier for testing SAP GUI for HTML applications:

1. Create a backup of the CustomObjectRecProp.rftop file available in the customization folder.

The folder is available at C:\ProgramData\HCL\HOTUI\customization in Windows and at /etc/opt/

HCL/HOTUI/customization in Linux.

613

HCL OneTest™ UI

614

2. Rename the CustomObjectRecProp_MySAP.rftop file to CustomObjectRecProp.rftop in the customization

folder.

3. Modify the ScriptAssure values to reduce the number of warnings and errors thrown during script playback.

a. Open the Preferences window in HCL OneTest™ UI. Click Windows > Preferences in the Eclipse IDE

and Tools > Options in the Visual Studio IDE.

b. Expand Functional Test, and expand Playback. Click Script Assure (TM) option and click Advanced.

c. Set the Last chance recognition score to 30000 and Warn if accepted score is greater than to 20000

Notes:

◦ If script execution still fails due to dynamically-changing recognition property values, use

the regular expression mechanism to fix the issue. For more information, see the Regular

expression topic.

◦ To test any other applications other than SAP GUI for HTML applications, use the backup copy

of CustomObjectRecProp.rftop and use the default ScriptAssure values. For more information,

see Using Script Assure topic

Enabling applications with WebDynPro controls for functional testing
When you playback functional test scripts to test HTML applications with WebDynPro controls, you may get object

not found exception or a weak recognition warning even if the control exists.

Perform the following tasks to make it easier for testing HTML applications with WebDynPro controls:

1. Close HCL OneTest™ UI and open the ivory.properties file located at <product installation

directory>\HCLOneTest\FunctionalTester\bin.

2. Set rational.test.ft.html.enabledynamicallyignoreidorname=true.

3. Save and close the file.

Enabling SAP support for pre-existing HCL OneTest™ UI projects
To use the SAP support for a project that was created using the releases of HCL OneTest™ UI version 6, you must

add two new templates (one for script headers and one for script helper headers) to the project. You will also need to

update the build or reference information for the project.

1. In the Functional Test Projects view, right-click the project and select the Properties option.

2. In the Properties dialog box, select Functional Test Script Templates from the navigation list.

3. Select the template type Script Helper: Header of the file.

4. If you have not customized this template, you can upgrade it by clicking the Restore Defaults button.

5. Add the line import com.rational.test.ft.object.interfaces.SAP.*; in the import section of the template.

6. After modifying the template, click the Apply button.

7. Select the template type Script: Header of the file and add the same line in the import section of the template.

Chapter 7. Test Author Guide

8. Finally, right-click the project again in the Functional Test Projects view and click Reset Java Build Path.

Each member of your team must perform this last step, as the Java Build Path is local to each project on each

machine.

Enabling the GEF application
You must enable the GEF support before using HCL OneTest™ UI to test GEF objects on the application under test.

About this task

To enable the GEF application:

1. Click Configure > Enable Environments for Testing.

2. Click the Eclipse Platforms tab.

3. Search for the Eclipse platform.

Result

The search results are listed in the left pane under Eclipse platforms.

4. Select the Eclipse platform that you want to enable.

5. Select the GEF Support check box.

Note: If you have enabled an Eclipse platform without GEF support and want to enable support for

GEF:

a. Select the Eclipse platform and click Disable.

b. Select the GEF support check box.

c. Click Enable.

Result

The GEF enablement plugin is copied to the plugin directory of the AUT.

6. Click Finish.

Enabling response time breakdown
You can enable response time breakdown to see how much time is spent in each part of the application as the test

runs. To collect response time breakdown, the data collection infrastructure must be installed and running on all

computers that are used in the distributed application under test.

About this task

To enable response time breakdown:

1. From the product menu, click Window > Preferences.

2. Expand Functional Test > Playback.

3. Click Response Time Breakdown in the left pane.

4. Select Enable Response Time Breakdown check box.

5. Click OK.

615

HCL OneTest™ UI

616

Enabling Response time breakdown during playback
You can enable the response time breakdown during playing back the script.

About this task

To enable response time breakdown during playback:

1. Run the script.

Result

The Select Log window is displayed.

2. Type the log name for your script and click Next.

Result

The Specify Playback Options window is displayed.

3. Select Enable Response Time Breakdown check box.

4. Click Finish.

Flex applications testing process
The testing process is based on the tasks that Flex developers and testers perform. The process for automating

functional tests of Flex applications differs, depending on the way developers create the application under test.

Automated testing of Flex applications requires you to load supporting files. These supporting files can be loaded in

two different stages:

• At compile time for applications that are enabled for functional testing

• At run time for applications that are not enabled for functional testing

Prerequisites

To test Flex applications, be sure the following software is installed:

Development environment

• Adobe Flex SDK and Adobe Flex automation framework

• Adobe Flex Builder

Test environment

• One of the following browsers:

◦ Google Chrome

◦ Microsoft Internet Explorer

◦ Mozilla Firefox

• Adobe Flash Player ActiveX control

Chapter 7. Test Author Guide

Assumptions

The following assumptions apply for the testing of Flex applications:

• Testers are not skilled in developing Flex applications.

• Testers cannot access Flex source code, the Flex compiler, or Flex documentation.

• Flex developers do not know how to use HCL OneTest™ UI.

Testing Flex applications

The tasks that you perform in testing Flex applications depend on the application and whether you are a developer or

a tester.

You can test applications that are enabled for HCL OneTest™ UI or test applications that are not enabled for HCL

OneTest™ UI.

Testing HCL OneTest™ UI enabled Flex applications

Developers can enable the Flex applications for testing by compiling the Flex application with HCL OneTest™ UI

agent (rft.swc for Flex 2.0, rftFlex3.0.swc and rftProp_Flex3.0.swc for Flex 3.0, Flex 3.2, Flex 3.3, Flex 3.4 or Flex

3.5, rftFlex4.0.swc and rftProp_Flex4.0.swc for Flex 4.0 or Flex 4.1) and Flex automation framework libraries. After

compilation, the developer must create an HTML wrapper that embeds the enabled Flex application and provide the

application on a web server or on a local test computer for testing.

Advantages and limitations of testing HCL OneTest™ UI enabled Flex applications

Three advantages encourage enabling Flex applications for functional testing:

• Efficiency: Multiple enabled Flex applications can be embedded in a single HTML page and can be tested

simultaneously.

• Ease: Testing is simplified when different Flex applications communicate with each other. All the related

enabled Flex applications can be embedded in a single page and can be tested based on a single scenario.

• Location: Enabled Flex applications can be tested locally.

One limitation in testing enabled Flex applications is that only the developer can enable the Flex application for

testing.

Testing nonenabled Flex applications

Developers can enable the runtime loader component for Flex applications and deploy the application on a web server

for testing.

Advantages and limitations of testing non-enabled Flex applications

The advantages of testing Flex applications that are not enabled for functional testing:

617

HCL OneTest™ UI

618

• Ease: Testers benefit because many technical complexities are hidden.

• Efficiency: Load and test multiple SWF files.

Review the following limitations regarding nonenabled Flex applications:

• Deployment option: The Flex application can be deployed in a test or production environment.

• Location: The runtime loader cannot be run locally; you must deploy the runtime loader to a web server.

Setting up the development environment for Flex applications
The developer must set up the development environment before enabling the Flex application for testing with HCL

OneTest™ UI.

About this task

To set up the development environment for Flex 2.0, follow these steps:

Note:

• The automation framework is a part of Flex Builder for Flex versions 3.0, 3.2, 4.0, 4.1 and 4.5, and

therefore the following steps are not required these versions. However, Flex 3.3, 3.4, and 3.5 do not

have the automation libraries bundled. For these versions, use the automation libraries of Flex 3.2.

Copy the _rb.swc files from Flex 3.2 locale directory to the locale directory of Flex 3.3, 3.4, and 3.5

SDK.

• For data visualization in Flex versions 3.3, 3.4, 3.5, 4.0, 4.1 and 4.5, make sure that you also include the

datavisualization.swc file for these versions that is available on the Adobe site.

• For Spark controls in Flex versions 4.0, 4.1 and 4.5, make sure that you also include the

automation_spark.swc file for these versions that is available on the Adobe site.

1. Copy the automation_agent.swc file from the flex automation installation directory/flex automation /

frameworks/libs directory to the flex builder installation/Flex SDK/frameworks/libs directory.

2. Copy the automation_agent_rb.swc file from the flex automation installation directory/frameworks/locale/

en_US directory to the flex builder installation/Flex SDK/frameworks/locale/en_US folder.

Important: This step shows the path for US English. When using a different locale, replace en_US with

the correct locale.

Setting up the test environment for testing Flex applications
A correct environment setup for testing Flex applications helps ensure reliable functional testing results. The test

environment is typically set up by the testers on the test computer.

Before you begin

Chapter 7. Test Author Guide

Note: Ensure that the msvcp71.dll is available in the System32 directory (C:\Windows\System32) or

SysWow64 directory (C:\Windows\SysWOW64).

About this task

To set up the test environment:

1. Check the settings of the browser:

a. Internet Explorer:

i. Open Internet Explorer.

ii. Click Tools > Internet Options.

iii. Click the Security tab.

iv. Select the appropriate web content zone. Do one of the following steps:

▪ If the web server is configured on a remote machine, complete these steps:

1. Select Local Intranet.

2. Click Sites > Advanced .

3. In the Add this Web site to the zone field, type the URL to add to the web server.

4. Click Add, and then click OK.

▪ If the web server is configured on local host, complete these steps:

1. Select Local Intranet.

2. Click Custom Level.

3. In the Reset to list, select Medium-low.

4. In the Settings pane, click Enable for Initialize and script ActiveX controls not

marked as safe.

5. Click OK.

b. Firefox:

i. Click Tools > Options > Content.

ii. Clear the Block pop-up windows check box.

iii. Click Tools > Options > Security.

iv. Clear the Warn me when sites try to install add-ons check box.

2. Open HCL OneTest™ UI, and click Configure > Enable Environments for Testing. You must enable the required

JRE and set Internet Explorer as the default web browser.

3. Enable the required browser on the Web Browsers page.

4. Make the application under test trusted to run the application locally. Paths to individual files or directories

can be trusted, rendering all the files in each selected directory and any of its subdirectories trusted. Follow

these steps to assign trust designations:

a. Create a folder FlashPlayerTrust in C:\WINDOWS\system32\Macromed\Flash.

b. Create a file named Flex without any file extension in the FlashPlayerTrust folder.

619

HCL OneTest™ UI

620

c. Type the directory path of the Flex application in the Flex file. For example, if the Flex application is in

C:\Test directory, type the path in the Flex file as C:\Test.

d. Save the file.

Note: If you are testing a Flex 4.0, 4.1 or 4.5 application, ensure to specify security settings in Flash

Player.

Security Settings for Adobe Flex 4.0, 4.1 and 4.5

About this task

Specify security settings only if you are testing a Flex 4.0, 4.1 or 4.5 application. For Flex 3.x applications, this task

need not be performed.

1. Open an application in Flash Player.

2. Right-click and select Settings to access Settings Manager.

3. Select the Privacy tab.

4. Click Advanced.

Result

Adobe Flash Player launches a new browser window and loads the Settings Manager help page.

5. Click Global Security Settings panel link.

Result

The Global Security Settings window opens.

6. Add your application directory into secured or trusted directory. In the Always trust files in these locations

drop down menu, click Add location. Browse for the location.

Note: For more information about setting the security configuration, see the Adobe® website.

Testing HCL OneTest™ UI enabled Flex applications
Developers can enable the Flex applications for testing by building the Flex application with HCL OneTest™ UI agent

and Flex automation framework libraries. After compilation, the developer must create an HTML wrapper that embeds

the enabled Flex application and provide the application on a web server or on a local test computer for testing.

To test Flex applications :

1. A developer must perform these tasks:

a. Set up the development environment.

b. Compile the Flex application with the HCL OneTest™ UI agent and Flex automation framework libraries.

You can use either the Flex user interface or any of the following tools to enable the Flex application:

▪ Flex Builder

▪ Command-line compiler

Chapter 7. Test Author Guide

c. Create an HTML wrapper that embeds the enabled Flex application (.swf file) using an <object> and

<embed> tags.

d. Deploy the enabled Flex application for testing to a web server or provide the files for testing locally.

2. A tester must perform the following tasks:

a. Set up the test environment.

b. Obtain the enabled .swf file and HTML wrapper from the developer.

c. Deploy the application to a web server or run the Flex application on a local test computer.

d. Start HCL OneTest™ UI to test the HTML application that contains the embedded Flex application.

Configuring Flex applications
You can configure the Flex application with the HCL OneTest™ UI agent and Flex automation framework libraries.

About this task

You can use either the HCL OneTest™ UI Flex user interface or one of the following tools to enable the Flex

application:

• Flex Builder

• Command-line compiler

 Configuring Flex application using the user interface
You can configure the Flex application for functional testing using the user interface.

Configuring a Web application at compile time
You can configure the Web application during compile time using the UI.

About this task

To configure the web application during compile-time:

1. Click Configure > Configure Applications for Testing.

2. Click Add in the Application Configuration Tool window.

3. Select Flex Application, and click Next.

4. Select Configure Flex application setup, and click Next.

5. Select the Web application as the type of Flex application.

6. Select Compile-time from the Enablement type list.

7. Select the Flex version from Flex SDKs list.

8. Click Browse to select the application that has a .as or .mxml extension in the Application field.

9. Select the Dependency Files and Additional Libraries check box, if required, and click Add to select

dependency and library files.

10. Click Browse to select a location for the SWF Target Location field.

11. Select the Generate HTML Page check box, if required.

12. Type the application URL in the Specify Web Application URL field, and click Finish.

621

HCL OneTest™ UI

622

Configuring a local application at compile time
You can set up your Flex application locally only during compile time.

About this task

To configure the local application during compile time:

1. In the Flex Application configuration window, select Local application as the type of Flex. The Enablement

type is set to Compile-time by default.

2. Select the Flex version from the Flex SDKs list.

3. Click Browse to select the application that has an .as or .mxml extension in the Application field.

4. Select the Dependency Files and Additional Libraries check box, if required, and click Add to select

dependency and library files.

5. Click Browse to select a location for the SWF Target Location field.

6. Select the Generate HTML Page check box, if required.

7. Click Finish.

Configuring Flex application using tools
You can configure your Flex application for functional testing using the tools like command-line compiler and Flex

Builder.

Using the command-line compiler to enable Flex applications
Developers can compile a Flex application with the HCL OneTest™ UI agent and Flex Automation Libraries from a

command line and enable the application for functional testing.

About this task

Compile the Flex application using the HCL OneTest™ UI agent and Flex Automation Libraries by running the following

command.

To compile and enable a Flex 2.0 application for functional testing:

At the command line, type the following, and press Enter:

"flex builder installation directory\Flex SDK 2\bin\mxmlc" -include-libraries+="flex builder installation directory\Flex SDK
 2\frameworks\libs\automation.swc;flex builder installation directory\frameworks\libs\automation_agent.swc;flex

 builder installation directory\Flex SDK 2\frameworks\libs\automation_charts.swc;functional

 tester installation directory\FunctionalTester\bin\rft.swc;functional tester installation

 directory\FunctionalTester\bin\rftProp.swc" Test.mxml

To compile and enable a Flex 3.0 application for functional testing:

At a command line, type the following command, and press Enter. In the command, Test.mxml is the name of

your .mxml file.

"flex builder installation directory\Flex Builder 3\sdks\3.0.0\bin\mxmlc.exe"-include-libraries+="flex builder

 installation directory\Flex Builder 3\sdks\3.0.0\frameworks\libs\automation.swc;flex builder installation directory\Flex
 Builder 3\sdks\3.0.0\frameworks\libs\automation_agent.swc;flex builder installation directory\Flex Builder

Chapter 7. Test Author Guide

 3\sdks\3.0.0\frameworks\libs\automation_dmv.swc;flex builder installation directory\rftFlex3.0.swc;functional tester

 installation directory\rftProp_Flex3.0.swc" Test.mxml

To compile and enable a Flex 3.2 application for functional testing:

At a command line, type the following command, and press Enter:

"flex builder installation directory\Flex Builder 3\sdks\3.2.0\bin\mxmlc.exe"-include-libraries+="flex builder

 installation directory\Flex Builder 3\sdks\3.2.0\frameworks\libs\automation.swc;flex builder installation directory\Flex
 Builder 3\sdks\3.2.0\frameworks\libs\automation_agent.swc;flex builder installation directory\Flex Builder
 3\sdks\3.2.0\frameworks\libs\automation_dmv.swc;flex builder installation directory\rftFlex3.0.swc;functional tester

 installation directory\rftProp_Flex3.0.swc" Test.mxml

To compile and enable a Flex 3.3 application for functional testing:

At a command line, type the following command, and press Enter:

"flex builder installation directory\Flex Builder 3\sdks\3.3.0\bin\mxmlc.exe"-include-libraries+="flex builder

 installation directory\Flex Builder 3\sdks\3.3.0\frameworks\libs\automation.swc;flex builder installation directory\Flex
 Builder 3\sdks\3.3.0\frameworks\libs\automation_agent.swc;flex builder installation directory\Flex Builder
 3\sdks\3.3.0\frameworks\libs\datavisualization.swc;flex builder installation directory\rftFlex3.0.swc;functional tester

 installation directory\rftProp_Flex3.0.swc" Test.mxml

Note: The above command has Flex 3.3 SDK deployed at flex builder installation directory\Flex Builder 3\sdks

\ with directory as 3.3.0.

To compile and enable a Flex 3.4 application for functional testing:

At a command line, type the following command, and press Enter:

"flex builder installation directory\Flex Builder 3\sdks\3.4.0\bin\mxmlc.exe"-include-libraries+="flex builder

 installation directory\Flex Builder 3\sdks\3.4.0\frameworks\libs\automation.swc;flex builder installation directory\Flex
 Builder 3\sdks\3.4.0\frameworks\libs\automation_agent.swc;flex builder installation directory\Flex Builder
 3\sdks\3.4.0\frameworks\libs\datavisualization.swc;flex builder installation directory\rftFlex3.0.swc;functional tester

 installation directory\rftProp_Flex3.0.swc" Test.mxml

Note: The above command has Flex 3.4 SDK deployed at flex builder installation directory\Flex Builder 3\sdks

\ with directory as 3.4.0.

To compile and enable a Flex 3.5 application for functional testing:

At a command line, type the following command, and press Enter:

"flex builder installation directory\Flex Builder 3\sdks\3.5.0\bin\mxmlc.exe"-include-libraries+="flex builder

 installation directory\Flex Builder 3\sdks\3.5.0\frameworks\libs\automation.swc;flex builder installation directory\Flex
 Builder 3\sdks\3.5.0\frameworks\libs\automation_agent.swc;flex builder installation directory\Flex Builder
 3\sdks\3.5.0\frameworks\libs\datavisualization.swc;flex builder installation directory\rftFlex3.0.swc;functional tester

 installation directory\rftProp_Flex3.0.swc" Test.mxml

623

HCL OneTest™ UI

624

Note: The above command has Flex 3.5 SDK deployed at flex builder installation directory\Flex Builder 3\sdks

\ with directory as 3.5.0.

To compile and enable a Flex 4.0 application for functional testing:

At a command line, type the following command, and press Enter:

"flash builder installation directory\Flash Builder 4\sdks\4.0.0\bin\mxmlc.exe"-include-libraries+="flash

 builder installation directory\Flash Builder 4\sdks\4.0.0\frameworks\libs\automation.swc;flash builder installation

 directory\Flash Builder 4\sdks\4.0.0\frameworks\libs\automation_agent.swc;flash builder installation directory\Flash
 Builder 4\sdks\4.0.0\frameworks\libs\datavisualization.swc;flash builder installation directory\Flash Builder
 4\sdks\4.0.0\frameworks\libs\automation_spark.swc;flash builder installation directory\rftFlex4.0.swc;functional tester

 installation directory\rftProp_Flex4.0.swc" Test.mxml

Note:

• The above command has Flex 4.0 SDK deployed at flash builder installation directory\Flash Builder

4\sdks\ with directory as 4.0.0.

• The automation_spark.swc file has been included for Spark controls.

To compile and enable a Flex 4.1 application for functional testing:

At a command line, type the following command, and press Enter:

"flash builder installation directory\Flash Builder 4\sdks\4.1.0\bin\mxmlc.exe"-include-libraries+="flash

 builder installation directory\Flash Builder 4\sdks\4.1.0\frameworks\libs\automation.swc;flash builder installation

 directory\Flash Builder 4\sdks\4.1.0\frameworks\libs\automation_agent.swc;flash builder installation directory\Flash
 Builder 4\sdks\4.1.0\frameworks\libs\datavisualization.swc;flash builder installation directory\Flash Builder
 4\sdks\4.0.0\frameworks\libs\automation_spark.swc;flash builder installation directory\rftFlex4.0.swc;functional tester

 installation directory\rftProp_Flex4.0.swc" Test.mxml

Note:

• The above command has Flex 4.1 SDK deployed at flash builder installation directory\Flash Builder

4\sdks\ with directory as 4.1.0.

• The automation_spark.swc file has been included for Spark controls.

To compile and enable a Flex 4.5 application for functional testing:

At a command line, type the following command, and press Enter:

"flash builder installation directory\Flash Builder 4\sdks\4.5.0\bin\mxmlc.exe"-include-libraries+="flash

 builder installation directory\Flash Builder 4\sdks\4.5.0\frameworks\libs\automation.swc;flash builder installation

 directory\Flash Builder 4\sdks\4.5.0\frameworks\libs\automation_agent.swc;flash builder installation directory\Flash
 Builder 4\sdks\4.5.0\frameworks\libs\datavisualization.swc;flash builder installation directory\Flash Builder
 4\sdks\4.0.0\frameworks\libs\automation_spark.swc;flash builder installation directory\rftFlex4.0.swc;functional tester

 installation directory\rftProp_Flex4.0.swc" Test.mxml

Chapter 7. Test Author Guide

Note:

• The above command has Flex 4.5 SDK deployed at flash builder installation directory\Flash Builder

4\sdks\ with directory as 4.5.0.

• The automation_spark.swc file has been included for Spark controls.

Note: The datavisualization.swc component is separately available at the Adobe site.

The default Flex Builder installation directory on Windows is C:\Program Files\Adobe.

This command is also available as a batch file with HCL OneTest™ UI installed. Testers can provide this batch file

to the developer to enable the Flex application for testing. Provide the flex application source code filename as the

parameter to the batch file.

The batch file is available in product installation directory\Functional Tester\Flex folder.

Exemple

For example, if your .mxml file is Test.mxml, the command to run the batch file is as follows:

For Flex 2.0:

buildapplicationwithadaptor.bat Test.mxml

For Flex 3.0:

buildapplicationwithFlex3adaptor.bat Test.mxml

For Flex 3.2:

buildapplicationwithFlex32adaptor.bat Test.mxml

Using Flex Builder to enable Flex applications
Developers can use the Flex Builder to make Flex applications ready for functional testing.

About this task

Flex Builder is useful for developers who want to develop Flex applications (.swf files) that are ready for functional

testing. To set up Flex Builder to support Flex automation and functional testing:

1. Start Flex Builder.

2. Create a new Flex project.

3. Select the Flex project in the navigator.

4. Click Select Project > Properties > Flex Compiler.

5. Type the following argument in the Additional compiler arguments field:

For Flex 2.0:

625

HCL OneTest™ UI

626

-include-libraries flex builder installation directory\Flex SDK 2\frameworks\libs\automation.swc�? flex

 builder installation directory\Flex SDK\frameworks\libs\automation_agent.swc�? flex builder installation

 directory\Flex SDK\frameworks\libs\automation_charts.swc functional tester installation directory\Functional
 Tester\bin\rft.swc�? functional tester installation directory\Functional Tester\bin\rftProp.swc�?

Note: In Flex 2.0, the automation_charts.swc file is required only if your application contains charting

controls. The include-libraries compiler option is relative to the Flex Builder installation directory. The

default Windows location is C:\Program Files\Adobe\Flex Builder.

For Flex 3.0:

-include-libraries flex builder installation directory\Flex Builder
 3\sdks\3.0.0\frameworks\libs\automation.swc�? flex builder installation directory\Flex Builder
 3\sdks\3.0.0\frameworks\libs\automation_agent.swc�? flex builder installation directory\Flex
 Builder 3\sdks\3.0.0\frameworks\libs\automation_dmv.swc functional tester installation

 directory\rftFlex3.0.swc functional tester installation directory\rftProp_Flex3.0.swc

For Flex 3.2:

-include-libraries flex builder installation directory\Flex Builder
 3\sdks\3.2.0\frameworks\libs\automation.swc�? flex builder installation directory\Flex Builder
 3\sdks\3.2.0\frameworks\libs\automation_agent.swc�? flex builder installation directory\Flex
 Builder 3\sdks\3.2.0\frameworks\libs\automation_dmv.swc functional tester installation

 directory\rftFlex3.0.swc functional tester installation directory\rftProp_Flex3.0.swc

For Flex 3.3:

-include-libraries flex builder installation directory\Flex Builder
 3\sdks\3.3.0\frameworks\libs\automation.swc�? flex builder installation directory\Flex Builder
 3\sdks\3.3.0\frameworks\libs\automation_agent.swc�? flex builder installation directory\Flex
 Builder 3\sdks\3.3.0\frameworks\libs\automation_dmv.swc functional tester installation

 directory\rftFlex3.0.swc functional tester installation directory\rftProp_Flex3.0.swc

For Flex 3.4:

-include-libraries flex builder installation directory\Flex Builder
 3\sdks\3.4.0\frameworks\libs\automation.swc�? flex builder installation directory\Flex Builder
 3\sdks\3.4.0\frameworks\libs\automation_agent.swc�? flex builder installation directory\Flex
 Builder 3\sdks\3.4.0\frameworks\libs\datavisualization.swc functional tester installation

 directory\rftFlex3.0.swc functional tester installation directory\rftProp_Flex3.0.swc

For Flex 3.5:

-include-libraries flex builder installation directory\Flex Builder
 3\sdks\3.5.0\frameworks\libs\automation.swc�? flex builder installation directory\Flex Builder
 3\sdks\3.5.0\frameworks\libs\automation_agent.swc�? flex builder installation directory\Flex
 Builder 3\sdks\3.5.0\frameworks\libs\datavisualization.swc functional tester installation

 directory\rftFlex3.0.swc functional tester installation directory\rftProp_Flex3.0.swc

For Flex 4.0:

Chapter 7. Test Author Guide

Note: You can include the automation_spark.swc for Spark controls.

-include-libraries flash builder installation directory\Flash Builder
 4\sdks\4.0.0\frameworks\libs\automation.swc�? flash builder installation directory\Flash Builder
 4\sdks\4.0.0\frameworks\libs\automation_agent.swc�? flash builder installation directory\Flash
 Builder 4\sdks\4.0.0\frameworks\libs\datavisualization.swc�? flash builder installation directory\Flash
 Builder 4\sdks\4.0.0\frameworks\libs\automation_spark.swc functional tester installation

 directory\rftFlex4.0.swc functional tester installation directory\rftProp_Flex4.0.swc

For Flex 4.1:

Note: You can include the automation_spark.swc for Spark controls.

-include-libraries flash builder installation directory\Flash Builder
 4\sdks\4.1.0\frameworks\libs\automation.swc�? flash builder installation directory\Flash Builder
 4\sdks\4.1.0\frameworks\libs\automation_agent.swc�? flash builder installation directory\Flash
 Builder 4\sdks\4.1.0\frameworks\libs\datavisualization.swc�? flash builder installation directory\Flash
 Builder 4\sdks\4.1.0\frameworks\libs\automation_spark.swc functional tester installation

 directory\rftFlex4.0.swc functional tester installation directory\rftProp_Flex4.0.swc

Elements in italics are variables and depend on your directory structure.

6. Click OK to save your changes.

7. Click OK.

Result

The Properties dialog box closes.

8. Compile your Flex application.

Creating an HTML wrapper
The developer creates an HTML wrapper after compiling the Flex application with the HCL OneTest™ UI agent and

Flex automation testing libraries.

About this task

The wrapper embeds the .swf file in an HTML page by using the <object> and <embed> tags.

You can use the default HTML wrapper file that the compiler generates along with the Flex application or use the

HTML wrapper file in the functional testing application folder.

After creating the HTML wrapper, the developer passes the application and the HTML wrapper to the testers for

functional testing. Typically developers deploy the files to a web server that testers access.

The following example shows how the Flex application Test.swf is embedded in the HTML page:

Exemple

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
id="myapp" width="100%" height="100%"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab">
 <param name="movie" value="Test.swf" />

627

HCL OneTest™ UI

628

 <param name="quality" value="high" />
 <param name="bgcolor" value=#CCCCCC />
 <param name="allowScriptAccess" value="sameDomain" />
 <embed src="Test.swf" quality="high" bgcolor=#CCCCCC
 width="1000" height="500" name="myapp" align="middle"
 play="true"
 loop="false"
 quality="high"
 allowScriptAccess="sameDomain"
 type="application/x-shockwave-flash"
 pluginspage="http://www.macromedia.com/go/getflashplayer">
 </embed>
</object>

Providing enabled Flex applications for testing
Developers can deploy a Flex application that is enabled for HCL OneTest™ UI for testing on a web server or provide

the files for testing locally.

About this task

After enabling the Flex application for testing, perform either of these steps:

• Provide the .swf file and HTML wrapper to the testers so that they can test the Flex application on a local test

computer.

• Deploy the Flex application to a web server that testers can access, and request that the testers test the Flex

application from the provided URL.

Testing an enabled Flex application that is deployed on a web server
Testers can test a Flex application that is enabled for HCL OneTest™ UI and is deployed on a web server.

About this task

The developer deploys the Flex application to be tested on a web server and provides the URL to the testers. The

testers can also deploy the files, provided that the testers can access the web server and the application files.

To test a web-based Flex application that is enabled for HCL OneTest™ UI:

1. Ensure that the application is added in the Application Configuration tool, enable the required JRE, and set

your default web browser.

2. Obtain the enabled .swf file and HTML wrapper from the web server.

3. Open the HTML page in a browser.

4. Start HCL OneTest™ UI

5. Start testing the HTML file that contains the embedded Flex application.

Testing enabled Flex applications on a local test computer
Testers can test a Flex application that is embedded in an HTML wrapper on a local test computer.

Before you begin

Chapter 7. Test Author Guide

Before testing a Flex application locally, verify that the .swf file is trusted. Also ensure that you add the application in

the Application Configuration tool, enable the required JRE and set your default web browser.

About this task

To test locally the Flex application that is enabled for HCL OneTest™ UI:

1. Request the HTML wrapper from the file system.

2. Open the HTML page in the browser.

3. Start HCL OneTest™ UI.

4. Start testing the HTML application that contains the embedded Flex application.

Test Flex applications that are not enabled using HCL OneTest™ UI
Developers can enable the RuntimeLoading component for Flex applications and provide the application on a web

server for testing.

To test Flex applications :

1. A developer must perform the following tasks:

a. Set up the development environment.

b. Configure the RuntimeLoading application.

c. Deploy the RuntimeLoader files to a web server. Typically deploy the files to the root directory so that

this action is performed only once.

d. Deploy the Flex application to a web server.

e. Provide the complete URL of the RuntimeLoading testing page to the testers.

2. A tester must perform the following tasks:

a. Set up the test environment.

b. Open the RuntimeLoadingTest.html page in browser.

c. Type the relative path of the Flex application to be tested as a query parameter to the HTML page.

d. Use HCL OneTest™ UI to test the application.

Note: Testers can also deploy the necessary files such as RuntimeLoader and the .swf file to a web server,

provided that testers can access the server. Although developers might not be familiar with HCL OneTest™

UI, the developer needs the RuntimeLoader source file and the HCL OneTest™ UI agent (rft.swc) to enable and

deploy the Flex application. Testers need to provide these files to the developer.

Configuring the non-enabled Flex application
You can configure the Flex applications that are not compiled using theHCL OneTest™ UI agent and Flex automation

libraries.

About this task

629

HCL OneTest™ UI

630

The developer must first set up the development environment before enabling the Flex application for testing with

HCL OneTest™ UI by configuring the Runtime loader to generate the SWF file for the application to be tested.

After the SWF file is generated, the Flex application must be configured to create the URL that HCL OneTest™ UI must

use to test the SWF file.

1. To generate the SWF file for the Flex application, complete these steps:

Note: The following steps are for Flex 3.0 applications. Runtime loaders for other supported Flex

versions such as 2.0, 3.2, 3.3, 3.4, 3.5, 4.0, 4.1 and 4.5 can be configured similar to Flex 3.0 by

providing the appropriate SDK libraries and changing the output filenames accordingly. The runtime

loader files that are enabled corresponding to the SDK under use, must be embedded in the html page.

a. Compile the RuntimeLoader.mxml to swf file using the command: "C:\Program Files\Adobe

\Flex Builder 3\sdks\3.0.0\bin\mxmlc.exe" -include- libraries+="C:\Program Files\Adobe

\Flex Builder 3\sdks\3.0.0 \frameworks\libs\automation.swc;C:\Program Files\Adobe

\Flex Builder 3\sdks\3.0.0\frameworks\libs\automation_agent.swc;C:\Program Files\Adobe

\Flex Builder 3\sdks\3.0.0\frameworks\libs\automation_dmv.swc;%HOTUI_INSTALL_DIR%

\rftFlex3.0.swc;%HOOTUI_INSTALL_DIR%\rftProp_Flex3.0.swc" - output="C:\Program Files\HCL

\HCLOneTest\FunctionalTester\Flex\RuntimeLoaderFlex30.swf" "C:\Program Files\HCL\HCLOneTest

\FunctionalTester\Flex\RuntimeLoader.mxml".

Note: For Flex 4.0, 4.1 and 4.5, you can also include the automation_spark.swc file

for Spark controls: "C:\Program Files\Adobe\Flex Builder 4\sdks\4.0.0\bin\mxmlc.exe"

-include- libraries+="C:\Program Files\Adobe\Flex Builder 4\sdks\4.0.0 \frameworks

\libs\automation.swc;C:\Program Files\Adobe\Flex Builder 4\sdks\4.0.0\frameworks\libs

\automation_agent.swc;C:\Program Files\Adobe\Flex Builder 4\sdks\4.0.0\frameworks

\libs\automation_dmv.swc;C:\Program Files\Adobe\Flex Builder 4\sdks\4.0.0\frameworks

\libs\automation_spark.swc;%HOTUI_INSTALL_DIR%\rftFlex4.0.swc;%HOTUI_INSTALL_DIR

%\rftProp_Flex4.0.swc" - output="C:\Program Files\HCL\HCLOneTest\FunctionalTester

\Flex\RuntimeLoaderFlex30.swf" "C:\Program Files\HCL\HCLOneTest\FunctionalTester\Flex

\RuntimeLoader.mxml".

b. Open the RuntimeLoadingTestFlex30.html with notepad.

c. Replace the movie source in the object and embed tags with RuntimeLoaderFlex30.swf.

2. To create the URL that is to be used to test the SWF file, complete these steps:

a. Click Configure > Configure Applications for Testing.

b. Click Add in the Application Configuration Tool window.

c. Select Flex Application, and click Next.

d. Select Configure Flex application setup in Flex application configuration type, and Click Next.

e. Select Web Application as the type of Flex application.

Chapter 7. Test Author Guide

f. Select Runtime from the Enablement type list.

g. Select the Flex version from the Flex SDKs list.

h. Click Browse to select the SWF file of the application to be tested in the Application field.

i. Click Finish.

Deploying the Runtime loader components
You must deploy the Runtime loader components to test Flex applications that are not compiled using the HCL

OneTest™ UI agent and Flex automation framework libraries.

About this task

The following steps are for Flex 2.0 applications. Configuring and testing Flex 3.0, 3.2, 3.3, 3.4, 3.5, 4.0, 4.1 and 4.5

applications is similar to Flex 2.0 except that you use these files:

• RunTimeLoaderFlex30.swf and RuntimeLoadingTestFlex30.html for Flex 3.0

• RunTimeLoaderFlex32.swf and RuntimeLoadingTestFlex32.html for Flex 3.2

• RunTimeLoaderFlex33.swf and RuntimeLoadingTestFlex33.html for Flex 3.3

• RunTimeLoaderFlex34.swf and RuntimeLoadingTestFlex34.html for Flex 3.4

• RunTimeLoaderFlex35.swf and RuntimeLoadingTestFlex35.html for Flex 3.5

• RunTimeLoaderFlex40.swf and RuntimeLoadingTestFlex40.html for Flex 4.0

• RunTimeLoaderFlex41.swf and RuntimeLoadingTestFlex41.html for Flex 4.1

• RunTimeLoaderFlex45.swf and RuntimeLoadingTestFlex45.html for Flex 4.5

Note: Testers can also deploy the necessary files to a web server, provided that testers can access the server.

Although developers might not be familiar with HCL OneTest™ UI, the developer needs the Runtime loader

source file and the HCL OneTest™ UI agent to enable and deploy the Flex application. Testers need to provide

these files to the developer.

To deploy the Runtime loader components and enable testing of applications that are not compiled using HCL

OneTest™ UI agent and Flex automation framework libraries, perform the following steps:

1. Deploy the RuntimeLoadingTest.html and RuntimeLoader.swf files from the functional tester installation

directory\FunctionalTester\Flex directory to the web server.

2. Provide the URL of RuntimeLoadingTest.html page to the testers, for example, http://localhost/

RuntimeLoadingTest.html?automationswfurl=applicationtotest.swf, where applicationtotest.swf is the name

of the Flex application to be tested.

Testing nonenabled Flex applications
Testers can test a Flex application that is not enabled for functional testing and is deployed on a web server.

About this task

631

HCL OneTest™ UI

632

Developers deploy the application on a web server and provides the URL to the testers. Testers must perform the test

using the Runtime Loader component that is available with HCL OneTest™ UI.

Important: If you encounter problems while the Flex application is loading using the Runtime Loader test

page, check the security settings of Internet Explorer ActiveX and plug-ins.

Ensure that you add the application in the Application Configuration tool, enable the required JRE and set your default

web browser.

To test a nonenabled Flex application:

1. Copy the compiled RunTimeLoader.swf and the RuntimeLoadingTest.html to the folder that contains the Flex

application to the server.

2. Open the RuntimeLoadingTest.html page in browser.

3. Pass the relative path of the Flex application to be tested as a query parameter to the HTML page. For

example, type:http://localhost/RuntimeLoadingTest.html?automationswfurl=applicationtotest.swf, where

applicationtotest.swf is the file name of the Flex application.

4. Start HCL OneTest™ UI.

5. Start testing the HTML file that contains the embedded Flex application.

Importing and exporting configuration and customization files
You can configure and customize files in the configuration and the customization directories. The configuration files

contains information such as the application that must be configured for testing. However, the customization files

contain information about the external jar files used in your project, customization of any recognition properties, and

third-party proxy extensions. You can export these files and later deploy them using the export and import utility. The

default location for the configuration and customization file is C:\ProgramData\HCL\OneTestUI. For example: If

you want to use the same configuration and customization files on different computers, you can archive these files

and later deploy them using this utility.

Exporting the configuration and customization files
You can export the current configuration and customization file into a jar file. This jar file can be imported or deployed

to any computer.

To export the resources to an archive file:

1. Click File > Export.

Result

The Export wizard opens.

2. Click Functional Test > Functional Test configuration/customization to a JAR file. Click Next.

3. Select the configuration and customization items to export. In the File text field, type the file name. You can

also click Browse to select the destination path. Click Finish.

Result

The configuration and customization file is exported to the specified location.

Chapter 7. Test Author Guide

Importing the configuration and customization files
The import wizard imports the configuration (.rftcfgjar), and customization (.rftcust) files to the HCL OneTest™ UI

configuration, and customization directory. The import wizard displays the available items and the user can import

these items into HCL OneTest™ UI or any computer. The configurations file (.rftcfgjar) is either merged with an

existing configuration file or is replaced. The customization files are only replaced and not merged. You must restart

HCL OneTest™ UI to activate some customization files.

About this task

To import items from an archive file:

1. Click File > Import.

Result

The Import wizard opens.

2. Click Functional Test > Functional Test configuration and customization items.

3. Click Next.

Result

The Import configuration items window opens.

4. In the Import from field, browse for the archive file in the file system. You must browse for the .rftcfgjar file.

Result

The Select the items to be imported window opens.

5. The items that the archive file contains are displayed in the Select the items to be imported window. Select

the items to import and click Finish.

Result

The selected items are now displayed in HCL OneTest™ UI.

Setting preferences
You use the Preferences dialog box to customize HCL OneTest™ UI in a number of different areas, such as settings

for time options; colors for the Verification Point Editor, the Verification Point Comparator, and the Object Map Editor;

highlight color for test objects; operating system; playback; delays; log; playback monitor; ScriptAssure(TM); recorder;

recording monitor; and the workbench.

To change preferences for the current user:

1. From the HCL OneTest™ UI menu, click Window > Preferences.

2. In the Preferences dialog box, in the left pane, expand Functional Test.

3. Select the appropriate preferences page for the options you want to change.

4. Change the options.

In some cases, you might want to clear the Use Default field to edit the option.

5. Click Apply to save the new setting and continue changing options or click OK to save the new setting and

close the Preferences dialog box.

633

HCL OneTest™ UI

634

HCL OneTest™ UI Preferences
You use the Preferences dialog box to customize various aspects of HCL OneTest™ UI, such as settings for time

options; colors for the Verification Point Editor, the Verification Point Comparator, and the Object Map Editor; highlight

color for test objects; operating system; playback; delays; log; playback monitor; ScriptAssure(TM); recorder;

recording monitor; and the workbench.

To display the HCL OneTest™ UI Preferences page, click Window > Preferences and expand Functional Test in the left

pane.

Use the HCL OneTest™ UI preferences pages to set options in the following areas:

• HCL OneTest™ UI on page 639

• Colors on page 640

• Highlight on page 641

• Operating System on page 646

• Playback on page 646

◦ Delays on page 649

◦ Logging on page 644

◦ Monitor on page 650

◦ ScriptAssure(TM)-Standard on page 651

◦ ScriptAssure(TM)-Advanced on page 650

◦ Enabling the unexpected window handling feature on page 652

• Recorder on page 653

◦ Monitor on page 654

• Workbench on page 657

◦ Advanced on page 658

Editing the preferences pages changes the current user profile only. It does not change settings for all users.

You can change the color settings on page 637 of information in the Verification Point Editor, Verification Point

Comparator, and Object Map. HCL OneTest™ UI changes the color of elements in the editor. You can also change

the fonts on page 638 for information in the .NET IDE. The colors and fonts feature is useful for enhancing

the accessibility for people who have physical challenges, such as restricted mobility or limited vision. For more

information, see the Colors Page on page 640.

Restricting actions during the recording and playing back of tests with start
application
You can restrict the recording of tests to capture only the actions that you perform on the start application. The

playing back of such a test performs the recorded actions only on the instance of the start application associated

with the test and reduces the overall playback time.

About this task

Chapter 7. Test Author Guide

When you restrict the recording and playing back of tests that use a start application, the recording of a test does not

capture any unnecessary click actions that you might perform on other active instances of the start application.

For information about how to add a start application to a test, refer to Related Links.

If you enable the Limit Record/Playback to StartApp applications only option, the following changes are applied to

the recording and playing back of tests that use a start application:

• The recording monitor captures only the actions that you perform on the instance of the start application

associated with the test during recording.

• The playing back of the test performs the verification points and data-driven commands only on the instance

of the start application associated with the test.

• If you use the Find the object option to insert an object when an ObjectNotFound exception is displayed during

playback, you can select only the missing objects from the instance of the start application associated with

the test.

Note: In HCL OneTest™ UI running on Linux, you cannot insert an object by using the Find the object

option when an ObjectNotFound exception is displayed. Therefore, you must disable the Limit Record/

Playback to StartApp applications only option and then play back the test.

• If you have a test that has find()methods, the playing back of the test performs the find()method based

actions only on the instance of the start application associated with the test and reduces the overall playback

time.

Note: The feature to restrict the recording and playing back of tests that use a start application does not

apply to browsers during playback.

1. Go to Window > Preferences > Functional Test in HCL OneTest™ UI.

2. Select Limit Record/Playback to StartApp applications only.

Important: If you remove the start application from the test, then the playback is not restricted to the

start application associated with the test.

Results

You have restricted the recording of tests to capture only the actions that you perform on the start application.

Related reference

Start application dialog box on page 1558

Exception dialog box on page 1609

635

HCL OneTest™ UI

636

Related information

Handling exceptions during script playback on page 670

Using a keyboard shortcut to record an application instance
If you want to capture only the actions that you perform on a specific application instance during the recording of a

test script, you can use a keyboard shortcut to enable that application instance to be recorded. The recording monitor

then captures only the actions that you perform on the application that you enabled by using the keyboard shortcut.

1. Go to Window > Preferences > Functional Test in HCL OneTest™ UI.

The Type StartApp key combination field is enabled by default. The default keyboard shortcut to enable an

application instance to be recorded is left Ctrl+ right Shift. You can change the default keyboard shortcut by

completing the following steps:

a. Clear the Use default check box for the Type StartApp key combination field.

b. Enter a keyboard shortcut in the Type StartApp key combination field.

Important:

You can use only the following keyboard shortcuts to enable an application instance to be

recorded when you record a test script:

▪ Left Ctrl + right Shift

▪ Left Ctrl + any alphabet key

c. Click Apply.

You have modified the default keyboard shortcut. You must use this keyboard shortcut to enable an

application instance to be recorded.

2. Select the Functional Test perspective.

3. Click the Record a Functional Test Script icon from the HCL OneTest™ UI toolbar.

The Record an HCL OneTest UI script dialog box is displayed.

4. Complete the fields to record a test script and click Finish.

The recording monitor window opens.

5. Click the instance of the application that you want to record and then press the keyboard shortcut that you

created.

The application is enabled to be recorded, and the following message is displayed in the recording monitor:

<application name> application added successfully

The recording of the test script captures only the actions that you perform on the enabled application

instance. All actions that you perform on any other application instances are not captured.

What to do next

You can perform the actions for the enabled application instance and complete the recording.

Chapter 7. Test Author Guide

Related reference

The HCL OneTest UI toolbar on page 1498

Record a New Functional Test Script dialog box on page 1522

Changing the verification point and object map colors
You can change the color of information displayed in the Verification Point Editor, Verification Point Comparator, and

Object Map. This feature is useful for enhancing the accessibility for people with disabilities.

1. In the product menu, click Window > Preferences to display the Preferences dialog box.

2. In the Preferences dialog box, expand Functional Test in the left pane.

3. Click Colors to display the Colors page on page 640.

4. Select one of the following tabs:

Choose from:

◦ Verification Point Editor

◦ Verification Point Comparator

◦ Object Map Editor

5. Select a display item in the list.

6. Change the color for the display item:

a. Click the Color button.

b. Click a color in the Basic colors selection palette.

c. Click OK.

7. Click Apply to save the new color setting and continue changing colors or click OK to save the new color

setting and close the Preferences dialog box.

Changing the syntax of Verification Point commands
During recording, a verification point captures information about a specified GUI component, for example, its size or

its position. HCL OneTest™ UI records a statement in the test script for each verification point.

About this task

Verification point commands appear in the script with the name that you assign to the verification point when you

record the script.

The new syntax for the verification point command is:ObjectName.performTest(VPName);

For example, if we capture a verification point called ChkBox_State on a check box, say CheckBox1 it is recorded as

CheckBox1().performTest(ChkBox_State());

The verification point with this syntax stores only the information for the expected value and does not associated it

with a specific GUI object. This provides the flexibility to reuse the verification point on similar objects.

637

HCL OneTest™ UI

638

For example: Use the same ChkBox_State verification point on another check box. You can use the expected value

information stored in the ChkBox_State verification point to validate the actual value obtained from CheckBox2

control. You can use the statement CheckBox2().performTest(ChkBox_State());

For example, CheckBox1_StateVP().performTest(); This verification point cannot be reused to validate the contents

of another check box control. You cannot use the expected value stored in the CheckBox1_State verification point to

validate the actual value obtained from the CheckBox2 control.

You can choose which one to use. By default the new syntax is enabled. If you want to use the old syntax, follow

these steps:

1. Click Window > Preferences.

Result

The Preferences dialog box appears.

2. Click Functional Test > Recorder and clear the Record Test Object relative Verification Point option.

3. Click Apply and OK to close.

Result

The next time you record or insert a new verification point, it will show the old syntax in the test script.

Changing user interface fonts
You can change the font and point size of information displayed in dialog boxes for HCL OneTest™ UI and those

that are part of the Eclipse IDE. For IDE dialog boxes and the Java™ Editor, you do this through the Workbench

Preferences.

1. Click Window > Preferences, expand Workbench , and click Colors and Fonts.

2. In the Colors and Fonts list, select the type of text you want to change. On the Colors and Fonts preference

page, you can change the banner font, header font, and text font, one at a time.

3. To use system fonts, click Use System Font. You must use this option for DBCS languages.

To use a different font, click Change. In the Font dialog box, select your font and click OK.

4. To change the font in the Java™ Editor, in the Colors and Fonts list, take the following steps:

Choose from:

◦ Expand Java.

◦ Click Editor Text Font (defaults to Text Font).

◦ Click Restore Defaults.

Result

The Java™ Editor picks up the font set in the Workbench Font preference page because the Java™ Editor uses

that preference by default.

5. Click OK.

The new font does not take effect immediately in the dialog box that you set it in (Application Configuration

Tool or Enable Environments dialog box).

Chapter 7. Test Author Guide

HCL OneTest™ UI General page
You use the HCL OneTest™ UI General page to set all product time options. These options are useful to accommodate

different computer speeds.

The General page has the following controls:

Limit Record/Playback to StartApp applications only: Select this option to limit the recording and playing back to

StartApp application only.

Automatic enablement: Automatic enablement is activated by default. Deselect the checkbox if you want to statically

enable each test environment. This is useful for improving the performance of tests.

Multiply all time options by: Enter any real number by which you want to multiply all HCL OneTest™ UI preferences or

options that take an amount of time as an argument. For example, enter .5 to make all HCL OneTest™ UI time options

twice as fast. This option affects all the following controls:

General Playback

Maximum time to attempt to find Test Object

Pause between attempts to find Test Object

Timeout used in waitForExistence() method

Retry timeout used in waitForExistence() loop

Delays

Delay before mouse up

Delay before mouse move

Delay before mouse down

Delay before key up

Delay when hover

Delay after top level window activates

Delay before key down

Delay before performing Test Object action

General Recorder

Delay before recording a mouse action

Delay before recording a keystroke

639

HCL OneTest™ UI

640

Use Default

Clear this check box to edit the value in the Multiply all time options by field. Select this check box to

restore the default value.

Restore Defaults

Restore the default values on this page.

Apply

Save your changes without closing the dialog box.

To open: Click Window > Preferences. In the left pane, click Functional Test.

Related information

Restricting the actions during recording and playback

Colors page
You use the tabs on the Colors page to specify color settings for the Verification Point Editor, Verification Point

Comparator, and the Object Map Editor. This feature is also useful for enhancing the accessibility for people who have

physical challenges, such as limited vision.

Verification point editor

This tab contains the following controls:

Table compare region background -- Indicates the color of columns, rows, and cells that are going to be compared in

the verification point editor.

Color -- Displays the color currently in use for the selected user interface element. Click to display a color selection

palette from which you can click the color you want to use.

Verification point comparator

This tab contains the following controls:

Difference foreground -- Indicates the color of the difference in verification points in the verification point comparator.

Tree difference foreground -- Indicates the color of difference in the tree verification point in the verification point

comparator.

Tree left node only foreground -- Indicates the color of the expected or baseline tree node that does not appear in the

actual verification point in the verification point comparator.

Tree right node only foreground -- Indicates the color of actual tree node that only exists in the actual verification

point and not in the expected or baseline verification point in the verification point comparator.

Chapter 7. Test Author Guide

Table compare region background -- Indicates the color of columns, rows, and cells that are going to be compared in

the verification point comparator.

Color -- Displays the color currently in use for the selected user interface element. Click to display a color selection

palette from which you can click the color you want to use.

Object map editor

This tab contains the following controls:

Owned object foreground -- Indicates the color of the Owned: flag in the test object map.

Matching object foreground -- Indicates the color of objects matching the search criteria.

Delete All Not Used objects foreground -- Indicates the color of test objects found when searching for those not

having references in the scripts associated with the shared test object map.

Delete Object Script Read-Only foreground -- Indicates the color of a read-only test object in the Delete Test Object

dialog box.

Color -- Displays the color currently in use for the selected user interface element. Click to display a color selection

palette from which you can click the color you want to use.

To open: Click Window > Preferences, expand Functional Test, and click Colors.

Highlight page
You use the Highlight page to specify how you want HCL OneTest™ UI to emphasize test objects in applications-

under-test when you select them in a test object map or in the Script Explorer. These settings also control how HCL

OneTest™ UI highlights objects you select with the Verification Point and Action Wizard and the Insert a GUI Object

into the Object Map dialog box.

You can also change these settings in the test object map by clicking Preferences > Highlight on the test object map

menu.

The Highlight page has the following controls:

Color

Click to display a color selection palette from which you can select a color to use to indicate selected

test objects. The button displays the color currently in use.

Border Width (in pixels)

Move the slider from Thin to Wide to set the width of the border around the selected object.

Flash Speed

Move the slider from Slow to Fast to set the rate at which the border around a selected object flashes

when selected.

641

HCL OneTest™ UI

642

Display Time

Move the slider from Short to Long to set the length of time to highlight the border.

Restore Defaults

Restores the default values on this page.

Apply

Saves your changes without closing the dialog box.

To open: Click Window > Preferences. In the left pane, expand Functional Test and click Highlight.

Logging and Tracing page
HCL OneTest™ UI allows you to collect the errors and warning messages into a log file (rft_log.txt). The logging and

tracing functionality is controlled through certain configurable parameters such as level, file size, directory. With HCL

OneTest™ UI you can configure the ‘level' parameter for individual components. If a log and trace level is not defined

explicitly for a component, then it defaults to the overall setting defined in the general page. With HCL OneTest™ UI,

you can set the preferences for logging and tracing through an user interface.

General page

The General page contains the fields listed below.

Note: These settings do not apply to messages logged for functional testing in Google Chrome browsers.

Messages for Google Chrome are written into the chromeSupportDebug.txt file, which is saved in the

directory specified in the Log File Path field.

Log Level

Select the log level from the list. With the log level you can control the amount and type of log

information that must be generated in the log file. For example, if you select INFORMATION level, all the

log messages that are classified as information, warning, error, fatal, and severe is generated in the log.

To minimize the amount of logging, select FATAL. If you select CONFIG, all log messages are generated.

Log File Size (in KB)

Specify the maximum size of the log file in kilobytes. The default size is 2048 KB, and the minimum

size of the log file is 1024 KB. If the size of the log file exceeds the specified limit, it is renamed to

rft_log_<x>.txt (The size of the renamed file is approximately around the specified limit).

Maximum Number of Log files to retain

Specify the maximum number of log files that can be retained. For examples, if you say type, 5, then five

recent log files are retained and the rest are cleared.

Log File Path

Type the log file path in the Log File Path field. The log file generated (rft_log.txt) is saved in this

directory.

Chapter 7. Test Author Guide

Note: Messages for Google Chrome are written into the chromeSupportDebug.txt file, which is

saved in the directory specified in this field.

You must enable the tracing option, if you want to generate the trace files.

Enable Tracing

Select this check box to enable the generation of trace files.

Generate traces in Eclipse error log format

Select this check box to enable the generation of trace files in the Eclipse error log .log format. Trace

files in the .log format can be viewed in the Eclipse Error Log view within HCL OneTest™ UI. Clear this

check box to enable trace files to be generated in the .txt format.

Trace Level

Select the trace level from the list. With the trace level you can control the amount and type of trace

information that must be generated in the trace file. The trace level gives you detailed debugging

information for HCL OneTest™ UI and the application-under-test during recording and playback.

Trace File Size (in KB)

Specify the maximum size of the trace file in kilobytes. The default size is 2048 KB, and the minimum

size of the trace file is 1024 KB. If the size of the trace file exceeds the specified limit, it is renamed to

rft_trace_<x>.txt (The size of the renamed file is approximately around the specified limit).

Maximum Number of Trace files to retain

Specify the maximum number of trace files that can be retained. For examples, if you say type, 5, then

five recent trace files are retained and the rest are cleared.

Trace File Path

Type the trace file path in the Trace File Path field. The trace file generated (rft_trace.txt or rft_trace.log,

depending on your specification in the Generate traces in Eclipse error log format check box) is saved

in this directory.

Log Components and Trace Components

The component level settings take precedence over the general settings. The components are not predefined. You

can add and remove components by clicking the Add and Remove buttons.

Log Components

On the Log Components pages, you define the log level settings for each component.

Trace Components

On the Trace Components pages, you define the trace level settings for each component.

To open: Click Window > Preferences. In the left pane, expand Functional Test and click Logging and Tracing.

643

HCL OneTest™ UI

644

Memory trace components

The Memory Trace page contains settings which control the type of trace statements to be generated for HCL

OneTest™ UI processes.

Memory Trace Settings

Click this option to enable memory trace settings.

Interval between dumps

Specify the intervals, in seconds, at which the Java heap size statistics are to be dumped into the

memory trace.

Run Garbage Collector prior to dumping

Click this option to indicate that the Garbage Collector needs to run before the Java heap size statistics

are dumped into the memory trace file.

Write the shared memory to the trace file

Click this option to enable writing the shared memory statistics to the trace file.

Logging page
You use the Logging page to set log and comparator options, such as preventing the script launch wizard from

displaying on playback, displaying the log viewer after playback, and displaying a message before overwriting an

existing log. You also use this page to indicate the type of log generated.

To access the logging page, click Window > Preferences. In the left pane, expand Functional Test > Playback and

click Logging.

Note: For Microsoft Visual Studio, click Tools > Options. In the left pane, expand Functional Test > Playback

and click Logging.

The Logging page contains the following options:

Don't show script launch wizard: When selected, prevents the script launch wizard from displaying each time you play

back a script.

Display log viewer after script playback: When selected, this option displays the log after you play back a script. If the

log type is HTML, the log opens in your default browser. If the log type is Text, the log opens in the Script Window of

HCL OneTest™ UI. If the log type is XML, the log opens in your default browser.

Generally, the log file opens in the default browser that is associated with the html file extension in your computer. To

view the html files in your desired browser, you can associate the html file extension with the specific browser. The file

extension for different browsers are as follows:

Chapter 7. Test Author Guide

• For Google Chrome, you must associate .html=ChromeHTML

• For Internet Explorer, you must associate .html=htmlfile

• For Firefox, you must associate .html=FirefoxHTML-308046B0AF4A39CB

Log screen snapshot for each action on the application: When selected, this option records a screen snapshot in the

playback log against every action performed on the application.

Prompt before overwriting an existing log: When selected, this option prompts you before you overwrite a log.

Log the count of test objects created/unregistered at particular script line: When selected, this option logs these

details:

• Number of objects created and unregistered at a specific script line

• Total number of objects created and unregistered per call script

• A cumulative number of test objects created and unregistered for the whole script during playback if HCL

OneTest™ UI scripting methods have been used to return test objects.

Warning messages are also logged at the call script level and the main script level, if the number of test objects

created exceeds the number of test objects unregistered, which would suggest the possibility of memory leaks during

playback.

Log a screen snapshot when playback fails: When you select this option, it captures a screen snapshot at the time of

the failure and stores it in the log. You must clear the check box to save storage space (172 KB per snapshot).

Log GUI actions on the application: When you select this option, it adds a detailed record of any GUI-related actions

performed on the application (without a screen snapshot) to the playback log.

Log type: This option Indicates the type of log HCL OneTest™ UI generates to write results of script playback. The log

types are as follows:

• None: Generates no log, if selected.

• Text: Displays the log in ASCII format in the Functional Test script window.

• HTML: Displays the log in HTML format in your default browser. The left pane in the HTML log contains three

boxes: Failures, Warnings, and Verification Points. The list of items in each box help you navigate to a specific

location in the log. You can select an item to quickly find important errors, warnings, and verification point

results in the log. To do so, double-click an item in a list, and HCL OneTest™ UI scrolls to and displays the item

in the log.

• TPTP: Displays a log using TPTP in the Functional Test script window.

• XML: Displays a log of XML data rendered in HTML format [using transformation and Cascaded Style Sheets]

in your default browser.

• Default: Displays the unified report for the test scripts in the browser window. This is also the default option to

generate result for Functional test scripts.

645

HCL OneTest™ UI

646

• JSON: Displays a log in JSON format in the Functional Test Script window. Each event in this log type is a

separate JSON.

Note: The JSON log type is not supported in the integration of HCL OneTest™ UI with Visual Studio.

Use Default: Clear the check box to change the value in the Log type field. Select the check box to restore the default

value.

Restore Defaults: Restores the default values on this page.

Apply: Saves your changes without closing the dialog box.

Operating System page
You use the Operating System page to indicate the Foreground Lock Timeout setting for Windows® 98/Me and

Windows® 2000 systems.

This page contains the following controls:

Foreground Lock Timeout

An important option for Windows 98/Me, Windows 2000, or later that sets the amount of time (in

milliseconds) after user input, during which the operating system does not allow applications to force

themselves into the foreground. To play back scripts, you must change this setting to 0. However, this is

a persistent setting and affects desktop behavior.

Restore Defaults

Restores the default values on this page.

Apply

Saves your changes without closing the dialog box.

To open: Click Windows > Preferences. In the left pane expand Functional Test and click Operating System.

General Playback page
You use the General Playback page to set script playback options, such as the amount of time HCL OneTest™ UI looks

for an object and waits before trying to find an object again. You can also elect to skip all verification points in the

script.

The General Playback page has the following controls:

Note: In the Use Default field for each control, clear the check box to edit the value in the field or select the

check box to restore the default value.

Show exception dialog

The exception dialog box is displayed if an exception occurs during playback.

Chapter 7. Test Author Guide

Perform playback in interactive mode

To resolve common runtime situations dynamically.

Maximum time to attempt to find Test Object

The maximum amount of time, in seconds, that HCL OneTest™ UI attempts to find an object. See

example on page 648.

Pause between attempts to find Test Object

Indicates, in seconds, how long HCL OneTest™ UI waits before trying to find an object again. See

example on page 648.

Skip Verification Points

When selected, skips all verification points in the script.

Timeout used in waitForExistence() method

Indicates, in seconds, the maximum amount of additional time that HCL OneTest™ UI waits (after time

specified in Maximum time to attempt to find test object) for an object. For example, this setting is

useful when waiting for an application to open. The waitForExistence() method must be explicitly

stated in the script.

Retry time used in waitForExistence() loop

Indicates, in seconds, the interval between attempts to find an object. If HCL OneTest™ UI does not find

an object, it continues to try until the time specified in Timeout used in waitForExistence() method has

expired.

Restore Defaults

Restores the default values on this page.

Apply

Saves the edits you made without closing the dialog box.

To open: Click Window > Preferences. In the left pane, expand Functional Test and click Playback.

Related reference

Setting general playback preferences in test scripts on page 647

Setting general playback preferences in test scripts
You can set the general playback preferences in test scripts. The preference set in the script, if any, takes precedence

over the one that is set through the Preferences dialog and it applies globally to all the scripts. Hence, ensure that the

script includes a reset command that reverts the preference to its earlier setting.

The following table lists the code snippets to be inserted for each general playback preference:

647

HCL OneTest™ UI

648

Preference Code snippet

Show exception dialog
setOption(IOptionName.SHOW_EXCEPTION_DLG, true);
// actions
resetOption(IOptionName.SHOW_EXCEPTION_DLG);

Perform playback in interactive

mode
setOption(IOptionName.PERFORM_PLAYBACK_IN_INTERACTIVE_MODE, true);
// actions
resetOption(IOptionName.PERFORM_PLAYBACK_IN_INTERACTIVE_MODE);

Note:

This setting works only if IOptionName.SHOW_EXCEPTION_DLG is set to

true.

Maximum time to attempt to

find Test Object
setOption(IOptionName.MAXIMUM_FIND_OBJECT_TIME, maximumtimeinseconds);
// actions
resetOption(IOptionName.MAXIMUM_FIND_OBJECT_TIME);

Pause between attempts to find

Test Object
setOption(IOptionName.FIND_OBJECT_DELAY_BETWEEN_RETRIES,
 pausetimeinseconds);
// actions
resetOption(IOptionName.FIND_OBJECT_DELAY_BETWEEN_RETRIES);

Skip Verification Points
setOption(IOptionName.SUPRESS_VP_PERFORM_TEST, true);
// actions
resetOption(IOptionName.SUPRESS_VP_PERFORM_TEST);

Timeout used in waitForExis

tence() method
setOption(IOptionName.MAXIMUM_WAIT_FOR_EXISTENCE,
 maximumwaittimeinseconds);
// actions
resetOption(IOptionName.MAXIMUM_WAIT_FOR_EXISTENCE);

Retry time used in waitForExis

tence() loop
setOption(IOptionName.WAIT_FOR_EXISTENCE_DELAY_BETWEEN_RETRIES,
 delaytimeinseconds););
// actions
resetOption(IOptionName.WAIT_FOR_EXISTENCE_DELAY_BETWEEN_RETRIES);

Related reference

General Playback page on page 646

Playback preferences example on page 648

Playback preferences example
This topic provides an example of the interaction between settings in the Playback Preferences page.

Chapter 7. Test Author Guide

If HCL OneTest™ UI does not find an object, it will continue to try until the time specified in Maximum time to attempt

to find test object has expired. Pause between attempts to find test object indicates the amount of time to pause

between retries.

For example, if Maximum time to attempt to find test object is set to 30.0, and the Pause between attempts to find

test object is set to 1.0, HCL OneTest™ UI will look for an object up to 30 times, pausing 1 second between tries.

Dynamic Find Enablement page
You can use the Dynamic Find Enablement page to enable the dynamic find feature for all functional test scripts run

within the integrated development framework (IDE). With the dynamic find feature, HCL OneTest™ UI can search for

and locate objects in the script whose hierarchical position has changed, to prevent playback failure.

This page has this control:

Enable script find if scoring find fails

Enables the dynamic find feature for all scripts within the IDE.

Note: When you enable the dynamic find feature on this page, the setting applies to all functional test scripts

that are run in the IDE. You can disable the feature for individual scripts on the Select Log page.

Delays page
You use the Delays page to set delays during Functional Test script playback. These settings are useful to control the

rate at which script commands are sent to the operating system.

The Delays page has the following controls:

Note: In the Use Default field for each control, clear the check box to edit the value in the field or select the

check box to restore the default value.

Delay before mouse up

Indicates, in seconds, the interval before sending a mouse-release event during playback.

Delay before mouse move

Indicates, in seconds, the interval before sending a mouse-move event during playback.

Delay before mouse down

Indicates, in seconds, the interval before sending a mouse-press event during playback.

Delay before performing Flex Test Object action

Indicates, in seconds, the wait before performing a Flex test object action during playback.

Delay before key up

Indicates, in seconds, the wait before sending a key-release event during playback.

649

HCL OneTest™ UI

650

Delay when hover

Indicates, in seconds, the duration of the wait for a Hover command, which takes no options.

Delay after top level window activates

Indicates, in seconds, the wait after making a new window active. This provides the application time to

repaint the screen.

Delay before key down

Indicates, in seconds, the interval before sending a key-press event during playback.

Delay before performing Test Object action

Indicates, in seconds, the time the object waits before each UI action.

Restore Defaults

Restores the values on this page to customization file settings (if they exist) or to

RATIONAL._FT.RFTCUST settings.

Apply

Saves your changes without closing the dialog box.

To open: Click Window > Preferences. In the left pane, expand Functional Test, expand Playback, and click Delays.

Playback Monitor page
You use the Playback Monitor page to specify whether to display the playback monitor during playback.

The Playback Monitor page has the following controls:

Show monitor during playback

Displays the Playback Monitor during playback.

Restore Defaults

Restores the default values on this page.

Apply

Saves your changes without closing the dialog box.

To open, click Window > Preferences. In the left pane, expand Functional Test, expand Playback, and click Monitor.

ScriptAssure page--Advanced
You use the ScriptAssure(TM) Advanced page to set thresholds for recognition scores, which HCL OneTest™ UI uses

when searching for objects during script playback.

Note: In the Use Default field for each control, clear the check box to edit the value in the field or select the check box

to restore the default value.

The ScriptAssure™ Advanced page has the following controls:

Chapter 7. Test Author Guide

Maximum acceptable recognition score -- Indicates the maximum score an object can have to be recognized as a

candidate. Objects with higher recognition scores are not considered as matches until the time specified in Maximum

time to attempt to find Test Object has elapsed.

Last chance recognition score -- If HCL OneTest™ UI does not find a suitable match after the time specified in

Maximum time to attempt to find Test Object has elapsed, indicates the maximum acceptable score an object must

have to be recognized as a candidate. Objects with higher recognition scores are not considered.

Ambiguous recognition scores difference threshold -- Writes an AmbiguousRecognitionException to the log if the

scores of top candidates differ by less than the value specified in this field. If HCL OneTest™ UI sees two objects as

the same, the difference between their scores must be at least this value to prefer one object. You can override the

exception by using an event handler in the script.

Warn if accepted score is greater than -- Writes a warning to the log if HCL OneTest™ UI accepts a candidate whose

score is greater than or equal to the value in this field.

Standard -- Displays the Standard ScriptAssure(TM) preferences page, which enables you to use a slider to set the

tolerance level from Tolerant to Strict for recognition levels and from None to High for warning levels.

Restore Defaults -- Restores the default values on this page.

Apply -- Saves the edits you made without closing the dialog box.

Changes you make in this page are reflected in the ScriptAssure(TM) Page-Standard.

To open: Click Window > Preferences. In the left pane, expand Functional Test, expand Playback, and click

ScriptAssure. Click Advanced.

ScriptAssure page-standard
During playback, HCL OneTest™ UI compares objects in the application-under-test with recognition properties in the

test object map. You use the ScriptAssure(TM) Standard page to control object-matching sensitivity during playback.

This feature enables you to successfully play back scripts when the application-under-test has been updated.

The ScriptAssure(TM) Standard page has the following controls:

Recognition Level -- Controls the level of recognition when identifying objects during script playback. To decrease

tolerance for differences between the object in the application-under-test and the recognition properties, move the

slider toward Strict. To increase the tolerance for differences, move the slider toward Tolerant.

• The maximum Strict setting indicates that objects must be an almost exact match. If only one important

recognition property is wrong, HCL OneTest™ UI recognizes the object as a match after exhausting all other

possibilities. An object with more than one wrong recognition property is not a match.

• The maximum Tolerant setting indicates that HCL OneTest™ UI selects an object with somewhat similar

properties immediately.

• The default setting allows two important recognition properties to be wrong but still is a match if all other

possibilities are exhausted. An object with more than two wrong recognition properties is not a match.

651

HCL OneTest™ UI

652

Warning Level -- Specifies when to be warned about differences between the object and the recognition properties. To

increase the number of warnings, move the slider toward High. To decrease the number of warnings, move the slider

toward None.

• The maximum High setting writes a warning to the test log of almost any difference. (Functional Test does

not issue a warning when the difference is the browser.)

• The maximum None setting omits warnings to the test log of differences.

• With the default setting, HCL OneTest™ UI writes a warning to the test log whenever it finds a test object after

the maximum time has elapsed during playback.

Advanced -- Displays the Advanced ScriptAssure Preferences page, which enables advanced users to set thresholds

for recognition scores.

Restore Defaults -- Restores the default values on this page.

Apply -- Saves your changes without closing the dialog box.

Changes you make on this page are reflected in the ScriptAssure(TM) Page-Advanced.

To open: Click Window > Preferences . In the left pane, expand Functional Test, expand Playback, and click

ScriptAssure.

Enabling the unexpected window handling feature
You can enable the unexpected window handling feature to ensure that scripts playback smoothly. When you enable

this feature, unexpected windows that open during script playback are handled according to the configuration in the

Configure Handling of Unexpected Windows dialog box.

Before you begin

Ensure that each unexpected window in the test domain has been configured in the Configure Handling of

Unexpected Windows dialog box. By configuring all unexpected windows, the configured action is performed when a

window opens unexpectedly during script playback.

1. In the product menu, click Window > Preferences to open the Preferences dialog box.

2. Expand Functional Test, and then click Playback.

3. Click Unexpected Windows.

Chapter 7. Test Author Guide

4. Select the Enable handling of unexpected windows check box.

Note: When you enable the unexpected window handling feature in the Preferences dialog box, it

applies to all scripts in the Integrated Development Environment. You can override this preference for

an individual script in the Select Log page, when you run the script.

General Recorder page
You use the General Recorder page to indicate options for recording Functional Test scripts, such as excluding an

executable from being recorded and setting the delay before recording a mouse action or a keystroke. You can also

select or clear the option to open the test object map if there is a new test object in the application.

This page has the following controls:

Note: In the Use Default field for each control, clear the check box to edit the value in the field or select the

check box to restore the default value.

Record Test Object relative Verification Point -- When selected, the test object details are not recorded while inserting

the verification points.

Maximum identifier length-- Option to control the maximum number of characters used in a Test Object identifier in

the script.

Processes excluded from testing -- Enter the executable name of the process that you do not want to record.

Separate multiple processes with commas.

Note: Only processes that are dynamically enabled must be added in this field.

Delay before recording a mouse action -- Sets the delay from the end of a mouse action to the command that

appears in the recording monitor. A shorter delay may limit the quality of recording of actions that cause state

changes. A value of 0.0 causes a delay until the beginning of the next action. If the value is lower than the double-click

interval, HCL OneTest™ UI uses the double-click interval.

Delay before recording a keystroke -- Sets the delay from the last keystroke to the inputKeys command that appears

in the recording monitor. A value of 0.0 causes a delay until the beginning of the next action.

Restore Defaults -- Restores the default values on this page.

Apply -- Saves your changes without closing the dialog box.

Bring up object map if there is new test object -- When selected, opens the test object map if a test object in the

application is not currently in the map.

To open: Click Window > Preferences. In the left pane, expand Functional Test and click Recorder.

653

HCL OneTest™ UI

654

Recorder Monitor page
You use the Recorder Monitor page to change settings in the Recording monitor, such as displaying the recorder

toolbar or the Recorder Monitor, including a timestamp for messages, and selecting the types of messages you want

to display and their colors.

The Monitor page has the following controls:

Display recorder toolbar only -- Displays the recorder toolbar or the full Recorder Monitor window.

Include time stamp in the message -- Includes a timestamp, of the format hh:mm:ss, for each entry in the Recorder

Monitor.

Error message color -- Indicates the color of errors in the Monitor. Double-click the color to change it.

Warning message color -- Indicates the color of warnings in the Monitor. Double-click the color to change it.

Information message color -- Indicates the color of information messages in the Monitor. Double-click the color to

change it.

Select message types to display -- Enables you to include or omit any three message types that appear in the

Monitor:

• Error

• Error, Warning

• Error, Warning, Information

You can add a time to messages in the Record Monitor, and indicate the types of and colors used for the messages.

To do so, click the Message Preferences button on the Record Monitor toolbar while recording.

Restore Defaults -- Restores the default values on this page.

Apply -- Saves your changes without closing the dialog box.

Mapping keyboard shortcut keys
You can map keyboard shortcut keys in HCL OneTest™ UI by changing the assignment of a shortcut key to a

command. You can change the shortcut key for menu items and toolbar buttons.

Before you begin

About this task

To map a keyboard shortcut key:

1. Click Window > Preferences, expand Workbench, and click Keys.

Result

Chapter 7. Test Author Guide

The Keys preference page appears.

2. On the Keyboard Shortcuts tab, under Command, take the following steps:

a. In theCategory box, select the type of menu command for the shortcut key you want to change. For

example, Script.

b. In the Name list, select a menu item name. For example, Run.

c. In the Assignments box, click In Windows or In Dialogs and Windows.

3. Under Key Sequence, take the following steps:

a. In the Name box, press the keys you want to assign to menu item. For example, Shift+Alt+F12.

Tip: To add keys to your key sequence, click the Insert Special Key arrow at the far right end

of the Name box, and select a key from the pop-up menu. You can select Backspace, Tab, and

Shift+Tab. For example, you can create a key sequence of F12, Backspace, Tab.

b. In the When box, select In Windows or In Dialogs and Windows.

4. Click Add.

5. Click OK.

Note: The new keyboard shortcut key does not take effect immediately for the menu item. After you

close the Preferences dialog box, the change will take effect.

What to do next

Simplified Scripting preference page
Use this page to indicate whether the simplified scripts feature must be enabled while creating the test scripts.

Simplified test scripts are displayed as English statements in the Script editor that are easy to understand and edit.

With this feature enabled, you can also view the Java code of the test script in the Script editor. The simplified script

feature is enabled by default.

Enable Simplified Scripting

Select the check box to enable the simplified scripting feature. If you clear this check box you can view

only the Java code of the test script.

If you have enabled simplified scripting, and want to use Java scripting to record an individual script,

you can override this setting by selecting Java Scripting from the Select Mode list in the Record a

Functional Test Script dialog box when you record the script.

655

HCL OneTest™ UI

656

Application Visuals preference page
Use this page to specify whether to capture the application visuals of the test application while recording the test

scripts. You can also specify whether to enable the verification points or data-driven commands that are featured in

the application visuals so that you can insert them in the script using the application visuals without opening the test

application.

Enable capturing Application Visuals

Select the check box to capture the application visuals while recording the test scripts.

Insert Data Driven Commands

Select the check box to enable the option to insert the data-driven commands into the script from the

application visual.

Show Verification Point Dialog

Select the check box to use the verification point wizard while inserting the data verification points in the

script using the application visual.

Enable capturing of verification on test data

Select the check box to enable the option to insert a verification point in the test script using the

application visuals displayed in the Application View.

Simplified Script Editor preference page
Use this page to specify the preferences for simplified script editor operations such as undo, redo and undo history

operations.

Undo history limit

Specify the limit for storing the history of delete actions that you perform in a script for performing the

undo and redo operations.

Confirm all undo operations

Select the check box to enable the option to confirm the undo operations that you perform in the

simplified script editor.

Confirm all delete operations

Select the check box to enable the option to confirm the delete operations that you perform in the

simplified script editor.

Webserver Configuration page
You can use the Webserver Configuration page to change the default web server port for communication between

Google Chrome and HCL OneTest™ UI, and to enable logging of messages.

Chapter 7. Test Author Guide

The web server port is used when you enable the Google Chrome browser manually in the Enable Environments

for Testing dialog box. By default, the port 9100 is set for the web server. If this port is already in use, change it and

specify an available port.

The Webserver Configuration page contains the following controls:

Webserver Port

This field identifies the web server port for communication between Google Chrome and HCL OneTest™

UI. If the default port 9100 is already in use, change it and specify an available port.

Note: If you change the port in the Webserver Configuration page, ensure that you also make

the same change in the Options for the HCL OneTest™ UI for Google Chrome™ extension.

For instructions to do this, see Changing the web server port for communication with Google

Chrome on page 597.

Enable Webserver Logging

Select this check box to enable logging of messages for the JavaScript classes in the Google Chrome

browser. The messages are logged in the chromeSupportDebug.txt file that is found in the log file

path specified in the Logging and Tracing page.

Note: After setting your configuration preferences in this page, restart HCL OneTest™ UI for your changes to

take effect.

Workbench Preferences page
The Workbench Preferences page enables you to indicate how you want the Workbench to behave while playing back,

recording, and debugging Functional Test scripts.

The Workbench page has the following controls:

Workbench state during run -- Enables you to indicate how you want the Workbench to display while playing back

scripts.

• Minimized -- Reduces the Workbench to a button on the taskbar during playback.

• Minimized and restored on playback termination (Default) -- Reduces the Workbench to a button on the

taskbar during playback and restores it when playback finishes.

• Hidden -- Hides the Workbench during playback and restores it when playback finishes.

• Leave in current state -- Does not change the Workbench during playback.

Workbench state during recording -- Enables you to indicate how you want the Workbench to display while recording

scripts.

657

HCL OneTest™ UI

658

• Minimized -- Reduces the Workbench to a button on the taskbar during recording.

• Minimized and restored when recording finished (Default) -- Reduces the Workbench to a button on the

taskbar during recording and restores it after recording stops.

• Hidden -- Hides the Workbench during recording and restores it after recording stops.

• Leave in current state -- Does not change the Workbench during recording.

Workbench state during debug -- Enables you to indicate how you want the Workbench to display while debugging

scripts.

• Minimized -- Reduces the Workbench to a button on the taskbar during debugging.

• Minimized and restored on playback termination -- Reduces the Workbench to a button on the taskbar during

debugging and restores it after debugging stops.

• Hidden -- Hides the Workbench during debugging and restores it after debugging stops.

• Leave in current state (Default) -- Does not change the Workbench during debugging.

Restore Defaults -- Restores all the default values on this page.

Apply -- Saves the edits you made without closing the dialog box.

To open: Click Window > Preferences. In the left pane expand Functional Test and click Workbench.

Workbench Advanced Preferences
This Advanced page enables you to set advanced Workbench preferences for HCL OneTest™ UI, such as switching to

the Test Debug perspective rather than the Functional Test perspective when debugging or turning on or off.

The Advanced page has the following controls:

Switch to Test Debug Perspective when debugging -- When selected, HCL OneTest™ UI switches to the Test Debug

perspective when you select Script > Debug. When cleared, HCL OneTest™ UI continues to display the Functional Test

perspective while the script runs in debug mode.

Restore Defaults -- Restores all the default values on this page.

Apply -- Saves the edits you made without closing the Preferences dialog box.

To open: Click Window > Preferences. In the left pane expand Product Name > Workbench, and click Advanced.

Managing functional test projects
A functional test project stores application test assets such as scripts, object maps, verification point baseline files,

and script templates. You must create a functional test project before you can record scripts.

Chapter 7. Test Author Guide

Creating a test project
A test project stores application test assets such as scripts, object maps, verification point baseline files, and script

templates. You must create a test project before you can record scripts. You must create a new test project or

connect to an existing test project before you record a new script.

1. From the product menu, click File > New > Functional Test Project.

2. In the Project name field, type the name of the new project.

Names for functional test projects cannot contain the following characters: \ / : * ? " < > | () or a space.

3. In the Project location field, type the data path for this functional test project, or click Browse to select a path.

4. Click Finish.

Connecting to a Functional Test project
If you have an existing Functional Test project or another member of your team has a project you need to use, you can

use this option to connect to the project.

1. Go to the Functional Test perspective in .

2. Click File > Connect to a Functional Test project from the menu bar.

3. In the Project location path field, type the path for the Functional Test project or click Browse to select the

path of an existing Functional Test project.

Result

If you click Browse and select a path to an existing Functional Test project, HCL OneTest™ UI automatically

enters the project name from the project location path.

4. In the Project name field, type a name to represent the Functional Test project (a logical name).

The name must be unique.

5. Click Finish.

A dialog box prompting you to upgrade the project from the older version and connect again is displayed.

6. Click Yes to confirm. Click Cancel if you want to disconnect from the project.

Disconnecting a Functional Test project
If you no longer need to work on a Functional Test project, you can remove it from the Projects view.

1. In the Projects view, right-click the project you want to disconnect.

2. Click Disconnect.

Note: Disconnecting a project does not remove any files from the file system. You can reconnect the

project at any time.

Result

659

HCL OneTest™ UI

660

The project is removed from the Projects view.

To include the project in the Projects view again, connect on page 659 to the project.

Deleting a Functional Test project
There may be times that you want to delete a project that is no longer needed from the Functional Test Projects view.

1. Right-click the project you want to delete in the Functional Test Projects view.

2. Click Delete.

Result

HCL OneTest™ UI displays a message asking you to confirm the deletion.

3. Click Yes. Functional Test removes the project from memory and from the hard disk.

CAUTION: Deleting a project not under source control cannot be undone.

HCL OneTest™ UI Projects view
The Functional Test Projects view, which is the left pane of the Functional Test Perspective, lists test assets for each

project.

The following icons appear in the Projects view pane:

 Folders

 Simplified test scripts

 Java test scripts

 Shared test object maps

 Log folders

 Logs

 Java™ file

The Functional Test Projects view banner has the following buttons:

The Connect to a Functional Test Project button allows you to connect to an existing Functional Test project.

The Refresh Projects button enables you to repaint the display to reflect changes.

The Synchronize with Editor button scrolls in the tree hierarchy to the name of the script currently displayed in the

Java™ Editor.

Chapter 7. Test Author Guide

Double-clicking a script in the Projects view opens the script in the Java™ Editor.

Note: If there are no projects in the Projects view, instructions display informing you how to create a new

Functional Test project or connect to an existing Functional Test project. If you do not select any item in

the Projects view, and right-click in the Projects view, a menu is displayed, from which you can create a new

Functional Test project, connect to an existing Functional Test project, or refresh the project(s).

Right-clicking on a project or test asset listed in the Projects view displays various menu options, which are listed here

in alphabetical order:

Add Empty Script -- Displays the Create an empty Functional Test script dialog box, which enables you to create a

script on page 678 you can use to manually add Java™ code.

Add Script Using Recorder -- Displays the Record a Functional Test script dialog box, which enables you to enter

information about the new script and start recording on page 676.

Add Test Folder -- Displays the Create a Test Folder dialog box, which enables you to create a new Functional Test

folder on page 662 for the project or under an existing folder.

Add Test Object Map -- Displays the Create a Test Object Map dialog box, which enables you to add a new test object

map to a project.

Add Test dataset -- Displays the Create a Test dataset dialog box, which enables you to create a new test dataset. on

page 736

Clear As Project Default -- Removes the default designation from the selected test object map. To set the default

designation, right-click the test object map in the HCL OneTest™ UI Projects view and select Set As Project Default .

Debug -- Launches the current script and displays the Test Debug Perspective, which provides information as the

script debugs.

Delete -- Enables you to delete the selected test asset..

Disconnect Project -- Disconnects a Functional Test project on page 659, which removes it from the Functional Test

Projects view.

Export -- Enables you to export project items for the selected log, project, or script.

Failed Verification Points -- Opens the selected verification point actual results file in the Verification Point

Comparator on page 717, where you can compare and edit the data. See About Logs on page 1224.

Final Screen Snapshot -- Available when the log of a script that failed on its last run is selected. Opens the screen

snapshot image taken at playback failure. See Screen snapshot on playback failure on page 1190.

Import -- Enables you to import project items for the selected log, project, or script.

661

HCL OneTest™ UI

662

Insert as "callScript" -- Available when a script is selected, inserts the callScript ("scriptname") code in the current

script at the cursor location. See Calling a Script from a Functional Test Script on page 687.

Insert contained scripts as "callScript" -- Available when a project is selected, displays a message that enables you to

choose Yes or No . Yes inserts a callScript command for all scripts in the project, including the selected folder(s) and

all subfolders. No inserts a callScript command only for scripts in the selected folder(s). See Calling a Script from a

Functional Test Script on page 687.

Merge Objects into -- Displays the Merge Test Objects into the Test Object Map page, which enables you to merge

multiple test object maps.

Open -- Opens the selected script or Java™ class in the Java™ Editor or opens the selected test object map.

Open Log -- Opens the selected log. See About Logs on page 1224.

Open Test Object Map -- Enables you to display the selected test object map.

Properties -- Displays information about the selected Functional Test project, test object map, test folder, script, or

log.

Rename -- Displays the Rename dialog box.

Reset Java Build Path -- Synchronizes the .JAR files in the Customization folder (C:\ProgramData\HCL\UI

\Customization) with the Java™ build path for Functional Test projects. The Java™ build path appears on the Java™

Build Path page of the Properties dialog box. For information, see the online Java™ Development User Guide.

Run -- Plays back a selected Functional Test script on page 1185.

Set as Project Default -- Indicates the selected test object map as the default in a variety of wizards and dialog boxes,

such as the Select Script Assets on page 1555 page of the Record New Functional Test Script and the Create Empty

Functional Test Script wizards, and the Copy Test Objects to New Test Object Map on page 1467 page of the Create

new Test Object Map wizard. To remove the designation, right-click the test object map in the Projects view and

select Clear As Project Default .

Show in Navigator -- Reveals the currently selected element's underlying resource (or the current editor's underlying

resource) in the Navigator view. For information, see the online Java™ Development User Guide.

Team -- Enables you to add test elements to source control, check out elements, check in elements, undo a checkout,

get latest version, show checkouts, display the history of an element, share a project, or compare versions or

elements.

To open: HCL OneTest™ UI automatically displays the Projects view (by default) in the Functional Test Perspective.

Creating a new functional test folder
You can use folders to organize items in the Functional Test Projects view.

Chapter 7. Test Author Guide

1. Display the Create a New Test Folder dialog box on page 1467 in any of these ways:

◦ On the product toolbar, click the Create a Test Folder button .

◦ In the Projects view, right-click a project and click Add Test Folder.

2. In the Enter or select the folder field, either enter the appropriate path to the folder you want to create or use

the navigation tools (Home , Back , and Go Into) to select the path in the selected project.

3. In the Test folder name field, enter a folder name.

4. Click Finish.

Result

HCL OneTest™ UI adds the folder to the Functional Test Projects view in the path you selected.

Exporting functional test project items
You can export project items such as scripts, test object maps, Java™ files or Visual Basic files, datasets and

application visuals to another functional test project.

1. Select the project in the Project view and click File > Export from the product menu. In the Export wizard,

select Functional Test > Functional Test Project Items and click Next.

2. In the Select Items to Export page, verify that the items you want to export are selected and those you do not

want to export are cleared.

Notes:

◦ The project items can be from any project.

3. To export the application visuals, select Export Application Visuals.

4. In the Specify the export destination field, enter the name or browse for the data transfer file, which is the file

to export with the selected project items. If the file does not exist, HCL OneTest™ UI creates it with a .rftjdtr

extension.

5. Click Finish.

Result

HCL OneTest™ UI compresses a copy of the files into a data transfer file with the name you specified and

appends a .rftjdtr extension.

When you export a script, HCL OneTest™ UI includes any necessary files, such as shared test object maps,

even though you did not select them.

To view items in the data transfer file, you can use any file compression program that supports the .zip format.

Importing functional test project items
You can import project items such as scripts, test object maps, Java™ files or Visual Basic files, and datasets into a

Functional Test project.

663

HCL OneTest™ UI

664

1. Select the project in the Project view and click File > Import from the Functional Test menu. In the Import

wizard, select Functional Test Project Items and click Next.

2. In the Transfer file field of the Import project items page, enter or navigate to the data transfer file name that

was used to export the project items.

To view and work with items in the data transfer file, you can use any file compression program that support

the .zip format. You do not have to extract files in the .rftjdtr extension file before importing.

3. In the Select the import location field, use the navigation buttons to select the Functional Test project into

which to import project items.

4. Click Finish.

If the project already contains any of the assets you are importing, HCL OneTest™ UI displays the Select items

to overwrite page.

5. Select the items that you want to overwrite in the project or clear the items that you do not want to overwrite

and click Finish.

◦ When you overwrite a script, HCL OneTest™ UI overwrites all the necessary files associated with the

script, such as the test object map and the dataset. Other files in the project associated with the

overwritten script, such as verification points, are deleted.

HCL OneTest™ UI adds all the project items from the data transfer file into the project you specified.

Working with functional test scripts (Windows-only)
This section describes the process of creating functional test scripts to test your applications.

Simplified scripting
Simplified test scripts are functional test scripts in the form of simple English statements that are easy to understand

and edit. This feature is enabled by default in the HCL OneTest™ UI Preferences window.

When you record actions on the test application using the recorder, the functional test script is generated and

displayed as a simplified test script in the Script editor. With the simplified test script feature enabled, you can also

view the corresponding Java test script in the Java script editor. When you edit the simplified test script, the Java

script reflects the changes in the Java script editor but not vice versa. You have the option to switch to the Java script

editor using the Insert Java Code Snippet or Insert Java Method features available in the simplified test script editor

and start working with the Java test script.

Note: You cannot migrate the existing functional test scripts that are generated as Java test scripts to

simplified test scripts.

The Application View displays the captured application visuals (screen snapshots). You can click each test line of the

simplified test script to view the application control it refers to. HCL OneTest™ UI captures the application controls

and their properties during recording if the application visuals feature is enabled.

Chapter 7. Test Author Guide

You can view the details and modify the properties of each test line such as an action on the application control or

the test line arguments in the Properties View. For each test line of the simplified test script, you can also set the

playback parameters such as execution delay and specify the log information such as types of messages in the

Properties View.

Enabling simplified scripting
Simplified scripts are functional test scripts in the form of simple English statements that are easy to understand and

edit. When you record actions on the test application using the recorder, the functional test script is generated and

displayed as a simplified test script in the Script editor.

Before you begin

Note: This feature is enabled by default in the HCL OneTest™ UI Preferences window. You can override

this setting for an individual script by selecting Java Scripting from the Select Mode list in the Record a

Functional Test Script dialog box when you record the script.

1. Click Window > Preferences.

2. In the Preferences window, click Functional Test > Simplified Scripting.

3. Select Enable Simplified Scripting.

Note: With the simplified scripting feature enabled, you can view the corresponding Java test script in

the Java script editor and also work with the Java scripting.

4. Click Apply, and then click OK.

Creating a simplified test script
Use the recording feature of HCL OneTest™ UI, to record actions on the test applications. The actions on the test

applications are generated in the form of a simplified test script when you stop recording. The generated simplified

test script is displayed in the simplified Script editor in HCL OneTest™ UI. You can also view the corresponding Java™

code of the recorded test script in the Java™ script editor.

Before you begin

Prerequisites:

• The Enable Simplified Scripting option is enabled on the Functional Test Preferences page.

• The test application and the required environments must be configured for functional testing.

• A functional test project is created.

1. Click File > New > Functional Test Script Using Recorder.

2. On the Record a Functional Test Script page, select the project to which the script must be associated. Type

a name for the script.

665

HCL OneTest™ UI

666

3. Optional: Select Add the script to Source Control to put the script under source control.

4. Make sure that Simplified Scripting is selected in the Select Mode list. You can make simplified scripting as

the default script mode by selecting the Default check box.

5. Click Next.

6. Optional: On the Select Script Assets page, modify the test object map, helper superclass, and test dataset if

you do not want to use the default settings.

7. Click Finish to start recording.

The Recording Monitor opens and the recording starts.

8. In the Recording Monitor toolbar, click Start Application() to start your test application.

9. Perform any action in the test application.

The recording monitor displays the actions that you perform as English statements.

10. Optional: You can record verification points or data-drive your test script using the tools available in the

Recording Monitor toolbar while recording the script.

11. Optional: To insert statements to call another script, specify log information, timer or comments during

recording, click Insert Script Support Commands in the Recording Monitor toolbar.

12. Click Stop recording () when you finish recording.

Result

A simplified test script is generated and displayed in the simplified Script editor.

Editing a simplified script
You can edit a test line in the script editor and also modify the test line properties, such as the control actions in the

Properties View.

About this task

In the script editor you can edit a test line that contains input values.

1. Select a test line in the script editor.

2. Modify the input values.

3. Click File > Save to save the modified script.

Tip: You can also modify the input values on the General page in the Properties view.

Note: You can cut, copy, and paste the test lines in the script editor. These options are available in the

Edit menu.

Modifying the control name and the action
The General page in the Properties view displays the details of the test line that is selected in the script editor. On the

General page, you can modify the test-line details such as the control name and the action.

1. Select the test line in the script editor.

Result

Chapter 7. Test Author Guide

The test line details are displayed in the Properties view.

2. Click the General tab in the Properties view.

The General page opens.

3. Modify the Control name value.

Result

The test line in the script editor also reflects the modified value.

4. To modify the action on the control, select the required action from the list. The Action list displays all the

actions that you can perform on the selected control.

Result

The test line statement in the script editor is modified.

5. To modify the input values or the action details such as the screen coordinates or the path, modify the values

in the Action Parameters field.

6. Click File > Save to save the modified script.

Disabling a test line
You can disable a test line in the script editor so that the test line is not run during script playback.

1. Select the test line in the script editor.

2. Right-click, and select Enable/Disable action.

The test line font changes to italics, indicating that the test line is disabled.

3. Click File > Save to save the modified script.

Grouping test lines
The test lines in the script editor are grouped based on the parent window that the test line control refers to. You can

create more logical groups to manage the test lines for easy identification. For example, if you have multiple tabbed

pages in a window, by default all the test lines are grouped into a main window group. You can create multiple groups

within the main group for listing all the actions on the controls based on the tabbed pages.

1. In the script editor, select the test lines to group together.

Press and hold the Ctrl key while selecting multiple test lines.

2. Right-click, and select Create Group ().

A group title is added and all the selected test lines are grouped together. By default, the main parent window

name is added as the group name. You can change the group name, if required.

3. Click File > Save to save the modified script.

Inserting comments in the script
You can add comments in the simplified script editor.

1. Select the test line in the script editor.

2. Right-click, and select Insert Comment ().

A test line with this text is inserted into the script: //Comment.

667

HCL OneTest™ UI

668

3. Type your comments in the comment line.

The comment text is displayed in italics. The comment lines are not executed during playback.

Note: You can only specify single-line comments. Multiple-line comments are not supported.

4. Click File > Save to save the modified script.

Repeating actions
You can repeat the action statements in the simplified script.

1. Select the test line or a group in the script editor.

Press and hold the Ctrl key while selecting multiple test lines.

2. Right-click, and select Repeat action ().

A Repeat title is added and the selected test lines are grouped into the Repeat group.

3. In the Properties-General view, specify the number of times to run the statements in the Repeat Count field.

4. Click File > Save to save the modified script.

Result

During script playback, the test lines in the Repeat group are run based on the repeat count.

Inserting conditional statements
You can insert conditional statements to verify the values of the variables in the script and perform actions in the

application.

Before you begin

All variables to be tested while running conditional statements must be captured during the script recording. To do

this, you must use the Get a Specific Property Value feature that is available in the verification point wizard while

recording the script to assign a control property to a variable in the script.

1. Select the test line in the script editor.

2. Right-click and select Insert Condition (If Clause) ().

Result

An If Then clause is inserted in the script editor. The selected test line is inserted in the Then group.

3. Select the If clause.

4. In the Properties-General view, specify the variable values that must be verified.

a. Select the variable that must be verified in the Left Side field.

The Left Side field lists all the variables that are declared during the script recording before the

selected test line.

b. Select the required parameter in the Compares To field.

Chapter 7. Test Author Guide

c. Type the variable value in the Right Side field.

For string values, you must specify the value using quotation marks, for example, "Visa". You can also

select another variable from the list if the first operand must be verified against another variable.

5. Optional: To run other test lines that must also run if the variable conditions are met, select and drag the test

lines into the Then group.

6. You can insert the Else clause for the test lines that must be run if the variable conditions are not met. Select

the If or Then clause, or any test lines in the Then group, right-click and select Insert Else Clause ().

Select and drag the test lines that must be executed if the variable conditions are not met into the Else group.

7. Click File > Save to save the script.

Result

During script playback, the variable conditions are checked and the required test lines are run.

Exemple

In this example, a conditional statement if (Item_text EQUALS "Schubert") has been inserted into the

functional test script. The test lines grouped under the Then group are run only when the value of the variable

Item_text is Schubert. This script, when run on the ClassicsJavaA application, will place the order only if the value of

the variable Item_text is Schubert.

 Start Application ClassicsJavaA
 ClassicsCD
 Click tree2 at Composers->Schubert->Location(PLUS_MINUS)
 Click tree2 at Composers->Schubert->String Quartets Nos. 4 & 14
 Click Place Order
 Member Logon
 Click OK
 Place an Order
 Get Property Item: text
 if (Item_text EQUALS "Schubert")
 Then
 Click Card Number (include the spaces)
 Type Value 12345678
 Click Expiration Date
 Type Value 12/12
 Click Place Order
 Message
 Click OK
 ClassicsCD
 Close ClassicsCD

Specifying the playback options for a simplified script
You can set the wait time for a control to be displayed or pause an execution of a test line for a simplified script.

Before you begin

The test application might take some time to load or refresh the controls during script playback. This might result in

an exception or playback failure. You can set the options to wait for a control or pause an execution of a test line.

To wait for the control to be displayed in the test application during playback:

669

HCL OneTest™ UI

670

1. Select the test line in the script editor.

Result

The Properties view displays the details of the selected test line.

2. Click the Playback tab in the Properties view. Type the time in seconds in Wait for the control to be displayed.

3. Click File > Save to save the changes.

Result

During script playback, the action on the control that the test line refers to is performed only after waiting for

the control to be displayed in the test application for the specified time.

Pausing an execution of a test line

About this task

You can pause or delay running a test line during script playback. You can set this option for delaying the run of the

test line so that the application is started or wait for the application to populate the data in the control.

1. Select the test line in the script editor.

Result

The Properties view displays the details of the selected test line.

2. Click the Playback tab in the Properties view. Type the time in seconds in the Pause execution for field.

3. Click File > Save to save the changes.

Result

During script playback, running the test line is delayed for the specified time.

Handling exceptions during script playback
If an exception occurs during script playback, you can specify how HCL OneTest™ UI handles these exceptions.

Before you begin

Various situations can cause playback exceptions. Some common exceptions are as follows: a control is not found,

a control is ambiguous, and a weak recognition. You can set the conditions for handling exceptions during script

playback for each test line in the script.

To set the conditions for handling the exceptions for a test line during script playback:

1. Select the test line in the script editor.

Result

The Properties view displays the details of the selected test line.

2. Specify the type of action that must be performed if an exception occurs while a test line is running during

script playback.

You can select any action such as Stop, Skip and Continue , or Retry from the list for any of the following

exceptions:

◦ Control not found

◦ Ambiguous control

◦ Weak recognition

Chapter 7. Test Author Guide

◦ Control sub item not found

◦ Unexpected error

3. Click File > Save to save the changes.

Specifying the log details for a test script
You can specify the message to be displayed in the log for a test line that has run. You can also specify the type of

screen capture that must be taken during playback and displayed in the log so that you can view the state of the

control or the screen in the test application.

1. Select the test line in the script editor.

Result

The Properties view displays the details of the selected test line.

2. Click the Log tab in the Properties view.

3. To capture a snapshot of the control or the screen in the test application while running the test line, select

either Control Snapshot or the Screen Snapshot option.

4. To display a message in the log for a test line that has run, indicate whether to display an information, warning

or an error message with the description.

5. Click File > Save to save the changes.

Deleting a test line
You can delete a test line from a script in the script editor. The application visual that is captured and displayed while

recording the test script is not deleted from the Application view.

1. Select the test line in the script editor.

2. Right-click and select Delete action ().

3. Click OK in the confirmation message window.

Result

The test line is deleted from the script.

Note: You can undo the delete actions to restore the test lines in the script. You also have the option

to redo the delete actions.

Working with application visuals
Application visuals are snapshots of the controls or screens of the test application that are captured while recording

scripts. The visuals of the test application are captured only if both the simplified scripting and the application visuals

feature preferences are enabled.

Application visuals provide a quick way to view application controls and also modify the script without opening the

test application.

671

HCL OneTest™ UI

672

Using the application visuals, you can modify the test script to test additional application controls, create or edit

verification points, or insert data-driven commands into the script without opening the application under test.

Note: The application visuals feature works only with JRE version 1.4 and above.

Enabling application visuals
You can enable the application visuals feature so that HCL OneTest™ UI captures the application controls and their

properties during recording. You can also specify whether the verification points or data-driven command feature in

the application visuals must be enabled so that you can insert those elements into the script using the application

visuals without opening the test application.

Before you begin

Prerequisite: The simplified scripting feature must be enabled. The application visuals feature is not available for

Java scripting.

1. Click Window > Preferences.

2. In the Preferences window, click Functional Test > Simplified Scripting > Application Visuals.

3. Select Enable Application Visuals.

By default, this feature is enabled with the simplified scripting.

4. Optional: You can enable the following application visuals option so that you can insert verification points and

data driven commands into the script using application visuals:

a. Select Insert Data Driven Commands to insert the data-driven commands into the script from

application visuals.

b. Select Show Verification Point Dialog to use the verification point wizard while inserting the data

verification points into the script using application visuals.

c. Select Enable capturing of verification on test data to insert verification points into the test script

using application visuals.

5. Click Apply, and then click OK.

Inserting an application control into the script by using an application visual
You can modify a test script to test additional application controls by inserting controls into the script by using an

application visual.

Before you begin

Prerequisite: The visuals of a test application are captured only if both the simplified scripting and the application

visuals feature preferences are enabled during recording. The Application View displays the application visuals that

can be used for inserting additional controls into the script for testing without opening the test application.

About this task

To insert a control into a test script:

Chapter 7. Test Author Guide

1. Select the test line in the script editor that refers to the required application visual of the test application.

The application visual that contains the control is displayed in the Application view.

Tip: The thumbnail pane in the Application view displays images of all the application visual that are

captured for the project. You can select the required application visual image in the thumbnail pane

and view the application visual in the Application view.

2. In the Application view, point to the control that you want to insert into the test script. The control is

highlighted in red.

3. Right-click and select Insert control name control > action on the control.

The actions that can be performed on the control are listed when you select a control in the Application view.

Result

The test line for performing the action on the control is inserted into the test script. You can drag the test line

in the script editor to get the required sequence of test lines in the script.

Tip: To insert a control into the script, you can also drag the control from the application visuals to

the script editor. The test line for performing the default action on the control is inserted into the test

script.

4. Click File > Save to save the modified test script.

Note: You can change the action on the control or set the playback or log details for the inserted test

line in the Properties view.

Updating the application visuals in the Application view
The application visuals are captured when you record simplified scripts. If the test application is changed after you

record the script, you can update the current application visuals with updated visuals from the test application.

Before you begin

Prerequisite: The required window or the user interface of the test application must be opened.

1. Select the test line in the script editor that refers to the required application visual of the test application.

The application visual is displayed in the Application view.

2. Right-click the application visual, and click Update Visual.

3. On the Select an Object wizard page, click the Object Finder () and drag it into the application over the

control to add to the Application view. For other methods of selecting objects, see Select an Object on

page 1544.

4. On the Update Visual Objects page, all the application visuals that are captured from the selected window or

user interface are displayed. Select the visual object to update from the list.

5. Click Finish.

673

HCL OneTest™ UI

674

Result

The application visual in the Application view is updated with the application visual from the test application.

Switching to Java scripting
You can switch to Java scripting to insert Java code to perform additional operations such as extending an API or

functions that cannot be performed directly in the simplified script editor. To use both the simplified script and Java

scripting, you must use the Insert Java Code Snippet or Insert Java Method feature that is available in the simplified

script editor and switch to Java scripting. If you modify the Java script directly without using these features, the Java

script changes are lost and the simplified script runs during playback.

Use the Insert Java Method feature to insert a method to logically group the lines of code. You can call the Java

method from different locations in the script using the Java Code Snippet feature.

Use the Insert Java Code Snippet feature to insert a few lines of code.

When you insert Java custom code, a test line in the simplified script editor indicates that Java code or a Java

module is inserted in the Java script editor. The Java code snippets are added between the test lines as indicated in

the simplified script editor. A block of comments is added in the Java script editor, indicating the start and the end

points for adding the Java code. The Java method is added at the end of the Java script. During playback, the Java

code snippets and the Java method are run.

Note: If you have generated simplified scripts and switch to Java scripting mode permanently, you can edit

the Java code outside the start and the end points and continue working with Java scripting. Ensure that you

do not edit the simplified scripts. All the changes in the Java code are lost and the updated simplified script is

run during playback.

Inserting a Java code snippet
You can insert a Java code snippet to perform additional operations that are not supported by the simplified scripts.

The Java code snippet runs during script playback.

Before you begin

Prerequisite: Knowledge of Java programming

1. Select the test line in the simplified script editor. Right-click and select Insert Java Code Snippet ().

Result

This line is inserted after the selected test line: Click here to tag the Java snippet

2. To easily identify the Java code in the Java editor, select the inserted test line and replace the test line text by

typing a tag for the Java code.

3. Click File > Save to save the simplified script.

4. Click Java editor that is displayed next to the Script editor.

Result

Chapter 7. Test Author Guide

The inserted Java tag is displayed as a comment with the start and the end point for inserting the Java code

in the Java editor.

5. Type the Java code within the start and the end comment section.

6. Click File > Save to save the Java script.

Result

During the script playback, the inserted Java code also runs.

Note: Do not edit the Java code outside the start and the end points that are inserted when you use

the Insert the Java code snippet feature in the simplified script editor. All the changes to the Java

script are lost if you later edit the simplified script.

Inserting a Java method
You can insert a Java method to perform additional operations that are not supported by the simplified scripts. The

Java method is added at the end of the Java script. You must insert a Java code snippet and call the Java method.

Before you begin

Prerequisite: Knowledge of Java programming

1. Select the test line in the simplified script editor. Right-click and select Insert Java Method ().

Result

The test line JavaModule is inserted after the selected test line.

2. Click File > Save to save the simplified script.

3. Click Java editor that is displayed next to the Script editor.

Result

The Java method is displayed as a comment with the start and end points for inserting the Java code in the

Java editor.

4. Type the Java code within the comment section.

5. Click File > Save to save the Java script.

Result

During script playback, the inserted Java code runs.

Notes:

675

HCL OneTest™ UI

676

◦ You must call the Java method from a Java code snippet. The Java method runs when the

Java code snippet runs.

◦ You can also call the Java method from a different script within the functional test project.

◦ Do not edit the Java code outside the start and end points that are inserted when you use the

Insert Java Method feature in the simplified script editor. All the changes to the Java script are

lost if you later edit the simplified script.

Exporting a simplified script
You can export the simplified scripts in a .txt, .xml or .html format so that the script can be viewed outside HCL

OneTest™ UI.

1. Click File > Export.

2. On the Export wizard page, click Functional Test > Simplified Scripts, and then click Next.

3. Select the simplified scripts to export.

4. Select the file type for the simplified script in the Output format field.

5. Specify the location to export the simplified script.

6. Click Finish.

Java scripting
When you record a functional test script to test an application, simplified scripts are generated and displayed in the

Script editor. The corresponding Java test script is displayed in the Java editor.

While working with the simplified scripts, you can switch to Java scripting to use some of the Java functions such

as APIs by using the Insert Java snippet and Insert Java module features available in the simplified script editor.

Advanced users can work with Java scripting instead of working with the simplified test scripts.

The simplified scripting feature is enabled by default in the HCL OneTest™ UI preferences page. To work with Java

scripting, you can disable the simplified scripting feature. The application visuals feature is not available while

working with Java scripts, you must instead use the functional test object maps.

Recording a Java™ test script
Java™ scripts are generated when you work with the simplified scripts. You can switch to Java™ scripting using the

Insert Java™ snippet and Insert Java™ module features in the simplified script editor.

Before you begin

Advanced users can opt to work solely with Java™ scripting. Use the recording feature of HCL OneTest™ UI to record

actions on the test applications. The actions on the test applications are generated in the form of a Java™ test script

when you stop recording.

Prerequisites:

Chapter 7. Test Author Guide

• Disable the Simplified Scripting feature on the HCL OneTest™ UI Preferences page. Alternatively, if you want

to work with Java™ scripting only for the current script you will record, select Java Scripting from the Select

Mode list in the Record a Functional Test Script dialog box.

• The test application and the required environments must be configured for functional testing.

HCL OneTest™ UI automatically enables the environments for functional testing. As a result, you can directly

record functional test scripts without enabling components manually. The automatic enablement takes place

under certain conditions and has limitations. For more information about the conditions and limitations, see

Automatically enabled environment for functional testing on page 582.

• A functional test project has been created.

About this task

All functional testing scripts use a default helper superclass. You can create your own helper superclass if you want

to add additional methods or override the methods in RationalTestScript. For more information, see Changing the

Default Script Helper Superclass on page 683.

1. Click Record a Functional Test Script().

2. In the Record a Functional Test Script dialog box on page 1522, select the project for the script to be a part

of, and then type a name for the script.

Note:

◦ Script names cannot contain spaces or the following characters: $ \ / : & * ? " <> | # % -

◦ The script name is appended to the project path. The project path and script name together

should not exceed 230 characters.

3. Make sure that Java Scripting is selected in the Select Mode list. You can make Java™ scripting as the default

script mode by selecting the Default check box.

4. Click Next.

5. Optional: In the Select Script Assets page, modify the test object map and test dataset if you do not want to

use the default settings.

6. Click Finish to start recording.

The Recording Monitor opens and the recording starts.

7. In the Recording Monitor toolbar, click to start your test application.

8. Perform test actions in the application.

Note: To record the action of moving the mouse over a link that has a tooltip, move the mouse over

the link so that the tooltip is displayed, and press Shift. This notifies the recorder to capture the action

in the script.

9. Optional: You can record verification points or data-drive your test script using the tools available in the

Recording Monitor toolbar while recording the script.

677

HCL OneTest™ UI

678

10. Optional: To insert statements to call another script, specify log information, timer or comments during

recording, use the Insert Script Support Commands feature available in the Recording Monitor toolbar.

11. Close your application, if you want closing the application to be part of the script.

12. Click Stop recording () when you finish recording.

Result

A Java™ test script is generated and displayed in the Java editor.

Creating a new test script without recording
As an alternative to recording, you can create a script to enter Java™ code manually.

About this task

In the new script, HCL OneTest™ UI includes import statements for files you need to compile the script and comments

that contain archiving information. HCL OneTest™ UI uses the script name as the class name and set up the testMain

file, where you can add the commands to include in the script.

All functional test scripts use a default helper superclass. You can create your own helper superclass if you want

to add additional methods or override the methods in RationalTestScript. For more information, see Changing the

Default Script Helper Superclass on page 683.

1. Click Create an Empty Functional Test Script () on the Functional Test toolbar.

2. In the Create an empty Functional Test script dialog box on page 1469, enter or select a folder for the script

and type a name in Script name. The script name must be a valid Java™ class name.

3. Check Add the script to Source Control if you want the script to be under source control. For more

information, see About Software Configuration Management on page 747.

4. Take one of the following steps:

a. (Optional) To use a different test object map, helper superclass, or test dataset, click Next.

In the Select Script Assets page on page 1555, select any of the following test assets and click Finish:

▪ Select and set a default test object map.

▪ Select and set a default helper superclass.

▪ Select a test dataset.

▪ Select a dataset record selection order.

b. To create the new script, click Finish.

Result

Functional Test creates a local test object map for your script and displays the script in the Projects

View.

5. Start adding code to the script.

You can use the Test Object Map to add objects and methods to the script.

Chapter 7. Test Author Guide

To insert any features into the script, such as a call script command, log entry, timer, script delay, or comment,

click Insert Recording into Active Functional Test Script () on the Functional Test toolbar. On the Recording

toolbar, click Insert Script Support Commands().

You can also use buttons on the Recording toolbar to start an application from the script or create a

verification point.

Recording in an existing script
In a functional test script, you can start recording at the cursor location. By starting to record in a script, you can start

applications, insert verification points, and add script support functions.

1. Place the cursor in the script where you want to begin recording.

2. Click Script > Insert Recording

The Recording Monitor opens and recording begins.

3. To start your test application, on the Recording toolbar click Start Application().

4. Perform any actions in the application.

◦ To record a verification point, locate the object in your application to test and click Insert Verification

Point or Action Command.

◦ To insert any features, such as a call script command, log entry, timer, script delay command, or

comment into the script, click Insert Script Support Commands.

5. Close your application, if you want closing the application to be part of the script.

6. When you are finished recording, click Stop Recording.

TheHCL OneTest™ UI window is restored and the script is displayed.

Recording scripts to test HTML applications
Record scripts to test HTML applications on a single browser as you record any functional test script.

Before you begin

Important: If you enabled Mozilla Firefox or Google Chrome browser for HCL OneTest™ UI, the latest Java

update must be associated with the browser. If not done, security messages prompt up when you open the

browser and Java will be blocked.

About this task

There are two basic steps for recording scripts:

679

HCL OneTest™ UI

680

• Enable a web browser on page 588. Before you can use a web browser to test an application, you must

enable it. Click Configure > Enable Environments for Testing to enable your environments for testing. You

must enable the supported versions of Firefox, Microsoft Edge, or Internet Explorer browsers before you

record functional tests for HTML applications.

• Configure your HTML applications for testing on page 603. Click Configure > Configure Applications for

Testing to specify information about your application and its environment. If you plan to test Microsoft®

HTML Applications (MSHTA), run mshta.exe to configure each application that you want to test.

Note: There are special considerations when recording cross-platform/cross-browser scripts on page 680.

Related information

Enabling Microsoft Edge to test HTML applications on page 589

Recording cross-browser and cross-platform scripts
This topic provides an overview of the procedures to set up your environment to record cross-browser scripts.

1. Click Configure > Enable Environments for Testing to enable browsers for testing. For example, any of the

supported versions of Firefox or Internet Explorer that you plan to use for testing must be enabled.

2. Designate any one browser as a default:

a. In the Web Browsers field, click the name of the browser.

b. Click Set as Default.

c. Click OK.

3. Click Configure > Configure Applications for Testing to specify information about your application and its

environment.

4. Start recording a functional test script.

5. Start your test application from the Record toolbar. HCL OneTest™ UI opens the HTML page you specify in the

default browser.

6. Perform any actions and create verification points on your test application. Stop recording.

7. Run the script.

HCL OneTest™ UI plays back the script in the default browser.

8. Designate the other browser as a default:

a. In the Web Browsers field, click the name of the other browser.

b. Click Set as Default.

c. Click OK.

9. Run the script. HCL OneTest™ UI plays back the script in the browser you defined as the default in step 8.

Chapter 7. Test Author Guide

Displaying test object information
You use the Test Object Inspector to examine graphical components visible in the running application and display

information about those objects, such as parent hierarchy, inheritance hierarchy, test object properties, non value

properties, and method information.

1. Start the application that contains the objects you want information about.

2. Start the Test Object Inspector in either of two ways:

◦ From the product menu, click Run > Test Object Inspector .

◦ From the product toolbar, click the Open Test Object Inspector button .

The Test Object Inspector does not display information for the test object under the cursor.

For an enabled Java™ or already-infested application, Test Object Inspector automatically tracks the cursor

and performs live updates immediately after you open the application.

Note: If the application is not active, Test Object Inspector does not capture objects in the application.

You must pause on the application to force the infestation before Test Object Inspector can track the

cursor and perform live updates against that application.

3. If the application is not Java-enabled or already-infested, hover the mouse over the object in the application,

and press Shift.

Test Object Inspector captures the object and copies the test object information displayed in the Test Object

Inspector window to the system Clipboard.

To select another test object, click the Resume button and move your cursor to the other test object.

4. Use the View menu to select the type of information to display.

Getting a property value
You can get a single property value for the selected object while you are recording. It puts a getProperty into your

script and returns the value during playback.

Before you begin

Prerequisites: The test application is started

About this task

This information is useful if you need to make a decision based on the property. For example, you might want to query

whether a button is enabled.

1. Click the Record a Functional Test Script button on the product toolbar.

2. In the Recording Monitor, click the Start Application button to start your test application.

3. Locate the object in your application that you want to get a property for.

681

HCL OneTest™ UI

682

4. In the Recording Monitor, click the Insert Verification Point or Action Command button.

5. On the Select an Object page of the Verification Point and Action Wizard, use the Object Finder to select the

object in your application. Once you have selected the object, click Next.

6. On the Select an Action page, click the Get a Specific Property Value option and click Next.

7. When you selected the object, the property list was automatically created and displayed in the Property Name

and Value fields on the Insert getProperty Command Page. Select the property that you want to get. Click

Next.

8. On the Variable Name page, verify the information listed in the Object, Property, and Data Type fields.

a. In the Variable Name field, accept the default suggestion listed in this box, or type a new name. The

default name is based on the name of the object and the property you are testing.

b. The Declare the variable in the script option is selected by default. You need to declare a variable the

first time you use the variable name. If you use the same variable name again in the same script, clear

this option after the initial instance.

9. Click Finish.

Result

The statement containing the getProperty will then be written into your script at the point you inserted it.

Exemple

Example

If you get the label property on a button called Place Order, this is what would be written into your script:

String PlaceOrder_label = (String)placeOrder().getProperty("label");

Setting a wait state for an object
This feature is used to set a wait state for an object during playback to check for its existence. This is useful when

waiting for an object right after starting your application, or after other actions that may take a long time.

1. Click the Record a Functional Test Script button on the product toolbar.

2. In the Recording Monitor, click the Start Application button to start your test application.

3. Locate the object in your application that you want to wait for.

4. In the Recording Monitor, click the Insert Verification Point or Action Command button.

5. On the Select an Object page of the Verification Point and Action Wizard, use the Object Finder to select the

object in your application. Once you have selected the object, click Next.

6. On the Select an Action page, click the Wait for Selected Test Object option and click Next.

a. To set a wait state for the object, either use the defaults, or set your own time. Maximum Wait

Time is the maximum number of secondsHCL OneTest™ UI will wait for the object to appear in

your application during playback. Check Interval is the number of seconds between times thatHCL

OneTest™ UI will check for the object during the wait period.

Chapter 7. Test Author Guide

b. Check Use the defaults.HCL OneTest™ UI check for the existence of the object in your application

every 2 seconds, for up to 120 seconds.

c. To set your own time, clear the Use the defaults check box and type in your own values for Maximum

Wait Time and Check Interval.

7. Click Finish.

The statement containing the waitForExistence will then be written into your script at the point you inserted

the object.

Recording and playing back double byte characters on Chinese systems
The following information pertains to record and playback of DBCS on Chinese systems.

Simplified Chinese:

The only Input Method Editor (IME) that is supported for recording and playing back scripts using HCL OneTest™ UI

on Simplified Chinese systems is the MS-PinYin IME. During script playback this IME will automatically be activated

for the input of Chinese characters, provided the IME is present on your system. Use of other IMEs for recording is not

supported and may yield unexpected results.

Traditional Chinese:

Two IMEs are supported for the recording and playback of Traditional Chinese characters: the New Phonetic and New

ChangJie IMEs. During script playback the New Phonetic IME will automatically be activated for input of Chinese

characters and if that is not present, the New ChangJie IME will be used. Use of other IMEs for recording is not

supported and may yield unexpected results.

Changing the default script helper superclass
By default, all Functional Test scripts extend the RationalTestScript class, and thereby inherit a number of

methods (such as callScript). Advanced users may want to create their own helper superclass which extends

RationalTestScript and can add additional methods or override the methods from RationalTestScript.

About this task

You can specify a helper superclass that HCL OneTest™ UI will use whenever you create or record a script in your

project. This default superclass is specified in the Functional Test Project Properties page. You can also specify

a helper superclass for an individual script in the Functional Test Script Properties Page. Once a script has been

created, it retains the reference to the default superclass as its own helper superclass.

To change the default script helper superclass for a project:

1. Select a project in the Projects view.

2. Right-click and select Properties.

3. Click Functional Test Project.

683

HCL OneTest™ UI

684

The Functional Test Project Properties page opens. The helper superclass listed here will be used by default

for all new scripts created or recorded in this project.

Note: This is a user-specific preference and will not be shared by other users of this project.

4. To change the default superclass for the selected project, enter the fully-qualified class name of your custom

helper superclass in the Default Script Helper Superclass field. Note that your helper superclass must extend

RationalTestScript.

Results

Note: If you change your superclass and then want to reset it back to RationalTestScript later on, you can

either type RationalTestScript in the superclass field or just clear the field. Leaving this field blank resets the

script so that it uses RationalTestScript.

To change the script helper superclass for an individual script:

1. Select a script in the Projects view.

2. Right-click and select Properties.

3. Click Functional Test Script.

The Functional Test Script Properties Page opens. The helper superclass listed here will be used for the script

you selected.

4. To change the default superclass for the selected script, enter the fully-qualified class name of your

custom helper superclass in the Helper Superclass field. Note that your helper superclass must extend

RationalTestScript.

Results

Note: If you change your superclass and then want to reset it back to RationalTestScript later on, you can

either type RationalTestScript in the superclass field or just clear the field. Leaving this field blank resets the

script so that it uses RationalTestScript.

Script helper superclass/base class
A helper superclass or base class is an optional, user-written class that provides override support for base-level

methods, in particular, the event handler methods.

See com.rational.test.ft.script in the HCL OneTest™ UI API Reference for more information on superclass.

Creating a script helper superclass
By default, all Functional Test scripts extend the RationalTestScript class, and thereby inherit a number of methods

(such as callScript). If you are an advanced user, you might want to create your own helper superclass, which extends

RationalTestScript and adds additional methods or overrides the methods from RationalTestScript.

Chapter 7. Test Author Guide

Before you begin

About this task

To create a script helper superclass for a script:

1. Click File > New > Helper Superclass or click the View Menu button next to the New button on the product

toolbar and click Helper Superclass.

The Create Script Helper Superclass dialog box opens.

2. In the folder field, either enter the appropriate path to the folder or use the navigation tools (Home ,

Back , and Go Into) to select the path that contains the project for which you want to create a helper

superclass.

3. Select a project name in the project list.

4. Enter a class name in the Script name field.

5. Click Finish.

HCL OneTest™ UI creates a new script in the Java™ Editor that you can use to manually enter Java™ code. The

cursor appears at the top of the script.

6. Enter the methods and member variables you want to make available to the script.

Results

Note: When you create a script helper superclass, you can override base-level functionality from the

RationalTestScript class.

What to do next

Changing the default script helper superclass
By default, all Functional Test scripts extend the RationalTestScript class, and thereby inherit a number of

methods (such as callScript). Advanced users may want to create their own helper superclass which extends

RationalTestScript and can add additional methods or override the methods from RationalTestScript.

About this task

You can specify a helper superclass that HCL OneTest™ UI will use whenever you create or record a script in your

project. This default superclass is specified in the Functional Test Project Properties page. You can also specify

a helper superclass for an individual script in the Functional Test Script Properties Page. Once a script has been

created, it retains the reference to the default superclass as its own helper superclass.

To change the default script helper superclass for a project:

1. Select a project in the Projects view.

2. Right-click and select Properties.

3. Click Functional Test Project.

685

HCL OneTest™ UI

686

The Functional Test Project Properties page opens. The helper superclass listed here will be used by default

for all new scripts created or recorded in this project.

Note: This is a user-specific preference and will not be shared by other users of this project.

4. To change the default superclass for the selected project, enter the fully-qualified class name of your custom

helper superclass in the Default Script Helper Superclass field. Note that your helper superclass must extend

RationalTestScript.

Results

Note: If you change your superclass and then want to reset it back to RationalTestScript later on, you can

either type RationalTestScript in the superclass field or just clear the field. Leaving this field blank resets the

script so that it uses RationalTestScript.

To change the script helper superclass for an individual script:

1. Select a script in the Projects view.

2. Right-click and select Properties.

3. Click Functional Test Script.

The Functional Test Script Properties Page opens. The helper superclass listed here will be used for the script

you selected.

4. To change the default superclass for the selected script, enter the fully-qualified class name of your

custom helper superclass in the Helper Superclass field. Note that your helper superclass must extend

RationalTestScript.

Results

Note: If you change your superclass and then want to reset it back to RationalTestScript later on, you can

either type RationalTestScript in the superclass field or just clear the field. Leaving this field blank resets the

script so that it uses RationalTestScript.

Using script services
The Script Support Functions dialog box contains tabs that enable you to insert code into the current Functional

Test script to perform a variety of tasks, such as inserting a callScript command, a log message. a timer, a sleep

command, or a comment into a Functional Test script.

The Script Support Functions dialog box has the following tabs:

• Call Script -- Use to insert a statement to call another test script.

• Log Entry -- Use to insert a log message into the test script. During playback, this information is displayed in

the log.

Chapter 7. Test Author Guide

• Timer -- Use to insert a timer into the current script and to stop the timer. Timers remain running until you stop

them explicitly or exit HCL OneTest™ UI.

• Sleep -- Use to insert a sleep command into your Functional Test script to delay the script.

• Comment -- Use to insert a comment into a Functional Test script.

• Clipboard -- Use to insert a system clipboard commands into a Functional Test script.

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar. If

editing, click the Insert Recording into Active Functional Test Script button on the Functional Test toolbar and

click the Insert Script Support Commands button on the Recording Monitor toolbar.

Calling a script from a functional test script
While recording or editing a functional test script, you can insert a call to a previously recorded script. This lets you

avoid repeatedly recording similar actions on the application-under-test by taking advantage of scripts that already

exist.

Before you begin

About this task

To call a script from a functional test script:

1. If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar.

If editing:

a. Position the pointer in the script where you want to place the callScript command.

b. Click the Insert Recording into Active Functional Test Script button on the product toolbar.

c. Click the Insert Script Support Commands button on the Recording Monitor toolbar.

2. Click the Call Script tab in the Script Support Functions dialog box.

3. In the Script Name field, select from the list the name of the script you want to call or enter the name.

4. In the dataset Iterator Count field, do one of the following:

Choose from:

◦ Type or select the number of records in the dataset.

◦ Select Iterate Until Done to access all records in the dataset.

◦ Select Use Current Record to use the same record across the call script.

5. Click Insert Code.

HCL OneTest™ UI inserts the callScript ("scriptname") code at the cursor location, where scriptname is the

name you selected in the Script Name field.

687

HCL OneTest™ UI

688

6. Click Close to remove the Script Support Functions dialog box from the screen.

Note: You can also insert one or more callScript commands from the Functional Test Projects view .

What to do next

Inserting a log message into a functional test script
You can insert a log message into a functional test script and indicate whether it is a message, a warning, or an error.

During playback, HCL OneTest™ UI inserts this information into the log.

About this task

To insert a log message into a functional test script:

1. If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar.

If editing:

◦ Position the pointer in the script where you want the log message.

◦ Click the Insert Recording into Active Functional Test Script button on the product toolbar.

◦ Click the Insert Script Support Commands button on the Recording Monitor toolbar.

2. Click the Log Entry tab on page 1509 in the Script Support Functions dialog box.

3. In the Message to write to the log field, enter the message text.

4. In the Result section, select either Information, Warning, or Error.

5. Click Insert Code.

HCL OneTest™ UI inserts code in the script based on the option you selected in the Result section, where

message is the text you entered:

logInfo(" message")

logWarning(" message")

logError(" message")

Note: You can pass image as an second argument to these methods. For example, when you want to

get a screen capture along with an error message, you can use the second argument as shown in the

following example:

logError("error message here", getRootTestObject().getScreenSnapshot());

6. Click Close to remove the Script Support Functions dialog box from the screen.

Chapter 7. Test Author Guide

Using timers with functional test scripts
You can insert any number of timers with different names into the same script to measure the time it takes to perform

a variety of separate tasks. You can nest timers within other timers (starting and stopping the second timer before

stopping the first timer), and you can overlap timers (stopping the second timer after stopping the first timer).

About this task

However, you should stop a timer before starting that same timer again. If you start the same timer again, HCL

OneTest™ UI changes the starting time. When you stop a timer, HCL OneTest™ UI writes a message to the log that

indicates the time elapsed from when the timer started. If you stop the same timer multiple times, HCL OneTest™ UI

does not restart the timer. You should call timerStart if you want to restart the timer.

When you play back a script that includes timers, you can view the elapsed time in the log.

To insert a timer while recording or editing a script:

1. If recording, click the Insert Script Support Commands button on the Recording toolbar.

If editing:

a. Position the pointer in the script where you want to place the timer.

b. Click the Insert Recording into Active Functional Test Script button on the product toolbar.

c. Click the Insert Script Support Commands button on the Recording toolbar.

2. Click the Timer tab on page 1539 in the Script Support Functions dialog box.

3. In the Start Timer: Name field, type a timer name. If you start more than one timer, make sure you give each

timer a different name.

4. Click Insert Code.

HCL OneTest™ UI inserts the timerStart("name")code at the cursor location in the script where name is the

name you entered in Start Timer: Name field.

5. Perform the activity you want to time.

6. Immediately after the timed activity, stop the timer:

a. Click the Insert Script Support Commands button on the Recording toolbar.

b. Click the Timer tab in the Script Support Functions dialog box.

c. In the Stop Timer: Timers field, select from the list the timer that you want to stop.

If you do not see the timer name in the list, type the name in the combo box.

d. Click Insert Code.

689

HCL OneTest™ UI

690

HCL OneTest™ UI inserts the timerStop("name") code at the cursor location in the script where name is

the name you selected in Stop Timer: Timers field.

Note: Do not insert a timerStop statement before the corresponding timerStart statement.

Setting delays and sleep states for functional test script playback
You can insert a sleep command into your functional test script to delay the script for the amount of time you specify.

About this task

To insert a sleep code while recording or editing a script:

1. If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar.

If editing:

a. Position the pointer in the script where you want to insert the Sleep command.

b. On the product toolbar, click the Insert Recording into Active Functional Test Script button .

c. On the Recording Monitor toolbar, click the Insert Script Support Commands button .

2. In the Script Support Functions dialog box, click the Sleep tab on page 1539.

3. In the (seconds) field, enter the time in seconds you want to delay the Functional Test script execution. You

can use floating point numbers for the seconds; for example, sleep(0.1) waits for 1/10 of a second.

4. Click Insert Code.

HCL OneTest™ UI inserts the sleep(seconds) code at the cursor location in the script where seconds is the

time you entered in the (seconds) field.

Inserting comments into a functional test script
During recording or editing, you can insert lines of comment text into a Functional Test script. Comments are helpful

for documenting and editing scripts.

About this task

To insert a comment into a script during recording or editing:

1. If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar.

2. If editing:

a. Position the pointer in the script where you want to insert the comment.

b. On the product toolbar, click the Insert Recording into Active Functional Test Script button .

c. On the Recording Monitor toolbar, click the Insert Script Support Commands button .

3. In the Script Support Functions dialog box, click the Comment tab on page 1465.

Chapter 7. Test Author Guide

4. In the Comment to add to the script field, type the comment. HCL OneTest™ UI does not automatically wrap

the text. Put returns after each line.

5. Click Insert Code.

HCL OneTest™ UI inserts the text with the appropriate comment delimiter (//) preceding each line.

Inserting clipboard commands into a functional test script
During recording or editing, you can insert system clipboard commands into a functional test script. You can

also insert into a functional test script a verification point test command against the active content in the system

clipboard.

About this task

To insert a clipboard command into a script during recording or editing:

1. If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar.

2. If editing:

a. Position the pointer in the script where you want to insert the comment.

b. On the functional testing toolbar, click the Insert Recording into Active Functional Test Script button

.

c. On the Recording Monitor toolbar, click the Insert Script Support Commands button .

3. In the Script Support Functions dialog box, click the Clipboard tab on page 1463.

4. To insert the clipboard verification point test command into the script, select the Verification Point tab and

perform the following:

a. Type the verification point name in the VP Name field.

b. Click the Convert Value to Regular Expression button to convert the system clipboard value to a

regular expression pattern.

This is matched at run time against the system clipboard contents.

c. Click the Evaluate Regular Expression button to evaluate the current pattern against the system

clipboard contents.

Result

In the Evaluate Regular Expression on page 1532 dialog box, the Pattern and Match Against Value

fields contain the current value. To try an expression, change the value in the Pattern field and click the

Evaluate button. The Result indicates whether the expression matched. Click OK.

d. Click the Insert Code button to insert the clipboard verification point command into the functional test

script.

5. You can also have clipboard text automatically pasted into an input field during test runs. To assign the

clipboard text to a script variable, perform the following: and perform the following:

691

HCL OneTest™ UI

692

a. Select the Assign Text tab

b. Type the script Variable Name to which you want to assign the clipboard text.

c. Select the Precede variable assignment with type declaration check box to precede the variable name

with a string type declaration.

d. Click the Insert Code button to insert in the functional test script the command for assigning the

clipboard content into a local variable.

6. To update the contents of the system clipboard, select the Set Text tab and perform the following steps:

a. In the Set clipboard text to the following value field, type the value for the clipboard.

b. Click the Insert Code button to insert into a functional test script the command for setting the content

of the clipboard to the supplied value.

Starting your test applications
When recording tests on your application, it is best to have HCL OneTest™ UI start the application during recording.

This makes playing back the tests more reliable because the application configuration information is used. HCL

OneTest™ UI can open specified Java applications, HTML pages in your browser, or run executable applications.

1. During recording, click Start Application on the Recording toolbar.

The Start Application dialog box opens.

2. Click the arrow in the Application Name field to see the list of applications that you can test.

◦ Java™: Application name - java

◦ HTML: Application name - html

◦ Executable or batch files Application name - executable

3. Select the application to open, and click OK.

The dialog box closes and your application opens.HCL OneTest™ UI inserts a test line to start the application.

Note: You can configure your own applications so that the Application Name list includes the

applications and you can start them using this dialog box. You add your applications by clicking the

Edit button. For information on editing or adding application information see Configuring Applications

for Testing related topic.

HCL OneTest™ UI comes with several sample applications that the Application Name list includes. For

example, "ClassicsJavaA - java" is used in the HCL OneTest™ UI tutorial.

Renaming a test asset
You can rename simplified test scripts, Java test scripts, test object maps, or other files in a project.

About this task

When you rename a script, HCL OneTest™ UI renames all its related files, such as the helper script files, the private

object map, and any verification point files. When you rename a test object map, HCL OneTest™ UI updates

associated scripts with the new name.

Note:

Chapter 7. Test Author Guide

• You need to change any callScript commands in scripts that reference the old script name; otherwise,

HCL OneTest™ UI logs an error when you run those scripts.

• For HCL OneTest™ UI, Eclipse Integration, a Rename command is available in the Navigator view that

is part of the Eclipse Workbench. This Rename command only renames an individual file, not the

collection of files that makes up a Functional Test script. Therefore, do not use the Rename command

in the Navigator view to modify any Functional Test project assets.

1. From the Functional Test Projects view, right-click a script or test asset.

2. Click Rename.

3. Type the new test asset name in the New name box, and click Finish.

Note: If you rename a simplified script, the associated Java script is also renamed.

Saving test scripts and files
You can save a functional test script or file in several ways: save the current test script or file, save all test scripts and

files, save a functional test script or file with another name in a different location.

• To save the current test script of file, click File > Save from the HCL OneTest™ UI menu or click the Save

button on the product toolbar.

• To save all the test scripts and files, click File > Save All.

• To save a test script with another name, click File > Save Script scriptname As from the product menu.

Saving a test script with another name

1. Click File > Save Script scriptname As from the product menu to open the Save Functional Test Script As on

page 1535 dialog box.

2. In the Select a folder field, use the navigation buttons (Home , Back , and Go Into) to select the

appropriate path to the folder you want to use.

3. In the Script name field, enter a name that conforms to the Java™ naming conventions for the new script.

Note: The script name is appended to the project path. The project path and script name together

should not exceed 230 characters.

4. Click Finish .

HCL OneTest™ UI saves the script and all its related files, such as the helper script files, the private object map,

and any verification point files using the new name.

Saving a file with another name

About this task

693

HCL OneTest™ UI

694

Do not use this procedure to save a primary script class. A script is a collection of files that include the primary script

class, verification point files, helper class, and possibly a private object map. If you save only the primary script class

by using this procedure, the other files included in the script are not renamed and HCL OneTest™ UI cannot play back

the resulting file. To save a script and its related files, use the Save Script As dialog box

1. Click File > Save As in the product menu to open the Save As dialog box.

2. In the Enter or select the parent folder field, use the navigation buttons to select the appropriate path to the

folder you want to use.

3. In the File name field, enter the name for the new file.

4. Click OK .

Unlike the Save Script As dialog box, the Save As dialog box saves only the current file and not any related

files.

Deleting a functional test script
You can delete a functional test script from the Projects view or the Solution Explorer.

1. In the Projects view , right-click the script you want to delete.

2. Click Delete.

Result

HCL OneTest™ UI displays a message asking you to confirm the deletion.

3. Click Yes. Functional Test removes the project from memory and from the hard disk.

Tips for recording functional tests
Following are some tips on ways around some potential recording issues.

Enabling your JREs and Web browsers

You must enable your JREs for Java™ testing and your browsers for HTML testing. If your JREs or browsers are

not enabled, the Recording Monitor is blank when you try to record against a Java™ or HTML application. For this

reason, leave the Record Monitor in view while recording. If you see this symptom, you need to run the enablers. For

information, see topics Enabling Java Environments and Enabling Web Browsers.

Under certain conditions, you can start recording a script to test an application without having to prepare your

test environment. The components involved in running the test application and recording the script are enabled

automatically when you start recording. See Recording scripts without preparing the environment on page 582 for

more information.

Enabling and testing Eclipse shells and Eclipse RCP applications

HCL OneTest™ UI can be used to test Eclipse shell extensions. You must enable Eclipse, using the Eclipse Platforms

tab of the HCL OneTest™ UI enabler. If your Eclipse shell is not enabled, you will be able to tell because the Recording

Monitor will be blank when you try to record against it. For this reason, leave the Recording Monitor in view while

recording. If you see this symptom, you need to run the enabler. See the Eclipse Platforms Tab topic for information

Chapter 7. Test Author Guide

about enabling an Eclipse-based application. Note that HCL OneTest™ UI cannot be used to test an Eclipse in which

it itself is running (one in which the Functional Test perspective has been loaded). If you have the Functional Test

perspective loaded and you then close it, you will need to close and restart Eclipse itself before you can test.

You can test an instance of the Eclipse shell running from the same installation as HCL OneTest™ UI as long as

it uses a separate workspace. You can use the -data parameter to the eclipse.exe command line to specify the

workspace. See the Eclipse documentation for details.

Dynamic enablement of Windows®, and .Net applications

There is no enabler for Windows®, and .Net applications. Instead, HCL OneTest™ UI can dynamically enable these

applications. During recording, you will notice a delay when you first use the mouse to click a control, or type

keystrokes into one of these types of applications. During this delay the mouse will freeze. This delay is caused by the

dynamic enablement.

Once an application is dynamically enabled, it stays enabled until it is closed.

If you use one of the object selection wizards (for example while recording a verification point) on an application

before it is dynamically enabled, the objects in the application will not be highlighted. After the object is selected, the

application will be dynamically enabled by the wizard. After it is dynamically enabled, the highlighting mechanism will

work as usual.

Java™ script naming conventions

Scripts created in HCL OneTest™ UI, Eclipse Integration must follow Java™ Class naming conventions. For example,

script names cannot contain spaces or non-alphanumeric characters, nor can a script name begin with a number.

While it is not mandatory to do so, it is traditional to begin a Java™ class name with a capital letter. Names of

methods (such as verification point helper methods) have the same restrictions, but it is traditional to begin a

Java™ method with a lower case letter. Finally, when a class or method name is made up of multiple words, it is

traditional to capitalize the additional words. For example, you might use ApplicationMenuTest for a class name and

validateFileMenu() for a method name.

VB.Net script naming conventions

Scripts created in HCL OneTest™ UI, Microsoft Visual Studio .NET Integration must follow VB.Net Class naming

conventions. For example, script names cannot contain spaces or non-alphanumeric characters, nor can a script

name begin with a number. While it is not mandatory to do so, it is traditional to begin a VB.Net class name with a

capital letter. Names of methods (such as verification point helper methods) have the same restrictions, but it is

traditional to begin a VB.Net method with an upper case letter. Finally, when a class or method name is made up of

multiple words, it is traditional to capitalize the additional words. For example, you might use ApplicationMenuTest for

a class name and ValidateFileMenu() for a method name.

Changing state of an application while recording verification points

When you have the recorder paused to create a verification point, be aware that if you change the state of the

application in any way, it may affect your script. If you change the state of the application while the recorder is

695

HCL OneTest™ UI

696

paused, actions recorded after this could prevent the script from playing back because the application is in the

wrong state to play back the actions. Before you start to create the verification point, be sure to put the application

in whatever state you need it to be in. For example, if you need to do actions in the user interface to locate the object

you want to test, put the application in that state before you start the verification point.

Note: HCL OneTest™ UI offers an object selection method to access objects that may be difficult to select. In

the Select an Object page of the Verification Point and Action Wizard, there is a delayed object selector you

can use to pause the recorder while you access an object in the application. Actions done while the delay is in

effect will not be recorded.

Changing state of an application while recording a data-driven test

When you have the recorder paused to create a data-driven test, be aware that if you change the state of the

application in any way, it may affect your script. If you change the state of the application while the recorder is

paused, actions recorded after this could prevent the script from playing back because the application is in the

wrong state to play back the actions. Before you start to create the verification point, be sure to put the application

in whatever state you need it to be in. For example, if you need to do actions in the user interface to locate the object

you want to test, put the application in that state before you start the verification point. You may find it is convenient

to take advantage of the paused recorder to change the data contents of the controls you are going to data drive. This

way, the recorder will not record redundant actions to set the data contents of the controls.

Selecting objects shortcut

Here's a neat shortcut. While recording, you can drag the Verification Point and Action Wizard button on the

Record User Actions toolbar to immediately start selecting an object in your application. This is a shortcut for

selecting it from the Select an Object Page of the Verification Point and Action Wizard. You will then be in the wizard

after you select the object.

Recording scrolling actions

Scroll actions are commonly ignored in both Java™ and HTML recording. At playback, subitems are auto-scrolled into

view before being acted upon, making the scroll actions rather irrelevant. In some cases Functional Test still records

scroll actions when they are host-independent (in the case of JFC applications) to keep the recording as close as

possible to the actual actions performed, though HCL OneTest™ UI still auto-scrolls as necessary during playback to

ensure that things work as expected.

Scroll actions will not cause failures during playback, since Functional Test auto-scrolls anyway and will ignore the

normal out-of bounds and scrollbar-not-visible type of errors that can occur with scroll actions. Scroll actions tend

to fail fairly commonly with cross-platform script execution, so ignoring scroll failures improves the cross-platform

nature of scripts.

Hover feature

When you record actions in an HTML application, you can use this hover feature to move the mouse to a particular

place during playback. This is particularly useful for clicking on menus or links in HTML testing. To use the feature,

Chapter 7. Test Author Guide

move the mouse pointer onto the object for which you want to record a hover. Press and then release the Shift key to

record the hover. This will cause the recorder to insert a hover() method in the script. At playback, the mouse will then

be able to activate links and menus by hovering on them, instead of clicking. You can use multiple hover actions to

support a cascading menu. The Record Monitor will give you a warning message if you click where there is no object

or if hover is not supported for an object.

Maximizing the script window

To maximize the script window (the Java™ Editor), double-click the tab with the script name. This makes it easier to

edit the code. Double-click the tab again to restore HCL OneTest™ UI to normal.

Recording a script
To start recording scripts against your applications, you must first configure your test environments, configure your

applications, and create a project. Under certain conditions, you can start recording scripts without preparing your

functional test environment.

About this task
recordingscript

If you haven't done these configuration tasks, see Getting Started with HCL OneTest™ UI for the necessary steps.

When you record a script, HCL OneTest™ UI records any user actions against your application, such as keystrokes

and mouse clicks. You can also insert verification points to test data or properties of any objects in your application.

During recording, the verification point captures object information and stores it in a baseline file. Then during

playback, the verification point captures the object information and compares it to the baseline.

Note: All Functional Test scripts use a default helper base class. You can create your own helper base class if

you want to add additional methods or override the methods within RationalTestScript. For more information, see

Changing the Default Script Helper Base Class for a Script on page 683.

To record a script:

1. Optionally, you can first set any recording options you may need. Click Tools > Options to access the HCL

OneTest™ UI options. In the folder hierarchy, click the HCL OneTest UI folder icon to open the options. Set any

recording options. Close the options when you are done.

2. Click the Record a Functional Test Script button or click File > New > Add Script Using Recorder. The Add

New Item dialog box opens.

3. In the Add New Item dialog box, select the project you want the script to be part of. Type a name for the script.

4. Click Open.

The Select Script Assets page on page 1555 appears. HCL OneTest™ UI will create a local object map for

your script by default. If you want to use a different test object map on page 1559, helper base class on

page 1550, or test dataset on page 732, select them from the Select Script Assets page. You can also set

the dataset record selection order or change the dataset associated with the script.

697

HCL OneTest™ UI

698

5. Click Finish to begin recording.

The Recording Monitor opens and the recording starts. Click the Display Help icon on the Recording toolbar in

the monitor for information on the toolbar buttons and how the monitor works.

6. On the Recording toolbar, click the Start Application button to start your test application. See Starting Your

Test Applications on page 692 for more information. (If your application is already running, you don't need to

do this step.)

7. Perform any actions in the application.

Note: To record the action of moving the mouse over a link that has a tooltip, move the mouse over

the link so that the tooltip is displayed, and press Shift. This notifies the recorder to capture the action

in the script.

8. If you want to record a verification point, locate the object in your application you want to test, and click

anywhere in the application window or dialog box. Next, click the Insert Verification Point or Action Command

button. Click the Help button in the Verification Point and Action Wizard while creating the verification point

for more information on the Verification Point and Action Wizard, or see Creating a Properties Verification

Point on page 698 for an example of how to create one type of verification point.

9. If you want to insert any features into the script, such as a call script command, log entry, timer, script delay

command, or comment, click the Insert Script Support Commands button. Click the Help button in the Script

Support Functions on page 686 dialog box for information on script support functions.

10. Close your application, if you want closing the application to be part of the script.

11. When you are finished recording, click the Stop Recording button.

Note:

◦ For recording tips and troubleshooting information, see Recording Troubleshooting and Tips

on page 694.

Working with verification points
Verification points verify that a certain action has taken place, or verify the state of a control or an object. When you

create a verification point, you are capturing information about a control or an object in the application to establish

this as baseline information for comparison during playback.

The Insert Verification Point or Action Command button on the Recording toolbar enables you to record

verification points.

Creating properties verification point
Use a Properties verification point to test properties of an object in your application. When you record the verification

point, a baseline of the data is created. Then every time you play back the script, the data will be compared to see

whether any changes have occurred, either intentionally or unintentionally. This is useful for identifying possible

Chapter 7. Test Author Guide

defects. You can create a verification point while recording a script or you can insert a verification point anytime in the

script.

Before you begin

When you create a verification point you can use a dataset reference instead of a literal value to supply variable data

to make your tests more realistic. You can use a dataset reference for a string, a number, a color, or a boolean instead

of a literal value in a properties verification point. You cannot use a dataset reference instead of a literal for more

complex objects such as a font, a point, or a rectangle for a properties verification point.

Note: Avoid creating properties verification point on a higher level control in SAP applications if it contains

multiple children controls.

Prerequisites:

• The test application is started

• If you are inserting a verification point to an existing script, open the script and place the cursor at the point in

the script to insert the verification point.

1. Open the Verification Point and Action wizard.

◦ If you are creating a verification point while recording, click the Insert Verification Point or Action

Command button on the Recording Monitor toolbar.

◦ If you are inserting a verification point on a script, click the Insert Verification Point into Active

Functional Test Script button on the product toolbar.

2. On the Select an Object page of the Verification Point and Action wizard, use any one of the object selection

method to select the object in your application.

For more information, see the related topic on Selecting an Object Page.

Note: By default, the After selecting an object advance to next page check box on the Select an

Object page is selected. After you select an object, the next page in the Verification Point and Action

wizard appears. If you clear the After selecting an object advance to next page check box, after you

select an object, you must click Next to proceed to the next page.

3. On the Select an Action page, click the Perform Properties Verification Point option and click Next.

4. On the Insert Properties Verification Point Command page, perform the following steps:

a. If you want to include the children of the selected object for properties verification point, click

Immediate or All in the Include Children field.

b. In the Verification Point Name field, accept the default suggestion, or type a new name.

This name must follow standard Java naming conventions. The default name is based on the name of

the object and the data value you chose to test.

c. Select the Use standard properties check box if required.

699

HCL OneTest™ UI

700

Standard properties are properties available across platforms and browsers. Nonstandard properties

may include platform-specific properties.

d. Use the Include Retry Parameters to set a retry time for a verification point during playback to check

for the existence of the verification point in the application. The retry option is useful when playback

does not find immediately the verification point in your application. To set a retry time, either use the

default, or set a time of your choice. Maximum Retry Time is the maximum number of seconds that

the functional test will wait for a verification point to become available for retesting. Retry Interval

is the number of seconds between times that the functional test will check for the verification point

during the wait period.

e. Click Next.

5. On the Verification Point Data page, edit the required properties data.

The test object properties and their values are displayed in a tree table format. You can edit which properties

get tested in the Property column, and can edit the property values themselves in the Value column.

◦ To edit the list of object properties that gets tested during playback, use the check box beside each

property. Checked properties are tested each time you play back a script with this verification point.

Use the Check All or Uncheck All buttons to select or clear all the properties in the list.

◦ To edit a property value, double-click the Value cell and edit it.

6. Optional: To use a dataset reference instead of a literal value for a property verification point:

a. In the Property column, select a property, right-click, and then click Convert Value to dataset

Reference. The dataset Reference Converter dialog box opens.

b. Type a new name for the dataset variable or click the dataset Variable arrow to select the variable that

you want the verification point to reference in the dataset

c. Optionally, select the Add value to new record in dataset check box to add the value of the verification

point to a new record (row) in the dataset.

d. Click OK.

7. Click Finish.

Result

Notes:

◦ A warning is displayed if you click Finish without selecting any properties for the verification

point in the Verification Point Data page.

◦ You can also create a verification point by manually scripting it. For more information, see

Adding manual and dynamic verification points topic. Also see the vpManual() and vpDynamic()

methods in the API reference topics. Your script can access the same information as the

verification points. See the TestObject getProperty() and getTestData() methods.

◦ You can change a property value to a regular expression or numeric range, or change one

of them back to its original property value, using the Verification Point Editor. For more

information, see Replacing an Exact-Match Property with a Pattern topic

◦ While inserting the verification point without using the Recorder in the script, the test

object is not inserted in the script. You must manually insert the test object for which you

Chapter 7. Test Author Guide

are creating a verification point. For example: .performTest(Screen_imageVP()); script

is inserted when you insert an image verification point without using the Recorder. You

must include RootTestObject.getScreenTestObject() to the script. The script must be

RootTestObject.getScreenTestObject().performTest(Screen_imageVP()); for the verification

point to work.

Creating a data verification point
Use a data verification point to test data that is displayed in your application. When you record the verification point,

a baseline of the data is created. Then every time you play back the script, the data is compared to see whether any

changes have occurred, either intentionally or unintentionally. This is useful for identifying possible defects. You can

create a verification point while recording a script or you can insert a verification point anytime in the script.

Before you begin

You must have completed the following tasks:

• Start the application which you want to test.

• When you want to insert a verification point to an existing script, open the script and place the cursor at that

point in the script where you want to insert the verification point.

About this task

You can either create a data verification point when you record a script or insert a data verification point after you

record a script. The data verification point captures the data displayed for the selected objects. For the objects

that contain a script tag, the data verification point also captures the JavaScript code. If you want to record or run

the test without capturing the JavaScript code, you can add the flag ft.html.text.skipscripttag and set it to true in

ivory.properties file, which is located in the folder <install_directory>\Functional Tester\bin\.

You can test the following types of data in your application:

• List data

• Menu hierarchy

• The state of a checkbox or a toggle button in your application

• Table data

• Data that is displayed in a DataGrid control

• Data that is displayed in a DataGridView control

• Data that is displayed in a ToolStrip control

• Textual data

• Tree hierarchy

701

HCL OneTest™ UI

702

Tip: When you create a verification point, you can use a dataset reference instead of a literal value to supply

variable data to make your tests more realistic.

1. Open the Verification Point and Action wizard.

◦ If you are creating a verification point while recording, click the Insert Verification Point or Action

Command button on the Recording Monitor toolbar.

◦ If you are inserting a verification point on a script, click the Insert Verification Point into Active

Functional Test Script button on the product toolbar.

2. On the Select an Object page of the Verification Point and Action wizard, use the Object Finder to select the

data that you want to test.

For more information, See Selecting objects and data value options for data verification points on page 705.

Tip: If the After selecting an object advance to next page check box on the Select an Object page

is selected, the next page of the wizard is displayed after you select the object. If this check box is

cleared, click Next to proceed to the next page.

3. On the Select an Action page, select the Perform Data Verification Point option and click Next.

4. On the Insert Verification Point Data Command page, perform these steps:

a. Click one of the available options in the Data Value field and click Next.

For information about the data value options and description, see Selecting objects and data value

options for data verification points on page 705.

Notes:

▪ The options shown in the Data Value field depends on information provided by the

proxy of the object. Values other than those described in the related topic might be

listed in the Data Value field.

▪ The Visible Table Contents option for DataVP is not available for OLAPDataGrid.

b. In the Verification Point Name field, accept the default suggestion, or type a new name.

This name must follow standard Java naming conventions. The default name is based on the name of

the object and the data value that you chose to test.

c. To verify that verification point exists in the application, use the Include Retry Parameters to set a retry

time for a verification point during playback. The retry option is useful when playback does not find

immediately the verification point in your application. To set a retry time, either use the default, or set a

time of your choice. Specify these settings:

▪ Maximum Retry Time: The maximum number of seconds that the functional test waits for a

verification point to become available for retesting.

▪ Retry Interval: The number of seconds between times that the functional test checks for the

verification point during the wait period.

Chapter 7. Test Author Guide

For more information, see Editing verification point data on page 703.

d. Click Next.

5. On the Verification Point Data page, edit the data if required.

6. Optional: To use a dataset reference instead of a literal value for a data verification point:

a. Right-click a property, and then click Convert Value to dataset Reference. The dataset Reference

Converter dialog box opens.

b. Type a new name for the dataset variable or click the dataset Variable arrow to select the variable for

the verification point to reference in the dataset.

c. Optional: Select the Add value to new record in dataset check box to add the value of the verification

point to a new record (row) in the dataset.

d. Click OK and close the text box.

7. Click Finish.

Result

The verification point is added to the script. You can edit the verification point any time by using the

Verification Point Editor. For more information, See Verification Point Editor on page 711.

Notes:

◦ You can also create a verification point by manually scripting it. For information, see the

Adding manual and dynamic verification points topic. Also see the vpManual() and vpDynamic()

methods in the API reference topics. Your script can access the same information as the

verification points. See the TestObject getProperty() and getTestData() methods

◦ When you create a verification point without using the Recorder in the script, the test object

is not inserted in the script. You manually insert the test object for which you are creating a

verification point. For example: this script is included when you insert an image verification

point without using the Recorder .performTest(Screen_imageVP());. For the verification point

to work, include RootTestObject.getScreenTestObject() in the script. This is the script for the

verification point RootTestObject.getScreenTestObject().performTest(Screen_imageVP());

.

Editing verification point data
You can edit verification point data while creating or inserting a verification point in the Verification Point Data page

wizard. After you create the verification point, you can edit the data in the Verification Point Editor.

Editing data verification points for listing elements

When you create a data verification point and choose the List Elements test, the data is displayed in a list format in

the main data area of the Verification Point Editor and the Verification Point Data wizard page. The list displays the

same information as the list in your application, in the same order.

703

HCL OneTest™ UI

704

• To edit the list of items to test during playback, mark the check box beside each item. Checked items are

tested each time you play back a script with this verification point. Click the Check All or Uncheck All to select

or clear all of the items in the list.

• To change a value in the list, double-click the list item and change the value.

• To insert items into the list, click the Insert toolbar icon to insert a blank line. Type the new list item in the

line.

Editing data verification points for menu hierarchy tests

When you create a data verification point and choose the Menu Hierarchy or Menu Hierarchy with Properties test, the

menus are displayed in a tree format in the main data area of the Verification Point Editor and the Verification Point

Data wizard page. The tree displays the entire menu hierarchy of your application, or one top-level menu and its sub-

items, depending on how you recorded the verification point. If you chose the whole menu bar, each top-level menu

is shown from top to bottom in the tree in order that they occur from left to right in the menu bar. Each menu item is

shown under its top-level menu. Use the plus and minus signs to open and close the list for each top-level menu.

• To edit the list of menu items for testing during playback, use the check box beside each item. Checked items

are tested each time you play back a script that includes this verification point. Click Check All or Uncheck All

to select or clear all the items in the list.

• To edit a menu item properties:

1. Double-click the menu item in the tree. The menu item properties dialog box displays the properties in

a grid.

▪ To edit the actual values, double-click the value in the Value column of the grid and change the

value.

▪ To edit the detailed properties of the menu item, double-click Masked Property Sheet, and edit

the required values. The Masked Property Sheet value is listed only for the Menu Hierarchy with

Properties test.

2. Close the menu item properties dialog box.

Editing data verification point for a table

When you create a data verification point and choose the Table Contents or Selected Table Cells test, the table data is

displayed in the main data area of the Verification Point Editor and the Verification Point Data wizard page. The table

displays the same information as the table in your application. You can edit which cells in the table are tested. Table

cells in the comparison regions are shown with a gray background. You can also modify the metadata features of the

table such as the column headers and row headers.

To change the data table, perform one or more of these tasks:

• To edit a value in a cell, double-click the cell and change the value.

• To modify the region of comparison of the table for testing:

Chapter 7. Test Author Guide

1. Click Column, Row, or Cell Selection from the list on the toolbar above the data region to make cell

selections in the table. For example, if you click Row Selection, and click a cell in the second row, the

entire second row is selected. If you click Cell Selection, only that cell is selected.

2. After you select the data to compare, click the Update Comparison Region icon to save the

changes.

• To edit the column headers, double-click the Value column of the columnHeaders property. In the

columnHeader dialog box, modify the required header values and close the dialog box. Similarly, you can

change the row headers.

• To include the row headers or the column headers for comparison, set the compareRowHeaders or

compareColumnHeaders to true.

• To change the column keys,

1. Double-click the Value column of the columnKeys property.

2. In the columnKeys dialog box, select the required key value and close the dialog box. The process of

changing the row keys is similar to the preceding task.

3.

Editing a data verification point for a tree hierarchy

When you create a data verification point and choose the Tree Hierarchy or Selected Tree Hierarchy test, the data is

displayed in tree format in the main data area (right pane) of the Verification Point Editor and the Verification Point

Data wizard page. The tree displays the entire tree hierarchy of your application. Each individual item is shown under

its top-level item. Use the plus and minus signs to open and close the list for each top-level item. By default, all tree

items appear with a check mark, which means they are tested. Checked items are tested each time you play back a

script with this verification point.

• To edit the list of tree items that are tested during playback, use the check box beside each item. Checked

items are tested each time you play back a script that includes this verification point. Click the Check All or

Uncheck All to select or clear all the items in the list.

• To edit an item in the hierarchy, double-click the item in the tree. Edit the text in the dialog box, and then close

the dialog box.

Selecting objects and data value options for data verification points

This table lists the object selection methods and the available data value options for each data type.

705

HCL OneTest™ UI

706

Table 11.

Data type

Data

controls Object selection method Data value options and description

List list Select any item in the list to test the

entire list • List Elements: To test the contents of the

entire list

• Selected List Elements: To test only the se

lected items

Menu Hier

archy • menu

• menu

bar

• To test a menu item and its

sub-items, click the object find

er on an individual top-level

menu in the menu bar.

• To test the entire menu hierar

chy, use the object finder to se

lect all the top-level menus.

• Menu Hierarchy: To test all the menus in

the application and the basic properties of

each menu.

• Menu Hierarchy with Properties: To test

the hierarchy and the detailed properties of

each menu.

State
• check

box

• tog

gle

but

ton

Select the field or area in your appli

cation that contains the check box or

toggle button to test.

• CheckBox Button State

• Toggle Button State

Table table
• To test the entire table, use the

object finder to select any cell

in the table.

• To test a single cell or select

ed cells, select the cell or cells

first, then click the Object Find

er anywhere within the select

ed cell or cells.

• Table Content: To test the contents of the

entire table.

• Selected Table Cells: To test only the cells

that are selected.

Chapter 7. Test Author Guide

Table 11. (continued)

Data type

Data

controls Object selection method Data value options and description

DataGrid DataGrid
• To test the entire DataGrid ta

ble, use the object finder to se

lect any cell in the table.

• To test a single cell or select

ed cells, select the cell or cells

first, then click the Object Find

er anywhere within the select

ed cell or cells.

• Table Contents: Displays visible rows on

the DataGrid

• Current Row: Displays the row of the cur

rent cell on the DataGrid.

• Current DataTable: Displays all the records

without any filter. This option is displayed

when the datasource is a DataSet or a

DataViewManager.

• All Data: Displays all the records without

any filter. This option is displayed when the

data source is a DataView.

DataGrid

View

DataGrid

View • To test the entire DataGrid

View table, use the object find

er to select any cell in the ta

ble.

• To test a single cell or select

ed cells, select the cell or cells

first, and then click the Object

Finder anywhere within the se

lected cell(s).

• Selected Rows -View: Displays the content

of the selected rows that are visible on the

grid.

• Current Row - View: Displays the current

row contents of the DataGridView.

• All Data - View: Displays all the visible row

contents of the DataGridView

• Selected Rows - Source: Displays the

row contents of the datasource , which is

mapped to the row elements of Selected

Rows collection of the DataGridView .

• Current Row - Source: Displays the data

source row content, which is mapped to the

DataGridView's current row.

• All Data - Source: Displays all the rows in

the datasource.

707

HCL OneTest™ UI

708

Table 11. (continued)

Data type

Data

controls Object selection method Data value options and description

ToolStrip ToolStrip
• To test a ToolStrip item and

its sub-items, click the object

finder on an individual top-level

ToolStrip item in the ToolStrip

bar.

• Item Hierarchy: Displays the hierarchy of

the selected ToolStrip item.

• Text: Displays text associated with the se

lected ToolStrip item.

• TooltipText : Displays tooltip text that is as

sociated with the selected ToolStrip item.

Text text Select the object, field or area in the

application that contains the text. • Visible Text: To test a text area.

• Object Visible Text: To test the textual data

on an object

Tree Hier

archy

tree Click the object finder on any item in

the tree. This verification point can

test either the entire tree hierarchy or

the hierarchy starting from the top of

the tree through the selected item.

• Tree Hierarchy: To test the entire tree hier

archy

• Selected Tree Hierarchy: To test the hierar

chy starting at the top of the tree, down to

the selected item.

.

Creating an image verification point
You can use an image verification point to test images in your application. When you record the verification point, a

baseline image file is created. Every time you play back the script, the image is compared to see whether any changes

have occurred, either intentionally or unintentionally.

About this task

Starting from 9.1.1, enhancements have been made to image verification points. Prior to 9.1.1, image verification

was strictly a pixel-to-pixel comparison. When a script was recorded on one computer and played back on another

computer, the image verification point sometimes failed because of system-level differences, such as screen

resolution or differences in the operating system. Now, if a pixel-to-pixel comparison fails, a new image-based

algorithm is applied that is more tolerable to minor changes to the image.

The algorithm returns an integer from 0 to 100 that reflects how much the two images correlate. By default,

anything above 80 (or 80% correlation) is considered a pass. You can customize this percentage by adding a

“rational.test.ft.image.correlationaverage” flag in the ivory.properties file, for example:

rational.test.ft.image.correlationaverage=70

Chapter 7. Test Author Guide

In this example, anything above 70% correlation is considered a pass.

Starting from 9.1.1.1, HCL OneTest™ UI includes support for using Optical Character Recognition (OCR) with image

verification points. This allows you to capture text along with the image.

1. Click the Record a Functional Test Script button on the product toolbar.

2. In the Recording Monitor, click Start Application to start your test application.

See related topics about starting the test application.

3. In the application under test, locate the image that you want to test.

4. In the Recording Monitor, click Insert Verification Point or Action Command on the toolbar.

5. On the Select an Object page of the Verification Point and Action wizard, use the Object Finder tool to select

the object. Alternatively, if the image is not based on an object that is supported by the functional test

application, use the Capture Screen Image tool. This tool captures the full image of the screen.

See related topics about Select an object page.

6. On the Select an Action page, click Perform Image Verification Point and click Next.

This page is not displayed if you use the Capture Screen Image tool.

7. On the Insert Image Verification Point Command page, perform the following steps:

a. Accept the default Verification Point Name or type a new name.

b. Create one of the following types of verification points:

▪ Full image: Select this type if the selected object or the full screen was captured using the

Object Finder tool or the Capture Screen Image tool.

▪ Region of the image: Select this type to capture a region of the image or the object using the

Select Region tool. The x and y coordinates and the total width and height of the selected

region are captured as the image verification point.

▪ Text on the image: Select this type to use OCR to capture the text on the image. Click Select

Region, and follow the guidance in the tool for instructions on how to select the region.

c. Click Next.

Result

The Verification Point Data page displays the captured image.

8. Click Finish.

Result

The verification point is recorded and added to the script.

9. After you record any other verification points or actions, stop your recording by clicking the Stop Recording

button on the Recording Monitor toolbar.

Using OCR to test application text
With the optical character recognition (OCR) support in 9.1.1.1, you can use the image verification point to test text in

your application.

Before you begin

709

HCL OneTest™ UI

710

For OCR support, you must install Microsoft™ Visual C++ 2015 Redistributable from the Microsoft™ Download Center.

About this task

• For 9.1.1.1, OCR support is available on Windows™ for testers using the Eclipse Integrated Development

Environment (IDE). OCR support is not yet available for testers using the Visual Studio IDE or Linux™ operating

systems.

• OCR support is not currently available for languages other than English.

1. Follow Step 1 on page 709 to Step 6 on page 709 in the topic on Creating an image verification point on

page 708.

2. For the Insert Image Verification Point Command in Step 7 on page 709, choose Text on the image and click

the Select Region icon. Follow the guidance in the tool for instructions on how to select the region.

For best results, follow these guidelines:

https://www.microsoft.com/en-us/download/details.aspx?id=52685
https://www.microsoft.com/en-us/download/details.aspx?id=52685
https://www.microsoft.com/en-us/download/details.aspx?id=52685

Chapter 7. Test Author Guide

◦ Capture a region slightly larger than the image itself.

◦ Repeat the image capture as necessary until you get satisfactory results.

◦ Some fonts work better than others, so if necessary, try changing the font.

3. Complete the remaining steps in the topic on Creating an image verification point on page 708.

Verification Point Editor
The Verification Point Editor lets you view and edit verification point data. You can open the Editor by double-clicking a

verification point in the Script Explorer window. The Editor banner displays the name of your verification point.

You can specify color settings for several elements in the Verification Point Editor.

The following sections explain the parts of the Verification Point Editor window, and the toolbars.

Metadata

The metadata is displayed in the left pane of the window. It displays a set of properties that define how specific

data is managed. This grid can be edited. For example, you can edit the 'ignore case' or 'white space rule' in a text

verification point in this metadata grid. To edit, double-click the value in the Value column.

Main toolbar

The toolbar at the top of the Verification Point Editor has five buttons.

 File: Save -- Saves any edits you have made.

 File: Revert -- Reverts to the state of the data at the last save you made. If you have not saved edits since

opening the verification point, it will revert to the state it was in when opened. If you have done editing and made

saves, it will revert to the state at your last Save.

 Hide/Show TestObject Info -- Toggles the display of the Test Objects and Recognition Data panes of the Editor

window. When this information is hidden, the entire Editor window is used for the main data area. This is a sticky

setting--the next time you open the Editor it will appear as you last set it. However, note that if your Test Objects tree

has multiple nodes, the Verification Point Editor will show these panes again the next time you open it, regardless of

this setting.

 Replace Baseline -- Replaces the baseline image with a new image. The new image will become the baseline for

future playbacks. The Verification Point and Action Wizard is invoked for recapturing the image verification point.

 Help -- Brings up the Help for the Verification Point Editor. You can open the HCL OneTest™ UI help at any time

from the Help menu in HCL OneTest™ UI.

Menu bar

The menu bar contains the same commands that are represented with the toolbar buttons described in this topic.

711

HCL OneTest™ UI

712

File -- These are the same Save, Revert, Check Out, and Exit commands as the buttons listed above in the Main

Toolbar section.

Edit -- These are the same commands as the buttons listed below in the Properties Verification Point section.

Test Object > Highlight -- If your test application is open, you can select an object in the Test Objects tree and then

click this command to see the object highlighted in the application. Use this feature if you need to verify an object in

the application.

Preferences > Toolbars -- Toolbars controls the display of the toolbars. Hides/Displays the File, Metadata and Help

toolbars. Test Object Appearance on the Tree displays the Edit Test Object Description dialog box on page 1479,

which enables you to customize the text displayed for each object in the Test Object Hierarchy. Hide TestObject Info

toggles the display of the Test Objects and Recognition Data panes of the Editor window.

Help -- Displays the Help for the Verification Point Editor. You can open the HCL OneTest™ UI Help any time from the

Help menu in HCL OneTest™ UI.

Main data area

The right pane of the Verification Point Editor is where the verification point data is displayed. For example, in the

case of a Properties verification point, the Property and Value columns are displayed here. This is where you edit the

verification point data.

There are seven different types of displays you can get from recording verification points, as described in the

following sections.

Properties Verification Point -- Grid Display

When you create a Properties verification point, the object properties are displayed in a grid format. See Creating a

Properties Verification Point on page 698 for information on recording it. The properties that are shown in the grid

belong to the object that is highlighted in the Test Objects tree. The properties appear in the left column and their

values appear in the right column. You can edit which properties get tested in the Property column by checking a

check box for a property, and can edit the property values themselves in the Value column.

By default, all properties will appear with no checkmark, which means they will not be tested. Choose which

properties you want to test by checking each of them. Checked properties will be tested each time you play back

a script with this verification point. You can check all properties in the list by clicking the Check All toolbar button

 above the grid. Use the Uncheck All button above the grid to clear all properties. Depending on how many

properties you want to test, it is often easiest to either select or clear all of them using one of those buttons, and then

individually select or clear exceptions. It's a good idea to just test the specific properties you are interested in when

you use a Properties verification point.

The grid uses a nested tree hierarchy. If a folder shows up on the list, you can expand it by double-clicking on it or

selecting the expand icon. If you select or clear the folder icon itself, all the properties underneath it will be tested or

not tested.

Chapter 7. Test Author Guide

To edit a value, double-click the grid cell. That cell will then be editable. Click outside the cell to make the edit take

effect. In most cases double-clicking a value makes the cell an editable field, and you can just change the value. In

some special cases, another dialog box comes up containing the information. For example, if the property is color,

when you double-click the color value, the standard Color dialog box opens. Make your edit there and close the Color

box. In other cases, a drop-down list may appear in the Value column when you double-click a value. For example,

values that are either true or false will appear in a drop-down list. If the value is a string or a complex value type, you

can right-click the value and select Open to display the value in a separate window, which enables you to see long

lines of text and makes it easier to edit.

Note: You can change a property value to a regular expression or numeric range using the Verification Point

Editor. For information, see Replacing an Exact-Match Property with a Pattern.

The grid has the following toolbar buttons for the Properties verification point display. These buttons act only on the

currently displayed data.

Cut -- Cuts the selected property. It is placed on the Editor clipboard and can be pasted.

Copy -- Copies the selected property to the Editor clipboard.

Paste -- Pastes the cut or copied property. It will be inserted into the display in alphabetical order.

Delete -- Deletes the selected property. It will not be retained on the clipboard.

 Case Sensitive Regular Expression -- Toggles case-sensitive comparison on and off.

 Convert Value to Regular Expression -- Converts the recognition property value in the Updated Test Object

Properties grid to a regular expression. See Replacing an Exact-Match Property with a Pattern for more information.

 Convert Value to Numeric Range -- Converts the recognition property value in the Updated Test Object

Properties grid to a numeric range. See Replacing an Exact-Match Property with a Pattern for more information.

 Evaluate Regular Expression -- Displays the Regular Expression Evaluator on page 1532, which enables you to

test the regular expression before you try it in a verification point.

 Convert Value to dataset Reference/ Undo dataset Reference -- Uses a dataset reference to use a dataset

instead of a literal value in a verification point. Cancels the dataset reference in the verification point. See About

dataset References and Verification Points on page 743.

 Check All -- Puts a checkmark in front of every property in the list. Checked properties will be tested each time you

play back the script with this verification point.

 Uncheck All -- Clears the checkmark in front of every property in the list. Cleared properties will not be tested

when you play back the script with this verification point.

713

HCL OneTest™ UI

714

 Hide the Unchecked Properties/Show All Properties -- Click Hide the Unchecked Properties to hide the cleared

properties. Then you will only see the properties that will be tested. Click Show All Properties to display all properties,

including any cleared ones.

The grid has the following pop-up menu commands for the Properties verification point display. To access them,

right-click a value in the Value column.

Open -- If the value is a string or a complex value type, this will display the value in a separate window, which enables

you to see long lines of text and makes it easier to edit.

 Case Sensitive Regular Expression -- Toggles case-sensitive regular expression comparison on and off.

 Evaluate Regular Expression -- Displays the Regular Expression Evaluator on page 1532, which enables you to

test the regular expression before you try it in a verification point.

 Convert Value to Regular Expression -- Converts the property value to a regular expression. See Replacing an

Exact-Match Property with a Pattern for more information.

 Redo/Undo Regular Expression -- Redoes or cancels the regular expression conversion.

 Convert Value to Numeric Range -- Converts the property value to a numeric range. See Replacing an Exact-

Match Property with a Pattern for more information.

 Undo Numeric Range -- Redoes or cancels the numeric range.

 Convert Value to dataset Reference - - Uses a dataset reference on page 743 to use a dataset instead of a literal

value in a verification point.

 Undo dataset Reference -- Cancels the dataset reference in the verification point on page 743.

Data Verification Point--Menu Hierarchy Display

When you create a Data verification point and choose the Menu Hierarchy or Menu Hierarchy with Properties test,

the menus are displayed in a tree format in the main data area (right pane). Menu Hierarchy and Menu Hierarchy with

Properties are two examples. The list of tests shown in the Data Value field is dependent on information provided by

the object's proxy. Values other than these two may be shown.

The tree will display the entire menu hierarchy of your application, or one top-level menu and its sub-items, depending

on how you recorded the verification point. If you chose the whole menu bar, each top-level menu will be shown from

top to bottom in the tree in the order they appear from left to right in the menu bar. Each individual menu item is

shown under its top-level menu. Use the plus and minus signs to open and close the list for each top-level menu.

By default, all menu items will appear with a check mark, which means they will be tested. Checked items will be

tested each time you play back a script with this verification point, and cleared items will not be tested. You can check

all menu items by clicking the Check All toolbar button above the tree. Use the Uncheck All button to clear all items.

Chapter 7. Test Author Guide

The Cut, Copy, Paste, Delete , Check All, and Uncheck All toolbar buttons above the tree apply to the selected menu

item in the tree hierarchy, and are only applicable within the Verification Point Editor. (It does not use the system

clipboard.)

Data Verification Point--Text Display

When you create a Data verification point and choose the Visible Text test, the text is displayed in a text box format

in the main data area (right pane). Visible Text is one example. The list of tests shown in the Data Value field is

dependent on information provided by the object's proxy. Values other than this one may be shown.

The text is displayed in a text box that can be used like a very basic text editor. You can type and edit directly in this

text box. To edit the verification point data, make your edits to the text in this area.

Data Verification Point--Table Display

When you create a Data verification point and choose the Table Contents or Selected Table Cells test, the table data is

displayed in a table in the main data area (right pane). Table Contents and Selected Table Cells are two examples. The

list of tests shown in the Data Value field is dependent on information provided by the object's proxy. Values other

than these may be shown.

The table displays the same information as the table in your application. To edit the verification point data, double-

click any cell in the table to edit that cell.

The Cut, Copy, Paste, and Delete toolbar buttons above the table area apply to the selected row(s), and are only

applicable within the Verification Point Editor. (It does not use the system clipboard.)

You can right-click a table item to access a pop-up menu. The commands are the same as those listed above in the

Properties Verification Point--Grid Display section.

Data Verification Point--Tree Hierarchy Display

When you do a Data verification point and choose the Tree Hierarchy or Selected Tree Hierarchy test, the data is

displayed in a tree format in the main data area (right pane). Tree Hierarchy and Selected Tree Hierarchy are two

examples. The list of tests shown in the Data Value field is dependent on information provided by the object's proxy.

Values other than these two may be shown.

The Cut, Copy, Paste, Delete , Check All, and Uncheck All toolbar buttons above the tree apply to the selected item in

the tree hierarchy, and are only applicable within the Verification Point Editor. (It does not use the system clipboard.)

Data Verification Point--List Display

When you create a Data verification point and choose the List Elements test, the data is displayed in a list format

in the main data area (right pane). List Elements is one example. The list of tests shown in the Data Value field is

dependent on information provided by the object's proxy. Values other than this one may be shown.

The toolbar buttons above the list are the same ones that are found in the object properties grid described above

in the Properties Verification Point--Grid Display section. The buttons work the same as described there, except

715

HCL OneTest™ UI

716

they apply to the selected list item(s). The Cut, Copy, Paste, and Delete, Check All, and Uncheck All toolbar buttons

are only applicable within the Verification Point Editor. (It does not use the system clipboard.) The Insert button is

described above.

Data Verification Point--State Display

When you create a Data verification point and choose the CheckBox Button State or Toggle Button State test, the data

is displayed in a list format in the main data area (right pane). CheckBox Button State or Toggle Button State are two

examples. The list of tests shown in the Data Value field is dependent on information provided by the object's proxy.

Values other than this one may be shown.

Test object data in the Verification point editor window

While inserting the verification points, if you have not checked the Record Test Object relative Verification Points

option available in the General Recorder page on page 653 of the Windows > Preferences window, you can view the

following test object data in the Verification Point editor:

• Test objects

• Recognition and Administrative data

Test objects

This is the upper left pane of the Verification Point Editor window. It's a partial version of the script's object map. This

hierarchical display includes only the objects in your verification point. You cannot edit the Test Objects tree. For a

Properties verification point, you can choose an object within it and edit its properties in the properties list in the right

pane.

You can double-click folders in the tree to expand and collapse the objects beneath them. Click an individual object in

the tree to see its properties in the properties list.

The check boxes to the left of each node indicate whether that node will be tested or not. Checked items get tested.

Note: If your test application is open, you can select an object in the Test Objects tree and then click Test

Object > Highlight or right-click an object and click Highlight from the Verification Point Editor menu to see

the object highlighted in the application. Use this feature if you need to verify an object in the application.

Recognition and Administrative data

This is the lower left pane of the Editor window. The Recognition tab displays recognition data used by HCL OneTest™

UI and is not editable. The Administrative tab displays internal administrative data of the object and is not editable.

These properties are used to manage and describe the test object. Recognition and administrative data are the

properties from the script's object map used to locate and manage this test object in the context of the associated

script. You can use this information to figure out what test object this is in the associated application under test.

Chapter 7. Test Author Guide

The MetaData tab displays a set of properties that define how specific data is managed. This grid can be edited. For

example, you could edit the 'ignore case' or 'white space rule' in a text verification point in this metadata grid. To edit,

double-click the value in the Value column.

The Recognition and Administrative properties are a snapshot of the object map properties for the test object at the

time the verification point was created. They become historical information as the application evolves.

Verification point comparator
You can use comparators to compare verification point data after you play back a script with a verification point and

to update the baseline file. If the verification point fails, the comparator shows both expected and actual values so

that you can analyze the differences. You can then load the baseline file and edit or update it with the values from the

actual file.

Opening the verification point comparator

Click View Results in the HCL OneTest™ UI HTML log to open the comparator.

Notes:

• If you encounter an error regarding the Java™ plugin when trying to launch the comparator from View

Results in the HTML log, you must configure your plugin properly.

• You must use Microsoft Internet Explorer to open View Results as browsers such as Mozilla Firefox

and Google Chrome are not supported.

• With automatically enabled test environments, you cannot open the verification point comparator by

clicking View Results in the functional test HTML log. In such cases, open the corresponding project

log file from the functional test project log in the Functional Test Projects view.

Using verification point comparator for functional test scripts played back from Rational® Quality
Manager

If you play back the script from Rational® Quality Manager, and click View Results in the detailed log to open the

comparator, you are prompted to log in to Rational® Quality Manager. This occurs when you use the Load baseline to

edit or the Replace baseline with actual value functions.

Note: To open the comparator from the Rational® Quality Manager detailed playback log, ensure that HCL

OneTest™ UI is installed on the workstation where you are opening the log. Additionally, ensure that the Next-

Gen plugin is disabled on the workstation.

When you open the comparator, the Log In to Rational Quality Manager dialog box is displayed and the Rational®

Quality Manager server name and project area are displayed. You must specify a valid user name and password to log

in to Rational® Quality Manager.

717

HCL OneTest™ UI

718

The Log In to Rational Quality Manager dialog box is displayed only the first time you use Load baseline to edit or

the Replace baseline with actual value functions during an active Windows session. You are not prompted to log in a

second time unless you have started a new Windows session and logged on to Windows as a different user.

Comparing verification points after playback

If you have one failed verification point, and you are using a log, select the log in the Functional Test Projects view.

Right-click the log, and click Failed Verification Points. The verification point comparator is displayed.

If you have multiple failed verification points, and you are using a log, the Results for Verification Points wizard is

displayed. Click a failed verification point in the list and click View Results or Finish. The comparator banner displays

the name of your verification point.

You can specify color settings for several elements in the verification point comparator.

To edit verification point data, you must load the baseline by clicking the Load Baseline to Edit toolbar button .

The verification point comparator window

The following sections describe the various components of the verification point comparator window and the

toolbars.

Metadata

Metadata is displayed in the left pane of the verification point comparator window. It displays a set of properties that

define how specific data is managed. You can edit this grid. For example, you could edit the “ignore case ”or “white

space rule” in a text verification point in this metadata grid. To edit, double-click the value in the Value column.

Main toolbar

The toolbar at the top of the verification point comparator has six buttons.

 File: Save: Saves any changes you have made.

 File: Revert: Reverts to the state of the data at the last save you made. If you have not saved any changes since

opening the comparator, it reverts to the state when it was opened. If you have edited and saved the changes, it

reverts to the state at your last Save.

 Load Baseline to Edit: Loads the baseline file so you can edit it. The baseline values are displayed instead of the

expected values. These values can be edited individually or replaced with actual values.

 Replace Baseline with actual value: Replaces the baseline values with all the values in the actual file. Then those

values will become the baseline for future playbacks. If you want to replace only some of the values, edit them

individually. This command replaces the entire file.

Chapter 7. Test Author Guide

 Hide/Show TestObject Info: Toggles the display of the Test Objects and Recognition Data panes of the

comparator window. When this information is hidden, the entire comparator window is used for the main data area.

This is a sticky setting and is displayed as you last set it when you open the comparator later.

Note: If your test objects tree has multiple nodes, the verification point comparator displays these panes

again the next time you open it, regardless of the Hide/Show TestObject Info setting.

 Help: Displays the help documentation for the verification point comparator. You can open the HCL OneTest™ UI

help any time from the Help menu in HCL OneTest™ UI.

Menu bar

The menu bar contains the same commands that are represented with the toolbar buttons described in this topic.

File: Displays the commands Save, Revert, Baseline, and Replace.

Edit: Displays the commands Check All, Uncheck All, and Hide. This menu is grayed out until you load the baseline for

editing (using the Load Baseline to edit toolbar button).

Difference: Displays the commands First, Previous, Next, and Last.

Test Object > Highlight: You can use this menu item if you need to verify an object in the application. If your test

application is open, you can select an object in the test objects tree and then click this command to see the object

highlighted in the application.

Preferences : Toolbars: You can use this menu item to control the display of the toolbars.

• Test Object Appearance on the Tree: Displays the Edit Test Object Description dialog box, which allows you to

customize the text displayed for each object in the Test Object Hierarchy.

• Hide TestObject Info: You can use this command to toggle the display of the Test Objects and Recognition

Data panes of the comparator window.

Help: Displays help documentation for verification point comparator.

Main data area

The right pane of the verification point comparator displays the verification point data. For example, in the case of a

properties verification point, the Property and Value columns are displayed here. You can compare the verification

point data here. If the verification point fails when you play back the script, the expected and actual values are

displayed, irrespective of the type data display being used. In certain cases, the expected values are shown on the

left pane and the actual values are shown on the right pane of the verification comparator window. In other cases, the

values are displayed contiguously (such as nodes in a tree view), and the expected and actual values are shown in

different colors if they are different. The expected value is red and the actual value is green in color. The actual values

those that were recorded when you playback the script.

719

HCL OneTest™ UI

720

You can get seven types of displays from recording verification points, as described in the following sections, after

the next section, Navigation Toolbar Buttons.

Navigation toolbar buttons

These four navigation buttons jump to the differences between the expected and actual files or the baseline and

actual files. Differences are shown in red. The currently selected difference is highlighted.

 Jump to First Difference: Goes to the first difference in the expected/baseline and actual files.

 Backward to Previous Difference: Goes backward to the previous difference in the expected/baseline and actual

files.

 Forward to Next Difference: Goes forward to the next difference in the expected/baseline and actual files.

 Jump to Last Difference: Goes to the last difference in the expected/baseline and actual files.

You can get the following types of displays after recording a verification point.

Properties verification point : grid display

When you create a properties verification point, the object properties are displayed in a grid format. The properties

displayed on the grid belong to the object that is highlighted in the Test Objects tree. The properties appear are

displayed in the left column and their values appear are displayed in the right column of the object properties grid..

You can edit which properties get tested in the Property column, and can edit the property values themselves in the

Value column.

Properties with no check mark are not tested. You can select which properties you want to test by checking each of

them. The checked properties are tested each time you play back a script with this verification point. You can check

all properties in the list by clicking the Check All toolbar button . You can use the Uncheck All button to clear

all properties. Depending on how many properties you want to test, it is often easiest to either select or clear all of

them using one of those buttons, and then individually select or clear exceptions.

The grid uses a nested tree hierarchy. If a folder shows up on the list, you can expand it by double-clicking it or

selecting the expand icon. If you check or clear the folder icon itself, all the properties underneath are either tested or

not tested.

To edit a value, you must double-click the grid cell. Click outside the cell to make the edit take effect. In most cases,

double-clicking a value makes the cell an editable field, and you can just change the value. In some special cases,

another dialog box is displayed which contains the information. For example, if the property is color, when you double-

click the color value, the standard color dialog box is displayed. You must your edit there and close the color box. In

other cases, a drop-down list might be displayed in the Value column when you double-click a value. For example,

values that are either true or false are displayed in a drop-down list.

The grid has the following toolbar buttons for the properties verification point display. In the comparator, these

buttons are displayed only when you are editing the baseline.

Chapter 7. Test Author Guide

 Check All: Includes a check mark in front of every property in the list. Checked properties are tested each time you

play back the script with this verification point. Only checked properties are compared in the Comparator.

 Uncheck All: Clears the check mark in front of every property in the list. Do not test the cleared properties when

you play back the script with this verification point.

 Hide the Unchecked Properties/Show All Properties: Click Hide the Unchecked Properties to hide the cleared

properties. Then you only view the properties that are tested. Click Show All Properties to display all properties,

including any cleared ones.

The grid has the following pop-up menu commands for the properties verification point display. To access them, right-

click a value in the Value column.

Open: Displays the value in a separate window if the value is a string or a complex value type which enables you to

see long lines of text and makes it easier to edit.

 Case Sensitive Regular Expression: Toggles case-sensitive regular expression comparison on and off.

 Evaluate Regular Expression: Displays the regular expression evaluator, which enables you to test the regular

expression before you use it in a verification point.

 Convert Value to Regular Expression: Converts the property value to a regular expression.

 Undo/Redo Regular Expression: Cancels or redoes the regular expression conversion.

 Convert Value to Numeric Range: Converts the property value to a numeric range.

 Undo Numeric Range: Cancels the numeric range.

 Convert Value to dataset Reference: Uses a dataset reference to use a dataset instead of a literal value in a

verification point.

 Undo dataset Reference: Cancels the dataset reference in the verification point.

 Replace Baseline On Current Selection: Replaces the baseline value with the actual value for just the selected

property. This is a per-property version of the Replace Baseline With Actual Value toolbar button .

Compare object properties

To compare object properties, look at the expected or baseline values and actual values columns. The actual values

are those that were captured when you played back the script. You can use the navigation buttons to navigate to all

the differences, which are displayed in red. You can edit the baseline values or replace the baseline with the actual

file.

721

HCL OneTest™ UI

722

Data verification point : menu hierarchy display

When you create a data verification point and choose the menu hierarchy or menu hierarchy with the properties test,

the menus are displayed in a tree format in the main data area. Menu hierarchy and menu hierarchy with properties

are two examples. The list of tests shown in the Data Value field is dependent on information provided by the object's

proxy. Values other than these two may be displayed.

The tree displays the entire menu hierarchy of your application, or one top-level menu and its subitems, depending on

how you recorded the verification point. If you chose the whole menu bar, each top-level menu is displayed in the tree,

in the same order they are displayed in the menu bar. Each individual menu item is displayed under its top-level menu.

You can use the plus and minus signs to open and close the list for each top level menu.

To edit a menu, double-click it in the tree. You must load the baseline first before doing this. The menu properties

displayed in a grid, which you can then edit. You can edit the actual values by double-clicking a value in the Value

column. You can also edit the list of properties that are tested during playback by using the check box beside each

property. The checked items are tested. The toolbar buttons above the grid are the same ones that are found in the

object properties grid, except for Hide/Show. The buttons work the same, except they apply to the selected menu

property or value.

Compare menu hierarchy data

To compare menu hierarchy data, look at any differences shown in red and green. The expected values are displayed

in red, and the actual values are shown underneath them in green. The actual values are what were captured when

you played back the script. If the descriptions for the expected and baseline values are the same, but if there are

some differences in their properties, the node is displayed as blue in color. You can use the navigation buttons to

navigate to all the differences. You can edit the baseline values or replace the baseline with the actual file.

Data verification point : text display

When you create a data verification point and choose the Visible Text test, the text is displayed in a text box format

in the main data area. For example, visible text. The list of tests shown in the Data Value field is dependent on

information provided by the object's proxy. Values other than this one may be displayed.

The text is displayed in a text box area. You cannot edit directly in this area. To edit the verification point data, click

Edit Text above the data display. You must load the baseline file before doing this. A small text editor containing

the text is displayed. You can edit the text in this editor, and when you close it, the edited text is displayed in the

baseline column of the comparator.

Compare text data

To compare text data, look at the expected and actual values columns. The actual values are those that were

captured when you play back the script. You can use the navigation buttons to navigate to all the differences, which is

displayed in red. You can edit the baseline values or replace the baseline with the actual file.

Chapter 7. Test Author Guide

Data verification point : table display

When you create a data verification point and choose the table contents or selected table cells test, the table data

is displayed in a table in the main data area. Table Contents and selected table cells are two examples. The list of

tests is displayed in the Data Value field is dependent on information provided by the object's proxy. Values other than

these may also appear.

The table displays the same information as the table in your application. To edit the verification point data, double-

click any cell in the table to edit that cell. You must load the baseline file before doing this.

You can also edit which cells in the table get tested. Table cells that are within the comparison regions are shown

with a grey background. If you are testing the entire table, all cells will be grey. You can use the drop-down list in the

toolbar above the data region as a selection mechanism. (This doesn't show up until you load the baseline.) Choose

Column, Row, or Cell Selection in the list, then make your selections in the table. For example, if you select Row

Selection, when you click a cell in the second row, the whole second row will be selected. If you had chosen Cell

Selection, only that cell would have been selected. After you select the data you want to compare, click the Update

Comparison Region button to have your changes take effect.

The Cut, Copy, Paste, and Delete toolbar buttons above the table area apply to the selected row(s), and are only

applicable within the Verification Point Comparator. (It does not use the system clipboard.)

You can right-click a table item to access a pop-up menu. The commands are the same as those listed above in the

Properties Verification Point--Grid Display section.

There are features in the Metadata tab that you can also use to edit the table data. For example, you can edit the

table's column headers or row headers by accessing them in the MetaData tab. To edit column headers, double-

click the Value column of the columnHeaders property. A small editor opens that lets you edit the headers. The row

headers work the same way if your table has them. Double-click the rowHeaders Value to edit them. In order for the

column headers to be compared, you must change the compareColumnHeaders property to true in the MetaData tab.

The compareRowHeaders value works the same way to indicate whether row headers will be compared.

If you double-click the Value of the compareRegions property in the Metadata tab, an editor will open showing the

selected regions of your table. For selected sells, it shows the row index or key value pairs and the column header

or index of each selected cell. For selected rows, it shows the row index or key value pairs. For selected columns, it

shows the column header or index. Using this compare regions editor is another way you can select which regions get

compared. If you click the Compare All Cells button in this editor, all of the table cells will be tested.

If your table supports row keys or column keys, you can edit those and insert keys by double-clicking on the

columnKeys and rowKeys values in the Metadata tab.

Compare table data

To compare table data, look at the expected and actual values columns. The actual values are those that were

captured when you played back the script. You can use the navigation buttons to navigate to all the differences, which

appear in red. You can edit the baseline values or replace the baseline with the actual file.

723

HCL OneTest™ UI

724

Data verification point -- tree hierarchy display

When you create a Data verification point and choose the Tree Hierarchy test, the data is displayed in a tree format

in the main data area. For example, Tree Hierarchy. The list of tests shown in the Data Value field is dependent on

information provided by the object's proxy. Values other than this might be displayed.

The tree displays the entire tree hierarchy in your application or the part of the tree selected when you create the

verification point. Each item in the tree is displayed in the same order it is displayed in your application. Each

individual item is displayed under its top-level item. You can use the plus and minus signs to open and close the list

for each top-level item.

To edit an item in the hierarchy, double-click it in the tree. A small text box is displayed, which you can use to edit the

item.

Compare tree hierarchy data

To compare tree hierarchy data, look at any differences displayed in red and green. The expected values are displayed

in red, and the actual values are displayed in green. The actual values are those that were captured when you played

back the script. You can use the navigation buttons to navigate to all the differences.

Data verification point : list display

When you create a data verification point and choose the List Elements test, the data is displayed in a list format in

the main data area. List Elements is one example. The list of tests shown in the Data Value field is dependent on

information provided by the object's proxy. Values other than this might be also displayed.

The list displays the same information as the list in your application, and in the same order. To edit a list item, double-

click it in the list display. (If you have not done so, you must load the baseline first.) You can also edit the list of which

items get tested during playback by using the check box beside each item. The checked items are tested.

The toolbar buttons preceding the list are the same ones that are found in the object properties grid described above

in the Properties Verification Point : Grid Display section. The buttons work the same as described there, except they

apply to the selected list item(s).

You can right-click a table item to access a pop-up menu. The commands are the same as those listed preceding the

Properties Verification Point : Grid Display section.

Compare list data

To compare list data, look at the expected and actual values columns. The actual values are those that were captured

when you played back the script. You can use the navigation buttons to navigate to all the differences, which are

shown in red. You can edit the baseline values or replace the baseline with the actual file.

Data verification point : state display

When you create a data verification point and choose the Check Box Button State or Toggle Button State test, the data

is displayed in a list format in the main data area. Check Box Button State or Toggle Button State are two examples.

Chapter 7. Test Author Guide

The list of tests displayed in the Data Value field is dependent on information provided by the object's proxy. Values

other than this may be also displayed.

Compare state data

To compare state data, look at the expected and actual values columns. The actual values are those that were

captured when you played back the script. You can edit the baseline values or replace the baseline with the actual file.

Test object data in the Verification point comparator window

While inserting the verification points, if you have not checked the Record Test Object relative Verification Points

option available in the General Recorder page of the Windows > Preferences window, you can view the following test

object data in the Verification Point comparator:

• Test objects

• Recognition and Administrative data

Test objects

This is the upper left pane of the Verification Point Comparator window. It is a partial version of the script's object

map. This hierarchical display includes only the objects in your verification point. You cannot edit the Test Objects

tree. You can choose an object within it and edit its properties or data in the right pane of the Verification Point

Comparator window.

You can double-click folders in the tree to expand and collapse the objects beneath them. You must an individual

object in the tree to see its properties or data in the right pane.

The check boxes to the left of each node Verification Point Comparator window indicate whether that node is tested

or not. Checked items get tested. After you load the baseline to edit, you can select or clear items.

Note: If your test application is open, you can select an object in the Test Objects tree and then click

Test Object > Highlight from the Verification Point Comparator menu to see the object highlighted in the

application. You must use this feature if you need to verify an object in the application.

Recognition and Administrative data

This is the lower left pane of the Verification Comparator window. The Recognition tab displays recognition data

used by HCL OneTest™ UI and is not editable. Some of these properties are the recognition properties that were listed

in the Select an Object tab of the Verification Point and Action Wizard when you created the verification point. The

Administrative tab displays internal administrative data of the object and is not editable. These properties are used to

manage and describe the test object. Recognition and administrative data are the properties from the script's object

map used to locate and manage this test object in the context of the associated script. You can use this information

to determine what test object this is in the associated application under test.

725

HCL OneTest™ UI

726

The MetaData tab displays a set of properties that define how specific data is managed. This grid can be edited if you

load the baseline. For example, you could edit the “ignore case” or “white space rule” in a text verification point in this

metadata grid. To edit, double-click the value in the Value column.

The Recognition and Administrative properties are a snapshot of the object map properties for the test object at the

time the verification point was created. They become historical information as the application evolves.

Related reference

Edit Test Object Appearance dialog box on page 1479

Related information

Comparing and updating verification point data using the Comparator on page 726

Enabling the Java plug-in of a browser on page 607

Viewing logs in the Projects view on page 1228

Editing test object descriptions

Replacing an exact-match property with a pattern

Comparing and updating verification point data using the Comparator
Use the Verification Point Comparator to compare verification point data after you play back a script with a

verification point and to update the baseline file. If the verification point failed, the Comparator shows both the

expected and actual values, so you can analyze the differences. You can then load the baseline file and update it with

the values from the actual file.

About this task

To open the Comparator, click the View Results link in the HCL OneTest™ UI HTML log. For information, see the

related topic about viewing results in the log. The Comparator banner displays the name of your verification point.

1. Play back the script that contains the verification point on a new build of the application under test.

Result

The log for the playback is displayed. For information about setting the option that makes the log open

automatically after playback, see Logging Preferences Page.

2. Open the log for the verification point.

◦ If you are using the HTML log, click the View Results link. (Note that if you experience an error

regarding the Java™ plug-in when trying to start the Comparator from the View Results link in the

HTML log, verify that your plug-in is configured properly.

3. Open the Comparator from the log.

◦ If one verification point failed, select the log in the Projects view, right-click the log, and click Failed

Verification Points.

◦ If you have more than one failed verification points the Results for Verification Points wizard opens.

Click a failed verification point in the list and click View Results or Finish.

Chapter 7. Test Author Guide

Result

The Verification Point Comparator opens to display that verification point. The Comparator includes the

expected and actual data values. The expected values were tested. The actual values were captured in the

application during playback. If the verification point failed, the differences are shown in red.

For the data verification point types list, table and text, the expected values are displayed on the left and the

actual values are displayed on the right. The differences are shown in red. For the data (menu hierarchy) and

data (tree hierarchy) verification points, the expected and actual values are shown contiguously. The expected

values of the differences are shown in red, and the actual values of the differences are shown underneath

them in green.

4. Look at the two data files to compare any differences between the expected and actual files. By analyzing

differences in the Comparator, you can determine if they are intentional changes to the application or defects.

To navigate through the differences, use the navigation buttons on the toolbar above the data display.

5. If you want to edit the baseline file to update the information for future playbacks, you must load the baseline

file. Click File > Baseline or click the Load Baseline to Edit toolbar button .

The baseline file replaces the expected file on the left side of the display.

6. To edit individual items in the data, edit them in the baseline (left) column of the display. When you finish

editing the data, click Save.

For a Data (Text) verification point, click Edit Text to start a text editor to make your edits. For other

verification point types, you can edit directly in the baseline data display.

7. For a Properties verification point, if you determine that the baseline value and actual value for a specific

property are different, you can update the baseline value. In the Verification Point Comparator, right-click the

property where the values are different, and click Replace Baseline on Current Selection.

8. If you determine that all the differences reflect intentional changes to the application under test, and you want

to update the baseline to reflect the changes, you can use the Replace Baseline with Actual Value toolbar

button to replace the entire baseline file.

9. If you have made any individual changes to the baseline data file (not by using the Replace Baseline with

Actual Value command), click File> Save to save the changes.

10. When you finish comparing and updating verification point data, click File > Exit to exit the Verification Point

Comparator.

Inserting verification points into the script using the application visuals
While working with the simplified test scripts, you can insert verification point using the application visuals.

Inserting a data verification point into a script by using an application visual
You can add data verification points into simplified scripts by using an application visual instead of opening the test

application again or by using the verification point editor.

Before you begin

727

HCL OneTest™ UI

728

Prerequisite: To use application visuals for inserting data verification points into the script, the capturing of

verification on data feature must be enabled in the Preferences page before recording the script.

1. Select the test line in the script editor that refers to the required application visual of the test application.

The application visual that contains the control is displayed in the Application view.

Note: The thumbnail pane in the Application view displays images of all the application visuals that

are captured for the project. You can select the required application visual image in the thumbnail

pane and view the application visual in the Application view.

2. In the Application view, move the mouse pointer over the control on which the data verification point must be

captured.

Result

The control is highlighted in red.

3. Right-click and select Insert verification point > Data Verification Point.

The verification point wizard is displayed if you have enabled the Show Verification Point Dialog option in the

Preferences page. Set the data verification point properties in the verification point wizard:

a. On the Verification Point Wizard page, accept the default Data Value or select one of the available

options from the list.

b. Change the Verification Point Name, if required, and click Next.

c. On the Verification Point Data page, edit the data if required.

d. Optional: To use a dataset reference instead of a literal value for a data verification point:

i. Right-click a property, and then click Convert Value to dataset Reference. The dataset

Reference Converter dialog box opens.

ii. Type a new name for the dataset variable or select the variable from the dataset Variable list

for the verification point to reference in the dataset.

iii. Select Add value to new record in dataset to add the value of the verification point to a new

record (row) in the dataset.

iv. Click OK, and close the text box.

e. Click Finish.

Result

The verification point is inserted into the test script. You can drag the test line in the script editor to arrange

the test lines in the required sequence for playback.

4. Click File > Save to save the modified test script.

Inserting an image verification point into a script by using an application visual
You can add image verification points to a script by using application visuals instead of opening the test application

again.

Chapter 7. Test Author Guide

Before you begin

To use the application visuals for inserting image verification points to the script, the application visuals feature must

be enabled in the Preferences page before recording the script.

1. Select the test line in the script editor that refers to the required application visual of the test application.

The application visual that contains the control is displayed.

Note: The thumbnail pane in the Application view displays images of all the application visuals that

are captured for the project. You can select the required application visual image in the thumbnail

pane and view the application visual in the Application view.

2. In the Application view, move the mouse pointer over the control to capture for the image verification point.

Result

The control is highlighted in red.

3. Right-click and select Insert verification point > Image Verification Point.

Result

The image verification point is inserted into the test script. You can drag the test line in the script editor to

arrange the test lines in the required sequence for playback.

4. Click File > Save to save the modified test script.

Creating group verification points
You can insert group verification points for all the controls that are in the application visual.

Before you begin

Prerequisites:

• The group verification point feature in the application visual is available if the Enable capturing of verification

on test data option is enabled when the script was recorded.

• Verify if all the required control types in the application visual are the default controls for group verification

point. For more information about the list of default controls and the procedure to add the control types, see

the group verification points topic.

1. Select the test line in the script editor that refers to the required application visual of the test application.

The application visual is displayed in the Application view.

2. Select the application visual, right-click and select Insert Verification Point > Group Verification Point.

Result

A set of test lines to capture verification points for all the controls is added to the test script.

3. Click File > Save to save the modified test script.

The verification point test lines are inserted into the script for all the controls that are set as default controls

for group verification points.

729

HCL OneTest™ UI

730

Group verification points
You can create verification points for all the controls of an application visual using the Group Verification Point

feature.

From an application visual, you can select the controls individually and insert the data or image verification points.

Using the group verification point feature in the Application view, you can insert verification points for all the controls

in the application visual. By default, group verification points can be inserted for the following type of controls in the

application visual:

• Text

• Button

• ToggleButton

• CheckBox

• ComboBox

• RadioButton

• Label

• Link

• ComboListBox

If you want to insert group verification points for any other type of controls such as a tree control, you must add it to

the control list in the defaultGroupVp.rftssvp file.

To insert a control that is not listed as the default control for group verification points:

1. Close HCL OneTest™ UI.

2. Open the defaultGroupVp.rftssvp file available at product installation

directory\FunctionalTester\bin location using the notepad editor.

3. Add the control to the file in the format <role roleName="control name"/>. For example: To add a tree control

to the default group verification point list, add the line <role roleName="Tree"/>.

4. Save the file and then open HCL OneTest™ UI.

Note: You can refer to the control names in the defaultVPType.rftssvp file that is also available at <product

installation directory>\FunctionalTester\bin location.

Driving functional tests with external data
This section describes techniques you can use to data-drive functional tests with external data.

Data-driving tests overview
When you data-drive a test, the script uses variables for key application input fields and programs instead of literal

values so that you can use external data as you data-drive the application you are testing.

Chapter 7. Test Author Guide

Data-driven testing uses data from an external file, a dataset, as input to a test. A dataset is a collection of related

data records. When you data-drive test, datasets supply data values to the variables in a test scripts during test script

playback.

Because data is separated from the test script, you can:

• Modify test data without affecting the test script

• Add new test cases by modifying the data, not the test script

• Share the test data with many test scripts

The diagram on the left shows a test script, which uses data with hard-coded, literal references in the test script. The

diagram on the right shows a data-driven test script that uses data from an external file, a dataset.

Hard-coded test script with literal references Data-driven test script with a dataset

Here are some examples of problems that data-driving tests solves:

Problem: During recording, you create a personnel file for a new employee, using the employee's unique identification

number. Each time the test is run without data-driving the test, there is an attempt to create the same personnel file

and supply the same identification number. The application rejects the duplicate requests.

Solution: You can data-drive the test script to send different employee data, including identification numbers, to the

server each time the test is run.

Problem: You delete a record during recording. When you run the test without data-driving the test, HCL OneTest™ UI

attempts to delete the same record, and Record Not Found errors result.

Solution: You can data-drive the test script to reference a different record in the deletion request each time the script

is played back.

Data-driving tests gives a more accurate picture of the way the application under test works in the real world with real

data.

731

HCL OneTest™ UI

732

Data-driven functional tests
To data-drive a test script, you need to select the controls or objects in the application-under-test using either the

Object Finder Tool method or the Test Object Browser method.

Before you begin

About this task

A dataset can be populated with data from the application. A dataset is a collection of related data records. A dataset

supplies data values to the variables in a test script during test script playback.

You can use any of the following methods to select an object or a control:

• Object Finder Tool method -- Use this tool to select an object and all descendents of the object, select one

object, or select an object and the immediate children of an object.

Note:

• Test Object Browser method -- Use this method to browse for the object that you want to select. The browser

displays a hierarchical tree of objects in your application. The top level shows any applications you have

running. Under each top level, HCL OneTest™ UI displays the object hierarchy within that application. The

hierarchical tree is a dynamic view of the currently available objects.

To data drive a test script:

1. Create a functional test project.

2. Start recording a test script.

a. In the Select Script Assets dialog box, in the dataset Record Selection Order box, select one of the

following types of dataset record selection orders:

▪ Sequential -- At playback, the test script accesses records in the dataset in the order that they

appear in the dataset.

▪ Random -- At playback, the test script randomly accesses every record in the dataset once.

b. Click Finish.

Result

The HCL OneTest™ UI window minimizes and the Recording Monitor opens.

3. Start the application you want to test and navigate through the application to the dialog box that you want to

data-drive.

Chapter 7. Test Author Guide

a. Click Start Application on the Recording toolbar.

See Starting Your Test Applications on page 692 for more information. (If your application is already

running, you do not need to do this step.)

b. Perform any actions in the application that you want to record in the test script.

4. Data-drive the test.

a. On the Recording toolbar, click Insert Data Driven Commands ().

Result

The test script recording pauses and the Insert Data Driven Actions page opens.

b. In the application-under-test, type the initial values that you want to see in the dataset in the fields that

you want to data drive.

By populating these fields while the recorder pauses, you do not record unnecessary actions in the

test script. Any change to the control flow of the program while the test script recording pauses is not

recorded in the test script.

5. Under Populate then Select Test Objects, choose one of the following methods:

◦ Press and drag hand to select test objects -- Use this method to select an object and all the

descendents of the selected object. This is the most common and direct method of selecting an

object.

◦ Use selection wizard to select test objects -- Click to use the Drag Hand Selection method with its

options, or the Test Object Browser method. The Select Object to Data Drive page opens.

6. If you choose Press and drag hand to select test objects, take the following steps:

a. Use the mouse to drag the hand, the Object Finder tool (), to the object in the application that you

want to select.

Result

HCL OneTest™ UI outlines the object with a red border.

b. Release the mouse button.

Result

The Data Drive Actions page opens. In the Data Drive Actions page, under the DataDriven Commands

table, information appears about the objects you selected.

You can place your mouse pointer over a row in this table to view the line of code that HCL OneTest™

UI inserts into the test script to data-drive the application-under-test.

733

HCL OneTest™ UI

734

7. If you choose Use selection wizard to select test objects, click the Selection method arrow to select one

of the following methods:

◦ Drag Hand Selection method -- Use this tool to include only the selected object, the selected

object and the immediate children of the selected object, or to include the selected object and all

descendents of the selected object.

Note: The Drag Hand Selection method is not available on Linux environments such as Ubuntu

and Red Hat Enterprise Linux (RHEL). You must use the Test Object Browser method on Linux

environments.

◦ Test Object Browser method -- Use this method to browse for the object that you want to select.

8. If you choose the Drag Hand Selection method, take the following steps:

a. Optionally, select or clear After selecting an object advance to the next page.

b. Use the mouse to drag the hand, the Object Finder tool (), to the object in the application that you

want to select.

HCL OneTest™ UI outlines the object with a red border.

c. Release the mouse button.

d. Click Next if you did not select After selecting an object advance to next page.

e. Click one of the following options:

▪ Just the selected object

▪ Include the immediate children of the selected object

▪ Include all descendents of the selected object

9. If you choose Test Object Browser method, take the following steps:

a. Browse the object tree to find the object that you want to data-drive.

b. Click the part of the tree that you want to select.

c. Click Next.

d. Choose one of the following options:

▪ Just the selected object

▪ Include the immediate children of the selected object

▪ Include all descendents of the selected object

e. Click Finish.

Chapter 7. Test Author Guide

Result

The Insert Data Driven Actions page opens with information filled in under Data Driven Commands and

Selected Command Description.

10. Optionally, in the Data Driven Commands table, under the Variable header, type a descriptive name for the

name of each variable in the dataset.

11. Optionally, in the Data Driven Commands table, under the Initial Value header, double-click the initial value,

and then type in a new initial value or click the arrow to select a new value from the list.

For example, you can change the initial value of a test object to test the non-default states of an application.

12. Optionally, in the Data Driven Commands table, make any of the following changes.

◦ Click to move the selected row earlier in the order of execution in the Data Driven Commands table.

◦ Click to move the selected row later in the order of execution in the Data Driven Commands table.

◦ Click to delete a selected row from the Data Driven Commands table.

◦ Click to highlight a test object in the application-under-test. Select a test object in the Data Driven

Commands table, and then click this icon.

◦ Click to display or hide recognition and administrative properties for a selected test object

13. Click OK to finish data-driving the script. The Insert Data Driven Actions page closes and HCL OneTest™ UI

populates a dataset with data collected from the application.

14. To finish recording the test script:

a. Perform any actions in the application you want to record.

b. If you want to record a verification point, locate the object in your application you want to test, and

then click the Insert Verification Point or Action Command button.

Tip: Click the Help button while creating the verification point for more information on the

Verification Point and Action Wizard, or see Creating a Properties Verification Point on

page 698 for an example of how to create a properties verification point.

You can use a dataset reference instead of a literal value for the value you are testing in the verification

point.

c. If you want to insert any script support functions into the script, such as a call script command, log

entry, timer, script delay command, or comment, click the Insert Script Support Commands button.

Click the Help button in the Script Support Functions on page 686 dialog box for information on

these functions.

d. Close your application, if you want closing the application to be part of the script.

e. On the Recording toolbar, click Stop Recording () to write all recorded information to the test script

and update the dataset with new variables and associated initial values.

735

HCL OneTest™ UI

736

Result

The HCL OneTest™ UI window opens and the script displays in the editor window.

15. You can add data to the dataset after you finish recording the test script. For more information about editing a

dataset, see Editing datasets on page 740.

Working with datasets
A dataset is a collection of related data records which supplies data values to the variables in a test script during test

script playback.

You can use datasets to supply realist data and to stress an application with a realistic amount of data.

Using HCL OneTest™ UI, you can create a data-driven test by selecting the controls or objects in an application-under-

test to data-drive. HCL OneTest™ UI creates a dataset in which you can edit and add data. You can use a single test

script repeatedly with varying input and response data.

You can use the dataset feature in the following ways:

• To add realistic data to a test script.

• To import data from a dataset or a .csv file created using a spreadsheet application.

• To edit dataset values.

• To change the dataset record selection order to determine how the test script accesses an associated dataset

during playback.

While working with simplified test scripts, you can either create a data-driven test script during recording or you can

insert data-driven commands into the simplified test script by using the application visuals. You can also create

multiple datasets for a script and associate a dataset to a group in a simplified script.

Private and shared datasets

Every test script that you create has a private test dataset associated with it. The initial private test dataset is a

placeholder and is empty until you data-drive a test script, or add new data to it.

You can create a shared dataset by creating a new dataset, or you can associate a dataset with several test scripts to

share a dataset.

Creating a dataset
A dataset is a collection of related data records which supplies realistic data values to the variables in a test script

during test script playback. You can create data from scratch or import existing data into a new dataset from another

dataset or a .csv file.

1. Click Create a Test dataset (). The Create New Dataset Location and Filename dialog box is displayed.

2. Click the project that must contain the dataset. The selected project is displayed in the Enter, create, or select

the parent folder field.

Chapter 7. Test Author Guide

3. In the Name field, enter the required name of the dataset, and click Next.

4. Optional: In the Description, enter the required description for the dataset.

5. In the Dimensions field, specify the number of rows and columns for the dataset.

6. Click Finish. The new dataset is displayed in a browser.

Importing to datasets
You can import test data into a dataset using a comma-separated value (CSV) file that enables you to import large

volumes of test data to a dataset rather than manually entering them.

Before you begin

You must have created a test that contains a dataset with at least one column.

1. Under the Functional Test Projects view, double-click the dataset. The dataset is displayed in a browser.

2. Click Import.

3. Choose the .csv file to import and click Open.

4. You can choose the following options in the Import dialog box:

Choose from:

◦ Click Append to add rows and columns from the selected CSV file to the end of the dataset.

◦ Click Overwrite to add the rows and columns from the selected CSV file from the beginning of the

dataset.

5. Click OK. Based on your selection, the rows and columns values are added either to the end of the dataset or

from the beginning of the dataset.

6. Click Save and close the browser. Click Discard Changes if you do not want to save the changes.

Results

The data from the CSV file is imported into the dataset.

Inserting data-driven commands into a script by using an application visual
You can add data-driven commands to the script by using an application visual.

Before you begin

Prerequisite: To use the application visuals for inserting data-drive commands into a script, the Insert Data Driven

Commands feature must be enabled in the Preferences page before recording the script.

1. Select the test line in the script editor that refers to the required application visual of the test application.

The application visual that contains the control is displayed.

Note: The thumbnail pane in the Application view displays images of all the application visuals that

are captured for the project. You can select the required application visual image in the thumbnail

pane and view the application visual in the Application view.

2. In the Application view, move the mouse pointer over the control to use for the data-driven command.

737

HCL OneTest™ UI

738

Result

By default, the control is highlighted in red.

3. Right-click and select Insert Data Driven Command.

Result

The data driven command for the control is inserted into the test script. You can drag the test line in the script

editor to arrange the test lines in the required sequence for playback.

4. In the Test dataset view, add the data for the control.

5. Click File > Save to save the modified test script.

During script playback, the data for the control is retrieved from the dataset.

Associating a dataset with a group in a simplified script
You can associate a dataset with a group in a simplified script. With this capability, you can create multiple datasets

for a script and associate the datasets with the groups in a script.

1. Select a group in the simplified script editor that contains the test lines to be data-driven.

Result

The General page in the Properties view displays the dataset section.

2. On the General page of the Properties view, you must specify the dataset details:

a. To create a dataset and associate it with the group, type a new dataset name. If a dataset already

exists, select the dataset from the list.

b. Type the dataset iteration count to specify the number of times the test lines in the group must be run

by accessing the records in the dataset.

3. Click Script > Find Literals and Replace with Dataset Reference to replace the existing literals in the group

with the dataset reference.

Ensure that you add the literals to the dataset while replacing the literals with the dataset reference so that

the values are added to the dataset. For more information, see the topic about replacing literals with dataset

reference.

4. Click File > Save to save the test script.

The Test dataset view displays the newly associated dataset with the literal values as records. You can add

more data to the dataset in the Test dataset view.

Note: If you insert data-driven commands for other controls in the group by using an application

visual, the data for the control is automatically added to the dataset that is associated with the group.

Result

During script playback, the data for the controls is retrieved from the associated dataset.

Encrypting datasets
To secure test data, you must encrypt datasets. You can encrypt one or more columns of a dataset using a password.

You are prompted to enter your password when you run a test that utilizes dataset with encrypted variables.

Before you begin

Chapter 7. Test Author Guide

You must have created a test that contains a dataset.

1. Under the Functional Test Projects view, double-click the required dataset. The dataset is displayed in a

browser.

2. Right-click the heading of the column and select Encrypt column.

Result

The Encrypt dataset dialog box is displayed.

3. Enter the required password to encrypt the column and confirm the password.

Notes:

◦ If you forget the password to a dataset, there is no way to recover it.

◦ If you have already encrypted other columns in the dataset, you must enter the password that

you used previously. You can use only one password to encrypt columns in a dataset.

4. Click OK.

Result

Asterisks are displayed instead of actual values of the encrypted variables.

Results

The dataset column is encrypted.

Changing passwords on encrypted datasets
To secure test data, you must encrypt datasets. All the columns in a dataset are encrypted using a single password.

You can change this password at any instance.

Before you begin

You must have created a test that contains a dataset with at least one encrypted column.

1. Under Functional Test Projects view, double-click the required dataset. The dataset is displayed in a browser.

2. Right-click the heading of the column and select Change password. The Change password dialog box is

displayed.

3. Enter the old password and the new password, and confirm the new password.

4. Click OK.

Results

The password on the encrypted dataset is changed.

Decrypting Datasets
You must decrypt the dataset if you want to export a dataset into a .csv file. If you decrypt a dataset, it revokes the

protection offered to the test data in it.

739

HCL OneTest™ UI

740

Before you begin

You must have created a test that contains a dataset with at least one encrypted column.

1. Under the Functional Test Projects view, double-click the required dataset. The dataset is displayed in a

browser.

2. Right-click the heading of the column from which you want to remove encryption and select Decrypt column.

Result

The Decrypt column dialog box is displayed.

3. Enter the password that you used to encrypt the column.

4. Click Ok.

Results

The encryption is removed and the dataset column is decrypted.

Editing datasets
After you data-drive a test to create a dataset or create an empty dataset, you can edit the records and variables in the

dataset.

About this task

A dataset is a test dataset, a collection of related data records which supplies data values to the variables in a test

script during test script playback. A record is a row in a dataset. A variable is a column in a dataset.

You can make the following changes to a dataset:

• Add, remove, move, or edit a row

• Add, remove, move, or edit a column

• Edit or clear cell(s)

• Cut, copy, or paste a cell, row, or column

Note: To have seamless access to a dataset CSV editor, you can use any one of the following web browsers

on Windows, Linux or Mac operating systems:

• Mozilla Firefox

• Google Chrome

• Microsoft Edge based on Chromium

Selecting a record

About this task

To select a record, you must click the column number. For example, 0, 1, or 2.

Chapter 7. Test Author Guide

Adding a record

1. Click anywhere in the dataset editor or select a record, right-click, and then click Add Record.

Result

The new record appears after the selected record unless you select the first row.

2. If you select the first row, click Add Before or Add After to place the new record before or after the first record,

and then click OK.

Removing a record

1. Select a record that you want to delete.

2. Click Remove Record.

Moving a record
To move a record before or after another record:

1. Select a record, and then right-click Edit Record.

2. Click the Index arrow to select the location where you want to move the record.

For example, select Before 0 to move a record before record 0 or select After 12 to move a record after record

12.

3. Click OK.

Editing dataset values

1. Select the cell you want to change.

2. Double-click the selected cell and type the new value of the cell.

Adding variables

1. Select a cell or click anywhere in the dataset editor, and then right-click Add Variable.

2. In the Add Variable dialog box, type the name of the new variable.

3. Type the full class name for the variable.

The system String class is the default.

4. Click the Add arrow to select the location where you want to place the new variable.

For example, select Before NameofVariable to place the new variable to the before an existing variable or

select After NameofVariable to place the new variable after an existing variable.

5. Click OK.

741

HCL OneTest™ UI

742

Removing variables

1. Right-click a cell in the variable you want to remove.

2. Click Remove Variable.

Changing names, types, or move variables

1. Select a cell in the variable that you want to change.

2. Right-click, and then click Edit Variable.

3. In the Edit Variable dialog box, double-click or select the name of the variable and then type the new name of

the variable.

4. Type the full class name for the variable.

The system String class is the default.

5. Click the Move arrow to select the location where you want to move the variable.

For example, select Before NameofVariable to move the variable before an existing variable or select After

NameofVariable to move the variable after an existing variable in the dataset.

6. Click OK.

Cutting, copying or pasting cells, records, or variables

About this task

To cut, copy, or paste a cell, a record, or a variable:

• To delete data in a cell, record, or variable to the clipboard and copy it to the clipboard, select a cell, a record,

or a variable, right-click, and then click Cut.

• To paste the contents of the clipboard, select a cell, record, or variable that you want to overwrite with the

contents of the clipboard, right-click, and then click Paste.

• To copy a cell, record, or variable to the clipboard, select a cell, a record, or a variable, right-click, and then click

Copy.

Replacing literals with dataset references
If you have an existing test script, you can replace literal values in the script with dataset references to add realistic

data to the script. You can find and replace all literals, or just the number, string, or boolean literals with a dataset

reference.

About this task

You can also add a literal from a script to a dataset. If you do not use an existing dataset variable, the same literal

values (the values that were captured when you recorded the test script) are used each time you run the script.

1. Click Script > Find Literals and Replace with Dataset Reference.

2. Under Direction, click Forward or Backward to set the direction you want to search through a test script.

Chapter 7. Test Author Guide

3. Under Literal Type, set the type of literal you want to find from the following list:

Choose from:

◦ All -- Click to find all literals in a script.

◦ Numbers -- Click to find number literals in a script. A number includes integers (a whole number, not

a fractional number, that can be positive, negative, or zero) or floating numbers (positive and negative

decimal numbers).

◦ Strings -- Click to find string literals in a script. A string stores alphanumeric values such as name, city,

or state.

◦ Booleans -- Click to find boolean literals in a script. Any use of the boolean literals true or false are

flagged for substitution.

4. Click Find to start the search.

The name of the literal found in the test script appears under Literal.

5. Click the Dataset Variable arrow to display the dataset variables and then click the dataset variable that you

want the script to reference.

6. Optionally, type a new variable name for the dataset variable you selected.

7. Optionally, click the Add Literal to Dataset check box to add the literal value to the dataset.

8. Click Replace to replace the literal in the script with a dataset variable reference.

The cursor automatically moves to the next literal in the test script.

Note: If you have a literal that is a choice in a combo box in the application-under-test, when you

replace the literal with a dataset reference, you get a string data type instead of an a enumerator data

type in the dataset.

9. When you find the next literal in the test script, repeat steps 5 through 7.

10. When finished, click Close.

Result

HCL OneTest™ UI updates the dataset with any new columns and initial values that you add in this dialog box.

Dataset references and verification points
When you create a verification point with a dataset reference, you can supply variable data to make your tests more

realistic.

Each time you play back a script with an associated dataset, the script accesses one record in the dataset. The

verification point uses the dataset reference to access a variable in that record. At playback, Functional Test

substitutes the variable in the dataset for the dataset reference and compares it to the actual results.

The log contains the record of events that occur while playing back a script and the results of all verification points

executed. Actual test results (with the dataset reference resolved) that vary from the baseline results are defects or

intentional changes in the application.

743

HCL OneTest™ UI

744

In the following diagram, the left box represents typical script assets:

(1) Script with an associated dataset

(2) dataset

(3) Object map

(4) Verification point baseline -- A baseline is the captured data maintained with a script. The verification point, in this

example, has a dataset reference.

The right box represents the following:

(5) Test log that records the verification points that passed or failed

(6) Expected data, equal to the script's baseline data, with dataset references resolved to the values in the active

record at the time the verification test was performed.

(7) Actual data is the data from the software-under-test at the time the verification point is performed.

When you run a script the following events take place:

(A) The verification point accesses the data in the dataset creating the expected result from the baseline and the

active dataset record.

(B) The dataset reference resolves and supplies data to the verification point.

(C) The expected result is compared to the actual result.

Chapter 7. Test Author Guide

(D) Expected and actual results are recorded in the log. Any deviation from the expected results are logged as a

failure in the test log.

Changing the dataset record selection order
The test dataset record selection order determines how a test script accesses records in the test script's associated

dataset when you play back the test script.

1. In the Projects view, select the test script that is associated with the dataset that you want to change.

2. Right-click the selected test script and click Properties.

3. Click Functional Test Script.

The Functional Test Script Properties page opens. HCL OneTest™ UI uses the test dataset for the test script

you selected.

4. To change the dataset record selection order, click Dataset Record Selection Order , and then select the

following record selection order:

◦ Sequential: You can use this option to make a test script access records in the dataset in the order

that they appear in the dataset. The sequential record selection order is the default dataset record

selection order.

◦ Random: You can use this option to make a test script access records in the dataset randomly. A

random record selection order accesses every record in the dataset once.

5. Click Apply.

Results

The dataset record selection order is modified.

Associating a dataset with a test script
You can associate a test script with a dataset to use external data to drive the application instead of using a literal

value.

About this task

A dataset is a test dataset, a collection of related data records. It supplies data values to the variables in a test script

during test script playback.

1. In the Projects view, select a dataset.

2. Right-click the selected dataset and click Associate with Script. The Associate the dataset with scripts dialog

box is displayed.

3. Expand the project to open the list of scripts.

4. Click one or more test scripts to associate with the dataset that you selected.

5. Click Finish.

745

HCL OneTest™ UI

746

CAUTION: If you change the dataset associated with a script, the script may run incorrectly.

6. If you receive a message that a script is already associated with a dataset, you must complete one of the

following steps:

Choose from:

◦ Click Yes to change the dataset associated with the script to another dataset.

◦ Click No to keep the dataset associated with the script.

Associating a test script with a dataset
You can associate a test script with a dataset to use external data to drive the application instead of using a literal

value.

About this task

A dataset is a test dataset, a collection of related data records. It supplies data values to the variables in a test script

during test script playback.

1. Open the test script that you want to change.

2. From the Script Explorer, select Test Dataset.

3. Right-click and select Associate with Dataset.

4. Type the name and path of the test dataset or select a dataset from the list of datasets.

5. Click OK.

Removing a dataset association
You can remove dataset association with a test script.

1. Open the test script you want to change.

2. In the Script Explorer, right-click the Test dataset directory and click Remove Dataset Association.

3. You must complete one of the following steps:

Choose from:

◦ Click Yes to remove the dataset association.

◦ Click No to keep the current dataset association.

Deleting a dataset
You can delete a dataset if you no longer require it.

Before you begin

If you want to delete a dataset, you must remove all the associations of the required dataset with the test scripts.

1. In the Projects view, select the dataset you want to delete

2. Right-click the selected dataset and click Delete. The Delete dialog box is displayed.

3. Click Yes to confirm that you want to delete the dataset.

Chapter 7. Test Author Guide

Results

The dataset is now deleted.

Managing functional test assets
You can integrate HCL OneTest™ UI with Rational® Team Concert™ and manage functional test assets using any of

these source control management tools.

Software configuration management
You can use the IBM® Rational® Team Concert™ integration with HCL OneTest™ UI to maintain an auditable and

repeatable history of your organization's test assets.

What is software configuration management?

Software configuration management is referred to as source control, change management, and version control.

Software configuration management systems are commonly used in software development groups in which several

developers are concurrently working on a common set of files. If two developers change the same file, that file might

be overwritten and critical code changes lost. Software configuration management systems are designed to avoid

this inherent problem with sharing files in a multiuser environment.

Any software configuration management system creates a central repository to facilitate file sharing. Each file to be

shared must be added to the central repository to create the first version of the file. After a file is part of the central

repository, users can access and update it, creating new versions.

Benefits of software configuration management

If you have not used a software configuration management system or are not that familiar with the concept, you

might wonder whether it is appropriate to use software configuration management on your project. Test automation

is a software development effort. Every time a test script is created, whether through recording or coding, a file is

generated that contains code. When created, developed, or edited, that code is a valuable test asset.

A team environment presents the risk of losing functioning code or breaking test scripts by overwriting files. A

software configuration management system offers a way to overcome this risk. Every time a file changes, a new

version is created and the original file is preserved.

For the team that is new to software configuration management, all of the essential features for versioning test

scripts are available through the HCL OneTest™ UI interface. This integration simplifies the use and adoption of

software configuration management.

747

HCL OneTest™ UI

748

Note: Use a software configuration management like or Rational Team Concert if multiple users must access

functional test assets in a test team environment.

Software configuration management products

The IBM® Engineering Workflow Management integration for versioning test assets is specialized and cannot be

duplicated with other tools.

When you use HCL OneTest™ UI, the IBM® Rational® Team Concert™ operations appear to be very simple. But a lot

is going on behind the scenes. A Functional Test script is a collection of files. The complexity of treating several files

as a single entity is hidden because all actions in the product user interface are performed on the script. You do not

see the related files anywhere in the user interface. In addition, some software configuration management operations,

such as merging, are very complex. There is built-in logic to determine the order in which files are merged, and then

different utilities are employed as needed to complete the merge.

Rational Team Concert:

You can use Jazz source control to manage source code, documents, and other artifacts that you want to place

under version control and share with a team. Jazz source control is closely integrated with the other application

development lifecycle tools included in Rational Team Concert.

• You can create a project in your workspace, share the project to place the project under Jazz source control.

• Check-in your changes to the repository workspace.

• Deliver the changes to the stream from the repository workspace so that the changes are available to all

members of the team.

• You can accept a team invitation, or create a new repository workspace from one of the streams of the team.

Functional test assets

A typical HCL OneTest™ UI test script object includes these files:

• Script file (scriptname.java for HCL OneTest™ UI, Eclipse Integration, or scriptname.vb for HCL OneTest™ UI,

Microsoft Visual Studio .NET Integration)

This file is created through recording.

• Script helper file (scriptname ScriptHelper.java for HCL OneTest UI, Java Scripting, or scriptname

ScriptHelper.vb for HCL OneTest UI, VB.NET Scripting)

Each script has a script helper file that is generated after recording.

• Shared test object map file (kadov_tag{{<ignored>}}filename.rftmap kadov_tag{{</ignored>}}) or private test

object map file (scriptname.rftxmap)

Chapter 7. Test Author Guide

Each script has a map file. The map file can be associated with only one script (*. rftxmap) or shared among many

scripts (*. rftmap). To prevent users from accidentally selecting a private map name as a shared map, the suffixes

are different.

• Verification Point file (verificationpointname .rftvp)

Each script may also contain one or more verification point files. Verification point files are not shared among scripts.

• Script Definition file (scriptname.rftdef)

Each script contains a script definition file. The script definition file contains the name of the map file, script name, the

names of all of the recognized objects, and other file linkage information.

• Public Test dataset (filename.rftdp) or Private Test dataset (scriptname.rftxdp)

You can associate a public or private test dataset with a test script. You can associate a public test dataset with one

or several test scripts.

Testing terminal-based applications
Use the HCL OneTest™ UI Terminal-based Applications feature to create test scripts and automate your host-

application test cases. You can test host attributes, host field attributes, and screen-flow through a host application. It

uses terminal verification points and properties, as well as synchronization code to identify the readiness of terminal

for user input.

You can use the terminal-based applications feature to perform the following tasks:

• Store, load, and share common host configurations by using a properties file. The connection configuration

can be loaded automatically through scripts, using these files.

• Record or play back scripts against multiple host terminals.

• Start the terminal even when you are not recording or playing back your scripts. With this function, you can

interact with the host without leaving the working Eclipse environment.

• Perform data driven testing.

For information about the Host Access Class Library (HACL) for Java APIs, see IBM WebSphere Host On-Demand

Information Centerl

Importing certificates from the server for secured connections
Starting from HCL OneTest™ UI 9.1.1, you can import certificates from the server to connect to the host machines

securely. You can create a CustomizedCAs.p12 / CustomizedCAs.jks keystore through the Extension for

Terminal-based Applications that produces the *.p12/JKS file. This file passes the host server's self-signed certificate

credentials to the terminal to allow a secure connection.

About this task

749

http://publib.boulder.ibm.com/infocenter/hodhelp/v10r0/index.jsp?topic=/com.ibm.hod.doc/doc/hacl/ECLReference.html
http://publib.boulder.ibm.com/infocenter/hodhelp/v10r0/index.jsp?topic=/com.ibm.hod.doc/doc/hacl/ECLReference.html

HCL OneTest™ UI

750

Prior to version 9.1.1, you could use SSL to connect to the host machine securely. See Using SSL to connect to host

machines on page 828.

1. Start the Extension for Terminal based Applications by clicking the Launch button in HCL OneTest™ UI.

2. Click Session > Security to open the Security Information window.

3. Select or type the Host address and Port number.

4. Select the type of keystore where the certificate can be saved. Depending on the connection protocol

supported by the host, you can choose PKCS12 or JKS.

5. Click the Get Certificate(s) button to retrieve the certificates from the host.

6. After the certificates are retrieved, click the Save button to save the extracted certificate to the appropriate

keystore (CustomizedCAs.p12 or CustomizedCAs.jks).

7. Click the Status bar to open the location where the keystore is created with the certificate. This location would

be C:\Users\<current user>\Application Data\ibm\RFT\Extension for Terminal-based

Applications on a Windows™ machine.

8. Copy the .p12 or .jks file to the <HCLIMShared\plugins>\com.ibm.test.terminal_8.5.0.vXXXX

folder. This plugin folder also includes the terminal.jar and TerminalTester.jar files.

9. Close the Security Information window and restart the Extension for Terminal-based Applications.

10. Type the Host address, Port number, and terminal type information and click the Advanced Settings button.

11. Set the properties depending on the type of certificate.

Chapter 7. Test Author Guide

◦ For CustomizedCAs.p12, you must set the following properties:.

Property Name Set the value...

SSL true

SSLTelnetNegotiated true

◦ For CustomizedCAs.jks, you must set the following properties:

Proper

ty Name
Set the value...

sslUseJSSE true

ssl

JSSETrustS

tore

Provide the full path of CustomizedCAs.jsk.

For example,

C:\Program Files\HCL\HCLIMShared\plugins\com.ibm.test.termi

nal_8.5.0.v20170703_0428\CustomizedCAs.jks

ssl

JSSETrust

StorePass

word

hodpwd

tlsProtocol

Version

TLSv1.2

Note: If the host supports an older version of the protocol, the application will

fall back to the older version.

ssl

JSSETrustS

toreType

jks

751

HCL OneTest™ UI

752

Proper

ty Name
Set the value...

SSL true

SSLTelnetNe

gotiated

true

Note: You must set SSLTelnetNegotiated to true only when you connect to a Telnet server that

supports IETF Internet-Draft TLS-based Telnet Security. The Internet-Draft defines the protocol for

performing the SSL Handshake over a Telnet connection.

Creating a host connection script
You can create a host connection script so that you can interact with the host session, navigate to other screens, and

create data verification points.

1. Click the Record a Functional Test Script icon on the toolbar to start recording a new script.

2. Provide a name for the script, and click Finish.

Result

The HCL OneTest™ UI window minimizes, and the Recording Monitor opens.

3. Click the Start Application icon on the Recording Monitor toolbar.

4. Select Extension for Terminal Based Applications from the list, and click OK.

5. Specify the basic connection properties. For more information about basic connection properties, see the

related topics.

6. Optional: Click Advanced, and type the properties in the Advanced Settings window. For more information

about advanced connection properties see the related topics.

7. Click the Open a Connection Properties File icon on the tool bar.

8. Select the file name, and click OK.

9. Click the Connect using the current connection properties icon on the tool bar.

Note: If you type invalid properties or leave any required properties unspecified, an error message

is displayed. Correct the invalid entries in Extension for Terminal-based Applications window, and

connect.

What to do next

After the session is connected, you can interact with the host session, navigate to other screens, and create data

verification points.

You can also create scripts that start from a non-login host screen:

Chapter 7. Test Author Guide

1. Start Extension for Terminal-based Applications.

2. Log in to your host session.

3. Navigate to the location where you want to start recording the script.

4. Start recording your script.

Creating a new connection configuration file
Before connecting to your host session, you can create a new connection configuration by saving the connection

values in a host connection configuration file.

1. Click the Save the Connection Properties icon or Save the connection properties to a file icon on the

tool bar.

2. Type a file name.

Choose from:

◦ If you type an invalid file name, such as one that includes restricted characters or reserved operating

system keywords, an error message is displayed with the option of changing the file name or

canceling the operation.

◦ If you type a file name that already exists, a warning message is displayed with the option of writing

over the existing file, changing the file name, or canceling the operation.

3. Click OK.

Result

The connection configuration file is saved in the directory specified in the Default folder for Connection

Configuration Files field in Preferences window.

4. Click Connection Configurations list.

Result

The Connection Configurations field lists all the .conn files that are present in the default folder that is

specified in Default folder for Connection Configuration Files field in the Preferences window.

Note: If you have used the Open function to load a .conn file from a non-default folder, the last 10

opened configuration files are displayed in addition to the .conn files that are located in the default

directory.

Saving connection properties
You can save your connection properties for later use. The connection properties are saved with a .conn extension

in location specified in the Preferences window. On loading the connection properties file, the current properties are

replaced with the properties stored in the file.

1. Create a new connection configuration file. For information on creating a new connection configuration file,

see related topics.

2. Click the Save the Connection Properties or icon or Save the connection properties to a file icon on

the tool bar.

753

HCL OneTest™ UI

754

The connection properties are saved in a .conn file in the specified location as Default Connection Properties

Location in Preferences window. The default location also specifies the location of the properties files list

when you are loading a properties file.

Note: Loading the saved properties file replaces the current properties with those stored in the file.

3. Type a file name.

4. Click OK.

Modifying invalid preferences
On starting Extension for Terminal-based Applications, an error message might be displayed for each invalid

preference specification for Timeout, OIA State Timeout, Polling Interval, and Minimum time to wait. You can correct

these invalid settings.

1. Note the preference in error, and click OK for each error message.

2. From menu bar, click Sessions > Preferences.

3. Modify the invalid preference setting that is reported in the message.

4. Click OK after modifying the preference setting.

Creating scripts using multiple terminals
You can create scripts that simultaneously automate the testing of multiple host terminals. Using this feature, you

can create scripts with host applications that react to the interactions with other host applications.

1. Start recording a new script using the host connection. For information on recording a host connection script,

see related topics.

2. Log in to your host session and interact with the host, navigating to other screens and creating data

verification points.

3. To open another terminal session, perform the following steps:

a. On the Recording Monitor window toolbar, click the Start Application icon.

Result

The Start Application window opens.

b. Click Extension for Terminal-based Applications from the Application Name list, and click OK.

4. You can now switch back and forth between the terminals, continually interacting with the hosts, and creating

verification points on the different terminals.

5. Log off from both hosts, and on the tool bar click the Stop recording icon.

6. Save your script.

What to do next

Chapter 7. Test Author Guide

Note: Extension for Terminal-based Applications uses .conn files to differentiate the sessions. The terminal

sessions cannot use the same .conn file in order to distinguish the terminals from one another. Otherwise,

when the script is played back, HCL OneTest™ UI will not recognize that there are two terminal sessions. All

actions against either terminal will be played back on a single terminal.

If during playing back your script, any of the verification points fail, then edit your script or object map.

Customizing screen size when connecting to a TN3270 or TN3270E host
You can customize your screen size when connecting to a TN3270 or TN3270E session. Other types of sessions,

such as TN5250 and VT sessions, are not affected by this feature.

1. Select TN3270 or TN3270E from Terminal Type list.

2. Select Custom RowXCol from Screen Size list.

3. Select a valid RowXCol from RowXCol field. A valid RowXCol string is comprised of 1-to-3-digit number of

rows, optional blanks, the character 'x' or 'X', optional blanks, and a 1-to-3-digit number of columns.

4. Specify connection details.

5. Click Connect.

Recording a host connection script
You can automate the testing of a host application by recording a script that connects to, and interacts with a host

system. The session is recorded as a set of commands and can be played back at a later time. This allows you to

automate the navigation to specific screens.

1. Log in and interact with the host when you create a host connection script.

2. In the window where you want to perform a test, on the Recording Monitor toolbar, click the Verification Point

and Action Wizard icon.

Result

3. Drag the object finder over the host terminal (a thick red line outlines the selected terminal or field). You

can use the selector to select the entire terminal or any of the fields in the terminal session, and click Next.

4. Select the verification values to perform using Data Verification Point tab of the Perform an Action page.

Result

5. Select the required data values and properties

6. Select All field properties from the list if you are checking host field attributes. Provide a verification point

name, and click Next.

Result

The Verification Point Data page lists all the host fields from the current host screen.

755

HCL OneTest™ UI

756

The fields are named Field_row_col_text, where row is the starting row of the field, col is the starting column

of the field and text is the text found in the field.

7. Optional: Clear the check box of the field for which you do not want to perform a host-attributes check. By

default all host field attributes (except the host field names) are selected by this verification point. If you do

not want to test all host field attributes, double-click the item in the list, and clear the attributes in the Test

Data Element list.

Note: Avoid checking the name attribute of the host field in the verification point. This attribute might

cause problems during script play back.

8. Log off, and click the Disconnect icon after creating the verification points.

Chapter 7. Test Author Guide

9. Click the Stop Recording icon on the recording monitor toolbar.

Result

This stops the recording monitor and generates the script.

Verification points
Verification points are used to test properties of application windows or fields.

You can create verification points using the object finder during recording to select screen or field objects in the

host terminal. Create a verification point and check the list of properties that you want to verify. You can verify the

following properties and more: location, size, field count, and connection type for screens and color, text, location,

size, and numeric for fields.

Creating verification points
You can create verification points to test application objects. Verification points are used to verify that the property

values is as expected. When you create a verification point, you are capturing information about an object in the

application to establish this as baseline information for comparison during playback.

1. On the Recording Monitor toolbar, click the Verification Point and Action Wizard icon to perform a test on

a window when recording a script.

2. Select the object that you want to test by dragging the Object Finder icon over the part of the host terminal

window to test.

Result

A thick red line outlines the object that is selected for testing.

3. Click Next.

Result

The Select an Action window opens.

4. Select an action:

Choose from:

◦ Perform Data Verification Point: Tests the data that the object contains. It tests the text in the field.

◦ Perform Properties Verification Point: Tests one or more properties of the object such as whether a

field is protected.

◦ Get a Specific Property Value: Assigns the value of a specific property of an object to a variable in the

test script.

◦ Wait for Selected Test Object: Causes execution of the test script to wait until the object exists before

continuing.

5. Click Next. Follow the dialog box and provide values or accept the default values. Depending on the action you

select, you might have to complete more than one panel before the final window.

6. Click Finish to close the dialog and return to recording a script.

757

HCL OneTest™ UI

758

Creating data verification points
You can create data verification points to test the data in your application. When you record the verification point, a

baseline of the data is created. Every time you play back the script, the data is compared to check if any changes have

occurred. This helps in identifying any mismatch in data.

1. In the Insert Verification Point Data Command window, specify the verification point data.

2. Select a value to create a verification point to verify properties of the fields as well as the screen. The

following values are available:

Choose from:

◦ All field properties: Checks host field attributes, such as text, highlight, underline, blink, start or end of

row or column.

◦ Non-static field values: Checks the text values on the current host screen by fields that cannot be

modified.

3. Check the text values in the current host window by fields that cannot be modified. Select one of the following

choices:

Choose from:

◦ Select One Property Verification Point: Enables checking only one property of the window.

◦ Data Verification Point: Provides a quick and easy way of creating a verification point for often tested

data such as OIA information and field text.

4. Use the text recognition property with regular expressions to increase the flexibility of your script when

defining a screen. The recognition properties are located as children of a specific window. For more

information about the text recognition property, see the related topics.

5. Playback the script.

Note: While playing back the script, if any of the verification points fail, then edit the script or object

map.

What to do next

When creating verification points for fields, you might encounter fields that are marked as hidden (the hidden attribute

is set to true) that contain text. This text might be hidden on the host window (emulator) based on the login authority.

If you create a field data verification point for a hidden field, even though the field is hidden and is not displayed on the

host window, you will see the text that is in the field in field properties.

Creating properties verification points
You can create property verification points to test the properties of an object in your application. When you record the

verification point, a baseline of the property is created. Every time you play back the script, the property is compared

to check if any changes have occurred. This helps in identifying any mismatch in property.

1. Drag the Object Finder icon over an object, and select Perform Properties Verification Point. The Insert

Properties Verification Point Command window opens.

2. Click Include Children to include the immediate children of the object or all its children.

Chapter 7. Test Author Guide

3. Type a name for the verification point in the Verification Point Name field.

Make sure that the name is different from the default name, which makes it easier to locate in the test object

map.

4. Click Next to select the properties for verification points that you want to test.

5. Click Finish to close the Verification Point and Action Wizard and return to recording your script.

Properties for verification points
When you create verification points, the Verification Point and Action Wizard - Perform an Action window displays

only the properties that apply to the selected component.

Character property verification points
You can create character property verification points to test the character in your application. When you record

the verification point, a baseline of the character is created. Every time you play back the script, the character is

compared to check if any changes have occurred. This helps in identifying any mismatch in character.

Table 1 shows the properties, descriptions, and default values of character property verification points.

Table 12. Properties for Character property verification points

Property Description Default value

background Specifies the background color of the field.

position Specifies the position from the start of the field.

foreground Specifies the foreground color of the field. false

reverse Specifies whether the host field is displayed in reverse video (switch fore

ground and background colors). This property is not valid for Virtual Termi

nal (VT) sessions.

false

startCol Specifies the first column of the field.

startRow Specifies the first row of the field.

char Specifies the current character within the host field.

blink Specifies whether the text in the field is flashing. This property is not valid

for VT sessions.

false

underline Specifies whether the host field is underlined. This property is not valid for

VT sessions.

Row property verification points
You can create row property verification points to test a row in your application. When you record the verification

point, a baseline of the row is created. Every time you play back the script, the row is compared to check if any

changes have occurred. This helps in identifying any mismatch in rows.

759

HCL OneTest™ UI

760

Table 1 shows the properties, descriptions, and default values of row property verification points.

Table 13. Properties for row property verification points

Property Description Default value

char Specifies the text of the current row.

class Specifies the class of the row. com.ibm.eNetwork.ECL.E

CLPSUpdate

length Specifies the length of the row.

rowEnd Specifies the last pixel position of the row.

rowStart Specifies the first pixel position of the row.

screenCols Specifies the number of columns in the screen.

screenRows Specify the number of rows in the screen.

startRow Specifies the current row.

updatedLength Specifies the length of the row.

Properties of field property verification points
You can create field property verification points to test the fields in your application. When you record the verification

point, a baseline of the field is created. Every time you play back the script, the field is compared to check if any

changes have occurred. This helps in identifying any mismatch in field.

Table 1 shows the properties, descriptions, and default values of field property verification points.

Table 14. Field property verification points properties

Property Description Default value

background Specifies the background color of the field.

blink Specifies whether the text in the field is flashing. false

class Specifies the HCL OneTest™ UI class name. For example,

HtmlTable is the class name for a <Table> element.

com.ibm.eNetwork.ECL.E

CLField

endCol Specifies the last column of the field.

endRow Specifies the last row of the field.

foreground Specifies the foreground color of the field. java,awt,Col

or[r=0,g=0,b=0]

hidden Specifies whether the host field is hidden.

highIntensity Specifies whether the host field uses high intensity colors.

length Specifies the length of the host field (number of characters).

Chapter 7. Test Author Guide

Table 14. Field property verification points properties (continued)

Property Description Default value

modified Specifies whether the host field is modified.

numeric Specifies whether the host field is limited to numeric input.

penDetectable Specifies whether the host field can be detected by a light-pen

device.

penSelectable Specifies whether the host field can be selected by a light-pen de

vice.

protected Specifies whether a user can add input in the host field. True indi

cates that you cannot add input.

reverse Specifies whether the host field is displayed in reverse video

(switch foreground and background colors).

startCol Specifies the first column of the field.

startRow Specifies the first row of the field.

text Specifies the current text within the host field.

underline Specifies whether the host field is underlined.

Properties of screen property verification points
You can create screen property verification points to test the screen in your application. When you record the

verification point, a baseline of the screen is created. Every time you play back the script, the screen is compared to

check if any changes have occurred. This helps in identifying any mismatch in screen.

Table 1 shows the properties, descriptions, and default values of screen property verification points.

Table 15. Screen property verification points properties

Property Description Valid values
Default

value

.fieldCount Specifies the number of fields on the screen.

accessibilityEn

abled

Enables the accessibility API in the terminal screen when

set to true.

true or false true

alignmentX Specifies the component position within BoxLayout. If

border layout is specified as X_Axis, you can change the

alignmentY to -1 for top or 1 for bottom. If the Y_Axis is

specified, you can change the alignmentX to -1 for left or 1

for right.

0.5

761

HCL OneTest™ UI

762

Table 15. Screen property verification points properties (continued)

Property Description Valid values
Default

value

alignmentY Specifies the component position within BoxLayout. If

border layout is specified as Y_Axis, you can change the

alignmentX to -1 for top or 1 for bottom. If the X_Axis is

specified, you can change the alignmentY to -1 for left or 1

for right.

0.5

autoFontSize Automatically selects the best font size whenever the win

dow is resized. True indicates that any calls to setFont

Size() is ignored.

true or false true

autoPack Automatically packs the subcomponents of the screen

property verification point when set to true.

true or false false

autoscrolls Specifies that when set to true, mouse-drag events are

synthetically generated when the mouse is dragged out

side of the component bounds and mouse motion has

paused while the button continues to be held down.

true or false false

background Specifies the background color. You can chose from ba

sic, system, or specify the RGB colors to replace the de

fault colors.

java.awt

.Col

or[r=212,g=208,b=200]

background3D

Colour

Specifies the background three-dimensional color. true or false true

backgroundSet Specifies whether the background color is explicitly set for

the component. If false, the component inherits its back

ground color from an ancestor.

true or false true

blockCursor Displays the full height block cursor, or underscored cur

sor. If the window is currently in insert mode, the block

or underscore cursor is not displayed until you exit insert

mode. In insert mode, the window displays a half-height

cursor.True causes the window to display a full height

block cursor and false causes the window to display an

underscored cursor.

true or false false

bounds Specifies the bounds of the rectangle of the object in

screen coordinates.

java.awt

.Rectan

gle[x=0,y=0,width=740,height=570]

Chapter 7. Test Author Guide

Table 15. Screen property verification points properties (continued)

Property Description Valid values
Default

value

centered Causes the window to automatically center the text area

and operator information area (OIA) within its current

boundaries when set to true.

true or false true

class Specifies the HCL OneTest™ UI class name.

For example, HtmlTable is the class name for a <Table> el

ement.

com.ibm

.eNetwork

.beans.HOD

.Screen

codePage Specifies the code page property. 037

columns Specifies the number of columns. This value depends on

the screen size chosen for the connection configuration.

80

component Specifies an object with a graphical representation that

can be displayed on the screen and that the user can inter

act with the component.

Terminal

component

Count

Specifies the number of components in the panel.

cursorCol Specifies the current column location of the cursor on the

host screen.

cursorRow Specifies the current row location of the cursor on the

host screen.

cursorSet Specifies whether the cursor for the component is explic

itly set or inherited from an ancestor. When true, the cur

sor is set explicitly. When false, the component inherits its

cursor from an ancestor.

true or false false

cursorVisible Specifies whether the cursor is made visible by screen. true or false true

dBCSInputVisible Specifies the dBCSInputVisible property (3270 and 5250

DBCS sessions only). When true, the window displays the

double-byte character set (DBCS) input field.

true or false false

debugGraphics

Option

Enables or disables the diagnostic information about

every graphics operation that is performed within the com

ponent or one of its children.

0

displayable Specifies whether a component can be displayed. The

component can be displayed when it is connected to a na

tive screen resource.

true or false true

763

HCL OneTest™ UI

764

Table 15. Screen property verification points properties (continued)

Property Description Valid values
Default

value

doubledBuffered Specifies whether the receiving component uses a paint

buffer. When set to true, the painting is performed to an

off-screen buffer, and then copied to the window.

true or false true

enabled Specifies that the component responds to user input and

generates events.

true or false true

fixedFontSize Specifies whether the font size is fixed.

focus Specifies whether the component has focus. true or false false

focusCycleRoot Specifies whether the container is the root of a focus tra

versal cycle. When focus enters a traversal cycle, it cannot

leave it by focus traversal unless, one of the up or down-

cycle keys is pressed. Normal traversal is limited to this

container, and all its descendantxs that are not descen

dants of inferior-focus cycle roots.

true or false false

focusOwner Specifies whether the component is the focus owner. true or false false

focusTraversa

ble

Specifies whether the component can become the focus

owner.

true or false true

focusTraversal

KeysEnabled

Specifies whether focus traversal keys are enabled for the

component. Components for which focus traversal keys

are disabled receive key events for focus traversal keys.

Components for which focus traversal keys are enabled

do not process these events; instead, the events are auto

matically converted to traversal operations.

true or false true

focusTraversal

PolicySet

Specifies whether the focus traversal policy has been ex

plicitly set for the component. If this setting is false, the

component inherits its focus traversal policy from an an

cestor.

true or false false

focusable Specifies whether the component can have focus. true or false true

font Specifies the name, style, and size of the text font within

the component.

com,ratio

nal.test

.ft.val

ue/FontIn

fo[name=Mono

spaced,style=0,size=15]

Chapter 7. Test Author Guide

Table 15. Screen property verification points properties (continued)

Property Description Valid values
Default

value

fontname Specifies the font name. The name must denote a mono

space font, such as courier or monospaced.

Monospaced

fontSet Specifies whether the font of the component is explicitly

set or inherited from its ancestor. When true, the font is

explicitly set. When false, the font is inherited from an an

cestor.

true or false false

fontSize Specifies the font size. This property is ignored when the

autoFontSize property is set to true.

15

fontSizeBounded Rejects any font or font size that can cause the screen

text to exceed current screen boundaries when set to true.

true or false true

fontStyle Specifies the font style.

The styles can be combined for mixed styles.

The possible values are:

Value Constant

0 java.awt.Font.PLAIN

1 java.awt.Font.BOLD

2 java.awt.Font.ITALIC

Integers from 0 though

2

0

footerPlace Specifies the footer placement of the print screen. This

method is valid only on Java2.

PRT_SCRN_PLACE_LEFT,

PRT_SCRN_PLACE_CENTER,

or PRT_SCRN_PLACE_

RIGHT

footerText Specifies the footer text of the print screen. This method

is valid only on Java2.

foreground Specifies the foreground color. You can chose from basic,

system, or specify RGB colors to replace the default col

ors.

ja

va,awt,Col

or[r=0,g=0,b=0]

foregroundSet Specifies whether the foreground color of the component

is explicitly set or inherited from its ancestor. When true,

the foreground color is explicitly set. When false, the fore

ground color is inherited from an ancestor.

true or false true

765

HCL OneTest™ UI

766

Table 15. Screen property verification points properties (continued)

Property Description Valid values
Default

value

function Specifies the function of the component. Host On-De

mand

headerPlace Specifies the header placement of the print screen. This

method is valid only on Java2.

headerText Specifies the header text of the print screen. This method

is valid only on Java2.

height Specifies the height of the component. 570

hiddenFieldDis

play

Specifies whether to display hidden fields. true or false false

hiddenFieldDis

played

Specifies whether the hidden fields are displayed. true or false false

hideUnprotected

URLsMode

Specifies whether URLs in unprotected fields are rendered

as hotspots.

true or false true

iMEAutoStart Specifies whether IMEAutoStart is enabled. true or false false

ignoreRepaint Specifies whether the component ignores all repaint

events.

true or false false

lightPenMode Enables light-pen support. Valid for 3270 and CICS® ses

sions only.

true or false false

lightweight Specifies that a component does not have a native toolk

it peer. Subclasses of components and containers, other

than the ones defined in this package, such as button or

scrollbar are lightweight. All the swing components are

lightweights.

true or false true

location Specifies the location of the upper-left corner of the com

ponent.

java.awt

.Point[x=0,y=0]

locationOn

Screen

Specifies the location of a component in the form of a

point specifying the component upper-left corner in the

coordinate space of the screen.

java.awt

.Point[x=5,y=85]

managingFocus Specifies whether the component focus traversal keys are

Ctrl+Tab and Ctrl+Shift+Tab.

true or false false

markedArea

PrintingEnabled

Enables printing only a marked area of the screen when

set to true.

true or false true

Chapter 7. Test Author Guide

Table 15. Screen property verification points properties (continued)

Property Description Valid values
Default

value

maximumSize Specifies the maximum size for the component. java.awt

.Dimen

sion[width=2147483647,height=2147483647]

maximumSize

Set

Specifies whether the maximum size is set. true or false false

minimumSize Specifies the minimum size for the component. java.awt

.Dimen

sion[width=720,height=531]

minimumSizeSet Specifies whether the minimum size is set. true or false false

morePasteData

Available

Specifies whether more data to paste is available. true or false false

mouseEnabled Specifies whether mouse events are handled by the

screen. When true the topmost component will intercept

and handle all the mouse events. When false, the low

er-level components will intercept and handle the mouse

events.

true or false true

name Value of the name attribute (form elements and frames

only).

oIAVisable Specifies that the screen displays the operator informa

tion area (OIA) when set to true.

true or false true

opaque Specifies whether the component is set to opaque. If so,

the painting system does not paint anything behind the

component.

true or false true

optomized

DrawingEnabled

Specifies whether optimized drawing is enabled. true or false true

paintingTile Specifies whether the component is currently painting a

tile. When true, paint is called again for another tile. When

fasle, the tile is not being painted or the last tile is painted.

true or false true

preferredSize Specifies the best size for the component. Certain layout

managers ignore this property.

java.awt

.Dimen

sion[width=720,height=531]

preferredSizeSet Specifies that the preferred size is set to a non-null value

when true.

true or false false

767

HCL OneTest™ UI

768

Table 15. Screen property verification points properties (continued)

Property Description Valid values
Default

value

requestFocusEn

abled

Specifies that the component gets the keyboard focus. true or false true

rows Represents the value of the rows attribute of a TEXTAREA

element, indicating the size of the edit control in number

of rows of text.

rule Displays rule lines when set to true. true or false false

sessionType Specifies the session type.

Constant Value Session type

SESSION_TYPE_

3270_STR

1 3270 (default)

SESSION_TYPE_

5250_STR

2 5250

SESSION_TYPE_

CICS_STR

4 CICS®

SESSION_TYPE_

3270_PRT_STR

5 3270 printer

Integers from 1 through

5

1

setRasterFont Specifies the raster font.

showURLsMode Specifies whether the URLs are displayed as hotspots, and

if so, whether they are rendered with underlines or as but

tons.

underlined

URLs

showing Specifies whether the component is showing on screen.

This means that the component must be visible and must

be in a container that is visible.

true

size Value of the size attribute of an element. For a select el

ement, this indicates the number of items displayed at

the same time in the list. If size>1, the list appears as a

list box, otherwise the list appears as a combination drop-

down box.

java.Dimen

sion[width=740,height=531]

skipPrintingDia

log

Specifies whether the print dialog is suppressed in printing

screen.

true or false false

toolTipText Specifies the text that you want in fly-over text or hover

help.

Chapter 7. Test Author Guide

Table 15. Screen property verification points properties (continued)

Property Description Valid values
Default

value

traceLevel Specifies the traceLevel property (java.lang.Integer) value. 0

traceName Specifies the trace name for this object. Terminal

uIClassID Specifies the name of the L&F class that renders this com

ponent.

PanelUI

valid Specifies whether the component is valid. A component is

valid when it is correctly sized, positioned within its parent

container, and all its children are valid.

true or false false

validateRoot Specifies that the entire tree beginning with this root will

be validated.

true or false false

verifyInputWhen

FocusTarget

Specifies whether the input verifier for the current focus

owner is called before this component requests focus.

true or false true

version Specifies the version.

visible Specifies that the component is visible when set to true. true or false true

visibleRect Specifies the component as a visible rectangle. The inter

section of this component's visible rectangle and all of its

ancestors' visible rectangles.

java.awt

.Rectan

gle[x=0,y=0,width=740,height=570]

width Specifies the width of the component. 740

x Specifies the current x coordinate of the component ori

gin.

0

y Specifies the current y coordinate of the component ori

gin.

0

Properties of display property verification points
You can create display property verification points to test the display in your application. When you record the

verification point, a baseline of the display is created. Every time you play back the script, the display is compared to

check if any changes have occurred. This helps in identifying any mismatch in display.

Table 1 shows the properties, descriptions, and default values of display property verification points.

769

HCL OneTest™ UI

770

Table 16. Display property verification point properties

Property Description Valid values
Default

value

accessibilityEn

abled

Enables the accessibility API in the terminal screen when set to

true.

true or false true

alignmentX Specifies the component position within BoxLayout. If border lay

out is specified as X_Axis, you can change the alignmentY to -1 for

top or 1 for bottom. If the Y_Axis is specified, you can change the

alignmentX to -1 for left or 1 for right.

0.5

alignmentY Specifies the component position within BoxLayout. If border lay

out is specified as Y_Axis, you can change the alignmentX to -1 for

top or 1 for bottom. If the X_Axis is specified, you can change the

alignmentY to -1 for left or 1 for right.

0.5

allocateSpace

ForLamAlef

Specifies whether LamAlef is expanded or compressed. This prop

erty applies to Arabic sessions only.

LAMALEFOFF

autoConnect Specifies whether to automatically connect to the host when the

host property is set.

true or false true

autoFontSize Automatically selects the best font size whenever the window is

resized. Calls to setFontSize() are ignored when set to true.

true or false true

autoPack Automatically packs its subcomponents when set to true. true or false false

autoReconnect Specifies whether to automatically reconnect to the host after the

host connection is disconnected.

true or false true

autoscrolls Specifies that when set to true, mouse-drag events are syntheti

cally generated when the mouse is dragged outside of the bounds

of the component and mouse movement is paused while the but

ton continues to be held down.

true or false false

bIDIMode Specifies whether to enable or disable BIDI functions, such as

character shaping. This property applies to Arabic VT sessions on

ly.

BIDIMODEON and

BIDIMODEOFF

BIDIMODEON

background Specifies the background color. You can chose from basic, sys

tem, or specify RGB colors to replace the default colors.

java.awt

.Col

or[r=212,g=208,b=200]

background3D

Colour

Specifies the background three-dimensional color. true or false true

backgroundSet Specifies whether the background color of the component is ex

plicitly set or inherited from an ancestor. If true, the component

true or false true

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

background color is explicitly set. If false, the component inherits

background color from an ancestor.

blockCursor Displays the full height block cursor, or underscored cursor. If the

window is currently in insert mode, the block or underscore cursor

is not displayed until you exit insert mode. In insert mode, the win

dow displays a half-height cursor. True causes the window to dis

play a full height block cursor. False causes the window to display

an underscored cursor.

true or false false

bounds Specifies the bounds of the rectangle of the object in window co

ordinates.

java.awt

.Rectan

gle[x=0,y=0,width=740,height=570]

cICSGWCode

Page

Specifies the CICS® gateway. 000

cICSServerName Specifies the CICS server name.

centered Automatically centers the text area and OIA within its current

boundaries when set to true.

true or false true

class Specifies the HCL OneTest™ UI class name. For example,

HtmlTable is the class name for a <Table> element.

com.ibm

.eNetwork

.beans.HOD

.Terminal

codePage Specifies the codePage property. 037

columns Specifies the number of columns. 80

commStarted Specifies whether the connection with the host is started. A return

value of true indicates that the connection has been started, but

the connection might not be ready for interaction.

true

commStatus Specifies the status of communications with the host.

The possible values are as follows:

Constant Value Description

CONNECTION_INIT 1 Initial state (no connection with

host).

CONNECTION_P

ND_INACTIVE

2 Stop communications in progress.

Integers from 1

through 6

5

771

HCL OneTest™ UI

772

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

Constant Value Description

CONNECTION_IN

ACTIVE

3 The connection is stopped.

CONNECTION_P

ND_ACTIVE

4 Start communications in progress.

CONNECTION_AC

TIVE

5 Connection is established.

CONNECTION_

READY

6 Negotiations started.

component Specifies an object with a graphical representation that can be dis

played on the window, and that the user can interact with the com

ponent.

Terminal

componentCount Specifies the number of components in the panel. 1

connectionTime

out

Specifies the connection timeout value. 0

copyAltSignLo

cation

Specifies the mode of cut or copy for the sign of a number. If true,

the sign character is put in front of the number. If false, the sign

character is in the same location relative to the number as it is dis

played on the screen.

true or false false

copyOnlyIf

Trimmed

Specifies whether to set the copy error when there is no trim. . If

true, a copy error is set when there is no trim. If false, the entire

screen is copied when there is no trim.

true or false

cursorDirection Determines whether the cursor direction is left-to-right or right-to-

left. This property applies to BIDI visual VT sessions only.

CURSOR_LEFT

TORIGHT or

CURSOR_RIGHT

TOLEFT

CURSOR_

LEFTTORIGHT

cursorMovemen

tState

Specifies whether users can move the cursor with a mouse click

within the presentation space. This property currently applies to

VT sessions only.

true or false true

cursorSet Specifies whether the cursor of the component is explicitly set or

inherited from an ancestor. If true, the cursor is explicitly set. If

false, the component inherits its cursor from an ancestor.

true or false false

cursorVisible Specifies whether the cursor is made visible by screen. true or false true

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

dBCSInputVisible Specifies the dBCSInputVisible property (3270 and 5250 DBCS

sessions only). When true, the screen displays the DBCS input

field.

true or false false

debugGraphics

Option

Specifies whether the diagnostic information about every graph

ics operation that is performed within the component or one of its

children is enabled or disabled.

0

deviceName Specifies the device name.

deviceName

Ready

Specifies whether the device name is ready. This method is only

valid for 3270 sessions. If true, the device name is ready. If false,

the device name is not ready.

true or false true

displayable Specifies whether the component can be is displayed. A compo

nent can be displayed when it is connected to a native screen re

source.

true or false true

doubledBuffered Specifies whether the receiving component uses a buffer to paint.

If set to true, the painting is performed to an offscreen buffer and

then copied to the screen.

true or false true

eNPTUI Indicates whether to enable the Enhanced Non-Programmable Ter

minal User Interface (ENPTUI) functionality. This property can be

enabled for 5250 sessions only.

true or false false

enabled Specifies that the component responds to user input and gener

ates events.

true or false true

entryAssist_bell Enables or disables the audible signal when the cursor enters the

column set for the End of Line Signal column. The value of true

turns on the signal and false turns off the signal.

true or false false

entryAssist_bell

Col

Controls the column number at which you want the audible signal

for the End of Line to sound. The audible signal sounds only if the

EntryAssist_bell property is set to true.

Valid column

numbers

75

entryAssist_DOC

mode

Enables or disables the entry assist features. The entry assist

(DOC mode) features make it easier to edit text documents in a

3270 Display session. The value of true turns DOC mode on and

false turns DOC mode off.

true or false

entryAssist_DOC

wordWrap

This setting enables or disables word wrap. When word wrap is

enabled, a word that is typed at the right margin is moved entirely

to the first unprotected field in the next row, provided that the un

true or false true

773

HCL OneTest™ UI

774

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

protected field has enough blank space to the left to contain the

word. The area on the previous row vacated by the word is filled

with spaces. If the unprotected field does not have enough blank

space at the left to contain the word, then the word is not moved.

The effect is the same as if word wrap were not enabled. The val

ue of true turns word wrap on and false turns word wrap off.

entryAssist_end

Col

Controls the right margin for DOC mode. When the DOC mode is

on, the right-most cursor position in a row is the last unprotected

character position to the left of the last column.

Valid column

numbers

80

entryAssist_s

tartCol

Controls the left margin for DOC mode. When DOC mode is on, the

left-most cursor position in a row is the first unprotected character

position to the right of the start column.

Valid column

numbers

1

entryAssist_tab

stop

Controls the number of spaces that is skipped when the Tab key is

pressed.

Valid numbers

of spaces

8

entryAssist_tab

stops

Controls the columns at which you want tab stops. When tab

stops are set, pressing the Tab key causes the cursor to skip to

one of the following, in order of occurance:

• The next Tab stop in the same unprotected field on the

same row. (Tab stops cannot be defined outside the left or

right margin.)

• The first character position in the next unprotected field on

the same row, if that character position is within the mar

gins.

• The first character position in the next unprotected field in

a subsequent row, if that character position is within the

margins.

Note: Characters in an unprotected field that are skipped

as the result of pressing the Tab key are not set to blanks.

Only nulls that the cursor skips as the result of pressing

Tab key are set to blanks.

String repre

sentations

of arrays of

columns to use

as tab stops.

For example: 5,

10, 15, 20, 25

focus Specifies whether the component has focus. true or false false

focusCycleRoot Specifies whether the container is the root of a focus traversal cy

cle. Once focus enters a traversal cycle, typically it cannot leave

true or false false

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

it via focus traversal unless one of the up or down-cycle keys is

pressed. Normal traversal is limited to this container, and all of the

descendants of the container that are not descendants of inferior

focus cycle roots.

focusOwner Specifies whether the component is the focus owner. true or false false

focusTraversable Specifies whether the component can become the focus owner. true or false true

focusTraversal

KeysEnabled

Specifies whether focus traversal keys are enabled for the compo

nent. Components for which focus traversal keys are disabled re

ceive key events for focus traversal keys. Components for which

focus traversal keys are enabled do not process these events: in

stead the events are automatically converted to traversal opera

tions.

true or false true

focusTraversal

PolicySet

Specifies whether the focus traversal policy of the component is

explicitly set or inherited from its ancestor. If true, the focus tra

versal policy is set explicitly. If false, the component inherits its

focus traversal policy from an ancestor.

true or false false

focusable Specifies whether the component can have focus. true or false true

font Specifies the name, style, and size of the text font within the com

ponent.

com,ratio

nal.test

.ft.val

ue/FontIn

fo[name=Mono

spaced,style=0,size=15]

fontName Specifies the font name. The name must denote a monospace

font, such as courier or monospaced.

Monospaced

fontSet Specifies whether the font of the component is explicitly set or in

herited from an ancestor. If true, the font is explicitly set. If false,

the font is inherited from an ancestor.

true or false false

fontSize Specifies the font size. This property is ignored when the auto

FontSize property is set to true.

15

fontSizeBounded Causes the screen to reject any font or font size that would cause

the screen text to exceed current screen boundaries when set to

true.

true or false true

775

HCL OneTest™ UI

776

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

fontStyle Specifies the font style.

The styles can be combined for mixed styles.

The possible values are as follows:

Value Constant

0 java.awt.Font.PLAIN

1 java.awt.Font.BOLD

2 java.awt.Font.ITALIC

Integers from 0

though 2

0

footerPlace Specifies the footer placement of the print screen. This method is

valid only on Java2.

PRT_SCRN_

PLACE_LEFT,

PRT_SCRN_

PLACE_CENTER,

or PRT_SCRN_

PLACE_RIGHT

footerText Specifies the footer text of the print screen. This method is valid

only on Java2.

foreground Specifies the foreground color. You can chose from basic, system,

or specify RGB colors to replace the default colors.

ja

va,awt,Col

or[r=0,g=0,b=0]

foregroundSet Specifies whether the foreground color of the component is explic

itly set or inherited from its ancestor. If true, the foreground color

is set explicitly. If false, the foreground color is inherited from an

ancestor.

true or false true

function Specifies the function of the component. Host On-De

mand

graphicsCellSize Specifies the graphic cell size. 0

headerPlace Specifies the header placement of the print screen. This method is

valid only on Java2.

headerText Specifies the header text of the print screen. This method is valid

only on Java2.

height Specifies the height of the component. 570

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

hiddenFieldDis

play

Specifies whether to display hidden fields. true or false false

hiddenFieldDis

played

Specifies whether hidden fields are displayed. true or false false

hideUnprotected

URLsMode

Specifies whether the URLs in unprotected fields are rendered as

hot spots.

true or false true

history Specifies whether the history log is maintained. If true, the history

log is maintained. If false, the history log is not maintained.

true or false true

historySize Specifies the size of the internal planes that are used to store his

tory log information.

64

host Specifies the name of the host that is associated with the session

bean. Communication between the session bean and the host is

started after a call to startCommunication.

hostBackup1 Specifies the host name or IP address of the backup1 server. Dis

played as Destination address of backup1 on property panels. Ap

plies to all session types.

hostBackup2 Specifies the host name or IP address of the backup2 server. Dis

played as Destination address of backup2 on property panels. Ap

plies to all session types.

hostGraphics Specifies whether to enable the host graphics functionality. This

property can be enabled for 3270 sessions only.

true or false false

iMEAutoStart Specifies whether IMEAutoStart is enabled. true or false false

ignoreRepaint Specifies whether the component ignores all repaint events. true or false false

ignoreWell

KnownTrusted

CAs

Specifies whether the component ignores signer certificates. This

property applies to SSL sessions only. If true, the component ig

nores WellKnownTrustedCAs.class signer certificates. If false, the

component uses WellKnownTrustedCAs.class signer certificates.

true or false false

insertOffOnAID

KEY

Sets the InsertOffOnAIDKEY property of session. This property is

valid for 3270 and CICS sessions only.

true or false false

777

HCL OneTest™ UI

778

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

Insert mode is

set as follows Typing any AIDKEY performs as follows

On and isInsertOff

OnAIDKEY is true

Turns insert mode off

On and isInsertOff

OnAIDKEY is false

Has no effect on the insert mode

On Does not turn insert mode on regardless of

the state of isInsertOffOnAIDKEY

keyStoreFilePath Specifies the path and name of the keystore file that is on the

client workstation containing the client public and private keys.

Valid path and

file name of the

keystore file

keyStorePass

word

The password that is required to open the keystore file that is on

the client workstation.

Correct pass

word to open

the keystore file

no pass

word

lUMLicensing Specifies the license method. LUM or HOD HOD

lUMPort Specifies the LUM port. Valid port num

bers

80

lUMServer Specifies the LUM server name. Valid LUM serv

er names

lUName Specifies the LU name that is used during enhanced negotiation.

Maximum length of LU name is 17 characters. This property is

valid only when the tNEnhanced property is true. This method is

valid for 3270 sessions only.

Note: For best results, first call the isValidLUName(String

luName) function first to check the validity of the string.

lUNameBackup1 The name of the LU or LU Pool, defined at the backup1 server, to

which you want the session to connect to. This is displayed as LU

or Pool Name of backup1 on property panels. Applies to 3270 Dis

play and 3270 Printer session types.

Valid LU or LU

pool

lUNameBackup2 The name of the LU or LU Pool, defined at the backup2 server, to

which you want the session to connect to. This is displayed as LU

Valid LU or LU

pool names

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

or Pool Name of backup2 on property panels. Applies to 3270 Dis

play and 3270 Printer session types.

lastHostWithout

Timeout

Indicates whether the connection to the last configured host oc

curred without timeout.

true or false true

lightPenMode Causes the screen to enable light pen support. Valid for 3270 and

CICS sessions only.

true or false false

lightweight Specifies that a component does not have a native toolkit peer.

Subclasses of component and container, other than the ones de

fined in this package, such as button or scrollbar are lightweight.

All the swing components are lightweights.

true or false true

location Specifies the location of the upper-left corner of the component. java.awt

.Point[x=0,y=0]

locationOn

Screen

Specifies the location of the component in the form of a point

specifying the component's upper-left corner in the coordinate

space of screen.

java.awt

.Point[x=5,y=85]

managingFocus Specifies whether the component focus traversal keys are Ctrl

+Tab and Ctrl+Shift+Tab.

true or false false

markedArea

PrintingEnabled

Enables printing only a marked area of the screen when set to

true.

true or false true

maximumSize Specifies the maximum size for the component. java.awt

.Dimen

sion[width=2147483647,height=2147483647]

maximumSize

Set

Specifies whether the maximum size is set. true or false false

minimumSize Specifies the minimum size for the component. java.awt

.Dimen

sion[width=720,height=531]

minimumSizeSet Specifies whether the minimum size is set. true or false false

morePasteData

Available

Specifies whether more data to paste is available. true or false false

mouseEnabled Specifies whether mouse events are handled by screen. When

true the topmost component will intercept and handle all the

true or false true

779

HCL OneTest™ UI

780

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

mouse events. When false, the lower-level components will inter

cept and handle the mouse events.

name Specifies the value of the name attribute (form elements and

frames only).

negotiateCReso

lution

Specifies whether to enable negotiate contention resolution. true or false true

numeralShape Specifies the numeral shape as nominal, national or contextual

for strings sent to the presentation space. This applies to Arabic

Hosts only.

NOMINAL,

NATIONAL or

CONTEXTUAL

NOMINAL

numeralShape

Disp

Determines how numerals are shaped. This property applies to

Arabic VT sessions only.

NOMINAL_DISP,

NATIONAL_DISP

or CONTEXTUAL_

DISP

CONTEXTU

AL_DISP

numericField

Lock

Specifies whether to limit the field characters of a session to nu

meric values. When set to true, users can type only characters 0

through 9, -, +, period (.), and comma(,) in fields that are defined by

a host application as numeric. This property is valid for 3270 and

CICS sessions only.

true or false false

numericSwapEn

abled

Enables numeric swapping. This property applies to Arabic 3270

sessions only.

true or false true

oIAVisable Specifies that the window displays the operator information area

(OIA) when set to true.

true or false true

opaque Specifies whether the component is set to opaque. If so, the paint

ing system does not paint anything behind the component.

true or false true

optomized

DrawingEnabled

Specifies whether optimized drawing is enabled. true or false true

paintingTile Specifies whether the component is currently painting a tile. If

true, paint will be called again for another tile. If false, the tile is

not being painted or the last tile is painted.

true or false true

pasteFieldWrap Enables wrap on the field. This property does not apply to VT ses

sions. If true, set wrap on field. If false, set normal wrap.

true or false false

pasteLineWrap Enables line wrap on field. If true, set line wrap on field. If false,

set normal wrap.

true or false false

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

pasteStopAtPro

tectedLine

Specifies whether a user can allow paste in a protected area. This

property does not apply to VT sessions. If true, users cannot paste

in a protected line. If false, users can paste normally

true or false false

pasteTab

Columns

Specifies the pasteTabColumns to set the number of columns rep

resented by a tab. If this option is active, when a user presses the

Tab key, the input skips to the column that is a multiple of this set

ting.

Size of tab in

columns

4

pasteTabOptions Specifies the pasteTabOptions. 2

pasteTabSpaces Sets the pasteTabSpaces to set the number of spaces represent

ed by a tab. If this option is active, when a user presses the Tab

key, the input skips the number of spaces specified in this setting.

Spaces to ad

vance for a tab

1

pasteTo

TrimmedArea

Specifies whether users can paste in trimmed areas. This prop

erty does not apply to VT sessions. If true users can paste into

trimmed areas, if defined. If false, users can paste normally.

true or false false

pasteWordBreak Specifies whether the paste splits words. This property does not

apply to VT sessions. If true, pasted words are not split. If false,

words are pasted normally.

true or false true

port Specifies the port number on which the server is configured. 23

portBackup1 Specifies the port number on which the backup1 server is config

ured. Displayed as Destination port of backup1 on property pan

els. Applies to all session types.

23

portBackup2 Specifies the port number on which the backup2 server is config

ured. Displayed as Destination port of backup2 on property pan

els. Applies to all session types.

23

preferredSize Specifies the best size for the component. Certain layout man

agers ignore this property.

java.awt

.Dimen

sion[width=720,height=531]

preferredSizeSet Specifies that the preferred size is set to a non-null value when

true.

false

printDestination Specifies whether the output goes to a printer or to a file. If true,

output goes to a printer. If false, output goes to a file.

true or false true

printerName Specifies the name of the destination printer device. Valid print des

tination printers

LPT1

781

HCL OneTest™ UI

782

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

printFileName Specifies the name to be assigned to the print file. Valid print file

names

proxyAuthen

Method

Specifies the authentication method between the Host On-De

mand session and proxy server. Select one of the following:

• Basic (HTTP only): The Host On-Demand session provides

a user ID and password to the HTTP proxy server.

• Clear Text (SOCKS v5 only): The Host On-Demand ses

sion provides an unencrypted user ID and password to the

socks proxy server.

• None: The Host On-Demand session does not provide a

user ID and password to the HTTP proxy or socks server.

Note: If you select basic or clear text as the proxy au

thentication method, you must specify a User ID and Pass

word.

SESSION_

PROXY_AU

THEN_NONE

proxyServer

Name

Specifies the host name or IP address of the HTTP or socks proxy

server.

proxyServerPort Specifies the TCP port number of the HTTP or socks proxy server. 1080

proxyType Specify the type of proxy server that a host session uses.

• Default Browser Setting

• HTTP Proxy

• SOCKS v4

• SOCKS v5

• SOCKS v4, if v5 unavailable

SESSION_

PROXY_

BROWSER_DE

FAULT

proxyUserID Specifies the user ID that the Host On-Demand session provides to

authenticate with the HTTP or socks proxy server.

proxyUserPass

word

Specifies the password that the Host On-Demand session pro

vides to authenticate with the HTTP or socks proxy server.

roundTrip Specifies whether the roundTrip is set to ON or OFF. This method

applies to bidirectional hosts only.

ON or OFF ON

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

rTLUnicodeOver

ride

Enables or disables the RTL unicode override option. This applies

to BIDI 5250 Hosts only.

RTLUNICODEON or

RTLUNICODEOFF

RTLUNICODE

OFF

requestFocusEn

abled

Specifies that the component gets the keyboard focus. true or false true

rows Specifies the value of the rows attribute of a TEXTAREA element,

indicating the size of the edit control in number of rows of text.

24

rule Displays rule lines when set to true. true or false false

sLPAS400Name Connects a session to a specific iSeries™ server. Displayed as

AS/400® Name (SLP) on property panels. Applies to 5250 Dis

play and 5250 Printer session types. Use the fully-qualified SNA

CP name, for example, USIBMNM.RAS400B.

sLPEnabled Specifies whether the service-location protocol is used. If true,

use Service Location Protocol (SLP). If false, do not use SLP

true or false false

sLPMaxWait

Time

Specifies the SLPMaxWaitTime in milliseconds to wait for service

response. This property is valid when the SLPEnabled property is

true only.

200

sLPScope Sets the service location protocol (SLP) scope. Displayed as Scope

under SLP Options on property panels. Applies to 3270 Display,

3270 Printer, 5250 Display, and 5250 Printer session types.

sLPThisScope

Only

Specifies whether the session is established only with a server

that supports the provided scope. This property is valid only when

the SLPEnabled property is true and there is a SLPScope provid

ed.

true or false false

sSHPublicKey

Alias

Specifies the SSHPublicKeyAlias. mykey

sSHPublicKey

AliasPassword

Specifies the SSHPublicKeyAliasPassword.

sSL Specifies whether to use the Secure Socket Layer (SSL) feature. If

true, enable SSL. If false, disable SSL

true or false false

sSLBrowser

KeyringAdded

Specifies the SSLBrowserKeyringAdded property of session. If

true, add the session to the HOD client keyring. If false, do not

add the session to HOD client keyring.

true or false false

783

HCL OneTest™ UI

784

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

sSLCertificate

Hash

Specifies the SSLCertificateHash.

sSLCertificate

Name

Specifies the SSLCertificateName.

sSLCertificate

Password

Specifies the SSLCertificatePassword.

sSLCertificate

PromptBefore

Connect

Specifies whether the client is prompted before connecting to the

server. If true, prompt the client. If false, do not prompt the client.

true or false false

sSLCertificate

PromptHow

Often

Specifies how often the client is prompted. SESSION_

SSL_CERTIFI

CATE_PROMP

T_EACH_CON

NECT, SESSION_

SSL_CERTIFI

CATE_PROMPT_

FIRST_CONNECT

or SESSION_

SSL_CERTIFI

CATE_PROMPT_

ONLY_ONCE.

SESSION_

SSL_

CERTIFI

CATE_PROMP

T_FIRST_

CONNECT

sSLCertificate

Provided

Specifies whether the client has a certificate. If true, the client has

a certificate. If false, the client does not have a certificate.

true or false false

sSLCertificateRe

membered

Specifies the SSLCertificateRemembered property of session. If

true, sets SSLCertificatePromptHowOften to FIRST_CONNECT. If

false, sets SSLCertificatePromptHowOften to EACH_CONNECT.

true or false true

sSLCertificate

Source

The certificate can be kept in the client browser or a dedicated se

curity device, such as a smart card, or local or network-accessed

file. This property is displayed as Certificate Source on property

panels. Applies to 3270 Display, 3270 Printer, 5250 Display, 5250

Printer, and VT Display session types.

SSL_CERTIFI

CATE_IN_CSP for

a certificate in

a browser or

security device

or SSL_CERTIFI

CATE_IN_URL for

a certificate in

a URL or file

SESSION_

SSL_

CERTIFI

CATE_IN_URL

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

sSLCertificate

URL

Specifies the default location of the client certificate. The location

is displayed as a URL or a path and filename in property panels.

Applies to 3270 Display, 3270 Printer, 5250 Display, 5250 Printer,

and VT Display session types. The URL protocols depend on the

capabilities of your browser. Most browsers support HTTP, HTTPS,

FTP, and FTPS.

sSLServer

Authentication

Specifies whether the SSL server authentication is enabled. true or false false

sSLTelnetNegoti

ated

Specifies whether the SSL is negotiated on a Telnet connection.

Set this property to true only if you are connecting to a Telnet serv

er that supports IETF Internet-Draft TLS-based Telnet Security.

This Internet-Draft defines the protocol for doing the SSL Hand

shake over a Telnet connection. Set the SSL property to true also.

true or false false

sSOCMServer Specifies the sso_cmserver property. Valid values are the address

strings of back-end servers and applications that respond to SSO

queries.

sSOEnabled Specifies that the session is SSO enabled (true). true or false false

sSOUseKer

berosPassticket

Specifies whether the SSO layer uses the client-side Kerberos sup

port to acquire a Kerberos passticket for login. If true, this prop

erty instructs the SSO layer to use client-side Kerberos support. If

false, this property instructs the SSO layer to not use client-side

Kerberos support.

true or false false

sSOUseLocalI

dentity

Specifies whether the SSO layer uses the local OS userID in the

SSO process. If true, this property instructs the client to use the lo

cal OS user ID in SSO process. If false, this property instructs the

client not to use the local OS user ID in SSO process.

true or false false

screenSize Specifies the screen size. 2

securityProtocol Specifies whether to use Transport Layer Security (TLS) v1.0 pro

tocol, SSL protocol, or SSH protocol for providing security. If set

to TLS (default), and if the server is TLS-enabled, then a TLS v1.0

connection is provided. If server is not TLS-enabled, then the serv

er negotiates the connection down to SSL protocol.

The value can be one of the following:

SESSION_PRO

TOCOL_TLS,

SESSION_PRO

TOCOL_SSL, or

SESSION_PROTO

COL_SSH

SESSION_

PROTOCOL_

TLS

785

HCL OneTest™ UI

786

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

Constant Value Description

SESSION_PRO

TOCOL_TLS

TLS Use TLS v1.0 protocol (default)

SESSION_PRO

TOCOL_SSL

SSL only Use SSL v3.0 protocol to provide

security

SESSION_PRO

TOCOL_SSH

SSH Use SSH protocol v2.0

separateFiles Specifies whether the print files are stored in separate files. This

property applies only to HOD VT sessions, 3270 printer and 5250

printer sessions. Specify true to save the print jobs in separate

files.

true or false false

serviceMgrHost Specifies the name for the HOD server.

sessionID Specifies the short name that you want to assign to this session

(appears in the OIA). It must be unique to this configuration. This

property is displayed as Session ID on property panels. It applies

to all session types. This is not used when the proxyType is set to

BROWSER_DEFAULT.

sessionName Specifies the name of the session.

sessionType Specifies the session type.

The value can be one of the following integers:

Constant Value Session Type

SESSION_TYPE_3270_

STR

1 3270 (default)

SESSION_TYPE_5250_

STR

2 5250

SESSION_TYPE_CICS_

STR

4 CICS

SESSION_TYPE_3270_

PRT_STR

5 3270 Printer

Integers from 1

through 5

1

showTextAttrib

utesEnabled

Specifies the property to show text attributes. This property ap

plies to logical BIDI VT sessions only.

true or false true

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

showURLsMode Specifies whether the URLs are displayed as hotspots. If so, it also

specifies whether they are rendered in underlined text or buttons.

underlined

URLs

showing Specifies whether the component is showing on screen. The com

ponent must be visible, and it must be in a container that is visible.

true or false true

size Value of the size attribute of an element. For a select element, this

indicates the number of items that are displayed at once in the list.

If size>1, it is displayed as a list, otherwise the list is displayed as a

combination drop-down box.

java.Dimen

sion[width=740,height=531]

skipPrintDialog Specifies whether the print dialog box is suppressed in the printing

screen.

true or false false

smartOrdering Specifies whether the segment of characters with different text at

tributes is ordered separately.

SMART_OR

DERING_OFF

socksV4UserID Specifies the user ID for use with SOCKS v4 connections.

symmetricSwap

Enabled

Specifies whether symmetric swapping is enabled (true). This

property applies to Arabic 3270 sessions only.

true or false true

tNEnhanced Specifies that the enhanced session (TN3270E) parameters is ne

gotiated when set to true.

true or false false

textOrientation Specifies whether the test orientation is left-to-right or right-to-left.

This property applies to bidirectional sessions only.

LEFTTORIGHT or

RIGHTTOLEFT

LEFTTORIGHT

textType Specifies whether the textType is visual or logical. This property

applies to bidirectional sessions only.

VISUAL or LOGI

CAL

VISUAL

textTypeDisp Determines whether the session works in logical or visual mode.

This property applies to BIDI VT sessions only.

LOGICAL_DISP or

VISUAL_DISP

LOGICAL_

DISP

thaiDisplayMode This method applies to Thai host machines only.

The possible values are as follows:

Value Mode

1 Non-composed mode.

2 Composed mode.

3 Composed mode with space alignment.

4 Composed mode with EOF alignment.

Integers

between 1

through 5

5

787

HCL OneTest™ UI

788

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

Value Mode

5 Composed mode with space and EOF alignment.

timeout Specifies the amount of time in milliseconds that the system waits

for data. If no data is received for the specified amount of time,

the session is disconnected. A value of 0 specifies that system

will not timeout.

0

timeoutNoData

Initialization

Specifies whether to time out if no data is received at session ini

tialization.

true or false false

toolTipText Specifies fly-over or hover help text.

traceLevel Specifies the traceLevel property (java.lang.Integer) value. 0

traceName Specifies the trace name for the object. Terminal

trimRectRemain

AfterEdit

Specifies whether the trim rec remains after cutting, copying, or

pasting. If true, trim rec remains after cutting, copying, or pasting.

If false, trim rec does not remain after cutting, copying, or pasting.

true or false false

trimRectSizing

Handles

Specifies whether the trim rec is sizeable (true). true or false true

uIClassID Specifies the name of the L&F class that renders this component. PanelUI

unicodeData

StreamEnabled

Specifies whether the session can receive Unicode data fields sent

by a host. If true, the session can receive Unicode data field sent

by a host. If false, the session cannot receive Unicode data field

sent by a host

true or false false

userID Specifies the user ID that is used in the SSH authentication is

processed either with the public-key or password.

Valid user ID

userPassword Specifies the user password that is used in the SSH authentication

process.

Valid user pass

word

useSSHPublicK

eyAuthentication

Specifies whether the SSH public key authentication is enabled

(true).

true or false false

valid Specifies whether the component is valid. A component is valid

when it is correctly sized and positioned within its parent container

and all its children are also valid.

true or false false

validateRoot Specifies that the entire tree beginning with the root is validated. true or false false

Chapter 7. Test Author Guide

Table 16. Display property verification point properties (continued)

Property Description Valid values
Default

value

verifyInputWhen

FocusTarget

Specifies whether the input verifier for the current focus owner is

called before the component requests focus.

true or false true

version Specifies the version.

visible Specifies that the component is visible when set to true. true or false true

visibleRect Specifies the visible rectangle of the component. The intersec

tion of the component's visible rectangle and all of its ancestors'

visible rectangles.

java.awt

.Rectan

gle[x=0,y=0,width=740,height=570]

width Specifies the width of the component. 740

workstationID Specifies the workstation ID that is used during enhanced negotia

tion for 5250.

Note: For best results, call the isValidWorkstationID (String

workstationID) function to check the validity of the string.

All lowercase characters are converted to uppercase.

workstationI

DReady

Specifies whether the workstation ID is ready. This method is only

valid for 5250 session. If true, the workstation ID is ready. If false,

the workstation ID is not ready.

true or false false

x Specifies the current x coordinate of the origin of the component. 0

y Specifies the current y coordinate of the origin of the component. 0

Properties of operator information area (OIA) property verification points
You can create OIA property verification points to test the OIA in your application. When you record the verification

point, a baseline of the OIA is created. Every time you play back the script, the OIA is compared to check if any

changes have occurred. This helps in identifying any mismatch in OIA.

Table 1 shows the properties, descriptions, and default values of OIA property verification points.

Table 17. OIA property verification points properties

Property Description Default Value

alphanumeric Specifies whether the input is limited to alphanumeric characters. true

class Specifies the HCL OneTest™ UI class name. For example, HtmlTable is

the class name for a <Table> element.

com.ibm.eNet

work.ECL.ECLOIA

commCheckCode Specifies the communication check code. 0

789

HCL OneTest™ UI

790

Table 17. OIA property verification points properties (continued)

Property Description Default Value

inputInhibited Specifies whether the input is inhibited. 0

machineCheckCode Specifies the machine check code. 0

numeric Specifies whether the host field is limited to numeric input. false

oIAEventDelay Specifies the OIA event delay. 0

progCheckCode Specifies the program check code. 0

Properties of operator information area (OIA) data verification points
You can create OIA data verification points to test the OIA data in your application. When you record the verification

point, a baseline of the OIA data is created. Every time you play back the script, the OIA data is compared to check if

any changes have occurred. This helps in identifying any mismatch in OIA data.

Table 1 shows the properties, descriptions, and default values of OIA data verification points.

Property Description Default value

INHIBIT_NOTINHIBITED Specifies whether the OIA is inhibited. INHIBIT_NOTIN

HIBITED

INHIBIT_COMMCHECK Specifies whether the COMMxxx check is inhibited.

INHIBIT_SYSTEMWAIT Specifies whether the SYSTEM check is inhibited.

INHIBIT_MACHCHECK Specifies whether the MACHxxx check is inhibited.

INHIBIT_PROGCHECK Specifies whether the PROGxxx check is inhibited.

INHIBIT_OTHERINHIBIT Specifies whether the OTHERINHIBIT check is inhibited.

STATE_A_ONLINE Specifies whether the session is online with a non-SNA connection. true

STATE_COMM_CHECK Specifies whether a COMM check is performed. false

STATE_COMM_ERR_REM Specifies whether to display a communications error reminder. false

STATE_CONTROLLER_READY Specifies whether the controller is in a ready state. true

STATE_DO_NOT_ENTER Specifies the state of the do not enter mask. false

STATE_ELSEWHERE Specifies whether the keystroke is in the wrong place on the screen

and that the cursor must be moved.

false

STATE_ENCRYPT Specifies whether the session is encrypted. false

STATE_FN_MINUS Specifies whether the function is currently available. false

STATE_GR_CURSOR Specifies the graphic cursor state. false

STATE_INPUT_ERROR Specifies whether there has been operator input error. false

Chapter 7. Test Author Guide

Property Description Default value

STATE_INSERT Specifies the ECL insert state. false

STATE_MORE_THAN Specifies whether too many characters are typed into the field. false

STATE_MSG_WAITING Specifies the state of the message-waiting indicator. false

STATE_MY_JOB Specifies whether the session is connected to a host application. false

STATE_OP_SYS Specifies whether the session is connected to SSCP (SNA). false

STATE_PROG_CHECK Specifies whether a program check (error in the data stream) has

occurred.

false

STATE_SYM_MINUS Specifies whether the entered symbol is available. false

STATE_SYS_LOCK Specifies the state of the system lock after the AIM is key pressed. false

STATE_TIME Specifies whether the keyboard is inhibited. false

STATE_UNOWNED Specifies whether the session is connected. false

STATE_WHAT_KEY Specifies whether the keystroke is valid at this time. false

Creating character verification points
You can create a character verification point to test the properties of a certain character in your application. The

character is a part of a host text field (ECLField). The character can be in any host text field that is identified by

the HCL OneTest™ UI. When you record the verification point, a baseline of the character is created. Every time you

play back the script, the character is compared to check if any changes have occurred. This helps in identifying any

mismatch in character.

1. Log in and interact with the host while creating a host connection script. For more information on creating a

host connection script, see the related topics.

2. When you are in the window in which you want to perform a test on an individual character, click the

Verification Point and Action Wizard icon in the Recording monitor window.

3. On the Select an Object page of the wizard, click Selection Method > Test Object Browser.

Result

A hierarchical tree of testable objects in your application is displayed in the Test Object Browser.

Note: : You cannot use the drag hand with the corresponding Object Finder button to set a verification

point on a single character.

4. Navigate the tree to locate the object that corresponds to the character that you want to test. Select it to

display its recognition properties. To navigate the tree:

791

HCL OneTest™ UI

792

a. From the Select Test Object pane, click Frame > SplitPane > Terminal > Screen.

b. Expand the field that contains the character that you want to test. Fields are named Field_x_y, where x

is the row that contains the field and y is the column. On Virtual Terminal (UNIX) systems, there is only

one row.

c. Select the character that you want to test. Characters are named Char_x_y_z, where x and y are the

same as the corresponding field, and z is the character position within the field.

Result

The recognition properties of this character are shown in the Object Recognition Properties pane.

The value of the char property is the character as it is displayed:

▪ startRow: Starting row of the containing field

▪ startCol: Starting column of the containing field

▪ position: Position from beginning of the containing field

▪ class: Class name

▪ char: Character in the current position

Note: You can use this information to confirm that you have selected the correct character

object. If no information is listed, the object cannot be tested or the environment might not be

enabled for testing.

5. After you verify that you have selected the correct character, click Next.

Result

You can set a data verification point on the character value or set one or more of the following property

verification points: background, blink, char, class, foreground, position, reverse, startCol, startRow, and

underline.

Creating row verification points
You can create a row verification point to test the properties of a certain row in your application. The row is a part of

a ECL screen. When you record the verification point, a baseline of the row is created. Every time you play back the

script, the row is compared to check if any changes have occurred. This helps in identifying any mismatch in row.

Before you begin

To capture row verification points while recording the scripts for testing VT terminal-based applications, you must

set the flag rational.test.ft.fte.playback.vt_row_vp = true in the ivory.properties file available at <product

installation directory>\FunctionalTester\bin location. By default, this flag is set to "false".

1. Log in and interact with the host while creating a host connection script. For more information on creating a

host connection script, see the related topics.

2. When you are in the window in which you want to perform a test on an individual row, click the Verification

Point and Action Wizard icon in the Recording monitor window.

Chapter 7. Test Author Guide

3. On the Select an Object page of the wizard, click Selection Method > Drag Hand Selection.

Result

Use the drag hand with the corresponding Object Finder button to set a verification point on a single row.

Notes:

◦ The Drag Hand Selection method is not available on Linux environments such as Ubuntu and

Red Hat Enterprise Linux (RHEL). You must use the Test Object Browser method on Linux

environments.

◦ On Windows computer, you can also use the Test Object Browser method to capture

verification points.

◦ The row verification is valid only for virtual terminals and not for TN3270 and TN5250

terminals.

4. After you verify that you have selected the correct row, click Next.

Result

You can set a data verification point on the row value or set one or more of the following property verification

points: char, class, length, rowEnd, rowStart, screenCols, screenRows, startRow, updatedLength.

Logging window content
You can log the contents of a window in a correctly formatted log file. The log contains the record of events that

occur when recording the script.

1. Replace the default New Script Helper Superclass with the TerminalScriptfile.

The replacement file logs contents of the window in a correctly formatted log file. The file is available in the

examples folder in the Extension for Terminal-based Applications installation directory.

2. Add the following command to the script for each window that you want to add to the log file:

logInfo(formatScreenText(Screen(),true));.

For additional information see the following Web page: http://com.rational.test.ft.help/

ChangingDefaultScriptHelperSuperclass.htm.

Extension for Terminal-based Applications states
HCL OneTest™ UI tracks the state of Extension for Terminal-based Applications sessions as you record a script and

interact with the host session. To determine the state of the session, HCL OneTest™ UI checks whether the host

session has focus. If the host session does not have focus, it waits for 0.5 second to see whether it gains focus. If

the host session does not gain focus during that time, it returns the focus state to the frame. If the host session does

have focus after the wait, HCL OneTest™ UI queries the synchronization code for the state of the terminal.

Extension for Terminal-based Applications session has one of the following three states:

793

HCL OneTest™ UI

794

Table 18. Session states

State Description

UNINITIALIZED The host window is not ready for interaction, because it is still up

dating, changing, or loading.

LOADED The host window has finished updating, but the operator informa

tion area (OIA) is locked, usually because of invalid input.

READY The host window is ready for interaction, has finished updating,

and the OIA is unlocked.

The synchronization code determines the state based on synchronization algorithms. The algorithm depends upon

the connection type.

Synchronization algorithms
Extension for Terminal-based Applications has three synchronization algorithms to determine the state of the

terminal. The state of the terminal depends on the loading of presentation space.

The state of the terminal is recorded while you record a script. When the script is played back, HCL OneTest™ UI must

wait for the state of the terminal to match the state during recording. The state must be the same in order to avoid

sending commands to the host before the host is ready to receive input. The state of the terminal is determined by

the operator information area (OIA) status (either locked or unlocked), which depends on the loading of presentation

space. The loading of the presentation space is not an instantaneous process and different connection types load the

presentation space differently.

The following algorithms gauge the state of the terminal:

• Default synchronization algorithm

• 3270 enhanced synchronization algorithm

• 5250 synchronization algorithm

The default wait period values that the synchronization algorithms use are as follows:

Algorithm Synchronization settings

Default synchronization and 5250 synchro

nization • Timeout (in milliseconds): 1200

• OIA State Timeout (in milliseconds): 300000

• Polling Interval (in milliseconds): 100

TN3270E Synchronization Minimum time to wait (in milliseconds): 250

You can change any of these values using the Preferences window.

Chapter 7. Test Author Guide

Default synchronization algorithm
The default synchronization algorithm starts when an attention identifier (AID) key is pressed. An attention identifier

(AID) key is any key that triggers a presentation space update. Initially, the state of the terminal is UNINITIALIZED.

The algorithm waits for a period of time for updates to the presentation space. You can change the wait time in the

Timeout field in the Preferences window. The default wait time is 1200 milliseconds.

If Timeout is set to 1200 milliseconds, and an update occurs during the last 600 milliseconds, the algorithm waits for

an additional 600 milliseconds for further updates. If, during this additional wait period, another update occurs during

the last 300 milliseconds, the algorithm waits again for another 600 milliseconds for further updates. This continues

until no updates are received during the last half of the last additional time period.

At this point, the state of the terminal is either LOADED (keyboard locked) or READY (keyboard unlocked), depending

upon the OIA status.

3270 enhanced synchronization algorithm
Initially, the state of the terminal is UNINITIALIZED. The terminal state is not initialized for a minimum wait time.

You can change the wait time in the Minimum Wait Time field in the Preferences window. The default value is 250

milliseconds.

The server notifies the algorithm that the presentation space updates are sent. The synchronization algorithm waits

for the period specified in the Minimum time to wait field in the Preferences window, and then queries the state of OIA

to determine whether or not to report READY. If the synchronization algorithm has waited for the period in the Timeout

field in the Preferences window without the OIA state becoming ready, the algorithm reports a state of LOADED. At all

other times, it reports a state of UNINITIALIZED. This algorithm requires that the correct service level for the TN3270

server is installed on the host.

Note: Communications Server for z/OS® 1.2 and later, introduced a new function called "contention

resolution". If you do not have the latest maintenance levels for Communications Server for z/OS, you might

experience COMM655 errors or endless loop conditions when trying to connect to a z/OS host. In such cases,

configure your connection configurations so that they do not use contention resolution.

To change the contention resolution setting: In the Extension for Terminal-based Applications window, open the

Advanced Settings window by clicking Advanced. Scroll to negotiateCResolution property in the Configure optional

advanced settings list. Change the setting for this property from true to false.

5250 synchronization algorithm
Presentation space update events occur only once for 5250 sessions and not in groups as in 3270. The 5250

algorithm operates like the Default synchronization algorithm with one exception: When an update occurs, the state

changes immediately to LOADED or READY, depending on the OIA state.

When you play back the script, HCL OneTest™ UI waits for the host terminal to show an appropriate state before it

continues to run commands from the record script.

You can change the time setting in the Preferences window.

795

HCL OneTest™ UI

796

Note: Synchronization algorithms might not work all of the time with the specified time values, especially

in dealing with hosts that have long network delays. If synchronization does not work with a certain part of

your application you can insert manual sleep timers into the script to adjust the timing aspect or use manual

synchronization. For more information, see the related topics.

Playing back host connection script
You can play back all your recorded actions, such as starting an application, the actions you perform, and stopping

the application. There are several prerequisites to meet before you can reliably play back a script

Before you begin

To ensure that the script runs smoothly, perform the following prerequisites before playing back your script:

• Add sleep timers to the script if your host application has windows that take an abnormally long time, or your

network connection is slow. Sleep timers cause the play engine to pause before sending input to the host or

before trying to perform a test on the slow host window.

• Your actions, such as typing, clicking the mouse, and pressing buttons, are recorded into the script. If you have

interacted with the host application prior to the host application being initialized, see Interacting with the host

using the keyboard on page 797.

• If your host application uses keys other than the function keys to cause the host window to change, HCL

OneTest™ UI might not recognize the keys as host aid keys. For more information, see Using host key aids on

page 797.

1. Save changes in your script.

2. Click the Run Functional Test Script icon on the toolbar.

Adding manual sleep timers
When the host application moves from window to window, the transition is not instantaneous. Therefore, any input

that needs to be sent to the host, such as typing text, pressing host aid keys, or testing verification points, needs to

wait for the host window to become ready to receive input. Extension for Terminal-based Applications can be used to

figure out the readiness of host screen for input.

About this task

Manually add sleep timers in the script where the host is making the transition from one window to the next before

you play back a script. Insert the following command into the script:

 // add sleep timers during slow screen transitions
 sleep(5);

This command makes the playback pause for 5 seconds before moving to the next line in the script.

Add a sleep statement in the script to avoid the timeout of a synchronization algorithm before the page is actually

loaded. Insert the following into the script:

Chapter 7. Test Author Guide

sleep(10);
TFrame().inputKeys("logoff{ENTER}");

This prevents HCL OneTest™ UI from sending keystrokes to the application before the application is ready to receive

them.

Important: Choose a sleep time that is appropriate for your connection. A sleep time that is set too short

might cause problems when playing back scripts, because Extension for Terminal-based Applications might

try to send commands to the host before it is ready to receive them or might try to check a verification point

before the window has finished its transition. A sleep time that is set too long can affect performance.

Correcting object states
It is not always required to use the object state information that is captured when an object is manipulated in a script.

If the state of the object does not match the state information in the script, the code might not work properly. If the

exact state of the object is not necessary for the test that is performed, it might be beneficial to remove this state

information.

The script for typing keystrokes, such as typing logoff, and then pressing Enter, when creating a host connection

script is as follows:

 TFrame().inputKeys(logoff{ENTER});

Result

At playback time, Extension for Terminal-based Applications waits for the TFrame to be in the ready state before it

sends the keystrokes.

The script for typing keystrokes before the synchronization algorithm for the terminal determines whether the

presentation space is loaded when recording the script is as follows:

TFrame(ANY, UNINITIALIZED).inputKeys(logoff{ENTER});

This shows that the TFrame object was not initialized and not in the ready state when you started typing the

command. At playback time, those keystrokes are sent as soon as the script reaches that line, regardless of the state

of the terminal.

To correct the state of the terminal, remove the state information from the object in the script:

 //Remove "(ANY,UNINITIALIZED)" is any
 //TFrame(ANY,UNINITIALIZED).inputKeys(logoff{ENTER});
 TFrame().inputKeys(logoff{ENTER});

Using host aid keys
The most common host aid keys are Enter, and all the function keys. If the key is captured within curly braces {} in a

script, the key acts as a host aid key.

About this task

797

HCL OneTest™ UI

798

Ensure that HCL OneTest™ UI pauses after sending the keystrokes whenever you press keys that cause the host

window to change. Most function keys cause the host window to change. HCL OneTest™ UI records these keystrokes

as separate commands to ensure that it pauses after sending a function key to the host.

TFrame().inputKeys("{F12}");
 TFrame().inputKeys("{F3}");
 TFrame().inputKeys("logoff{ENTER}");

If your host application uses other keys to cause the host window to change, manually separate pressing those keys

into separate commands before playing back your scripts. HCL OneTest™ UI does not recognize these keys as host

aid keys.

Exemple

For example, If Tab causes the host window to change, the following command will cause problems when the script

is played back:

TFrame().inputKeys("{TAB}SomeHostCommand{ENTER}");

Separate the command after the first host aid key:

TFrame().inputKeys("{TAB}");
TFrame().inputKeys("SomeHostCommand{ENTER}");

Using manual synchronization
Use manual synchronization when performance is considered as higher priority than running the script automatically.

The synchronization algorithms are reliable, but take more time to run than is necessary.

1. On the Recording Monitor toolbar, before you enter text, click the Verification Point and Action Wizard

icon.

2. Drag the Object Finder over the host terminal to select the window object. A thick red line outlines the

terminal when selected.

3. Click Wait until, and type the text input. The entry in the script is as follows:

Result

Screen().waitForExistence();
TFrame().inputKeys("logoff{ENTER}");

In this case, the correct window is loaded because of the wait time. You do not need to rely on the

synchronization algorithm.

4. Change the second line of the previous script:

TFrame(ANY, UNINITIALIZED).inputKeys("logoff{ENTER}");

You can send the keystrokes regardless of the state of the terminal determined by the synchronization code.

LOADED, not READY
There are special cases during application testing when the window has finished loading, but the application inhibits

keyboard input. For example, sometimes when you type invalid input, the host application locks the keyboard. You

cannot continue until you reset the window.

Chapter 7. Test Author Guide

In this case, the synchronization algorithm specifies a state of LOADED rather than a state of READY. If you need to

interact with the terminal when it is in the LOADED state, type the following in the script:

TFrame(ANY, LOADED).inputKeys("logoff{ENTER}");

Printing a host session window
You can print your host session window.

About this task

Click Print Screen to print your host session screen.

Programmatic screen scraping for Terminal-based applications
The HCL OneTest™ UI Extension for Terminal based applications supports programmatic screen scraping. In earlier

versions of the Extensions, data verification on a terminal screen was performed only on fields, characters, or

rows (virtual terminal). With programmatic screen scraping, data verification is performed on arbitrary locations.

Programmatic screen scraping is used to scrape a portion of the terminal screen to determine whether the text is

displayed at the specified position of the screen. Also, programmatic scraping makes the playback process wait to

allow the text to appear on the screen. APIs are developed to support this feature.

These methods are used to extract information from a portion of the screen:

Methods Description

public void startEventMonitor() Collects the screen changes and stores the changes

in a buffer

public boolean checkForChange(int startRow, int start

Col, int endRow, int endCol, String text)

Checks for the text at a particular position

public boolean checkForChange(int startRow, int start

Col, int endRow, int endCol, String text, boolean

clearBuffer)

Checks for the text at a particular position, and then

clears the buffer

public boolean waitForChange(int startRow, int start

Col, int endRow, int endCol, String text)

Waits for the text to be displayed in the specified posi

tion

public boolean waitForChange(int startRow, int start

Col, int endRow, int endCol, String text, long timeout)

Waits for the text to be displayed in the specified posi

tion at the specified time

clearHistory() Clears the buffer

public void stopEventMonitor() Stops collecting input from the screen

Extension for Terminal-based Applications window
Use the Extension for Terminal-based Applications window to connect to the host and record or play back host

interactions in the scripts.

799

HCL OneTest™ UI

800

The top pane of the window shows the connection configuration information. The bottom pane is the actual terminal

view. You can move the divider up or down to increase the space of either portion of the window. The terminal

session function keys that correspond to the function keys on the keyboard are located at the bottom of the window.

Extension for Terminal-based Applications toolbar uses the icons shown in the Table 1:

Table 19. Extension for Terminal Based Applications toolbar icons

Icon Icon name Description

New Connection Creates a new connection file.

Clears the fields in the top pane of the window and resets them to de

fault values.

Open Opens an existing connection file.

Displays the Open file dialog box to reload the saved configuration file.

Save Saves current connection settings file so that you can reload the set

tings later.

Save As Saves as connection file. Provide a file name.

Connect using the Current Con

nection Properties

Connects to a host using the specified configuration information.

Chapter 7. Test Author Guide

Table 19. Extension for Terminal Based Applications toolbar icons (continued)

Icon Icon name Description

Extension for Terminal-based

Applications

Sets synchronization settings.

Configuring basic connection properties
You can configure the basic connection properties such as host, terminal type, port, code page, and screen size.

1. From the toolbar, click icon to open a connection properties file, and select a connection configuration

(.comm) file to connect to the host.

2. Type the name or IP address of the host computer.

3. Configure the terminal type:

a. Select the type of terminal emulation connection to use: TN3270, TN3270E, TN5250, VT default,

VT100, VT420-7, VT420-8 or VT UTF8.

TN3270 terminal emulation provides connections to an IBM zSeries® (System 390) host. TN5250

terminal emulation typically provides connections to an iSeries™ (AS/400®) host. VT terminal

emulation provides connections to a UNIX-like system. The default is TN3270.

Note: Communications Server for z/OS® 1.2 and later introduced a new function called

contention resolution. This new function on the client side was introduced in Host On-

Demand 7.0.2. If you do not have the latest maintenance levels for Communications Server

for z/OS, you might experience COMM655 errors or other endless loop conditions when you

try to connect to a z/OS host. The default setting for the HOD layer is to request RFC 2355

Contention Resolution. If you experience such problems, configure the HOD layer so that it

does not request RFC 2355 Contention Resolution.

b. Optional: Click Advanced to change the contention resolution setting. Scroll down the properties in the

Configure optional advanced settings list. Change the setting of negotiateCResolution to false. This

applies to the TN3270E terminal only.

c. Type the name of the specific Workstation ID on the host. This field is available only if you are using

TN5250 terminal emulation.

Leave this field blank if you are not sure about the Workstation ID to connect to.

d. Type the name of the specific logical unit (LU) or LU pool on the host. This field is available only if you

are using TN3270 Enhanced (TN3270E) terminal emulation.

Leave this field blank if you are not sure about the LU to connect.

4. Type the port number on which the host is configured.

801

HCL OneTest™ UI

802

5. Select the code page that corresponds to the language that you are using. The default is 037 - United States.

6. Select the number of horizontal and vertical characters that can be displayed in the screen size. The default is

24x80.

Screen size options
You can change the size of the screen to have different numbers of lines and columns, depending on the host system.

More lines and columns provides more data on each screen, while fewer lines and columns can be easy to read.

Table 1 shows only the available built-in screen sizes. You can customize the screen size. For information on

customizing screen size, see related topics.

Table 20. Screen size options

Value 5250 3270 VT

24x80 (Default) X X X

32x80 X

36x80 X

43x80 X

48x80 X

72x80 X

24x132 X

27x132 X X

36x132 X

48x132 X

72x132 X

Related information

Customizing screen size when connecting to a TN3270 or TN3270E host on page 755

Code page options
A code page is a particular assignment of code points to graphic characters. Make sure the code page that is used

to connect to the host is supported by the host system, and is the one you want to use. The table contains code page

options by language and by country/region.

Chapter 7. Test Author Guide

3270 and 5250 code page options

Table 21. Code page options for 3270 and 5250

Value Country or region

037 United States (Default)

037 Belgium

037 Brazil

037 Canada

037 Netherlands

037 Portugal

273 Germany

273 Austria

274 Belgium (Old)

275 Brazil (Old)

277 Denmark

277 Norway

278 Finland

278 Sweden

280 Italy

284 Spain

284 Latin-America (Spanish)

285 United Kingdom

297 France

420 Arabic

424 Hebrew (New)

500 Multilingual

803 Hebrew (Old)

838 Thai

870 Romania

870 Bosnia/Herzegovina

870 Croatia

803

HCL OneTest™ UI

804

Table 21. Code page options for 3270 and 5250

(continued)

870 Czech

870 Hungary

870 Poland

870 Slovakia

870 Slovenia

871 Iceland

875 Greece

930 Japanese (Katakana Extended)

930 Japanese (Katakana)

933 Korea (Extended)

937 Taiwan (Traditional Chinese Extended)

939 Japan (Latin Extended)

1025 Russia

1025 Belarus

1025 Bulgaria

1025 FYR Macedonia

1025 Serbia/Montenegro (Cyrillic)

1026 Turkey

1047 Open Edition

1112 Latvia

1112 Lithuania

1122 Estonia

1123 Ukraine

1137 Hindi

1140 United States Euro

1140 Belgium Euro

1140 Brazil Euro

1140 Canada Euro

1140 Netherlands Euro

Chapter 7. Test Author Guide

Table 21. Code page options for 3270 and 5250

(continued)

1140 Portugal Euro

1141 Germany Euro

1141 Austria Euro

1142 Denmark Euro

1142 Norway Euro

1143 Finland Euro

1143 Sweden Euro

1144 Italy Euro

1145 Spain Euro

1145 Latin America Euro

1146 United Kingdom Euro

1147 France Euro

1148 Multilingual Euro

1149 Iceland Euro

1153 Romania Euro

1153 Bosnia/Herzegovina Euro

1153 Croatia Euro

1153 Czech Republic Euro

1153 Hungary Euro

1153 Poland Euro

1153 Slovakia Euro

1153 Slovenia Euro

1154 Russia Euro

1154 Belarus Euro

1154 Bulgaria Euro

1154 FYR Macedonia Euro

1154 Serbia/Montenegro (Cyrillic) Euro

1155 Turkey Euro

1156 Latvia Euro

805

HCL OneTest™ UI

806

Table 21. Code page options for 3270 and 5250

(continued)

1156 Lithuania Euro

1157 Estonia Euro

1158 Ukraine Euro

1160 Thai Euro

1364 Korea Euro

1371 Taiwan (Traditional Chinese) Euro

1388 PRC (Simplified Chinese; GBK)

1390 Japanese (Katakana Unicode Extended) Euro

1399 Japanese (Latin Unicode Extended) Euro

Virtual Terminal (VT) sessions code page options

Table 22. Code page options for VT sessions

Value Language

874 Thai

935 Simplified Chinese

937 Traditional Chinese

1011 German

1012 Italian

1020 French Canadian

1021 Swiss

1023 Spanish

1100 United States (English)

1101 British (English)

1102 Dutch

1103 Finnish

1104 French

1105 Norwegian/Danish

1106 Swedish

1208 UTF-8

Chapter 7. Test Author Guide

Remapping keyboard
You can remap a key or a combination of keys to a character or host function using the Keyboard Remap window. You

can save your keyboard remapping to a file and load it to use later. You can also turn off key repetition when a key is

held down.

Remapping key to a character
You can remap a key to a character that is not available by default from the keyboard.

1. In the Extension for Terminal based Applications window, click Keyboard Remap .

2. To locate and load the remapping file if you have saved the remapped keys to a file, click Load.

3. Click Key Assignment tab.

4. Click Characters from the Category list.

5. Select a character to which you want to remap a given key or combination of keys from the list of characters.

6. Click Assign a Key.

7. Press the key or key combination that you want to remap to the character on your keyboard. For example, to

use Alt+4, press and hold the keys down simultaneously for key combinations.

8. Save keyboard remapping.

a. In the Keyboard Remap dialog box, click Save.

b. Type a file name or select the name of an existing file in the File name field.

c. Click Save.

9. Click OK.

Remapping key to host function
You can remap a key to a host function that is not available by default from the keyboard or remap a combination

of keys to a host function, including the Shift, Alt, and Ctrl keys. You can remap a key to a host function because the

default key values are not always ideal for all host applications.

About this task

For example, in some panel-driven z/OS® application programs, it is convenient to have a function key to erase the

contents of a field, such as Erase EOF. This function is not provided by default, but it can be enabled by remapping a

function to a key or combination of keys of your choice.

1. In the Extension for Terminal-based Applications window, click Keyboard Remap.

2. Optional: To locate and load the remapping file if you have saved the remapped keys to a file, click Load.

3. Click Key Assignment tab.

4. Click Host Functions from the Category list.

5. Select the function to which you want to remap a given key or combination of keys from the list of host

functions.

6. Click Assign a Key.

7. Press the key or key combination that you want to remap to the host function. For example, to use Alt+4, press

and hold the keys simultaneously for key combinations.

807

HCL OneTest™ UI

808

8. Optional: Save keyboard remapping.

9. Click OK.

What to do next

Note: Remapped keys retain their custom values during the host session for which the keys were remapped

only. The remapping does not persist across subsequent host sessions that are started from other host

connection windows.

Loading keyboard remap from file
You can load keyboard remapping that you have created and saved in a file.

1. Click Keyboard Remap.

2. Click Load.

3. Locate and select the file name you want to load.

4. Click Load.

5. Click OK.

What to do next

Your keyboard is remapped according to the remapping saved in the loaded file.

Turning off key repetition
You can choose whether a key that you hold down produces a single keystroke or multiple keystrokes by using the key

repetition function.

1. Click Keyboard Remap.

2. Optional: To locate and load a file that you have saved to a file, click Load.

3. Click the Key Repetition tab in Keyboard Remap dialog box.

4. Click Add Key.

5. Press the key that you want to be a non-repeating key.

6. Optional: Click the Save button to save turning off key repetition.

7. Click OK.

Remapping session screen colors
You can remap the colors of your host session. Color remapping does not persist for subsequent host sessions.

1. Make sure the host terminal is running and connected to the host.

2. Click Color Remap.

3. From the left pane of the Color Remap window, select the field for the color change.

4. Select the color that you want from the left pane.

5. Close the Color Remap window for the changes to take effect.

Chapter 7. Test Author Guide

Sending files from workstation to a host system (3270 host sessions only)
You can send files from a workstation to a host. File transfer is available only for 3270 and 3270E sessions.

Before you begin

You must be connected to a host for the file transfer functions to work.

1. Log in to your host system and open the command line interface.

2. Before you transfer a file, check the default file transfer settings to make sure that they are correct. To set the

default settings of your host system, click Default settings for File Transfer. Three types are supported in Host

Type: MVS/TSO, VM/CMS and CICS®. Click OK.

3. Specify a PC file name, host file name, and transfer mode in the Send Files to Host window.

4. To add the specified files to the Transfer list pane, click Add to List.

5. Optional: To open a saved list, click Open List.

6. Optional: To save the files that are listed in the Transfer List window to a file, click Save List.

7. Select the files in the Transfer List window that you want to send to the host.

8. To send the selected files, click Send.

Result

The specified files are transferred.

Retrieving files from a host system to the workstation (3270 host sessions only)
You can retrieve files from a host system to the workstation. File transfer is available only for 3270 and 3270E

sessions.

Before you begin

You must be connected to a host for the file transfer functions to work.

1. Log in to your host system and open the command line interface.

2. To set the default settings of your host system, click Default settings for File Transfer. Three types are

supported in Host Type: MVS/TSO, VM/CMS and CICS®.

3. Click OK.

4. Specify a PC file name, host file name, and transfer mode from the Receive Files from Host window.

5. To add the specified files to the Transfer list pane, click Add to List.

6. Optional: To open a saved list, click Open List.

7. Optional: To save the files listed in the Transfer List window to a file, click Save List.

8. In the Transfer List window, select the files that you want to receive from the host.

9. To retrieve the selected files, click Receive.

Result

The specified files are transferred.

Connecting to a virtual terminal (UNIX) session
The host terminal panel shows the default values for a TN3270 terminal connection when you launch Extension for

Terminal-based Applications. You can also connect to a VT (UNIX) session.

809

HCL OneTest™ UI

810

Before you begin

The host terminal must be running and have access to a VT session.

1. Connect to the host terminal.

2. Select one of the VT terminal types from Terminal type list.

If you select the VT UTF8 terminal type, make sure that you also select a UTF8 code page. By default, the 1100

DEC Multinational Replacement Character Set code page and the 24 x 80 screen size are displayed in Code

page and Screen size lists.

3. Specify the code page from the Code page list.

If you are connecting to a VT UTF8 session, make sure you select a UTF8 code page.

4. Specify the screen dimensions from the Screen size list.

5. Click Advanced and verify that the entries in the Advanced Setting table have been updated with specific VT

session properties and their default values.

6. Click OK to close the Advanced Settings dialog box.

7. Click Connect to connect to the host system.

Extension for Terminal-based Applications preferences
You can set the synchronization settings using Extension for Terminal-based Applications Preferences window.

Synchronization settings have the following fields for fine tuning synchronization algorithms:

Field Description

Timeout The wait time for the session to stabilize.

OIA State Timeout The wait time for the operator information area to reach a stable state.

The states are: UNINITIALIZED, READY and LOADED.

Polling Interval The wait time interval between polls to determine the state of the ses

sion.

Minimum time to wait The minimum wait time before starting to poll the session.

Default Folder for Connection Configura

tion Files

The path of the folder to store connection configuration files.

Advanced Connection Settings window
You can configure the basic settings and advanced settings using Advanced Connection Settings window.

Chapter 7. Test Author Guide

The value of the property in optional and advanced settings can be changed by selecting the property and typing a

new value.

The Advanced Connection Settings window has the following buttons:

Button Description

Restore Default Resets the selected advanced connection properties to default values.

Revert Resets the selected properties values to the values that were in effect when you

opened the Advanced Connection Properties window.

Select All Selects all properties in the advanced connection properties list.

OK Completes the connection configuration. Returns to Extension for Terminal-based Ap

plications window and connects to host.

Advanced connection properties
You can configure the advanced connection properties.

811

HCL OneTest™ UI

812

Table 1 shows the properties, descriptions, valid values and default values of advanced connection properties.

Table 23. Advanced connection properties

Property Description Valid Values Default Value

AllocateSpace

ForLamAlef

Specifies whether LamAlef is expanded or

compressed. This property applies to Arabic

sessions only.

LAMALEFOFF

BIDIMode Specifies whether to enable or disable bidirec

tional (BIDI) functions, like character shaping.

This property applies to Arabic virtual terminal

(VT) sessions only.

BIDIMODEON and BIDIMODEOFF BIDIMODEON

CICSGWCode

Page

Specifies the CICS® gateway. 000

CICSInitialTrans Specifies the names of the initial transaction

identifiers are strings between 1 and 128 char

acters. The string identifies the initial transac

tion and any parameters to be specified upon

connection to the server. The transaction is the

first four characters, or the characters up to the

first blank in the string. The remaining data is

passed to the transaction on its invocation.

CECI

CICSInitialTrans

Enabled

Specifies whether an initial transaction is start

ed when a CICS gateway session is estab

lished.

true or false true

CICSServerName Specifies the CICS server name.

connectionTime

out

Specifies the connection timeout value. 0

copyAltSignLoca

tion

Specifies the mode of cut or copy for the sign

of a number. true specifies a sign character

is placed in front of the number. false speci

fies a sign character is placed in the same lo

cation relative to the number as it appears on

the screen.

true or false false

copyOnlyIf

Trimmed

Specifies whether to set the copy error when

there is no trim. true sets the copy error when

no trim. false copies the entire screen when no

trim.

true or false false

Chapter 7. Test Author Guide

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

cursorDirection Specifies whether cursor direction is left to

right or right to left. This property applies to

BIDI Visual VT sessions only.

CURSOR_LEFTTORIGHT or CURSOR_

RIGHTTOLEFT

CURSOR_LEFT

TORIGHT

CursorMovemen

tState

Specifies whether cursor movement within

the presentation space by a mouse click is al

lowed. This property currently applies to VT

sessions only.

true or false true

ENPTUI Indicates whether to enable the Enhanced

Non-Programmable Terminal User Interface

(ENPTUI) functionality. This property can be

enabled for 5250 sessions only.

true or false false

EntryAssist_bell Enables or disables an audible signal when

the cursor enters the column set for the End of

Line Signal Column. true turns on bell. false

turns off bell.

true or false false

EntryAssist_bell

Col

Controls the column number at which you want

the audible signal for the End of Line to be

sounded. The audible signal will only sound if

the EntryAssist_bell property is set to true.

Valid column numbers 75

EntryAssist_DOC

mode

Enables or disables the Entry Assist features.

The Entry Assist (DOC mode) features make it

easier to edit text documents in a 3270 display

session. true turns DOC mode on. false turns

DOC mode off.

true or false false

EntryAssist_DOC

wordWrap

Enables or disables word wrap. When word

wrap is enabled a word that is typed at the

right margin is moved in its entirety to the first

unprotected field in the next row, provided that

the unprotected field has enough blank space

to the left to contain the word. The area on

the previous row vacated by the word is filled

with spaces. If the unprotected field does not

have enough blank space at the left to contain

the word, then the word is not moved. The ef

fect is the same as though word wrap were not

true or false true

813

HCL OneTest™ UI

814

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

enabled. When true, turns word wrap on and

false turns word wrap off

EntryAssist_end

Col

Controls the right margin for DOC mode. When

DOC mode is on, the rightmost cursor position

in a row is the last unprotected character posi

tion to the left of the end column.

Valid column numbers 80

EntryAssist_s

tartCol

Controls the left margin for DOC mode. When

DOC mode is on, the leftmost cursor position

in a row is the first unprotected character posi

tion to the right of the start column.

Valid column numbers 1

EntryAssist_tab

stop

Controls how many spaces to skip when the

Tab key is pressed.

Valid numbers of spaces 8

EntryAssist_tab

stops

Controls the columns at which you want tab

stops. When tab stops are set, pressing the tab

key causes the cursor to skip to one of the fol

lowing positions, whichever is first:

• The next tab stop in the same unpro

tected field on the same row. (Tab

stops cannot be defined outside the left

or right margin.)

• The first character position in the next

unprotected field on the same row, if

that character position is within the

margins.

• The first character position in the next

unprotected field in a subsequent row,

if that character position is within the

margins.

Note: Characters skipped as the re

sult of a tab key are not set to blanks.

When characters are in an unprotected

field and the cursor skips over them be

cause of pressing the tab key, they are

not set to blanks. Only nulls that the

String representations of arrays

of columns to use as tab stops.

For example: 5, 10, 15, 20, 25

Chapter 7. Test Author Guide

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

cursor skips as the result of a tab key

are set to blanks.

graphicsCellSize Specifies the graphic cell size. 0

hostBackup1 Host name or IP address of the backup1 serv

er. Displayed as the Destination address of

backup1 on property panels. Applies to all ses

sion types.

hostBackup2 Host name or IP address of the backup2 serv

er. Displayed as as Destination address of

backup2 on property panels. Applies to all ses

sion types.

hostGraphics Indicates whether to enable the host graph

ics function. This property can be enabled for

3270 sessions only.

true or false

InsertOffOnAID

KEY

Sets the InsertOffOnAIDKEY property of Ses

sion.

Insert mode

is set as

follows

Any AID key per

forms as follows

on and Insert

OffOnAIDKEY

is true

Turns insert mode off

on and Insert

OffOnAIDKEY

is false

Has no effect on the insert

mode

off Does not turn insert mode

on regardless of the state of

InsertOffOnAIDKEY

This property is valid for 3270 and CICS ses

sions only.

true or false false

keyStoreFilePath Specifies the path and name of the keystore

file on the client workstation that contains the

client public and private keys.

Valid path and file name of the

keystore file

815

HCL OneTest™ UI

816

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

keyStorePass

word

The password that is required to open the key

store file on the client workstation.

Correct password to open the

keystore file.

no password

lastHostWithout

Timeout

true

LUMLicensing Specifies the license method. LUM or HOD HOD

LUMPort Specifies the LUM port. Valid port numbers 80

LUMServer Specifies the LUM server name. Valid LUM server names

LUNameBackup1 The name of the LU or LU Pool, defined at the

backup1 server, to which you want the session

to connect. Displayed as LU or Pool Name of

backup1 on property panels. Applies to 3270

Display and 3270 Printer session types.

Valid LU or LU pool names

LUNameBackup2 The name of the LU or LU Pool, defined at the

backup2 server, to which you want this ses

sion to connect. Displayed as LU or Pool Name

of backup2 on property panels. Applies to 3270

Display and 3270 Printer session types.

Valid LU or LU pool names

negotiateCReso

lution

Specifies whether to enable Negotiate Con

tention Resolution.

true or false true

netName The name of the terminal resource to be in

stalled or reserved.

numeralShape Specifies the numeral shape as nominal, na

tional or contextual for strings that are sent to

the presentation space. This applies to Arabic

hosts only.

NOMINAL, NATIONAL, or CONTEXTUAL NOMINAL

numeralShape

Disp

Specifies how numerals are shaped. This prop

erty applies to Arabic VT sessions only.

NOMINAL_DISP, NATIONAL_DISP, or

CONTEXTUAL_DISP

CONTEXTUAL_

DISP

numericField

Lock

Specifies whether to limit the field characters

of a session to numeric values. When true, only

characters 0 through 9, -, +, period (.), and com

ma (,) are valid in fields that are defined by a

host application as numeric. This property is

valid for 3270 and CICS sessions only.

true or false false

Chapter 7. Test Author Guide

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

numericSwapEn

abled

Enables Numeric swapping. This property ap

plies to Arabic 3270 sessions only.

true or false true

panelOnlyTCPIPI

nactivityTimeout

0

pasteFieldWrap Enables wrap on field. This property does not

apply to VT sessions. true sets wrap on field.

false sets normal wrap.

true or false false

pasteLineWrap Enables line wrap on field. true sets line wrap

on field. false sets normal wrap.

true or false false

pasteStopAtPro

tectedLine

Specifies whether to enable paste in a protect

ed area. This property does not apply to VT

sessions. truedisables paste on a protected

line. falseenables normal paste.

true or false false

pasteTab

Columns

Specifies the pasteTabColumns to set the

number of columns that are represented by a

tab. If this option is active the input skips to the

column that is a multiple of this setting.

Size of the tab in columns 4

pasteTabOptions Specifies the pasteTabOptions. 2

pasteTabSpaces Sets the pasteTabSpaces to the number of

spaces that are represented by a tab. If this

option is active, the input skips the number of

spaces that is specified in this setting.

Number of spaces to advance

for a tab

1

pasteTo

TrimmedArea

Specifies whether pasting is enabled in

trimmed areas. This property does not apply

to VT sessions. truesets paste to paste into

trimmed area if defined. false sets paste to

normal paste.

true or false false

pasteWordBreak Specifies whether paste splits words. This

property does not apply to VT sessions. true

sets paste to not split words. false sets paste

to normal paste.

true or false true

PDTFile Specifies the name of a printer definition table

(PDT) file. The PDT that you specify must be

suitable for the printer and for the printer-em

817

HCL OneTest™ UI

818

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

ulation mode that the printer will use (such as

PCL, PPDS. PostScript is not supported).

portBackup1 The port number on which the backup1 server

is configured. Displayed as Destination port

of backup1 on property panels. Applies to all

session types.

23

portBackup2 The port number on which the backup2 server

is configured. Displayed as Destination port

of backup2 on property panels. Applies to all

session types.

23

printDestination Specifies whether the output goes to a printer

or to a file. true goes to printer. false goes to

file.

true or false true

printerName Specifies the name of the destination printer

device.

Valid print destination printers LPT1

printFileName Specifies the name to be assigned to the print

file.

Valid print file names

proxyAuthen

Method

Specifies the authentication method between

the Host On-Demand session and proxy server.

Select one of the following:

• Basic (HTTP only): The Host On-De

mand session provides a user ID and

password to the HTTP proxy server.

• Clear Text (SOCKS v5 only): The Host

On-Demand session provides an unen

crypted user ID and password to the

socks proxy server.

• None: The Host On-Demand session

does not provide a user ID and pass

word to the HTTP proxy or socks serv

er.

Note: If you select Basic or Clear Text

as the proxy authentication method,

SESSION_PROX

Y_AUTHEN_NONE

Chapter 7. Test Author Guide

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

you must specify a User ID and Pass

word.

proxyServer

Name

Specifies the host name or IP address of the

HTTP or socks proxy server.

proxyServerPort Specifies the TCP port number of the HTTP or

socks proxy server.

1080

proxyType Specifies the type of proxy server a host ses

sion uses.

• Default browser Setting

• HTTP Proxy

• SOCKS v4

• SOCKS v5

• SOCKS v4, if v5 unavailable

SESSION_PROX

Y_BROWSER_DE

FAULT

proxyUserID Specifies the user ID that the Host On-De

mand session provides to authenticate with

the HTTP or socks proxy server.

proxyUserPass

word

Specifies the password that the Host On-De

mand session provides to authenticate with

the HTTP or socks proxy server.

roundTrip Specifies whether the roundTrip is in on or off

mode. This method applies to bidirectional

hosts only.

ON or OFF ON

RTLUnicodeOver

ride

Enables or disables the RTL Unicode Override

option. This applies to BIDI 5250 Hosts only.

RTLUNICODEON or RTLUNICODEOFF RTLUNICODEOFF

SecurityProtocol Specifies whether to use the TLS v1.0 protocol,

the Secure Sockets Layer (SSL) protocol, or the

Secure Shell (SSH) protocol for providing secu

rity.

If set to TLS (default), and if the server is TLS-

enabled, then a TLS v1.0 connection is provid

ed. If the server is not TLS-enabled, then the

server negotiates the connection down to SSL

protocol.

SESSION_PROTOCOL_TLS, SESSION_

PROTOCOL_SSL, SESSION_PROTO

COL_SSH

SESSION_PRO

TOCOL_TLS

819

HCL OneTest™ UI

820

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

Constant Value Description

SESSION_PRO

TOCOL_TLS

TLS Use TLS v1.0 proto

col (default)

SESSION_PRO

TOCOL_SSL

SSL on

ly

Use SSL v3.0 proto

col to provide securi

ty

SESSION_PRO

TOCOL_SSH

SSH Use SSH protocol

v2.0

separateFiles Specifies whether print files are stored in sepa

rate files. This property applies to Host On-De

mand VT sessions only, 3270 printer, and 5250

printer sessions. When true, saves print jobs in

separate files and false, saves print jobs in a

single file.

true or false false

serviceMgrHost Specifies the name for the Host On-Demand

server.

SESSION_PROX

Y_AUTHEN_

BASIC

Sets the authentication to basic when the

connection goes through an HTTP proxy.

This is not used when the proxyType is set to

BROWSER_DEFAULT.

SESSION_PROX

Y_AUTHEN_

BASIC

SESSION_PROX

Y_AUTHEN_

CLEAR_TEXT

Sets the authentication to clear text when the

connection goes through a SOCKS V5 proxy.

This is not used when the proxyType is set to

BROWSER_DEFAULT.

SESSION_PROX

Y_AUTHEN_

CLEAR_TEXT

SESSION_PROX

Y_AUTHEN_

NONE

Specifies that the session does not use a proxy

server. This is not used when the proxyType is

set to BROWSER_DEFAULT.

SESSION_PROX

Y_AUTHEN_NONE

SESSION_PROX

Y_AUTHEN_

BROWSER_DE

FAULT

Specifies that the session uses the proxy set

tings of the web browser. This is not used

when the proxyType is set to SESSION_PROXY_

BROWSER_DEFAULT.

SESSION_PROX

Y_BROWSER_DE

FAULT

SESSION_PROX

Y_AUTHEN_

HTTP

Specifies that the session connects only

through an HTTP proxy server, overriding the

proxy settings defined in the web browser.

SESSION_PROX

Y_HTTP

Chapter 7. Test Author Guide

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

This is not used when the proxyType is set to

SESSION_PROXY_HTTP.

SESSION_PROX

Y_AUTHEN_

SOCKS_V4

Specifies that the session connects through

a SOCKS v4 proxy server only, overriding the

proxy settings defined in the web browser.

Socks version 4 proxy server connects to a

host system on behalf of a Host On-Demand

client and transmits data between the client

and the host system. This is not used when the

proxyType is set to SESSION_PROXY_SOCKS_V4.

SESSION_PROX

Y_SOCKS_V4

SESSION_PROX

Y_AUTHEN_

SOCKS_V5

Specifies that the session connects through

a SOCKS v5 proxy server only, overriding the

proxy settings defined in the web browser.

SOCKS v5 includes the complete functionali

ty of SOCKS v 4 and in addition, it supports au

thentication to the proxy server, IP version 6

addressing, domain names, and other network

ing features. This is not used when the proxy

Type is set to SESSION_PROXY_SOCKS_V5.

SESSION_PROX

Y_SOCKS_V5

SESSION_PROX

Y_AUTHEN_

SOCKS_V5_

THEN_V4

Specifies that the session first attempts to

connect using SOCKS v5. However, if the proxy

server does not support SOCKS v5, the session

connects using SOCKS v4. In either case, the

session overrides the proxy settings defined

in the web browser. Proxy Server Name and

Proxy Server Port are unavailable if you select

Use Default Browser Setting as the Proxy Type.

This is not used when the proxyType is set to

SESSION_PROXY_SOCKS_V5_THEN_V4.

SESSION_PROX

Y_SOCKS_V5_

THEN_V4

sessionID The short name that you want to assign to

this session (displayed in the OIA). It must be

unique to this configuration. Appears as "Ses

sion ID" on property panels. Applies to all ses

sion types. This is not used when the proxy

Type is set to BROWSER_DEFAULT.

sessionName Specifies the name of the session.

821

HCL OneTest™ UI

822

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

showTextAttrib

utesEnabled

Specifies the Show Text Attributes property.

This property applies to logical BIDI VT ses

sions only.

true

SLPAS400Name Connects a session to a specific iSeries™ serv

er. Displayed as "AS/400® Name (SLP)" on

property panels. Applies to 5250 Display and

5250 Printer session types. Use the fully-qual

ified SNA CP name (for example, USIBMN

M.RAS400B).

SLPEnabled Specifies whether a Service Location Proto

col is used or not. When true, uses SLP. When

false, does not use SLP.

true or false false

SLPMaxWait

Time

SLPMaxWaitTime in milliseconds to wait for

service response. This property is only valid

when the SLPEnabled property is true.

200

SLPScope Service Location Protocol (SLP) Scope is dis

played as Scope under SLP Options on property

panels. Applies to 3270 Display, 3270 Printer,

5250 Display, and 5250 Printer session types.

SLPThisScope

Only

Session is established only to a server that

supports the provided scope. This property

is valid only when the SLPEnabled property is

true and there is a SLPScope provided.

true or false false

smartOrdering Specifies whether a segment of characters

with different text attributes is ordered sepa

rately. This property applies BIDI Logical VT

sessions only.

SMART_ORDERING_OFF and SMART_

ORDERING_ON

SMART_OR

DERING_OFF

SSHPublicKey

Alias

Specifies the SSHPublicKeyAlias. mykey

SSHPublicKey

AliasPassword

Specifies the password to read the public key

information from the keystore.

SSL Specifies whether to use the Secure Socket

Layer (SSL) feature. When true, enables SSL.

When false, disables SSL.

true or false false

Chapter 7. Test Author Guide

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

SSLBrowser

KeyringAdded

Specifies the SSLBrowserKeyringAdded prop

erty of the session. When true, adds the ses

sion to the Host On-Demand client keyring.

When false, does not add the session to the

Host On-Demand keyring.

true or false false

SSLCertificate

Hash

Specifies the SSLCertificateHash.

SSLCertificate

Name

Specifies the SSLCertificateName.

SSLCertificate

Password

Specifies the SSLCertificatePassword.

SSLCertificate

PromptBefore

Connect

Specifies whether the client is prompted before

connecting to the server. When true, prompts

the client. When false, does not prompt the

client.

true or false false

SSLCertificate

PromptHow

Often

Specifies how often the client is prompted. SESSION_SSL_CERTIFICATE_PROMP

T_EACH_CONNECT, SESSION_SSL_

CERTIFICATE_PROMPT_FIRST_CON

NECT, SESSION_SSL_CERTIFICATE_

PROMPT_ONLY_ONCE

SESSION_

SSL_CERTIFI

CATE_PROMPT_

FIRST_CONNECT

SSLCertificate

Provided

Specifies whether the client has a certificate.

The value is true if the client has a certificate

and false if the client does not have a certifi

cate.

true or false false

SSLCertificate

Source

The certificate can be kept in the client's

browser or dedicated security device, such as

a smart card, local or network-accessed file.

Displayed as Certificate Source on property

panels. Applies to 3270 Display, 3270 Printer,

5250 Display, 5250 Printer, and VT Display ses

sion types.

• SSL_CERTIFICATE_IN_CSP:

For certificate in browser

or security device

• SSL_CERTIFICATE_IN_URL:

For certificate in URL or

file

SESSION_SSL_

CERTIFICATE_

IN_URL

SSLCertificate

URL

Specifies the default location of the client

certificate. Displayed as the URL or Path and

Filename in property panels. Applies to 3270

Display, 3270 Printer, 5250 Display, 5250 Print

823

HCL OneTest™ UI

824

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

er, and VT Display session types. The URL pro

tocols that you can use depend on the capabil

ities of your browser. Most browsers support

HTTP, HTTPS, FTP, and FTPS.

SSLServer

Authentication

Specifies whether SSL server authentication is

enabled.

true or false false

SSLTelnetNegoti

ated

Specifies whether SSL will be negotiated on

the Telnet connection. Set this property to true

only if you connect to a Telnet server that sup

ports IETF Internet-Draft TLS-based Telnet Se

curity. This Internet-Draft defines the proto

col for doing the SSL Handshake over a Telnet

connection. Set the SSL property to true also.

false

ssoCMServer Specifies the sso_CMServer property. Address strings of back-end

servers and applications that re

spond to single sign-on (SSO)

queries.

ssoEnabled Specifies that the session is SSO enabled.

When true, enables SSO for the session. When

false, disables SSO.

true or false false

ssoUseKerberos

Passticket

Specifies whether the SSO layer uses the client

side Kerberos support to acquire a Kerberos

passticket for login. When true, instructs the

SSO layer to use the client side Kerberos sup

port. When false, instructs the SSO layer to not

use the client side Kerberos support.

true or false false

ssoUseLocalI

dentity

Specifies whether the SSO layer uses the local

operating system userID in the SSO process.

When true, instructs the client to use the local

operating system user ID in the SSO process.

When false, instructs the client not to use

the local operating system user ID in the SSO

process.

true or false false

symmetricSwap

Enabled

Specifies whether symmetric swapping is en

abled. This property applies to Arabic 3270

sessions only. When true, enables symmet

true or false true

Chapter 7. Test Author Guide

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

ric swapping. When false, disables symmetric

swapping.

textOrientation Specifies whether the test orientation is left

to right or right to left. This property applies to

bidirectional Sessions only.

LEFTTORIGHT or RIGHTTOLEFT LEFTTORIGHT

textType Specifies whether the textType is visual or log

ical. This property applies to bidirectional ses

sions only.

VISUAL or LOGICAL VISUAL

textTypeDisp Determines whether a session works in the log

ical or visual mode. This property applies BIDI

VT sessions only.

LOGICAL_DISP and VISUAL_DISP LOGICAL_DISP

ThaiDisplayMode This method applies to Thai host machines on

ly.

Val

ue Description

1 Non-composed mode

2 Composed mode

3 Composed mode with space alignment

4 Composed mode with EOF alignment

5 Composed mode with space and EOF

alignment

Integers 1 through 5 5

timeout Specifies the amount of time (in milliseconds)

that the client waits for data. If no data is re

ceived for the specified amount of time, the

session is disconnected. A value of 0 specifies

that system will not time out.

0

timeoutNoData

AtInitialization

Specifies whether to time out if no data is re

ceived at the session initialization.

true or false false

trimRectRemain

AfterEdit

Specifies whether trim rec remains after a cut,

copy, or paste action. When true, sets trim rec

to remain after a cut, copy, or paste action.

When false, does not set trim rec to remain af

ter a cut, copy, or paste action.

true or false false

825

HCL OneTest™ UI

826

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

trimRectSizing

Handles

Specifies whether trim rec is sizeable or not.

When true, trim rec is sizeable. When false,

trim rec is not sizeable.

true or false true

unicodeData

StreamEnabled

Specifies whether the session can receive Uni

code data fields that are sent by a host. When

true, the session can receive Unicode data

field that is sent by a host. When false, the

session cannot receive Unicode data field that

is sent by a host.

true or false false

userID Specifies the user ID that is used in the SSH

authentication process is either by public-key

or password.

Valid user ID

userPassword Specifies the user password that is used in the

SSH authentication process.

Valid user password

useSSHPublicK

eyAuthentication

Specifies whether the SSH public key authenti

cation is enabled. When true, enables the SSH

public key authentication. When false, disables

SSH public key authentication.

true or false false

VT100Plus Specifies whether VT100+ mode is enabled. In

VT100+ mode, the function keys generate ESC

OP through ESC O[sequences.

true or false false

VTAnswerBack

Msg

A string that is returned to the remote VT serv

er in response to an ENQ command (0x05).

This string can be empty ("") or a user-defined

value.

none

VTasciiConvert false

VTAutowrap Sets the VTAutowrap property. This proper

ty applies to VT sessions only. When true, en

ables autowrap and false disables autowrap.

true or false false

VTBackspace Sets the VTBackspace property. This property

applies to VT sessions only. When true, sets

normal backspace behavior and false deletes

the character at the cursor.

true or false false

VTCursor Sets the VTCursor property. This property ap

plies to VT sessions only. When true, estab

true or false false

Chapter 7. Test Author Guide

Table 23. Advanced connection properties (continued)

Property Description Valid Values Default Value

lishes application-controlled cursor behavior

and false establishes normal cursor behavior.

VTID This ID is used to determine how the emula

tor identifies itself to the host. This field tells

the UNIX host the type of VT terminal that you

want to emulate for your session.

VT420

VTKeypad Sets the VTKeypad property. This property ap

plies to VT sessions only. When true, sets ap

plication keypad control and false sets normal

keypad behavior.

true or false false

VTLocalEcho Local-echo mode. This property applies to VT

sessions only. If true, turns local echo on. If

false, turns local echo off.

true or false false

VTNewLine New-line operation. This property applies to VT

sessions only. If true, interprets a carriage re

turn as CR only. If false, interprets carriage re

turn as CR and LF.

true or false true

VTReverse

Screen

Sets the VTReverseScreen property. This prop

erty applies to VT sessions only. When true,

sets reverse video and false sets normal

video.

true or false false

VTTerminalType The terminal-type required by the server to

which the session will connect to. This proper

ty applies to VT sessions only.

Val

ue Description

1 VT220_7_BIT

2 VT220_8_BIT

3 VT100

4 VT52

Integers from 1 to 5 1

SSH overview
The Secure Shell (SSH) is a set of protocols for implementing secure sessions over a non-secure network, such as a

standard TCP/IP network. The Extension for Terminal-based Applications supports SSH connections to VT sessions.

827

HCL OneTest™ UI

828

In order to use SSH, you must set up SSH server software on the host.

SSH include the following features:

• Secure remote login

• Strong authentication of server and client

• Several user authentication methods

• Encrypted terminal sessions

• Secure file transfers

SSL overview
The Secure Sockets Layer (SSL) protocol creates a standard SSL connection between the client and the server. The

client contacts the server and checks to make sure that the server has a valid certificate. This type of connection

ensures that all data exchanged between client and server is encrypted, and is therefore not readable by a third party

on the Internet.

Extension for Terminal-based Applications supports SSL connections to host sessions using Host On-Demand SSL

functions. The SSL connection to a 3270 session is set up by using an open source SSL package called Stunnel.

Stunnel is a program that enables encrypting arbitrary TCP connections inside SSL and is available on both UNIX and

Windows operating systems. With Stunnel you can secure non-SSL aware daemons and protocols by providing the

encryption that requires no changes to the daemon code.

Using SSL to connect to host machines
HCL OneTest™ UI Extension for Terminal-based Applications requires a security utility such as OpenSSL or IBM®

Certificate Management to produce the *.p12 file that will pass the host servers self-signed certificate credentials to

the terminal to allow a secure connection. Although IBM® Certificate Management that runs on Windows®, Linux®,

AIX®, or Solaris distributed platforms is not included with HCL OneTest™ UI, it is shipped with other IBM® products

such as IBM® Personal Communications, IBM® Host On-Demand, and IBM® HTTP server. You can easily create the

*.p12 file if you have access to this utility.

Before you begin

Note: Starting from 9.1.1, you can import certificates from the server to connect to the host machines

securely. See Importing certificates from the server for secured connections on page 749.

To use SSL to connect to host machines, you need:

• The extracted host or server certificate in the form of an *.arm or *.der file.

• The secure port for your host connection.

• A CustomizedCAs.p12 with a password of "hod" created using IBM® Certificate Management.

• The correct settings for the terminal session.

Chapter 7. Test Author Guide

About this task

You must use IBM® Certificate Management to create the *.p12 file. You must have access to IBM® Certificate

Management tool. You must either install it or work with an existing installation:

1. Start IBM Key Management.

2. Click KeyDatabase File > New. You must change the file type to PKCS12 and name it as CustomizedCAs.p12.

3. Save the file to the folder C:\Program Files\HCL\HCLOneTest\plugins

\com.ibm.test.terminal.7.0.2v200906180724.. The terminal.jar and TerminalTester.jar must be

present in this folder.

4. Type hod as the password.

Note: This password is hard-coded and must be hod.

5. To add the extracted *.der or *.arm file from the host's server certificate to the CustomizedCAs.p12, click Add.

6. In the Token Label field, type a valid token label for this certificate.

7. To save the file with the certificate you just added, click Key Database File > Save As. Verify the password and

close IBM Key Management.

8. Start HCL OneTest UI Extension for Terminal-based Applications.

9. Configure the advanced settings in the Advanced Properties page of the IBM® Extension for Terminal-based

Applications dialog box , click Advanced as follows:

a. Set SecurityProtocol to SESSION_PROTOCOL_SSL or SESSION_PROTOCOL_TLS

b. Set SSL to true

c. Set SSLCertificateName to CustomizedCAs.p12

d. Set SSLCertificatePassword to hod

e. (optional) Set SSLCertificateProvided to true

f. Set SSLTelnetNegotiated to true.

Note: You must set SSLTelnetNegotiated to true only when you connect to a Telnet server that

supports IETF Internet-Draft TLS-based Telnet Security. The Internet-Draft defines the protocol

for performing the SSL Handshake over a Telnet connection.

10. In the terminal session under Port, type the secure port number to be used by the server connection. Typically,

this is 992, but it may vary depending on the telnet configuration of your host. The secure connection must

show MA*+ in the Operator Information Area at the bottom of the screen.

11. Click OK.

829

HCL OneTest™ UI

830

Importing certificates from the server for secured connections
Starting from HCL OneTest™ UI 9.1.1, you can import certificates from the server to connect to the host machines

securely. You can create a CustomizedCAs.p12 / CustomizedCAs.jks keystore through the Extension for

Terminal-based Applications that produces the *.p12/JKS file. This file passes the host server's self-signed certificate

credentials to the terminal to allow a secure connection.

About this task

Prior to version 9.1.1, you could use SSL to connect to the host machine securely. See Using SSL to connect to host

machines on page 828.

1. Start the Extension for Terminal based Applications by clicking the Launch button in HCL OneTest™ UI.

2. Click Session > Security to open the Security Information window.

3. Select or type the Host address and Port number.

4. Select the type of keystore where the certificate can be saved. Depending on the connection protocol

supported by the host, you can choose PKCS12 or JKS.

5. Click the Get Certificate(s) button to retrieve the certificates from the host.

6. After the certificates are retrieved, click the Save button to save the extracted certificate to the appropriate

keystore (CustomizedCAs.p12 or CustomizedCAs.jks).

7. Click the Status bar to open the location where the keystore is created with the certificate. This location would

be C:\Users\<current user>\Application Data\ibm\RFT\Extension for Terminal-based

Applications on a Windows™ machine.

Chapter 7. Test Author Guide

8. Copy the .p12 or .jks file to the <HCLIMShared\plugins>\com.ibm.test.terminal_8.5.0.vXXXX

folder. This plugin folder also includes the terminal.jar and TerminalTester.jar files.

9. Close the Security Information window and restart the Extension for Terminal-based Applications.

10. Type the Host address, Port number, and terminal type information and click the Advanced Settings button.

11. Set the properties depending on the type of certificate.

◦ For CustomizedCAs.p12, you must set the following properties:.

Property Name Set the value...

SSL true

SSLTelnetNegotiated true

◦ For CustomizedCAs.jks, you must set the following properties:

Proper

ty Name
Set the value...

sslUseJSSE true

ssl

JSSETrustS

tore

Provide the full path of CustomizedCAs.jsk.

For example,

C:\Program Files\HCL\HCLIMShared\plugins\com.ibm.test.termi

nal_8.5.0.v20170703_0428\CustomizedCAs.jks

ssl

JSSETrust

StorePass

word

hodpwd

tlsProtocol

Version

TLSv1.2

Note: If the host supports an older version of the protocol, the application will

fall back to the older version.

ssl

JSSETrustS

toreType

jks

831

HCL OneTest™ UI

832

Proper

ty Name
Set the value...

SSL true

SSLTelnetNe

gotiated

true

Note: You must set SSLTelnetNegotiated to true only when you connect to a Telnet server that

supports IETF Internet-Draft TLS-based Telnet Security. The Internet-Draft defines the protocol for

performing the SSL Handshake over a Telnet connection.

Recognition properties
You can set the recognition property for screens, fields and characters to increase the flexibility of your script when

defining a screen. Each object has a set of recognition properties, which are typically established during recording. To

find an object in the application-under-test during playback, HCL OneTest™ UI compares the object in the application

with recognition properties in the test object map. Each property of a test object has an associated recognition

weight value, which is a number from 0 to 100. HCL OneTest™ UI uses the weight value for each recognition property

to determine the importance of the property.

Table 1 describes the default recognition properties and weights for windows.

Table 24. Default recognition properties for screens

Property Weight

Field Count 40

Non-static Field Count 40

First Field Starting Location 20

First Field Length 20

First Field Text 20

Last Field Starting Location 20

Last Field Length 20

Last Field Text 20

Text 0

Table 2 describes recognition properties and weights for fields.

Chapter 7. Test Author Guide

Table 25. Default recognition properties for fields

Property Weight

Starting Column 30

Starting Row 40

Length 30

Text 30

Table 3 describes recognition properties and weights for characters.

Table 26. Default recognition properties for characters

Property Weight

Starting column 40

Starting Row 60

Position 60

Character 60

Troubleshooting issues
You can find information about the issues or problems that you might encounter while working with the Functional

Test perspective in HCL OneTest™ UI. Details about issues, their causes and the resolutions that you can apply to fix

the issues are described.

The troubleshooting issues are presented to you in the following tables based on where or when you might encounter

these issues in the Functional Test perspective.

• Table 27: Troubleshooting issues: playback on page 833

Table 27. Troubleshooting issues: playback

Problem Description Solution

If your computer is locked during the

playback of a functional test script,

the script fails to identify the correct

control and the playback fails.

The playback fails because the in

putChars() or inputKeys() methods

that are used in the test script do not

place the cursor at the correct text

entry point to enter the text when the

computer is locked or inactive.

In the test script, you can replace the

following methods with the setText()

api method:

• click() & inputChars()

• click() & inputKeys()

833

HCL OneTest™ UI

834

Extending the UI Test perspective with custom code
You can use custom code to extend the default Web UI testing capabilities. You can write custom Java™ code and call

the code from the test. You can also specify that results from the tests that are affected by your custom code to be

included in reports.

You can find the following information:

• Creating custom Java code on page 834

• Test execution services interfaces and classes on page 836

• Reducing the performance impact of custom code on page 839

• Custom code examples on page 839

Creating custom Java™ code
Custom code uses references in the test as input and returns modified values to the test. Use the ICustomCode2

interface to create custom code and the ITestExecutionServices interface to extend test execution. These interfaces

are contained in the com.ibm.rational.test.lt.kernel.services package.

About this task

Note: When you use the ITestExecutionServices interface in your custom code to report test results, the

results for the custom code are displayed in the test log. If you log custom verification point verdicts, these

are reflected in the overall schedule verdict.

Custom code input values can be located in references or field references. You can also pass a text string as an

argument to custom code. References that are used as input to custom code must be included in the same test

as the custom code. In the test, the reference must precede the code that it affects. Verify that the test contains

the references that are required for customized inputs to your code. For details about creating references and field

references, see Creating a Reference or a Field Reference.

If your custom code uses external JAR files, you might need to change the Java™ build path. In some cases, you can

avoid changing the build path manually by running the test before adding your custom code to it. The first time a test

runs, classes and libraries that are required for compilation are added to the build path. For example, you can import

Test and Performance Tools Platform (TPTP) classes that are required to create custom events in the test log if the

test, to which you have added your custom code, has run previously. However, if the test has never been run, import

errors occur because the classes are not named in the build path for the project until the test has run.

If your code uses external resources, for example, an SQL database or a product that manages customer

relationships, you must configure the custom code to work on every computer on which your test runs.

Custom code is saved in the src folder of the project that contains the test that calls the code. By default, custom

code is located in a package named test in the src folder.

Chapter 7. Test Author Guide

You can reuse a custom code package for tests that are located in multiple projects. The projects must be in one

workspace. To reuse custom code across projects, use the project name before the custom code package. For

example, .

The following example shows the standard Navigator view of two custom code classes. (The Test Navigator does not

display Java™ source files.)

When you add the ReplaceCC.java and VerifyYUserID.java custom code classes to the test and return a

value to the test, Substitute lists these two classes.

The test package also contains the generated Java™ code for tests in the project.

You can put custom code in a different package (for example, custom). Separate custom code from generated code,

especially if you use a source-control system.

To add custom code:

1. Open the test, and select a test element.

2. Click Add or Insert, and select Custom Code.

Add appends the custom code to the bottom of the selected test element. Insert adds the custom code above

the selected test element.

Note: After you add or insert custom code, the Problems view displays an error stating that the new

custom code element has no Java™ file. This error message remains until you click View Code or

Generate Code, to remind you that the custom code test element is not yet associated with any Java™

code.

3. Inspect the Class name field, and complete one of these steps:

◦ If the code to call already exists, change the class name to match its name. Click View Code to open

the code in the Java™ editor.

◦ If the code does not exist, change the class name to describe the purpose of the code. Click Generate

Code to generate a template class for logging results and to open it in the Java™ editor. If a class with

this name exists, you are warned that it will be overwritten.

835

HCL OneTest™ UI

836

4. In the Arguments field, click Add.

5. In the Custom Code window, select all inputs that your code requires.

The Custom Code window lists all values in the test that can be used as inputs to your code (references or

field references in the test that precede the code).

6. Click OK.

Result

The window closes, the selected references are added to the Arguments field.

7. To add text strings as inputs to your custom code, click Text, and then type the text string to use.

8. In the test, after your custom code, locate a value that your code returns to the test.

9. Highlight the value.

10. Right-click the highlighted value, click Substitute, and select the class name of your custom code.

Result

The custom code classes that you have added are listed. After you have made your selection, the value to be

returned to the test is highlighted in orange, and the Used by table is updated with this information.

What to do next

Custom code is not displayed in the Test Navigator view. To view custom code, open the Package Explorer view and

use the Java™ tools to identify the custom code that you added.

Test execution services interfaces and classes
You use the test execution services interfaces and classes to customize how you run tests. These interfaces and

classes are located in the com.ibm.rational.test.lt.kernel package. Each interface and class is described briefly in this

topic and in detail in the Javadoc information.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest UI API Reference.

Test execution services interfaces

Interface Description

ICustom

Code2

Defines customized Java™ code for test execution services. Use this interface to create all custom code.

ITestEx

ecution

Services

Provides information for adding custom test execution features to tests. Replaces the IKLog interface.

All the methods that were available in IKLog are contained in ITestExecutionServices, along with several

newly exposed objects and interfaces. This interface is the primary interface for execution services. ITes

tExecutionServices contains the following interfaces:

• IDataArea

• IARM

• IDataSetController

• ILoopControl

Chapter 7. Test Author Guide

Interface Description

• IPDLogManager

• IStatisticsManager2

• ITestLogManager

• ITime

• ITransaction

• String

IDataArea Defines methods for storing and accessing objects in data areas. A data area is a container that holds

objects. The elements of a data area are similar to program variables and are scoped to the owning con

tainer. To use objects specific to a protocol, you should use objects provided by that protocol that are

stored in the protocol-specific data area.

IARM Provides information about defining ARM (Application Response Measurement) specifications. You use

this interface if your virtual users are being sampled for ARM processing.

ILoop

Control

Provides control over loops in a test or schedule. For example, you can use this interface to break loops

at specific points in a test. The loop that is affected is the nearest containing loop found in either the test

or the schedule.

IPDLog

Manager

Provides logging information such as problem severity, location levels, and error messages.

IStatistic

sManag

er

Provides access to performance counters in the ICustomCode2 interface (used for defining custom

code). Performance counters are stored in a hierarchy of counters. Periodically, all the counter values

in the hierarchy are reported to the testing workbench and collected into test run results, where they are

available for use in reports and graphs. Each counter in the hierarchy has a type (defined in class Stat

Type). The operations that are available on a counter depend on the counter's type.

ITestLog

Manager

Logs messages and verification points to the test log. Use this interface for handling error conditions,

anomalies in expected data or other abstract conditions that need to be reported to users, or for compar

isons or verifications whose outcome is reported to the test log. ITestLogManager can also convey infor

mational or status messages after the completion of a test.

ITime Defines basic time services, such as the current system time in milliseconds (adjusted so that all sys

tems are synchronized with the schedule controller), the time the test begins, and the elapsed time from

the beginning of the test.

ITransac

tion

Provides support for transactions. A collection of named transactions is maintained for each virtual user.

Transactions created in custom code can be started and stopped wherever custom code can be used.

These transactions can span several tests. Performance counters are kept for custom code transactions

837

HCL OneTest™ UI

838

Interface Description

and appear in reports. An example of how you could use ITransaction is to create transactions for one

virtual user but not another, to help verify responses from tests.

IEngineIn

fo

Provides information about the testing execution engine; for example, the number of virtual users run

ning in this engine, the number of virtual users that have completed, the local directory in which test as

sets are deployed, and the host name of the computer on which the engine runs.

ITestInfo Provides information about the test that is running; for example, the test name and information about the

current problem determination log level for this test.

IVirtual

UserInfo

Provides information about virtual users; for example, the virtual user's name, problem determination log

level, TestLog level, globally unique ID, and user group name.

IScalar Provides methods for simple integer performance counters. It is used for counters of SCALAR and STATIC

types. Use this interface to decrement and increment counters.

IStat Defines observational performance counters. It defines the method for submitting a data point to perfor

mance counters of type RATE, AVERAGE, and RANGE.

IStatis

tics

Retrieves the performance counter tree associated with the current statistics processor. Stops the deliv

ery of performance counters. Changes the priority of the statistics delivery thread.

IStatTree Provides methods that can retrieve child counters, create the XML fragments that define counters, and

set the description field of counters.

IText Contains text-based performance counters. Performance counters that do not fit any of the other

counter types can be created as type TEXT. TEXT counters are not assigned definitions, but they are col

lected in the test results.

Test execution services classes

Class Description

Data

Area

Lock

Ex

cep

tion

Throws an exception whenever an attempt is made to modify a locked DataArea key.

Out

OfS

cope

Ex

cep

tion

Indicates that an object created by ITestExecutionServices has been referenced outside of its intended

scope.

Chapter 7. Test Author Guide

Class Description

Trans

ac

tion

Ex

cep

tion

Throws an exception when a transaction is misused. The following conditions lead to a TransactionException

exception: attempting to start a transaction that has already been started, attempting to stop a transaction

that has not been started, and getting the start time or the elapsed time of a transaction that has not been

started. Any operation (except abort()) on a transaction that has been aborted will throw a TransactionExcep

tion exception.

Stat

Type

Provides a list of valid performance counter types. The performance counter types are: AVERAGE, iAVERAGE,

iRANGE, iRATE, iSCALAR, iSTATIC, iSTRUCTURE, iTEXT, RANGE, RATE, SCALAR, STATIC, STRUCTURE, and TEXT.

Reducing the performance impact of custom code
If custom code runs inside a page, it can affect that page's response time.

HTTP pages are containers of HTTP requests. On a given HTTP page, requests run in parallel across all of the

connections between the agent computer and the system under test.

Page response time is the interval between page start and page end, which are defined as follows: Page start is the

first timestamp associated with the client-server interaction. This interaction is either the first byte sent or the first

connect of the first HTTP request. Page end is the last timestamp associated with the client-server interaction. This

interaction is the last byte received of the last HTTP request to complete. Because of parallelism, the last HTTP

request to complete might not be the last one listed for the page.

Typically, you should not insert custom code inside a page. While custom code that runs for only a few milliseconds

should have little effect on page response time, the best practice is to place custom code outside a page. Custom

code placed outside a page has no effect on page response time, and its execution time can overlap with think time

delays.

Do not use custom code for data correlation if you can instead use the data correlation features built into the product.

The built-in data correlation code takes advantage of requests running in parallel, whereas custom code actions do

not begin until all earlier actions are completed.

You might need to place custom code inside a page to correlate a string from the response of a request inside that

page to another request inside the same page. Even in this case, if you split the page into two pages, you can use the

built-in data correlation features instead of custom code.

If you still want to run tests with custom code inside HTTP pages, use the Page Element report to evaluate

performance. The Page Element report shows the response time and throughput for individual HTTP requests.

Custom code does not affect the response time measurement of individual HTTP requests.

Custom code examples
Custom code enables you to perform such tasks as managing loops, retrieving virtual user information, running

external programs from tests, and customizing data correlation.

839

HCL OneTest™ UI

840

Controlling loops
This example demonstrates extending test execution by using custom code to control loops. It provides sample code

that shows how you can manipulate the behavior of loops within a test to better analyze and verify test results.

This example uses a recording of a stock purchase transaction using the Trade application. The concepts shown here

can be used in tests of other applications.

The test begins with a recording of a stock purchase transaction, using dataset substitution for the login IDs. The

pages are wrapped in a five-iteration loop, as shown in the following figure:

Notice that among the various pages of the test, three items of custom code exist (indicated by the green circles with

"C"s in them). This example explores these items of custom code.

The first piece of custom code, InitializeBuyTest, is mentioned here:

package customcode;

import java.util.Random;

import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.IVirtualUserInfo;

/**

Chapter 7. Test Author Guide

 * @author unknown
 */
public class InitializeBuyTest implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public InitializeBuyTest() {
 }

 /**
 * For description of ICustomCode2 and ITestExecutionServices interfaces,
 * see the Javadoc.. */
 public String exec(ITestExecutionServices tes, String[] args) {
 // Get the test's data area and set a flag indicating that nothing
 // has failed yet. This flag will be used later to break out
 // of the schedule loop as soon as a failure is encountered.
 IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
 dataArea.put("failedYet", "false");

 // Get the virtual users's data area
 IDataArea vda = tes.findDataArea(IDataArea.VIRTUALUSER);

 // Randomly select a stock to purchase from the set of s:0 to s:499.
 IVirtualUserInfo vuInfo = (IVirtualUserInfo) vda.get(IVirtualUserInfo.KEY);
 Random rand = vuInfo.getRandom();
 String stock = "s:" + Integer.toString(rand.nextInt(499));

 // Persist the name of the stock in the virtual user's data area.
 vda.put("myStock", stock);

 return stock;
 }

This custom code is located in the method exec().

First, the data area for the test is acquired to store a flag value, in this case a string of text, to be used later to stop the

test loop when an error is discovered. Data stored in this way can be persisted across tests.

Then a randomly generated stock string is created. The value is stored as the variable stock, and is passed back as

the return value for the method. This return value is used as a substitute in a request later, as shown in the following

figure:

841

HCL OneTest™ UI

842

The highlighted item uses a substitution (s%3A716), which is the value returned by the InitializeBuyTest custom code

item. We are using custom code to drive the direction of our test.

The next lines of code in InitializeBuyTest use the Virtual User data area to store the name of the stock for later

reference. Again, data stored in this way can persist across tests.

The second piece of custom code is called CheckStock. Its contents are as follows (listing only the exec() method this

time):

public String exec(ITestExecutionServices tes, String[] args) {

 // Get the actual and requested stock purchased.
 String actualStock = args[0].replaceAll("", "");
 actualStock = actualStock.substring(0, actualStock.indexOf("<"));
 String requestedStock = args[1];

 // Set the log level to ALL.
 IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
 ITestInfo testInfo = (ITestInfo)dataArea.get(ITestInfo.KEY);
 testInfo.setTestLogLevel(ITestLogManager.ALL);

 // If the log level is set to ALL, report the actual and requested stock
 // purchased.
 ITestLogManager testLogManager = tes.getTestLogManager();
 if (testLogManager.wouldReport(ITestLogManager.ALL)) {
 testLogManager.reportMessage("Actual stock purchased: "
 + actualStock + ". Requested stock: " + requestedStock
 + ".");
 }

 // If the actual and requested stock don't match, submit a FAIL verdict.
 if (testLogManager.wouldReport(ITestLogManager.ALL)) {
 if (!actualStock.equalsIgnoreCase(requestedStock)) {
 testLogManager.reportVerdict(
 "Actual and requested purchase stock do not match.",
 VerdictEvent.VERDICT_FAIL);

 // Use the test's data area to record the fact that an error has
 // occurred.
 dataArea.put("failedYet", "true");
 }

Chapter 7. Test Author Guide

 }
 return null;
 }

This code begins by extracting two arguments that have been passed to the code. A part of the response in the

original recording is highlighted and used as a reference, as shown in the following figure.

Some string manipulation is needed to acquire the text of interest; in this case, the name of the stock that was

actually purchased. This newly created reference is then passed into CheckStock as an argument, as shown in the

following figure:

Note that the return value of InitializeBuyTest is passed in as an argument as well.

The CheckStock custom code item uses these values to verify that the randomly chosen stock generated by

InitializeBuyTest is actually purchased during the execution of the test.

CheckStock then sets the test log level, reports the actual and requested stock purchase, and raises a FAIL verdict if

they do not match. CheckStock also stores a true value associated with the tag failedYet in the test's data area.

The third piece of custom code (exec() method only) is mentioned here:

public String exec(ITestExecutionServices tes, String[] args) {

 // Get the test log manager.

843

HCL OneTest™ UI

844

 ITestLogManager testLogManager = tes.getTestLogManager();

 // Get the test's data area and get a flag indicating to
 // see if anything has failed yet. If so, stop the loop.
 IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
 String failedYet = (String) dataArea.get("failedYet");

 // Break out of the loop if an error has been encountered.
 if (failedYet.equalsIgnoreCase("true")) {
 tes.getLoopControl().breakLoop();

 if (testLogManager.wouldReport(ITestLogManager.ALL)) {
 testLogManager.reportMessage("Loop stopped.");
 }
 }

 return null;
 }

This code uses the test's data area to determine the user-defined value associated with the tag failedYet. If

failedYet is true, StopLoopCheck breaks out of the test loop.

Retrieving the IP address of a virtual user
This example shows how to retrieve the local IP address of a virtual user. Retrieving IP addresses is particularly

useful when virtual users are using IP aliases.

The following custom code retrieves the IP address that was assigned to a virtual user:

import java.net.InetAddress;
import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestLogManager;
import com.ibm.rational.test.lt.kernel.services.IVirtualUserInfo;

public String exec(ITestExecutionServices tes, String[] args) {
 IVirtualUserInfo vui = (IVirtualUserInfo)
 tes.findDataArea(IDataArea.VIRTUALUSER).get(IVirtualUserInfo.KEY);
 ITestLogManager tlm = tes.getTestLogManager();

 if (vui != null) {
 String localAddr = null;
 InetAddress ipAddr = vui.getIPAddress();
 if (ipAddr != null)
 localAddr = ipAddr.toString();
 tlm.reportMessage("IPAlias address is " + (localAddr != null ? localAddr : "not set"));
 return localAddr;
 }
else
 return ("Virtual User Info not found");
}

Note:

Chapter 7. Test Author Guide

• IP aliasing must be enabled. If not, vui.getIPAddress() returns null.

• IP aliases must be configured at the remote location.

• The Log Level must be set to a value granular enough to include the IP address, so that the

tlm.reportMessage() method can retrieve it. If you insert custom code at the page level, keep Log

Level at the default value, Primary Test Actions. If you insert custom code at the request level, set Log

Level to Secondary Test Actions, a more granular value.

Printing input arguments to a file
The PrintArgs class prints its input arguments to the file C:\arguments.out. This class could be used, for example, to

print a response returned by the server.

Exemple

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.io.*;

/**
 * The PrintArgs class prints its input arguments to the file
 * C:\arguments.out. This example could be used to print a response
 * returned by the server.
 */

/**
 * @author IBM Custom Code Samples
 */

public class PrintArgs implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public PrintArgs() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 try {
 FileWriter outFile = new FileWriter("C:\\arguments.out");
 for (int i = 0; i < args.length; i++)
 outFile.write("Argument " + i + " is: " + args[i] + "\n");
 outFile.close();
 } catch (IOException e) {
 tes.getTestLogManager().reportMessage(
 "Unable to write to C:\\arguments.out");
 }
 return null;
 }
}

845

HCL OneTest™ UI

846

Counting the number of times that code is executed
The CountAllIterations class counts the number of times code is executed by all virtual users. The

CountUserIterations class counts the number of times code is executed by an individual virtual user.

Exemple

The CountAllIterations class counts the number of times it is executed by all virtual users running in a particular JVM

and returns this count as a string.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * The CountAllIterations class counts the number of times it is executed
 * by all virtual users running in a particular JVM and returns this count
 * as a string. If all virtual users on an agent are running in the same
 * JVM (as would typically be the case), this class will count the number of
 * times it is run on the agent.
 */

/**
 * @author IBM Custom Code Samples
 */

public class CountAllIterations implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {
 private static int numJVMLoops = 0;

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public CountAllIterations() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 return Integer.toString(++numJVMLoops);
 }
}

Exemple

The CountUserIterations class counts the number of times code is executed by an individual virtual user.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.IDataArea;

/**
 * The CountUserIterations class counts the number of times it is executed
 * by an individual virtual user and returns this count as a string.
 */

Chapter 7. Test Author Guide

/**
 * @author IBM Custom Code Samples
 */

public class CountUserIterations implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public CountUserIterations() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 IDataArea userDataArea = tes.findDataArea(IDataArea.VIRTUALUSER);
 final String KEY = "NumberIterationsPerUser";

 Number numPerUser = (Number)userDataArea.get(KEY);
 if (numPerUser == null) {
 numPerUser = new Number();
 userDataArea.put(KEY, numPerUser);
 }

 numPerUser.value++;
 return Integer.toString(numPerUser.value);
 }

 private class Number {
 public int value = 0;
 }
}

Setting and clearing cookies for a virtual user
The SetCookieFixedValue class sets a Cookie for a virtual user, and the ClearCookies class clears all cookies for a

virtual user.

Exemple

The SetCookieFixedValue class sets a Cookie, defined in the newCookie variable, for a virtual user just as if the server

had returned a Set-Cookie.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.execution.http.cookie.IHTTPVirtualUserInfo;
import com.ibm.rational.test.lt.kernel.IDataArea;

import java.text.ParseException;

/**
 * The SetCookieFixedValue class sets a Cookie, defined in the newCookie
 * variable, for a virtual user just as if the server had returned a Set-Cookie.
 */

/**

847

HCL OneTest™ UI

848

 * @author IBM Custom Code Samples
 */

public class SetCookieFixedValue implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public SetCookieFixedValue() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 String newCookie = "MyCookie=CookieValue;path=/;domain=.ibm.com";
 IDataArea dataArea = tes.findDataArea(IDataArea.VIRTUALUSER);
 IHTTPVirtualUserInfo httpInfo =
 (IHTTPVirtualUserInfo)dataArea.get(IHTTPVirtualUserInfo.KEY);

 try {
 httpInfo.getCookieCache().setCookie(newCookie);
 } catch (ParseException e) {
 tes.getTestLogManager().reportMessage("Unable to parse Cookie " +
 newCookie);
 }

 return null;
 }
}

The ClearCookies class clears all Cookies for a virtual user.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.execution.http.util.CookieCacheUtil;

/**
 * The ClearCookies class clears all Cookies for a virtual user.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ClearCookies implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ClearCookies() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 CookieCacheUtil.clearCookieCache(tes);
 return null;
 }

Chapter 7. Test Author Guide

}

Determining where a test is running
The ComputerSpecific class determines where a test is running

Exemple

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
 * The ComputerSpecific class determined the hostname on which the test is
 * running, prints the hostname and IP address as a message in the test log,
 * and returns different strings based on the hostname.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ComputerSpecific implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ComputerSpecific() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 String hostName = "Unknown";
 String hostAddress = "Unknown";

 try {
 hostName = InetAddress.getLocalHost().getHostName();
 hostAddress = InetAddress.getLocalHost().getHostAddress();
 } catch (UnknownHostException e) {
 tes.getTestLogManager().reportMessage(
 "Not able to obtain host information");
 return null;
 }
 tes.getTestLogManager().reportMessage("The hostname is " + hostName +
 "; IP address is " + hostAddress);
 if (hostName.equals("host-1234"))
 return "Special";
 else
 return "Normal";
 }
}

849

HCL OneTest™ UI

850

Storing and retrieving variable values
You can use the getValue() and setValue() methods to store and retrieve values in variables. Depending on the

storage location that you specify, variables can be shared among tests, or stored locally in the current test.

Exemple

You can use the getValue() and setValue() methods to store multiple values in variables in one custom code call. You

can then create substitutions from variables instead of from multiple custom code elements.

For example, assume that a response contains three values: id, book title, and price. You can read all three values

from the response, and then use custom code to set the variables id, title, and price. You can then substitute the

values from the three variables as needed in the test, instead of having to write custom code for each variable.

Note: The storage location passed to the method must match the storage location used when declaring the

variable.

package customcode;

import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
 * see the 'Extending test execution with custom code' help topic.
 */

/**
 * @author IBM Custom Code Samples
 */

 public String exec(ITestExecutionServices tes, String[] args) {

 tes.getValue("myVar", tes.STORAGE_USER); // This retrieves a value from a test for the variable
 called myVar. The storage area is shared between tests.
 tes.getValue("myLocalVar", tes.STORAGE_LOCAL); // This variable is stored locally, per test.

 tes.setValue("myVar", tes.STORAGE_USER, "myNewValue"); // Change the value of the variable
 myVar, which is shared between tests, to myNewValue.
 tes.setValue("myLocalVar", tes.STORAGE_LOCAL, "myLocalNewVar"); // Change the value of the
 local variable to myLocalNewVar.
 return null;
 }

Extracting a string or token from its input argument
The ParseResponse class extracts a string from its input argument. The ExtractToken class extracts a particular

token (string) from its input argument. Both classes can be useful for handling certain types of dynamic data

correlation.

Chapter 7. Test Author Guide

Exemple

The ParseResponse class extracts a string from its input argument, using a regular expression for pattern matching.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.util.regex.*;

/**
 * The ParseResponse class demonstrates using Custom Code to extract a
 * string from its input argument using a regular expression for pattern
 * matching.
 *
 * In this sample, the args[0] input string is assumed to be the full
response from a previous request. This response contains the day's
headlines in a format such as:
 *
 * In the News<small class=m>
 * </small></h2>
 * <div class=ct>
 * • Cooler weather moving into eastern
U.S. *
• Digital camera shipments
up
 *
 * Given the above response, the extracted string would be:
 * Cooler weather moving into eastern U.S.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ParseResponse implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ParseResponse() {}

 public String exec(ITestExecutionServices tes, String[] args) {
 String HeadlineStr = "No Headline Available";
 String RegExpStr = ".*In the News[^;]*;[^;]*;[^;]*;]*)>([^<]*)<"; Pattern pattern =
Pattern.compile(RegExpStr, Pattern.DOTALL); Matcher matcher =
pattern.matcher(args[0]);
 if (matcher.lookingAt())
 HeadlineStr = matcher.group(2);
 else
 tes.getTestLogManager().reportMessage("Input does not match
pattern.");
 return HeadlineStr;
 }

The ExtractToken class extracts a particular string from its input argument.

851

HCL OneTest™ UI

852

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * The ExtractToken class demonstrates using Custom Code to extract a particular
 * token (string) from its input argument. This can be useful for handling
 * certain types of dynamic data correlation.
 *
 * In this sample, the args[0] input string is assumed to be comma-delimited
 * and the token of interest is the next-to-last token. For example, if
 * args[0] is:
 * javascript:parent.selectItem('1010','[Negative]1010','1010','','IBM',
 * '30181','Rational','1','null','1','1','6fd8e261','RPT')
 * the class will return the string 6fd8e261.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ExtractToken implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 public ExtractToken() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 String ArgStr;
 String NextToLastStr;
 String[] Tokens = args[0].split(",");

 if (Tokens.length> 2) {
 ArgStr = Tokens[Tokens.length - 2]; // Extract next-to-last token

 // Remove enclosing ''
 NextToLastStr = ArgStr.substring(1, ArgStr.length() - 1);
 } else {
 tes.getTestLogManager().reportMessage("Could not extract value");
 NextToLastStr = null;
 }
 return NextToLastStr;
 }
}

Retrieving the maximum JVM heap size
The JVM_Info class retrieves the maximum heap size of the JVM.

Exemple

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.net.*;

Chapter 7. Test Author Guide

/**
 * The JVM_Info class retrieves the maximum heap size of the JVM.
 * It writes a message in the test log with the hostname where the
 * JVM is running and the JVM's maximum heap size in megabytes.
 */

/**
 * @author IBM Custom Code Samples
 */

public class JVM_Info implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 public JVM_Info() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 Runtime rt = Runtime.getRuntime();
 long maxMB = rt.maxMemory()/(1024*1024); // maxMemory() size is in bytes
 String hostName = "Unknown";

 try {
 hostName = InetAddress.getLocalHost().getHostName();
 } catch (UnknownHostException e1) {
 tes.getTestLogManager().reportMessage("Can't get hostname");
 return null;
 }

 tes.getTestLogManager().reportMessage("JVM maximum heap size for host "
 + hostName + " is " + maxMB + " MB");
 return null;
 }
}

Running an external program from a test
The ExecTest class runs a program, defined in the execName variable, on the system where the test is running.

Exemple

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITestLogManager;
import org.eclipse.hyades.test.common.event.VerdictEvent;

import java.io.IOException;

/**
 * The ExecTest class runs a program, defined in the execName variable,
 * on the system where the test is running.
 * The test verdict is set to PASS if the program return code is 0.
 * The test verdict is set to FAIL if the program doesn't execute or
 * if the program return code is non-zero
 * In this sample, the program is perl.exe.

853

HCL OneTest™ UI

854

 */

/**
 * @author IBM Custom Code Samples
 */

public class ExecTest implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ExecTest() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 ITestLogManager logger = tes.getTestLogManager();
 int rtnval = 1;
 Process p = null;
 String execName = "C:/Windows/System32/perl.exe C:/Perl/true.pl";

 Runtime rt = Runtime.getRuntime();
 // Execute test
 try {
 p = rt.exec(execName);
 } catch (IOException e) {
 logger.reportMessage("Unable to run = " + execName);
 logger.reportVerdict("Execution of " + execName + " failed",
 VerdictEvent.VERDICT_FAIL);
 return null;
 }

 // Wait for the test to complete
 try {
 rtnval = p.waitFor();
 logger.reportMessage("Process return value is " +
 String.valueOf(rtnval));
 } catch (InterruptedException e1) {
 logger.reportMessage("Unable to wait for " + execName);
 logger.reportVerdict("WaitFor on " + execName + " failed",
 VerdictEvent.VERDICT_FAIL);
 return null;
 }

 // Check the test return code and set the test verdict appropriately
 if (rtnval != 0)
 {
 logger.reportVerdict("Execution failed", VerdictEvent.VERDICT_FAIL);
 } else {
 logger.reportVerdict("Execution passed", VerdictEvent.VERDICT_PASS);
 }

 return null;
 }
}

Chapter 7. Test Author Guide

Adding custom counters to reports
When you want to monitor the specific requirement, you can add custom counters to performance report by using the

custom code. After running tests, the results from the custom counters are automatically aggregated in the same way

that the default performance testing counters.

Starting from 10.1.0, you can view and monitor the counter information generated by the custom code on a graph

when the custom code starts in the test run.

After running tests, you can view the custom counter in the report. You can also view the custom counter information

on a different page by creating a custom report. For more information about customizing the report, see related links.

You can add the following custom code in your test to create a custom counter in a report.

package test;

import org.eclipse.hyades.test.common.event.VerdictEvent;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.stats.CountAggregationLevel;
import com.ibm.rational.test.lt.kernel.services.stats.CounterUnits;
import com.ibm.rational.test.lt.kernel.services.stats.ICounterFolder;
import com.ibm.rational.test.lt.kernel.services.stats.ICounterRegistry;
import com.ibm.rational.test.lt.kernel.services.stats.IStatisticsManager2;
import com.ibm.rational.test.lt.kernel.services.stats.IValueCounter;
import com.ibm.rational.test.lt.kernel.services.stats.ValueAggregationLevel;

import database.DatabaseAccess;
import database.TransactionResult;

public class DatabaseStats implements com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 private static boolean registerDone;

 /**
 * This method declares the counters that will be produced during execution.
 * Declaring counters is optional, but it allows to customize some of their
 * attributes, such as the label and unit, and what level of statistical information
 * will be available in reports.
 */
 private static synchronized void registerCounters(ICounterRegistry registry) {
 if (registerDone) return;
 registry.path("Database", "Transaction", "Attempts")
 .count()
 .aggregationLevel(CountAggregationLevel.RATE_RANGE)
 .label("Started Transactions")
 .unit("transactions")
 .register();

 registry.path("Database", "Transaction", "Commits")
 .verificationPoint()
 .label("Transaction Commits VP")
 .register();

 registry.path("Database", "Transaction", "Response Time", "Network")

855

HCL OneTest™ UI

856

 .value()
 .aggregationLevel(ValueAggregationLevel.RANGE)
 .unit(CounterUnits.MILLISECONDS)
 .register();

 registry.path("Database", "Transaction", "Response Time", "Commit")
 .value()
 .aggregationLevel(ValueAggregationLevel.DISTRIBUTION)
 .unit(CounterUnits.MILLISECONDS)
 .register();

 registry.path("Database", "Error")
 .text()
 .label("Database Error Message")
 .register();
 registerDone = true;
 }

 private DatabaseAccess database = DatabaseAccess.INSTANCE;

 /**
 * This custom code adds a record in database. It produces a couple of counters,
 * such as the database transaction attempts, successes/failures, and response time.
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 String product = args.length> 0 ? args[0] : "Default";
 IStatisticsManager2 mgr = tes.getStatisticsManager2();
 registerCounters(mgr.registry());

 database.startTransaction();
 mgr.getCountCounter("Database", "Transaction", "Attempts").increment();

 database.executeQuery("INSERT INTO TABLE Purchases VALUES('" + product + "', 1000)");
 TransactionResult result = database.commit();

 mgr.getVerificationPointCounter("Database", "Transaction", "Commits")
 .increment(result.isSuccess() ? VerdictEvent.VERDICT_PASS : VerdictEvent.VERDICT_FAIL);
 if (!result.isSuccess()) {
 mgr.getTextCounter("Database", "Error").addMeasurement(result.getErrorMessage());
 }

 ICounterFolder times = mgr.getFolder("Database", "Transaction", "Response Time");
 times.getValueCounter("Network").addMeasurement(result.getNetworkTime());
 times.getValueCounter("Commit").addMeasurement(result.getCommitTime());

 IValueCounter value = tes.getStatisticsManager2().getValueCounter("MyStats", "Value");
 value.addMeasurement(System.nanoTime() % 2000);

 return null;
 }

}

Chapter 7. Test Author Guide

Related information

Creating custom Java code on page 834

Creating custom reports on page 1206

Using transactions and statistics
You can use custom code to start transactions, gather additional statistics during a transaction, and stop a

transaction.

The following code shows how to start a transaction. Transactions that are generated by test execution services

automatically create and manage statistics.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITransaction;

/**
 * @author IBM Custom Code Samples
 */
public class BeginTransaction implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public BeginTransaction() {
 }

 /**
 * For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
 * see the 'Test execution services interfaces and classes' help topic.
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 // the name of the transaction could have been passed in via data correlation mechanism.
 ITransaction foo = tes.getTransaction("foo");
 foo.start();
 return null;
 }
}

The following code shows how to gather additional statistics during a transaction.

package customcode;

import com.ibm.rational.test.lt.kernel.ITime;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.statistics.IScalar;
import com.ibm.rational.test.lt.kernel.statistics.IStat;
import com.ibm.rational.test.lt.kernel.statistics.IStatTree;
import com.ibm.rational.test.lt.kernel.statistics.impl.StatType;

/**

857

HCL OneTest™ UI

858

 * @author IBM Custom Code Samples
 */
public class BodyTransaction implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public BodyTransaction() {
 }

 /**
 * For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
 * see the 'Test execution services interfaces and classes' help topic.
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 IStatTree tranStat;
 IStatTree timeStat;
 IStatTree countStat;

 IStat timeDataStat = null; // counter for the time RANGE
 IScalar countDataStat = null; // counter for the count SCALAR

 ITime timer = tes.getTime();

 IStatTree rootStat = tes.getStatisticsManager().getStatTree();
 if (rootStat != null) {
 // these counters set up the hierarchy
 tranStat = rootStat.getStat("Transactions", StatType.STRUCTURE);
 timeStat = tranStat.getStat("Body Time", StatType.STRUCTURE);
 countStat = tranStat.getStat("Bocy Count", StatType.STRUCTURE);

 // the name of the counters could have been passed in via data correlation mechanism
 timeDataStat = (IStat) timeStat.getStat("foo", StatType.RANGE);
 countDataStat = (IScalar) countStat.getStat("foo", StatType.SCALAR);
 }

 // get the start time
 long startTime = timer.timeInTest();

 // do the work
 // whatever that work might be

 // get the end time
 long endTime = timer.timeInTest();

 // update timeDataStat with the elapsed time
 if (timeDataStat != null)
 timeDataStat.submitDataPoint(endTime - startTime);

 // update the countDataStat
 if (countDataStat != null)
 countDataStat.increment();

 return null;
 }

Chapter 7. Test Author Guide

}

The following code shows how to stop a transaction.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITransaction;

/**
 * @author IBM Custom Code Samples
 */
public class EndTransaction implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public EndTransaction() {
 }

 /**
 * For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
 * see the 'Test execution services interfaces and classes' help topic.
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 // the name of the transaction could have been passed in via data correlation mechanism.
 ITransaction foo = tes.getTransaction("foo");
 foo.stop();
 return null;
 }

}

Reporting custom verification point failures
You can use custom code to report a custom verification point failure.

The following code shows how to report a custom verification point failure.

package customcode;

import org.eclipse.hyades.test.common.event.VerdictEvent;
import org.eclipse.hyades.test.common.runner.model.util.Verdict;

import com.ibm.rational.test.lt.execution.core.IVerificationPoint;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * @author IBM Custom Code Samples
 */
public class Class implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */

859

HCL OneTest™ UI

860

 public Class() {
 }

 /**
 * For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select 'Help Contents' in the
 * Help menu and select 'Extending HCL OneTest™ Performance functionality' -> 'Extending test execution
 with custom code'
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 tes.getTestLogManager().reportVerificationPoint("CustomVP", VerdictEvent.VERDICT_FAIL);
 return null;
 }

}

Debugging custom code
This example demonstrates debugging custom code by adding a breakpoint. It provides sample code to add a

breakpoint. This way of debugging custom code is applicable only for a schedule.

1. Start HCL OneTest™ Performance and create a performance test project MyProject.

2. Create an HTTP test, MyTest, by recording a visit to http://<hostname>:7080/.

Note: Before accessing the URL, ensure that HCL OneTest™ Performance is running. The URL returns

an HTTP 404 error, which is expected.

Result

3. Expand the first request and click the response element.

Chapter 7. Test Author Guide

4. In the Test Element Details section, right-click in the Content field and click Create Field Reference.

5. Type the reference name and click OK.

6. Click the first page, and then click Add > Custom Code.

7. In the Arguments section of Test Element Details, click Add.

8. Expand the data source for the search results page, select the reference name that you created in step 5, and

click Select.

9. Click Generate Code.

Result

A new tab with the generated code is displayed.

10. Insert the following the code into the exec() method:

ITestLogManager history = tes.getTestLogManager();
if (args.length> 0) {
 if (args[0].indexOf("Invester Relations") != -1) {
 history.reportMessage("First page failed. Bail loop!");
 tes.getLoopControl().continueLoop();
 }
}

Important:

◦ Fix the double quotation marks, if any, so they are straight and the compiler no longer gives

warning.

◦ To resolve complier warnings related to importing a class, press Ctrl + Shift + O.

The code will look like this:

11. To set a breakpoint, click anywhere on the args[0].indexOf line. Move the pointer to the left-most portion

of the text editor window and double-click with the pointer horizontally on the same line. A blue button is

displayed in this left-most portion of the window indicating the breakpoint is set.

861

HCL OneTest™ UI

862

12. Save the custom code and then the test.

13. Create a new schedule, Schtest.

a. In Schtest, set the number of users to run to 1.

b. Click User Group 1 and click Add > Test. Select the MyTest test and click OK.

c. Click User Group 1 and click the Run this group on the following locations button.

d. Click Add > Add New.

e. In the New Location window, type the following information:

i. In Host name, type localhost.

ii. In Name, type debuglocation.

iii. In Deployment directory, type C:\mydeploy.

iv. Click Finish.

f. Save the schedule.

14. In the Test Navigator, right-click debuglocation and click Open.

15. Click the General Properties tab and click Add.

16. In the Property name field, type RPT_VMARGS and in the Property value field, add the following values each

separated by a space.

-Xdebug
-Xnoagent
-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8000

17. Save the location.

18. Attach the debugger to the schedule execution process.

a. Run the schedule.

Because the schedule is using debuglocation, it will pause at the beginning to let you attach the

debugger to the execute process.

b. Click Window > Open Perspective > Other > Debug.

c. Click Run > Debug Configurations.

d. In the Debug Configurations window, right-click Remote Java Application and click New.

Chapter 7. Test Author Guide

e. Click Debug.

A list of running threads are displayed in the Debug window and the schedule execution pauses at the

debug breakpoint.

f. If you are doing it for the first time, you might need to provide the source location to see the custom

Java code. You do this by taking the following steps:

i. Click Edit Source Lookup Path and click Add.

ii. Click Workspace Folder > OK.

iii. Now, expand MyProject, select the src folder, and click OK. The schedule run stops at the

specified breakpoint.

Reading and writing data from a dataset
When a test is associated with a dataset, you can extend the test either by reading or writing the dataset values from

the custom code.

The data that you write into the dataset is saved only when you set Open mode to Shared (for all test executions) in

the Edit Dataset window. In other open modes, the modified data is used only for the test run.

863

HCL OneTest™ UI

864

The following sample custom code reads and writes the data from the dataset:

package datasets;

import java.awt.list;

/**
 * @author HCL Custom Code Samples
 */

public class myds implements com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 public myds() {
 }
public String exec(ITestExecutionServices tes, String[] args) {
// the name of the dataset is the same as what is shown in the test. The dataset must be added to the
 test in order
// to get a controller for it.
 IDataSetController control = tes.getDataSetController("/testproj/myds.csv");
 try {
 // once you have the controller you can get a row
 DataSetRow row = control.getNextRow();
 // returns a string representation of the row
 row.getEntireRow();
 // alternatively you can get individual values by the column name
 row.getValue("Column1");

 // you can also write a new row to the dataset
 // -1 means append to the end
 // alternatively you can specify a row number and whether to overwrite that row or to insert a
 new row at the spot
 control.writeRow(-1, Arrays.asList("a", "b", "c"), false);
 } catch (Exception e) {
 tes.getTestLogManager().alwaysReportMessage(e.toString());
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return null;
 // or whatever you want to return here
 }

Migrating custom code from previous versions
You can run scripts that contain custom code from previous releases and edit tests to make new calls to old or new

custom code classes.

About this task

You can perform the following tasks without any additional steps:

• Run a script that contains custom code that was created in a previous release.

• Edit a test to make a new call to an old custom code class.

• Add new custom code to a test that contains old custom code.

Chapter 7. Test Author Guide

To edit a class in existing custom code so that it can call new TestExecutionServices methods, type cast the IKlog

argument in the old custom code to the ITestExecutionServices interface.

When you migrate the custom code from the previous versions, you must use getStatisticsManager2() as

getStatisticsManager() API is deprecated from 10.1.0.

Extending the Functional Test perspective
You can use custom code to extend the default functional testing capabilities. You can write custom code and call

the code from the test. You can also specify that results from the tests that are affected by your custom code to be

included in reports.

You can find the following information:

• HCL OneTest UI proxy SDK on page 865

• Customizing a script template on page 951

• Using the API to edit functional test scripts on page 963

HCL OneTest™ UI proxy SDK
Extend automated functional testing support for your application's user interface controls.

Introduction to proxy SDK
With HCL OneTest™ UI proxy software development kit (SDK) you can extend automated functional testing support

for your application's user interface controls (GUI test objects), beyond what is provided by HCL OneTest™ UI by

default. The proxy SDK provides detailed documentation, API references and ready-to-use samples and tutorials on

how to extend HCL OneTest™ UI to add support for testing new controls. It also helps you to extend already supported

controls from the existing domains. You can develop proxies manually or by using the proxy wizards driven approach.

You can use the HCL OneTest™ UI proxy SDK to do these tasks:

• Add support for an unsupported control

• Change or enhance what is recorded for an existing control to make playback more resilient

• Add support for sub-items within a control

• Add new data verification tests

• Make an existing control mappable

• Add new properties

HCL OneTest™ UI proxy SDK supports extending testing support for the following technologies:

• Java

• .NET

• Eclipse

• PowerBuilder

• Visual Basic

865

HCL OneTest™ UI

866

• Windows

• MFC

• ActiveX (Support for controls embedded in HTML running on browsers)

• Flex

The current capabilities are as follows:

• Extending current level of support provided for GUI TestObjects

• Adding support for unsupported controls

Note: You can add support for a new control within the scope of currently supported domains and

technologies only. Adding support for new domain is currently not supported.

Before you begin

To extend HCL OneTest™ UI proxies, you need the following:

• Understanding of GUI functional testing

• Detailed understanding of the HCL OneTest™ UI framework

• Strong familiarity with the application environment

• Knowledge of Java or C# programming based on the proxy framework

• Knowledge of operating system concepts is useful but not necessary

HCL OneTest™ UI architecture
HCL OneTest™ UI can be extended to perform additional functions for which it needs to communicate with the

application under test (AUT). To do that HCL OneTest™ UI first establishes a communication channel to the AUT

which is called enablement.

HCL OneTest™ UI currently supports testing Java™, .Net, HTML, Siebel, SAP, AJAX, Flex, and native Microsoft®

Windows® GUI Controls and each of these supported environments are known as domains. Establishing the

communication channel is specific to a domain. You must establish a communication channel for every process

and then you need to test the channel. HCL OneTest™ UI interacts with the AUT process and its controls through

the established communication channel to get required information. As part of establishing communication, HCL

OneTest™ UI creates the DomainImplementation object instance in the AUT, which in turn abstracts and acts as an

interface to provide domain specific details back toHCL OneTest™ UI. The DomainImplementation object does the

following tasks:

• Gets the top level objects

• Registers available proxy objects that are available for the domain

• Creates the ProxyObject for a given control

Chapter 7. Test Author Guide

Process Model
There are two types of HCL OneTest™ UI processes. The application under Test (AUT) processes are known as

HCL OneTest™ UI server side processes. The recorder, playback, objects inspector, and the IDE (Eclipse or Visual

Studio .Net) processes are known as HCL OneTest™ UI client side processes.

A shared memory inter process communication (IPC) layer complements the high-level components of the HCL

OneTest™ UI process model.

High level interactions
HCL OneTest™ UI client processes interact with the application under test (AUT) and gather relevant information to

perform operations such as recording, playback, and object inspections. This section provides an overview of the

interactions between the client processes and the AUT processes. HCL OneTest™ UI communicates with the AUT

through a shared memory inter process communication (IPC) layer.

867

HCL OneTest™ UI

868

HCL OneTest™ UI creates a TestContext object within each process (client or server process) and registers it in the

shared memory. The TestContext object is a reference to the process under test. The registered TestContext object

is used as a reference for the associated process for any communication. Typically, a TestContext object relates to

an operating system level process that can be tested or a test client. It is possible to have more than one TestContext

object per process.

Two AUT TestContext objects can not communicate with each other directly. They communicate through the client

TestContext object.

Chapter 7. Test Author Guide

Every process in the HCL OneTest™ UI process model utilizes a TestContext object to manage IPC calls and the

requests for that process. Client processes interact with multiple AUT processes, while each AUT process responds

to only a single client process at a time. For example, a Find process during playback communicates with all available

AUT processes for the TestObject that is being sought.

The ObjectManager handles all server side process communications and meta actions that interact with the AUT.

Core record and playback interactions with the AUT originate here and interact with all AUT TestContext objects.

An ObjectManager agent handles the ObjectManager meta actions related to a particular TestContext object.

Within TestContext objects, TestDomain objects are established to manage HCL OneTest™ UI TestDomain-specific

communications. For example, for an AUT browser process, a HTML TestContext object and Java™ TestDomain

object are established. They are established because browsers contains HTML elements of HTML domain and

applets of Java domain.

In a TestDomain object, ProxyTestObjects are created to manage the control level communications. ProxyObjects are

created for controls that must be communicated while performing any functional test activity. ProxyObjects have a

one-to-one relationship with each control in the AUT. Any interaction between different AUT controls happens through

a ProxyTestObject.

Note: TestContext objects, ObjectManager, TestDomain objects, and ProxyObjects are all created in the AUT

process.

Proxy model
HCL OneTest™ UI interacts with application-under-test (AUT) controls through two elements: Proxy objects and Test

objects.

869

HCL OneTest™ UI

870

Chapter 7. Test Author Guide

Interaction through proxy objects

Proxy objects are similar to wrapper classes for the real controls under test. Any HCL OneTest™ UI framework

communication with AUT controls happen through these proxy objects.

Proxy objects are created and placed where the control under test can be accessed and queried for information. A

proxy is written as a Java™ or C# class, which implements the prescribed HCL OneTest™ UI interface for a GUI test

object in the AUT.

When your application is enabled for testing, the proxy classes are loaded into the application and they become part

of it. A proxy object wraps around the actual GUI test object (the native object) in your application, making it testable

by HCL OneTest™ UI.

The HCL OneTest™ UI framework supports creating a new ProxyObject class or extending any available ProxyObject

class to support testing new controls.

Interaction through TestObject

TestObjects are the script-side interface objects for the control under test. A control is exposed as a TestObjects to

the test script. For example, a button control is exposed as GuiTestObject. Top level controls like dialogs and frames

are exposed as TopLevelTestObject.

The execution of the TestObject methods in turn happens through the corresponding ProxyObject. TestObjects reside

in the HCL OneTest™ UI client side. TestObjects have a reference to the ProxyObject which in turn refers to the AUT

control under test.

For each testing environment that HCL OneTest™ UI supports, such as Java, HTML, .NET, Win32, Siebel, and SAP,

domain objects are established. Under each domain there are ProxyObject classes for all supported AUT controls.

The mapping information between ProxyObject classes and AUT controls are stored inside customization files in the

871

HCL OneTest™ UI

872

HCL OneTest™ UI installation directory. These customization files act as a directory for HCL OneTest™ UI to know

which ProxyObject is used for any given AUT control.

Note: The main customization mapping file is rational_ft.rftcust. There are other domain specific

customization files with the .rftcust extension as well.

ProxyObjects can also be extended to create new ProxyObject classes to support unsupported UI

controls. For example, to support the .Net 2.0 DataGridView control, you can create a new proxy class

Rational.Test.Ft.Domain.Net.DataGridViewProxy and insert the corresponding mapping entry in the

rational_ft.rftcust file. The following code is an example of the updated section in the customization file.

Exemple

<Obj L=".Proxy">
<ClassName>[WhidbeyControls]Rational.Test.Ft.Domain.Net.DataGridViewProxy</ClassName>
 <Replaces/>
 <UsedBy>[System.Windows.Forms]System.Windows.Forms.DataGridView</UsedBy>
</Obj>

Application under test interactions
There are several levels of requests in the test process. In each level there are various interactions between HCL

OneTest™ UI and the application under test (AUT).

The following list describes the levels of requests:

• High level requests cause a series of interactions with one or more proxies. Find and ObjectAtPoint are

examples of high level requests.

• Direct proxy references can occur for direct access to a proxy. Click and GetTestData are examples of direct

proxy references.

• Domain requests which are similar to high level requests, provide access to the hierarchy of base proxies and

perform other high level actions.

Chapter 7. Test Author Guide

Recording interactions
The following interactions happen between the Object Manager and Object Manager agents for recording

• Object Manager and Object Manager agents

◦ Locate the Object at point. For example, the proxyAtPoint method.

◦ Get recognition properties and initial references in the map. For example, the getMappedTestObject

method.

• The following proxy methods are called for recording:

Table 28. Proxy methods for recording

Action Method

Process low level events processMouseEvent

Locate target of a drag ac

tion

getMethodSpecForPoint

Verification Point support
getTestDataTypes

getTestData

getProperties

getStandardProperties

getProperty

Hierarchy methods
getMappableParent

getParent

getChildren

getMappableChildren

getOwner

getOwned

Recognition support
getRecognitionProperties

shouldBeMapped

getRole

getTestObjectClassName

getRecognitionPropertyWeight

873

HCL OneTest™ UI

874

Playback interactions

The HCL OneTest™ UI client sends requests to all test domains if they can find the target object in its recorded object

map hierarchy by using the recorded recognition properties.

Table 29. Playback interactions

Result Action

No target object is found A TestObject not found exception is thrown.

Several target objects are found The object finding score is used to determine the winner, or it can be am

biguous.

A unique TestObject is found The playback action method is invoked on the proxy. For example, the play

back action which was recorded, may be the click() method.

More than one TestObject was found

within the ambiguity threshold

An ambiguous exception is thrown.

Chapter 7. Test Author Guide

HCL OneTest™ UI uses recognition properties and control hierarchy to identify a control and provides an interface.

This information is collected and stored in the Object Map. During playback the stored information is used to uniquely

identify the UI element. HCL OneTest™ UI also collects information on screen coordinates, control properties and

data, reflection details, and portions of the controls when required. It presents the UI element with the gathered

information as a TestObject to the script side.

At the time of recording user actions such as mouse clicks, double-clicks or drags are recorded as respective

TestObject methods into a test script. For example, button().click(atPoint(10,10)). During playback, HCL OneTest™

UI finds the corresponding TestObject using the information stored in the Object Map and the user action is

performed based on it.

Proxy development
A challenge in functional testing is the variety of user interface (UI) frameworks that are available (for example,

Java™ and HTML) and controls (for example, button and table) that testing must support. UI frameworks differ in

architecture and programming models and the controls differ in their inheritance hierarchy, methods, properties data,

and user actions.

HCL OneTest™ UI needs to be programmed to add support for different UI frameworks and controls so that

appropriate functional testing values can be provided to testers.

875

HCL OneTest™ UI

876

The HCL OneTest™ UI architecture handles the differences in UI frameworks through a respective

TestDomainImplementation class for different UI frameworks. These TestDomainImplementation classes handle the

specific properties of each UI frameworks that HCL OneTest™ UI supports. The following TestDomainImplementation

classes are available with HCL OneTest™ UI.

• JavaTestDomainImplementation

• HTMLTestDomainImplementation

• NETTestDomainImplementation

• WinTestDomainImplementation

• SiebelTestDomainImplementation

• SAPTestDomainImplementation

A TestDomain contains a set of controls that is provided by the respective UI framework. HCL OneTest™ UI

understands and handles the differences in controls through ProxyObject classes that are implemented for each

control or a group of similar controls. A ProxyObject can be seen as wrapper object to the control and is implemented

with the standard interfaces that HCL OneTest™ UI defines. Each proxy method has a specific meaning and HCL

OneTest™ UI calls them at specific times. The ProxyObject returns the details specific to that control. ProxyObject

classes handle specifics about each control or a group of similar controls in a supported TestDomain.

HCL OneTest™ UI offers set of hierarchically grouped ProxyObjects for each supported TestDomains like Java, .Net,

Win32, Siebel, SAP, and HTML. A ProxyObject's inheritance hierarchy in each TestDomain is designed to be the same

as the inheritance hierarchy of the control in that TestDomain. Grouping ProxyObjects hierarchically enables you

to extend them to create new ProxyObjects when new a control is introduced in the UI framework. You can find

Chapter 7. Test Author Guide

the details about available sets of ProxyObjects and controls for each supported UI framework in the ProxyObject

hierarchies.

Note: With the current HCL OneTest™ UI Proxy SDK implementation, you cannot add support for a new UI

framework. You can add support for new controls or enhance currently supported controls.

Understanding proxies
A proxy object implements the prescribed HCL OneTest™ UI interface for a UI control in the application under test

(AUT). When you enable your application for testing, the proxy classes are loaded into the application and become

part of it. A proxy object wraps around the actual control (the native object) in your application, making it testable in

HCL OneTest™ UI. It is a connection point between the TestObject and the real control (object) being tested at the

AUT.

A proxy class is created as a Java™ or C# class depending on the proxy framework that you use and contains

information such as how to interact with an object in a particular test domain. The base class for all proxies is

ProxyTestObject. ProxyObjects are developed exclusively for a UI control or group of UI controls that require similar

functional testing capabilities. They belong to the same UI framework (test domains) in HCL OneTest™ UI.

Proxy development environment
HCL OneTest™ UI proxies can be developed either in Java™ or C# programming languages based on the UI framework

of the application under test (AUT).

You must use Java for developing proxies for the following UI frameworks under Java and HTML domains:

• AWT

• Swing

• SWT

• Applet

You must use C# for developing proxies for UI frameworks under the following domains:

• .Net

• Win32

Software requirements
You must have the following software in you computer to develop proxies using the proxy SDK

• HCL OneTest™ UI 9.1 or later.

• Eclipse 3.2 or later, or any other JDK for developing proxies in Java

• Microsoft® Visual Studio.Net for developing proxies in C#. For developing ProxyObjects, you must use one of

the following integrated development environments:

877

HCL OneTest™ UI

878

Note: ProxyObject is exposed to the scripting side of HCL OneTest™ UI as either .Net or Java TestObject,

depending on the test scripting choice.

Setting up proxy projects
ProxyObjects are deployed as either JAR files which are proxies written in Java™, or as Assembly DLLs which are

proxies written in C#, along with customization file with the .rftcust extension.

Setting up a proxy project in Eclipse
You can use Eclipse 3.2 or later to develop proxies in Java. To create a new Eclipse Java project:

1. Perform one of the following steps:

Choose from:

◦ From the Eclipse menu, click File > New > Project.

◦ From the Eclipse toolbar, click New, select Java Project, and then click Next.

2. Type the name of the new project in the Project name field and click Next.

3. In the Java Settings page:

a. Click the Create new source folder link, and specify src as the folder name so that all source files are

kept under the src directory; then click Finish.

b. Click Libraries > Add Variable, and select RATIONAL_FT_LIB; then click OK.

4. Click Finish.

Setting up a proxy project in Visual Studio .Net
You must use Microsoft® Visual Studio .Net to develop proxies in C# for .Net, Win, Siebel, and SAP domains. To

create a new Visual Studio .Net C# project:

1. Create a new project in either of two ways:

Choose from:

◦ From the Visual Studio menu, click File > New Project.

◦ From the Visual Studio toolbar, click New Project.

2. Select Visual C# as the project type and Class Library as the template to use.

3. Specify the name of the new project and the project location in the Name and Location fields.

4. Click OK.

5. Right-click References in the solution explorer and select Add Reference.

6. Click Browse, and select the C:\Program Files\HCL\HCLOneTest\FunctionalTester\bin\rtxftnet.dll assembly

as a reference to the project.

What to do next

After your project is created and set up, you can start creating your proxy files. You must add a new C# file for each

new proxy and similarly for new TestObjects.

Chapter 7. Test Author Guide

Current level of proxy support that HCL OneTest™ UI provides
To develop proxies for a control, you must understand the current level of support that HCL OneTest™ UI

provides for that control . Consider that you want to add testing support for the Java™ swing UI control,

javax.swing.JFormattedTextField.

Verifying that a control already has a specified ProxyObject

You can identify this by looking at the customization files. All proxy and control mapping information is in the

customization files, which have the extension .rftcust. Customization files are either located at the HCL OneTest™ UI

installation directory ()(C:\Program Files\HCL\HCLOneTest\FunctionalTester\bin) or the customization directory (C:

\ProgramData\IBM\RFT\customizationC:\ProgramData\HCL\HOTUI\customization).

For example, if you want to verify whether the control javax.swing.JFormattedTextField already has a ProxyObject

created for it, search for javax.swing.JFormattedTextField in the customization files. If you find a map entry, it means

that there is a ProxyObject specifically written for this control.

Verifying which ProxyObject is currently being used for testing a control

You can verify the ProxyObject by recording a control using HCL OneTest™ UI. See the Administrative properties of the

TestObject in the ObjectMap editor.

For example, open a Java application containing the JFormattedTextField control and start recording. Open the

ObjectMap editor to view the Administrative properties of the TestObject representing JFormattedTextField to find

which proxy HCL OneTest™ UI is currently using to test this control.

879

HCL OneTest™ UI

880

Additional information

To understand the current level of support better, you need some additional information on control hierarchy and

customization mapping.

The inheritance hierarchy of an AUT control

The inheritance hierarchy of an application under test (AUT) control is usually found in the UI framework

documentation. For example, the inheritance hierarchy of javax.swing.JFormattedTextField is available in the Java

documentation.

The following list represents the javax.swting.JFormattedTextField inheritance hierarchy

java.lang.Object
 java.awt.Component
 java.awt.Container
 javax.swing.JComponent
 javax.swing.text.JTextComponent
 javax.swing.JTextField
 javax.swing.JFormattedTextField

HCL OneTest™ UI customization mapping entry for a proxy

Chapter 7. Test Author Guide

Search for the mapping entry for the currently used ProxyObject in all the customization files. For example, if

java.jfc.JTextProxy is the currently used ProxyObject for javax.swing.JFormattedTextField, the corresponding

mapping entry is available at the rational_ft.rftcust file as follows:

<Obj L=".Proxy">
 <ClassName>com.rational.test.ft.domain.java.jfc.JTextProxy</ClassName>
 <Replaces/>
 <UsedBy>javax.swing.JEditorPane</UsedBy>
 <UsedBy>javax.swing.JTextArea</UsedBy>
 <UsedBy>javax.swing.JTextField</UsedBy>
 <UsedBy>javax.swing.JPasswordField</UsedBy>
 <UsedBy>javax.swing.JTextPane</UsedBy>
</Obj>

This example gives you the following information:

• The java.jfc.JTextProxy is written exclusively to handle Java swing controls like JEditorPane, JTextArea,

JTextField, JPasswordField, and JTextPane, but not for the javax.swing.JFormattedTextField control.

• HCL OneTest™ UI picked up java.jfc.JTextProxy as the ProxyObject for testing JFormattedTextField control

because JTextField is the super class for JFormattedTextField and it has java.jfc.JTextProxy as the

ProxyObject.

Important: HCL OneTest™ UI first looks for an explicit ProxyObject and control mapping entry for the

control under test. If it fails to find one, it looks for mapping entries for any of the super classes for the

control in the inheritance hierarchy.

• Because there is no ProxyObject that is written exclusively for the control javax.swing.JFormattedTextField,

contol-specific properties such as formatString and unformatedValue cannot be exposed through the

getProperties() method of HCL OneTest™ UI.

• Here is an opportunity for proxy developers to write the JFormattedTextFieldProxy by extending

java.jfc.JTextProxy exclusively for the javax.swing.JFormattedTextField control. One of methods that can be

extended is getProperties() for adding control specific properties like formatString and unformatedValue.

ProxyObject inheritance hierarchy

You must also look at the proxy inheritance hierarchy as well. Proxy inheritance hierarchy information is available in

HCL OneTest™ UI proxy API reference Guide.

The following list represents the JTextProxy (Functional Tester ProxyObject) inheritance hierarchy.

ProxyTestObject
 JavaProxy
 JavaGuiProxy
 awt.ComponentProxy
 jfc.JComponentProxy
 jfc.JfcGraphicalSubitemProxy
 jfc.JScrollPaneProxy
 jfc.JTextProxy

881

HCL OneTest™ UI

882

Extending proxies
HCL OneTest™ UI needs UI control-specific information to perform functional testing operations such as recording,

playback, verification points, and data driving. It tries to map the closest proxy if it finds a new control for which it has

no proxy.

The HCL OneTest™ UI architecture enables developers to write a proxy for a particular UI control. Developers

can enable HCL OneTest™ UI to process the specifics of a control by writing proxies. Relevant functional testing

capabilities can also be provided.

Proxies provide HCL OneTest™ UI with details about a control for which it is written. HCL OneTest™ UI has a

predefined set of methods for any proxy and calls each method to get specific details. For any proxy written for a

control, these predefined methods are implemented specific to the control.

For any control, HCL OneTest™ UI provides a set of properties and data types for verification. If the currently provided

set of properties and data types is not enough to test the control, a new proxy can be created and by overriding

certain methods more properties or data types can be included. The recording behavior of HCL OneTest™ UI can also

be changed by creating new proxies.

Creating a proxy class
You can write a ProxyObject class either in Java™ or C#, depending on which control you are developing the proxy

for. Creating a new ProxyObject class is similar to creating a new Java or C# class extending the respective base

ProxyObject class.

About this task

To create, build, and deploy a ProxyObject class:

1. Create a ProxyObject Class.

2. Build the ProxyObject binaries using the IDE build commands.

For Java, the compiled binary is a JAR file.

Note: The JAR file can also be created through JDK command lines, for example:

jar cvf JFormattedTextFieldProxy.jar proxysdk\sample\java\ JFormattedTextFieldProxy.class

For .Net, the compiled binary output is a .Net assembly.

3. Map the ProxyObject class to the application under test (AUT) control class.

4. Deploy the ProxyObjects by copying the proxy binary files and customization files to the HCL OneTest™ UI

customization directory (C:\ProgramData\HCL\HOTUI\customization).

HCL OneTest™ UI looks for proxy binary files and customization files in this directory.

5. Restart HCL OneTest™ UI

Chapter 7. Test Author Guide

Examples: Creating a simple ProxyObject
This example explains how to create a simple ProxyObject.

About this task

To create, build, and deploy the ProxyObject class:

1. Create a ProxyObject class using one of the following methods:

Choose from:

◦ Create a JFormattedTextFieldProxy ProxyObject in Java™ extended from the HCL OneTest™ UI Java

domain proxy, com.rational.test.ft.domain.java.jfc.JTextProxy. For example type the following

code to create JFormattedTextFieldProxy.java:

package proxysdk.samples.java;

import com.rational.test.ft.domain.java.jfc.JTextProxy;

/**
 * @author administrator
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Generation - Code and Comments
 */
public class JFormattedTextFieldProxy extends JTextProxy
{
 /**
 * Sets the SUT object
 * as a member variable for the proxy. All interactions with the
 * supplied object are performed through this class.
 */
 public JFormattedTextFieldProxy(Object theObjectInTheSUT)
 {
 super(theObjectInTheSUT) ;
 }

 /*
 * TODO: Override more ProxyObject Methods here
 */
}

◦ Create a MaskedTextProxy ProxyObject in C# extended from the HCL OneTest™ UI .Net domain

proxy, Rational.Test.Ft.Domain.Net.TextBoxProxy. For example type the following code to create

MaskedTextProxy.cs:

using Rational.Test.Ft.Domain;
using Rational.Test.Ft.Domain.Net;

namespace ProxySDK.Samples.Net
{
 /// <summary>
 /// Summary description for MaskedTextProxy.
 /// </summary>
 public class MaskedTextProxy:TextBoxProxy
 {

883

HCL OneTest™ UI

884

 public MaskedTextProxy(NetTestDomainImplementation domain,
 IChannel channel,
 System.Object theTestObject): base(domain, channel, theTestObject)
 {
 }
 //
 // TODO: Override more ProxyObject Methods here
 //
 }
}

◦ Create a StatusBarProxy ProxyObject in C# extended from the HCL OneTest™ UI Win domain

proxy, Rational.Test.Ft.Domain.Win.GenericProxy. For example type the following code to create

StatusBarProxy.cs:

using Rational.Test.Ft.Domain;
using Rational.Test.Ft.Domain.Win;

namespace ProxySDK.Samples.Win
{
 /// <summary>
 /// Summary description for StatusBarProxy.
 /// </summary>
 public class StatusBarProxy:GenericProxy
 {
 public StatusBarProxy(WinTestDomainImplementation domain,
 IChannel channel,
 IWinControl theAUTControl): base(domain, channel, theAUTControl)
 {
 //
 // TODO: Add constructor logic here
 //
 }
 }
}

2. Build the ProxyObject binary files using build commands.

◦ For Java, the compiled binary output is a JAR file, for example JFormattedTextFieldProxy.jar.

◦ For .Net, the compiled binary output is a .Net assembly, for example MaskedTextProxy.dll or

StatusBarProxy.dll.

3. Map the ProxyObject classes to the AUT control classes in the HCL OneTest™ UI customization file (a .rftcust

file) using one of the following methods:

Choose from:

◦ Specify a mapping entry under the Java domain to use the

proxysdk.samples.java.JFormattedTextFieldProxy ProxyObject for the

javax.swing.JFormattedTextField control. For example, type the following code to create

JFormattedTextFieldProxy.rftcust:

<?xml version="1.0" encoding="UTF-8"?>
<ConfigFile L=".ConfigFile">
 <Section L=".ConfigFileSection">
 <Name>proxies</Name>
 <Val L=".ProxyManager">
 <DomainImplementation L=".DomainImplementation">

Chapter 7. Test Author Guide

 <Name>Java</Name>
 <Obj L=".Proxy">
 <ClassName>proxysdk.samples.java.JFormattedTextFieldProxy</ClassName>
 <Replaces/>
 <UsedBy>javax.swing.JFormattedTextField</UsedBy>
 </Obj>
 </DomainImplementation>
 </Val>
 </Section>
</ConfigFile>

With this mapping, HCL OneTest™ UI creates a JFormattedTextFieldProxy instance for every

JFormattedTextField Java UI control found.

◦ Specify a mapping entry under the .Net domain to use the ProxySDK.Samples.Net.MaskedTextProxy

ProxyObject for the System.Windows.Forms.MaskedTextBox .Net control implemented in the

[System.Windows.Forms] .Net assembly. For example, type the following code to create

MaskedTextProxy.rftcust:

<?xml version="1.0" encoding="UTF-8"?>
<ConfigFile L=".ConfigFile">
 <Section L=".ConfigFileSection">
 <Name>proxies</Name>
 <Val L=".ProxyManager">
 <DomainImplementation L=".DomainImplementation">
 <Name>NET</Name>
 <Obj L=".Proxy">
 <ClassName>[MaskedTextBoxProxy]ProxySDK.Samples.Net.MaskedTextProxy </ClassName>
 <Replaces/>
 <UsedBy>[System.Windows.Forms]System.Windows.Forms.MaskedTextBox</UsedBy>
 </Obj>
 </DomainImplementation>
 </Val>
 </Section>
</ConfigFile>

Note: Specify assembly names with [] while specifying .Net control class names.

◦ Specify a mapping entry under the Win domain to use the

[StatusBarProxy]ProxySDK.Samples.Win.StatusBarProxy ProxyObejct for the StatusBar20WndClass Win

control. For example, type the following code to create StatusBarProxy.rftcust:

<?xml version="1.0" encoding="UTF-8"?>
<ConfigFile L=".ConfigFile">
 <Section L=".ConfigFileSection">
 <Name>proxies</Name>
 <Val L=".ProxyManager">
 <DomainImplementation L=".DomainImplementation">
 <Name>Win</Name>
 <Obj L=".Proxy">
 <ClassName>[StatusBarProxy]ProxySDK.Samples.Win.StatusBarProxy</ClassName>
 <Replaces/>
 <UsedBy>STATUSBAR20WNDCLASS</UsedBy>
 </Obj>

885

HCL OneTest™ UI

886

 </DomainImplementation>
 </Val>
 </Section>
</ConfigFile>

◦ Specify mapping entries for all ProxyObjects in a combined customization file.

Note: You must specify the proxy mappings in their respective <DomainImplementation

L=".DomainImplementation"> section

For example, type the following code to create combined.rftcust:

<ConfigFile L=".ConfigFile">
 <Section L=".ConfigFileSection">
 <Name>proxies</Name>
 <Val L=".ProxyManager">

 <!-- Add DomainImplementation section for each domain -->

 <DomainImplementation L=".DomainImplementation">
 <Name>Java</Name>
 <Obj L=".Proxy">
 <ClassName>proxysdk.samples.java.JFormattedTextFieldProxy</ClassName>
 <Replaces/>
 <UsedBy>javax.swing.JFormattedTextField</UsedBy>
 </Obj>
 <!-- Add <Obj L=".Proxy"> section here for each Java
 proxy mapping -->

 </DomainImplementation>

 <DomainImplementation L=".DomainImplementation">
 <Name>NET</Name>
 <Obj L=".Proxy">
 <ClassName>[MaskedTextBoxProxy]ProxySDK.Samples.Net.MaskedTextProxy </ClassName>
 <Replaces/>
 <UsedBy>[System.Windows.Forms]System.Windows.Forms.MaskedTextBox</UsedBy>
 </Obj>
 <!-- Add <Obj L=".Proxy"> section here for each .NET
 proxy mapping -->

 </DomainImplementation>

 <DomainImplementation L=".DomainImplementation">
 <Name>Win</Name>
 <Obj L=".Proxy">
 <ClassName>[StatusBarProxy]ProxySDK.Samples.Win.StatusBarProxy</ClassName>
 <Replaces/>
 <UsedBy>STATUSBAR20WNDCLASS</UsedBy>
 </Obj>
 <!-- Add <Obj L=".Proxy"> section here for each Win
 proxy mapping -->

 </DomainImplementation>
 </Val>

Chapter 7. Test Author Guide

 </Section>
</ConfigFile>

For any syntax or usage clarification, see the customization file rational_ft.rftcust in C:\Program Files

\HCL\HCLOneTest\FunctionalTester\bin. This file contains mapping entries for all ProxyObjects that

are delivered with HCL OneTest™ UI.

4. Deploy the proxy binary files, for example JFormattedTextFieldProxy.jar, MaskedTextProxy.dll, and

StatusBarProxy.dll and the corresponding customization files by copying them to the HCL OneTest™ UI

customization directory, C:\ProgramData\HCL\HOTUI\customization.

5. Restart HCL OneTest™ UI.

Adding more control properties
HCL OneTest™ UI provides a set of control properties for access and property verification. You can add more control

properties by extending the getProperties() and getProperty() APIs.

Before you begin

You can extend the proxy methods that are listed in Table 30: Extensible proxy methods on page 887:

Table 30. Extensible proxy methods

Java .Net

java.util.Hashtable getProperties() System.Collections.Hashtable GetProperties()

Object getProperty(String propertyName) object GetProperty(string propertyName)

Exemple

The following samples add a new property ToolTipText. You can add as many properties as you want in the same

manner.

The following sample shows how to add a new property in Java™:

import com.rational.test.ft.domain.*;

public class someProxy extends baseProxy
{
 .
 .
 public java.util.Hashtable getProperties()
 {
 java.util.Hashtable properties = super.getProperties();
 try
 {
 properties.put("toolTipText", getTooltipText());
 }
 catch (Throwable e)
 {
 } // in the odd case we can't get the artifical properties, just ignore them.
 return properties;
 }
 .

887

HCL OneTest™ UI

888

 .
 .
 public Object getProperty(String propertyName)
 {
 if (propertyName.equals("toolTipText"))
 return getTooltipText();
 return super.getProperty(propertyName);
 }
}

The following sample shows how to add a new property in .Net:

using Rational.Test.Ft.Domain;

public class AnyProxy:BaseProxy
{
 .
 .
 .
 public override System.Collections.Hashtable GetProperties()
 {
 System.Collections.Hashtable propertyTable = base.GetProperties();

 if(!propertyTable.Contains("ToolTipText"))
 {
 object text = GetToolTipText();
 if (text != null)
 propertyTable.Add("ToolTipText", text);
 }
 return propertyTable;
 }
 .
 .
 .
 public override object GetProperty(string propertyName)
 {
 object propertyValue = null ;
 if (propertyName == "ToolTipText")
 {
 propertyValue = GetToolTipText();
 }
 else
 {
 propertyValue = base.GetProperty(propertyName) ;
 }
 return propertyValue ;
 }

What to do next

After successfully developing and deploying this proxy code, a new property ToolTipText is added to the control. You

can verify this by running the getProperty("toolTipText") API on the control.

Adding more data types for a control
HCL OneTest™ UI provides a set of control data types for data verification point. You can add more control data types

by extending the getTestDataTypes() and getTestData() APIs.

Chapter 7. Test Author Guide

Before you begin

You can extend the proxy methods that are listed in Table 31: Extensible proxy methods on page 889:

Table 31. Extensible proxy methods

Java .Net

java.util.Hashtable getTestDataTypes() System.Collections.Hashtable GetTestData

Types()

ITestData getTestData(String testData

Type)

ITestData GetTestData(string testDataType)

Exemple

The following sample shows how to add a new control data type Selected Text in Java™. You can add as many data

types as you want in the same manner.

Note: Ensure that the key and value of hash are the same in the hashtable returned by the GetTestDataTypes.

public class AnyProxy:BaseProxy
{
 .
 .
 .
 public java.util.Hashtable getTestDataTypes()
 {
 java.util.Hashtable result = super.getTestDataTypes();
 result.put("Selected Text", "Selected Text");
 return result;
 }
 .
 .
 public ITestData getTestData(String testDataType)
 {
 if (testDataType.equals("Text"))
 return createTestDataList(getText()); // getText() method returns text value of the control
 else
 return super.getTestData(testDataType);
 }

The following sample shows how to add a new data type in .Net:

Using Rational.Test.Ft.Vp;

public class AnyProxy:BaseProxy
{
 .
 .
 .
 public override System.Collections.Hashtable GetTestDataTypes()
 {
 System.Collections.Hashtable types = base.GetTestDataTypes() ;
 types.Add("Selected Text", "Selected Text") ;

889

HCL OneTest™ UI

890

 return types;
 }
 .
 .
 .
 public override ITestData GetTestData(string testDataType)
 {
 ITestData testData = null ;
 switch (testDataType)
 {
 case "Text":
 testData = new TestDataText(((System.Windows.Forms.Control)theTestObject).Text) ;
 break;
 }
 return testData;
 }
}

What to do next

After successfully developing and deploying this proxy code, a new control data type Selected Text is available while

creating a data verification point in the control.

Enhancing the recording behavior
You can enhance the recording behavior for a user action on a control by extending the processMouseEvent() API.

HCL OneTest™ UI framework calls the processMouseEvent() API when a mouse event happens on a control. The

processMouseEvent() API tells the HCL OneTest™ UI framework which method has to be recorded for the mouse

action.

Before you begin

For example, when you click a button control, the button().click() method is recorded. You can modify this behavior

and add more information by extending the processMouseEvent() API of the proxy. This API is available only for GUI

proxies.

You can extend the methods listed in Table 32: Extensible proxy methods on page 890:

Table 32. Extensible proxy methods

Java .Net

void processMouseEvent(IMouseActionInfo action) void ProcessMouseEvent(IMouseActionInfo action)

void processSingleMouseEvent(IMouseActionInfo ac

tion)

void ProcessPreDownMouseEvent(IMouseActionInfo ac

tion)

void processHoverMouseEvent(IMouseActionInfo ac

tion)

void ProcessPreUpMouseEvent(IMouseActionInfo action)

void ProcessHoverMouseEvent(IMouseActionInfo action)

Proxy recording APIs

Chapter 7. Test Author Guide

Before you begin

processxxxMouseEvent() APIs

There are many processxxxMouseEvent() APIs available, but the main API that is used for any mouse event

is processMouseEvent(). You can extend the rest of the processxxxMouseEvent() APIs the way you want.

The following Java™ and .Net implementations of the processMouseEvent() API explain how the rest of the

processxxxMouseEvent() APIs are related.

The following example shows the Java implementation of processMouseEvent():

public void processMouseEvent(IMouseActionInfo action)
{
 int eventState = action.getEventState();
 if (eventState == IMouseActionInfo.PRE_DOWN ||
 eventState == IMouseActionInfo.PRE_UP ||
 eventState == IMouseActionInfo.POST_UP)
 processSingleMouseEvent(action);
 else if (eventState == IMouseActionInfo.HOVER)
 processHoverMouseEvent(action);
}

The following example shows the .Net implementation of processMouseEvent():

public override void ProcessMouseEvent(IMouseActionInfo action)
{
 switch (action.GetEventState())
 {
 case MouseActionStates.PRE_DOWN:
 if (action.GetClickCount() == 1)
 ProcessPreDownMouseEvent(action);
 break;
 case MouseActionStates.PRE_UP:
 // if one click, and it's not a drag, then, we're Done(no need to processPreUpMouseEvent)
 if (action.GetClickCount() != 1 || action.IsDrag())
 ProcessPreUpMouseEvent(action);
 break;
 case MouseActionStates.HOVER:
 ProcessHoverMouseEvent(action);
 break;
 }
 }
}

IMouseActionInfo interface

The processMouseEvent() API obtains the MouseEvent details, such as EventState, screen coordinates, and number

of events, and uses these details to decide which method is recorded. The setMethodSpecification() method of

IMouseActionInfo is used to return a MethodSpecification() object as a result of the processMouseEvent() API.

MethodSpecification class

891

HCL OneTest™ UI

892

The MethodSpecification object represents the method that is being recorded for a particular event. It is

initialized with the method name and the parameter is set to the IMouseActionInfo object that is being passed to

processMouseEvent(). The recorder picks up this method and records for a given user action.

Exemple

The following sample code extends the processMouseEvent() to change the recording behavior. By default, when

you click once, the click() method is recorded. When you double-click, the doubleClick() method is recorded. In this

sample the processSingleMouseEvent() API is overridden to swap the recording of click() and doubleClick() methods.

The following sample represents extending the processMouseEvent() in Java:

import com.rational.test.ft.domain.IMouseActionInfo;
import com.rational.test.ft.sys.MethodSpecification;
.
.
public void processSingleMouseEvent(IMouseActionInfo action)
{
 String method = null;
 int clicks = action.getClickCount();
 if (clicks == 1)
 // usually when clicks == 1, the method is click, now we've changed to method to
 doubleClick
 method = "doubleClick"; //method = "click";
 else if (clicks == 2)
 // usually when clicks == 2, the method is doubleClick, now we've changed to method
 to click
 method = "click"; // method = "doubleClick";
 else
 method = "nClick";

 // The method to be recorded is represented using this class in Functional Tester
 MethodSpecification methodSpec = MethodSpecification.proxyMethod(this, method,null);

 // The method for the user action is set here
 action.setActionMethodSpecification(methodSpec);
 }

What to do next

After successfully developing and deploying this proxy code, the way that the click() and doubleClick() methods are

recorded is swapped.

Enhancing the recording behavior with SubItems
SubItems are HCL OneTest™ UI defined portions of a control under test. In some cases, you get best results by

recording the user interaction with SubItem details rather than recording just with the coordinate information. The

disadvantage of using the coordinate information is that when portions of a control are resized or rearranged, playing

back the user actions might not return the same results.

Before you begin

For example, in a table control whose column width can be resized, recording the clicks with coordinate is not

meaningful during playback if the column width changes.

Chapter 7. Test Author Guide

HCL OneTest™ UI has a set of predefined SubItems and proxy can use them during recording. During recording,

proxy determines the SubItem at a point and sends the SubItem details along with the user action method for the

TestObject. At playback time, the proxy again determines the coordinate for the SubItem and the user action is played

back.

You can extend the methods that are listed in Table 33: Extensible proxy methods on page 893:

Table 33. Extensible proxy methods

Java .Net

System.Collections.ArrayList GetActionArgs(System.Draw

ing.Point point)

java.util.Vector getActionArgs(java.awt.Point point)

System.Drawing.Rectangle GetSubitemRect(Rational.Test.Ft

.Script.Subitem subitem)

java.awt.Point getScreenPoint(com.rational.test.ft

.script.Subitem subitem)

Recording methods with SubItems
While you are recording an event, the ProcessMouseEvent method is called. Then, the proxy determines the

appropriate SubItems at certain points and these SubItems are recorded as part of the event.

Before you begin

The following code is an example of how the event is recorded:

listBox.click(atText("Item1"));

In this example, click is the event. The atText("Item1") parameter is the subItem that the proxy finds at the point. In

case of .Net, the GetActionArgs() API returns one or more SubItems of the control. Determining which SubItem to use

is specific to the control.

The following example shows the Java™ implementation of recording methods with SubItems:

java.util.Vector getActionArgs(java.awt.Point point)
{
 .
 .
 Vector args = new Vector(20);
 SubItem subItem = null;
 IMouseEventInfo event0 = action.getEventInfo(0);
 Point firstPoint = new Point (event0.getX(), event0.getY());
 Point firstPointToList = new Point (firstPoint.x, firstPoint.y);
 int itemIndex = locationToIndex(firstPointToList);
 String itemText = ((java.awt.List)theTestObject).getItem(itemIndex);
 if (itemText!= null && ! itemText.equals(""))
 subItem = new Text(item);
 else
 subItem = new Index(atIndex);
 .
 .
 args.addElement(subItem);
 .

893

HCL OneTest™ UI

894

 .
 }

The following example shows the .Net implementation of recording methods with SubItems:

protected override System.Collections.ArrayList GetActionArgs(System.Drawing.Point point)
{
 System.Collections.ArrayList args = new System.Collections.ArrayList() ;
 Subitem subitem = null ;
 System.Drawing.Point clientPoint = ((Control)theTestObject).PointToClient(point) ;
 int itemIndex = ((ListBox)theTestObject).IndexFromPoint(clientPoint) ;
 string itemText = ((ListBox)theTestObject).GetItemText(item);

 if (itemText == null || itemText.Length == 0)
 {
 // item has no text so generate an index
 subitem = new Rational.Test.Ft.Script.Index(itemIndex) ;
 }
 if (subitem != null)
 {
 args.Add(subitem) ;
 }

 return args ;
}

Playing back methods with SubItems
During playback, the proxy needs to find the screen coordinate of a SubItem to play back the user action.

Before you begin

The following example shows the Java implementation of playing back methods with SubItems:

public void click(MouseModifiers modifiers, Subitem subitem)
{
 .
 .
 Point pt = this.getScreenPoint(subitem);
 new Screen().click(modifiers, pt);
 .
 .
}

public java.awt.Rectangle getScreenPoint (Subitem subitem)
{
 int index = getItemIndex(subitem);
 if (index == -1)
 return null;
 java.awt.Rectangle rectCell = getCellBounds(index);
 java.awt.Rectangle rectScreen = this.getScreenRectangle();
 return new java.awt.Rectangle
 (rectScreen.x + rectCell.x, rectScreen.y + rectCell.y,
 rectCell.width, rectCell.height);

}

Chapter 7. Test Author Guide

The following example shows the .Net implementation of playing back methods with SubItems:

protected override System.Drawing.Rectangle GetSubitemRect(Rational.Test.Ft.Script.Subitem subitem)
{
 int index = GetItemIndex(subitem) ;
 return ((ListBox)theTestObject).GetItemRectangle(index) ;
}

What to do next

After successfully developing and deploying this proxy code, the recorded methods have the appropriate SubItems

and playback happen as expected.

Extending data driving
You must implement the GetDataDrivableCommand() method in the proxy to add data driving support to a control. This

method returns a method specification to implement data driving support for a control. While using the data driving

wizard, the method specification that GetDataDrivableCommand() returns is sent to the test script. Proxies can override

and return any method that you specify for data driving.

Before you begin

It is not mandatory to add data driving support for every control. Data driving is useful for controls that have common

user actions such as a method, and that take data values, such as parameters.

You can extend the methods listed in Table 34: Extensible methods for data driving on page 895:

Table 34. Extensible methods for data driving

Java .Net

MethodSpecification getDataDrivableCom

mand()

MethodSpecification GetDataDrivableCom

mand()

Exemple

The following sample adds data driving support in Java™:

import com.rational.test.ft.domain.*;

public class newProxy extends baseProxy
{
 .
 .
 public MethodSpecification getDataDrivableCommand()
 {
 if (!isEditable())
 return null;
 return MethodSpecification.proxyMethod(
 this, "setText", new Object[]{MethodSpecification.datasetRef(getText())});
 }
 .
 .
}

895

HCL OneTest™ UI

896

The following sample adds data driving support in .Net:

using Rational.Test.Ft.Domain;
using Rational.Test.Ft.Sys;

public class NewProxy:BaseProxy
{
 .
 .
 .
 public override MethodSpecification GetDataDrivableCommand()
 {
 System.String text = GetText();
 if (text == null)
 text = "";
 return MethodSpecification.ProxyMethod(
 this, "SetText", new System.Object[]{ MethodSpecification.datasetRef(text) });
 }
 .
 .

}

What to do next

After successfully developing and deploying this proxy code, verify it by data driving the control using the HCL

OneTest™ UI data driving wizard. The TestObject.setText(dpString("text")) API is inserted into the test script.

Changing the role of a control
The role of a control determines which icon is displayed in the Object Map for a TestObject. You can do this by

extending the getRole() method and returning one of the HCL OneTest™ UI predefined role values.

Before you begin

You can extend the methods listed in Table 35: Extensible methods for changing roles on page 896:

Table 35. Extensible methods for

changing roles

Java .Net

String getRole() string GetRole()

The following Java™ sample changes the icon for the TestObject to a slider icon:

Exemple

import com.rational.test.ft.domain.*;

public class someProxy extends baseProxy
{
 .
 .
 public String getRole()
 {

Chapter 7. Test Author Guide

 return TestObjectRole.ROLE_SLIDER;
 }

}

The following .Net sample changes the icon for the TestObject to a slider icon:

using Rational.Test.Ft.Domain;

public class AnyProxy:BaseProxy
{
 .
 .
 public override string GetRole()
 {
 return TestObjectRole.ROLE_SLIDER;
 }
}

What to do next

After successfully developing and deploying this proxy code, the icon for the TestObject in the Object map changes to

a slider icon.

Modifying the recognition properties and weight of a control
HCL OneTest™ UI uses recognition properties to uniquely identify a control. Various recognition properties are

assigned different weights for recognition analysis. HCL OneTest™ UI uses these values and weights to identify a

control during playback. You can customize the recognition properties and the weights that best suit the controls you

are testing.

Before you begin

You can extend the methods listed in Table 36: Extensible methods for recognition properties on page 897:

Table 36. Extensible methods for recognition properties

Java .Net

java.util.Hashtable getRecognitionProperties() System.Collections.Hashtable GetRecognitionProperties()

int getRecognitionPropertyWeight(String propertyName) int GetRecognitionPropertyWeight(String propertyName)

Note: With the HCL OneTest™ UI Object Library feature you can also externalize the recognition properties and

weights of all controls as an XML file. For more information on Object Library, see the HCL OneTest™ UI help.

The following Java™ sample adds a new property, ".priorLabel", as an additional recognition property.

Exemple

import com.rational.test.ft.domain.*;

public class someProxy extends baseProxy
{

897

HCL OneTest™ UI

898

 .
 .
 public java.util.Hashtable getRecognitionProperties()
 {
 java.util.Hashtable properties = super.getRecognitionProperties();
 properties.put(".priorLabel", getPriorLabel());
 return properties;
 }
 .
 .
 .
 public Object getRecognitionPropertyWeight(String propertyName)
 {
 if (propertyName.equals(".priorLabel"))
 return 60;
 return super.getRecognitionPropertyWeight(propertyName);
 }
}

The following .Net sample adds a new property, ".priorLabel", as an additional recognition property.

using Rational.Test.Ft.Domain;

public class AnyProxy:BaseProxy
{
 .
 .
 .
 public override System.Collections.Hashtable GetRecognitionProperties()
 {
 System.Collections.Hashtable properties= base.GetRecognitionProperties();
 properties.Add(".priorLabel", GetPriorLabel());
 return properties;
 }
 .
 .
 .
 public override object GetRecognitionPropertyWeight(string propertyName)
 {
 if (propertyName == ".priorLabel")
 return 60;
 return base.GetRecognitionPropertyWeight(propertyName) ;
 }

What to do next

After successfully developing and deploying this proxy code, a new recognition property, ".priorLabel", is added for

the control with 60 as the property weight. You can verify this by looking at the Recognition tab of the TestObject in

the Object Map editor.

Changing the mappability of a control
There are certain types of controls in applications under test (AUT) that do not need to be exposed as a TestObject.

For example, container controls have no useful testing value and are not exposed. HCL OneTest™ UI needs these

container controls to run certain methods to retrieve information about their children.

Chapter 7. Test Author Guide

Before you begin

You can specify whether to expose a control as a TestObject by extending the ShouldBeMapped() method. By default,

only GUI TestObjects are mapped.

For example, the Panel control is not mapped. If you want to map this control, however, extend the ShouldBeMapped()

method and specify the return value as true.

You can extend the methods listed in Table 37: Extensible methods for mapping TestObjects on page 899:

Table 37. Extensible methods for mapping

TestObjects

Java .Net

boolean shouldBeMapped() bool ShouldBeMapped()

Exemple

The following Java™ sample uses the ShouldBeMapped() method to change the mappability of a control:

import com.rational.test.ft.domain.*;

public class someProxy extends baseProxy
{
 .
 .
 public boolean shouldBeMapped()
 {
 return true;
 }
}

The following .Net sample uses the ShouldBeMapped() method to change the mappability of a control:

using Rational.Test.Ft.Domain;

public class SomeProxy:BaseProxy
{
 .
 .
 public override bool ShouldBeMapped()
 {
 return true;
 }
}

What to do next

After successfully developing and deploying this proxy code, the control for which the proxy is written for will be

mapped.

899

HCL OneTest™ UI

900

Mapping proxies to controls
HCL OneTest™ UI identifies each application under test (AUT) control by its class name. Running the

testObject.getProperty(".class") method in the test script gives you the class name. The mapping is established

through the class names of the respective control and ProxyObject.

Before you begin

To map proxies to controls, you must explicitly map newly developed ProxyObjects to a control or group of controls

through an external map file called customization files with the .rftcust extension. HCL OneTest™ UI refers these

customization files and creates ProxyObject instances for a control as specified in the mapping. You must create your

own customization file to specify the mapping information between the ProxyObject and the control. You can deploy

the newly created customization file by saving it in the HCL OneTest™ UI customization directory.

About this task

To map a proxy class to an AUT control class, add the ClassName and UsedBy tags within the DomainImplementation

start and end tags.

Note: You must add your proxy class name within the ClassName tag and the name of the AUT class that the

proxy represents within the UsedBy tag.

Exemple

This customization file, for example, shows a mapping entry:

<DomainImplementation L=".DomainImplementation">
<Name>Java</Name>
<ClassName>com.rational.test.ft.domain.java.awt.JSpinnerProxy</ClassName>
<Replaces/>
<UsedBy>java.awt.JSpinner</UsedBy>
</DomainImplementation>

What to do next

While updating the customization file, make sure that the file meets the following conditions:

• Make no typing mistakes while specifying the class. The strings are case sensitive.

• Use fully qualified class names. Use the complete class name including the package separated with a period

(.).

• Match the domain type of the proxy to the section in the customization file by name.

• Use an appropriate XML format:

◦ Nest start and end tags properly.

◦ Specify names for tags (case is significant).

Customization file
You can specify extensible components such as proxies, TestObjects, values, and value managers in an external

customization file with the .rftcust extension. After the files are deployed, these extended components become part

Chapter 7. Test Author Guide

of the HCL OneTest™ UI framework. The main customization file, rational_ft.rftcust is located in the HCL OneTest™

UI installation directory or the customization directory.

You can create many customization files. When you start HCL OneTest™ UI, it reads all the customization files and

stores the details in the shared memory. Further references to the customization files are made in the shared memory

Customization file syntax

The customization file is an XML file with many sections that are marked with <Section></Section> tags. Each section

has a name and contains the content between the tags. The following example shows a basic section:

 <Section L=".ConfigFileSection">
 <Name>Section Name</Name>
 .
 .
 Section content
 .
 </Section >

Sections are optional and you can also insert empty sections also in a customization file. Each section has its own

syntax. For section components that require implementation in both component models (Java™ and .NET) there

should be two <ComponentModel> tags, one for Java and .NET each:

 <ComponentModel L=".ComponentModel">
 <Name>Java</Name>
 </ComponentModel>
 <ComponentModel L=".ComponentModel">
 <Name>Net</Name>
 </ComponentModel>

The proxies section is the most commonly used section. It contains a <DomainImplementation> tag for each test

domain for specifying proxy classes that are deployed and the associated application under test (AUT) class names

for which the proxy is used. Within the <DomainImplementation> tag, the <Obj L=".Proxy"> tags are used for each proxy

class that is established and the <UsedBy> tags specify the class name of the AUT control.

You can have more than one <UsedBy> tag for a single proxy class if you want to use the same proxy for similar

controls.

You must use the <Section> tags appropriately, meeting their requirements and extension components to be deployed

into the HCL OneTest™ UI framework.

Complete syntax of the main customization

The code shown below is the complete syntax for the main customization file.

<?xml version="1.0" encoding="UTF-8"?>
<ConfigFile L=".ConfigFile">

 <--Proxy Section: all the proxies are defined here domain wise-->

901

HCL OneTest™ UI

902

 <Section L=".ConfigFileSection">
 <Name>proxies</Name>
 <Val L=".ProxyManager">
 <DomainImplementation L=".DomainImplementation">
 <Name>Java</Name>
 <Obj L=".Proxy">
 <ClassName></ClassName>
 <Replaces/>
 <UsedBy></UsedBy>
 .
 .
 </Obj>
 .
 .
 </DomainImplementation>
 <DomainImplementation L=".DomainImplementation">
 <Name>Net</Name>
 <Obj L=".Proxy">
 <ClassName></ClassName>
 <Replaces/>
 <UsedBy></UsedBy>
 .
 .
 </Obj>
 .
 .
 </DomainImplementation>
 <DomainImplementation L=".DomainImplementation">
 <Name>Win</Name>
 <Obj L=".Proxy">
 <ClassName></ClassName>
 <Replaces/>
 <UsedBy></UsedBy>
 .
 .
 </Obj>
 .
 .
 </DomainImplementation>
 .
 .
 </Val>
 </Section>

 <--ValueManager Section: all newly defined Value and Valuemanager classes are defined here -->
 <Section L=".ConfigFileSection">
 <Name>valueManagers</Name>
 <Val L=".ValueManagerManager">
 <ComponentModel L=".ComponentModel">
 <Name>Java</Name>
 <Obj L=".ValueManager">
 <Id></Id>
 <ValueClass></ValueClass>
 <Manager></Manager>
 </Obj>
 </ComponentModel>
 <ComponentModel L=".ComponentModel">

Chapter 7. Test Author Guide

 <Name>Net</Name>
 <Obj L=".ValueManager">
 <Id></Id>
 <ValueClass></ValueClass>
 <Manager></Manager>
 </Obj>
 </ComponentModel>
 </Val>
 </Section>

 <--Value Converter Section: -->
 <Section L=".ConfigFileSection">
 <Name>valueConverters</Name>
 <Val L=".ValueConverterManager">
 </Val>
 </Section>

 <--Property Converter Section: -->
 <Section L=".ConfigFileSection">
 <Name>propertyConverters</Name>
 <Val L=".PropertyConverterManager">
 <ComponentModel L=".ComponentModel">
 <Name>Java</Name>
 <Obj L=".PropertyConverter">
 <Property></Property>
 <Converter></Converter>
 </Obj>
 </ComponentModel>
 <ComponentModel L=".ComponentModel">
 <Name>Net</Name>
 <Obj L=".PropertyConverter">
 <Property></Property>
 <Converter></Converter>
 </Obj>
 </ComponentModel>
 </Val>
 </Section>

 <--Options Converter Section: -->
 <Section L=".ConfigFileSection">
 <Name>options</Name>
 <Val L=".Options">
 <Obj L=".Option">
 <Name></Name>
 <Type></Type>
 <ReadOnly></ReadOnly>
 <DefaultValue/>
 <Description></Description>
 <Label/>
 <Category></Category>
 <LegalValues/>
 </Obj>
 </Val>
 </Section>

 <-- RoleMap Section: -->
 <Section L=".ConfigFileSection">
 <Name>roleMap</Name>

903

HCL OneTest™ UI

904

 <Val L=".RoleMap">
 <Role L=".Role">
 <Name></Name>
 <Icon></Icon>
 </Role>
 </Val>
 </Section>

 <--TestObject Section: canonical name for all the newly created testobjects defined here -->
 <Section L=".ConfigFileSection">
 <Name>testObjects</Name>
 <Val L=".TestObjectManager">
 <ComponentModel L=".ComponentModel">
 <Name>Java</Name>
 <Obj L=".TestObject">
 <CanonicalName></CanonicalName>
 <TestObject></TestObject>
 </Obj>
 .
 .
 </ComponentModel>
 <ComponentModel L=".ComponentModel">
 <Name>Net</Name>
 <Obj L=".TestObject">
 <CanonicalName></CanonicalName>
 <TestObject></TestObject>
 </Obj>
 .
 .
 </ComponentModel>
 </Val>
 </Section>

</ConfigFile>

Deploying a proxy
After you have developed the proxy binary and customization files, you must deploy them for the changes to take

effect.

About this task

To deploy your customized proxies, copy the compiled binary files and customization files to the product

customization directory.

Note: You can find the location of the customization directory in the system registry key HKEY_LOCAL_MACHINE

\Software\HCL Technologies\HCL OneTest UI\HCL FT Customization Directory. The default location for the

customization directory in Windows 7 is C:\ProgramData\HCL\HOTUI\customization.

Debugging the proxy code
Debugging the proxy code is an essential part of the proxy development process for problem determination. The

proxy code containing the JAR file or .Net assembly file with the .dll extension is loaded into the application under test

Chapter 7. Test Author Guide

(AUT) process. To debug the proxy code, attach the respective debugger to the AUT process after the proxy binary

files are loaded into the AUT.

Preparing the debug environment

About this task

Before you debug the proxy code, perform the following tasks:

• Save the debug version of the proxy binary files in the customization directory and restart HCL OneTest™ UI.

• In case of Java™, enable the JRE that the AUT uses with the HCL OneTest™ UI enabler.

• In case of .Net, start the .Net AUT and record a click action on any control using HCL OneTest™ UI to enable it

for testing.

Note: The proxy assembly .dll file is loaded only when the first click is recorded on Windows®

and .Net applications. Windows and .Net applications are enabled dynamically for testing. In case of

Java, the Application Configurator Tool enables the AUT.

Setting invocation timeout
Debugging proxies is time sensitive and the invocation times out after two minutes by default. To adjust timeout

for debugging, add a DWORD value InvocationTimeout in milliseconds under HKEY_LOCAL_MACHINE\SOFTWARE

\HCL Technologies\HCL OneTest UI in the Windows registry. A timeout during debugging throws a SpyMemory

MutexTimeout exception.

Debugging record
The getChildAtPoint() method is the entry point for proxy debugging for record. Any user action calls the

processMouseEvent() method, even before AUT sees the event. HCL OneTest™ UI processes the user actions, for

example whether the action is a click or drag and accordingly the method specification and arguments are generated.

For best results, use these methods to start inserting breakpoints.

Debugging playback
The getMappableChildren() method is the entry point for proxy debugging for playback. During proxy development,

most ObjectNotFound problems that occur result from a mismatch between the object hierarchy that the

record produces and the hierarchy produced during playback. Make sure that the getMappableParent() and

getMappableChildren() methods are symmetrical.

Implementing logs for proxy code debug
HCL OneTest™ UI provides a log infrastructure that you can use while debugging the developed proxy code. The

FTDebug class is available in both Java™ and .Net proxy development frameworks. You can instantiate an object of

the FTDebug class for each proxy class and log any information, warning, or error message categorically.

Before you begin

905

HCL OneTest™ UI

906

This example code shows how to implement logging for the proxy code in Java:

import com.rational.test.ft.util.FtDebug;
.
public class MyProxy extends BaseProxy
{
 protected static FtDebug debug = new FtDebug("myproxies");
 .
 void anyMethod()
 {
 debug.trace("Beginging of anyMethod()");
 .
 debug.verbose("I'm doing this!");
 .
 debug.warning("Not critical, good to have it fixed");
 .
 debug.error("I shouldn't have been here!!") ;
 .
 debug.trace("End of anyMethod()");
 }
}

This example code shows how to implement logging for the proxy code in .Net:

.
using Rational.Test.Ft.Util;
.
public class MyProxy : BaseProxy
{
 protected static FtDebug debug = new FtDebug("myproxies");
 .
 void anyMethod()
 {
 debug.Trace("Beginging of anyMethod()");
 .
 debug.Verbose("I'm doing this!");
 .
 debug.Warning("Not critical, good to have it fixed");
 .
 debug.Error("I shouldn't have been here!!") ;
 .
 debug.Trace("End of anyMethod()");
 }
}

In this example, a new instance of the FtDebug() class, called myproxies, is created. You can control the level of trace

information emitted during execution, using the Trace Components settings on the Logging and Tracing page.

Extending proxies for Flex custom controls

Main features of specific support for Flex custom control
You can extend support for testing Adobe® Flex application by using proxy SDK wizards.

Main features of specific support for Flex custom control are:

Chapter 7. Test Author Guide

• Control is mapped to a more meaningful proxy and test object.

• Roles can be assigned to the control.

• Recognition properties can be added.

• Data verification point and data driven test can be implemented.

• Recording is control specific. For example, you now record on the same control:

list_FlexCustomControl_FlexCustomControl1().select("Food");

• If the getMethodSpec method is not overridden to emit the methods as required then the events in the

superclass is generated as performAction().

• getTestObjectClassName method must be overridden to point to the correct test object.

Exemple

Example

For more information about specific support for Flex custom control, you must refer to the Flex custom control

samples topics in the information centre.

Flex custom control support for Proxy SDK wizard
HCL OneTest™ UI supports testing functional aspects of Adobe® Flex custom controls in a generic and specific

way. Proxies can be created and deployed using the proxy SDK wizard. Certain changes must be done regarding the

base class for proxy and the test object. These are given in the sample proxy and test object. Once the deployment

is done and the proxy is mapped to the control, you can test the specific control. You can extend HCL OneTest™ UI

capabilities by using the Proxy SDK wizard to test the Flex custom control.

Before you begin

• Copy the contents of ClassInfo tag in the FlexCustom.xml file available in the sample directory into the

FlexEnv.xml file in the bin directory of the product install.

• Create a file without extension in C:\WINDOWS\system32\Macromed\Flash\FlashPlayerTrust. Add

the path of the application directory into this file.

About this task

If you want to map a specific control to a proxy and have the data verification point and the dataset support, the

specific custom control support helps you achieve it. The basic requirements are:

1. You must write a delegate for the custom control and map the events and properties in the FlexEnv.xml file.

Delegate is an actionscript class which allows automation framework to understand the events from the

control. References are available in Flex Builder directory where a delegate exists corresponding to each

standard control. For more information see, Flex Data Visualization Developer's Guide in the Adobe site.

2. Creating a proxy project and a test object. Associate the proxy and the test object with the control for

which the proxy is written. The attached project has .jar containing the FlexCustomControlProxy and

FlexCustomControlObject.

3. You must map the proxy to the control in the *.rftcust file generated using the proxy SDK wizard.

907

HCL OneTest™ UI

908

Main features of specific support for Flex custom control:

About this task

• Control is mapped to a more meaningful proxy and test object. For example, FlexCustomControl control gets

mapped to FlexCustomControlProxy and FlexCustomControltestObject

• Role can be assigned to the control. For example, the given custom control has role “List? assigned to it.

• Recognition properties can be added.

• Data verification point and data driven test can be implemented.

• Recording is control specific. For example, you now record on the same control:

list__FlexCustomControl_FlexCustomControl1().select("Food");

• getMethodSpec method is overridden to emit the methods as required otherwise it goes to superclass and

event might be generated as performAction(). See FlexCustomControlProxy.java

• getTestObjectClassName method must be overridden to point to the correct test object.

Developing proxies using the Proxy SDK wizard
HCL OneTest™ UI proxy SDK supports wizard driven development of proxies. Proxy development life cycle stages

such as creating a proxy project, creating a proxy class, exporting the proxy packages and deploying these proxies is

done using the proxy wizards.

To use the proxy development wizard, you must have:

• Detailed understanding of the HCL OneTest™ UI framework.

• Knowledge of the controls for which proxies are created.

• Knowledge of Java programming based on the proxy framework.

HCL OneTest™ UI Proxy SDK wizard supports developing proxies for Flex, Eclipse and Java technologies

Creating a proxy project
The HCL OneTest™ UI proxy SDK supports wizard driven proxy development. This wizard helps you create a new proxy

project in the work area. Proxy classes that are developed will be stored in this proxy project container. When a proxy

project is created, an entry class for that proxy is created. For example, proxyproject.rftcust is created in the proxy

project folder.

Before you begin

To use the proxy development wizard, you must switch to the Java perspective.

About this task

To create a proxy project:

1. Click File > New > Other.

2. In the Select a wizard dialog box, expand Functional Test > Proxy Development, and double-click Proxy

Project; then click Next.

Chapter 7. Test Author Guide

3. Type the project name in the Project name field.

4. You can browse to the folder and save the project in an appropriate location.

Creating a proxy class
Proxy classes that you develop are stored in the proxy project container. You must use proxy-class wizard

development to create a proxy framework. The proxy writer must provide the logic for the proxy. For example, you

must enter the logic for the methods and interfaces for the proxy to recognize the controls.

Before you begin

To use the proxy-development wizard to create a proxy class, you must switch to the Java perspective.

About this task

To create a proxy class:

1. Click File > New > Other.

2. In the Select a wizard dialog box, expand Functional Test > Proxy Development, and double-click Proxy Class;

then click Next.

Result

The FT Proxy Creation window opens.

3. In the Source folder field, type the source folder name for the new class. You can also click Browse to select a

new source folder.

4. In the Package field, type a valid package name. You can also click Browse to select a package. Package

names are updated and can be accessed subsequently while creating a new proxy class.

5. Required: In the Proxy Class Name field, type a valid proxy class name.

6. Required: In the Control Class Name field, type a valid class name for the control for which you are developing

the proxy. The class name must be a valid name with the package information in it.

7. In the Domain Name list, Java is selected as the default domain. Use the default selection.

8. Optional: Select a method stub that you want to create, and select the access modifiers for the new class.

9. Type a valid class name in the Superclass field. You can also click Browse to select a superclass for this

class. You can use superclasses to extend proxies. You can extend proxies by using the existing proxy

classes.

10. Optional: Click Add to choose interfaces that the new class implements; then click Finish.

Result

Note: If you want to select a feature method for a proxy, click Next. The Proxy Feature Page window

opens.

11. Optional: In the Available Methods section, select the feature to add to the proxy. For example, click

Recording, and expand the recording tree. Feature methods that pertain to the recording features are

displayed. Select the method to add.

Result

909

HCL OneTest™ UI

910

Tip: To select all the available methods, click Select All.

12. Click Finish.

Result

A proxy class is created in the proxy project.

Exporting proxy packages
You can use the export wizard to export resources to an archive file. The components that must be deployed are

bundled in a file.The deployable assets are exported to the target location. You can select the required proxy package

items to export and save the items in the target location. These assets can be used later in different computers. For

example, the .rftcfgjar file can be deployed to computers that run the Microsoft Windows operating systems.

Before you begin

To use the proxy development wizard, you must switch to the Java perspective.

About this task

To export the resources to an archive file:

1. Click File > Export.

Result

The Export wizard opens.

2. Click Functional Test > Functional Test configuration/customization to a JAR file, and then click Next.

3. Select the proxy package to export. In the File text field, type the file name. You can also click Browse to select

the destination path.

4. Click Finish.

Result

The .rftcfgjar file is exported to the specified location.

Importing proxy packages
The import wizard imports the proxy package to the customization directory of HCL OneTest™ UI. The import wizard

displays the proxy items that are available in the proxy package. You can import these items into HCL OneTest™ UI or

any computer.

Before you begin

To use the proxy development wizard, you must switch to the Java perspective. You must also have an archived proxy

package from which to import.

About this task

To import items from an archive file:

1. Click File > Import.

Result

Chapter 7. Test Author Guide

The Import wizard opens.

2. Click Functional Test > Functional Test configuration and customization items, and then click Next.

Result

The Import configuration items window opens.

3. In the Import from field, browse for the archive file in the file system.

Result

The Select the items to be imported window opens.

4. The items that the archive file contains are displayed in the Select the items to be imported window. Select

the items to import, and click Finish.

Result

The selected items are displayed in HCL OneTest™ UI.

Proxy project creation wizard
This wizard helps you create a new proxy project in the work area. When you first open the New Project wizard, you

need to select the type of project you want to create. To assist in locating a particular wizard, the text field can be

used to show only the wizards that match the entered text.

The following fields must be typed to create a proxy project using the proxy wizard:

• Project name

• Location

• Finish

Project name

Type the name of the new proxy project that you want to create.

Location

Type the location of the new proxy project that you want to create.

Finish

Save the changes and close the proxy project creation wizard.

Proxy class creation wizard
The New Proxy Class wizard helps you to create a new proxy class in an existing proxy project. This wizard creates a

proxy stub. The proxy writer provides the logic for the proxy. For example, you must specify the logic for the methods

and interfaces to modify the existing behavior of HCL OneTest™ UI.

Table 38. Proxy Creation window

Option Description Default

Source folder Specify a source folder for the new proxy class. Ei

ther type a valid source folder path or click Browse

to select a source folder via a dialog.

The source folder of the ele

ment that was selected when

the wizard started.

911

HCL OneTest™ UI

912

Table 38. Proxy Creation window (continued)

Option Description Default

Package Specify a package to contain the new class. Either

type a valid package name or click Browse to select

a package.

The package of the element

that was selected when the

wizard started.

Proxy Class Name Type a valid name for the new proxy class. No default name is provided.

Control Class Name Type a valid control class name for the proxy being

developed, for example, java.awt.Button.

No default name is provided.

Modifiers Select one or more access modifiers for the new

class. Choose public, default, private, protected,

abstract, final, static. Note that private, protected,

and Static are available only if you specify an en

closing type.

public

Superclass Type the name of a superclass or click Browse to

select a superclass for this class.

The type (not the compila

tion unit) that was selected

when the wizard started or

java.lang.Object

Interfaces Click Add to choose interfaces that the new class

implements.

No interfaces are selected by

default.

Which method stubs would

you like to create?

Choose the method stubs to create in this class:

• Public static void main(String [] args) adds

a main method stub to the new class.

• Constructors from superclass copies the

constructors from the superclass of the

new class and adds these stubs to the new

class.

• Inherited abstract methods adds to the new

class stubs of any abstract methods from

superclasses or methods of interfaces that

need to be implemented.

Inherited abstract methods

enabled.

Table 39. Proxy Feature Page window

Option Description
De

fault

Available Meth

ods

Methods pertaining to particular features such as Recording , Playback are displayed in

this section.

blank

Chapter 7. Test Author Guide

Exporting proxy items
This wizard helps you to archive and export proxy items to a destination folder.

The export wizard presents three tasks:

• Select items to export

• File

• Finish

Select items to export

Select proxy project items to archive.

File

The .rftcfgjar file is exported to the file location specified in this field.

Finish

Save the changes and close the export wizard.

Importing proxy items
This wizard displays the proxy items in the archive file and helps you select the proxy items and deploy those items in

an existing project.

The Import configuration items window contains the Import from field. Specify the file from which you want to import

proxy items. Type the full path or browse to select the path on the file system.

The Select the items to be imported window contains these elements:

Select items to import

Select the proxy items from the proxy package to import in your project.

Finish

Save the changes and close the import wizard.

TestObjects
TestObjects are the script-side interfaces for proxies and application under test (AUT) controls. A TestObject is

a connection point between the test script and a ProxyObject that connects to the real object in the AUT. During

recording, statements are recorded and objects are added to the Object Map. The script uses the information from

the Object Map to construct and find TestObjects.

For example, if you record Button().click(), the Button() method finds an object that is based on the mapped

properties and binds the TestObject to an object in the AUT. This binding is required to query information from the

actual object, such as asking the button directly where it is on the screen. Then, the click() method is executed and

the TestObject is unregistered, which releases the connection to the actual object in the AUT. Using TestObjects from

the map in this manner manages the lifetime of the object automatically.

913

HCL OneTest™ UI

914

TestObjects are exposed to the scripting side based on which proxy it is mapped to. You must specify the proxy

and TestObject mapping so that when a control is exposed to the script, the control is exposed as the TestObject

that is specified in the mapping. You can create the mapping between a proxy and TestObject by overriding

getTestObjectClassName() method on any proxy. If you want to change the TestObject that is mapped to a proxy,

override the getTestObjectClassName() API to return the canonical name that is specified in the customization file.

Role of a TestObject
TestObjects are wrapper classes to proxies for TestScripts. A control is exposed as a Java™ or C# object to

TestScripts through TestObjects. TestObjects are implemented in both Java and C#, because HCL OneTest™ UI

supports using both Java and Visual Basic .Net as the test-script language. If you use Visual Basic .Net scripts,

TestObjects that are implemented in C# are used. For Java scripts, TestObjects that are implemented using Java are

used.

TestObjects forward method calls to the respective proxy using the InvokeProxy method, as shown in the following

example. The method is actually implemented in the proxy.

Exemple

public virtual void PerformClick() {
InvokeProxy("performClick");
}

public void Click(Rational.Test.Ft.Script.Index subitem) {
InvokeProxyWithGuiDelay("click", "(L.script.Index;)", new System.Object[]{subitem});
}

In this example, the "PerformClick()" method of TestObject calls the performClick() method of the proxy. The proxy

carries out the actual playback operation of performClick().

Adding a new TestObject
You can add a new TestObject when there are no TestObjects with the method that you want to expose for a control,

available within the set of predefined TestObjects provided by HCL OneTest™ UI. For example, you can expose any

button control as GuiTestObject() and operations such as click() and doubleClick() are defined as methods in it.

You can create a new TestObject if you want to introduce a new method call such as myClick(), which is not defined

in any of the existing TestObjects.

Before you begin

Note: Proxies are developed either in Java™ or in C#. However, you must implement TestObjects for proxies in

both Java and C#, because they are just wrappers to proxies in both Java and Visual Basic .Net scripts. When

you add a new custom TestObject, ensure that you define the Java implementation of the TestObject. This is

required even if you use VS.NET IDE for creating functional test scripts.

About this task

To add a new TestObject:

Chapter 7. Test Author Guide

1. Create the constructors for the TestObject.

Note: Every TestObject must have five standard constructors. New methods that are defined follow

these constructors.

2. Define new canonical names for the TestObject in the customization file.

You must specify two entries for every canonical name for both Java and .NET TestObjects in the

customization file, because they are developed in both Java and .NET.

3. Map the proxies to the newly created TestObject.

4. Build the TestObject binary files.

You can group all the Java TestObject binary files in a single JAR file and the .NET TestObjects in a

single .NET assembly.

5. Deploy the TestObject binary files by copying the files to the HCL OneTest™ UI customization directory, C:

\ProgramData\HCL\HOTUI\customization.

6. Restart HCL OneTest™ UI.

What to do next

After successfully developing and deploying the TestObject binary files, the Administrative properties of the newly

recorded controls, for which you created new TestObjects show the new TestObject names under Test Object Class

Name.

Examples: Adding a new TestObject
This example explains how to add a new TestObject.

About this task

To create, build, and deploy the TestObject:

1. Create the constructors for the TestObject.

This example code shows the Java™ TestObject:

package sdk.sample;

import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.TestObjectReference;
import com.rational.test.ft.object.map.SpyMappedTestObject;

public class ExtendedGuiTestObject extends GuiTestObject{

 // FIVE Standard Contructors, has to be defined in every new TestObject

 public ExtendedGuiTestObject(SpyMappedTestObject mappedObject)
 {
 super(mappedObject);
 }

915

HCL OneTest™ UI

916

 public ExtendedGuiTestObject(SpyMappedTestObject mappedObject, TestObject anchor)
 {
 super(mappedObject, anchor);
 }

 public ExtendedGuiTestObject(SpyMappedTestObject mappedObject,
 TestObject anchor,
 long scriptCommandFlags)
 {
 super(mappedObject, anchor, scriptCommandFlags);
 }

 public ExtendedGuiTestObject(TestObjectReference ref)
 {
 super(ref);
 }

 public ExtendedGuiTestObject(TestObject obj)
 {
 super(obj);
 }

 // Newly added Method for this TestObejct, just a call forwarder using invokeProxy API

 public void performClick()
 {
 invokeProxy("performClick");
 }
}

This example code shows the .Net TestObject:

using TestObjectReference = Rational.Test.Ft.Object.TestObjectReference;
using Rational.Test.Ft.Object.Interfaces;
using Rational.Test.Ft.Object.Manager;
using Rational.Test.Ft.Object.Map;

namespace SDK.Sample
{

 public class ExtendedGuiTestObject:GuiTestObject
 {
 // FIVE Standard Contructors, has to be defined in every new TestObject
 public ExtendedGuiTestObject(SpyMappedTestObject mappedObject):base (mappedObject) {
 }

 public ExtendedGuiTestObject(SpyMappedTestObject mappedObject, TestObject anchor)
 :base (mappedObject, anchor){
 }

 public ExtendedGuiTestObject(SpyMappedTestObject mappedObject, TestObject anchor,
 long scriptCommandFlags):base (mappedObject, anchor, scriptCommandFlags) {
 }

 public ExtendedGuiTestObject(TestObjectReference ref_Renamed):base (ref_Renamed) {

Chapter 7. Test Author Guide

 }

 public ExtendedGuiTestObject(TestObject obj):base (obj) {
 }

 // Newly added Method for this TestObejct, just a call forwarder using InvokeProxy API

 public virtual void PerformClick() {
 InvokeProxy("performClick");
 }
 }
}

2. Define new canonical names for the TestObject in the customization file.

This example shows how you can define new canonical names for a TestObject:

<?xml version="1.0" encoding="UTF-8"?>
<ConfigFile L=".ConfigFile">
 <Section L=".ConfigFileSection">
 <Name>proxies</Name>
 <Val L=".ProxyManager">
 <DomainImplementation L=".DomainImplementation">
 <Name>Net</Name>
 <Obj L=".Proxy">
 <ClassName>[NETProxyExtension]SDK.Sample.TestButtonProxy</ClassName>
 <Replaces/>
 <UsedBy>Rational.Controls.CustomButton</UsedBy>
 </Obj>
 </DomainImplementation>
 </Val>
 </Section>
 <Section L=".ConfigFileSection">
 <Name>testObjects</Name>
 <Val L=".TestObjectManager">
 <ComponentModel L=".ComponentModel">
 <Name>Java</Name>
 </ComponentModel>
 <ComponentModel L=".ComponentModel">
 <Name>Net</Name>
 <Obj L=".TestObject">
 <CanonicalName>ExtendedGuiTestObject</CanonicalName>
 <TestObject>[NETProxyExtension]SDK.Sample.ExtendedGuiTestObject</TestObject>
 </Obj>
 </ComponentModel>
 <ComponentModel L=".ComponentModel">
 <Name>Java</Name>
 <Obj L=".TestObject">
 <CanonicalName>ExtendedGuiTestObject</CanonicalName>
 <TestObject>sdk.sample.ExtendedGuiTestObject</TestObject>
 </Obj>
 </ComponentModel>
 </Val>
 </Section>
</ConfigFile>

3. Map proxies to the newly created TestObject.

917

HCL OneTest™ UI

918

This example shows the Java proxy source overriding getTestObjectClassName() method:

import com.rational.test.ft.domain.*;
.
.
public String getTestObjectClassName()
{
 return "ExtendedGuiTestObject"; // the canonical name for the newly created testObject
}

This example shows the .Net proxy overriding GetTestObjectClassName() method:

using Rational.Test.Ft.Domain;.
.
public override System.String GetTestObjectClassName()
{
 return "ExtendedGuiTestObject"; // the canonical name for the newly created testObject
}

4. Build the TestObject binary files.

5. Deploy the TestObject binary files by copying the files to the HCL OneTest™ UI customization directory, C:

\ProgramData\HCL\HOTUI\customization.

6. Restart HCL OneTest™ UI.

Mapping proxies to TestObjects
You can extend a proxy so that HCL OneTest™ UI uses a different a TestObject to provide a suitable interface on the

scripting side.

Before you begin

Note: HCL OneTest™ UI contains a set of TestObjects with predefined methods that you can reuse while

creating new proxies. HCL OneTest™ UI defined TestObjects have canonical names that are associated

with them. For the complete list of predefined TestObjects and their associated canonical names, see the

com.rational.test.ft.domain.ProxyTestObject or Rational.Test.Ft.Domain.ProxyTestObject members.

Canonical names are string names for fully qualified TestObject class names.

You can extend the proxy methods that are listed in Table 40: Extensible methods for mapping proxies to TestObjects

on page 918:

Table 40. Extensible methods for mapping proxies to TestObjects

Java .Net

String getTestObjectClass

Name()

String GetTestObjectClass

Name()

Chapter 7. Test Author Guide

The GetTestObjectClassName() returns the canonical name of the TestObject that needs to be mapped for a proxy. The

TestObject can be either a new or existing TestObject.

The following Java™ sample returns the canonical name of the TestObject as TOGGLEGUITESTOBJECT_CLASSNAME:

Exemple

import com.rational.test.ft.domain.*;

public class someProxy extends baseProxy
{
 .
 .
 public String getTestObjectClassName()
 {
 return ProxyTestObject.TOGGLEGUITESTOBJECT_CLASSNAME;
 }
 .
 .
}

The following .Net sample returns the canonical name of the TestObject as TOGGLEGUITESTOBJECT_CLASSNAME:

using Rational.Test.Ft.Domain;

public class AnyProxy:BaseProxy
{
 .
 .
 .
 public override String GetTestObjectClassName()
 {
 return ProxyTestObject.TOGGLEGUITESTOBJECT_CLASSNAME;
 }
 .
 .

}

What to do next

After successfully developing and deploying this proxy code, the control that is being recorded is mapped to the new

TestObject. You can verify this by looking at the TestObjectName property under Administrative properties of the

TestObject.

ProxyObject hierarchy
While developing new proxies by extending existing proxies for any domain, it is important to understand the existing

proxies and the hierarchies, so that you extend the right proxy.

For more information on methods and properties of proxy classes, see Proxy API reference.

919

HCL OneTest™ UI

920

Identifying the control under test
The first task for a functional testing tool is to identify the control under test and represent it in the application under

test (AUT). HCL OneTest™ UI identifies that a control is using recognition properties and the hierarchy, and represents

it in the TestObject Map. Recognition properties and hierarchy might vary for different controls. The proxy developed

for a control provides this information to HCL OneTest™ UI. While developing new proxies you are going to inherit the

base proxies in each domain. Usually you will not override these methods, because they are already implemented in

the base proxies.

Recognition properties

You can use the methods that are listed in Table 41: Extensible methods for specifying recognition

property on page 920 to specify recognition properties and weight for a control.

Note: You can also specify recognition properties and weight using the Object Library.

Table 41. Extensible methods for specifying recognition property

Java .Net

Hashtable getRecognitionProperties() Hashtable GetRecognitionProperties()

int getRecognitionPropertyWeight(String property

Name)

int GetRecognitionPropertyWeight(String property

Name)

Hierarchy

You can use the methods that are listed in Table 42: Extensible methods for specifying hierarchy on

page 920 to specify the hierarchy of a control.

Note: Typically, these methods are implemented in the base proxy classes and you may not

need to extend.

Table 42. Extensible methods for specifying hierarchy

Java .Net

getParent() GetParent()

getTopParent() GetTopParent()

getChildren() GetChildren()

Object getChildAtPoint(Point

pt)

Object GetChildAtPoint(Point

pt)

getOwner() GetOwner()

getOwnedObjects() GetOwnedObjects()

Chapter 7. Test Author Guide

Defining
You can use the methods that are listed in Table 43: Extensible methods for changing administrative characteristics

on page 921 to change the administrative characteristics of a control, for example icons or descriptive names.

Table 43. Extensible methods for changing administrative

characteristics

Java .Net

String getTestObjectClass

Name()

String GetTestObjectClass

Name()

String getDescriptiveName() String GetDescriptiveName()

String getUniqueId() String GetUniqueId()

boolean shouldBeMapped() bool ShouldBeMapped()

String getRole() String GetRole()

String getObjectClassName() String GetObjectClassName()

Recording
HCL OneTest™ UI records the user actions performed on a control when the recorder is on. These user actions can

be grouped as mouse interactions and keyboard interactions. You can use the methods that are listed in Table 44:

Extensible methods for recording on page 921 for recording.

Table 44. Extensible methods for recording

Java .Net

void processMouseEvent(IMouseActionInfo action) void ProcessMouseEvent(IMouseActionInfo action)

void processPreDownMouseEvent(IMouseActionInfo ac

tion)

void ProcessPreDownMouseEvent(IMouseActionInfo ac

tion)

void processPreUpMouseEvent(IMouseActionInfo ac

tion)

void ProcessPreUpMouseEvent(IMouseActionInfo ac

tion)

void processPostUpMouseEvent(IMouseActionInfo ac

tion)

void ProcessPostUpMouseEvent(IMouseActionInfo ac

tion)

void processHoverMouseEvent(IMouseActionInfo ac

tion)

void ProcessHoverMouseEvent(IMouseActionInfo ac

tion)

getScriptCommandFlags() GetScriptCommandFlags()

Vector getSubItems() ArrayList GetActionArgs(Point pt)

Rectangle getRectangle(SubItem) SubItem FindSubItem(Point pt)

921

HCL OneTest™ UI

922

Playback
You can use the methods that are listed in Table 45: Extensible methods for playback on page 922 to find the

screen rectangle or point for a SubItems.

Note: Typically, you do not need to extend these methods unless you introduce new SubItems.

Table 45. Extensible methods for playback

Java .Net

Rectangle getScreenRectangle(Sub

Item)

Point GetPointForSubItem(Sub

Item)

Verification points
You can add more datatypes and properties to a control.

Data verification

You can use the methods that are listed in Table 46: Extensible methods for adding datatypes on

page 922 to add more datatypes to a control.

Table 46. Extensible methods for adding datatypes

Java .Net

Hashtable getTestData

Types()

Hashtable GetTestDataTypes()

ITestData getTestData(String) ITestData GetTestData(string testData

Type)

Property verification

You can use the methods that are listed in Table 47: Extensible methods for adding properties on

page 922 to add more properties to a control.

Table 47. Extensible methods for adding properties

Java .Net

Hashtable gerProperties() Hashtable GerProperties()

object getProperty(String) object GetProperty(string)

Data driving
You can use the methods that are listed in Table 48: Extensible methods for data driving on page 923 to specify the

method that should be used for data driving.

Chapter 7. Test Author Guide

Table 48. Extensible methods for data driving

Java .Net

MethodSpecification getDataDrivableCom

mand

MethodSpecification GetDataDrivableCom

mand

Reflection Support
You can use the reflection support that Java™ and .Net provide from the test script. With APIs such as getMethods()

and Invoke(), you can access information about methods on the underlying object to use in remote invocation. This

information includes method name and signature. You can use the methods that are listed in Table 49: Extensible

methods for reflection support on page 923 for reflection support.

Table 49. Extensible methods for

reflection support

Java .Net

getMethods() GetMethods()

invoke() Invoke()

getNonValueProper

ties()

The getNonValueProperties() method returns the properties that are not supported because the value is a reference

to an object that can not be serialized across process boundaries. These properties can still be accessed using the

getProperty() methods. If such a property is returned to the test script, it is returned as a TestObject containing a

reference to the object in the AUT. The test script must call the TestObject method unregister() to release the object.

Java domain proxy hierarchy
There are three types of Java™ controls. The Abstract Window Toolkit (AWT), Swing or Java Foundation Class (JFC),

and Standard Widget Toolkit (SWT), or Eclipse controls. HCL OneTest™ UI supports testing all three types of controls

under Java UI frameworks. For the complete list of Java controls that are mapped to individual proxies, see the

rational_ft.rftcust file in C:\Program Files\HCL\HCLOneTest\FunctionalTester\bin. This file can help you understand

of what proxy to inherit to create a new proxy for a control under the Java domain.

You can extend these key base proxies for the Java domain:

• JavaProxy

• JavaGuiProxy

• ComponentProxy and JComponentProxy

• JfcGraphicalSubItemProxy and ScrollableSwtGraphicalSubItemProxy

923

HCL OneTest™ UI

924

JavaProxy

The JavaProxy proxy is the base proxy for all Java domain proxies. Fundamental Java object operation

methods such as getProperties() and getMethods() are all implemented in this proxy.

JavaGuiProxy

The JavaGuiProxy proxy is the base proxy for all Java user interface (UI) elements. This proxy

implements the IGraphical interface, which has methods for performing UI actions, such as click,

double-click, drag, and recording methods.

ComponentProxy and JComponentProxy

The ComponetProxy proxy is implemented for AWT components and JComponentProxy for

JFC at the same level of the hierarchy. Methods such as getChilderen(), getParent(), getOwner(),

getOwnedObjects(), and getMethods() are implemented in these proxies specific to the components.

JfcGraphicalSubItemProxy and ScrollableSwtGraphicalSubItemProxy

The JfcGraphicalSubItemProxy proxy is implemented for JFC and ScrollableSwtGraphicalSubItemProxy

for SWT at the same level of the hierarchy. They provide recording and playback of methods with

SubItems. When a control contains different parts then the proxy for that control can be inherited from

this proxy.

Proxy hierarchy for AWT controls
The following figure is a class diagram of the proxy hierarchy for AWT controls:

Chapter 7. Test Author Guide

Proxy hierarchy for Swing or JFC controls
The following figure is a class diagram of the proxy hierarchy for Swing or JFC controls:

925

HCL OneTest™ UI

926

Chapter 7. Test Author Guide

Proxy hierarchy for SWT controls
The following figure is a class diagram of the proxy hierarchy for SWT controls:

927

HCL OneTest™ UI

928

Chapter 7. Test Author Guide

.Net domain proxy hierarchy
There are four key base proxies that you can extend to create new proxies for a control in the .Net domain. They are

ObjectProxy, ComponentProxy, ControlProxy, and ControlWithSubobjectsProxy.

ObjectProxy

The ObjectProxy proxy is the base proxy for .Net domain proxies. By default it is mapped to

System.Object class objects. It contains the default implementation of various base class methods,

such as GetChildren(), GetMappableChildren(), and GetRecognitionProperties(). This is a non-UI proxy. If

your control is derived from the System.Object class, then you can inherit the proxy for the control from

ObjectProxy.

ComponentProxy

The ComponentProxy proxy is the base class for dealing with objects derived from

System.ComponentModel.Component. This proxy implements TestObject methods such as GetParent()

and GetMappableChildren().

ControlProxy

By default, any .Net control that you derive from the System.Windows.Forms class is mapped to the

ControlProxy proxy. It provides both coordinates-based record and playback support for mouse actions

such as click, drag, and hover. It also provides support for properties verification point, scrolling object,

and object related point into view.

ControlWithSubobjectsProxy

The ControlWithSubobjectsProxy proxy implements basic functionalities for container controls

such as Form and UserControl. This proxy also provides support for controls with parts that can be

clicked and addressed, for example DataGrid control that has SubItem Cell and header. In addition, the

ControlWithSubobjectsProxy provides support for record and playback for scrollbar SubItem, scrolling

for SubItem in the control and SubItem in nested ScrollablControl parent.

Proxy hierarchy for .Net controls
The following figure is a class diagram of the proxy hierarchy for .Net controls:

929

HCL OneTest™ UI

930

Chapter 7. Test Author Guide

TestObject class diagram and canonical names
HCL OneTest™ UI has a predefined set of TestObjects that are hierarchically grouped and each TestObject has a set of

predefined methods.

The following class diagram shows all the TestObjects that are available with HCL OneTest™ UI and their

relationships.

931

HCL OneTest™ UI

932

Canonical names
Canonical names are short string names for fully qualified TestObject class names. If you want to change the

TestObject that is mapped to a proxy, you must override the getTestObejctClassName() API to return the canonical

Chapter 7. Test Author Guide

name that the customization file specifies. The complete list of canonical names for TestObjects that HCL OneTest™

UI defines are declared as member variables to the com.rational.test.ft.domain.ProxyTestObject class for Java™

and the Rational.Test.Ft.Domain.ProxyTestObject class for .NET.

Canonical member variables

The ProxyTestObject for both Java and .Net implementations define the following canonical member variables:

BROWSERTESTOBJECT_CLASSNAME = "BrowserTestObject";
DOCUMENTTESTOBJECT_CLASSNAME = "DocumentTestObject";
DOMAINTESTOBJECT_CLASSNAME = "DomainTestObject";
FILEDIALOGTESTOBJECT_CLASSNAME = "FileDialogTestObject";
FRAMETESTOBJECT_CLASSNAME = "FrameTestObject";
GUISUBITEMTESTOBJECT_CLASSNAME = "GuiSubitemTestObject";
GUITESTOBJECT_CLASSNAME = "GuiTestObject";
INTERNALFRAMETESTOBJECT_CLASSNAME = "InternalFrameTestObject";
PROCESSTESTOBJECT_CLASSNAME = "ProcessTestObject";
SCROLLTESTOBJECT_CLASSNAME = "ScrollTestObject";
SCROLLSUBITEMTESTOBJECT_CLASSNAME = "ScrollGuiSubitemTestObject";
STATELESSGUISUBITEMTESTOBJECT_CLASSNAME = "StatelessGuiSubitemTestObject";
SUBITEMTESTOBJECT_CLASSNAME = "SubitemTestObject";
TESTOBJECT_CLASSNAME = "TestObject";
TEXTGUITESTOBJECT_CLASSNAME = "TextGuiTestObject";
TEXTGUISUBITEMTESTOBJECT_CLASSNAME = "TextGuiSubitemTestObject";
TEXTSCROLLTESTOBJECT_CLASSNAME = "TextScrollTestObject";
TEXTSELECTGUISUBITEMTESTOBJECT_CLASSNAME = "TextSelectGuiSubitemTestObject";
SELECTGUISUBITEMTESTOBJECT_CLASSNAME = "SelectGuiSubitemTestObject";
SELECTSCROLLGUISUBITEMTESTOBJECT_CLASSNAME = "SelectScrollGuiSubitemTestObject";
TOGGLEGUITESTOBJECT_CLASSNAME = "ToggleGUITestObject";
TOGGLETESTOBJECT_CLASSNAME = "ToggleTestObject";
TOPLEVELTESTOBJECT_CLASSNAME = "TopLevelTestObject";
TOPLEVELSUBITEMTESTOBJECT_CLASSNAME = "TopLevelSubitemTestObject";
TRACKBARTESTOBJECT_CLASSNAME = "TrackbarTestObject";
CROSSDOMAINCONTAINER_CLASSNAME = "CrossDomainContainer";
EMBEDDEDBROWSERTESTOBJECT_CLASSNAME = "EmbeddedBrowserTestObject";
FRAMESUBITEMTESTOBJECT_CLASSNAME = "FrameSubitemTestObject";

SubItems
SubItems are part of TestObjects. The ObjectMap does not contain the SubItems, because they are not mapped.

Some examples of SubItems follow:

• Menu object has MenuItem as Subitem

• List object has ListItem as Subitem

• Tree object has TreeNode as Subitem

• Table object has cell, row and column as Subitem

Class diagram

The following class diagram shows all the SubItems and their relationships that HCL OneTest™ UI provides.

933

HCL OneTest™ UI

934

List of SubItems

Table Table 50: SubItems on page 935 lists all SubItems and their descriptions:

Chapter 7. Test Author Guide

Table 50. SubItems

SubItem Description

Area(a) Specifies an independent clickable area within an HTML Image map. The

nested SubItem (a) can be a point or an Index.

Cell(c, r) Specifies a cell within a table. The nested SubItems (c and r) must be a

column and a row respectively.

Column(s) Specifies a column within a table by the text of a row label (s).

Column(n), Column(k, v) Specifies a column within a table by index.

Column(k1, v1, k2, v2) Specifies a column within a table by key value pair or pairs. This SubItem

supports up to three pairs.

File(d, f) Specifies a file within a directory that the AWT file dialog proxy uses.

Header(c) Specifies a header within a table. The nested SubItem (h) must be a col

umn.

Href(s) Matches the first SubItem that has the specified HREF within the object

or SubItem.

Id(n) Matches the first SubItem that has the specified ID within the object or

SubItem.

Index(n) The nth SubItem within an object or SubItem.

List(...) An ordered sequence of SubItems. Each item indicates a further SubItem

within the previous SubItem.

Location(s) Matches the first SubItem that has the specified named location within

the object or SubItem. A location name must be unique within the parent.

Name(s) Matches the first SubItem that has the specified name within the object

or SubItem.

Name(s, n) Matches the nth SubItem that has the specified name within the object

or SubItem. The count (n) is based on zero (0).

Path(s) A string encoding of a List that is used to make the script more read

able. The SubItems in the list must be Text or Index and the final SubItem

can optionally be one of several locations. The index is encoded as at

Index(n) and each item in the encoded list is separated by the charac

ters ->. A path is transformed to a list and the proxies are never aware of

these.

Point(x, y) Relative coordinates within the object or SubItem.

Position(n) Specifies a position on a SubItem, typically a splitter or frame.

Row(s) Specifies a row within a table by the text of a column header or headers.

935

HCL OneTest™ UI

936

Table 50. SubItems (continued)

SubItem Description

Row(n), Row(k, v) Specifies a row within a table by index.

Row(k1, v1, k2, v2) Specifies a row within a table by key value pair or pairs. This SubItem

supports up to three pairs

Separator(n) Matches the nth separator in a menu or toolbar. The count (n) is 0-based.

Text(s) Matches the first SubItem that has the specified text within the object or

SubItem.

Text(s, n) Matches the nth SubItem that has the specified text within the object or

SubItem. The count (n) is 0-based.

TextPosition(n) Matches the first SubItem that has the specified text position within the

object or SubItem.

Value(v) Matches the first SubItem that has the specified value within the object

or SubItem.

SubItem values

The following table contains the list of SubItem values which are defined as members to

com.rational.test.ft.script.Location for Java and Rational.Test.Ft.Script.Location for .NET.

Table 51. SubItem values

Constant Value

ARROW "ARROW"

BACK_BUTTON "BACK_BUTTON"

BACKGROUND "BACKGROUND"

BOTTOM_EDGE "BOTTOM_EDGE"

CAPTION "CAPTION"

CHECKBOX "CHECKBOX"

CLOSE_BUTTON "CLOSE_BUTTON"

CONTEXTHELP_BUTTON "CONTEXTHELP_BUTTON"

DROPDOWN "DROPDOWN"

IME_BUTTON "IME_BUTTON"

LEFT_EDGE "LEFT_EDGE"

MAXIMIZE_BUTTON "MAXIMIZE_BUTTON"

Chapter 7. Test Author Guide

Table 51. SubItem values (continued)

Constant Value

MINIMIZE_BUTTON "MINIMIZE_BUTTON"

MONTH "MONTH"

PARENTROWS "PARENTROWS"

PLUS_MINUS "PLUS_MINUS"

POPUP "POPUP"

RIGHT_EDGE "RIGHT_EDGE"

SCROLL_DOWN "SCROLL_DOWN"

SCROLL_DOWNBUTTON "SCROLL_DOWNBUTTON"

SCROLL_ELEVATOR "SCROLL_VERTICAL_ELEVATOR"

SCROLL_HORIZONTAL_ELEVATOR "SCROLL_HORIZONTAL_ELEVATOR"

SCROLL_LEFT "SCROLL_LEFT"

SCROLL_LEFTBUTTON "SCROLL_LEFTBUTTON"

SCROLL_MAXBUTTON "SCROLL_MAXBUTTON"

SCROLL_MINBUTTON "SCROLL_MINBUTTON"

SCROLL_RIGHT "SCROLL_RIGHT"

SCROLL_RIGHTBUTTON "SCROLL_RIGHTBUTTON"

SCROLL_UP "SCROLL_UP"

SCROLL_UPBUTTON "SCROLL_UPBUTTON"

SCROLL_VERTICAL_ELEVATOR "SCROLL_VERTICAL_ELEVATOR"

SHOWHIDE_BUTTON "SHOWHIDE_BUTTON"

SYSTEM_MENU "SYSTEM_MENU"

THUMB "THUMB"

TODAY "TODAY"

TOP_EDGE "TOP_EDGE"

YEAR "YEAR"

Value classes and value managers
The following code examples show several value classes and value managers.

937

HCL OneTest™ UI

938

Value classes

A value class is a Java™ or .Net class containing data that is useful to interact with. An instance of a value class can

persist and can be compared to other instances of the same class. This is a basic capability of all value classes.

This example code shows a Java value class:

package sdk.sample.value;

public class SimpleValue
{
 String data = null;
 public SimpleValue(String data)
 {
 this.data = data;
 }
 public String getValue()
 {
 return this.data;
 }
 public String toString()
 {
 return "SimpleValue("+data+")";
 }
}

This example code shows a .Net value class:

using System;

namespace SDK.Sample.Value
{

 public class SimpleValue
 {
 private String data = null;

 public SimpleValue(String data)
 {
 this.data = data;
 }
 public String GetValue()
 {
 return this.data;
 }
 public override String ToString()
 {
 return "SimpleValue("+data+")";
 }
 }

}

Chapter 7. Test Author Guide

Value Managers

Value managers interact with value classes so that value class objects can be serialized and compared and made to

persist. Value manager classes can be dynamically added to the set of supported managers. After a new manager

has been registered, any property of the newly supported value class is automatically expressed in the set of

properties associated with a test object.

This example code shows a Java value manager:

package sdk.sample.value;

import com.rational.test.ft.value.managers.*;

public class SimpleValueManager implements IManageValueClass, IStringTableLookup
{
 private static final String CLASSNAME = "sdk.sample.value.SimpleValue";
 private static final String CANONICALNAME = ".simple_value";

 private static final String DATA = "Data";

 public void persistOut(Object theObject, IPersistOut persist,
 IAuxiliaryDataManager auxData)
 {
 SimpleValue simple = (SimpleValue)theObject;
 persist.write(DATA, simple.getValue());
 }

 public Object persistIn(IPersistIn persist,
 IAuxiliaryDataManager auxData)
 {
 String data = (String)persist.read(0);
 return new SimpleValue(data);
 }

 public Object persistIn(IPersistInNamed persist,
 IAuxiliaryDataManager auxData)
 {
 String data = (String)persist.read(DATA);
 return new SimpleValue(data);
 }

 public int compare(Object left, Object right, ICompareValueClass nested)
 {
 if (left == null || right == null)
 return (left == right ? 100 : 0);
 if (!(right instanceof SimpleValue)) return 0;
 SimpleValue l = (SimpleValue)left;
 SimpleValue r = (SimpleValue)right;
 return (l.equals(r) ? 100 : 0);
 }

 public Object createValue(Object sourceToCopy)
 {
 if (sourceToCopy instanceof SimpleValue)

939

HCL OneTest™ UI

940

 return new SimpleValue(((SimpleValue)sourceToCopy).getValue());
 return null;
 }

 public String getCanonicalName()
 {
 return CANONICALNAME;
 }

 public String getClassName()
 {
 return CLASSNAME;
 }

 public String doLookup(Object lookup)
 {
 String retVal = null;
 if (lookup instanceof SimpleValue && lookup != null)
 {
 retVal = com.rational.test.ft.services.StringTableService.getString(
 ((SimpleValue)lookup).getValue());
 // If they are the same return null so we won't bother changing VP data, etc.
 if (retVal == ((SimpleValue)lookup).getValue())
 {
 retVal = null;
 }
 }
 return retVal;
 }

}

This example code shows a .Net value manager:

using System;
using Rational.Test.Ft.Value.Managers;

namespace SDK.Sample.Value
{
 public class SimpleValueManager: IManageValueClass
 {
 private const System.String CLASSNAME = "SDK.Sample.Value.SimpleValue";
 private const System.String CANONICALNAME = ".simpe_value";

 private const System.String DATA = "Data";

 public virtual void PersistOut(System.Object theObject, IPersistOut persist, IAuxiliaryDataManager
 auxData)
 {
 SimpleValue simple = (SimpleValue)theObject;
 persist.Write(DATA, simple.GetValue());
 }

 public virtual System.Object PersistIn(IPersistIn persist, IAuxiliaryDataManager auxData)
 {
 String data = (String)persist.Read(0);

Chapter 7. Test Author Guide

 return new SimpleValue(data);
 }

 public virtual System.Object PersistIn(IPersistInNamed persist, IAuxiliaryDataManager auxData)
 {
 String data = (String)persist.Read(DATA);
 return new SimpleValue(data);
 }

 public virtual int Compare(System.Object left, System.Object right, ICompareValueClass nested)
 {
 if (left == null || right == null)
 return (left == right ? 100 : 0);
 if (!(right is SimpleValue)) return 0;

 SimpleValue l = (SimpleValue)left;
 SimpleValue r = (SimpleValue)right;
 return (l.Equals(r) ? 100 : 0);
 }

 public virtual System.Object CreateValue(System.Object sourceToCopy)
 {
 if (sourceToCopy is SimpleValue)
 return new SimpleValue(((SimpleValue)sourceToCopy).GetValue());
 return null;
 }

 public virtual System.String GetCanonicalName()
 {
 return CANONICALNAME;
 }

 public virtual System.String GetClassName()
 {
 return CLASSNAME;
 }
 }
}

TestData types
The HCL OneTest™ UI framework calls the getTestDataTypes() and getTestData(String) proxy methods for extracting

data from controls for verification and reference. These methods are used during the creation and play back of data

verification points. You can override the getTestDataTypes() method to add more specific data types for a control.

For example, a TextBox control can have text and selected-text as the supported data types. Each of these types is

associated with a string name and description that the proxy defines. This name is passed to the getTestData(String)

API for getting the control data. While implementing the getTestData(String) API, you must use the appropriate

predefined data types and populate them with the control data and return them accordingly.

Class diagram

The following class diagram shows the predefined test data types that HCL OneTest™ UI makes available:

941

HCL OneTest™ UI

942

The following predefined data types are some of the data types that you can use while implementing the

getTestData() proxy API

TestDataText

The TestDataText type represents a string value.

This example code shows how to implement the TestDataText data type in Java™:

import com.rational.test.ft.vp.ITestData;
import com.rational.test.ft.vp.impl.TestDataText;

ITestData testData = null;
testData = new TestDataText(getSelectedText());
return testData ;

This example code shows how to implement the TestDataText data type in .Net:

Rational.Test.Ft.Vp.ITestData testData = null ;
object item = ((ComboBox)theTestObject).SelectedItem ;
testData = new Rational.Test.Ft.Vp.Impl.TestDataText(((ComboBox)theTestObject).GetItemText(item));
return testData;

TestDataList

The TestDataList type represents a list of items, for example items in a ListBox and a single column of a table.

This example code shows how to implement the TestDataList data type in Java:

import com.rational.test.ft.vp.ITestData;
import com.rational.test.ft.vp.impl.TestDataElementList;
import com.rational.test.ft.vp.impl.TestDataList;

Chapter 7. Test Author Guide

Object[] items = getListItemObjects();
TestDataElementList testData = new TestDataElementList();
for (int i = 0; i < items.length; i ++)
{
 if (items[i] != null)
 {
 testData.add(new TestDataElement(items[i], false));
 nonNullValueExist = true;
 }
 else
 testData.add(null);
}
return (new TestDataList(testData));

This example code shows how to implement the TestDataList data type in .Net:

Rational.Test.Ft.Vp.ITestData testData = null ;
string[] itemList = new string[((ComboBox)theTestObject).Items.Count] ;
for(int i=0; i < ((ComboBox)theTestObject).Items.Count; i++)
{
 object item = ((ComboBox)theTestObject).Items[i] ;

 if (item is string)
 itemList[i] = (string) item ;
 else
 itemList[i] = ((ComboBox)theTestObject).GetItemText(item) ;

}
testData = new Rational.Test.Ft.Vp.Impl.TestDataList(new
 Rational.Test.Ft.Vp.Impl.TestDataElementList(itemList)) ;
return testData;

TestDataTable

The TestDataTable type represents two-dimensional data that is contained in controls such as tables or grids.

This example code shows how to implement the TestDataTable data type in Java:

import com.rational.test.ft.vp.ITestData;
import com.rational.test.ft.vp.ITestDataTable;
import com.rational.test.ft.vp.impl.TestDataTable;
import com.rational.test.ft.vp.impl.TestDataTableRegion;
.
.
int rowCount = getRowCount();
int colCount = getColumnCount();

object[] rowElements;
rowElements = new object[colCount];

for (int row = 0; row < rowCount; ++row)
{
 for (int col = 0; col < colCount; ++col)
 {
 object item = this.getItemText(row, col);
 if (item != null)

943

HCL OneTest™ UI

944

 rowElements[col] = item.ToString();
 }
 testData.add(rowElements);
}

for (int col = 0; col < colCount; ++col)
{
 object item = this.getColumnName(col);
 if (item != null)
 data.setColumnHeader(col, header);
}

testData.addComparisonRegion(TestDataTableRegion.allCells());
testData.setCompareBothByLeftRegions(true);

return testData;

This example code shows how to implement the TestDataTable data type in .Net:

Rational.Test.Ft.Vp.ITestData testData = null;
System.Data.DataTable dataTable = GetControlData();

int colCount = dataTable.Columns.Count;
int rowCount = dataTable.Rows.Count;

object[] rowElements;
rowElements = new object[colCount];

for (int row = 0; row < rowCount; ++row)
{
 for (int col = 0; col < colCount; ++col)
 {
 object item = null;
 item = dataTable.Rows[row][col];
 if (item != null)
 item = item.ToString();
 rowElements[col] = item;
 }
 testData.Add(rowElements);
}

for (int col = 0; col < colCount; ++col)
{
 string columnName = dataTable.Columns[col].ColumnName;
 if (columnName != null && !columnName.Equals(string.Empty))
 testData.SetColumnHeader(col, columnName);
}

testData.AddComparisonRegion(TestDataTableRegion.AllCells());
testData.SetCompareBothByLeftRegions(true);

return testData;

Chapter 7. Test Author Guide

TestDataTree

The TestDataTree type represents a tree data structure.

This example code shows how to implement the TestDataTree data type in .Net:

public override Rational.Test.Ft.Vp.ITestData GetTestData(string testDataType)
{
.
.
 Rational.Test.Ft.Vp.ITestData testData = new TestDataTree(GetRootNodes());
 return testData;
.
.
}

private ITestDataTreeNodes GetRootNodes()
{
 System.Collections.ArrayList nodeCache = new System.Collections.ArrayList(80);
 System.Windows.Forms.TreeNodeCollection rootNodes = ((TreeView)this.theTestObject).Nodes;

 if (rootNodes != null && rootNodes.Count> 0)
 {
 for (int i = 0; i < children.Length; ++i)
 {
 nodeCache.Add(GetNode(children[i], null));
 }
 }

 ITestDataTreeNode[] nodes = new TestDataTreeNode[nodeCache.Count];
 System.Array array = nodeCache.ToArray();
 for (int i = 0; i < array.Length; ++i)
 {
 nodes[i] = (ITestDataTreeNode)array.GetValue(i);
 }
 TestDataTreeNodes testNodes = new TestDataTreeNodes(nodes);

 return testNodes;
}

// Gets called by GetRootNodes()

private ITestDataTreeNode GetNode(System.Object item, ITestDataTreeNode parent)
{
 String text = ((TreeNode)item).Text;
 ITestDataTreeAttributes attr = new TestDataTreeAttributes(text);
 ITestDataTreeNode node = new TestDataTreeNode(parent, text, null, false);

 System.Collections.ArrayList nodeCache = new System.Collections.ArrayList(20);

 System.Windows.Forms.TreeNodeCollection childrenNodes = ((TreeNode)item).Nodes;

 if (childrenNodes != null && childrenNodes.Count> 0)
 {
 int length = childrenNodes.Count;

945

HCL OneTest™ UI

946

 if (length> 0)
 {
 for (int i = 0; i < length; ++i)
 {
 nodeCache.Add(GetNode(children[i], node));
 }
 int size = nodeCache.Count;
 if (size> 0)
 {
 ITestDataTreeNode[] childNodes = new ITestDataTreeNode[size];
 System.Array array = nodeCache.ToArray();
 for (int i = 0;i < size; i ++)
 childNodes[i] = (ITestDataTreeNode)array.GetValue(i);
 node.SetChildren(childNodes);
 }
 }
 }
 return node;
}

Proxy exceptions
HCL OneTest™ UI has a set of predefined exceptions that covers wide ranges of errors that are usually expected while

functional testing. These exceptions are available for both the Java™ and .NET proxy development frameworks.

For best results, use the predefined exceptions while developing your ProxyObjects. The available exceptions and

their hierarchies are as follows.

Table 52.

Exceptions

AmbiguousRecognitionException

ApplicationFrameworkException

BadArgumentException

CookieNotFoundException

CoordinateOffScreenException

CoordinateOnWrongObjectException

CoordinateOnWrongSubitemException

datasetException

InvalidSignatureException

InvalidSubitemException

InvalidTestDataTypeException

InvalidTestObjectException

InvalidWindowHandleException

Chapter 7. Test Author Guide

Table 52. (continued)

Exceptions

InvocationTargetException

MethodNotFoundException

NestedException

NoSuchRegistryKeyException

NotSupportedOnUnixException

NotYetAbleToPerformActionException

ObjectIsDisposedException

ObjectNotFoundException

ObjectNotInMapException

PropertyAccessException

PropertyNotFoundException

RationalTestException

RationalTestRemoteException

RecorderException

StringNotInCodePageException

SubitemNotFoundException

TargetGoneException

TestObjectMethodEventException

UnableToAccomplishAllHooksException

UnableToDeleteCookieException

UnableToHookException

UnableToPerformActionException

UnregisteredObjectException

UnsupportedActionException

UnsupportedAnchorException

UnsupportedMethodException

UnsupportedSubitemException

WindowActivateFailedException

WindowHandleNotFoundException

947

HCL OneTest™ UI

948

Table 52. (continued)

Exceptions

WrappedException

Proxy development best practices
Following best practices while you develop proxies can help make your work more efficient and effective. Consider

these methods to enhance your development efforts.

Using the appropriate hierarchy for GUI objects

GUI objects are arranged in two related hierarchies: parent-child and owner-owned. An example of parent-child

relationship is a dialog box and a contained button. An example of an owner-owned relationship is a top-level window

and a dialog box. Use any one type of hierarchy for an object.

In proxy implementation, it is common for the underlying object model (for example, Java™ and HWND) to confuse

these two relationships, and treats the owner-owned relationship as an asymmetric parent-child relationship. In this

case, the proxy must deny having a parent when the preferable relationship model is owner/owned. The methods that

can be used for going through the hierarchy are getParent(), getChildren(), getOwner(), and getOwned().

Avoid returning different types for the same property

Properties are named values. The property itself does not have a type; the value has a type. Avoid making proxies

return different types for the same property. Sometimes a property value can be a reference to an object rather than

a value. If such a value is returned to a script, it is returned as a TestObject. The methods to access the properties

include getProperty(), setProperty(), getProperties(), and getNonValueProperties().

Using the Object Library to assign recognition properties and weights for the objects

By default, the new proxy objects might not have object recognition properties and weights. Use the Object Library

to assign the recognition properties and weights. The methods for accessing the object recognition properties

and weights are getRecognitionProperties() and getRecognitionPropertyWeight(). If more than one object of the

same class exists within the parent object, add the .classIndex property (a positive numeric value starting at 0), as a

recognition property for the child object.

Managing mappable hierarchies

Generally, the entire hierarchy of the objects are mapped. However, certain objects are likely to change frequently

between builds of the test application. For example, in Java, it is common to add panels to cluster objects together.

With HCL OneTest™ UI the user can specify not to map the proxy object. Even though the non-mappable objects

are not in the test object map, the object hierarchy lists them while you traverse through the parent-child hierarchy.

The methods for managing the mappable hierarchy include shouldBeMapped(), getMappableParent(), and

getMappableChildren().

Using canonical properties

Chapter 7. Test Author Guide

In some cases, the underlying object model supports a notion of properties, for example, Java, HTML, and .NET.

HCL OneTest™ UI allow proxies to implement additional properties. If a proxy implements a property directly, the

property name must have a different pattern to avoid confusion with any property of the object. Begin the regular

properties name that might be used for recognition should with a dot (.). Certain administrative properties are used by

the framework that cannot be used for recognition, these property names begin with a number sign (#).

Invoking object methods

In many cases, the underlying object has methods that can be found and invoked. These are usually managed directly

by the framework and the domain implementation, but getMethod() is commonly implemented on a base proxy in a

domain.

Using well-defined scriptable methods

Make mouse actions play back from the glass whenever possible. If a method name includes "click" or "drag", have

mouse events perform the action . Do not use method names like "click" or "drag" if mouse events are not used

to implement the action. Do not use method names that refer to keys or the keyboard if keyboard events do not

implement the action. Make the methods reflect the action that is going to be performed and reliable during playback.

Avoid heuristics.

Managing subitems

Objects can contain other objects and might have an internal structure that is not exposed as a nested object

or objects. For example, a list might have items in it, but the items are not exposed by the list object as objects

themselves. This kind of behavior is common in HWND-based objects. The most common method to deal

with subitems are getSubitem() and the mouse action methods such as click(), drag(), and doubleClick(). The

getSubitem() method returns a null or a string.

Use any of the following strategies if you do not want the objects in the subitems to be exposed as full-fledged

objects:

• Declare the subitem as not mappable

Declare the subitem proxy as not mappable. The object at point talks to its parent and the parent proxy is

responsible for recording actions against the aggregate object and for supporting playback of subitem-based

GUI actions.

• Make the subitem delegate the call to its parent

During recording the subitem proxy passes the processMouseEvent() calls to its parent. The parent proxy is

responsible for recording actions against the aggregate object and for supporting playback of subitem-based

GUI actions.

• Make the subitem delegate recording actions to its parent

949

HCL OneTest™ UI

950

During recording the subitem proxy processes processMouseEvent() calls and generates the method calls on

the parent object. The parent proxy is not responsible for recording actions against the aggregate object but is

responsible for supporting playback of subitem-based GUI actions.

• Use child objects of subitems

Have a new kind of object reference that is tagged so that the reference is unregistered after it is used as an

anchor. This enables anchoring an object using subitems of another object. You can map the nested object as

a child of the parent object.

Exceptions and Errors

Follow these rules while implementing exceptions and errors:

• Use public, documented exceptions

Do not throw private or internal exceptions from the proxies. The API documentation for your proxies might

not be available. Use standard exceptions, preferably RationalTestExceptions.

• Re-use exceptions

Re-use the exceptions from the com.rational.test.ft package in Java or the Rational.Test.Ft namespace

in .Net. If a java proxy throws a com.rational.test.ftMethodNotFoundException exception and the script is

written in VB, the VB script gets a Rational.Test.Ft.MethodNotFoundException exception. If you throw an

exception that does not have a name that begins with com under com.rational.test.ft it gets marshalled as a

WrappedException exception.

• Use constructors

All RationalTestExceptions that can be marshalled must support a constructor that takes a single string

parameter.

• Make parallel implementations of .Net and Java exceptions

If you add a new exception in a proxy implemented in Java that you expect to be able to be returned to the

client, ensure you implement the same exception in .Net.

• Declare runtime exceptions

In Java, exceptions must be declared , which might not be helpful for some testers. Many exceptions arise

from almost any GUI method, so use runtime exceptions instead of exceptions in Java. Avoid using errors. An

Error should cause the entire playback or recorder session to stop.

• Include ObjectNotFound exceptions

If the object is not found, the framework throws an ObjectNotFoundException exception. If the object is found,

and a subitem is specified but not found, the proxy must throw a SubItemNotFoundException exception. The

SubItemNotFoundException is detected by the framework, and it tries again automatically.

• Manage coordinate-based clicks

Chapter 7. Test Author Guide

If the input coordinates click an object or subitem that is beyond the region, change the coordinates to include

the region in the object or subitem. Add a mechanism to generate a warning in the log when this occurs. The

proxy might have to use coordinate-based clicks because the object screen layout cannot be completely

described. For example, on a JTree, the PLUS_MINUS geometry is not known, but it can be found relative to

the subitem to which it applies. It is acceptable for the proxy to expand the area of the subitem to include the

PLUS_MINUS. You can use negative coordinates for subitems. Document all violations of the normal behavior.

Ensure that no subitems with a specified coordinate-click click beyond the object.

• Managing exceptions when wrong objects are clicked

If a wrong object is clicked, throw a com.rational.test.ft.CoordinateOnWrongObjectException exception.

The wrong object might overlap the correct target. You can change the coordinates to avoid the child object

within a container. Ignore the specified point and look for another point an appropriate object to click. Avoid

recording coordinates on objects that have mappable children and do not allow clicks on the wrong objects.

• Managing exceptions when wrong subitems are clicked

If a wrong subitem is clicked, throw a com.rational.test.ft.CoordinateOnWrongSubitemException exception.

This exception does not apply to clicks associated with an object where a subitem is not specified. This

type of click applies only when the object and any subitem in that object is clicked. In this case, the wrong

subitem overlaps the correct target, and is probably a child. Avoid recording the coordinates on subitems

that have nested subitems to avoid this exception. Ignore the specified point and look for another point on an

appropriate subitem to click.

Customizing a script template
HCL OneTest™ UI uses its default script templates to format and provide basic information when you create a script.

You can customize the information and format by customizing the script templates.

About this task

To customize a script template, use the HCL OneTest™ UI Script Templates Property Page. In HCL OneTest™ UI,

Eclipse Integration, you can also use the Java™ editor, which provides simple formatting of the template and help with

the Java™ syntax. In HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, you can use the Code editor.

1. Right-click a functional test project in the Projects view, click Properties > HCL OneTest UI from the pop-up

menu.

The HCL OneTest™ UI Script Templates Property page is displayed.

2. In the Select template type list, click the script template to customize.

3. Edit the script template from the Functional Test Script Templates Property page:

a. Edit the script template using the appropriate placeholder. For information about placeholders, see

Customizing Script Templates related topic.

b. Optionally, click Apply to save your edits as you work or when you finish changes to one script

template.

c. Click OK to save all edits to all script templates.

951

HCL OneTest™ UI

952

You can also edit a script template with the Java™ editor in HCL OneTest™ UI, Eclipse Integration or the Code

Editor in HCL OneTest™ UI, Microsoft Visual Studio .NET Integration. Click Open current template in Editor to

open the template in the appropriate editor.

Tip: To omit associated punctuation for any null properties, enclose the placeholder in a pair of carets

(^). For example:

^%map:contextComment%^

Customizing script templates
You can customize the default script templates that HCL OneTest™ UI uses to format and provide basic information

when you create a script.

To customize a script template, use the HCL OneTest™ UI. Script Templates Property Page. In HCL OneTest™ UI,

Eclipse Integration, you can also use the Java™ editor, which provides simple formatting of the template and help with

the Java™ syntax. In HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, you can use the Code editor.

Several types of script templates are available.

Script: Header of the file -- Customizes the layout of new script files.

Script: Comment for Test Object -- Customizes a test object comment line inserted into a script by the recorder.

Script: Comment for top level Test Object -- Customizes a top-level test object comment line inserted into a script by

the recorder.

Script: HTML Test Object Name -- Customizes the names of HTML test objects in a script.

Script: Java™ Test Object Name -- Customizes the names of Java™ test objects in a script.

Script: .Net Test Object Name -- In HCL OneTest™ UI, Eclipse Integration, customizes the names of .NET test objects

in a script.

Script: Windows® Test Object Name -- In HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, customizes the

names of Windows® test objects in a script.

VP: Verification Point Default Name -- Customizes the names of verification points that HCL OneTest™ UI generates

by default in the Verification Point and Action Wizard.

Script Helper: Header of the file -- Customizes the layout of a helper class when auto-generated.

Script Helper: Test Object Method -- Customizes the layout of test object methods in the helper class.

Script Helper: Verification Point Method -- Customizes the layout of verification point methods in the helper class.

Script Helper Superclass -- -- Customizes the layout of the script helper superclass.

Chapter 7. Test Author Guide

You use placeholders in the script template to include information in each script that you generate. There are five

types of placeholders:

• Default placeholders. Available for any of the script templates.

• Script placeholders. Use in the following types of script templates:

◦ Script: Header of the file

◦ Script Helper: Header of the file

◦ Script Helper: Test Object Method

◦ Script Helper: Verification Point Method

• VP placeholders-- Use in the VP: Verification Point Default Name script template.

• Object Map Property placeholders -- Use in the following types of script templates:

◦ Script: Comment for Test Object

◦ Script: Comment for top level Test Object

◦ Script: HTML Test Object Name

◦ Script: Java™ Test Object Name

◦ Script: .Net Test Object Name

◦ Script: Windows® Test Object Name

• Script Helper Super Class placeholders-- Use in the Script Helper Parent: Header of the file template.

The following table lists the placeholders available for each script template:

Script Template Placeholder

Script: Header of the file Default Placeholders and Script Placeholders

Script: Comment for Test Object Default Placeholders and Object Map Property

Placeholders

Script: Comment for top level Test Object Default Placeholders and Object Map Property

Placeholders

Script: HTML Test Object Name Default Placeholders and Object Map Property

Placeholders

Script: .Net Test Object Name (HCL OneTest™ UI, Eclipse Integration

only)

Default Placeholders and Object Map Property

Placeholders

Script: .Net and Windows® Test Object Name (HCL OneTest™ UI, Mi

crosoft Visual Studio .NET Integration only)

Default Placeholders and Object Map Property

Placeholders

Script: Java™ Test Object Name Default Placeholders and Object Map Property

Placeholders

VP: Verification Point Default Name Default Placeholders, VP Placeholders, and

Test Object Placeholders

Script Helper: Header of the file Default Placeholders and Script Placeholders

Script Helper: Test Object Method Default Placeholders and Script Placeholders

953

HCL OneTest™ UI

954

Script Template Placeholder

Script Helper: Verification Point Method Default Placeholders and Script Placeholders

Script Helper Parent: Header of the File (HCL OneTest™ UI, Eclipse

Integration only)

Default Placeholders and Script Helper Super

Class Placeholders

To omit associated punctuation for any null properties, enclose the placeholder in pairs of carets (^). HCL OneTest™

UI removes everything between the carets if the placeholder does not resolve to a valid value. For example, the

underscore separator is removed if the #name property is null:

^%map:#name%_^%map:#role%

Default placeholders
You can use default placeholders to customize the systemwide placeholders such as properties, date, and time of

any script template.

system placeholder

Usage: Use to customize any script template.

Syntax: %system:argument%

Description: Uses a Java™ system property as the argument.

Arguments for the system placeholder:

java.version -- Returns the Java™ Runtime Environment version.

java.vendor -- Returns the Java™ Runtime Environment vendor.

java.vendor.url -- Returns the Java™ vendor URL.

java.home -- Returns the Java™ installation directory.

java.vm.specification.version -- Returns the Java™ Virtual Machine specification version.

java.vm.specification.vendor -- Returns the Java™ Virtual Machine specification vendor.

java.vm.specification.name -- Returns the Java™ Virtual Machine specification name.

java.vm.version -- Returns the Java™ Virtual Machine implementation version.

java.vm.vendor -- Returns the Java™ Virtual Machine implementation vendor.

java.vm.name -- Returns the Java™ Virtual Machine implementation name.

java.specification.version -- Returns the Java™ Runtime Environment specification version.

java.specification.vendor -- Returns the Java™ Runtime Environment specification vendor.

Chapter 7. Test Author Guide

java.specification.name -- Returns the Java™ Runtime Environment specification name.

java.class.version -- Returns the Java™ class format version number.

java.class.path -- Returns the Java™ class path.

java.ext.dirs -- Returns the Path of extension directory or directories.

os.name -- Returns the operating system name.

os.arch -- Returns the operating system architecture.

os.version -- Returns the operating system version.

file.separator -- Returns the File separator ("/" on UNIX®), ("\\" on Windows®).

path.separator -- Returns the Path separator (":" on UNIX®), (";" on Windows®).

line.separator -- Returns the Line separator ("\n" on UNIX®), ("\r/n" on Windows®).

user.name -- Returns the User's account name.

user.home -- Returns the User's home directory.

user.dir -- Returns the User's current working directory.

Examples:

%system:java.version% -- Returns the Java™ Runtime Environment version.

%system:java.vendor% -- Returns the Java™ Runtime Environment vendor.

%system:java.vendor.url% -- Returns the Java™ vendor URL.

date placeholder

Description: Returns the current date in the format specified and uses the following arguments with appropriate

separators.

Syntax: %date: argument%

Comment: This placeholder follows the java.text.SimpleDateFormat format specification.

Arguments for the date placeholder:

yyyy -- Returns the year (4 digits).

yy -- Returns the year (2 digits).

MMM -- Returns the month (short name).

MM -- Returns the month (2 digits).

955

HCL OneTest™ UI

956

M -- Returns the month (1 or 2 digits).

EEEE -- Returns the day of week.

EE -- Returns the day of week short form.

dd -- Returns the day of month (2 digits).

d -- Returns the day of month (1 or 2 digits).

hh -- Returns the hour 1-12 (2 digits).

HH -- Returns the hour 0-23 (2 digits).

H -- Returns the hour 0-23 (1 or 2 digits).

KK -- Returns the hour 0-11 (2 digits).

K -- Returns the hour 0-11 (1 or 2 digits).

kk -- Returns the hour 1-24 (2 digits).

k -- Returns the hour 1-24 (1 or 2 digits).

mm -- Returns the minute.

ss -- Returns the second.

SSS -- Returns the millisecond.

a -- Returns the AM or PM.

zzzz -- Returns the time zone.

zz -- Returns the time zone (short form).

F -- Returns the day of week in month (that is, 3rd Thursday).

DDD -- Returns the day in year (3 digits).

D -- Returns the day in year (1, 2, or 3 digits).

ww -- Returns the week in year.

G -- Returns the era (BC or AD).

' -- Allows text within single quotes to appear in a script rather than interpreting the text as a command.

(For example: 'dog' prevents dog from being processed).

'' -- Allows a single-quote character to appear in a script rather than interpreting the character as a

command.

Chapter 7. Test Author Guide

Examples:

Example of data placeholder Result

%date:yyyy.MM.dd G 'at' hh:mm:ss z% 2005.07.10 AD at 15:08:56 PDT

%date:EEE, MMM d, ' ' yy% Wed, July 10, '05

%date:h:mm a% 12:08 PM

%date:hh 'o"clock' a, zzzz% 12 o'clock PM, Pacific Daylight Time

%date:K:mm a, zz% 3:26 PM, PST

%date:yyyy.MMMMM.dd GGG hh:mm aaa% 2005.July.10 AD 12:08 PM

time placeholder

Description: Returns the current date in the format that you specify and uses the following arguments with

appropriate separators. This placeholder extends the date placeholder. You can use the same date placeholder

arguments, with the additional argument for milliseconds since 1970/01/01 00:00:00.000 GMT.

Syntax: %time: argument%

Comment: This placeholder follows the java.text.SimpleDateFormat format specification.

Additional argument for the time placeholder:

SSSS -- Returns milliseconds since 1970/01/01 00:00:00.000 GMT.

Example: %time:SSSS% -- Returns milliseconds since 1970/01/01.

env placeholder

Description: Uses an environment variable specified as the argument. Any number of environment variables are

available on a system. These values are system dependent.

Syntax: %env: argument%

Arguments for the env placeholder:

PATH -- Returns the executables path.

TMPDIR -- Returns the temporary directory.

HOME -- Returns the users home directory.

Example: %env:PATH%

option placeholder

Description: Returns the value of a specified HCL OneTest™ UI customizable option for script execution.

957

HCL OneTest™ UI

958

Syntax: %option: argument%

Note: For information about the available option arguments, see Modifying Options for Script Execution topic.

Examples:

%option:rt.project% -- Replaced by the Test Manager project name.

%option:rt.time.delay_before_gui_action% -- Replaced by the time delay before any user interface action is performed.

%option:rt.time.delay_before_mouse_down% -- Replaced by the time delay and inserted before a mouse down event is

delivered.

static placeholder

Description: Invokes the specified parameterless static method. The static methods depend on the classes available

in the user's Java™ environment.

Syntax: %static: method% where method is any visible complete Java™ static method specification.

An argument for the static placeholder includes:

java.lang.System.currentTimeMillis -- Returns the time since 1/1/1970.

Examples:

%static:java.lang.System.currentTimeMillis% -- Returns the time in milliseconds since 1/1/1970.

%static:com.rational.test.ft.script.ScriptUtilities.getOperatingSystemVersion -- Returns host-specific operating system

version information.

Object map property placeholders
The object map property placeholders resolve object map placeholder values into property values. They also resolve

default placeholder values.

Usage: Use the following placeholders to customize the following script templates:

• Script: Comment for Test Object

• Script: Comment for top level Test Object

• Script HTML Test Object Name

• Script Java™ Test Object Name

• Script: .Net Test Object Name

• Script: Windows® Test Object Name

Chapter 7. Test Author Guide

map placeholder

Description: Resolves values relative to an entry in the object map. The map placeholder is only valid during helper

script method generation and during recording to insert comments into the script, otherwise the test object instance

is not known.

Syntax: %map: property%

Functional properties for the map placeholder:

context -- Returns the descriptive name of the closest parent registered in the Object Library as having

context.

contextComment -- Returns the resolved context comment registered in the Object Library for the

closest parent with context.

topContext -- Returns the descriptive name of the topmost parent unless this object does not have a

parent.

topContextComment -- Returns the resolved context comment registered in the Object Library for the

topmost parent.

Examples:

%map:context% -- Returns the descriptive name of the closest parent registered in the Object Library as

having context.

The recognition property for the map placeholder returns the property name.

Syntax: %map: RecognitionProperty%

• The recognition properties are unique to each type of test object. To get the name of a recognition property

for a particular test object to use with the object map placeholder, see the properties on the Recognition tab

of the object map.

• Administrative properties are prefixed with a # character to signify that the property is an administrative rather

than a recognition property. For information about administrative versus recognition properties, see Property

Sets on page 1559 in the Test Object Map topic on page 1559.

Administrative properties for the map placeholder:

.class -- Returns the Java™ class name, the HTML tag (with an HTML prefix), or the VB class name of

the test object.

#name -- Returns the test objects descriptive name.

#role -- Returns the test object role.

#domain -- Returns the domain in which the test object is defined, that is, Java™, HTML, or .NET.

959

HCL OneTest™ UI

960

#testobject -- Returns the interface class name used to interact with the test object.

#proxy -- Returns the proxy class name.

#description -- Returns a user-specified description, defined in the object map editor.

Examples:

%map:.class% -- Returns the Java™ class name, the HTML tag (with an HTML prefix), or the VB class

name of the test object.

%map:#domain% -- Returns the domain in which the test object is defined, that is, Java™, HTML, or VB.

Script placeholders
Script placeholders resolve script-level placeholder values into script values. As the values are resolved, several lines

of information can be cached, depending on the placeholder.

Usage: Use the following placeholders to customize the following script templates: Script: Header of the file,

NameScript Helper: Header of the file, Script Helper: Test Object Method, Script Helper: Verification Point Method.

Comment: All script placeholder arguments are case insensitive.

script placeholder

Description: Resolves script placeholder values into script values.

Syntax: %script: argument%

Arguments for the script placeholder:

name -- Returns the name of the script (without a file suffix or package specification).

fullName -- Returns the full name of the script with package specification.

insertBefore -- Indicates the script code insertion point to be used by the recorder when creating a new

script.

package -- Returns the name of the package containing the script.

packageDeclaration -- Returns the source for the package declaration, returns an empty string, " ", if the

script is not in a package.

helper placeholder

Description: Resolves helper placeholder values into helper values.

Syntax: %helper:argument%

Arguments for the helper placeholder:

Chapter 7. Test Author Guide

name -- Returns the name of the helper script.

fullName -- Returns the full name of the helper script including package specification.

insertBefore -- Indicates the helper test object methods insertion point to be used when generating the

script helper.

package -- Returns the package declaration for the helper script.

packageDeclaration -- Returns the source for the helper package declaration, null if the helper is not in a

package.

extends -- Returns a library configurable script base class.

methodName -- Returns the name of a helper method being inserted into a helper class.

testObjectInterfaceName -- Returns the test object class for a helper method being inserted into a

helper class.

vpName -- Returns the name of a verification point method being inserted into a helper class.

testobject and map placeholders

Description: Both placeholders resolve values relative to an entry in the object map and are valid only during helper

script method generation. The property for the testobject placeholder returns the property name.

Syntax: %testobject: property% or %map: property%

One recognition property is:

.class -- Returns the Java™ class name, the HTML tag (with an HTML prefix), or the VB class name of

the test object.

• The recognition properties are unique to each type of test object. To get the name of a recognition property

for a particular test object to use with the object map placeholder, see the properties on the Recognition tab

of the object map.

• Administrative properties are prefixed with a # character. For information about administrative versus

recognition properties, see Property Sets on page 1559 in the Test Object Map on page 1559 topic.

Administrative properties:

#name -- Returns the test object's descriptive name.

#role -- Returns the test object role.

#domain -- Returns the domain in which the test object is defined, that is, Java™, HTML, or .NET.

#testobject -- Returns the interface class name used to interact with the test object.

961

HCL OneTest™ UI

962

#proxy -- Returns the proxy class name.

#description -- Returns a user-specified description, defined in the object map editor.

Examples:

%testobject:.class% -- Returns the Java™ class name, the HTML tag (with an HTML prefix), or the VB

class name of the test object.

%testobject:#domain% -- Returns the domain in which the test object is defined, that is, Java™, HTML,

or .NET.

VP placeholders
VP placeholders resolve Test Object and verification point (VP) placeholder values into property strings. Default

placeholders values are also resolved.

Usage: Use the following placeholder to customize the VP: Verification Point Default Name template:

vp placeholder

Description: Allows access to verification point attributes.

Syntax: %vp: argument%

Arguments for the vp placeholder:

type -- Returns the type of verification point being created. For example, text may be used for the Visible

Text test of a Data verification point (Text).

description -- Returns the description of verification point as presented in the record UI. For example,

Visible Text may be used for a Data verification point (Text).

testobject placeholders

Description: This placeholder resolves values relative to an entry in the object map. It is valid only during helper script

method generation. The property for the testobject placeholder returns the property name.

Syntax: %testobject: property%

One recognition property:

.class -- Returns the Java™ class name, the HTML tag (with an HTML prefix), or the VB class name of

the test object.

Note:

Chapter 7. Test Author Guide

• Administrative properties are prefixed with a # character. For information about administrative and

recognition properties, see Property Sets on page 1559 in the Test Object Map on page 1559 topic.

• From the VP: Verification Point Default Name script template, you can also access any dynamically

available property, which is the actual test object in the software under test, not the mapped test

object.

Administrative properties:

#name -- Returns the test object's descriptive name.

#role -- Returns the test object role.

#domain -- Returns the domain in which the test object is defined, that is, Java™, HTML, or .NET.

#testobject -- Returns the interface class name used to interact with the test object.

#class -- Returns the full class name of the test object.

#className -- Returns the simple class name for the test object, that is, the full class name without the

package information.

#description -- Returns a user-specified description, defined in the object map editor. If this property is

null, HCL OneTest™ UI uses the simple #className property.

#property -- Returns any test object property converted to its toString value. You can find the properties

available for a test object in the test object map property set.

Script helper superclass placeholders
You can use the script helper superclass placeholders to customize the Script Helper Parent, the Header of the file

template.

helpersuperclass placeholder

Description: Allows access to the superclass for Functional Test Script Helper.

Syntax: %helpersuperclass: argument%

Arguments for the script helper superclass placeholder:

packageDeclaration -- Returns the specification of the name space for the class.

name -- Returns the simple name of the class without name space specification.

Using the API to edit functional test scripts
These topics describe how you can take advantage of the HCL OneTest™ UI application programming interface (API)

or the scripting framework to make changes to functional test scripts. As a general rule, the modifications that you

963

HCL OneTest™ UI

964

make with the scripting SDK, should emulate as closely as possible, the user interactions to test with the application-

under-test.

You can start by using the scripting framework to make some of these simple modifications to recorded functional

test scripts:

• Change a user action, such as object().drag() to object().click().

• Delete recorded commands.

• Place an often repeated sequence of actions into a method.

Writing messages to the log
A log is a file that contains the record of events that occur while a Functional Test script is playing back. There are

several different methods you can use to write messages to the log.

HCL OneTest™ UI supports several types of log files, or no logging at all. You select the type of log file (HTML log, or

text log) through the user interface. Each logged event has an associated message.

HCL OneTest™ UI automatically logs these events:

• Script start

• Script end

• Calls to the callScript method

• Calls to the startApplicaction method

• Timer start

• Timer end

• Exceptions

• Verification points

To use the scripting SDK to include your own general messages in whatever type of log you specified through the user

interface, use the logInfo method, as shown in this example:

if(AnAWTButtonButton(p1,0)isEnabled())
{
 logInfo("AWT button is enabled.");
}
else
{
 logInfo("AWT button is not enabled.");
}

With the scripting framework, you can log a test result by using the logTestResult method. The first parameter is a

headline that describes the test. The second parameter is the result of the test (true for pass, false for a failure),. An

optional third parameter is for additional information. For example:

logTestResult("Text buffer comparison",
 TextField_text.equals(msExpect));

Chapter 7. Test Author Guide

Here is another example that uses the third parameter for additional information:

if(TextField_text.equals(msExpect))
{
 logTestResult("Text buffer comparison", true);
}
else
{
 logTestResult("Text buffer comparison", false,
 "Expected '"+TextField_text+"' but found '"+msExpect+"'");
}

If you want to use the scripting framework to write an error message to the log, use the logError method:

catch (Exception e)
 {logError("Exception e = "+e.toString());}

With the scripting SDK, you can add a warning message to the log using the logWarning method:

logWarning("Your warning message goes here.");

Modifying options for script execution
Some scripting framework options that affect script execution can be specified through the user interface. Values

that you set in the user interface persist as the default values from script to script. However, you can also use the

scripting framework to set some of these options directly in the functional test script, for example, the amount of time

between keystrokes.

A programmatically set value only lasts until the end of playback. After playback ends, the option reverts to the

default value. Constants for these options are defined in the com.rational.test.ft.script.IOptionName interface. See

the HCL OneTest™ UI API Reference for information about the com.rational.test.ft.script.IOptionName interface.

To retrieve the current value of an option, use the getOption method as follows:

Object x = getOption(IOptionName.option);

You can test the value of x to determine whether you want to change the option value during playback. To do so, use

the setOption method, which has the following general format:

setOption(IOptionName.option,value);

You must specify a value of a type that applies to the option. The HCL OneTest™ UI IDE has a Content Assist feature

that can be helpful here. In the earlier example, after entering IOptionName, press Ctrl+Space, or click Edit > Content

Assist from the menu. A list of all the options open. You can use the arrow keys to scroll through the list, or type

the first few letters of the option name if you know it. When you press Enter, the currently selected option name is

inserted into your script.

965

HCL OneTest™ UI

966

With the scripting framework, you can also reset the value of an option back to the default value by using the

resetOption method. For example, to change the delay between keystrokes during playback for a short time, you can

script a sequence like this:

setOption(IOptionName.DELAY_BEFORE_KEY_DOWN, 0.3);
InputWindow().inputKeys("abcdefg123");
resetOption(IOptionName.DELAY_BEFORE_KEY_DOWN);
InputWindow().inputKeys("999");

Starting a test script from within a script
Test scripts can contain methods that invoke other test scripts. You might want to take advantage of this

functionality by creating a test script that serves as a command file for a suite of scripts.

You can use the callScript method as follows:

....
// import statements and comments
import myscripts;// Added so script can find test3.

public class RegressionSuite extends RegressionSuiteHelper
{
public void testMain (Object[] args)
{
 callScript("test1");
 callScript(new test2());
 callScript("myscripts.test3");
}
}

Do not call the testMain method from another test script (for example, test1.testMain(...);). HCL OneTest™ UI

would then be unable to ensure that each test script is invoked properly and has the expected event handling support.

Querying values of object properties
Components in the application-under-test, such as dialog boxes, command buttons, and labels, have associated

pieces of information called properties. Properties have a name and a value. This topic provides examples of why you

may want to modify your script to access an object property.

• You may want to compare previous versions of a value to the current value and to do so would require a

calculation (such as factoring in a depreciation rate).

• Sometimes querying a property may return a reference to other objects. In cases like this, you might need to

test the value of a property of the returned object. This kind of scenario cannot be handled through the user

interface. See Unregistering references to test objects on page 968 for more information.

• You also might want to branch in your Functional Test script based on the current value of a property.

You can retrieve the value of a property programmatically by calling the getProperty method, which has the following

syntax:

Chapter 7. Test Author Guide

Object getProperty(String propertyName);

The following example uses the getProperty method to test whether a value of a property is being captured

and reproduced correctly. The call to getProperty retrieves the value of the text property associated with the

yourOrderHasBeenReceivedYourOr object.

import resources.QueryingObjectHelper;

import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

/**
 * Description : Functional Test Script
 * @author Administrator
 */
public class QueryingObject extends QueryingObjectHelper
{
 /**
 * Script Name : QueryingObject
 * Generated : Jul 19, 2006 2:31:56 PM
 * Description : Functional Test Script
 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2006/07/19
 * @author Administrator
 */
 public void testMain(Object[] args)
 {
 startApp("ClassicsJavaA");

 // Frame: ClassicsCD
 placeOrder().click();

 // Frame: Member Logon
 ok().click();

 // Frame: Place an Order
 cardNumberIncludeTheSpacesText().click(atPoint(28,6));
 placeAnOrder().inputChars("1234123412341234");
 expirationDateText().click(atPoint(9,2));
 placeAnOrder().inputChars("12/12");
 placeOrder2().click();

 //Waiting for Object
 yourOrderHasBeenReceivedYourOr().waitForExistence();

 //Querying the Object
 String confirmationText = (String)yourOrderHasBeenReceivedYourOr().getProperty("text");
 logTestResult(confirmationText, confirmationText.startsWith("Your order has"));

967

HCL OneTest™ UI

968

 yourOrderHasBeenReceivedYourOr().click();
 ok2().click();

 // Frame: ClassicsCD
 classicsJava(ANY,MAY_EXIT).close();
 }
}

HCL OneTest™ UI also supports a setProperty method, but do not use it unless you are sure of the result. This method

calls internal methods that may violate the integrity of the application-under-test.

Unregistering references to test objects
Helper script methods refer to an object in the application-under-test by using the test object map. HCL OneTest™ UI

finds such mapped objects each time a method is called on the object. In some cases; however, you might not want

HCL OneTest™ UI to do this.

For instance, you might want to call many methods directly on the same object, and it would lose time for HCL

OneTest™ UI to find the object each time a method was called on it. You can use the TestObject.find method to find

an object without HCL OneTest™ UI calling any methods on the object. TestObject.find returns a new TestObject

containing a different kind of reference to the object in the application-under-test. This reference is sometimes called

a bound reference, a found reference, or a non-mapped reference.

A bound reference retains access to the object in the application-under-test until you explicitly unregister the

reference. HCL OneTest™ UI unregisters bound references only when the entire playback ends, not when the script

ends. As long as a bound reference to the object exists, HCL OneTest™ UI may prevent the object in the application

from being entirely free. For example, while you hold a bound reference to a Java™ object, the Java™ object is not

garbage collected. You must explicitly unregister any bound references you create as soon as you do not need them

any more.

In a normal Functional Test script, the only TestObjects containing mapped references are the methods from the

helper scripts. All other TestObjects contain bound references and must be unregistered. For example, the method

TestObject.getTopParent is explicitly declared to return a TestObject. Other methods are declared to return a

java.lang.Object, but can return a TestObject that must be unregistered -- for example, TestObject.getProperty.

RationalTestScript contains several methods that remove references to TestObjects, including

com.rational.test.ft.script.RationalTestScript.unregister and unregisterAll. See the HCL OneTest™ UI API

Reference for information on these methods.

Objects that are returned from the application-under-test that are not TestObjects are objects that represent a value.

The type of such an object is referred to as a value class. A value class is a copy of the object in the application-

under-test, not a reference to an object in the application-under-test. Common examples of value classes are

java.lang.Integer and java.awt.Rectangle.

Chapter 7. Test Author Guide

The HCL OneTest™ UI recorder and wizards only generate code that returns value classes. For example, a

property that you see in the Object Properties test case is a property whose value is a value class. You can call

TestObject.getNonValueProperties to find the reference properties available for a particular object. You can call

TestObject.getMethods to see the list of all the methods that you could invoke by calling TestObject.invoke.

Use caution when dealing directly with TestObjects that contain references to objects in the application-under-test,

because doing so may create instability in the application. Unregister these TestObjects as soon as possible.

Handling ambiguous recognition
In some situations during playback, HCL OneTest™ UI might not be able to differentiate between two similar objects in

the software that is being tested. This topic describes handling these situations.

For example, in HTML applications when more than one instance of a browser is active, differentiating one browser

from another based on toolbar actions is impossible if the actions are recorded as they are in these examples:

BrowserToolbar_Back().click()
BrowserToolbar_Forward().click()

In cases like this, HCL OneTest™ UI avoids ambiguous recognition by locating the toolbar button in the browser that is

identified by its currently loaded document which is referred to as an anchor for the target object. For example:

BrowserToolbar_Back(Browser_htmlBrowser(Document_MyHomePage(),
 DEFAULT), DEFAULT).click();

The back button on the toolbar is anchored by the browser, which is anchored by the document named My

HomePage. However, this example would not work if each instance of the browser has the same loaded document.

Note that the helper script methods that take an anchor as an argument also require another argument that specifies

the component's state (the DEFAULT argument in the example above). The default state for HTML objects is LOADED.

For HTML components, the states LOADING and UNINITIATED are also possible. The default state for Java™ objects

is SHOWING and ENABLED. Other supported state flags for Java™ objects are NOT_SHOWING and DISABLED.

In addition, you can identify the browser instance by using a TestObject reference for it, invoking the find method on

the browser as follows (remember to unregister the test object when you are done).:

TestObject browserOne = Browser_htmlBrowser(Document_MyHomePage(),
 DEFAULT).find();

The browser toolbar commands in the test script would look like this example:

BrowserToolbar_Back(myBrowser, DEFAULT).click();

Another situation where ambiguous recognition can be an issue is when a test has more than one application running

at the same time. During playback, commands such as b5().click() are ambiguous. Because the startApp command

returns a process test object, this reference can be used to specify which application a particular command applies

to. For example:

969

HCL OneTest™ UI

970

ProcessTestObject p1 = startApp("SwingTest");
ProcessTestObject p2 = startApp("TryIt");
...
//b5().click(); ambiguous on playback; which application?

b5(p1, DEFAULT).click();

In the last line of the example, the process test object functions as an anchor to locate the desired application. Note

that calling the unregister method for a process test object is unnecessary.

Ambiguous recognition can also occur in scenarios where two instances of the same control exist with identical sets

of recognition properties. In such a case, the AmbiguousRecognitionException exception is thrown during playback.

To handle the exception and to resolve which control needs to be clicked, you can use this code:

public class AmbiguousRecognitionTest extends AmbiguousRecognitionTestHelper
{
@Override
public void onAmbiguousRecognition(
ITestObjectMethodState testObjectMethodState, TestObject[] choices,
int[] scores) {
// TODO Auto-generated method stub
testObjectMethodState.setFoundTestObject(choices[0]);
// super.onAmbiguousRecognition(testObjectMethodState, choices, scores);
}
public void testMain(Object[] args)
{

aButton.click() // There are two aButton test objects visible on the screen, click the second button.

}
}

In this example, the second instance of the control is clicked.

Adding manual and dynamic verification points
In addition to verification points specified during recording, you can also incorporate new verification points into a

Functional Test script. Scripting manual and dynamic verification points enables you to specify data for comparison

against an object that is not found in the test object map. The data, however, must be value-class based.

For both the vpManual method and the vpDynamic method you can refer to the entry for IFtVerificationPoint in the

HCL OneTest™ UI API Reference for information about restrictions on verification point names and data formats.

Manual verification points

Manual verification points are useful when you create the data for the verification point yourself, and you want to

compare the data. For example, the data could be the result of a calculation or could come from an external source,

such as a database.

Chapter 7. Test Author Guide

Manual verification point objects are constructed using the vpManual method. When you call this method, you provide

the data before performTest is executed. (The performTest method saves the supplied data, compares it when there is

a baseline, and writes the result to the log.) The vpManual method has two signatures:

IFtVerificationPoint vpManual (java.lang.String vpName, java.lang.Object
actual)

IFtVerificationPoint vpManual (java.lang.String vpName, java.lang.Object
expected, java.lang.Object actual)

The first form of vpManual takes the name of the verification point and the actual data that is either compared to an

existing baseline, or used to create a baseline if one does not already exist. Note that this value can be null. The

vpName must be unique relative to the script. For example:

vpManual ("manual1", "The rain in Spain").performTest();

The second form of this method adds a parameter for the expected data to be compared with the actual. Either

expected or actual can be null valued. For example:

vpManual ("manual1", "The rain in Spain", "The Rain in Spain").performTest();

In this example, the data does not match. The performTest method would record a verification point failure message

in the log.

Dynamic verification points

Dynamic verification points are most useful when the TestObject is not mapped and not something that HCL

OneTest™ UI would normally test, for example, an object that is not part of the application-under-test.

The vpDynamic method constructs dynamic verification points. Dynamic verification points raise the appropriate user

interface the next time the script is played back. The user is able to insert verification point data tested against an

object specified by the script. In this way, the user can avoid having to run the test manually to the appropriate state

before recording the verification point. The vpDynamic method has two signatures:

IFtVerificationPoint vpDynamic (java.lang.String vpName)

IFtVerificationPoint vpDynamic (java.lang.String vpName, TestObject
objectUnderTest)

The first form of the vpDynamic method requires a unique (relative to the script) verification point name. The Recording

Verification Point and Action wizard is raised the next time the script is played back. The user specifies the TestObject

and the baseline data for subsequent runs to test against. The script must be run in interactive mode. For example:

vpDynamic("dynamic1").performTest();

971

HCL OneTest™ UI

972

The other form of the vpDynamic method requires specification of the TestObject. For example:

vpDynamic("dynamic1", AnAWTButtonButton()).performTest();

A modified UI, which does not display the TestObject hierarchy, appears on the first playback to specify data values

for the baseline. While the specified TestObject does not have to be from the test object map, it must be consistently

the same object for the results to be meaningful.

A common error when using these methods is to omit the performTest method. This is legal and compiles without

warning, but no interesting action occurs when the script runs. For example:

vpDynamic("test1", AnAWTButtonButton()); //ERROR. Nothing happens.

Handling unexpected active Windows
A common problem in GUI testing is the appearance of an unexpected active window -- for example, a warning

message box in an HTML browser. This topic describes how to handle this problem.

Imagine that you record a click action on a secure page, and this link takes you to a page that is not secure. Assume

your browser's security setting is adjusted to cause a message box to appear, warning you that the next page will

not be secure. You click OK to dismiss the warning message, and then you click a check box on the page that is not

secure. The recorded Functional Test script would look something like this:

linkThatLeavesSecurePage().click();
Dialog_HtmlDialogButtonOK().click();
CheckboxOnTheUnsecurePage().click();

When you play the script back against a browser with a different security setting, the script does not

play back because the Dialog_HtmlDialogButtonOK() cannot be found. You can comment out the

Dialog_HtmlDialogButtonOK().click(); statement, but you will have failures when the dialog does show up.

One solution is to wait for the message to appear. If it does not appear, you can continue. The solution can be

achieved with the following code:

linkThatLeavesSecurePage().click();
try
{
 Dialog_HtmlDialogButtonOK().click();
}
catch(ObjectNotFoundException e) {}
CheckboxOnTheUnsecurePage().click();

This code accomplishes your primary goal. If the warning message appears, you dismiss it. If it does not appear,

you eventually stop waiting and then continue. However, you may not want to wait the default amount of time for

the warning message to show up. If you are sure that when the warning message does show up it will arrive within 5

seconds, you can speed this up by coding as follows:

Chapter 7. Test Author Guide

linkThatLeavesSecurePage().click();
try
{
 Dialog_HtmlDialogButtonOK().waitForExistence(5,1);
 Dialog_HtmlDialogButtonOK().click();
}
catch(ObjectNotFoundException e) {}
CheckboxOnTheUnsecurePage().click();

A reasonable objection to this approach is that you need to add this special code wherever a link on a browser might

switch pages and cause a change in security. Handling this situation in a common place without changing many test

scripts would be more efficient. By implementing the onObjectNotFound exception you can handle the event whenever

it occurs. By putting the implementation in a helper super script, you can handle the event for any Functional Test

script that extends this helper super class.

The code in the following example implements a base class for scripts that test HTML applications. This base

class implements onObjectNotFound. The onObjectNotFound method looks through all the HTML domains and

looks for any HTML dialog boxes. Every HTML dialog box is dismissed by pressing Enter. If any dialog boxes are

dismissed, the TestObject method is restarted. If no dialog boxes are dismissed, the method does nothing, and the

ObjectNotFoundException is thrown as usual.

import com.rational.test.ft.script.*;
import com.rational.test.ft.object.interfaces.*;
/**
* This class provides some base capabilities for working
* with HTML.
*/
public abstract class HtmlScript extends RationalTestScript
{
/**
* Overrides the base implementation of onObjectNotFound. Whenever
* this event occurs, look through all the active domains (places
* where objects might be found). For HTML domains (Java
* and other domains are skipped) finds all the top objects.
* If the top object is an Html Dialog,
* types an Enter key to dismiss the dialog.
* Logs a warning when this happens.
*/
public void onObjectNotFound(ITestObjectMethodState testObjectMethodState)
{
 boolean dismissedAWindow = false;
 DomainTestObject domains[] = getDomains();
 for (int i = 0; i < domains.length; ++i)
 {
 if (domains[i].getName().equals("Html"))
 {
 // HTML domain is found.
 TestObject[] topObjects = domains[i].getTopObjects();
 if (topObjects != null)
 {
 try
 {
 for (int j = 0; j < topObjects.length; ++j)
 {

973

HCL OneTest™ UI

974

 if (topObjects[j].getProperty(".class").equals("Html.Dialog"))
 {
 // A top-level HtmlDialog is found.
 logWarning("HtmlScript.onObjectNotFound - dismissing dialog.");
 try
 {
 dismissedAWindow = true;
 ((TopLevelTestObject)topObjects[j]).inputKeys("{enter}");
 }
 catch(RuntimeException e) {}
 }
 }
 }
 finally
 {
 //unregister all references to top objects
 unregister(topObjects);
 }
 }

 }
 }
 if (dismissedAWindow)
 {
 // try again
 testObjectMethodState.findObjectAgain();
 }
 else
 {
 logWarning("HtmlScript.onObjectNotFound; no Html Dialog to dismiss");
 }
}
}

Note that the above implementation of HtmlScript is only suitable for testing HTML. You may want to be able to use

this base class for any script, including scripts testing Java™. In this case, you must make sure that the TestObject

is a HCL OneTest™ UI HTMLobject before dismissing the HTML dialog boxes. You can add the following code to the

beginning of the onObjectNotFound method:

if (!testObjectMethodState.getTestObject().
 getPropertyFromMap(IMapPropertyName.DOMAIN).equals("Html"))
{
 return;
}

HCL OneTest™ UI examples
HCL OneTest™ UI ships with some example code you can use in your own scripts. You can open these examples from

within the sample project shipped with HCL OneTest™ UI.

To access the sample project, open the Samples Gallery from the Welcome Page, or from the Help menu. Click Help

> Samples Gallery. In the gallery, browse to the HCL OneTest UI Sample Project, which is listed in the Technology

category.

Chapter 7. Test Author Guide

HCL OneTest™ UI sample project

The sample project was created using the HCL OneTest™ UI tutorial. You can look at the script and other test assets

while you do the tutorial, or after you complete it, if you want to compare them to your files.

The sample project contains the script, verification points, object map, and other files that are created when you

complete the tutorial. The sample script is in the state it would be in at the end of the tutorial. For reference, you can

look at the script or other assets to compare them with your own, or actually play back the script. The tutorial script is

called "ClassicsSample."

To open the project, click the Import link. The project will then be displayed in the Projects View. Click the script name

to see it in the script window. You can play back the script by clicking the Run Functional Test Script button on the

product toolbar

In addition, the project has some example code you can use in your own scripts.

Examples

Class Package Description

ExtensionScript superscript Provides some general utility methods.

HtmlScript superscript Provides handler to automatically dismiss unexpected active HTML

Dialogs.

WindowScript superscript Provides some methods that may be useful for getting around prob

lems with native Microsoft® Windows® Applications.

SwtScript superscript Provides some methods that may be useful when testing SWT-

based applications. Note that this implementation makes use of

WindowScript, which is Microsoft-Windows specific. This class will

not work on Linux®.

EclipseScript superscript Provides some methods that may be useful when testing plugins

running inside the Eclipse platform (see http://www.eclipse.org/).

Note that this code makes use of internal Eclipse classes, and con

sequently may break with future versions of eclipse. This class il

lustrates invoking static methods in the SUT and using custom Test

Objects.

WorkbenchTestObject testobject.eclipse A Test Object for the Eclipse (see http://www.eclipse.org/) shell

Workbench.

WorkbenchWindowTest

Object

testobject.eclipse A Test Object for the Eclipse (see http://www.eclipse.org/) shell

WorkbenchWindow.

WorkbenchPageTestOb

ject

testobject.eclipse A Test Object for the Eclipse (see http://www.eclipse.org/) shell

WorkbenchPage.

975

HCL OneTest™ UI

976

Using the examples

If you would like to use these examples, copy the testobject and superscript directories and their contents into a

Functional Test project.

To use one of the superscripts, set the helper superclass property for a script to the full class name of the

superscript. For example, to use the ExtensionScript superclass, for a script called X, right-click X in the Functional

Test Projects View and select Properties from the popup menu. In the dialog titled "Properties for X.java", select

"Functional Test Script" in the list on the left. Finally, set the text in the edit box labeled "Helper superclass" to

"superscript.ExtensionScript". You can also modify your project preferences so that all newly created scripts in the

project will extend this superscript. To define a default helper superscript for a project, right-click the project and

select Properties from the popup menu, then set the text field in "HCL OneTest™ UI Project" labeled "New Script Helper

superclass".

Once this is done, your X.java script can make use of the additional methods of ExtensionScript such as

getClipboardText(), setClipboardText(), clipboardVP(), etc.

Determining the values of cells in a table
When working with Java™ or HTML tables, you might want to extract the value of a given cell in the table. There are

many ways to do this; one simple approach is to query the table directly.

The example shows how to create custom Java™ code that exploits the Functional Test object model to extract

the information from a table. The sample first uses the getTestData method to have HCL OneTest™ UI return

a TestDataTable object that contains all of the data in the table. Given this data table, the getRowCount and

getColumnCount methods determine the size of the table. Finally, with these numbers, the code cycles through each

cell and uses the getCell method to determine the contents of each cell in the table. The values in the cells display in

the console window.

import resources.TableTestHelper;

import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

/**
 * Description : Functional Test Script
 * @author Administrator
 */
public class TableTest extends TableTestHelper
{
 /**
 * Script Name : TableTest
 * Generated : Jul 17, 2006 1:56:28 PM
 * Description : Functional Test Script

Chapter 7. Test Author Guide

 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2006/07/17
 * @author Administrator
 */
 public void testMain(Object[] args)
 {
 startApp("ClassicsJavaA");

 // Frame: ClassicsCD
 jmb().click(atPath("Order"));
 jmb().click(atPath("Order->View Existing Order Status..."));

 // Frame: View Order Status
 nameComboB().click();
 nameComboB().click(atText("Claire Stratus"));
 ok().click();

 // Frame: View Existing Orders
 existingTable().click(atCell(atRow("ORDER ID", "7", "ORDER DATE", "3/11/98", "STATUS", "Order
 Initiated"), atColumn("ORDER ID")), atPoint(33,2));

 // Query object to find out what kind of data it has.
 System.out.println (existingTable().getTestDataTypes());

 //Declare variable for table.
 ITestDataTable myTable;
 myTable = (ITestDataTable)existingTable().getTestData("contents");

 //Print out total rows & columns.
 System.out.println ("Total Rows: " + myTable.getRowCount());
 System.out.println ("Total Cols: " + myTable.getColumnCount());

 //Print out cell values.
 for (int row =0;row < myTable.getRowCount();row++)
 {
 for (int col = 0;col < myTable.getColumnCount();col++)
 {
 System.out.println("Value at cell (" + row+ "," + col+")is: " + myTable.getCell(row,col));
 }
 }

 close().drag();

 // Frame: ClassicsCD
 classicsJava(ANY,MAY_EXIT).close();
 }
}

Reading the Windows registry
The Windows® registry is a database used by the Windows® operating system to store configuration information.

Often it becomes necessary for a tester to read information out of this database using HCL OneTest™ UI commands.

This topic provides examples for doing this.

977

HCL OneTest™ UI

978

The following example is applicable for scripts running on Windows®:

import javax.swing.JOptionPane;

import resources.RegistryExampleHelper;
import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

/**
 * Description : Functional Test Script
 * @author Administrator
 */
public class RegistryExample extends RegistryExampleHelper
{
 /**
 * Script Name : RegistryExample
 * Generated : Jul 20, 2006 1:48:49 PM
 * Description : Functional Test Script
 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2006/07/20
 * @author Administrator
 */
 public void testMain (Object[] args)
 {
 try
 {

 //Use this code to extract String (REG_SZ) values from the registry.
 String regKeyString ="HKEY_LOCAL_MACHINE\\SOFTWARE\\HCL Technologies\\HCL OneTest UI Install
 Directory";

 String regValueString = getOperatingSystem().getRegistryValue(regKeyString);
 JOptionPane.showMessageDialog(null, regValueString,"String Registry Value",1);
 }
 catch (NoSuchRegistryKeyException e)
 {
 JOptionPane.showMessageDialog(null, "Error finding registry key.");
 System.out.println ("No Such Registry Key Exception." + e);
 }
 try
 {
 //Use this code to extract Integer (DWORD) values from the registry.
 String regKeyInt = "HKEY_CURRENT_USER\\Control " +"Panel\\Desktop\\LowLevelHooksTimeout";
 Integer regValueInt = new
 Integer(getOperatingSystem().getRegistryIntValue(regKeyInt));
 JOptionPane.showMessageDialog(null,regValueInt, "Integer Registry " + "Value ",1);
 }
 catch (NoSuchRegistryKeyException e)
 {
 JOptionPane.showMessageDialog(null, "Error finding registry key.");

Chapter 7. Test Author Guide

 System.out.println ("No Such Registry Key Exception. (" + e + ")");
 }
 }
 }

There are two commands available to read values from the registry. The getRegistryValue command is used to read

string values from the registry. The getRegistryIntValue is used to read integer values from the registry. The terms

"REG_SZ" describe the string and integer types. Both of the commands take a type String argument, which contains

the registry key to extract.

Note: When entering keys, the "\" is a special character in Java™ and must be doubled to "\\" to be taken as a

literal.

The example extracts both a string and an integer value from the registry. Looking first at the String value segment,

notice the core code:

String regKeyString ="HKEY_LOCAL_MACHINE\\SOFTWARE\\HCL Technologies\\HCL OneTest UI\\HCL Install
 Directory";
String regValueString = getOperatingSystem().getRegistryValue(regKeyString);
JOptionPane.showMessageDialog(null, regValueString,"String Registry Value",1);

The first line creates a type String variable, which contains the registry value to extract. The second line

executes the command and stores it in the type String variable regValueString. The third line uses the

JOptionPane.showMessageDialog class to display the registry value in a message box on the screen. For those

unfamiliar with this last class, it is a Java™ Swing class, which must be imported to be available. Note the last import

statement at the top of the script.

The second segment extracts the type int value. In the example, the simple type int is converted to an Integer

object, so that it can be displayed in the JOptionPane dialog. Otherwise, the code is identical to the first segment.

Both of the commands throw a NoSuchRegistryKeyException when they fail. Therefore, it is a good idea to wrap these

methods within a try/catch block, as in the example. You can change the registry key to one that does not exist and

run the script. You will see an error message indicating the key could not be found.

Iterating through items in a tree control using the getTestData method
This topic provides an example of using HCL OneTest™ UI's getTestData method to programmatically access the

values on the branches of a tree control.

The following example tests against the Classics Java™ application:

import resources.GetTreeDataExampleHelper;
import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;
import com.rational.test.ft.script.*;

979

HCL OneTest™ UI

980

import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

/**
 * Description : Functional Test Script
 * @author Administrator
 */
public class GetTreeDataExample extends GetTreeDataExampleHelper
{
 /**
 * Script Name : GetTreeDataExample
 * Generated : Jul 14, 2006 4:46:31 PM
 * Description : Functional Test Script
 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2006/07/14
 * @author Administrator
 */
 public void testMain(Object[] args)
 {
 //Start Classics Java Application
 startApp("ClassicsJavaA");

 // Frame: ClassicsCD
 tree2().waitForExistence();

 //Display available test data types available from tree
 System.out.println ("Available Tree Data Types: " + tree2().getTestDataTypes());

 //Declare variables for tree
 ITestDataTree cdTree;
 ITestDataTreeNodes cdTreeNodes;
 ITestDataTreeNode[] cdTreeNode;

 //Variables to hold tree data
 cdTree = (ITestDataTree)tree2().getTestData("tree");
 cdTreeNodes = cdTree.getTreeNodes();
 cdTreeNode = cdTreeNodes.getRootNodes();

 //Print out total number of nodes
 System.out.println ("Tree Total Node Count: " + cdTreeNodes.getNodeCount());
 System.out.println ("Tree Root Node Count : " + cdTreeNodes.getRootNodeCount());

 //Iterate through tree branches; this is a recursive method.
 for (int i = 0;i<cdTreeNode.length;++i)
 showTree(cdTreeNode[i], 0);

 //Shut down Classics Java Application
 classicsJava(ANY,MAY_EXIT).close();
 }

 void showTree(ITestDataTreeNode node, int indent)
 {
 //Recursive method to print out tree nodes with proper indenting.

 //Determine number of tabs to use - to properly indent tree
 int tabCount = (indent < tabs.length() ? indent :

Chapter 7. Test Author Guide

 tabs.length());

 //Print out node name + number of children
 System.out.println(tabs.substring(0, tabCount) + node.getNode() + " (" + node.getChildCount() +
 "children)");

 //Determine if node has children; recursively call this same
 //method to print out child nodes.
 ITestDataTreeNode[] children = node.getChildren();
 int childCount = (children != null ? children.length : 0);
 for (int i = 0; i < childCount; ++i)
 showTree(children[i], indent+1);
 }

 //String of tabs used to indent tree view
 final String tabs = "\t";

}

On the first screen of this application is a Java™ Swing JTree component, which lists five composers. The next level

down lists CDs available for the selected composer. The code in this sample extracts the values from all of the

branches of the tree and displays them in the console window.

The first step to extracting the data is to use the getTestData method to extract the data from the control. This is done

with the following syntax:

ITestDataTree cdTree;
cdTree = (ITestDataTree)tree2().getTestData("tree");

The next step is to create an array that contains all of the nodes on the tree. This is done as follows:

ITestDataTreeNodes cdTreeNodes;
ITestDataTreeNode[] cdTreeNode;

cdTreeNodes = cdTree.getTreeNodes();//Encapsulates the root
nodes.
cdTreeNode = cdTreeNodes.getRootNodes();;//Extracts actual
root nodes.

Note that this is a two-step process. First, you must use the getTreeNodes method to return a TreeNodes object. Then

you can call the getRootNodes method to extract an array of the root nodes for the tree.

With the tree nodes in hand, you can use recursion to walk though each node to determine its value and the number

of direct children it contains. This is done in the recursive method showTree. A recursive method is a method that calls

itself, and is an efficient way to walk through a tree structure. To extract the value of the node, the getNode method is

used. To extract the number of children contained by the node, the getChildCount method is used. In the example, this

is done with the following code:

System.out.println(tabs.substring(0, tabCount) + node.getNode()+" (" + node.getChildCount() + "
 children)");

981

HCL OneTest™ UI

982

Note the additional coding provided in the custom showTree method is to enable a formatted printing using tabs to

indicate the indentation of the tree.

Iterating through table cells using the getTestData method
This topic provides an example of using HCL OneTest™ UI's getTestData method to access the values in the cells of a

grid control.

The example tests against the Classics Java™ application:

import resources.GetGridDataExampleHelper;
import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

/**
* Description : Functional Test Script
* @author Administrator
*/
public class GetGridDataExample extends GetGridDataExampleHelper
{
/**
* Script Name : GetGridDataExample
* Generated : Jul 14, 2006 3:05:22 PM
* Description : Functional Test Script
* Original Host : WinNT Version 5.1 Build 2600 (S)
*
* @since 2006/07/14
* @author Administrator
*/
public void testMain(Object[] args)
{
//Start Classics Java Application
startApp("ClassicsJavaA");

//Navigate to Existing Order Grid
jmb().click(atPath("Order"));
jmb().click(atPath("Order->View Existing Order Status..."));

// Frame: View Order Status
nameComboB().click();
nameComboB().click(atText("Claire Stratus"));
ok().click();

// Frame: View Existing Orders
existingTable().click(atPoint(172,92));

//Get the data for the table
ITestDataTable orderTable = (ITestDataTable)existingTable().getTestData("contents");

Chapter 7. Test Author Guide

//Display the available data types for the grid, total rows and columns.
System.out.println ("Available Data Types: " + existingTable().getTestDataTypes());
System.out.println ("Total Rows in table : " + orderTable.getRowCount());
System.out.println ("Total Cols in table : " + orderTable.getColumnCount());

 // Cycle through all rows
 for (int row=0; row < orderTable.getRowCount();++row)
 {
 // Cycle through all columns
 for (int col=0; col < orderTable.getColumnCount();++col)
 {
 // Print out values of cells at (row,col) coordinates
 System.out.println ("Row " + row + ", " + orderTable.getColumnHeader(col) + ": "
 +orderTable.getCell(row,col));
 }
 }
// Close the frame
close().click();

// Frame: ClassicsCD
classicsJava(ANY,MAY_EXIT).close();
}
}

This example navigates to the "View Existing Orders" screen of the application. The code in this sample extracts the

values from all cells in the grid and displays them in the console window.

The first step to extracting the data is to use the getTestData method to extract the data from the control. This is done

with the following syntax:

ITestDataTable orderTable;
orderTable = (ITestDataTable)existingTable().
 getTestData("contents");

Given this data set, you can determine the total number of rows and columns by using the getRowCount and

getColumnCount methods. You can also ask the control what data types are available from the table using the

getTestDataTypes. The following code sends the results of these queries to the console window.

System.out.println ("Available Data Types: " +
 existingTable().getTestDataTypes());
System.out.println ("Total Rows in table : " +
 orderTable.getRowCount());
System.out.println ("Total Cols in table : " +
 orderTable.getColumnCount());

The next step is to print out the values of the individual cells, which is done by using a for loop to cycle through the

rows and columns of the grid:

for (int row=0; row < orderTable.getRowCount();++row)
{
 // Cycle through all columns
 for (int col=0; col < orderTable.getColumnCount();++col)

983

HCL OneTest™ UI

984

 {
 // Print out values of cells at (row,col) coords
 System.out.println ("Row " + row + ", " +
 orderTable.getColumnHeader(col) + ": " +
 orderTable.getCell(row,col));
 }
}

The example script uses the getCell method to print out the value of the current cell. Note also that the

getColumnHeader method prints out the current column header. When working with a grid, the numbering for both rows

and columns starts at 0. This does not apply to the getRowCount and getColumnCount methods where numbering starts

at 1.

Passing parameters to the callScript method
This topic describes how to use the different signatures of the callScript method to pass data from one script to

another.

The example uses two different Functional Test scripts:

• TheCaller, which calls another script and passes parameters

• TheCalled, which receives the parameters and prints them to System.out

TheCaller script uses three different versions of the callScript method:

• Without additional parameters: This is the default usage of the callScript method, which will execute the

specified script.

callScript("TheCalled");

• With additional string array parameter: An array of strings is used to pass string parameters to the called

script.

String[] dataToPass = new String[4];
...
callScript("TheCalled",dataToPass);

• With additional object array parameter: An array of objects is used to pass different object type parameters to

the called script.

Object[] objdataToPass = new Object[4];
...
callScript("TheCalled",objdataToPass);

The TheCaller script was recorded as follows:

import resources TheCallerHelper;

Chapter 7. Test Author Guide

import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

/**
* Description : Functional Test Script
* @author Administrator
*/

public class TheCaller extends TheCallerHelper
{
/**
 * Script Name : TheCaller
 * Generated : Jul 14, 2006 5:13:02 PM
 * Description : Functional Test Script
 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2006/07/14
 * @author Administrator
*/
public void testMain (Object[] args)
{

 callScript("TheCalled");

 String[] dataToPass = new String[4];
 dataToPass[0] = "this";
 dataToPass[1] = "is";
 dataToPass[2] = "really";
 dataToPass[3] = "cool";

 callScript("TheCalled",dataToPass);

 Object[] objdataToPass = new Object[4];
 objdataToPass[0] = new String("Thought the previous was cool?");
 objdataToPass[1] = "Take this one!";
 objdataToPass[2] = new Float(0.02);
 objdataToPass[3] = new Integer(4711);

 callScript("TheCalled",objdataToPass);
}
}

The TheCalled script uses a simple loop to print the received parameters to System.out:

import resources.TheCalledHelper;

import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;

985

HCL OneTest™ UI

986

import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;
/**
* Description : Functional Test Script
* @author Administrator
*/

public class TheCalled extends TheCalledHelper
{
/**
 * Script Name : TheCalled
 * Generated : Jul 14, 2006 5:13:02 PM
 * Description : Functional Test Script
 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2006/07/14
 * @author Administrator
*/
public void testMain (Object[] args)
{
 if (args.length < 1)
 {
 System.out.println("Expected at least 1 arg, but I got:
 "+args.length);
 return;
 }
 else
 {
 System.out.println("Got: "+args.length+" args");
 }

 for (int i = 0; i < args.length; ++i)
 {
 System.out.println(" arg["+i+"] = "+args[i]);
 }
}
}

Extracting data from a combobox/list control (JComboBox)
You can use HCL OneTest™ UI's getTestData method to access the values in the list of a ComboBox/List control.

The following example tests against the Classics Java™ application:

import resources.GetListDataExampleHelper;

import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

/**

Chapter 7. Test Author Guide

 * Description : Functional Test Script
 * @author Administrator
 */
public class GetListDataExample extends GetListDataExampleHelper
{
/**
* Script Name : GetListDataExample
* Generated : May 16, 2006 9:06:46 AM
* Description : Functional Test Script
* Original Host : WinNT Version 5.1 Build 2600 (S)
*
* @since 2006/05/16
* @author Administrator
*/
public void testMain(Object[] args)
{
startApp("ClassicsJavaA");

// Frame: ClassicsCD
tree2().click(atPath("Composers->Schubert->Location(PLUS_MINUS)"));
tree2().click(atPath("Composers->Schubert->Die schone Mullerin, Op. 25"));
placeOrder().click();

//Declare variables for list
ITestDataList nameList;
ITestDataElementList nameListElements;
ITestDataElement nameListElement;

//Frame: Member Logon
nameCombo().waitForExistence();

//Available test data types: {selected=Selected List Element,
//list=List Elements}
java.util.Hashtable ht = nameCombo().getTestDataTypes();
System.out.println(ht);

//Get all elements
nameList = (ITestDataList)nameCombo().getTestData("list");
nameListElements = nameList.getElements();

int listElemCount = nameList.getElementCount();

 for (int i = 0; i < listElemCount; i++)
 {
 nameListElement = nameListElements.getElement(i);
 System.out.println(nameListElement.getElement());

 // Click on each element
 nameCombo().click();
 nameCombo().click(atText(nameListElement.getElement().toString()));
 };

cancel().click();

// Frame: ClassicsCD
classicsJava(ANY,MAY_EXIT).close();
}

987

HCL OneTest™ UI

988

}

This example first opens up the Classics Java™ application. It selects a composer in the tree and an album

(composer = Schubert, album = "Die Schone Muellerin") and clicks the Place Order button. In the next screen

(Member Login - dialog) the sample code extracts the list of values from the ComboBox and displays them in the

console window before clicking on each list element.

The first step is to extract the data from the control by using the getTestData method:

ITestDataList nameList;
nameList = (ITestDataList)nameCombo().getTestData("list")

To find out which data types are available for a control, use the following code:

java.util.Hashtable ht = nameCombo().getTestDataTypes();

Given this data set, you can create an array that contains all of the elements of the list. This is done as follows:

ITestDataElementList nameListElements;
nameListElements = nameList.getElements();

With the list elements in hand, you can create a loop that accesses each list element. To determine the number of list

elements, use the getElementCount method. To extract the value of the list element, the getElement method is used. In

the example, this is done with the following code:

int listElemCount = nameList.getElementCount();

for (int i = 0; i < listElemCount; i++)
{
 nameListElement = nameListElements.getElement(i);
 System.out.println(nameListElement.getElement());

 // Click on each element
 nameCombo().click();
 nameCombo().click(atText(nameListElement.getElement().toString()));
};

Playing back low level mouse and keyboard actions
Low-level playback of mouse and keyboard actions provides more control of events of user actions. For example,

HCL OneTest™ UI currently supports TestObject.click(), where the click consists of low-level actions including mouse

move, left mouse button down, and left mouse button up. With this functionality, you can play back the individual

components of a mouse click.

Low-level playback also supports mouse wheel scrolling.

You may want to use low-level playback to overcome a product limitation or an obscure mouse or keyboard action.

For example, to draw a circle on a canvas in a drawing program, HCL OneTest™ UI does not support the complex

Chapter 7. Test Author Guide

circular drag but you can use the drag() method to draw straight lines. To overcome an obscure mouse or keyboard

action, you can use low-level playback to play back the mouse actions for drawing the circle.

The RootTestObject class includes two methods:

• emitLowLevelEvent(LowLevelEvent)

• emitLowEvent(LowLevelEvent[])

Factory methods on SubitemFactory for construction of LowLevelEvents include:

• delay(int)

• keyDown(string)

• keyUp(string)

• mouseMove(point)

• mouseWheel(int)

• leftMouseButtonDown()

• leftMouseButtonUp()

Parallel methods exist for the middle and right mouse buttons. The delay event guarantees a delay of at least the

milliseconds specified, taking into account the time taken by the system to consume the previous event.

A HCL OneTest™ UI, Eclipse Integration example to draw the letter V in the upper left portion of the drawing canvas:

// This routine will draw a "V" in the upper left portion
// of the drawing canvas.
// First a point in the upper left corner will be clicked, the left mouse
// button will be held down for the duration of the action, the mouse
// will be moved to the right and down, then to the right and back up,
// and finally the left mouse button will be released.
Rectangle screenRect =
 (Rectangle) drawingWindow().getProperty(".screenRectangle");
Point origin = new Point(screenRect.x + 5, screenRect.y + 5);
LowLevelEvent llEvents[] = new LowLevelEvent[7];
llEvents[0] = mouseMove(atPoint(origin.x, origin.y));
llEvents[1] = leftMouseButtonDown();
// insert a delay to provide the SUT with time to respond
// to the events being delivered to it.
llEvents[2] = delay(250);
llEvents[3] = mouseMove(atPoint(origin.x + 25, origin.y + 50));
llEvents[4] = delay(250);
llEvents[5] = mouseMove(atPoint(origin.x + 50, origin.y));
llEvents[6] = leftMouseButtonUp();
getRootTestObject().emitLowLevelEvent(llEvents);

A HCL OneTest™ UI, Microsoft Visual Studio .NET Integration example to test a TrackBar control and confirm the

control responds to the mouse wheel events:

' This will test a TrackBar control to make sure
' that it responds to mouse wheel events.
TrackBar1Slider().Click(AtPoint(0, 0))

989

HCL OneTest™ UI

990

' Create a Low Level Event representing scrolling
' the mouse wheel down 25 clicks.
Dim ScrollDown As LowLevelEvent = MouseWheel(-25)
GetRootTestObject().EmitLowLevelEvent(ScrollDown)
' Verify The Results.

Searching for test objects
You can search for one or more test objects that match specified search criteria. The search is based on name/value

pairs that represent properties of the test object or test objects you are looking for. The search can either be global, or

limited to children of a parent test object.

A RootTestObject object represents a global view of the software being tested. To perform a global search, you invoke

the find method on the RootTestObject object. Invoking a find method on a test object only searches the children of

that test object.

The first argument in the find method is a subitem for the search properties. The second optional argument is a flag

that indicates whether only children that might be included in the test object map should be searched. The following

values for the property subitems are valid:

• atProperty -- A name/value pair representing a test object property

• atChild -- One or more properties that must be matched against the direct child of the starting test object

• atDescendant -- One or more properties that can be matched against any child of the starting test object

• atList -- A sequential list of properties to match against. These subitems for the atList value are valid:

◦ atChild

◦ atDescendant

◦ atProperty

The first list item is matched against to get a list of candidates, and out of those candidates, their

descendants are matched against for the next list item, and so on.

Special properties apply to the RootTestObject.find method, including these properties:

• .processName : This top-level property has two functions:

◦ Dynamically enable the processes with that process name

◦ Constrain the find method to only look in processes with that name

• .processId: This top-level property has two functions:

◦ Dynamically enable the processes with that process ID (pid)

◦ Constrain the find to only look in processes with that process ID (pid)

Note: The .processId property is valid for dynamically enabled domains like Microsoft .NET and

Windows. It is not valid for enabled domains, such as HTML and Java.

• .domain: This flag specifies to only search in top-level domains that match the domain property

Chapter 7. Test Author Guide

• .hWnd: When the hWnd property is used for the search, if the "Win" .domain property is also specified, the

matching window is enabled for testing with the Windows® domain.

• Handle: When the window handle property is used for the search, if the "Net" .domain property is also specified,

the matching window is enabled for testing with the Microsoft .NET domain.

Examples:

TestObject[] foundTOs ;
RootTestObject root = RootTestObject.getRootTestObject() ;
// Find all top-level windows in the Windows domain that have the caption "My Document"
CaptionText caption = new CaptionText("My Document") ;
foundTOs = root.find(atChild(".domain", "Win", ".caption",
 caption)) ;

// Find any dialog boxes, and then return their children "OK" buttons.
RegularExpression dialogRE = new
 RegularExpression("*dialog", false) ;
RegularExpression buttonRE = new
 RegularExpression("*button", false) ;
foundTOs = root.find(atList(atDescendant(".class",
 dialogRE),
 atChild(".class", buttonRE,".value",
 "OK"))) ;

// Start Notepad, dynamically enable that process, find its top-level window that matches the process ID
 and get its descendant text window.
 ProcessTestObject p1 = StartApp("Notepad") ;
 Integer pid = new Integer((int)p1.getProcessId()) ;
 foundTOs = root.find(atList(atProperty(".processId",
 pid), atDescendant(".class", ".text"))) ;

// This enables a Windows application with the provided window handle and returns a test object that
 represents the window.
Long hWnd = getAppsHwnd();
foundTOs = root.find(atChild(".hwnd", hWnd, ".domain", "Win"));

// This enables a .NET application with the provided window handle and returns a test object that
 represents the window.
Long handle = getAppsHwnd();
foundTOs = root.find(atChild("Handle", handle, ".domain", "Net"));

HCL OneTest™ UI dynamically enables the Windows and .NET applications by using the .processName property. To find

the required test object on a Windows or .NET application, use the .processName property in the query.

Example: The following example code finds the number 9 button in a calculator and then clicks it.

 Property[] props = new Property[4];
 // Find the top-level window of calculator application
 props[0] = new Property(".processName", "calc.exe");
 props[1] = new Property(".class","SciCalc");
 props[2] = new Property(".name", "Calculator");
 props[3] = new Property(".text", "Calculator");
 TestObject[] tos = find(atChild(props));

 if(tos.length > 0)

991

HCL OneTest™ UI

992

 {
 // Find button that contains the text 9
 props = new Property[3];
 props[0] = new Property(".class","Button");
 props[1] = new Property(".name", "9");
 props[2] = new Property(".text", "9");
 TestObject[] tos9 = tos[0].find(atChild(props));

 if(tos9.length > 0)
 {
 // Click button 9
 ((GuiTestObject)tos9[0]).click();
 //unregister
 tos9[0].unregister();
 }
 }

You can use this sample code to verify the number of open browser instances, the state of each browser instance,

and the number of open browser tabs in each browser instance:

public class BrowserLength extends BrowserLengthHelper
{
 /**
 * Script Name : BrowserLength
 * Generated : Mar 2, 2012 6:09:06 PM
 * Description : Functional Test Script
 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2012/03/02
 * @author Functional Test User
 */
 public void testMain(Object[] args)
{
 findNumberofBrowser_tab();
 }
 private void findNumberofBrowser_tab() {
 // TODO Auto-generated method stub
 TestObject[] browsers = RootTestObject.getRootTestObject().find(atChild(".class","Html.HtmlBrowser"));

 System.out.println("No. of browser instances found: "+browsers.length);
 for(int i=0;i<browsers.length;i++){
 sleep(5);
 BrowserTestObject browser = (BrowserTestObject) browsers[i];
 System.out.println("State of the browser instance "+ " is:
 "+browser.getProperty(".readyState").toString());
 TestObject[] t = browser.find(atDescendant(".class", "Html.HtmlBrowser.Tab"));
 System.out.println("No. of Html.HtmlBrowser.Tab found in the browser instance "+ " is:
 "+(t.length-1));

 }
 }
}

This code returns these results:

Number of browser instances found:

State of the browser instance <instance number> is:

Chapter 7. Test Author Guide

Number of Html.HtmlBrowser.Tab values found in the browser instance <instance number> is:

Searching for SAP TestObjects
With HCL OneTest™ UI, you can locate one or more SAP TestObjects matching a specified search criteria, even

without using the Object Map.

HCL OneTest™ UI supports a RootTestObject class to represent a global view of the software under test. To enable the

SAP application for testing, you invoke the enableForTesting method on the RootTestObject class. To search globally,

you invoke the find method on the RootTestObject class. Valid values for the subitem, which is the first argument

of the find method, include atProperty, atChild, atDescendant, and atList. There are special properties that apply

to the RootTestObject.find, including the .processName, .processID, and .domain properties. You can use any one of

these subitems and properties. For example, to search for the SAP domain, you can use the atChild subitem with the

.domain property set to SAP.

Note: See the SAP GUI Script Framework documentation for more information on SAP GUI Runtime Hierarchy.

After the top level SAP Test Object is found and returned, you can use that object to find various objects of SAP GUI

runtime hierarchy. For example:

• You can obtain the SAPGuiApplicationTestObject class by invoking the GetApplication method on the

SAPTopLevelTestObject class.

• You can obtain the SAPGuiConnectionTestObject class by invoking the GetProperty("Connections") method on

the SAPGuiApplicationTestObject class.

• You can obtain the SAPGuiSessionTestObject class by invoking the GetProperty("Sessions") method on the

SAPGuiConnectionTestObject class.

• You can obtain the SAP's active window by invoking the GetProperty("ActiveWindow") method on the

SAPGuiSessionTestObject class.

Once you have the active window object, you can use the GetChildren method on the main window test object to find

and interact with various objects on GuiMainWindow method.

Listed below is an example on how you can perform user interactions with objects in the SAP application. This

sample code does these actions:

1. Enables the SAP application for testing

2. Returns the SAP test object representing the window

3. Uses this object to find the Create Role button whose button name property is set to btn[48] on the SAP

toolbar

4. Clicks the Create Role button

Example:

import resources.HandCodingWithEnablementHelper;

993

HCL OneTest™ UI

994

import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.object.interfaces.SAP.*;
import com.rational.test.ft.object.interfaces.siebel.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

/**
 * Description : Functional Test Script
 * @author Administrator
 */
public class HandCodingWithEnablement extends HandCodingWithEnablementHelper
{
 /**
 * Script Name : HandCodingWithEnablement
 * Generated : Sep 5, 2006 10:03:51 AM
 * Description : Functional Test Script
 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2006/09/05
 * @author Administrator
 */
 public void testMain(Object[] args)
 {
 // Searching for SAP Test Objects through Scripting

 // This enables SAP to be tested by HCL OneTest™
 UI and
 // returns all top-level test objects in the SAP domain
 getRootTestObject().enableForTesting("sapLogon");
 TestObject[] sapApps = getRootTestObject().find(atChild(".domain", "SAP"));

 // Get a handle to the SAP Application from the top-level SAP object
 if(sapApps.length > 0){
 SAPGuiApplicationTestObject theAPP = ((SAPTopLevelTestObject)sapApps[0]).getApplication();
 logInfo("Application Number:" + theAPP.getProperty("Id"));

 // Get a handle to the SAP Connection from the SAP Application Test object
 TestObject[] cons = (TestObject[])theAPP.getProperty("Connections");

 SAPGuiConnectionTestObject con = (SAPGuiConnectionTestObject)cons[0];
 logInfo("Connection Number:" + con.getProperty("Id"));

 // Get a handle to the SAP Session from the SAP Connection Test Object
 TestObject[] sessions = (TestObject[])con.getProperty("Sessions");
 SAPGuiSessionTestObject sess = (SAPGuiSessionTestObject)sessions[0];
 logInfo("Session Number:" + sess.getProperty("Id"));

 // Get a handle to the SAP Main Window from the SAP Session Test Object
 // and iterate over its children till the desired object is found
 SAPTopLevelTestObject mainWnd = (SAPTopLevelTestObject)sess.getProperty("ActiveWindow");

 TestObject[] wndChild = mainWnd.getChildren();
 for (int i=0; i<wndChild.length; i++)
 {
 String name = (String)wndChild[i].getProperty("Name");

Chapter 7. Test Author Guide

 if (name.compareTo("tbar[1]")== 0)
 {
 TestObject[] btn = (TestObject[])wndChild[i].getChildren();
 for (int j = 0; j< btn.length; j++)
 {
 System.out.println("ToolBar Buttons");
 String btnType = (String)btn[j].getProperty("Type");
 if (btnType.compareTo("GuiButton")==0)
 {
 SAPGuiToggleTestObject button = (SAPGuiToggleTestObject)btn[j];
 String btnName = (String)button.getProperty("Name");
 if (btnName.compareTo("btn[48]")== 0)
 {
 // Click the "Create Role" button ("btn[48]") placed on the toolbar("tbar[1]")
 button.press();
 logInfo("Clicked on the Create Role button");
 break;
 }
 }
 }
 }
 }
 }else{
 logInfo("SAP Application not found");
 }
 }
}

If the SAP application is already enabled, then you do not need to enable the SAP application explicitly for testing.

Instead, you can use the following code to find the enabled SAP application.

DomainTestObject domains[] = getDomains();
 for (int i =0; i < domains.length; i ++)
 {
 DomainTestObject domain = domains[i];
 String name = (String)domain.getName();
 if (name.compareTo("SAP") == 0)
 {
 // Returns all top-level test objects in the SAP domain
 TestObject[] sapApps = domains[i].getTopObjects();

 // Perform user interactions with the SAP objects
 }
 }

You can also adapt the dynamicfind() API to find SAP text objects in a functional test script and perform setText in an

SAP text field.

public class SAPEditControl extends SAPEditControlHelper {
 /**
 * Script Name : SAPEditControl Generated : Aug 3, 2011 2:29:57
 * PM Description : Functional Test Script Original Host : WinNT Version
 * 5.1 Build 2600 (S)
 *
 * @since 2011/08/03
 * @author Functional Test User
 */
 public void testMain(Object[] args) {

995

HCL OneTest™ UI

996

 // Define a set of properties for a control (test object) to be searched
 Property Props[] = new Property[4];
 // property and value
 Props[0] = new Property(".class", "Html.TABLE");
 Props[1] = new Property(".customclass", "SAPEditControl");
 Props[2] = new Property(".id", "WD019E-r");
 Props[3] = new Property(".classIndex", "10");

 try {

 // Find and store test objects into array
 TestObject Obj[] = getRootTestObject().find(atDescendant(Props));

 // Perform a click action on the very first object.
 ((TextGuiSubitemTestObject) Obj[0]).click();

 // Set a text into SAP Edit Control
 ((TextGuiSubitemTestObject) Obj[0]).setText("ClaimedAmount");

 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 //call unregisterAll to clear reference.
 unregisterAll();
 }
 }

}

Tracing AJAX requests
You can test AJAX-based applications in two different ways; by setting the Auto Trace option to true or by setting the

Auto Trace option to false on the corresponding document object. By setting Auto Trace option to true, you can trace

the AJAX requests.

The following example shows how to use the getAjaxPendingRequests and waitForAjaxCompletedRequests. The

getAjaxPendingRequeststo method is used to return the number of AJAX pending requests at any given point of time

since the first AjaxTraceOn. The waitForAjaxCompletedRequestsTo method is used to wait for the specified number

of AJAX requests to be completed. If the argument is not specified, it waits till the pending requests becomes zero.

Note: When the pending requests become zero, ensure that you turn off the Auto Trace option.

public class AjaxRequestExample extends AjaxRequestExampleHelper
{
 /**
 * Script Name : AjaxRequestExample
 * Generated : Apr 24, 2012 2:52:37 PM
 * Description : Functional Test Script
 * Original Host : WinNT Version 5.1 Build 2600 (S)
 *
 * @since 2012/04/24
 * @author Functional Test User
 */

Chapter 7. Test Author Guide

 public void testMain(Object[] args)
 {
 ajaxTraceTest();
 }

 public void ajaxTraceTest() {
 startBrowser("Internet Explorer",
 "<AJAX related Web Application URL>");

 // When is set to true, turn the AJAX Request tracing facility to 'On' at the HTML document level.
 document_convertBuyTransferAnd().setAjaxTrace(true);

 // perform AJAX-related actions.
 text_xvalue().click(atPoint(72, 10));
 list_xfrom().click();
 list_xfrom().click(atText("EUR - Euro"));

 /*
 * ++++++++++Use one of the following three functions:
 a) waitForAjaxPendingRequests() - Wait for all the pending request to be served.
 b) waitForAjaxPendingRequests(5) - Wait for the 5 pending request to come
 c) waitForAjaxCompletedRequests(3) - Wait for 3 completed AJAX requests
 *
 * Just to illustrate we have used a,b and c - in the real use case we expect you to use any one of
 the function.
 */

 // Wait until all pending requests are completed.
 document_convertBuyTransferAnd().waitForAjaxPendingRequests();

 // Number of allowed pending requests, otherwise throw AjaxTimeOutException on timeout
 document_convertBuyTransferAnd().waitForAjaxPendingRequests(5);

 // Wait until the specified count of AJAX requests are completed. Otherwise throw
 AjaxWaitTimeOutException on timeout.
 document_convertBuyTransferAnd().waitForAjaxCompletedRequests(1);

 // When is set to false, turn the AJAX Request tracing facility to off
 document_convertBuyTransferAnd().setAjaxTrace(false);

 }
}

Searching for GEF objects
HCL OneTest™ UI recognizes the GEF EditParts and Palettes. Some Figures may not have an association with an

EditPart. You can use HCL OneTest™ UI APIs to find such Figures as shown in the below examples.

Example 1: The following example shows how to use getFigure() API to retrieve a Figure that has the text "label" and

is not associated with EditPart

//Get the figure for an EditPart
 GuiTestObject figureTO = EntityEditPart().getFigure();

//Find for a figure that has the text in it.
 TestObject foundTO[] = figureTO.find(atDescendant("text", "label"));

997

HCL OneTest™ UI

998

 if(foundTO != null)
 {
 int numFound = foundTO.length;
 for(int index = 0; index < numFound ; index ++)
 {
 if(foundTO[index] != null && foundTO[index] instanceof GuiTestObject)
 {
 //To check for specific property on the figure
 Object figWidth = foundTO[index].getProperty("width");
 if(figWidth != null)
 ((GuiTestObject)foundTO[index]).click();
 }
 }
 }

Example 2: The following example shows how to use getConnectors() API to perform click operation on the

connector that has the label "Association"

//List the connectors from the node's parent
 TestObject parent = EntityEditPart().getParent();
 if(parent != null && parent instanceof GefEditPartTestObject)
 {
 TestObject connectors[] = ((GefEditPartTestObject)parent).getConnectors();

 if(connectors != null)
 {
 int numConnector = connectors.length;
 for(int conIndex = 0; conIndex < numConnector; conIndex ++)
 {
 if(connectors[conIndex] != null && connectors[conIndex] instanceof GefEditPartTestObject)
 {
 GuiTestObject figConnector = ((GefEditPartTestObject)connectors[conIndex]).getFigure();
 //Find for a figure that has some text in it.
 TestObject foundConn[] = figConnector.find(atDescendant("text", "association"));
 if(foundConn != null && foundConn.length> 0)
 {
 //If there is only one label with the text "Association"
 if(foundConn[0] != null && foundConn[0] instanceof GuiTestObject)
 {
 ((GuiTestObject)foundConn[0]).click();
 }
 }

 }

 }
 }
 }

Example 3: The following example populates a list with connectors that are descendants to the selected EditPart

using the isConnector () API

//Assuming you have "RootEditPart" in the ObjectMap.
 ArrayList connList = new ArrayList();
 enumerateAllConnectors(RootEditPart(),connList);
 }

Chapter 7. Test Author Guide

 private static void enumerateAllConnectors(TestObject editPart,ArrayList connList)
 {
 if(editPart != null)
 {
 if(editPart instanceof GefEditPartTestObject)
 {
 boolean isConnector = ((GefEditPartTestObject)editPart).isConnector();
 if(isConnector)
 connList.add(editPart);
 }

 TestObject []children = editPart.getChildren();
 if(children != null)
 {
 int numChild = children.length;
 for(int i=0; i < numChild ; i++)
 {
 enumerateAllConnectors(children[i], connList);
 }
 }
 }
 }

Passing parameters by using the describe function in PowerBuilder
In PowerBuilder, you can use the describe() function to identify the properties of DataWindow objects and their

controls. The describe() function is available only with the PowerBuilder DataWindow. The describe() function

returns a string as a result of the parameters that are specified as a part of the describe() function. For example,

you can find the data types of the column in a table style presentation. You can use the describe function in HCL

OneTest™ UI as shown in the following examples.

Example 1: This example shows how to pass parameters to the PowerBuilder describe() function and report the

result as a string. The result displays the employee name and the state of origin of the employee.

//Get the figure for an EditPart
 public void testMain(Object[] args)
{

String ls_request;
String ls_report;

ls_request = "DataWindow.Bands DataWindow.Objects "
+ "empname_h.Text "
+ "empname_h.Type emp.Type emp.Coltype "
+ "state.Type empname.Type empname_h.Visible";
ls_report = dw_1.Describe(ls_request);

}

See the PowerBuilder help for detailed information on PowerBuilders describe() function.

999

HCL OneTest™ UI

1000

Finding the state of the browser
When you record functional test scripts, if you find that some controls were not picked up by the recording, you can

verify whether the browser used during the recording was in a ready state for recording. Similarly, if you encountered

problems during playback, you can verify the state of the browser. You can use the dynamic find() API and use the

Html.HtmlBrowser method for this purpose.

This example shows you how to use the dynamic find() API and use the Html.HtmlBrowser method to verify the state

of a browser during recording or playback.

Note: This example assumes a single instance of the browser. You can use this example iteratively when

multiple instances of the browser are running.

 public void testMain(Object[] args)
 {
 //This sample verifies whether the Browser is in ready state or not.
 // To run this script, start a single instance of the browser, Internet Explorer or Mozilla Firefox.

 startBrowser("http://www.google.com");
 sleep(5);
 // Checking Browser class and when it is found, returns to Test Object
 TestObject[] to = find(atChild(".class", "Html.HtmlBrowser"));
 // Found one or more Test Object
 if(to.length> 0)
 {
 // Cast into BrowserTestObject
 BrowserTestObject bto = (BrowserTestObject)to[0];

 //Wait for the browser to be ready
 // parameter, browsser test object, state of the browser, timeout& delay in seconds
 boolean isBrowserReady = waitForBrowserTobeReady(bto, 4, 240, 10);
 if(isBrowserReady)
 {

 // Performing a find operation and saving the returned object in the TestObject array.
 TestObject[] googleButton = bto.find(atDescendant(".class" ,"Html.INPUT.submit",".value","I'm
 Feeling Lucky"));

 if(googleButton.length ==0)
 {
 System.out.println("None found");
 return;
 }
 //Click the first test object found.
 ((GuiTestObject)googleButton[0]).click();

 }
 else
 {
 System.out.println("Browser didn't come to ready State");
 }
 unregisterAll();

Chapter 7. Test Author Guide

 }
 else
 {
 System.out.println("No browser instance found");
 }
 }

 /*
 *
 * waitForBrowserTobeReady
 * param :
 * This method waits for the browser to come to the readyState within a specified time range
 * BrowserTestObject as bto
 * readyState as 4
 * timeout as 120 seconds
 * delay as 10 seconds
 */

 static boolean waitForBrowserTobeReady(BrowserTestObject bto, int readyState, int timeout, int delay)
 {
 //Check is browser is ready
 boolean isBrowserReady = false;

 // Number of tries with a delay
 int noOfTries = timeout/delay;

 for(int i=0; i < noOfTries; i++)
 {
 try
 {

 //Possible .readyState property values for the browser
 // 0 - Uninitalized
 //1,2 - LOADING
 //3 - LOADED
 //4 - ENABLE/VISIBLE/READY
 int browserState = ((Integer)(bto.getProperty(".readyState"))).intValue();
 if(browserState>= readyState)
 {
 isBrowserReady = true;
 break;
 }
 }
 //Catch exception if any
 catch(Exception e)
 {
 break;
 }
 sleep(delay);
 }
 //Return successful of browser ready state is true
 return isBrowserReady;
 }
}

1001

HCL OneTest™ UI

1002

Finding objects in a Dojo tree
You can use the dynamic find() API and the dojoTreeExpand() method to find all objects within a Dojo tree control

within the application under test.

This example shows you how to use DojoTreeTestObject() to find all objects within a Dojo tree. You can adapt the

code to change the browser if required.

 public void testMain(Object[] args) {
 // TODO Insert code here
 dojoTreeExpand();
 }

 public void dojoTreeExpand() {

 //Bring the application under test dynamically using startBrowser method and browser as Mozilla
 Firefox (assuming Firefox is enabled correctly)
 //Tips: You change the browser to Internet Explorer in the startBrowser method.
 ProcessTestObject process = RationalTestScript.startBrowser(
 "Mozilla Firefox", "http://docs.dojocampus.org/dijit/Tree" (http://docs.dojocampus.org/dijit/Tree));
 // ProcessTestObject process =
 // RationalTestScript.startBrowser("Internet Explorer",
 // "http://docs.dojocampus.org/dijit/Tree" (http://docs.dojocampus.org/dijit/Tree));

 // Wait for the browser to load completely.
 process.waitForExistence();

 // The RootTestObject represents a global view of the Application being
 // tested. It does not
 // represent an actual TestObject in the software under test. it
 // provides ways to finding an arbitrary
 // TestObject based on properties
 RootTestObject to = RootTestObject.getRootTestObject();

 // Define Test Object array
 TestObject[] dojoControls = null;
 for (int i = 0; i <= 10; i++) {

 // Performing a find operation and saving the returned object in the TestObject
 // array.
 dojoControls = to.find(RationalTestScript.atDescendant(".class",
 "Html.A", ".className", "show"));
 if (dojoControls.length>= 1) {
 break;
 }
 RationalTestScript.sleep(3);
 }
 // Assigning the first found Test Object to the GUITestObject, and
 // perform a click
 ((GuiTestObject) dojoControls[0]).click();

 //Wait enough to load the page completly.
 sleep(30);

 // Define Test Object array, for a Dojo Tree structure
 TestObject[] trees = null;
 for (int i = 0; i <= 10; i++) {

Chapter 7. Test Author Guide

 // Doing a find operation and saving the returned object in the TestObject
 // array.
 trees = to.find(RationalTestScript.atDescendant(".dojoclass",
 "tree", ".id", "treeOne"));
 if (trees.length == 1) {
 break;
 }
 RationalTestScript.sleep(3);
 }
 //
 DojoTreeTestObject dijitTree = new DojoTreeTestObject(trees[0]);

 // Dispatched when a tree has 'Continents' as node is expanded
 dijitTree.expand(atList(atText("Continents"), atText("North America"),
 atText("Mexico")));
 // Dispatched when a tree has 'Continents' as node is expanded
 dijitTree.click(atList(atText("Continents"), atText("North America"),
 atText("Mexico"), atText("Guadalajara")));
 sleep(10);
 }
}

Reading multiple datasets from a functional test script
You can use the dynamic find() API to read multiple datasets from a functional test script.

This sample code shows you how to read more than one dataset from a functional test script.

public class UserInformation extends UserInformationHelper {
 /**
 * Script Name : UserInformation Generated : Sep 6, 2011 3:57:48
 * PM Description : Functional Test Script Original Host : WinNT Version
 * 5.1 Build 2600 (S)
 *
 * @since 2011/09/06
 * @author user1
 */
 public void testMain(Object[] args) throws Exception {

 //User defined function to load more then on dataset
 firstdataset();
 }

 public void firstdataset(){

 //Get a value from the first dataset at the Test Script Level.
 String address = dpString("Address");

 System.out.println(" -- Address from the 'script' associated dataset: " + address);

 //Call the second dataset
 Seconddataset();

 }

 public void Seconddataset() {

1003

HCL OneTest™ UI

1004

 // Point to the dataset location that was created
 java.io.File dpFile = new java.io.File(
 (String) getOption(IOptionName.DATASTORE), "/UserDetails.rftdp");
 // Load the dataset using FT IdatasetFactory
 Idataset dataset_two = dpFactory().load(dpFile, true);

 // Open the dataset using FT IdatasetFactory
 IdatasetIterator dataset_Ite_2 = dpFactory().open(dataset_two, null);

 // After it is opened, initilize the dataset to access the data
 dataset_Ite_2.dpInitialize(dataset_two);

 // Get a value from the second dataset, first record
 String firstName = dataset_Ite_2.dpString("FirstName");

 // Redirect the output to console or use logInfo method
 System.out.println(" -- First Name from the Second dataset: "
 + firstName);
 }

}

Selecting an item from a Java drop-down list
You can modify the dynamic find() API to use the mapped and dynamic test objects, to select an item from a drop-

down list in a Java application, as the following example illustrates:

This example uses the Classics Java application that is provided with HCL OneTest™ UI.

//Start the Classics JavaA application provided with HCL OneTest™
 UI
 startApp("ClassicsJavaA");

 // Frame: ClassicsCD - Click the Place Order button (mapped test object)
 placeOrder().click();

 //Define root test objects
 RootTestObject root = getRootTestObject();

 //Find the Java comboBox using properties exposed by the comboBox, define as array.
 TestObject[] to = root.
 find(atDescendant(".class","javax.swing.JComboBox","name", "nameCombo"));

 // Click the very first object that is found in the test object
 ((TextSelectGuiSubitemTestObject) to[0]).click();

 // Select one of the subitems from the drop-down list
 ((TextSelectGuiSubitemTestObject) to[0]).select("Bill Wu");

 // Frame: Member Logon - Click the Cancel button
 cancel().click();

 // Frame: ClassicsCD - Close the application

Chapter 7. Test Author Guide

 classicsCD(ANY,MAY_EXIT).close();

Verifying the status of a radio button or check box
You can use the dynamic find() API to verify the status of a radio button or check box during playback, such as

whether the control was selected or not.

This example shows you how to verify whether a radio button was selected during playback. When you use this

example, if the radio button is found to be cleared, it is identified as not selected and is written to the log. If the radio

button is found to be selected, it is clicked during playback.

private void checkRadionButtonStatus() {

State curState = radioButton_group1Milk().getState(); //radioButton_group1Milk is a mapped test object,
 recorded using the HCL OneTest™
 UI recorder.

System.out.println(curState.getState());
// Test whether the radio button is selected.
sleep(2);
if (curState.isNotSelected()) {
logInfo(" -- Html.INPUT.radio Button is NOT selected by default."); // The playback log captures the
 information.

} else {
System.out.println("Selected!!!");
logInfo(" -- HTML Radio Button selected by default,");
//Perform other actions such as click, etc..
}
}

This example modifies the previous example to verify the status of an HTML check box, and verify whether it was

selected during playback. When you use this example, if the check box is found to be cleared, it is identified as not

selected and is written to the log. If the check box is found to be selected, it is clicked during playback.

private void checBoxStatus() {

State currentStatus_checkBox = checkBox_ctl00EnrollmentConten().getState();//
 checkBox_ctl00EnrollmentConten is a mapped test object, recorded using the HCL OneTest™
 UI recorder.

System.out.println(currentStatus_checkBox.getState());
// Test whether the check box is selected.
sleep(2);
if (currentStatus_checkBox.isNotSelected()) {
logInfo(" -- Html.INPUT.checkbox is NOT selected by default.");
} else {
System.out.println("Selected!!!");
logInfo(" -- Html.INPUT.checkbox is selected by default,"); // The playback log captures the
 information.
//Perform other actions such as click, etc..
}
}

1005

HCL OneTest™ UI

1006

These examples show how to use the isNotSelected() method. You can adapt these examples for your

requirements.

Closing active browsers before playback
You can use the dynamic find() API to find and close all active browsers before you play back a script to ensure that

there are no active browser instances before playback.

This example shows you how to use the dynamic find() API to search through the active domains, find all active

instances of the Microsoft Internet Explorer browser and close them. You can also modify this example to find and

close active Mozilla Firefox browsers.

 public void closeAllBrowsers() {
 DomainTestObject dom[] = getDomains(); // Get all domains
 for (int i = 0; i < dom.length; i++) {
 try {
 String s = (dom[i].getImplementationName()).toString();
 if ("MS Internet Explorer".equals(s)) { // If browser name equals MS Internet Explorer
 (dom[i].getProcess()).kill(); // Shut down the process
 sleep(2);
 }
 } catch (TargetGoneException e) {

 }

 unregisterAll(); // Ensure that you clean up the used test objects to prevent memory-related
 problems.
 }
 }

You can also use the dynamic find() API to directly find and close active instances of active browsers (Microsoft

Internet Explorer or Mozilla Firefox), as shown in this example:

public void closeAllBrowserUsingfind(){

 // Find browser objects using the HCL OneTest™
 UI find function and store into test object
 TestObject[] browsers = find(atChild(".class", "Html.HtmlBrowser"));

 if(browsers.length ==0){
 System.out.println("Found no Html.HtmlBrowser");
 return;
 }

 // Close each browser object found, after casting it to a BrowserTestObject
 for (TestObject browser:browsers) {
 ((com.rational.test.ft.object.interfaces.BrowserTestObject) browser).close();
 }

 // Unregister the test objects.
 unregister(browsers);
}

Chapter 7. Test Author Guide

The two examples shown above can be used as utility functions in a script helper superclass. For more information

about script helper superclasses, see Script helper superclass/base class on page 684.

Closing unexpected HTML dialog boxes during playback
You can use the dynamic find() API to close HTML dialog boxes that are displayed unexpectedly during playback, to

ensure smooth playback.

HCL OneTest™ UI provides the unexpected window handling feature to handle unexpected windows that are displayed

during playback. For more information about this feature, see Configuring how to handle unexpected windows during

playback on page 1179.

You can also use the dynamic find() API, modified as shown in this example, to close HTML dialog boxes, both

Html.Dialog or Html.HtmlDialog, that are displayed unexpectedly during playback. If you use this example during

playback, it takes precedence over the unexpected window handling settings in the Configure Handling of Unexpected

Windows dialog box.

public static void closeHtmlBrowserDialogs() {

 //Get all domains and search each domain
 DomainTestObject domains[] = getDomains();
 for (int i = 0; i < domains.length; ++i) {
 if (domains[i].getName().equals("Html")) { // Look for the HTML web domain. Once HTML is found, get
 the top-level test objects.
 TestObject[] topLevelObjects = domains[i].getTopObjects();
 if (topLevelObjects != null) {
 for (int j = 0; j < topLevelObjects.length; ++j) {

 String className = null;
 try{
 className = (String) topLevelObjects[j].getProperty(".class");

 } catch (PropertyNotFoundException ex){ // Throw an exception property not found exception
 // when the requested get property was not available
 ex.printStackTrace(); // print the detailed exception if any
 }

 // If Html.HtmlDialog or Html.Dialog pop-up windows are displayed during playback, both are
 handled.
 if((className != null) && (className.equalsIgnoreCase("Html.Dialog")
 ||className.equalsIgnoreCase("Html.HtmlDialog")))
 ((TopLevelTestObject) topLevelObjects[j]).close(); // The HTML pop-up window is closed.

 }
 }

 }
 }

 unregisterAll(); // Clean up any used test objects to prevent memory-related problems.

1007

HCL OneTest™ UI

1008

Experimental Features
HCL OneTest™ UI contains a set of pre-releases that enable you to test various experimental features. These

experimental features, while still in progress, are introduced early in the release to seek your feedback on its overall

functionality and performance. You can play around with these capabilities before they are made available and

supported as a general feature in an upcoming release.

Important: Experimental features are not rolled out as part of the general features of HCL OneTest™ UI and

should not be used in a production environment.

To access experimental features, click Window > Preferences > Test > FT Experimental Features.

You can enable the following experimental feature in HCL OneTest™ UI:

• Enable Mixed Content: Select this option to record and play back tests for applications that use both HTTP

and HTTPS protocols. When you enable mixed content, the test captures content from both the protocols that

are used by the application. If not, the test throws an exception for mixed content. For example, if you enable

mixed content and record an HTTPS application that has HTTP web links, the test captures content from both

the protocols without throwing an exception.

Chapter 8. Test Execution Specialist Guide
This guide describes how to automate the playback of the tests by using different methods such as Docker, IBM

Cloud Private, Jenkins and so on. The test results can be pushed to HCL® Quality Server.

Configuration of test runs from the UI Test perspective
When you create Web UI, mobile, or Windows tests, you must configure the play back of the recorded tests as test

runs from the UI Test perspective before you can view their test results.

Configuration of Web UI test runs
See the different ways to play back Web UI tests.

Prerequisites to running Web UI tests

Before you can run a Web UI test, you must complete the prerequisite tasks.

You can find the following information about the prerequisite tasks:

• Setting a specific browser profile for the playback on page 1009

• Clearing cache, cookies, and history of browsers on page 1010

Setting a specific browser profile for the playback
When you play back a Web UI test in a browser, the test is played back in the temporary profile of the browser. You

can set a specific user profile, which includes the extensions and settings to use for the test, for the browser in HCL

OneTest™ UI to play back the Web UI test.

About this task

You can set a specific browser profile path for the following browsers:

• Google Chrome

• Mozilla Firefox

• Microsoft Edge

• Opera

When you set the user profile for a browser, the user profile is used when you run the test from the workbench,

command line, IBM® UrbanCode™ Deploy, and IBM® Rational® Quality Manager.

Note:

1009

HCL OneTest™ UI

1010

• When you set a specific profile for the Firefox browser, HCL OneTest™ UI creates a copy of the profile

that you set and the tests are played back in the profile copy.

• If the test script modifies the Firefox browser profile during the test run, the profile goes back to the

default state after the run completes. The Chrome browser persists the changes that occurred during

the test run. The difference in behavior is due to the way each browser manages a profile.

1. Click Window > Preferences > Test > Test Execution > UI Test Playback.

2. Click the Browser tab.

3. Select the checkbox of the browser for which you want to set the profile path.

The Browse button for the browser is enabled.

4. Click Browse to browse and select the user profile for the browser.

5. Click Apply and Close.

Results

You have set the user profile path for the selected browser.

Related information

Running a Web UI test on page 1015

Use the Profile Manager to create and remove Firefox profiles

Create a new browser user profile

Clearing cache, cookies, and history of browsers
To optimize the performance of web browsers that are used to play back Web UI tests, you can clear cache, cookies,

and history of browsers.

Before you begin

• You must have closed all the instances of the web browser for which you want to clear cache, cookies, and

history.

• For Mac operating system, you must have provided full disk access to the applications that are used by HCL

OneTest™ UI by performing the following steps:

1. Click System Preferences > Security and Privacy.

2. Click Privacy tab and then select Full Disk Access.

3. Add the following applications for full disk access:

▪ Eclipse: /Applications/IBM/SDP/Eclipse

▪ Java: /Applications/IBM/SDP/jdk/Contents/Home/bin/java and /Applications/

IBM/SDP/jdk/Contents/Home/jre/bin/java

About this task

https://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-profiles
https://support.google.com/chrome/answer/142059?hl=en

Chapter 8. Test Execution Specialist Guide

When you want to clear the browser data of any browser, you must use a different browser to generate reports.

Restriction:

• You cannot clear the browser data of the Internet Explorer browser.

• You cannot clear the browser data in the following scenarios:

◦ When you run Web UI tests in HCL OneTest™ Server

◦ When you play back Web UI tests on multiple devices in parallel

◦ When you play back AFT tests

1. Go to Preferences > Test Execution > UI Test Playback.

2. Click the Desktop tab.

3. Select the Clear Cache and Clear history check boxes in the Clear browser data section.

Alternatively, you can also select the check boxes from the Run Configuration dialog box by clicking the

Configure UI Test Playback Preference link.

You can clear the browser data of the browsers that are installed in the following operating systems:

Operating System Supported browsers

Windows Mozilla Firefox, Google Chrome, Opera, and Mi

crosoft Edge

Linux Mozilla Firefox and Google Chrome

Mac Safari , Mozilla Firefox, Google Chrome, Opera, and

Microsoft Edge

4. Set the user profile based on browsers.

Note: If you do not set any profile, then the temporary profile of the browser is used.

You must perform the following steps to set the user profile for the Google Chrome, Firefox, and Opera

browsers:

a. Do the following tasks in the browser:

i. Open the browser and enter the following text in the browser URL to find the profile path for

each of the browsers:

▪ For Google Chrome, enter Chrome://version.

▪ For Firefox, enter about:support.

▪ For Opera, enter about:/.

The browser details are displayed.

b. Copy the complete profile path from the Profile Path field.

1011

HCL OneTest™ UI

1012

i. Do the following tasks in HCL OneTest™ UI:

1. Click Windows > Preferences > UI Test Playback > Browser tab.

2. Select the checkbox of the browser for which you want to clear the cache, history and

cookies, and then enter the profile value in the User Profile field.

5. Click Apply and Close.

Results

The browser cache, cookies, and history are cleared soon after you start the play back of Web UI tests.

Setting or changing the ANDROID_HOME path in Linux operating systems
When you want to run or play back recorded mobile tests by using the UI Test agent in HCL OneTest™ UI, you must

ensure that the ANDROID_HOME path is set correctly in computers that run on Linux.

About this task

You must set up the ANDROID_HOME path as an environment variable, if you use the UI Test agent to playback

recorded mobile tests for Android applications.

You must set up the environment variable on all computers from which you want to run mobile tests for Android

applications.

Note: If you encounter errors about the Android sdk path not found when you attempt to play back mobile

tests for Android applications on Windows, you might want to check if the value of the ANDROID_HOME

environment variable is set correctly or change the value to point to the correct path.

1. Go to <install_Dir>/UITestAgent directory and stop the UI Test agent service by running the following

command:

sudo ./UITestAgent.sh stop

2. Modify UI Test agent service (ui-test-agent.service) by performing the following steps:

a. Open the file for editing.

b. Search for the attribute ANDROID_HOME.

c. Change the value of the attribute ANDROID_HOME to <user-home>/Android/Sdk.

Note: You must point to the directory where you installed the Android SDK components. It can

be the default directory as <user-home>/Android/Sdk or to the directory that contains the

Android SDK.

d. Save and close the file.

Chapter 8. Test Execution Specialist Guide

3. Run the following command:

sudo ./UIAgentSetup.sh

Results

You have set or changed the path to the ANDROID_HOME environment variable in the Linux operating systems.

What to do next

You can play back the recorded tests by using the UI Test agent on computers that run on Linux.

Setting or changing the ANDROID_HOME path in Mac operating systems
When you want to run or play back recorded mobile tests by using the UI Test agent in HCL OneTest™ UI, you must

ensure that the ANDROID_HOME path is set correctly in computers that run on Mac operating systems.

About this task

You must set up the ANDROID_HOME path as an environment variable, if you use the UI Test agent to playback

recorded mobile tests for Android applications.

You must set up the environment variable on all computers from which you want to run mobile tests for Android

applications.

Note: If you encounter errors about the Android sdk path not found when you attempt to play back mobile

tests for Android applications on Windows, you might want to check if the value of the ANDROID_HOME

environment variable is set correctly or change the value to point to the correct path.

1. Go to <install_Dir>/UITestAgent directory and stop the UI Test agent service by running the following

command:

sudo ./UITestAgent.sh stop

2. Modify UI Test agent service (ui.test.agent.plist) by performing the following steps:

a. Open the file for editing.

b. Search for the attribute ANDROID_HOME.

c. Change the value of the attribute ANDROID_HOME to <user-home>/Android/Sdk.

Note: You must point to the directory where you installed the Android SDK components. It can

be the default directory as <user-home>/Android/Sdk or to the directory that contains the

Android SDK.

d. Save and close the file.

1013

HCL OneTest™ UI

1014

3. Run the following command:

sudo ./UIAgentSetup.sh

Results

You have set or changed the path to the ANDROID_HOME environment variable in Mac operating systems.

What to do next

You can play back the recorded tests by using the UI Test agent on computers that run on Mac operating systems.

Setting or changing the ANDROID_HOME path in Windows operating systems
When you want to run or play back recorded mobile tests by using the UI Test agent in HCL OneTest™ UI, you must

ensure that the ANDROID_HOME path is set correctly in computers that run on Windows operating systems.

About this task

You must set up the ANDROID_HOME path as an environment variable, if you use the UI Test agent to playback

recorded mobile tests for Android applications.

You must set up the environment variable on all computers from which you want to run mobile tests for Android

applications.

Note: If you encounter errors about the Android sdk path not found when you attempt to play back mobile

tests for Android applications on Windows, you might want to check if the value of the ANDROID_HOME

environment variable is set correctly or change the value to point to the correct path.

1. Perform any of the following searches in the Windows Search field in the Task bar that depends on the version

of Windows that is installed on your computer:

◦ Enter Editing System variables

◦ Enter View advanced system settings

The Advanced tab of the System Properties is displayed.

2. Click Environment Variables.

The Environment variables dialog box is displayed.

3. Select any of the following options to set or change the environment variable:

◦ To set the environment variable, go to Step 4 on page 1014.

◦ To change the value of the environment variable, go to Step 5 on page 1015.

4. Perform the following steps to set the environment variable:

Chapter 8. Test Execution Specialist Guide

a. Click New in the System variables section.

The New System Variable dialog box is displayed.

b. Enter ANDROID_HOME in the Variable name field.

c. Enter the location where the Android SDK is installed on your computer in the Variable value field.

d. Click OK.

The ANDROID_HOME variable is added to the list of the system variables.

e. Go to Step 6 on page 1015.

5. Perform the following steps to change the value of the environment variable:

a. Select the variable ANDROID_HOME from the System variables section, and then click Edit.

The Edit System Variable dialog box is displayed.

b. Change the value of the variable ANDROID_HOME to <user-home>/Android/Sdk.

Note: You must point to the directory where you installed the Android SDK components. It can

be the default directory as <user-home>/Android/Sdk or to the directory that contains the

Android SDK.

c. Click OK.

The value of the ANDROID_HOME variable is updated in the list of the system variables.

d. Go to Step 6 on page 1015.

6. Restart the computer.

Results

You have set or changed the path to the ANDROID_HOME environment variable in Windows operating systems.

What to do next

You can play back the recorded tests by using the UI Test agent on computers that run on Windows operating

systems.

Running a Web UI test
To verify that a web application works as designed, run the test in a browser. Optionally, you can run the test in more

than one browser at a time to speed up your test effort. Before running the test, you can choose to use a specific

browser profile for the test.

1015

HCL OneTest™ UI

1016

Before you begin

• For Apple®Safari® 7.1 or later: Ensure that you have manually enabled the browser for recording Web UI

tests. For instructions, see Enabling the Apple Safari browser to perform Web UI tests on macOS on page 419.

• Starting with 9.1.1, you can run a test that was recorded in Google Chrome Device Mode. This allows you to

emulate tests of web apps on mobile devices. See Recording a test with Google Chrome Device Mode on

page 429 and Running a test recorded in Google Chrome Device Mode on page 1026.

• Also starting with 9.1.1, you can play back tests in Chrome Headless Mode. This allows you to run tests in an

automated testing environment where a visible user interface shell is not required. See Running tests in the

headless mode on page 1027.

• Starting with 9.2.1, you can use industry-standard mobile browsers, such as Chrome and Safari, to run Web UI

tests for mobile web applications. You can run tests with Chrome on Android devices and emulators and with

Safari on iOS devices and simulators.

Note: If you want to run a test on Chrome, you must have installed the appropriate version of Chrome

driver for the UI Test Agent. For more information on the Chrome driver, see http://appium.io/docs/

en/writing-running-appium/web/chromedriver/ and Troubleshooting issues on page 525.

.

About this task

To use a specific browser profile for the test, see Using alternate browser profile for test playback on page 1009.

You can run a Web UI test in the same web browser that was used for the recording or run the test in other web

browsers. You can even run a Web UI test in several browsers simultaneously. You can also run the test as part of

keyword execution from IBM® Rational® Quality Manager, as part of compound test, or from the Command Line

Interface (CLI).

You can run a test that was recorded in Google Chrome Device Mode. This allows you to emulate tests of web apps

on mobile devices. See Recording a test with Google Chrome Device Mode on page 429 and Running a test recorded

in Google Chrome Device Mode on page 1026. You can also play back tests in Chrome Headless Mode. This allows

you to run tests in an automated testing environment where a visible user interface shell is not required. See Running

tests in the headless mode on page 1027.

You can play back the Web UI tests by using browsers such as Microsoft Edge Chromium and Opera browsers on

computers that are running on Windows or Mac operating systems.

Note: When you install the Opera browser on your computer, you must select All users on this computer in

the Install for drop-down list. Otherwise, the Opera browser is not displayed in the list of browsers that are

available for selection to play back the Web UI tests.

When you run a test, the steps in the test looks for the UI objects over and over again until they get the object or

timeout. For example, if the step is to click a button with the name Submit, the test will look for the button with that

http://appium.io/docs/en/writing-running-appium/web/chromedriver/
http://appium.io/docs/en/writing-running-appium/web/chromedriver/

Chapter 8. Test Execution Specialist Guide

name. If the name of the button changed, the test will keep looking for the button and then timeout. By default, the

timeout is set to 10s. You can modify this value for the steps or at the test level. If you modify the timeout value in the

step, that value takes precedence over the timeout value specified at the test level.

Web UI tests that were recorded in Internet Explorer, Firefox or Chrome can be played back with the Microsoft Edge

browser, but you cannot record them in Microsoft Edge.

Note: If a test includes an action to open a new browser window from the existing window and the URL or the

title of the new browser window changes dynamically at every run time and does not matches with the one in

the test, the playback of the test fails. If either the URL or the title of the new browser window is constant, use

that in the test and remove the other one. For example, if the URL dynamically changes at run time but the title

of the window remains same, ensure that the test only includes the title of the window.

1. To open a test, double-click it in the Test Navigator view.

2. In the Test editor, click Run Test. to run an individual test or Run Compound Test to run a compound test.

3. In the Run Configuration dialog box, in the Run using column, select the web browser on which to run the

test. Optionally, click Run on several devices and browsers in parallel and select the devices and browsers on

which to run the test.

Notes:

◦ If the packaged drivers for the Google Chrome, Microsoft Edge, and Opera browsers are

not compatible with the browsers installed on your computer, during the playback, a link is

provided in the Run Configuration dialog box. You must click the link to install the appropriate

driver and only then continue with the playback of tests.

Important: If you do not resolve the driver incompatibility with the browser, and

continue with the test run, the following events can occur.

▪ The incompatible driver is started in the background, but the browser is not visible to

you.

▪ The test fails to run on the selected browser.

▪ You cannot start another test run as the incompatible driver still runs in the

background.

To resove the issue, you must manually end all instances of the browser drivers that run in the

backround, and then install the compatible driver as indicated in the Run Configuration dialog

box before you attempt another test run.

1017

HCL OneTest™ UI

1018

◦ When you play back Web UI tests on a remote computer, you can choose to automatically

resolve the browser and driver incompatibility of the Google Chrome, Edge, and Opera

browsers by selecting the Fix the browser driver incompatibility checkbox.

◦ Only those web browsers that are installed on your computer and supported by the Web UI

extension are displayed in the list. To run a web test on a mobile device or emulator, the device

must be connected and must be in the passive mode.

Restriction: Use of multiple displays (monitors) on Mac operating systems to play back recorded tests

on any supported browser is not supported.

4. Click Finish.

Result

The selected web browser opens and the test is played back. Do not perform any action on the web browser

while the test is playing back. The statistical and live reports show the live data as the test is played back.

Results

After the test run completes, the unified report, statistical report, and the test log are displayed. When running the

test in multiple browsers, a single report is displayed for all browses. To view a functional report, you must generate it

manually by right-clicking a report in the Results folder and clicking Generate Functional Test Report. The Resources

tab in the statistical report is empty because a Web UI test does not monitor resources.

Related information

Optimizing playback of the test on page 446

Running Web UI tests on BitBar Cloud
You can run Web UI tests on mobile devices that are connected to the BitBar cloud device. After the test run is

completed, you can view the test reports in HCL OneTest™ UI.

Before you begin

You must have completed the following tasks:

• Set up your account to access the BitBar cloud. You must have been issued valid credentials such as the URL

of the BitBar cloud instance and an API key to authenticate the connection. This key is available under My

Account > My Integrations > API Access in BitBar cloud.

• Created one or more Web UI tests.

About this task

Chapter 8. Test Execution Specialist Guide

BitBar is a cloud testing platform which you can connect from HCL OneTest™ UI or from a remote agent computer.

BitBar supports both iOS and Android applications. You must configure the BitBar Device Cloud Environment before

you can run the tests.

1. Start HCL OneTest™ UI

2. Select UI Test perspective.

3. Go to Windows > Preferences > Test > Test Execution > UI Test Playback.

4. Select the Mobile Device Cloud tab.

5. Select the BitBar host checkbox to enable the BitBar Device Cloud Environment

6. Perform the actions listed in the following table:

Option Action

BitBar host Enter the URL of the BitBar cloud instance

API key
Enter the API key of your BitBar Cloud account to authenticate the connection,

and then click the Refresh projects and device groups .

Note: When the connection with the BitBar cloud instance is successful, Click

ing the Refresh projects and device groups enables the Project and Device

Group fields.

Project Select the BitBar project from the drop-down list.

Device group Select the mobile device group that you want to use in the BitBar cloud.

Test Run Enter an appropriate name for the test with which you can identify the test run

on the BitBar Cloud dashboard. The default value is runTest.

7. Click Apply and Close.

8. Click the Run Test icon.

The Run Configuration dialog box is displayed.

9. Select the device on the BitBar cloud for the test playback from the Run Using drop-down list.

10. Click Finish.

The test playback is started on the selected device.

Results

You successfully ran the Web UI test on the selected device that is on the BitBar cloud.

After the run, the test results are displayed as a unified report in HCL OneTest™ UI.

What to do next

1019

HCL OneTest™ UI

1020

You can view the following details from the unified report:

• The details and screen capture that are associated with each test step. To view these details, you can click

each test step in the Details pane.

• Android device or iOS device on which the test was played back. To view the device, you can click the

icon.

• Test information such as AUT, host computer, and duration of the test. To view such information, you can click

the icon.

• All the screen captures in a slide show format. To view the screen captures, you can click the icon.

Running Web UI tests on Perfecto mobile cloud
To check the connection between the application and mobile cloud device, ideally before the test execution, you can

enter the Perfecto mobile cloud credentials and get it verified.

Before you begin

• You must have Perfecto mobile cloud URL and credentials.

• You must have created one or more Web UI tests that have to be tested on the mobile device.

About this task

When you run a Web UI test in the mobile device cloud, you must ensure that the connection is valid. Before the test

execution starts, you can check the connection and make sure that the test runs without any interruption.

1. To check the connection between the application and mobile device cloud, click Window > Preferences > UI

Test Playback > Mobile Device Cloud.

2. To enter the details of the Perfecto mobile cloud, select the Device Cloud Host check box.

3. In the Device Cloud Host box, enter the host name.

4. Enter your credentials in the Username and Password boxes.

Chapter 8. Test Execution Specialist Guide

5. To check the connection, click Validate.

The credentials are validated and a message is displayed about the connection validity.

6. After you check the connection, run the Web UI test. To run the test, click Run Test. The Run Configuration

dialog opens.

Result

The Run Configuration dialog displays all the devices along with the name and model number that are

available on the Perfecto mobile cloud.

1021

HCL OneTest™ UI

1022

7. Select a device from the Run Using list and click Finish.

Result

The Web UI test starts getting executed on the selected device on the Perfecto mobile cloud.

Running Web UI tests on the pCloudy cloud
You can run Web UI test on Android or iOS devices that are connected to the pCloudy cloud testing platform. After the

test run is completed, you can view the test reports in HCL OneTest™ UI.

Before you begin

You must have completed the following tasks:

• Set up your account to access the pCloudy cloud. You must have been issued valid credentials such as the

URL of the pCloudy instance, the user name, and an API key to authenticate the connection.

• Verify that the device you want to test is available and in the released state on the pCloudy cloud.

• Created Web UI tests.

About this task

pCloudy is a cloud testing platform that you can connect from HCL OneTest™ UI or from a remote agent computer.

You can then play back recorded Web UI tests for applications or mobile devices. pCloudy supports both Android and

iOS devices. You must configure the pCloudy device cloud environment in HCL OneTest™ UI before you can run the

tests.

Chapter 8. Test Execution Specialist Guide

1. Start HCL OneTest™ UI.

2. Select the UI Test perspective.

3. Select the Web UI test for playback from the Test Navigator pane.

The Test Window is displayed.

4. Go to Window > Preferences > Test > Test Execution > UI Test Playback.

5. Click the Mobile Device Cloud tab.

6. Select the pCloudy host checkbox to enable the options in the pCloudy Device Cloud Environment panel.

7. Perform the actions as listed in the following table:

Option Action

pCloudy host Enter the URL of the pCloudy instance.

User Name
Enter the user name of your pCloudy account.

API Key
Enter the API key of your pCloudy account to authen

ticate the user name for a successful connection.

8. Click Apply.

Note: When the connection with the pCloudy instance is successful, the devices that you configured

on pCloudy are displayed in the Run using drop-down list.

9. Click Run Test.

The Run Configuration dialog box is displayed.

10. Select the device on the pCloudy instance for the test playback from the Run using drop-down list.

11. Click Finish.

The test playback is started on the selected device.

Results

You successfully ran the Web UI test on the selected device that is on the pCloudy cloud instance.

After the run, the test results are displayed as a unified report in HCL OneTest™ UI.

What to do next

You can view the following details from the unified report:

1023

HCL OneTest™ UI

1024

• The details and screen capture that are associated with each test step. To view these details, you can click

each test step in the Details pane.

• Android device or iOS device on which the test was played back. To view the device, you can click the

icon.

• Test information such as AUT, host computer, and duration of the test. To view such information, you can click

the icon.

• All the screen captures in a slide show format. To view the screen captures, you can click the icon.

Running a Web UI test using industry-standard mobile browsers
Starting with 9.2.1, you can use industry-standard mobile browsers, such as Chrome and Safari, to run Web UI tests

for mobile web applications. You can run tests with Chrome on Android devices and emulators and with Safari on iOS

devices and simulators.

The available devices, emulators, and simulators are listed in the Run wizard.

Here are some of the test execution scenarios that are available to you with this feature:

Chapter 8. Test Execution Specialist Guide

• You can select connected or configured mobile devices and simulators in the run wizard to run a test. See

Running a Web UI test on page 1015.

• You can run a test in parallel on multiple devices. See Running a single Web UI test on multiple browsers and

devices simultaneously on page 1127.

• You can run a test on a local computer or on a remote computer by providing details in the Mobile Devices

tab of the UI Test Playback preferences. If these check boxes are enabled, then mobile Chrome or Safari is

enabled in the Run Wizard to run the test locally or by using the UI Test agent installed on the remote machine.

◦ Host - The IP address of the local computer or IP address of the remote computer on which the UI Test

Agent is running.

◦ Android Device - Name of the Android device or emulator. The device name shown by adb for a real

device or the configured name in avd manager for an emulator.

Note: When you run the UI Test Agent on the remote computer, you can connect to only one

Android device or emulator that is running on the remote machine.

◦ iOS Device - The UDID for the real device or the name of the iOS simulator

◦ Platform Version - The iOS version of the device

◦ Apple Team ID - The Apple Team ID of the user

◦ Role - The role in the Apple Developer License for the specific registered user

• You can check the connection between the application and mobile device cloud before executing your tests

in the mobile cloud by providing the mobile cloud credentials in the Mobile Device Cloud tab of the UI Test

Playback preferences. The credentials are validated and a message is displayed about the connection validity.

◦ BitBar host - You must select this check box to enter the details required to connect to the BitBar

Cloud.

◦ Perfecto host - You must select this check box to enter the details required to connect to the Perfecto

Mobile Cloud.

◦ pCloudy host - You must select this check box to enter the details required to connect to the pCloudy

Cloud.

• You can specify the browser and device details in an XML file to do Accelerated Functional Testing through

the command line as described in Running a Web UI test or compound test from the command line on

multiple browsers on page 1153.

Here is a sample XML file for use with Safari and iOS:

<?xml version="1.0" encoding="UTF-8"?>
<inits name="smokesuite">
<group>
<tests>
<test path="/WebUIProj/Tests/amazonpixel.testsuite"/>
 </tests>
 <browsers>
 <browser name="safari" id="Simulator:iPhone X"/>

 <browser name="safari" id="iOS:DeviceIdSNo"/>

 </browsers>

1025

HCL OneTest™ UI

1026

 <locations>
 <location host="123.0.0.1" />
 </locations>
 </group>
</inits>

Here is a sample XML file for Chrome on Android devices and emulators:

<?xml version="1.0" encoding="UTF-8"?>
<inits name="smokesuite">
<group>
<tests>
<test path="/WebUIProj/Tests/amazonpixel.testsuite"/>
 </tests>
 <browsers>
 <browser name="chrome" id="Emulator:Pixel_XL_API_28"/>

 <browser name="chrome" id="Android:DeviceName"/>

 </browsers>
 <locations>
 <location host="123.0.0.1" />
 </locations>
 </group>
</inits>

Running a test recorded in Google Chrome Device Mode
You can run a test that you recorded in Chrome Device Mode. Doing so allows you to emulate the testing of

applications on the browser of a mobile device.

1. Start HCL OneTest™ UI.

2. Select Window > Preferences > Test > Test Execution > UI Test Playback.

The Preferences dialog with the UI Test Playback page is displayed.

3. Select the Browser tab.

4. Select the Device Name checkbox in the Chrome section, and then type the name of the device that you used

when you recorded the test.

For example, iPhone 6 or Galaxy S5.

Note: Select the device from the available default list in the browser. Playback on a custom device is

not supported. To see the list of devices, see Recording a test with Google Chrome Device Mode on

page 429.

5. Click Apply and Close.

6. Run the test.

The device name used for the playback is also viewable in the unified report.

Chapter 8. Test Execution Specialist Guide

Related information

Unified reports on page 1193

Running tests in the headless mode
When you do not want to view the GUI of the application under test as the recorded test is played back on a web

browser, you can choose to run the test in the headless mode. Running of tests in the headless mode is useful when

you use an automated testing environment.

Before you begin

You must have recorded a single Web UI test, compound test with multiple Web UI tests, or an AFT Suite that you

want to run in the headless mode.

About this task

The web browsers that support the running of tests in the headless mode are as follows:

• Google Chrome

• Microsoft Edge

• Mozilla Firefox

Note: For information about the supported versions of the web browsers, see System Requirements on

page 12.

You can configure a single Web UI test, compound test with multiple Web UI tests, or an AFT Suite to run in the

headless mode from HCL OneTest™ UI or a remote agent computer by performing any of the following actions:

• Select the Headless Mode option as a preference for the test playback, if you do not enter the headless

attribute and its value in the AFT XML file of the recorded tests or AFT Suite. You must also select the web

browser to be used for the playback.

• Enter the headless attribute with its value set to true in the AFT XML file of the recorded test.

Note: You must have entered the web browser to be used for the playback in the AFT XML file of the

recorded tests or AFT Suite.

For example, the entry in the AFT XML file can be as follows:

<browser name=”chrome” headless=”true”/>

Notes:

1027

HCL OneTest™ UI

1028

• To ensure that all Web UI tests in an AFT Suite run in the headless mode, you must enter the headless

attribute with its value set to true in the AFT XML file. The tests run in the headless mode irrespective

of the preferences configured for the tests in HCL OneTest™ UI. The Web UI tests also run in the

headless mode if you select the Run Distributed Tests option for the run.

• If you entered the headless attribute with its value set to false in the AFT XML file of the AFT Suite,

then none of the Web UI tests in the AFT Suite run in the headless mode.

Restriction: The playback of Web UI tests in the headless mode that contain multiple windows is not

supported in the Chrome and Edge browsers.

Restriction: Web UI tests contained in multiple groups in an AFT Suite that are configured to run in the

headless mode and in the private mode and grouped based on the browsers are not supported.

1. Perform any of the following actions:

◦ Select the Headless Mode option as a preference for the test playback. Go to Step 2 on page 1028.

◦ Enter the headless attribute in the AFT XML file. Go to Step 3 on page 1028.

2. Start HCL OneTest™ UI and perform the following steps:

a. Click Window > Preferences > Test > Test Execution > UI Test Playback > Browser tab.

b. Identify the panel of the web browser that you want to use for the playback test.

c. Select the Headless Mode option for the browser that you want to use to run tests in the headless

mode.

d. Click Apply and Close.

e. Run the test.

The test is run in the headless mode by using the selected browser.

3. Open the AFT XML file for editing, and then perform the following steps:

a. Search and find the browser element.

b. Append the headless attribute along with the name of the browser that you want to use to the browser

element row.

For example, if you want to run the test in the headless mode by using the Chrome browser, the entry

in the AFT XML file can be as follows:

<browsers>
<browser name=”chrome” headless=”true” />
</browsers>

Chapter 8. Test Execution Specialist Guide

c. Save and close the AFT XML file.

d. Run the test.

The test is run in the headless mode by using the selected browser.

Related information

Running a Web UI test on page 1015

Running a Web UI test or compound test in the headless mode from the command line on page 1151

Running tests in the private or incognito mode
When you play back Web UI tests, if the user profile that is stored in the browser prevents the test from running

without intervention, then you can use the private or incognito mode. Also, when you do not want cookies, caches,

and user information to affect your test play back, you can choose the private mode.

Before you begin

You must have completed the following tasks:

• Recorded a Web UI test. See Recording a Web UI test on page 425.

• Verified that the web browser is supported for playing back tests. See System Requirements on page 23.

Restriction: Web UI tests contained in multiple groups in an AFT Suite that are configured to run in the

headless mode and in the private mode and grouped based on the browsers are not supported.

About this task

You can configure a single Web UI test, compound test with multiple Web UI tests, or an AFT Suite to run in the private

mode on any of the following web browsers:

• Google Chrome

• Microsoft Edge

• Mozilla Firefox

• Opera

To run tests from HCL OneTest™ UI or a remote agent computer in the private mode, you must select the web browser

to be used for the playback, and then select the Private Mode as a preference for the test playback.

To run an AFT Suite in the private mode, you must have entered the web browser to be used for the playback and then

enter the private attribute with its value set to true in the AFT XML file of the recorded test.

For example, the entry in the AFT XML file can be as follows:

1029

HCL OneTest™ UI

1030

<browser name=”chrome” private=”true”/>

Notes:

• To ensure that all the Web UI tests in an AFT Suite run in the private mode, you must enter the private

attribute with its value set to true in the AFT XML file. The tests run in the private mode irrespective of

the preferences configured for the tests in HCL OneTest™ UI. The Web UI tests also run in the private

mode if you select the Run Distributed Tests option for the run.

• If you entered the private attribute with its value set to false in the AFT XML file of the AFT Suite, then

none of the Web UI tests in the AFT Suite run in the private mode.

1. Perform any of the following actions:

◦ Select the private mode as a preference for the test playback. Go to Step 2 on page 1030.

◦ Enter the private attribute in the AFT XML file. Go to Step 3 on page 1030.

2. Start HCL OneTest™ UI and perform the following steps:

a. Click Window > Preferences > Test > Test Execution > UI Test Playback > Browser tab.

b. Identify the panel of the web browser that you want to use for the playback test.

c. Select the Private Mode option for the browser to run tests in the private mode.

d. Click Apply and Close.

e. Run the test.

Note: If you have not set the preference, you can also select the Private Mode checkbox under

the Advanced Playback Options of the Run Configuration dialog box when you click Run Test.

The test is run in the private mode by using the selected browser.

3. Open the AFT XML file for editing, and then perform the following steps:

a. Search and find the browser element.

b. Append the private attribute along with the name of the browser that you want to use to the browser

element row.

You can enter the name of the browsers as indicated in the following table:

Browser Enter name as

Chrome chrome

Firefox firefox

Chapter 8. Test Execution Specialist Guide

Browser Enter name as

Edge edge

Opera opera

c. Save and close the AFT XML file.

d. Run the test.

The test is run in the private mode by using the selected browser.

Results

You have run a test in the private mode of a web browser either from HCL OneTest™ UI or from a remote agent.

What to do next

You can perform any of the following tasks:

• View the test reports. See Running a Web UI test on page 1015.

• Run a Web UI test on multiple browsers. See Running a single Web UI test on multiple browsers and devices

simultaneously on page 1127.

• Run multiple Web UI tests in a compound test. See Running multiple Web UI and compound tests

simultaneously on page 1109.

• Run an AFT Suite. See Playing back an Accelerated Functional Test asset on page 1108.

• Run an AFT Suite by using the Distributed Tests option. See Accelerating the test effort with distributed

testing on page 1105.

Testing with Docker images
HCL OneTest™ Performance, HCL OneTest™ UI, and HCL OneTest™ Performance Agents are available for download as

Docker images. You can use them to fulfill the continuous testing aspects of your DevOps lifecycle.

You must use only floating licenses for the product and VT-pack when playing back tests using Docker. These

licenses should be hosted on a server that can be accessed by the workbench.

Configuring Docker containers
You can now deploy and configure the Docker containers on any computer and quickly get started with testing. You

can push the product images to the Docker container to automate the playing back of tests.

Before you begin

You must have downloaded and installed Docker-CE. For more information, refer to the following Docker

documentations:

1031

HCL OneTest™ UI

1032

• Docker Desktop for Windows

• Docker Engine on Ubuntu

• Other platforms

1. Open PowerShell or a terminal of your choice and run the following command to verify whether your Docker

installation was successful:

$ docker run hello-world

2. Download the container image for the agents from the same location that you downloaded the product bits

and extract the compressed files.

Important: The version of the product and agents must match.

3. Run the following command to load the agent image into the Docker repository:

$ docker load -i imageFileName.tar.gz

For example, to load the 10.2.3 Docker image, you can use the following command:

$ docker load -i hcl-onetest-studio-10.2.3.tar.gz

Result

When the image is loaded, the following message is displayed:

Loaded image: imageFileName:versionNumber

What to do next

You must set up the playback environment on Docker. See Running tests with containerized agents on page 1032

and Running automated tests with containerized workbench and agents from Docker.

Running tests with containerized agents
When you have a local workbench, instead of installing the agents on different machines and locations, you can

deploy the containerized agents to generate the load.

Before you begin

You must have configured the Docker container. See Configuring Docker containers on page 1031.

About this task

Typically, when the agents are installed, you specify the workbench host name and port number to establish the

connection with the workbench. If you use containerized agents, they are already installed. Therefore, you specify the

connection information during the run.

https://store.docker.com/editions/community/docker-ce-desktop-windows
https://docs.docker.com/engine/install/ubuntu/
https://hub.docker.com/search?type=edition&offering=community

Chapter 8. Test Execution Specialist Guide

Note: The version number of the container images and the desktop products must match. If you have

previous version of the container image, uninstall it and install the latest version.

To uninstall the image, you must stop the container by running the docker stop "CONTAINER ID" command, and then

run the docker rmi -f "image ID" command to uninstall the image.

1. Start the container instance of the agent by running the following command:

$ docker run -dit --rm -e MASTER_NAME=Workbench_name or IP -e MASTER_PORT=port_number -e
 AGENT_NAME=Agent_name -e AGENT_IP=IP_address imageName:imageVersion

Table 53. Description of parameters

Command Description

-dit Specifies that the agent container runs in the background.

--rm Specifies to clean up the container and remove the file system when the container ex

its.

MASTER_NAME Specifies the IP or host name of the workbench.

MASTER_PORT Specifies the port number of the workbench. If you use the default port number of

7080, this command is optional.

AGENT_NAME Optional: Specifies the name of the agent that report to the workbench.

AGENT_IP Optional: Specifies the IP address of the agent that report to the workbench.

imageName:image

Version

Specifies the name and version of the image.

2. From the Web UI Test perspective, select the Web UI tests to run and from the context menu click Run

Distributed Tests.

The tests are distributed among the connected agents.

Related information

Running multiple Web UI and compound tests simultaneously on page 1109

Running tests in a containerized workbench
You can run tests in a containerized workbench after you deploy your Docker images. You need not install the

workbench on your computer to run your tests.

Before you begin

1033

HCL OneTest™ UI

1034

• You must have configured a Docker container.

• You must have exported test assets to a location from where Docker can import them.

Notes:

• You must use a Bash shell to run the commands for executing tests. In Windows operating system,

you can use Git Bash.

• The version number of the container images and the desktop products must match. If you have a

previous version of the container image, you must uninstall it and then install the current version. To

uninstall the image, you must use the following commands:

To stop the container:

docker stop "CONTAINER ID"

To uninstall the image:

docker rmi -f "image ID"

1. Run the following command to load the workbench image into the Docker repository:

docker load -i <workbenchImageName>

For example, workbenchImageName can be hcl-onetest-studio-<versionNumber>.tar.gz.

When the workbench image is loaded into the Docker repository, the following message is displayed:

-Loaded image: imageFileName:versionNumber

2. To run tests on the Docker environment without using any agents, complete the following steps:

a. Select the required test from the workbench and export it by using the Test Assets with Dependencies

option. You can use this exported test asset to run on Docker environment.

b. To run a Web UI test or compound test, start the container by running the following command:

$docker run --rm -e HCL_ONETEST_LICENSING_URL=<URL> HCL_ONETEST_LICENSING_ID=<server_ID>

 -v hostTestAssets:/containerTestAssets -v hostImportedData:/containerImportedData

 -e TEST_IMPORT_PATH=/containerTestAssets/testasset.zip imageName:imageVersion cmdline
 -workspace /containerImportedData/workspace -project projectName -suite TestSuiteName -results
 autoResults -stdout -exportlog /containerImportedData/testlog.txt

For example, on Windows host:

$docker run --rm -e HCL_ONETEST_LICENSING_URL=
 https://hclsoftware.compliance.flexnetoperations.com
 -e HCL_ONETEST_LICENSING_ID=MYDEMOLICENSEID -v
 C:\TestAssets:/test -v C:\TestExecutions:/runData -e
 TEST_IMPORT_PATH=/test/Project.zip hcl-onetest-studio:10.0.2
 cmdline -workspace /runData/workspace -project MyHCLOneTestUIProject
 -suite Tests/WebUITest.testsuite -results autoResults -stdout
 -exportlog /runData/logs/WebUItestlog.txt

Chapter 8. Test Execution Specialist Guide

For example, on Linux host:

$docker run --rm
 -e HCL_ONETEST_LICENSING_URL=https://hclsoftware.compliance.flexnetoperations.com
 -e HCL_ONETEST_LICENSING_ID=MYDEMOLICENSEID -v /home/user/TestAssets:/test
 -v /home/user/TestExecutions:/runData -e
 TEST_IMPORT_PATH=/test/Project.zip hcl-onetest-studio:10.0.2 cmdline
 -workspace /runData/workspace -project MyHCLOneTestUIProject -suite
 "Compound Tests/CompoundTest.testsuite" -results autoResults -stdout
 -exportlog /runData/logs/CompoundTesttestlog.txt

c. To run an Accelerated Functional Test suite, start the container by running the following command:

$docker run --rm -e HCL_ONETEST_LICENSING_URL=<URL> -e HCL_ONETEST_LICENSING_ID=<server_ID>

 -v hostTestAssets:/containerTestAssets -v hostImportedData:/containerImportedData

 -e TEST_IMPORT_PATH=/containerTestAssets/testasset.zip imageName:imageVersion cmdline
 -workspace /containerImportedData/workspace -project projectName -aftsuite AFTTestSuiteName

 -results autoResults -stdout -exportlog /containerImportedData/testlog.txt

For example:

$docker run --rm
 -e HCL_ONETEST_LICENSING_URL=https://hclsoftware.compliance.flexnetoperations.com
 -e HCL_ONETEST_LICENSING_ID=MYDEMOLICENSEID -v
 C:\TestAssets:/test -v C:\TestExecutions:/runData -e
 TEST_IMPORT_PATH=/test/hcl-onetest-studio MyHCLOneTestUIProject:10.0.2 cmdline
 -workspace /runData/workspace -project MyRFTProject -aftsuite MyAFTSuite.XML -results
 autoResults -stdout -exportlog /runData/logs/AFTSuiteTestlog.txt

Table 54.

Command Description

--rm Removes the container after the run is completed.

-e Sets the environment variables.

HCL_ONETEST_LICENSING_URL=<URL> Specifies the URL of the license server. For example,

https://hclsoftware.compliance.flexnetop

erations.com.

HCL_ONETEST_LICENSING_ID=<ID> Specifies the cloud license server ID. If you are using a

local license server, you must not use this variable. The

floating license for the product and VT-packs must be on

the license server.

hostTestAssets:/containerTestAssets Specifies the folder location on the host computer and

the container that contains the compressed test assets

(.zip format). You must use both the locations to map one

or more shared volumes to transfer data such as test as

sets, logs, and execution results between the host and

the container.

1035

HCL OneTest™ UI

1036

Command Description

hostImportedData:/containerImportedData Specifies the workspace location on the host computer

and the container that contains the test assets that are

not compressed. The results of the test execution are

saved to the directory you specify on the host computer.

TEST_IMPORT_PATH=<PATH> Specifies the location of the compressed test assets to

be imported into the container. The location path is on

the container side and not the host. For example, /con

tainerTestAssets/archiveName.zip. The volume and path

names are user-defined and must be consistent.

imageName:imageVersion Specifies the name of the image and its version to run.

cmdline Specifies the existing command-line arguments to define

the location of the workspace, project name, test name,

results file name, and the location of the exported logs.

What to do next

When the test run is completed, you can check hostImportedData in the host computer to view the exported log.

Related information

Configuring Docker containers on page 1031

Copying test assets with dependencies

Running an AFT suite in a containerized workbench and agents by using Docker
Compose
You can run an Accelerated Functional Test (AFT) suite in a containerized workbench and agents after you deploy

your Docker images. You can use the Docker Compose tool to run an AFT suite and need not install the workbench or

the agents on different computers.

Before you begin

• You must have configured a Docker container.

• You must have exported test assets to a location from where Docker can import them.

Notes:

Chapter 8. Test Execution Specialist Guide

• You must use a Bash shell to run the commands for executing tests. In Windows operating system,

you can use Git Bash.

• The version number of the container images and the desktop products must match. If you have a

previous version of the container image, you must uninstall it and then install the current version. To

uninstall the image, you must use the following commands:

To stop the container:

docker stop "CONTAINER ID"

To uninstall the image:

docker rmi -f "image ID"

1. Run the following command to load the workbench image into the Docker repository:

docker load -i <workbenchImageName>

For example, workbenchImageName can be hcl-onetest-studio-<versionNumber>.tar.gz.

When the workbench image is loaded into the Docker repository, the following message is displayed:

-Loaded image: imageFileName:versionNumber

2. To run the tests on containerized agents, you must load the agent image into the Docker repository by running

the following command:

docker load -i <agentImageName>

For example, the agent image name could be hcl-onetest-agent-<versionNumber>.tar.gz.

When the agent image is loaded into the Docker repository, the following message is displayed:

- Loaded image: imageFileName:versionNumber

3. From the workbench, create an AFT Suite that lists all the agents that are used for the distributed run of

multiple tests on multiple agent locations.

4. To run an AFT Suite, you must initiate a run in which the Docker container agents are automatically connected

to the workbench container. To do this, install the Docker Compose tool and complete the following steps:

a. Create docker-compose.yml according to the following sample:

Sample compose file:

#SIMPLE DOCKER COMPOSE FILE/TEMPLATE
#BE SURE TO REPLACE ANY PROJECT-SPECIFIC NAMES/PATHS AND LICENSING VARIABLES WITH
 YOUR OWN VALUES
version: '2'
services:
 agent1:
 image: <agentImageName>:<imageVersion>
 environment:
 - MASTER_NAME=<workbenchImageName>

1037

https://docs.docker.com/compose/

HCL OneTest™ UI

1038

 - AGENT_NAME=<agentImageName>

 agent2:
 image: <agentImageName>:<imageVersion>
 environment:
 - MASTER_NAME=<workbenchImageName>
 - AGENT_NAME=<agentImageName-2>

 workbench:
 image: <workbenchImageName>:<imageVersion>
 entrypoint: cmdline -workspace /runData/workspace -project projectName

 -aftsuite AFTSuiteName -results autoResults -stdout -exportlog /runData/agentlog.txt

 ports:
 - "7080:7080"
 - "7443:7443"
 volumes:
 - C:\Tests:/Tests
 - C:\runData:/runData
 environment:
 - HCL_ONETEST_LICENSING_URL=<URL>
 - HCL_ONETEST_LICENSING_ID=<ID>
 - TEST_IMPORT_PATH=/Tests/Project.zip

Notes:

▪ You must replace the values in italics in the sample compose file with values according

to your environment.

▪ Docker Compose tool is included with some versions of Docker. The tool automates

some network configurations and makes it easier to coordinate multiple containers. To

check whether you already have Docker Compose, you can run the command, docker-

compose --version.

5. Verify whether the run is completed successfully. If you have used an option such as -exportlog to generate

results to a shared volume, check the directory in your host computer that was mapped to hostImportedData

and retrieve the exported data.

6. To stop the agents when the workbench container exits, run the following command:

docker-compose up --abort-on-container-exit

Table 55.

Command Description

MASTER_NAME Specifies the name of the workbench image.

AGENT_NAME Specifies the name of the agent image.

HCL_ONETEST_LICENSING_URL=<URL> Specifies the URL of the license server. For example,

https://hclsoftware.compliance.flexnetop

erations.com.

Chapter 8. Test Execution Specialist Guide

Command Description

HCL_ONETEST_LICENSING_ID=<ID> Specifies the cloud license server ID. If you are using a

local license server, you must not use this variable. The

floating license for the product and VT-packs must be on

the license server.

hostImportedData:/containerImportedData Specifies the workspace location on the host computer

and the container that contains the test assets that are

not compressed. The results of the test execution are

saved to the directory that you specify on the host com

puter.

<agentImageName>:<imageVersion>
Specifies the name of the agent image and its version to

run.

TEST_IMPORT_PATH=<PATH> Specifies the location of the compressed test assets to

be imported into the container. The location path is on

the container side and not the host. For example, /con

tainerTestAssets/ProjectName.zip. The volume and path

names are user-defined and must be consistent.

workbenchimageName:imageVersion Specifies the name of the workbench image and its ver

sion to run.

cmdline Specifies the existing command-line arguments to define

the location of the workspace, project name, test name,

results file name, and the location of the exported logs.

Related information

Configuring Docker containers on page 1031

Copying test assets with dependencies

Starting a new recording immediately after playback
Starting from 9.1.1.1, you can keep the Google Chrome browser active after Web UI test playback is complete. This

feature allows you to continue recording at the point where playback finished without the need to re-record the earlier

steps.

1. Record a Web UI test using the Chrome browser. See Creating Web UI tests on page 413.

2. Edit the test script as needed. See Editing Web UI tests on page 433.

If the close browser action is listed in the script, remove or disable it. The close browser action is recorded

when you intentionally close the browser during the recording process. However, you can choose to stop a

recording and not record the close browser action.

1039

HCL OneTest™ UI

1040

3. Run the test. See Configuration of Web UI test runs on page 1009.

4. Start recording at the point where the previous playback finished. See Recording a Web UI test by using a

running browser instance on page 427.

5. (Optional) Combine the two recordings into a compound test.

6. Repeat Step 2 on page 1039 and Step 3 on page 1040 as needed.

Adding custom JavaScript code as a test step in a Web UI test
You can manually add JavaScript files (*.js) to test scripts with defined functions. You might want to run your own

JavaScript snippet such as retrieving some data from the application, doing some actions within the application,

or validating some complex logic actions within the application for example. To be able to execute specific code in

a test, write your own JavaScript code and insert the custom JavaScript statement as a new test step in your test

script.

1. Edit the test script.

2. Select the Launch application node and click on Add or Insert button in the editor and select Custom Code

(JavaScript), as shown in the following figure. JavaScript files with .js extension are to be kept in a project of

your workspace and must be added a test step with in the launch application node.

Figure 20. Custom Code (JavaScript) menu

3. In the dialog box that opens, select a JavaScript file to be added to the test step, click OK. It is displayed

as links in Referred JavaScripts in the definition pane. A new Test Step is added to the Test script. When a

method name is provided, the test step is named Custom Code (JavaScript):method-name, otherwise it is

named Custom Code (JavaScript), see figure 2.

Figure 21. Custom code added as a test step in a Web UI test

Chapter 8. Test Execution Specialist Guide

4. Select the step to see the JavaScript custom code definition pane that contains the custom code details.

Specify the JavaScript method name to be executed in the Method field, and optionally provide the

description. Click the Update button to add multiple files. The JavaScript custom code will be executed

within the Web application. You can also delete the referred JavaScript hyperlink, or click the link to open

the JavaScript file in the editor. If the JavaScript method has some parameters to be added, specify the

parameters in the Arguments field. You can specify the arguments through static text, a variable reference, a

dataset reference, or a java custom code.

a. To enter text values, click Text button and enter the text as argument.

b. To pass test variable reference or dataset reference or JavaScript custom code return value as

parameter to JavaScript method, click Add button. Select the available data source arguments,

datasets, test variables or java custom code. The variable or dataset must be initially created, and a

return value added. See example in figure 3.

Figure 22. Custom code details

Figure 23. Example of variable and dataset as arguments

1041

HCL OneTest™ UI

1042

5. Run the test script and see the report.

From version 9.1.1.1, you can replace a JavaScript file with an updated one and apply the changes to all

references to the JavaScript file in the test scripts where the file is called, for more details, see Replacing a

JavaScript file in a test script on page 483.

Configuration of mobile test runs
After you record the tests for mobile applications by using HCL OneTest™ UI, you can play back the recorded tests

by using HCL OneTest™ UI. The test reports help you to analyze the functional and performance issues in the mobile

applications developed.

HCL OneTest™ UI supports the testing of mobile applications developed for the following types of mobile operating

systems:

• The Android mobile operating system.

• The iOS mobile operating system.

Running mobile tests for Android mobile applications

Before you can use HCL OneTest™ UI to play back the recorded tests, you must record the tests for the mobile

applications by using HCL OneTest™ UI. See Recording mobile tests for Android applications on page 522.

By using HCL OneTest™ UI, you can play back the recorded mobile test on Android devices or emulators that are

connected to any of the following computers or device clouds:

• Computer that runs HCL OneTest™ UI.

• Remote agent computer.

• BitBar Cloud.

• Perfecto Mobile Cloud.

• pCloudy Cloud.

You can find information about the tasks that you can perform when you want to play back the recorded tests for

Android mobile applications as follows:

• Running mobile tests on an Android device or emulator connected to a computer that runs HCL OneTest UI on

page 1044

• Running mobile tests on an Android device or emulator connected to a remote agent computer on page 1046

• Running mobile tests on Android devices on BitBar Cloud on page 1048

• Running mobile tests on Android devices on Perfecto Cloud on page 1050

• Playing back mobile tests on Android devices on pCloudy Cloud on page 1053

• Running mobile tests as an AFT suite on page 1094

• Running mobile tests for Android applications from the command-line on page 1157

Chapter 8. Test Execution Specialist Guide

Running mobile tests for iOS mobile applications

Before you can use HCL OneTest™ UI to play back the recorded tests, you must record the tests for the mobile

applications by using HCL OneTest™ UI. See Recording mobile tests for iOS applications on page 530.

You can play back the recorded mobile test on iOS devices or simulators that are connected to any of the following

computers or device clouds:

• Computer that runs HCL OneTest™ UI.

• Remote agent computer.

• BitBar Cloud.

• Perfecto Mobile Cloud.

• pCloudy Cloud.

Note: You cannot connect simulators to device clouds.

You can find information about the tasks that you can perform when you want to play back the recorded tests for iOS

mobile applications as follows:

• Running mobile tests on an iOS device or simulator connected to a computer that runs HCL OneTest UI on

page 1070

• Running mobile tests on an iOS device or simulator connected to a remote computer on page 1072

• Running mobile tests on iOS devices on BitBar Cloud on page 1074

• Running mobile tests on iOS devices on Perfecto Cloud on page 1076

• Running mobile tests on iOS devices on pCloudy Cloud on page 1078

• Running mobile tests as an AFT suite on page 1094

• Running mobile tests for iOS applications from the command-line on page 1166

Running mobile tests for Android mobile applications
After you record the tests for Android mobile applications by using HCL OneTest™ UI, you can play back the recorded

tests by using HCL OneTest™ UI.

Before you can use HCL OneTest™ UI to play back the recorded tests, you must record the tests for the mobile

applications by using HCL OneTest™ UI. See Recording mobile tests for Android applications on page 522.

By using HCL OneTest™ UI, you can play back the recorded mobile test on Android devices or emulators that are

connected to any of the following computers or device clouds:

• Computer that runs HCL OneTest™ UI.

• Remote agent computer.

• BitBar Cloud.

• Perfecto Mobile Cloud.

• pCloudy Cloud.

1043

HCL OneTest™ UI

1044

You can find information about the tasks that you can perform when you want to play back the recorded tests for

Android mobile applications as follows:

• Running mobile tests on an Android device or emulator connected to a computer that runs HCL OneTest UI on

page 1044

• Running mobile tests on an Android device or emulator connected to a remote agent computer on page 1046

• Running mobile tests on Android devices on BitBar Cloud on page 1048

• Running mobile tests on Android devices on Perfecto Cloud on page 1050

• Playing back mobile tests on Android devices on pCloudy Cloud on page 1053

• Running mobile tests as an AFT suite on page 1094

• Running mobile tests for Android applications from the command-line on page 1157

Running mobile tests on an Android device or emulator connected to a computer
that runs HCL OneTest™ UI
You can run mobile tests on Android mobile devices or emulators that are connected to a computer that runs HCL

OneTest™ UI.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Installed the Android SDK on the computer that you want to use for testing Android mobile applications.

• Set or changed the value of the ANDROID_HOME environment variable on the computer that you want to use

for testing Android mobile applications for the following operating systems:

◦ Windows operating systems, see Setting or changing the ANDROID_HOME path in Windows operating

systems on page 1014.

◦ Linux operating systems, see Setting or changing the ANDROID_HOME path in Linux operating

systems on page 1012.

◦ Mac operating systems, see Setting or changing the ANDROID_HOME path in Mac operating systems

on page 1013.

• Installed the Android application that you want to test on the Android device or emulator.

• Connected and started the Android device or emulator to the computer that you want to use for testing

Android mobile applications.

• Ensured that the UI Test Agent is running on the computer that runs HCL OneTest™ UI.

Tip: You can hover the cursor over the System Tray to verify that the UI Test Agent is running and also

view the port it uses.

About this task

Chapter 8. Test Execution Specialist Guide

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click the Run Test icon.

The Run Configuration dialog box is displayed.

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

or emulator to play back the test for each mobile test.

4. Select the mobile device or emulator to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

5. Click Next.

The Performance Measurement dialog box is displayed.

6. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

7. Click Finish.

Results

The test runs on the selected mobile device or emulator. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

1045

HCL OneTest™ UI

1046

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running mobile tests on an Android device or emulator connected to a remote
agent computer
You can run mobile tests on an Android device or emulator that is connected to a remote agent computer.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Installed the Android SDK on the computer that you want to use for testing Android mobile applications.

• Set or changed the value of the ANDROID_HOME environment variable on the computer that you want to use

for testing Android mobile applications for the following operating systems:

◦ Windows operating systems, see Setting or changing the ANDROID_HOME path in Windows operating

systems on page 1014.

◦ Linux operating systems, see Setting or changing the ANDROID_HOME path in Linux operating

systems on page 1012.

◦ Mac operating systems, see Setting or changing the ANDROID_HOME path in Mac operating systems

on page 1013.

• Installed the Android application that you want to test on the Android device or emulator.

• Connected and started the Android device or emulator to the computer that you want to use for testing

Android mobile applications.

• Ensured that the UI Test Agent is running on the remote agent computer.

Tip: You can hover the cursor over the System Tray to verify that the UI Test Agent is running and also

view the port it uses.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

Chapter 8. Test Execution Specialist Guide

4. Click the Mobile Device tab, and then perform the following steps:

a. Select the Host check box in the UI Test Agent panel, and then enter the IP address of the remote

computer in the Host field.

Note: The port in use by the UI Test Agent on the computer is automatically populated in the

Port field.

b. Select the Android Device check box in the Android Device panel, and then enter the name of the

Android device or emulator that is connected to the computer in the Android Device field.

The Is real device check box is enabled.

c. Perform any of following actions:

▪ If you are using an Android device, select the Is real device check box.

▪ If you are using an emulator, retain the Is real device check box as deselected or clear the

selection, if selected.

d. Click Apply and Close.

5. Click the Run Test icon.

The Run Configuration dialog box is displayed.

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

or emulator to play back the test for each mobile test.

6. Select the mobile device or emulator to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

7. Click Next.

The Performance Measurement dialog box is displayed.

8. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

1047

HCL OneTest™ UI

1048

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

9. Click Finish.

Results

The test runs on the Android device or emulator that is connected to the remote computer. The test result is

displayed as a unified report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running mobile tests on Android devices on BitBar Cloud
You can run mobile tests on an Android device that is connected to the BitBar Cloud.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Set up your account to access the BitBar Cloud. You must have been issued valid credentials such as the host

name or the URL of the BitBar Cloud instance, and an API key to authenticate the connection.

• Uploaded the .apk file of the Android application that you want to test on an Android device in the BitBar

Cloud. For information, refer to Live Testing in the BitBar documentation.

• Installed the Android application that you want to test on the Android device.

• Connected and started the Android device that you want to use for testing Android mobile applications.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

https://support.smartbear.com/bitbar/docs/testing-with-bitbar/live-testing.html

Chapter 8. Test Execution Specialist Guide

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the BitBar host checkbox to enable the options on the BitBar Device Cloud Environment panel.

c. Perform the actions as listed in the following table:

Option Action

BitBar host Enter the host name of the BitBar Cloud instance.

API Key Enter the API key of your BitBar Cloud account to authenticate the connec

tion, and then click the Refresh projects and device groups .

Note: Clicking the Refresh projects and device groups enables

the Project and Device Group fields.

Project Select the BitBar project from the drop-down list.

Device Group Select the mobile device group that you want to use in the BitBar cloud.

Test Run
Enter an appropriate name for the test with which you can identify the test

run on the BitBar Cloud dashboard.

d. Click Apply and Close.

Note: When the connection with the BitBar Cloud instance is successful, the mobile devices

that you have configured on the BitBar Cloud are displayed in the Run using drop-down list.

5. Click the Run Test icon.

The Run Configuration dialog box is displayed.

1049

HCL OneTest™ UI

1050

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

to play back the test for each mobile test.

6. Select the mobile device to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

7. Click Next.

The Performance Measurement dialog box is displayed.

8. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

9. Click Finish.

Results

The test runs on the Android device that is connected to the BitBar Cloud. The test result is displayed as a unified

report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running mobile tests on Android devices on Perfecto Cloud
You can run mobile tests on an Android device that is connected to the Perfecto Mobile Cloud.

Before you begin

You must have completed the following tasks:

Chapter 8. Test Execution Specialist Guide

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Set up your account to access the Perfecto Mobile Cloud. You must have been issued valid credentials such

as the host name or the URL of the Perfecto Mobile Cloud instance and the security token to authenticate the

connection.

• Installed the .apk file of the Android application that you want to test on an Android device in the Perfecto

Mobile Cloud. For information, refer to Manage Apps in the Perfecto documentation.

• Installed the Android application that you want to test on the Android device.

• Connected and started the Android device that you want to use for testing Android mobile applications.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the Perfecto host checkbox to enable the options on the Perfecto Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

Perfecto host Enter the host name of the Perfecto Cloud instance.

Security Token Enter the Token to authenticate the connection to the Perfecto Cloud in

stance.

1051

https://developers.perfectomobile.com/display/PD/Manage+apps

HCL OneTest™ UI

1052

d. Click Apply and Close.

Note: When the connection with the Perfecto Cloud instance is successful, the mobile devices

that you have configured on the Perfecto Cloud are displayed in the Run using drop-down list.

5. Click the Run Test icon.

The Run Configuration dialog box is displayed.

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

to play back the test for each mobile test.

6. Select the mobile device to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

7. Click Next.

The Performance Measurement dialog box is displayed.

8. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

9. Click Finish.

Results

The test runs on the Android device that is connected to the Perfecto Cloud. The test result is displayed as a unified

report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Chapter 8. Test Execution Specialist Guide

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Playing back mobile tests on Android devices on pCloudy Cloud
You can run mobile tests on an Android device that is connected to the pCloudy Cloud.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Set up your account to access the pCloudy cloud. You must have been issued valid credentials such as

the host name or the URL of the pCloudy cloud instance, the user name, and an API key to authenticate the

connection.

• Uploaded the .apk file of the Android application that you want to test on an Android device in the pCloudy

cloud. For more information, refer to Upload Android App in the pCloudy documentation.

• Installed the Android application on an Android device in the pCloudy cloud. For more information, refer to

Installing Android app in the pCloudy documentation.

• Connected and started the Android device that you want to use for testing Android mobile applications.

• Verified that the device you want to test is available and in the Released state on the pCloudy cloud.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the pCloudy host checkbox to enable the options on the pCloudy Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

1053

https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/app-testing.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-android-app.php

HCL OneTest™ UI

1054

Option Action

pCloudy host Enter the host name of the pCloudy instance.

User Name Enter the user name of your pCloudy account.

API Key Enter the API key of your pCloudy account to authenticate the user name

for a successful connection.

d. Click Apply and Close.

Note: When the connection with the pCloudy instance is successful, the mobile devices that

you have configured on the pCloudy Cloud are displayed in the Run using drop-down list.

5. Click the Run Test icon.

The Run Configuration dialog box is displayed.

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

to play back the test for each mobile test.

6. Select the mobile device to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

7. Click Next.

The Performance Measurement dialog box is displayed.

8. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

9. Click Finish.

Chapter 8. Test Execution Specialist Guide

Results

The test runs on the Android device that is connected to the pCloudy Cloud. The test result is displayed as a unified

report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running compound tests for Android mobile applications
After you create the compound tests for Android mobile applications by using HCL OneTest™ UI, you can play back

the compound tests by using HCL OneTest™ UI.

Before you can use HCL OneTest™ UI to play back the recorded tests, you must create the compound tests for the

mobile applications by using HCL OneTest™ UI. See Creating a compound test on page 554.

By using HCL OneTest™ UI, you can play back the compound test on Android devices or emulators that are connected

to any of the following computers or device clouds:

• Computer that runs HCL OneTest™ UI.

• Remote agent computer.

• BitBar Cloud.

• Perfecto Mobile Cloud.

• pCloudy Cloud.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

You can find information about the tasks that you can perform when you want to play back the recorded tests for

Android mobile applications as follows:

• Running compound tests on Android devices or emulators connected to a computer that runs HCL OneTest UI

on page 1056.

• Running compound tests on Android devices or emulators connected to a remote agent computer on

page 1058.

• Running compound tests on Android devices on BitBar Cloud on page 1061.

• Running compound tests on Android devices on pCloudy Cloud on page 1064.

• Running compound tests on Android devices on Perfecto Cloud on page 1067.

1055

HCL OneTest™ UI

1056

Running compound tests on Android devices or emulators connected to a computer
that runs HCL OneTest™ UI
You can run compound tests that contain mobile tests on Android mobile devices or emulators that are connected to

a computer that runs HCL OneTest™ UI.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Installed the Android SDK on the computer that you want to use for testing Android mobile applications.

• Set or changed the value of the ANDROID_HOME environment variable on the computer that you want to use

for testing Android mobile applications for the following operating systems:

◦ Windows operating systems, see Setting or changing the ANDROID_HOME path in Windows operating

systems on page 1014.

◦ Linux operating systems, see Setting or changing the ANDROID_HOME path in Linux operating

systems on page 1012.

◦ Mac operating systems, see Setting or changing the ANDROID_HOME path in Mac operating systems

on page 1013.

• Installed the Android application that you want to test on the Android device or emulator.

• Connected and started the Android device or emulator to the computer that you want to use for testing

Android mobile applications.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click the Run Compound Test icon.

The Run Configuration dialog is displayed.

Perform any of the following actions:

Chapter 8. Test Execution Specialist Guide

◦ To run mobile tests that are in the compound test on a specific device or emulator, go to step 4 on

page 1057.

◦ To simultaneously run the mobile tests that are in the compound test on multiple devices or emulators,

go to step 5 on page 1057.

4. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected.

b. Select a device or emulator from the list.

c. Select the device or emulator for each of the tests by repeating the action in Step 4.a on page 1057

and Step 4.b on page 1057.

d. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

e. Go to step 6 on page 1057.

5. Select the Run on several devices and browsers in parallel option, if it is not already selected.

Mobile devices and emulators that are connected to the computer are displayed.

You must perform the following steps:

a. Select the devices on which you want to run the compound test.

b. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Go to step 6 on page 1057.

6. Click Next.

The Performance Measurement dialog is displayed.

7. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

1057

HCL OneTest™ UI

1058

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

8. Click Finish.

Results

The test runs on the selected mobile devices or emulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running compound tests on Android devices or emulators connected to a remote
agent computer
You can run compound tests that contain mobile tests on Android mobile devices or emulators that are connected to

a remote agent computer.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Installed the Android SDK on the computer that you want to use for testing Android mobile applications.

• Set or changed the value of the ANDROID_HOME environment variable on the computer that you want to use

for testing Android mobile applications for the following operating systems:

◦ Windows operating systems, see Setting or changing the ANDROID_HOME path in Windows operating

systems on page 1014.

◦ Linux operating systems, see Setting or changing the ANDROID_HOME path in Linux operating

systems on page 1012.

◦ Mac operating systems, see Setting or changing the ANDROID_HOME path in Mac operating systems

on page 1013.

About this task

Chapter 8. Test Execution Specialist Guide

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Click the Mobile Device tab, and then perform the following steps:

a. Select the Host check box in the UI Test Agent panel, and then enter the IP address of the remote

computer in the Host field.

Note: The port in use by the UI Test Agent on the computer is automatically populated in the

Port field.

b. Select the Android Device check box in the Android Device panel, and then enter the name of the

Android device or emulator that is connected to the computer in the Android Device field.

The Is real device check box is enabled.

c. Perform any of following actions:

▪ If you are using an Android device, select the Is real device check box.

▪ If you are using an emulator, retain the Is real device check box as deselected or clear the

selection, if selected.

d. Click Apply and Close.

5. Click the Run Compound Test icon.

The Run Configuration dialog box is displayed.

Perform any of the following actions:

◦ To run each mobile test that are in the compound test on a specific device, go to step 6 on page 1059.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 7 on page 1060.

6. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

1059

HCL OneTest™ UI

1060

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected to

the remote agent computer.

b. Select a device from the list.

c. Repeat steps 6.a on page 1060 and 6.b on page 1060, for each of the tests in the Compound test.

d. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

e. Go to step 8 on page 1060.

7. Select the Run on several devices and browsers in parallel option, if not selected.

All the mobile devices and emulators that are connected to the remote agent computer are displayed.

You must perform the following steps:

a. Select the devices on which you want to run the test.

b. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Go to step 8 on page 1060.

8. Click Next.

The Performance Measurement dialog is displayed.

9. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

10. Click Finish.

Results

Chapter 8. Test Execution Specialist Guide

The test runs on the selected mobile devices or emulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running compound tests on Android devices on BitBar Cloud
You can run compound tests that contain mobile tests on Android mobile devices that are connected to the BitBar

Cloud.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Set up your account to access the BitBar Cloud. You must have been issued valid credentials such as the host

name or the URL of the BitBar Cloud instance, and an API key to authenticate the connection.

• Uploaded the .apk file of the Android application that you want to test on an Android device in the BitBar

Cloud. For information, refer to Live Testing in the BitBar documentation.

• Installed the Android application that you want to test on the Android device.

• Connected and started the Android device that you want to use for testing Android mobile applications.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

1061

https://support.smartbear.com/bitbar/docs/testing-with-bitbar/live-testing.html

HCL OneTest™ UI

1062

a. Click the Mobile Device Cloud tab.

b. Select the BitBar host checkbox to enable the options on the BitBar Device Cloud Environment panel.

c. Perform the actions as listed in the following table:

Option Action

BitBar host Enter the host name of the BitBar Cloud instance.

API Key Enter the API key of your BitBar Cloud account to authenticate the connec

tion, and then click the Refresh projects and device groups .

Note: Clicking the Refresh projects and device groups enables

the Project and Device Group fields.

Project Select the BitBar project from the drop-down list.

Device Group Select the mobile device group that you want to use in the BitBar cloud.

Test Run
Enter an appropriate name for the test with which you can identify the test

run on the BitBar Cloud dashboard.

d. Click Apply and Close.

Note: When the connection with the BitBar Cloud instance is successful, the mobile devices

that you have configured on the BitBar Cloud are displayed in the Run using drop-down list.

5. Click the Run Compound Test icon.

The Run Configuration dialog is displayed.

Perform any of the following actions:

◦ To run each mobile test that are in the compound test on a specific device, go to step 6 on page 1062.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 7 on page 1063.

6. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

Chapter 8. Test Execution Specialist Guide

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected to

the BitBar Cloud.

b. Select a device from the list.

c. Repeat steps 6.a on page 1063 and 6.b on page 1063, for each of the tests in the Compound test.

d. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

e. Go to step 8 on page 1063.

7. Select the Run on several devices and browsers in parallel option, if not selected.

All the mobile devices and emulators that are connected to the BitBar Cloud are displayed.

You must perform the following steps:

a. Select the devices on which you want to run the test.

b. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Go to step 8 on page 1063.

8. Click Next.

The Performance Measurement dialog is displayed.

9. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

10. Click Finish.

Results

1063

HCL OneTest™ UI

1064

The test runs on the selected mobile devices or emulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running compound tests on Android devices on pCloudy Cloud
You can run compound tests that contain mobile tests on Android mobile devices that are connected to the pCloudy

Cloud.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Set up your account to access the pCloudy cloud. You must have been issued valid credentials such as

the host name or the URL of the pCloudy cloud instance, the user name, and an API key to authenticate the

connection.

• Uploaded the .apk file of the Android application that you want to test on an Android device in the pCloudy

cloud. For more information, refer to Upload Android App in the pCloudy documentation.

• Installed the Android application on an Android device in the pCloudy cloud. For more information, refer to

Installing Android app in the pCloudy documentation.

• Connected and started the Android device that you want to use for testing Android mobile applications.

• Verified that the device you want to test is available and in the Released state on the pCloudy cloud.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/app-testing.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-android-app.php

Chapter 8. Test Execution Specialist Guide

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the pCloudy host checkbox to enable the options on the pCloudy Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

pCloudy host Enter the host name of the pCloudy instance.

User Name Enter the user name of your pCloudy account.

API Key Enter the API key of your pCloudy account to authenticate the user name

for a successful connection.

d. Click Apply and Close.

Note: When the connection with the pCloudy instance is successful, the mobile devices that

you have configured on the pCloudy Cloud are displayed in the Run using drop-down list.

5. Click the Run Compound Test icon.

The Run Configuration dialog box is displayed.

Perform any of the following actions:

◦ To run each mobile test that are in the compound test on a specific device, go to step 6 on page 1065.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 7 on page 1066.

6. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected to

the pCloudy Cloud.

b. Select a device from the list.

c. Repeat steps 6.a on page 1065 and 6.b on page 1065, for each of the tests in the Compound test.

1065

HCL OneTest™ UI

1066

d. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

e. Go to step 8 on page 1066.

7. Select the Run on several devices and browsers in parallel option, if not selected.

All the mobile devices and emulators that are connected to the pCloudy Cloud are displayed.

You must perform the following steps:

a. Select the devices on which you want to run the test.

b. Click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Go to step 8 on page 1066.

8. Click Next.

The Performance Measurement dialog is displayed.

9. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

10. Click Finish.

Results

The test runs on the selected mobile devices or emulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Chapter 8. Test Execution Specialist Guide

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running compound tests on Android devices on Perfecto Cloud
You can run compound tests that contain mobile tests on Android mobile devices that are connected to the Perfecto

Cloud.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for Android applications on page 522.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Set up your account to access the Perfecto Mobile Cloud. You must have been issued valid credentials such

as the host name or the URL of the Perfecto Mobile Cloud instance and the security token to authenticate the

connection.

• Installed the .apk file of the Android application that you want to test on an Android device in the Perfecto

Mobile Cloud. For information, refer to Manage Apps in the Perfecto documentation.

• Installed the Android application that you want to test on the Android device.

• Connected and started the Android device that you want to use for testing Android mobile applications.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the Perfecto host checkbox to enable the options on the Perfecto Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

1067

https://developers.perfectomobile.com/display/PD/Manage+apps

HCL OneTest™ UI

1068

Option Action

Perfecto host Enter the host name of the Perfecto Cloud instance.

Security Token Enter the Token to authenticate the connection to the Perfecto Cloud in

stance.

d. Click Apply and Close.

Note: When the connection with the Perfecto Cloud instance is successful, the mobile devices

that you have configured on the Perfecto Cloud are displayed in the Run using drop-down list.

5. Click the Run Compound Test icon.

The Run Configuration dialog box is displayed.

Perform any of the following actions:

◦ To run each mobile test that are in the compound test on a specific device, go to step 6 on page 1068.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 7 on page 1068.

6. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected to

the Perfecto Cloud.

b. Select a device from the list.

c. Repeat steps 6.a on page 1068 and 6.b on page 1068, for each of the tests in the Compound test.

d. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

e. Go to step 8 on page 1069.

7. Select the Run on several devices and browsers in parallel option, if not selected.

All the mobile devices and emulators that are connected to the Perfecto Cloud are displayed.

You must perform the following steps:

Chapter 8. Test Execution Specialist Guide

a. Select the devices on which you want to run the test.

b. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Go to step 8 on page 1069.

8. Click Next.

The Performance Measurement dialog is displayed.

9. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

10. Click Finish.

Results

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running mobile tests for iOS mobile applications
You can run the tests for iOS mobile applications that are recorded by using HCL OneTest™ UI.

Before you can play back the recorded tests, you must record the tests for the mobile applications by using HCL

OneTest™ UI. See Recording mobile tests for iOS applications on page 530.

Before you can play back the recorded mobile test, you must complete the following tasks:

• Installed the Xcode and the CLI tools for Xcode on the computer that you want to use for testing iOS mobile

applications.

• Connected and started the iOS device or simulator that you want to use for testing iOS mobile applications.

• Installed the iOS application that you want to test on the iOS device.

1069

HCL OneTest™ UI

1070

You can play back the recorded mobile test on iOS devices or simulators that are connected to any of the following

computers or device clouds:

• Computer that runs HCL OneTest™ UI.

• Remote agent computer.

• BitBar Cloud.

• Perfecto Mobile Cloud.

• pCloudy Cloud.

Note: You cannot connect simulators to device clouds.

To play back a mobile test, multiple mobile tests, a compound test, or an AFT Suite, after you select the test, you can

select the location where the iOS devices or simulators are connected, and then specify the iOS device or simulator

on which you want to run the test.

When you play back the Compound Test containing mobile tests, you can specify different iOS devices or simulators

for each of the mobile test in the Compound Test.

See Configuration of mobile test runs on page 1042.

You can find information about the tasks that you can perform when you want to play back the recorded tests for iOS

mobile applications as follows:

• Running mobile tests on an iOS device or simulator connected to a computer that runs HCL OneTest UI on

page 1070

• Running mobile tests on an iOS device or simulator connected to a remote computer on page 1072

• Running mobile tests on iOS devices on BitBar Cloud on page 1074

• Running mobile tests on iOS devices on Perfecto Cloud on page 1076

• Running mobile tests on iOS devices on pCloudy Cloud on page 1078

• Running mobile tests as an AFT suite on page 1094

• Running mobile tests for iOS applications from the command-line on page 1166

Running mobile tests on an iOS device or simulator connected to a computer that
runs HCL OneTest™ UI
You can run mobile tests on iOS mobile devices or simulators that are connected to a computer that runs HCL

OneTest™ UI.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Installed the Xcode and the CLI tools for Xcode on the computer that you want to use for testing iOS mobile

applications.

Chapter 8. Test Execution Specialist Guide

• Installed the iOS mobile application that you want to test on the iOS device or simulator.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

• Ensured that the UI Test Agent is running on the computer that runs HCL OneTest™ UI.

Tip: You can hover the cursor over the System Tray to verify that the UI Test Agent is running and also

view the port it uses.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Restriction: Resource Monitoring metrics of iOS simulators are not collected nor graphically displayed.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click the Run Test icon.

The Run Configuration dialog box is displayed.

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

or simulator to play back the test for each mobile test.

4. Select the mobile device or simulator to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

5. Click Next.

The Performance Measurement dialog box is displayed.

6. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

1071

HCL OneTest™ UI

1072

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

7. Click Finish.

Results

The test runs on the selected mobile device or simulator. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running mobile tests on an iOS device or simulator connected to a remote
computer
You can run mobile tests on an iOS device or simulator that is connected to a remote agent computer.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Installed the Xcode and the CLI tools for Xcode on the computer that you want to use for testing iOS mobile

applications.

• Installed the iOS mobile application that you want to test on the iOS device or simulator.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

• Ensured that the UI Test Agent is running on the remote agent computer.

Tip: You can hover the cursor over the System Tray to verify that the UI Test Agent is running and also

view the port it uses.

• Ensured that you have the following information if you want to run the test on a real device:

◦ Apple Team ID

◦ Version of the platform

Chapter 8. Test Execution Specialist Guide

◦ Port

Note: This is required only when the port is not the default port.

◦ Name of the iOS mobile device

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Restriction: Resource Monitoring metrics of iOS simulators are not collected nor graphically displayed.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Click the Mobile Device tab, and then perform the following steps:

a. Select the Host check box in the UI Test Agent panel, and then enter the IP address of the remote

computer in the Host field.

Note: The port in use by the UI Test Agent on the computer is automatically populated in the

Port field.

b. Select the iOS Device checkbox in the iOS Device panel, and then enter the name of the iOS device or

simulator that is connected to the computer in the iOS Device field.

The Platform Version field is enabled.

c. Enter the version of the platform in the Platform Version field.

d. Select the Apple Team ID checkbox in the iOS Device panel, and then enter the name of the Apple

Developer Team ID provided by Apple in the Apple Team ID field.

e. Enter the role that you are assigned by the Apple Developer Team in the Role field.

f. Click Apply and Close.

5. Click the Run Test icon.

1073

HCL OneTest™ UI

1074

The Run Configuration dialog box is displayed.

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

or simulator to play back the test for each mobile test.

6. Select the mobile device or simulator to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

7. Click Next.

The Performance Measurement dialog box is displayed.

8. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

9. Click Finish.

Results

The test runs on the iOS device or simulator that is connected to the remote computer. The test result is displayed as

a unified report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running mobile tests on iOS devices on BitBar Cloud
You can run mobile tests on an iOS device that is connected to the BitBar Cloud.

Before you begin

You must have completed the following tasks:

Chapter 8. Test Execution Specialist Guide

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Set up your account to access the BitBar Cloud. You must have been issued valid credentials such as the host

name or the URL of the BitBar Cloud instance, and an API key to authenticate the connection.

• Installed the .ipa or .app file of the iOS application that you want to test in the BitBar Cloud. For information,

refer to Live Testing in the BitBar documentation.

• Installed the iOS application that you want to test on the iOS device.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the BitBar host checkbox to enable the options on the BitBar Device Cloud Environment panel.

c. Perform the actions as listed in the following table:

Option Action

BitBar host Enter the host name of the BitBar Cloud instance.

API Key Enter the API key of your BitBar Cloud account to authenticate the connec

tion, and then click the Refresh projects and device groups .

Note: Clicking the Refresh projects and device groups enables

the Project and Device Group fields.

Project Select the BitBar project from the drop-down list.

Device Group Select the mobile device group that you want to use in the BitBar cloud.

Test Run
Enter an appropriate name for the test with which you can identify the test

run on the BitBar Cloud dashboard.

1075

https://support.smartbear.com/bitbar/docs/testing-with-bitbar/live-testing.html

HCL OneTest™ UI

1076

d. Click Apply and Close.

Note: When the connection with the BitBar Cloud instance is successful, the mobile devices

that you have configured on the BitBar Cloud are displayed in the Run using drop-down list.

5. Click the Run Test icon.

The Run Configuration dialog box is displayed.

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

to play back the test for each mobile test.

6. Select the mobile device to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

7. Click Next.

The Performance Measurement dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

8. Click Finish.

Results

The test runs on the iOS device that is connected to the BitBar Cloud. The test result is displayed as a unified report

in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running mobile tests on iOS devices on Perfecto Cloud
You can run mobile tests on an iOS device that is connected to the Perfecto Mobile Cloud.

Before you begin

You must have completed the following tasks:

Chapter 8. Test Execution Specialist Guide

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Set up your account to access the Perfecto Mobile Cloud. You must have been issued valid credentials such

as the host name or the URL of the Perfecto Mobile Cloud instance and the security token to authenticate the

connection.

• Installed the .ipa file of the iOS application that you want to test on an iOS device in the Perfecto Mobile

Cloud. For information, refer to Manage Apps in the Perfecto documentation.

• Installed the iOS application that you want to test on the iOS device.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the Perfecto host checkbox to enable the options on the Perfecto Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

Perfecto host Enter the host name of the Perfecto Cloud instance.

Security Token Enter the Token to authenticate the connection to the Perfecto Cloud in

stance.

d. Click Apply and Close.

Note: When the connection with the Perfecto Cloud instance is successful, the mobile devices

that you have configured on the Perfecto Cloud are displayed in the Run using drop-down list.

5. Click the Run Test icon.

The Run Configuration dialog box is displayed.

1077

https://developers.perfectomobile.com/display/PD/Manage+apps

HCL OneTest™ UI

1078

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

to play back the test for each mobile test.

6. Select the mobile device to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

7. Click Next.

The Performance Measurement dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

8. Click Finish.

Results

The test runs on the iOS device that is connected to the Perfecto Cloud. The test result is displayed as a unified

report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running mobile tests on iOS devices on pCloudy Cloud
You can run mobile tests on an iOS device that is connected to the pCloudy Cloud.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Set up your account to access the pCloudy cloud. You must have been issued valid credentials such as

the host name or the URL of the pCloudy cloud instance, the user name, and an API key to authenticate the

connection.

• Uploaded the .ipa file of the iOS application that you want to test on an iOS device in the pCloudy Cloud. For

more information, refer to Upload iOS App in the pCloudy documentation.

• Installed the iOS application on an iOS device in the pCloudy Cloud. For more information, refer to Installing

iOS app in the pCloudy documentation.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

• Verified that the device you want to test is available and in the Released state on the pCloudy cloud.

https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/upload-ios-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-ios-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-ios-app.php

Chapter 8. Test Execution Specialist Guide

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the mobile test from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the pCloudy host checkbox to enable the options on the pCloudy Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

pCloudy host Enter the host name of the pCloudy instance.

User Name Enter the user name of your pCloudy account.

API Key Enter the API key of your pCloudy account to authenticate the user name

for a successful connection.

d. Click Apply and Close.

Note: When the connection with the pCloudy instance is successful, the mobile devices that

you have configured on the pCloudy Cloud are displayed in the Run using drop-down list.

5. Click the Run Test icon.

The Run Configuration dialog box is displayed.

Note: If you are using a compound test that contains mobile tests, you can specify the mobile device

to play back the test for each mobile test.

6. Select the mobile device to play back the test from the Run using list and click Next.

The Advanced Playback Options dialog box is displayed.

1079

HCL OneTest™ UI

1080

Note: There is no action to be performed by you for mobile tests.

7. Click Next.

The Performance Measurement dialog box is displayed.

Note: There is no action to be performed by you for mobile tests.

8. Click Finish.

Results

The test runs on the iOS device that is connected to the pCloudy Cloud. The test result is displayed as a unified report

in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running compound tests for iOS mobile applications
After you create the compound tests for iOS mobile applications by using HCL OneTest™ UI, you can play back the

compound tests.

Before you can play back the compound test, you must create compound test for the mobile applications by using

HCL OneTest™ UI. See Creating a compound test on page 554.

You can play back the compound test on iOS devices or simulators that are connected to any of the following

computers or device clouds:

• Computer that runs HCL OneTest™ UI.

• Remote agent computer.

• BitBar Cloud.

• Perfecto Mobile Cloud.

• pCloudy Cloud.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

You can find information about the tasks that you can perform when you want to play back the recorded tests for iOS

mobile applications as follows:

Chapter 8. Test Execution Specialist Guide

• Running compound tests on iOS devices or simulators connected to a computer that runs HCL OneTest UI on

page 1081

• Running compound tests on iOS devices or simulators connected to a remote agent computer on page 1083

• Running compound tests on iOS devices on BitBar Cloud on page 1086

• Running compound tests on iOS devices on pCloudy Cloud on page 1088

• Running compound tests on iOS devices on Perfecto Cloud on page 1091

Running compound tests on iOS devices or simulators connected to a computer
that runs HCL OneTest™ UI
After you create the compound tests for iOS mobile applications by using HCL OneTest™ UI, you can play back the

compound tests by using HCL OneTest™ UI.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Installed the Xcode and the CLI tools for Xcode on the computer that you want to use for testing iOS mobile

applications.

• Connected and started the iOS device or simulator that you want to use for testing iOS mobile applications.

• Ensured that the UI Test Agent is running on the computer that runs HCL OneTest™ UI.

Tip: You can hover the cursor over the System Tray to verify that the UI Test Agent is running and also

view the port it uses.

About this task

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

Restriction: Resource Monitoring metrics of iOS simulators are not collected nor graphically displayed.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click the Run Compound Test icon.

1081

HCL OneTest™ UI

1082

The Run Configuration dialog is displayed.

Perform any of the following actions:

◦ To run each mobile test that are in the compound test on a specific device, go to step 4 on page 1082.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 5 on page 1082.

4. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected.

b. Select a device from the list.

c. Repeat steps 4.a on page 1082 and 4.b on page 1082, for each of the tests in the Compound test.

d. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

e. Go to step 6 on page 1082.

5. Select the Run on several devices and browsers in parallel option, if not selected.

All the mobile devices and emulators that are connected to the computer are displayed.

You must perform the following steps:

a. Select the devices on which you want to run the test.

b. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Go to step 6 on page 1082.

6. Click Next.

The Performance Measurement dialog is displayed.

7. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

8. Click Finish.

Chapter 8. Test Execution Specialist Guide

Results

The test runs on the selected mobile devices or simulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running compound tests on iOS devices or simulators connected to a remote agent
computer
You can run compound tests that contain mobile tests on iOS mobile devices or simulators that are connected to a

remote agent computer.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Installed the Xcode and the CLI tools for Xcode on the computer that you want to use for testing iOS mobile

applications.

• Installed the iOS mobile application that you want to test on the iOS device or simulator.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

• Ensured that the UI Test Agent is running on the remote agent computer.

Tip: You can hover the cursor over the System Tray to verify that the UI Test Agent is running and also

view the port it uses.

• Ensured that you have the following information if you want to run the test on a real device:

◦ Apple Team ID

◦ Version of the platform

◦ Port

Note: This is required only when the port is not the default port.

◦ Name of the iOS mobile device

About this task

1083

HCL OneTest™ UI

1084

When you run mobile tests, you can enable HCL OneTest™ UI to collect metrics for certain parameters of the

resources used by the mobile applications or devices. You can select the Resource Monitoring option and set the time

intervals for the collection of the metrics during the test run.

Important: Collection of Resource Monitoring metrics and displaying of the data graphically is supported only

when you run a compound test on a single device.

Restriction: Resource Monitoring metrics of iOS simulators are not collected nor graphically displayed.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Click the Mobile Device tab, and then perform the following steps:

a. Select the Host check box in the UI Test Agent panel, and then enter the IP address of the remote

computer in the Host field.

Note: The port in use by the UI Test Agent on the computer is automatically populated in the

Port field.

b. Select the iOS Device checkbox in the iOS Device panel, and then enter the name of the iOS device or

simulator that is connected to the computer in the iOS Device field.

The Platform Version field is enabled.

c. Enter the version of the platform in the Platform Version field.

d. Select the Apple Team ID checkbox in the iOS Device panel, and then enter the name of the Apple

Developer Team ID provided by Apple in the Apple Team ID field.

e. Enter the role that you are assigned by the Apple Developer Team in the Role field.

f. Click Apply and Close.

5. Click the Run Compound Test icon.

The Run Configuration dialog box is displayed.

Perform any of the following actions:

Chapter 8. Test Execution Specialist Guide

◦ To run each mobile test that are in the compound test on a specific device, go to step 6 on page 1085.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 7 on page 1085.

6. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected.

b. Select a device from the list.

c. Repeat steps 6.a on page 1085 and 6.b on page 1085, for each of the tests in the Compound test.

d. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

e. Go to step 8 on page 1085.

7. Select the Run on several devices and browsers in parallel option, if not selected.

a. Select the devices on which you want to run the test.

b. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Go to step 8 on page 1085.

8. Click Next.

The Performance Measurement dialog is displayed.

9. Perform the following steps if you want HCL OneTest™ UI to collect the Resource Monitoring metrics during

the test run:

a. Select the Resource Monitoring option.

b. Set the interval to collect the metrics by entering a number in the Polling interval field.

Note: The minimum value that you can enter in the Polling interval field is 1000 milliseconds.

10. Click Finish.

Results

1085

HCL OneTest™ UI

1086

The test runs on the selected mobile devices or simulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

If you opted to collect the Resource Monitoring metrics, you can view the metrics displayed graphically in the UI Test

Statistical report. You can analyze the Resource Monitoring metrics to manage the resources of the device or the

mobile application under test. See UI Test Statistical report on page 1198.

Running compound tests on iOS devices on BitBar Cloud
You can run compound tests that contain mobile tests on iOS mobile devices that are connected to the BitBar Cloud.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Set up your account to access the BitBar Cloud. You must have been issued valid credentials such as the host

name or the URL of the BitBar Cloud instance, and an API key to authenticate the connection.

• Installed the .ipa or .app file of the iOS application that you want to test in the BitBar Cloud. For information,

refer to Live Testing in the BitBar documentation.

• Installed the iOS application that you want to test on the iOS device.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the BitBar host checkbox to enable the options on the BitBar Device Cloud Environment panel.

c. Perform the actions as listed in the following table:

Option Action

BitBar host Enter the host name of the BitBar Cloud instance.

https://support.smartbear.com/bitbar/docs/testing-with-bitbar/live-testing.html

Chapter 8. Test Execution Specialist Guide

Option Action

API Key Enter the API key of your BitBar Cloud account to authenticate the connec

tion, and then click the Refresh projects and device groups .

Note: Clicking the Refresh projects and device groups enables

the Project and Device Group fields.

Project Select the BitBar project from the drop-down list.

Device Group Select the mobile device group that you want to use in the BitBar cloud.

Test Run
Enter an appropriate name for the test with which you can identify the test

run on the BitBar Cloud dashboard.

d. Click Apply and Close.

Note: When the connection with the BitBar Cloud instance is successful, the mobile devices

that you have configured on the BitBar Cloud are displayed in the Run using drop-down list.

5. Click the Run Compound Test icon.

The Run Configuration dialog is displayed.

Perform any of the following actions:

◦ To run each mobile test that are in the compound test on a specific device, go to step 6 on page 1087.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 7 on page 1088.

6. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected to

the BitBar Cloud.

b. Select a device from the list.

c. Repeat steps 6.a on page 1087 and 6.b on page 1087, for each of the tests in the Compound test.

d. Click Next.

The Advanced Playback Options dialog is displayed.

1087

HCL OneTest™ UI

1088

Note: There is no action to be performed by you for mobile tests.

e. Click Next.

The Performance Measurement dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

f. Click Finish.

7. Select the Run on several devices and browsers in parallel option, if not selected.

All the mobile devices and emulators that are connected to the BitBar Cloud are displayed.

You must perform the following steps:

a. Select the devices on which you want to run the test.

b. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Click Next.

The Performance Measurement dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

d. Click Finish.

Results

The test runs on the selected mobile devices or simulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running compound tests on iOS devices on pCloudy Cloud
You can run compound tests that contain mobile tests on iOS mobile devices that are connected to the pCloudy

Cloud.

Chapter 8. Test Execution Specialist Guide

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Set up your account to access the pCloudy cloud. You must have been issued valid credentials such as

the host name or the URL of the pCloudy cloud instance, the user name, and an API key to authenticate the

connection.

• Uploaded the .ipa file of the iOS application that you want to test on an iOS device in the pCloudy Cloud. For

more information, refer to Upload iOS App in the pCloudy documentation.

• Installed the iOS application on an iOS device in the pCloudy Cloud. For more information, refer to Installing

iOS app in the pCloudy documentation.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

• Verified that the device you want to test is available and in the Released state on the pCloudy cloud.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the pCloudy host checkbox to enable the options on the pCloudy Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

pCloudy host Enter the host name of the pCloudy instance.

User Name Enter the user name of your pCloudy account.

API Key Enter the API key of your pCloudy account to authenticate the user name

for a successful connection.

1089

https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/upload-ios-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-ios-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-ios-app.php

HCL OneTest™ UI

1090

d. Click Apply and Close.

Note: When the connection with the pCloudy instance is successful, the mobile devices that

you have configured on the pCloudy Cloud are displayed in the Run using drop-down list.

5. Click the Run Compound Test icon.

The Run Configuration dialog is displayed.

Perform any of the following actions:

◦ To run each mobile test that are in the compound test on a specific device, go to step 6 on page 1090.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 7 on page 1090.

6. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected to

the pCloudy Cloud.

b. Select a device from the list.

c. Repeat steps 6.a on page 1090 and 6.b on page 1090, for each of the tests in the Compound test.

d. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

e. Click Next.

The Performance Measurement dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

f. Click Finish.

7. Select the Run on several devices and browsers in parallel option, if not selected.

All the mobile devices and emulators that are connected to the pCloudy Cloud are displayed.

You must perform the following steps:

a. Select the devices on which you want to run the test.

b. Click Next.

Chapter 8. Test Execution Specialist Guide

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Click Next.

The Performance Measurement dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

d. Click Finish.

Results

The test runs on the selected mobile devices or simulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running compound tests on iOS devices on Perfecto Cloud
You can run compound tests that contain mobile tests on iOS mobile devices that are connected to the Perfecto

Cloud.

Before you begin

You must have completed the following tasks:

• Recorded mobile tests. See Recording mobile tests for iOS applications on page 530.

• Created a compound test that contains mobile tests, see Creating a compound test on page 554.

• Set up your account to access the Perfecto Mobile Cloud. You must have been issued valid credentials such

as the host name or the URL of the Perfecto Mobile Cloud instance and the security token to authenticate the

connection.

• Installed the .ipa file of the iOS application that you want to test on an iOS device in the Perfecto Mobile

Cloud. For information, refer to Manage Apps in the Perfecto documentation.

• Installed the iOS application that you want to test on the iOS device.

• Connected and started the iOS device that you want to use for testing iOS mobile applications.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Select the compound test that contains the mobile tests from the Test Navigator pane.

The test window is displayed.

3. Click Window > Preferences > Test > Test Execution > UI Test Playback.

1091

https://developers.perfectomobile.com/display/PD/Manage+apps

HCL OneTest™ UI

1092

The UI Test Playback pane is displayed.

4. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the Perfecto host checkbox to enable the options on the Perfecto Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

Perfecto host Enter the host name of the Perfecto Cloud instance.

Security Token Enter the Token to authenticate the connection to the Perfecto Cloud in

stance.

d. Click Apply and Close.

Note: When the connection with the Perfecto Cloud instance is successful, the mobile devices

that you have configured on the Perfecto Cloud are displayed in the Run using drop-down list.

5. Click the Run Compound Test icon.

The Run Configuration dialog box is displayed.

Perform any of the following actions:

◦ To run each mobile test that are in the compound test on a specific device, go to step 6 on page 1092.

◦ To simultaneously run all the tests that are in the compound test on the same set of devices, go to

step 7 on page 1093.

6. Clear the Run on several devices and browsers in parallel option, if selected, and then perform the following

actions:

a. Click the Run using option for each test, to view the mobile devices or emulators that are connected to

the Perfecto Cloud.

b. Select a device from the list.

c. Repeat steps 6.a on page 1090 and 6.b on page 1090, for each of the tests in the Compound test.

d. Click Next.

The Advanced Playback Options dialog is displayed.

Chapter 8. Test Execution Specialist Guide

Note: There is no action to be performed by you for mobile tests.

e. Click Next.

The Performance Measurement dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

f. Click Finish.

7. Select the Run on several devices and browsers in parallel option, if not selected.

All the mobile devices and emulators that are connected to the Perfecto Cloud are displayed.

You must perform the following steps:

a. Select the devices on which you want to run the test.

b. Click Next.

The Advanced Playback Options dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

c. Click Next.

The Performance Measurement dialog is displayed.

Note: There is no action to be performed by you for mobile tests.

d. Click Finish.

Results

The test runs on the selected mobile devices or simulators. The test result is displayed as a unified report in HCL

OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Configuration of AFT Suite runs for mobile tests
When you create mobile tests and want to use the distributed effort feature inHCL OneTest™ UI, you must configure

the AFT Suite run for the recorded mobile tests before you can view the test results.

1093

HCL OneTest™ UI

1094

Before you configure a run of an AFT Suite, you must create the AFT Suite as an AFT XML. See Accelerated

Functional Tests on page 561.

You can find the following information about configuring different test runs as an AFT Suite:

• Running mobile tests as an AFT suite on page 1094

• Running mobile tests as an AFT Suite on BitBar Cloud on page 1095

• Running mobile tests as an AFT Suite on pCloudy Cloud on page 1096

• Running mobile tests as an AFT Suite on Perfecto Cloud on page 1098

• Running mobile tests as an AFT Suite on multiple mobile clouds on page 1100

Running mobile tests as an AFT suite
After you create an Accelerated Functional Test (AFT) suite for mobile tests, you run the AFT suite by using the Run

Distributed Tests option.

Before you begin

You must have completed the following tasks:

• Created an AFT suite with mobile tests. See Creating an AFT suite for mobile tests on page 563.

• The configured UI Test Agent must be running.

1. Right-click the XML file in the Test Navigator pane, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog box is displayed.

The following options are displayed in the Run Accelerated Functional Test dialog box:

◦ Re-run failed tests only from the last playback: Select this checkbox if you want to rerun the failed

tests only from the last playback. The failed test is again run on the same device and location on

which it previously failed.

Note: This option is enabled only if the test was already run at least once.

◦ Fix the browser-driver incompatibility: This option is not applicable for mobile tests and it is disabled.

2. Click OK.

Results

You have run mobile tests as an AFT suite.

Related information

Running mobile tests for Android applications from the command-line on page 1157

Running mobile tests for iOS applications from the command-line on page 1166

Chapter 8. Test Execution Specialist Guide

Running mobile tests as an AFT Suite on BitBar Cloud
After you create an AFT Suite for mobile tests, you can run the AFT Suite on devices connected to BitBar Cloud to

accelerate the test efforts.

Before you begin

You must have completed the following tasks:

• Created an AFT Suite with mobile tests. See Creating an AFT Suite for mobile tests to run the tests on BitBar

cloud on page 566.

• Set up your account to access the BitBar Cloud. You must have been issued valid credentials such as the host

name or the URL of the BitBar Cloud instance, and an API key to authenticate the connection.

• Uploaded the .ipa or .app file of the iOS application or the .apk file of the Android application that you want

to test in the BitBar Cloud. For information, refer to Live Testing in the BitBar documentation.

• Installed the Android and iOS application that you want to test on the device.

• Connected and started the Android or iOS device that you want to use for testing the mobile applications.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

3. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the BitBar host checkbox to enable the options on the BitBar Device Cloud Environment panel.

c. Perform the actions as listed in the following table:

Option Action

BitBar host Enter the host name of the BitBar Cloud instance.

API Key Enter the API key of your BitBar Cloud account to authenticate the connec

tion, and then click the Refresh projects and device groups .

Note: Clicking the Refresh projects and device groups enables

the Project and Device Group fields.

Project Select the BitBar project from the drop-down list.

1095

https://support.smartbear.com/bitbar/docs/testing-with-bitbar/live-testing.html

HCL OneTest™ UI

1096

Option Action

Device Group Select the mobile device group that you want to use in the BitBar cloud.

Test Run
Enter an appropriate name for the test with which you can identify the test

run on the BitBar Cloud dashboard.

d. Click Apply and Close.

Note: When the connection with the BitBar Cloud instance is successful, the mobile devices

that you have configured on the BitBar Cloud are displayed in the Run using drop-down list.

4. Select the project that contains the AFT Suite, in the Test Navigator pane.

The AFT Suite that you created for the mobile tests is in the Accelerated Functional Tests folder.

5. Expand the contents of the Accelerated Functional Tests folder to view the AFT XML that is displayed with the

name you provided.

6. Right-click the XML file of the AFT Suite, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog is displayed.

Note: If you are repeating the AFT Suite run because the previous run failed, the Re-run failed tests

only from the last playback option is available for selection. When you select this option, the AFT

Suite is run on the devices and location on which it previously failed.

7. Click OK.

Results

You have run the mobile tests that are in an AFT Suite. The tests run on mobile devices that are connected to the

Cloud from the location you configured.

The test result is displayed as a unified report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running mobile tests as an AFT Suite on pCloudy Cloud
After you create an AFT Suite for mobile tests, you can run the AFT Suite on devices connected to pCloudy Cloud to

accelerate the test efforts.

Before you begin

Chapter 8. Test Execution Specialist Guide

You must have completed the following tasks:

• Created an AFT Suite with mobile tests. See Creating an AFT Suite for mobile tests to run the tests on pCloudy

cloud on page 569.

• Set up your account to access the pCloudy cloud. You must have been issued valid credentials such as

the host name or the URL of the pCloudy cloud instance, the user name, and an API key to authenticate the

connection.

• Uploaded the .apk file of the Android application or the .ipa file of the iOS application that you want to test

in the pCloudy Cloud. For more information, refer to Upload Android App or Upload iOS App in the pCloudy

documentation.

• Installed the Android application or iOS application that you want to test on the device. For more information,

refer to Installing Android app or Installing iOS app in the pCloudy documentation.

• Connected and started the Android or iOS device that you want to use for testing the mobile applications.

• Verified that the device you want to test is available and in the Released state on the pCloudy cloud.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

3. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the pCloudy host checkbox to enable the options on the pCloudy Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

pCloudy host Enter the host name of the pCloudy instance.

User Name Enter the user name of your pCloudy account.

API Key Enter the API key of your pCloudy account to authenticate the user name

for a successful connection.

1097

https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/app-testing.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/upload-ios-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-android-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-ios-app.php

HCL OneTest™ UI

1098

d. Click Apply and Close.

Note: When the connection with the pCloudy instance is successful, the mobile devices that

you have configured on the pCloudy Cloud are displayed in the Run using drop-down list.

4. Select the project that contains the AFT Suite, in the Test Navigator pane.

The AFT Suite that you created for the mobile tests is in the Accelerated Functional Tests folder.

5. Expand the contents of the Accelerated Functional Tests folder to view the AFT XML that is displayed with the

name you provided.

6. Right-click the XML file of the AFT Suite, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog is displayed.

Note: If you are repeating the AFT Suite run because the previous run failed, the Re-run failed tests

only from the last playback option is available for selection. When you select this option, the AFT

Suite is run on the devices and location on which it previously failed.

7. Click OK.

Results

You have run the mobile tests that are in an AFT Suite. The tests run on mobile devices that are connected to the

Cloud from the location you configured.

The test result is displayed as a unified report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running mobile tests as an AFT Suite on Perfecto Cloud
After you create an AFT Suite for mobile tests, you can run the AFT Suite on devices connected to Perfecto Cloud to

accelerate the test efforts.

Before you begin

You must have completed the following tasks:

• Created an AFT Suite with mobile tests. See Creating an AFT Suite for mobile tests to run the tests on

Perfecto cloud on page 572.

• Set up your account to access the Perfecto Mobile Cloud. You must have been issued valid credentials such

as the host name or the URL of the Perfecto Mobile Cloud instance and the security token to authenticate the

connection.

Chapter 8. Test Execution Specialist Guide

• Uploaded the .ipa file of the iOS application or the .apk file of the Android application that you want to test

in the Perfecto Cloud. For information, refer to Manage Apps in the Perfecto documentation.

• Installed the Android and iOS application that you want to test on the device.

• Connected and started the Android or iOS device that you want to use for testing the mobile applications.

About this task

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

3. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the Perfecto host checkbox to enable the options on the Perfecto Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

Perfecto host Enter the host name of the Perfecto Cloud instance.

Security Token Enter the Token to authenticate the connection to the Perfecto Cloud in

stance.

d. Click Apply and Close.

Note: When the connection with the Perfecto Cloud instance is successful, the mobile devices

that you have configured on the Perfecto Cloud are displayed in the Run using drop-down list.

4. Select the project that contains the AFT Suite, in the Test Navigator pane.

The AFT Suite that you created for the mobile tests is in the Accelerated Functional Tests folder.

5. Expand the contents of the Accelerated Functional Tests folder to view the AFT XML that is displayed with the

name you provided.

6. Right-click the XML file of the AFT Suite, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog is displayed.

1099

https://developers.perfectomobile.com/display/PD/Manage+apps

HCL OneTest™ UI

1100

Note: If you are repeating the AFT Suite run because the previous run failed, the Re-run failed tests

only from the last playback option is available for selection. When you select this option, the AFT

Suite is run on the devices and location on which it previously failed.

7. Click OK.

Results

You have run the mobile tests that are in an AFT Suite. The tests run on mobile devices that are connected to the

Cloud from the location you configured.

The test result is displayed as a unified report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running mobile tests as an AFT Suite on multiple mobile clouds
After you create an AFT Suite for mobile tests, you can run the tests simultaneously on devices connected to multiple

mobile clouds to accelerate the test efforts.

Before you begin

You must have completed the following tasks:

• Created an AFT suite with mobile tests, See Creating an AFT Suite to run the tests on multiple mobile clouds

on page 575.

• You must have set up accounts and obtained valid credentials for more than one mobile cloud as mentioned

below:

◦ BitBar Cloud: The host name or the URL of the BitBar Cloud instance, and an API key to authenticate

the connection.

◦ pCloudy Cloud: The host name or the URL of the pCloudy Cloud instance, the user name, and an API

key to authenticate the connection.

◦ Perfecto Cloud: The host name or the URL of the Perfecto Cloud instance, and the security token to

authenticate the connection.

• Uploaded the .ipa file of the iOS application or the .apk file of the Android application that you want to test

in the mobile cloud. For more information, refer to the following:

◦ BitBar: Live Testing in the BitBar documentation.

◦ pCloudy: Upload Android App or Upload iOS App in the pCloudy documentation.

◦ Perfecto: Manage Apps in the Perfecto documentation.

• Installed the Android or iOS application that you want to test on the device.

https://support.smartbear.com/bitbar/docs/testing-with-bitbar/live-testing.html
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/app-testing.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/upload-ios-app.php
https://developers.perfectomobile.com/display/PD/Manage+apps

Chapter 8. Test Execution Specialist Guide

Note: To install the application in a device on the pCloudy Cloud, refer to Installing Android app or

Installing iOS app in the pCloudy documentation.

• Connected and started the Android or iOS device that you want to use for testing the mobile applications.

• If the test to be run on pCloudy Cloud, verified that the device you want to test is available and in the Released

state on the pCloudy cloud.

About this task

To run the AFT Suite on multiple clouds, you must configure the mobile clouds with HCL OneTest™ UI. You need to

configure only those mobile clouds, to which the devices you want to run the tests are connected.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

3. Click the Mobile Device Cloud tab, and perform the following steps to configure the mobile clouds with HCL

OneTest™ UI:

You must only enter the details of mobile clouds on which you want to run the AFT Suite.

◦ BitBar Cloud

a. Select the BitBar host checkbox to enable the options on the BitBar Device Cloud Environment

panel.

b. Perform the actions as listed in the following table:

Option Action

BitBar host Enter the host name of the BitBar Cloud instance.

API Key Enter the API key of your BitBar Cloud account to authenticate the

connection, and then click the Refresh projects and device groups

.

Note: Clicking the Refresh projects and device groups

enables the Project and Device Group fields.

Project Select the BitBar project from the drop-down list.

Device Group Select the mobile device group that you want to use in the BitBar

cloud.

1101

https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-android-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-ios-app.php

HCL OneTest™ UI

1102

Option Action

Test Run
Enter an appropriate name for the test with which you can identify

the test run on the BitBar Cloud dashboard.

c. Click Apply.

Note: When the connection with the BitBar Cloud instance is successful, the mobile

devices that you have configured on the BitBar Cloud are displayed in the Run using

drop-down list.

◦ pCloudy Cloud

a. Select the pCloudy host checkbox to enable the options on the pCloudy Device Cloud

Environment panel.

b. Perform the actions as listed in the following table:

Option Action

pCloudy host Enter the host name of the pCloudy instance.

User Name Enter the user name of your pCloudy account.

API Key Enter the API key of your pCloudy account to authenticate the user

name for a successful connection.

c. Click Apply.

Note: When the connection with the pCloudy instance is successful, the mobile devices

that you have configured on the pCloudy Cloud are displayed in the Run using drop-

down list.

◦ Perfecto Cloud

a. Select the Perfecto host checkbox to enable the options on the Perfecto Device Cloud

Environment panel.

b. Perform the actions as listed in the following table:

Chapter 8. Test Execution Specialist Guide

Option Action

Perfecto host Enter the host name of the Perfecto Cloud instance.

Security Token Enter the Token to authenticate the connection to the Perfecto Cloud

instance.

c. Click Apply.

Note: When the connection with the Perfecto Cloud instance is successful, the mobile

devices that you have configured on the Perfecto Cloud are displayed in the Run using

drop-down list.

4. Click Apply and Close.

5. Select the project that contains the AFT Suite, in the Test Navigator pane.

The AFT Suite that you created for the mobile tests is in the Accelerated Functional Tests folder.

6. Expand the contents of the Accelerated Functional Tests folder to view the AFT XML that is displayed with the

name you provided.

7. Right-click the XML file of the AFT Suite, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog is displayed.

Note: If you are repeating the AFT Suite run because the previous run failed, the Re-run failed tests

only from the last playback option is available for selection. When you select this option, the AFT

Suite is run on the devices and location on which it previously failed.

8. Click OK.

Results

The test result is displayed as a unified report in HCL OneTest™ UI.

You have run the mobile tests that are in an AFT Suite. The tests run on mobile devices that are connected to the

multiple mobile clouds from the location you configured.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Configuration of Windows test runs
You can run Windows tests that you created for Windows desktop applications in HCL OneTest™ UI.

1103

HCL OneTest™ UI

1104

Running a Windows test
To verify that a Windows application works as designed, you must run the recorded Windows test. You can choose to

run the Windows test either on the local computer or on a remote computer.

Before you begin

You must have completed the following tasks:

• Recorded a Windows test.

• Specified your preference for capturing the screen during the playback from Windows > Preferences > UI Test

Playback > Report tab, if necessary.

About this task

When you want to run the Windows test on the local computer, you can directly run the Windows test. However, when

you want to run on a remote computer, you must first specify the details of a remote computer before you play back

the Windows test.

Important: You must not lock the computer screen or minimize the application while you run the Windows

test. Otherwise, the playback is interrupted.

Restriction: Although the interactions with some controls within a Microsoft Add-In window (which are not

hyperlinks, such as buttons, or inputs) on an embedded browser page are recorded, these actions do not

show in the playback of the recorded script.

To workaround this missing action, you must update the test case to ensure that there is a test step to click

on the embedded browser prior to the test steps interacting with the controls contained within the Add-in

application window.

Some of these Add-In embedded browsers can have multiple containers and you can determine the correct

container by using a trial and error method.

You can try the different available containers by highlighting this test step and clicking on the different

containers available in the SmartShot View, and then right-click and choose Use this element as the step

target. You can playback the test to check if the interactions are highlighted correctly. If not, you can repeat

with a different container until the playback displays the interactions.

Chapter 8. Test Execution Specialist Guide

Note: HCL OneTest™ UI can handle a long scroll action effectively during the playback if the property

IsScrollItemPatternAvailable of the element is set to True in the application under test.

1. Perform the following steps based on your choice to run the test:

◦ For the local computer, double-click the test, which you want to run, in the Test Navigator view.

◦ For a remote computer, perform the following steps:

a. Go to Windows > Preferences > Test Execution > UI Test Playback > Mobile Device tab.

b. Select the Host check box.

c. Specify the following details:

▪ The IP address of the remote computer in the Host field.

▪ Port number of the UI Test Agent that is running on the remote computer in the Port

field.

d. Double-click the test, which you want to run, in the Test Navigator view.

2. Click Run Test in the test editor.

The test recorded on the Windows application is played back.

Results

You have run the Windows test successfully. After the playback is completed, a unified report is generated for the

Windows test.

Related information

Unified reports on page 1193

Configuration of AFT Suite runs
When you create Web UI, mobile, or Windows tests, you must configure the play back of the recorded tests as AFT

Suite runs before you can view their test results.

Accelerating the test effort with distributed testing
The HCL OneTest™ UI UI Test perspective helps you accelerate the test effort by providing ways to distribute test

execution across multiple browsers and multiple computers simultaneously.

Running a Web UI test on multiple browsers simultaneously

When you run a Web UI test, you can run it on multiple browsers simultaneously and thus achieve browser coverage

for that test. You do this by selecting the Run on several devices and browsers in parallel check box in the Run Test

wizard.

1105

HCL OneTest™ UI

1106

You can automate your testing by running the test from the command line interface, by running the test from

Rational® Quality Manager, or by running the test with IBM® UrbanCode™ Deploy.

• Running a single Web UI test on multiple browsers and devices simultaneously on page 1127

• Running a Web UI test or compound test from the command line on multiple browsers on page 1153

• Running a Web UI test using IBM Rational Quality Manager on page 1114

• Running a test from IBM Urban Code Deploy on page 345

Running multiple Web UI tests on multiple browsers simultaneously

You can further accelerate the test effort by running multiple Web UI tests on multiple browsers and mobile devices

simultaneously. You do this by selecting a group of tests in the Test Navigator, including Web UI tests in a compound

test, and selecting Run Distributed Tests .

Chapter 8. Test Execution Specialist Guide

For instructions, see Running multiple Web UI and compound tests simultaneously on page 1109.

Running multiple Web UI tests on multiple browsers and platforms simultaneously

The next scenario in accelerating the test effort is the same as the previous one, but in this case you also distribute

the tests across multiple remote computers. To do this, you install a HCL OneTest™ Performance agent on each

remote computer and point the agent at the HCL OneTest™ UI. Be sure to specify the host name and port or IP

address of the HCL OneTest™ UI and select the Web UI check box. Also, be sure to shell-share HCL OneTest™

Performance and HCL OneTest™ UI. For further instructions, see Installing HCL OneTest™ Performance agents,

especially Step 12.

During test execution, the agent computer is given priority over local execution; that is, tests always run on the

agent computer by default if agents are available to the workbench. If no agents are available, tests run on the local

computer.

Each remote agent can include several channels (or streams) for running tests, and if the number of selected tests

is greater than the number of channels, each channel can contain multiple Web UI tests. The Web UI tests within a

channel are run sequentially.

In the Web UI Playback (Desktop) Preferences (Window > Preferences > Test > Test Execution > UI Test Playback

(Desktop) > Desktop), you can set the number of parallel channels for each agent computer.

1107

http://www.ibm.com/support/knowledgecenter/SSMMM5_9.0.1/com.ibm.rational.test.lt.install.doc/topics/t_start_install_launchpada.html
http://www.ibm.com/support/knowledgecenter/SSMMM5_9.0.1/com.ibm.rational.test.lt.install.doc/topics/t_start_install_launchpada.html
http://www.ibm.com/support/knowledgecenter/SSMMM5_9.0.1/com.ibm.rational.test.lt.install.doc/topics/t_start_install_launchpada.html
http://www.ibm.com/support/knowledgecenter/SSMMM5_9.0.1/com.ibm.rational.test.lt.install.doc/topics/t_start_install_launchpada.html
http://www.ibm.com/support/knowledgecenter/SSMMM5_9.0.1/com.ibm.rational.test.lt.install.doc/topics/t_start_install_launchpada.html
http://www.ibm.com/support/knowledgecenter/SSMMM5_9.0.1/com.ibm.rational.test.lt.install.doc/topics/t_start_install_launchpada.html

HCL OneTest™ UI

1108

You can set the number of parallel channels to the number of virtual users (VUs) that you are licensed for or to any

number that is to be associated with this feature. The default value is 5. Limit the number to no more than 15 on a

computer with 4 GB of RAM. The selected Web UI tests are pre-arranged into the specified number of channels based

on earlier execution times of each test, thus balancing the total execution time of each channel.

Note: If you run compound tests, the number of compound tests multiplied by the number of selected

browsers must not exceed the number of channels.

For more information about running multiple Web UI tests and compound tests by using a HCL OneTest™

Performance schedule, see Running tests from a schedule on page 1116.

Playing back an Accelerated Functional Test asset
After you create an Accelerated Functional Test (AFT) asset for Web UI or Compound tests, you can play back these

tests anytime later by using the AFT XML file.

Before you begin

You must have created AFT test asset for the Web UI or compound tests. See Creating an Accelerated Functional

Test asset on page 561

Chapter 8. Test Execution Specialist Guide

About this task

You can also play back the AFT asset from the command-line.

1. Right-click the accelerated functional asset XML file in the Test Navigator pane,and click Run Distributed

Tests.

The Run Accelerated Functional Test dialog box is displayed.

You can choose to select the following checkboxes:

◦ Re-run failed tests only the from last playback: Select this checkbox if you want to rerun only the

failed tests from the previous playback.

Note: If this option is enabled, the failed tests are rerun only on the browsers and location on

which the test failed previously.

◦ Fix the browser-driver incompatibility: Select this checkbox to automatically resolve the

incompatibility between the browser and the driver, while you play back the AFT test asset.

Tip: As the playback starts only after the appropriate driver is downloaded, a timeout error

might occur if the application is not started within the time limit specified in the Time Out field.

You must increase the time in the Time Out field. To resolve this error, you can modify the

timeout value. The default timeout is 10 seconds. To modify the timeout, check the option and

enter a new value.

2. Click OK.

Results

The tests mentioned in the AFT XML are played back on the specified browsers, devices, and agents.

Related information

Configuration of test runs from the command line on page 1130

Running multiple Web UI and compound tests simultaneously
To maximize test coverage in the shortest possible time, you can set up distributed testing and run several Web UI

tests and compound tests simultaneously on several remote computers, for several operating systems and browsers.

Before you begin

See Accelerating the test effort with distributed testing on page 1105 for requirements for testing on remote agents.

1109

HCL OneTest™ UI

1110

1. In the Test Navigator, right-click a folder that contains multiple Web UI tests, compound tests, or both, and

click Run Distributed Tests. (Only Web UI tests can be included in the compound tests.) If the tests reside in

different folders, use multi-select to select the individual tests before right-clicking. You can also right-click a

Project to select all of the Web UI tests in that project.

2. In the Run Accelerated Functional Test window, review the lists of tests that are queued up for the test run. In

the following example, one single test and one compound test are selected. Add or remove any other tests to

run and click Next.

Chapter 8. Test Execution Specialist Guide

Note: To rerun the same set of tests, select Save as check box to save the Web UI or compound tests

as a test asset.

If necessary, click Configure UI Test Playback preferences to modify the Accelerated Functional Testing (AFT)

preferences.

1111

HCL OneTest™ UI

1112

3. Select the browser that will be used for test playback, either Google Chrome or Mozilla Firefox, and click

Finish.

Chapter 8. Test Execution Specialist Guide

Result

The selected web browsers open and the test is played back. Do not do any action on the web browsers while

the test is playing back. The statistical and live reports show the live data as the test is played back. You do

not need to choose the same browser that was used to record the test.

4. To add more devices or agents, edit the XML file. Refer to the following sample file.

<?xml version="1.0" encoding="UTF-8"?>
 <inits>
 <group>
 <tests>
 <test path="/WebUProj/ariesweb1.testsuite"/>
 <test path="/WebUProj/ariesweb2.testsuite"/>
 <test path="/WebUProj/ariesweb3.testsuite"/>
 <test path="/WebUProj/ariesweb4.testsuite"/>
 <test path="/WebUProj/ariesweb5.testsuite"/>
 </tests>
 <browsers>
 <browser name="chrome" devicemode="Apple iPhone 6 Plus" headless="true"/>
 <browser name="chrome" devicemode="Google Nexus 5"/>
 <browser name="firefox"/>
 </browsers>
 <locations>
 <location host="9.113.29.29"/>
 <location host="9.113.29.30"/>
 <location host="9.113.29.31"/>
 <location host="9.113.29.32"/>

1113

HCL OneTest™ UI

1114

 <location host="civcez228.company1.com"/>
 </locations>
 </group>
 <group>
 <tests>
 <test path="/WebUProj/ariesweb6.testsuite"/>
 </tests>
 <browsers>
 <browser name="chrome" devicemode="Apple iPhone6 Plus" headless="true"/>
 <browser name="firefox"/>
 </browsers>
 <locations>
 <location host="localhost"/>
 </locations>
 </group>
 </inits>

Note: To execute the tests on the Perfecto mobile cloud devices, you can specify the devices in the

Chrome and Safari browsers as shown in the following sample code:

<?xml version="1.0" encoding="UTF-8"?>
 <inits>
 <variable_init value="chrome(Perfecto:9EB54791)"
 name="RTW_WebUI_Browser_Selection"/>
 <variable_init value="chrome(Perfecto:899)" name="RTW_WebUI_Browser_Selection"/>
 </inits>

Only Chrome browser can play back the tests on the Perfecto mobile cloud devices.

Results

After the test run completes, there is a single UI Test report for all the tests. To view a functional report, you must

generate it manually by right-clicking a report in the Results folder and clicking Generate Functional Test Report. The

Resources tab in the statistical report is empty because a Web UI test does not monitor resources.

Related information

Running a Web UI test or compound test from the command line on multiple browsers on page 1153

Running a Web UI test using IBM® Rational® Quality Manager
Another way to automate your testing is to use IBM® Rational® Quality Manager. With Rational® Quality Manager,

you can run an individual Web UI test or specify a particular browser to run the test on. You can also accelerate your

testing by running the test on all browsers and mobile devices simultaneously or on a selected set of browsers.

About this task

To run a test from Rational® Quality Manager you first define a test in RQM that includes the path to the Web UI test.

You then configure and run the Rational® Quality Manager adapter that is installed by default when you install HCL

OneTest™ UI.

Chapter 8. Test Execution Specialist Guide

1. Using the Test Workbench script details page of a Rational® Quality Manager test script, associate a Web UI

test script with the Rational® Quality Manager script as shown below:

Be sure to specify the value in the Script Path field to be the path to the Web UI test script. For additional

details, see Creating a reference to an automated test script on a local test machine.

2. To run the test on a set of browsers or on all browsers and connected mobile devices, go to the Execution

Variables page of the Rational® Quality Manager test script and specify the execution variable to pass to the

script.

1115

http://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.3/com.ibm.rational.test.qm.doc/topics/t_create_reference_external_adapter.html

HCL OneTest™ UI

1116

a. To run the test on all available browsers and connected mobile devices, use the execution variable

AllAvailableTargetsInParallel and specify the value as All.

b. To run the test on a selected set of browsers, use the execution variable

AllAvailableTargetsInParallel and specify the value as a comma-separated list of browsers, for

example, chrome, ff.

c. To run the test on a particular browser, use the execution variable RTW_WebUI_Browser_Selection and

specify the browser as the value, for example, chrome.

Note: You can also use RTW_WebUI_Browser_Selection as a test variable in the HCL OneTest™ UI

UI Test perspective. For details, see Defining a variable to run a test with a selected browser on

page 437.

3. Save the test and run it using the Rational® Quality Manager adapter.

Related information

Running a Web UI test or compound test from the command line on multiple browsers on page 1153

Running tests from a schedule on page 1116

Running tests from a schedule
To run multiple Web UI tests in parallel on different browsers, you can add the test to an HCL OneTest™ Performance

schedule.

Before you begin

• You must install HCL OneTest™ Performance and HCL OneTest™ UI into the same instance of Eclipse and use

a single workspace (also called shell sharing).

• To run a Web UI test on a remote computer, you must install HCL OneTest™ Performance Agent on that

computer. While installing the agent, ensure that you select the The agent will be used primarily to support

remote execution of Web UI tests check box.

1. In the Web UI Test perspective, create a Web UI test and ensure that you run it successfully at least once

before adding to a schedule.

2. Open the Performance Test perspective and create a schedule.

3. To add a Web UI test, in the Schedule editor, click User Group 1 and click Add > Test.

4. Select a test and click OK.

5. To specify a variable:

a. Click User Group 1 and from the User Group Details area click Variable Initialization.

b. Click Add.

Chapter 8. Test Execution Specialist Guide

c. For Variable Name, type RTW_WebUI_Browser_Selection, and for Initial value type Firefox, Chrome,

Internet Explorer, or Internet Explorer 64. This action specifies which web browser to use for the

user group.

You can add multiple user groups and assign a different web browser to each user group.

Note: You can also add the variable in the Web UI test itself. See Defining a variable at the test

level on page 437. If the variable name is the same in the test and schedule and the Visible in

field in the test is set to All tests for this user, the variable defined at the schedule level is used

when the schedule is run.

6. Optional: Run a user group at a remote location where HCL OneTest™ Performance Agent is installed.

7. Optional: To generate the UI Test report, select a User Group, click the Options tab and click the Edit options

button. In the UI Test tab, click the Enable UI Test reports check box. To capture screenshots of the user

interface that was recorded, click Enable screenshots capture

When you run a Web UI test as part of a schedule with virtual users, by default, the UI Test report is not

generated because the report will contain lot of data for each virtual user. There are logs and statistical

reports for analysis. However, the UI Test report might be useful to you if you are running a schedule on a

control agent with a single user.

Note: . The UI Test tab shows up only if there is a mobile or a Web UI test in the schedule.

8. Save the schedule. To run it, click Run Schedule.

Running mobile tests as an AFT suite
After you create an Accelerated Functional Test (AFT) suite for mobile tests, you run the AFT suite by using the Run

Distributed Tests option.

Before you begin

You must have completed the following tasks:

• Created an AFT suite with mobile tests. See Creating an AFT suite for mobile tests on page 563.

• The configured UI Test Agent must be running.

1. Right-click the XML file in the Test Navigator pane, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog box is displayed.

The following options are displayed in the Run Accelerated Functional Test dialog box:

1117

HCL OneTest™ UI

1118

◦ Re-run failed tests only from the last playback: Select this checkbox if you want to rerun the failed

tests only from the last playback. The failed test is again run on the same device and location on

which it previously failed.

Note: This option is enabled only if the test was already run at least once.

◦ Fix the browser-driver incompatibility: This option is not applicable for mobile tests and it is disabled.

2. Click OK.

Results

You have run mobile tests as an AFT suite.

Related information

Running mobile tests for Android applications from the command-line on page 1157

Running mobile tests for iOS applications from the command-line on page 1166

Running mobile tests as an AFT Suite on BitBar Cloud
After you create an AFT Suite for mobile tests, you can run the AFT Suite on devices connected to BitBar Cloud to

accelerate the test efforts.

Before you begin

You must have completed the following tasks:

• Created an AFT Suite with mobile tests. See Creating an AFT Suite for mobile tests to run the tests on BitBar

cloud on page 566.

• Set up your account to access the BitBar Cloud. You must have been issued valid credentials such as the host

name or the URL of the BitBar Cloud instance, and an API key to authenticate the connection.

• Uploaded the .ipa or .app file of the iOS application or the .apk file of the Android application that you want

to test in the BitBar Cloud. For information, refer to Live Testing in the BitBar documentation.

• Installed the Android and iOS application that you want to test on the device.

• Connected and started the Android or iOS device that you want to use for testing the mobile applications.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

3. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the BitBar host checkbox to enable the options on the BitBar Device Cloud Environment panel.

https://support.smartbear.com/bitbar/docs/testing-with-bitbar/live-testing.html

Chapter 8. Test Execution Specialist Guide

c. Perform the actions as listed in the following table:

Option Action

BitBar host Enter the host name of the BitBar Cloud instance.

API Key Enter the API key of your BitBar Cloud account to authenticate the connec

tion, and then click the Refresh projects and device groups .

Note: Clicking the Refresh projects and device groups enables

the Project and Device Group fields.

Project Select the BitBar project from the drop-down list.

Device Group Select the mobile device group that you want to use in the BitBar cloud.

Test Run
Enter an appropriate name for the test with which you can identify the test

run on the BitBar Cloud dashboard.

d. Click Apply and Close.

Note: When the connection with the BitBar Cloud instance is successful, the mobile devices

that you have configured on the BitBar Cloud are displayed in the Run using drop-down list.

4. Select the project that contains the AFT Suite, in the Test Navigator pane.

The AFT Suite that you created for the mobile tests is in the Accelerated Functional Tests folder.

5. Expand the contents of the Accelerated Functional Tests folder to view the AFT XML that is displayed with the

name you provided.

6. Right-click the XML file of the AFT Suite, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog is displayed.

Note: If you are repeating the AFT Suite run because the previous run failed, the Re-run failed tests

only from the last playback option is available for selection. When you select this option, the AFT

Suite is run on the devices and location on which it previously failed.

7. Click OK.

Results

1119

HCL OneTest™ UI

1120

You have run the mobile tests that are in an AFT Suite. The tests run on mobile devices that are connected to the

Cloud from the location you configured.

The test result is displayed as a unified report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running mobile tests as an AFT Suite on pCloudy Cloud
After you create an AFT Suite for mobile tests, you can run the AFT Suite on devices connected to pCloudy Cloud to

accelerate the test efforts.

Before you begin

You must have completed the following tasks:

• Created an AFT Suite with mobile tests. See Creating an AFT Suite for mobile tests to run the tests on pCloudy

cloud on page 569.

• Set up your account to access the pCloudy cloud. You must have been issued valid credentials such as

the host name or the URL of the pCloudy cloud instance, the user name, and an API key to authenticate the

connection.

• Uploaded the .apk file of the Android application or the .ipa file of the iOS application that you want to test

in the pCloudy Cloud. For more information, refer to Upload Android App or Upload iOS App in the pCloudy

documentation.

• Installed the Android application or iOS application that you want to test on the device. For more information,

refer to Installing Android app or Installing iOS app in the pCloudy documentation.

• Connected and started the Android or iOS device that you want to use for testing the mobile applications.

• Verified that the device you want to test is available and in the Released state on the pCloudy cloud.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

3. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the pCloudy host checkbox to enable the options on the pCloudy Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/app-testing.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/upload-ios-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-android-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-ios-app.php

Chapter 8. Test Execution Specialist Guide

Option Action

pCloudy host Enter the host name of the pCloudy instance.

User Name Enter the user name of your pCloudy account.

API Key Enter the API key of your pCloudy account to authenticate the user name

for a successful connection.

d. Click Apply and Close.

Note: When the connection with the pCloudy instance is successful, the mobile devices that

you have configured on the pCloudy Cloud are displayed in the Run using drop-down list.

4. Select the project that contains the AFT Suite, in the Test Navigator pane.

The AFT Suite that you created for the mobile tests is in the Accelerated Functional Tests folder.

5. Expand the contents of the Accelerated Functional Tests folder to view the AFT XML that is displayed with the

name you provided.

6. Right-click the XML file of the AFT Suite, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog is displayed.

Note: If you are repeating the AFT Suite run because the previous run failed, the Re-run failed tests

only from the last playback option is available for selection. When you select this option, the AFT

Suite is run on the devices and location on which it previously failed.

7. Click OK.

Results

You have run the mobile tests that are in an AFT Suite. The tests run on mobile devices that are connected to the

Cloud from the location you configured.

The test result is displayed as a unified report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

1121

HCL OneTest™ UI

1122

Running mobile tests as an AFT Suite on Perfecto Cloud
After you create an AFT Suite for mobile tests, you can run the AFT Suite on devices connected to Perfecto Cloud to

accelerate the test efforts.

Before you begin

You must have completed the following tasks:

• Created an AFT Suite with mobile tests. See Creating an AFT Suite for mobile tests to run the tests on

Perfecto cloud on page 572.

• Set up your account to access the Perfecto Mobile Cloud. You must have been issued valid credentials such

as the host name or the URL of the Perfecto Mobile Cloud instance and the security token to authenticate the

connection.

• Uploaded the .ipa file of the iOS application or the .apk file of the Android application that you want to test

in the Perfecto Cloud. For information, refer to Manage Apps in the Perfecto documentation.

• Installed the Android and iOS application that you want to test on the device.

• Connected and started the Android or iOS device that you want to use for testing the mobile applications.

About this task

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

3. Perform the following steps in the UI Test Playback pane:

a. Click the Mobile Device Cloud tab.

b. Select the Perfecto host checkbox to enable the options on the Perfecto Device Cloud Environment

panel.

c. Perform the actions as listed in the following table:

Option Action

Perfecto host Enter the host name of the Perfecto Cloud instance.

Security Token Enter the Token to authenticate the connection to the Perfecto Cloud in

stance.

https://developers.perfectomobile.com/display/PD/Manage+apps

Chapter 8. Test Execution Specialist Guide

d. Click Apply and Close.

Note: When the connection with the Perfecto Cloud instance is successful, the mobile devices

that you have configured on the Perfecto Cloud are displayed in the Run using drop-down list.

4. Select the project that contains the AFT Suite, in the Test Navigator pane.

The AFT Suite that you created for the mobile tests is in the Accelerated Functional Tests folder.

5. Expand the contents of the Accelerated Functional Tests folder to view the AFT XML that is displayed with the

name you provided.

6. Right-click the XML file of the AFT Suite, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog is displayed.

Note: If you are repeating the AFT Suite run because the previous run failed, the Re-run failed tests

only from the last playback option is available for selection. When you select this option, the AFT

Suite is run on the devices and location on which it previously failed.

7. Click OK.

Results

You have run the mobile tests that are in an AFT Suite. The tests run on mobile devices that are connected to the

Cloud from the location you configured.

The test result is displayed as a unified report in HCL OneTest™ UI.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running mobile tests as an AFT Suite on multiple mobile clouds
After you create an AFT Suite for mobile tests, you can run the tests simultaneously on devices connected to multiple

mobile clouds to accelerate the test efforts.

Before you begin

You must have completed the following tasks:

• Created an AFT suite with mobile tests, See Creating an AFT Suite to run the tests on multiple mobile clouds

on page 575.

• You must have set up accounts and obtained valid credentials for more than one mobile cloud as mentioned

below:

1123

HCL OneTest™ UI

1124

◦ BitBar Cloud: The host name or the URL of the BitBar Cloud instance, and an API key to authenticate

the connection.

◦ pCloudy Cloud: The host name or the URL of the pCloudy Cloud instance, the user name, and an API

key to authenticate the connection.

◦ Perfecto Cloud: The host name or the URL of the Perfecto Cloud instance, and the security token to

authenticate the connection.

• Uploaded the .ipa file of the iOS application or the .apk file of the Android application that you want to test

in the mobile cloud. For more information, refer to the following:

◦ BitBar: Live Testing in the BitBar documentation.

◦ pCloudy: Upload Android App or Upload iOS App in the pCloudy documentation.

◦ Perfecto: Manage Apps in the Perfecto documentation.

• Installed the Android or iOS application that you want to test on the device.

Note: To install the application in a device on the pCloudy Cloud, refer to Installing Android app or

Installing iOS app in the pCloudy documentation.

• Connected and started the Android or iOS device that you want to use for testing the mobile applications.

• If the test to be run on pCloudy Cloud, verified that the device you want to test is available and in the Released

state on the pCloudy cloud.

About this task

To run the AFT Suite on multiple clouds, you must configure the mobile clouds with HCL OneTest™ UI. You need to

configure only those mobile clouds, to which the devices you want to run the tests are connected.

1. Open the UI Test perspective in HCL OneTest™ UI, if it is not already open.

2. Click Window > Preferences > Test > Test Execution > UI Test Playback.

The UI Test Playback pane is displayed.

3. Click the Mobile Device Cloud tab, and perform the following steps to configure the mobile clouds with HCL

OneTest™ UI:

You must only enter the details of mobile clouds on which you want to run the AFT Suite.

◦ BitBar Cloud

a. Select the BitBar host checkbox to enable the options on the BitBar Device Cloud Environment

panel.

b. Perform the actions as listed in the following table:

Option Action

BitBar host Enter the host name of the BitBar Cloud instance.

https://support.smartbear.com/bitbar/docs/testing-with-bitbar/live-testing.html
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/app-testing.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/upload-ios-app.php
https://developers.perfectomobile.com/display/PD/Manage+apps
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-android-app.php
https://www.pcloudy.com/mobile-application-testing-documentation/manual-app-testing/installing-ios-app.php

Chapter 8. Test Execution Specialist Guide

Option Action

API Key Enter the API key of your BitBar Cloud account to authenticate the

connection, and then click the Refresh projects and device groups

.

Note: Clicking the Refresh projects and device groups

enables the Project and Device Group fields.

Project Select the BitBar project from the drop-down list.

Device Group Select the mobile device group that you want to use in the BitBar

cloud.

Test Run
Enter an appropriate name for the test with which you can identify

the test run on the BitBar Cloud dashboard.

c. Click Apply.

Note: When the connection with the BitBar Cloud instance is successful, the mobile

devices that you have configured on the BitBar Cloud are displayed in the Run using

drop-down list.

◦ pCloudy Cloud

a. Select the pCloudy host checkbox to enable the options on the pCloudy Device Cloud

Environment panel.

b. Perform the actions as listed in the following table:

Option Action

pCloudy host Enter the host name of the pCloudy instance.

User Name Enter the user name of your pCloudy account.

API Key Enter the API key of your pCloudy account to authenticate the user

name for a successful connection.

1125

HCL OneTest™ UI

1126

c. Click Apply.

Note: When the connection with the pCloudy instance is successful, the mobile devices

that you have configured on the pCloudy Cloud are displayed in the Run using drop-

down list.

◦ Perfecto Cloud

a. Select the Perfecto host checkbox to enable the options on the Perfecto Device Cloud

Environment panel.

b. Perform the actions as listed in the following table:

Option Action

Perfecto host Enter the host name of the Perfecto Cloud instance.

Security Token Enter the Token to authenticate the connection to the Perfecto Cloud

instance.

c. Click Apply.

Note: When the connection with the Perfecto Cloud instance is successful, the mobile

devices that you have configured on the Perfecto Cloud are displayed in the Run using

drop-down list.

4. Click Apply and Close.

5. Select the project that contains the AFT Suite, in the Test Navigator pane.

The AFT Suite that you created for the mobile tests is in the Accelerated Functional Tests folder.

6. Expand the contents of the Accelerated Functional Tests folder to view the AFT XML that is displayed with the

name you provided.

7. Right-click the XML file of the AFT Suite, and then click Run Distributed Tests.

The Run Accelerated Functional Test dialog is displayed.

Note: If you are repeating the AFT Suite run because the previous run failed, the Re-run failed tests

only from the last playback option is available for selection. When you select this option, the AFT

Suite is run on the devices and location on which it previously failed.

8. Click OK.

Results

The test result is displayed as a unified report in HCL OneTest™ UI.

Chapter 8. Test Execution Specialist Guide

You have run the mobile tests that are in an AFT Suite. The tests run on mobile devices that are connected to the

multiple mobile clouds from the location you configured.

What to do next

You can view the unified report for the mobile tests and choose to export the unified report. See Unified reports on

page 1193.

Running a single Web UI test on multiple browsers and devices simultaneously
Rather than run a Web UI test on one browser at a time, you can run a single Web UI test on multiple browsers

simultaneously. Doing so can significantly speed up your test effort. You can also extend your test coverage by

adding mobile devices to the test run. You can run the test from HCL OneTest™ UI, from the command line, or from

Rational® Quality Manager. This topic describes how to run a test from the UI Test perspective.

1. To open a test, double-click it in the Test Navigator view. The test opens in the Test Editor.

2. In the Test Editor, click Run Test to open the Run Configuration window.

1127

HCL OneTest™ UI

1128

3. Select Run on several devices and browsers in parallel.

You can now choose to run the test in parallel using any or all browsers, devices, and emulators that are

listed. All supported web browsers that are installed on your computer are displayed. To run a test on a mobile

device or emulator, the device must be connected and must be in passive mode.

4. Click Finish.

Results

Chapter 8. Test Execution Specialist Guide

By default, a UI Test Report is displayed automatically in real-time during a test run. The report displays the name

and location of the test, the test execution status, the Web application under test, the duration of the test, and finally,

each step in the test. When you run the test in parallel across multiple browsers and mobile devices, you see a single,

consolidated report that lists each browser and device on which the test was run.

In addition, you can learn how long it took each step to run on each browser and device by viewing the UI Test

Statistical Report and clicking the Step Performance tab. For example, you can see in the Performance Summary

shown below that the first step took 122ms to run in Internet Explorer, 19 ms to run in Chrome, and 42 ms to run on

the Android Atom Emulator. You can use this information to help you compare the performance of the application

under test across different browsers.

1129

HCL OneTest™ UI

1130

The UI Test Statistical Report is displayed at the end of the test run in a separate tab from the UI Test Report. The UI

Test Statistical Report is displayed in the Test Execution perspective.

Related information

Running a Web UI test on page 1015

Running a Web UI test or compound test from the command line on multiple browsers on page 1153

Evaluating desktop Web UI results on page 1200

Viewing On App and Off App response time on page 1205

Configuration of test runs from the command line
When you need to run Web UI, mobile, and windows tests using the command line without opening the desktop client

to run these tests, you can use the command line of HCL OneTest™ UI.

Overview

Exemple

HCL OneTest™ UI supports the usage of command line for certain tasks. To use the command line, you must go to

the following directory:

Chapter 8. Test Execution Specialist Guide

• <Install_Directory>\cmdline directory that contains cmdline.sh on Linux operating system.

• <Install_Directory>\cmdline directory that contains cmdline.sh on Mac operating system.

• <Install_Directory>\cmdline directory that contains cmdline.bat on Windows operating system.

After navigating to the directory, you can run the cmdline file. The command line supports a set of options. You must

use the cmdline command with the supported options. You can enter cmdline -help in the command line to view all

the supported options.

To run the tests from the command line, you must specify the path of the tests along with the command as follows:

cmdline -workspace <workspace_full_path> -project <project_relative_path> -suite <suite_relative_path>

For example:

cmdline -workspace “D:\My Workspace” -eclipsehome "C:\Program Files\HCL\HCLOneTest" -plugins "C:\Program

Files\HCL\HCLOneTest\plugins" -project myProject -suite mytestsuite

Note:

The -workspace option is followed by a value that contains a space. If the value contains space, then you

must enclose the value, D:\My Workspace within quotes. Otherwise, you can provide the value without quotes.

In addition to the supported options, you can create and use varfiles and config files as options. The files can contain

specific paths and parameters for running tests on connected systems.

Using a configuration file

You can run tests from the command line by using a configuration file. Each command line option must be followed

by an appropriate value.

The contents of a sample configuration file, config_file1 are as follows:

workspace=D:\My Workspace
eclipsehome=C:\Program Files\HCL\HCLOneTest
plugins=C:\Program Files\HCL\HCLIMShared\plugins
project=myProject
suite=mytestsuite

To create a config file using the desktop client, see Creating a command-line config file on page 1145.

To run tests from the command line by using the sample config file config_file1, you must use the following

command:

cmdline –configfile <config file path>

For example:

cmdline –configfile E:\Workspace1\Project1\Tests\config_file1.txt

1131

HCL OneTest™ UI

1132

Using a variable file

Variable file is an xml file with the .varinit extension that contains the variable names and values as pairs that are

required to connect to the system for running tests.

This is a sample XML file as a variable file that specifies the browser to use on the computer on which you have

installed HCL OneTest™ UI:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<browser>" name="RTW_WebUI_Browser_Selection"/>
</inits>

For example, if you connect Emulator:Pixel_2_API_28 as the mobile emulator and you want to use the Chrome

browser to run the test, the variable file can be as follows:

<?xml version="1.0" encoding="UTF-8"?><inits>
<variable_init value="Chrome(Emulator:Pixel_2_API_28)" name="RTW_WebUI_Browser_Selection"/>
</inits>

To run tests from the command line by using a variable file, you must use the following command:

cmdline –varfile <variable file path>

For example:

cmdline –varfile E:\Workspace1\Project1\Tests\var1.varinit

Command line options

Each command line option is used in combination with the other options to accomplish a specific task. You must

read and be familiar with the supported options and mandatory options that are required for each task. The following

table lists all the supported options with description:

Option Description

Required

-project The path, including the file name of the project relative to the workspace.

-work

space

The complete path to the Eclipse workspace.

-suite The path, including the file name of the test relative to the project. A test can be a Web UI test, compound

test, or an Accelerated Functional Test.

In a command, it is mandatory to use one of the following options:

• -suite

• -aftsuite

Chapter 8. Test Execution Specialist Guide

Option Description

Note: You must provide the file name along with the file extension if you are using an Accelerated

Functional Test suite.

You must not use the -suite option along with the other options.

Starting from 9.2.1.1, you can execute multiple tests simultaneously.

For example, -suite test1:test2:test3.

Optional

-aftsuite The path, including the file name of the xml file to run an AFT test. The aftsuite option accepts aft XML as

the parameter value. It supports only one aft XML as input.

For example, aftsuite="aftinput"

You must not use the -aftsuite option along with the other options.

-com

pare

You can use this option along with -exportstatshtml and -execsummary to export the result in the com

pare mode. The value can be paths to the runs and are relative to the workspace. You must separate the

paths by a comma.

-config

file

You can use this option to specify the complete path to a file that contains the parameters for a test run.

Each parameter must be on a single line. To create a configuration file, you must use an editor that does

not wrap lines. Any parameter, whether required or optional, can be set in the configuration file. The com

mand line parameters override the values in this file.

Notes:

• If you are creating a config file manually, the file must be in the UTF-8 format. You must

not use quotation marks in this file even for values that contain spaces.

• You can create command line config file from the desktop client, which you can use while

running tests from the command-line interface or Maven. See Creating a command-line

config file on page 1145. This option is available only for Web UI and compound tests.

-

eclipse

home

You can use this option to provide the complete path of eclipse.exe.

For example, C:\Program Files\HCL\HCLOneTest

-exec

summa

ry

You can use this option to export all of the reports for the test run in a printable format, also known as an

executive summary, to the local computer. You must specify the path to store the executive summary.

1133

HCL OneTest™ UI

1134

Option Description

-exec

summa

ryreport

You can use this option to export a specific report as an executive summary for the test run to the local

computer. You must specify the ID of the report to export as -execsummaryreport <reportID>.

For example, to export an HTTP performance report, specify http.

Note: You must use this option along with -execsummary.

To copy the report IDs list into your command line, navigate to Window > Preferences > Test > Perfor

mance Test Reports > Export Reports. Under Select reports to export, select the required reports, and

click Copy ID to clipboard. You can then paste the clipboard content on to your command line editor.

-export

log

You can use this option to specify the file path to store the exported test log.

Starting from 10.0.1, by using the -exportlog parameter, you can provide multiple parameter entries when

running multiple tests. You must use a colon to separate the parameter entries.

For example: -exportlog c:/logexport.txt:c:/secondlogexport.txt

If there are multiple -suite option entries with a single -exportlog parameter entry, then the -exportlog op

tion generates the appropriate number of test logs by appending 0, 1, 2, and so on to the -exportlog op

tion entry name.

For example: -suite "sampletest1:sampletest2:sampletest3" -exportlog c:/logexport.txt

The command generates the following test logs:

• logexport_0.txt

• logexport_1.txt

• logexport.txt

The last test log generated has the same name as that of the initial -exportlog entry.

Note: If there are multiple -suite and -exportlog parameter entries, the number of -suite entries

must match with the number of -exportlog entries. Otherwise, the following error message is dis

played:

Error, number of -suite and -exportlog entries do not match.

-export

Report

You can use this option to export the unified report of UI tests to the file formats such as PDF, HTML, and

XML.

Chapter 8. Test Execution Specialist Guide

Option Description

Note: The exported XML file is a JUnit XML file. You can view this file in applications that support

JUnit reporting formats.

The command syntax is as follows:

exportReport "type=<reporttype>;format=<file type1,file type2,file type3>;folder<destination folder

path>;filename=<name of the exported file>"

For example, to export the report to only the pdf format, you can use exportReport "type=unified;for

mat=pdf;folder=Exportedreport102;filename=testreport

If you want to export the report to multiple formats, you can specify the file formats as comma-separated

values. The file type value can be in uppercase or lowercase.

For example, to export the report to all the supported formats, you can use

exportReport "type=unified;format=pdf,xml,html;folder=Exportedreport102;filename=testreport

The report in different file formats use the same file name that is specified in the command.

-export

statre

portlist

You can use this option to specify a comma-separated list of report IDs along with -exportstats or -ex

portstatshtml to list the reports that you want to export in place of the default reports, or the reports se

lected under Preferences. To view this setting, navigate to Window > Preferences > Test > Performance

Test Reports > Export Reports.

To copy the report IDs list into your command line, navigate to Window > Preferences > Test > Perfor

mance Test Reports > Export Reports. Under Select reports to export, select the required reports, and

click Copy ID to clipboard. You can then paste the clipboard content on to your command line editor.

-export

stats

You can use this option to export reports in comma-separated values (CSV) format, with the file name de

rived from the report name. This directory can be relative to the project or a directory on your file system.

If the -exportstatreportlist option is not specified, the reports specified on the Export Reports page of the

Performance Test Report preferences are exported.

-export

stats

format

You can use this option to specify a format for the result that you want to export along with the -export

stats option. You must use at least one of the following parameters with the -exportstatsformat option:

• simple.csv

• full.csv

• simple.json

• full.json

1135

HCL OneTest™ UI

1136

Option Description

• csv

• json

For example, -exportstats <local_dir_path> -exportstatsformat simple.json

You can add multiple arguments separated by a comma.

For example, -exportstats <local_dir_path> -exportstatsformat simple.json, full.csv

When you want to export both simple and full type of test results in a json or csv format, you can speci

fy json or csv as the arguments in the command. When the test run completes, the test result exports to

simple.json and full.json files.

For example, -exportstats <local_dir_path> -exportstatsformat json

You can select the Command Line check box from the product preferences (Window > Preferences >

Test > Performance Test Reports > Export Reports) when you want to export test results to one of the se

lected formats after the test run completes.

Remember: When you run the test from the command line, and if you use the -exportstats para

meter, then the command line preferences take precedence over the preferences set in the prod

uct. Therefore, by default, the test result exports to a CSV format.

For example, when you select the Command Line option and Report format to json in the product prefer

ences, and run the test from the command-line interface without using the -exportstats option. The result

is exported to a json file after the test run is complete.

-export

stat

shtml

When you want to export web analytic results, you can use this option. The results are exported to the

specified directory. You can then analyze the results on a web browser without using the test workbench.

-history Use this option when you want to view a record of all events that occurred during a test run. However, you

must use the command suffixed with any of the following options:

• jaeger: To send test logs to the Jaeger UI during the test run.

• testlog: To send test logs as traditional test logs in HCL OneTest™ UI during the test run.

• null: To send no test logs either to the Jaeger UI or HCL OneTest™ UI during the test run.

For example:

-workspace workspace_full_path -project proj_rel_path

-suite suite_rel_path -stdout -history comma delimited list of modes

-workspace C:/Users/HCL/hclonetest/test_ws

-project Project1

-suite test1.testsuite -stdout -history jaeger

Chapter 8. Test Execution Specialist Guide

Option Description

Note: You can add multiple options separated by a comma to send test logs during the test run to

HCL OneTest™ UI and the Jaeger UI.

For example:

-workspace C:/Users/HCL/hclonetest/test_ws

-project Project1

-suite test1.testsuite -stdout -history jaeger, testlog

-import When you want to run Web UI tests that are in a source control system such as Git from a computer that

runs the desktop product, you can clone the project resources in the remote repository to your comput

er. You can use an empty workspace folder on your computer to import the UI Test project resources and

then run the tests from the command-line interface. The desktop product is enabled to run the Web UI

tests without the need of the workspace in the cloned repository or your existing workspace. You must

use the -workspace command argument to precede the -import command argument.

Note: You can use this command argument in the following scenarios:

• You do not want to use your existing workspace.

• You do not want to use the workspace cloned from a remote repository.

To run UI tests contained in UI Test projects that are in a remote repository, you must perform the follow

ing steps:

1. Clone the remote repository that contains the UI Test project to your computer.

2. Create an empty workspace on your computer.

3. Run the following command from the command-line interface:

cmdline -workspace <path_of_empty_workspace> -project <project_name> -import <path_to_

cloned_project_folder> -suite <test_name>

For example, cmdline -workspace C:\workspace -project UIProject1 -import d:\work\UIProject1

-suite Test1

You can also import multiple projects by specifying the project paths separated by a comma.

For example, cmdline -workspace C:\workspace -project UIProject1 -import d:\work\UIProjec

t1,d:\work\UIProject2 -suite Test1

-im

portzip

To import the project as test assets with dependencies into your workspace, use the -importzip option.

This command is available from 9.2.1.1 and later.

1137

HCL OneTest™ UI

1138

Option Description

-labels You can use the -labels option to add labels to test results when you run test assets from the com

mand-line interface.

You can add multiple labels to a test result separated by a comma.

For example, -labels “label1, label2”

Note: If the name of the label contains a space character, then you must enclose it with quotes

(“”).

For example, if the name of the label is test environment, then you must provide it as "test envi

ronment".

You can also use the -labels option along with the -publish option to add labels to a test result when you

want to publish test results to HCL OneTest™ Server.

When you run test assets from the command-line interface by using the -labels option, then the same la

bels are displayed on the UI Test Statistical Report in HCL OneTest™ UI.

Similarly, when you use the -labels option with the -publish option from the command-line interface, then

the Results page of HCL OneTest™ Server displays the same label for the specific test asset.

-over

write
Determines whether a result file with the same name is overwritten. The default value, false, indicates

that the new result file is created. If the value is true, the file is overwritten and retains the same file

name. You must use double quotes “” for values true or false.

-plugins The complete path to the folder that contains the plugins. Typically, on Windows operating systems, this

folder is located at C:\Program Files\HCL\HCLIMShared\plugins.

Required. This option is required only if the folder is at a different location.

- proto

colinput

You can use this option with additional arguments as follows:

• To run a Web UI test in parallel on different browsers

-protocolinput "all.available.targets.in.parallel=all"

-protocolinput "all.available.targets.in.parallel=chrome,ff,ie"

Note: If you use the -protocolinput argument, you must not use the following equivalent

-vmargs arguments:

Chapter 8. Test Execution Specialist Guide

Option Description

-vmargs "-Dall.available.targets.in.parallel=all"
-vmargs "-Dall.available.targets.in.parallel=browser1,browswer2,browser3"

• To specify the Web UI preferences such as highlighting the page element and capturing screens

For example, -protocolinput "webui.highlight=<value>;webui.report.screenshots=<value>" where

webui.highlight specifies whether the page element must be highlighted and webui.report speci

fies whether the screens must be captured while playing back the test in the browser.

• To run only the failed tests from a previous playback in an Accelerated Functional Test suite

cmdline -workspace workspacename -project projectname -aftsuite aftsuitname -exportlog ex

portlogpath -results autoresults -protocolinput "runfailedtests=true"

In the preceding example, runfailedtests=true specifies whether the failed test from a previous

playback must be rerun in Accelerated Functional Test suite.

• To automatically resolve the browser and driver incompatibility, while you play back the Web UI

tests

-protocolinput "webui.browser.driver.autoupdate=true"

• To apply guided-healing and self-healing features while you run Web UI tests

cmdline -workspace workspacename -project projectname -suite test1 -exportlog exportlogpath

-results autoresults -protocolinput "autoheal=true"

-publish You can use -publish parameter to publish test results to HCL OneTest™ Server.

You can use the following options along with the -publish parameter:

• no

You can use the no option if you do not want to publish test results after the run. This option is

useful if the product preferences are set to publish the results, but you do not want to publish

them.

• You can use any of the following options to specify the project name:

◦ serverURL #project.name=projectName&teamspace.name=name_of_the _teamspace

◦ serverURL #project.name=projectName&teamspace.alias=name_of_the _teamspace_alias

You must consider the following points while providing the project name:

1139

HCL OneTest™ UI

1140

Option Description

◦ If the project name is not specified, then the value of the -project parameter is used.

◦ If you have a project with the same name in different team spaces, then you can append

either the &teamspace.name=name_of_the _teamspace or &teamspace.alias==name_of_

the_teamspace_alias options along with the -publish parameter.

For example: -publish “https://localhost:5443/#project.name=test&teamspace.name=ts1”

Where:

▪ https://localhost:5443 is the URL of the server.

▪ test is the name of the project.

▪ ts1 is the name of the team space.

Note: If the name of the project or team space contains a special character, then you must re

place it with %<Hex_value_of_special_character>.

For example, if the name of the team space is Initial Team Space, then you must provide it as In

tial%20Team%20Space.

Where, %20 is the hexadecimal value of the space character.

Remember: If you provide the server and the project details under Window > Preferences > Test >

HCL OneTest Server in the product and if you use serverURL#project.name=projectName

along with the -publish parameter, the server details in the command-line interface take prece

dence over the product preferences.

Important: You must provide the offline user token for the server by using the HCL_ONETEST_OF

FLINE_TOKEN environment variable before you use the -publish parameter in the command-line

interface.

-pub

lish_for

You can use this option to publish the test results based on the completion status of the tests:

• ALL - This is the default option. You can use this option to publish test results for any text execu

tion verdict.

• PASS - You can use this option to publish test results for the tests that have passed.

• FAIL - You can use this option to publish test results for the tests that have failed.

Chapter 8. Test Execution Specialist Guide

Option Description

• ERROR - You can use this option to publish test results for the tests that included errors.

• INCONCLUSIVE - You can use this option to publish test results for the tests that were inconclu

sive.

You can add multiple parameters separated by a comma.

-pub

lishre

ports

You can use this option to publish test results in HCL OneTest™ Server. You must use the -publishreports

parameter along with the -publish parameter.

You can use the following values:

• FT - This is an identifier for Functional Test Report. You can use this value to publish the unified

report if it is available for the selected test. See Unified reports on page 1193.

• STATS - This is an identifier for Statistics Report. You can use this value to publish the web analyt

ics report if it is available for the selected test. See UI Test Statistical report on page 1198.

• TESTLOG - This is an identifier for Test Log. You can use this value to publish the test log if it is

available for the selected test. See Logs overview on page 1219.

For example, -publishreports "STATS, TESTLOG"

The values specified here override the values selected in Window > Preferences > Test > HCL One Test

Server > Results of HCL OneTest™ UI.

You must prefix with “!” to publish all the reports except the specified one.

For example, -publishreports "! TESTLOG"

All the reports except the TESTLOG report is published to HCL OneTest™ Server after executing the com

mand.

-quiet Turns off any message output from the launcher and returns to the command shell when the run or the

attempt is complete.

-results You can use this option to specify the name of the results file. The default result file name is the test

name with a time stamp appended. You must specify a folder name that is relative to the project to store

the test results.

For example, -results folder/resultname

-stdout You can use this option to display the information about the test on the command line.

After you run a test from the command line, the following outputs are displayed to give you the overall in

formation of the test:

• --VERDICT: The verdict of the test.

• --REMOTE_RESULT: The URL of the result published to HCL OneTest™ Server.

1141

HCL OneTest™ UI

1142

Option Description

• --REMOTE_RESULT_UI: The URL of the result published to HCL OneTest™ Server and can be

opened in a browser to analyze the result.

• --LOCAL_RESULT: The path of the result saved locally.

For example, -workspace workspace_full_path -project proj_rel_path -publishpublish_url -stdout

-swap

datasets

Use this option to replace dataset values during a test run. If a test is associated with a dataset, you can

replace the dataset at run time while initiating the run from the command line.

You must ensure that both original and new datasets are in the same workspace and have the same col

umn names. You must also include the path to the dataset when you run the -swapdatasets command.

For example, -swapdatsets /project_name/ds_path/ds_filename.csv:/project_name/ds_path/new_ds_file

name.csv

You can swap multiple datasets that are saved in a different project by adding multiple paths to the

dataset separated by a semicolon.

For example,

-swapdatsets /
project_name1/ds_path/ds_filename.csv:/project_name1/ds_path/new_ds_filename.csv;
/project_name2/ds_path/ds_filename.csv:/project_name2/ds_path/new_ds_filename.csv

-user

com

ments

You can add text within double quotation mark (“”) to display it in the User Comments row of the report.

Note: You can use the file CommandLine.exe to run the command to add comments in a language

that might not support Unicode characters on Windows operating system.

-varfile You can use this option to specify the complete path to the XML file that contains the variable name and

value pairs.

To run a Web UI test on a different browser than that was used for the recording, specify the predefined

variable. For more information, see Defining a variable to run a test with a selected browser on page 437.

-vmargs To specify the Java™ maximum heap size for the Java™ process that controls the command line play

back, use the -vmargs option with the -Xmx argument.

For example, when you use-vmargs -Xmx4096m, specify a maximum heap size of 4096m. This method is

similar to specifying -Xmx4096m in the eclipse.ini file for the workbench when playing back the test from

the user interface.

To collect the response time data for the app itself and for the server and network and display them in dif

ferent bar charts, use -vmargs "-De2e.collect=true". For desktop-based web applications, the response

time data is captured and displayed by default.

Chapter 8. Test Execution Specialist Guide

Option Description

To execute tests in parallel on all mobile devices, which are in passive mode, connected to the workbench

and ready for playback, use -vmargs "-Dall.available.targets.in.parallel=true".

To execute tests in parallel on all supported desktop browsers and connected mobile devices, use

-vmargs "-Dall.available.targets.in.parallel=all".

To execute tests in parallel on selected desktop browsers and connected mobile devices, use -vmargs

"-Dall.available.targets.in.parallel=browser1,browswer2,browser3". You must separate browser names

with a comma. For example, firefox, ff, chrome, ie, ie64, safari, "-Dall.available.targets.in.parallel=brows

er1,browser2,browser3".

Running a test from the command line
You can run Web UI, mobile, and windows tests using the command-line interface of HCL OneTest™ UI.

Before you begin

You must have completed the following tasks:

• Recorded the tests to be run.

• Created a config file and varfile as required for tests. See Configuration of test runs from the command line on

page 1130.

1. Go to one of the following directories:

◦ <productInstallationDirectory>\cmdline directory that contains cmdline.sh on Linux

operating system.

◦ <productInstallationDirectory>\cmdline directory that contains cmdline.sh on Mac

operating system.

◦ <productInstallationDirectory>\cmdline directory that contains cmdline.bat on

Windows operating system.

2. Close HCL OneTest™ UI, if it is open, before running the cmdline command.

3. Enter the following command to run the test:

cmdline -workspace <workspacename> -project <projectname> -suite <suitename>

For example:

The test execution starts and the status is displayed on the screen.

Note:

1143

HCL OneTest™ UI

1144

◦ The workspace is locked after you issue the command. To check the progress of the test

during the run, invoke another workspace and open the project through that workspace.

◦ On Linux operating system, the command must start with cmdline.sh.

The command line syntax with the supported options is as follows:

cmdline -workspace <workspace_full_path> -project <proj_relative_path> -eclipsehome <eclipse_full_path>

-plugins <plugin_full_path> -suite <suite_relative_path> -importzip <full_path.zip> -varfile

<variable_file_full_path> -configfile <file_full_path> -results <result_file> -overwrite <{"true" | "false"}> -quiet

-vmargs <JVM_args> -publish <serverURL#project.name=projectName -publish_for {ALL,PASS,FAIL,ERROR,

INCONCLUSIVE}> -labels <labelname1, labelname2> -exportlog <log_full_path> -exportstats <local_dir_path>

-exportstatshtml <local_dir_path> -exportstatsformat <name of the file format> -compare <"result_path1,

result_path2"> -exportstatreportlist <stats_list> -execsummary <local_dir_path> -execsummaryreport

<reportID> -usercomments <"any user comment"> -publishreports <"FT, STATS, TESTLOG"> -stdout

-swapdatsets <existing_dataset_file_path:new_dataset_file-path>

If a value contains spaces, enclose the value in quotation marks. To see the online help for this command

while you are in the directory that contains the .bat file, type cmdline -help.

To stop the test run, you can open another command prompt window and use one of the following options

with the cmdline option:

Com

mand

Description

-sto

prun

Optional. Stops the test run after the specified number of seconds. The block is executed, and the

test log is transferred before stopping the run. You must use the -workspace command and specify

the location of the workspace.

-

aban

don

run

Optional. Stops the test run immediately. You must use the -workspace command and specify the lo

cation of the workspace.

Note: Messages are displayed to indicate when the test is launched and when it is completed unless

you include the -quiet option.

What to do next

After you run the test you may want to export the results for further analysis. For more information, see Exporting

report counters automatically.

Chapter 8. Test Execution Specialist Guide

Creating a command-line config file
Starting from 10.0.2, you can create command line config file from the product, which you can use while running tests

from the command-line interface and Maven.

Before you begin

You must have performed the following tasks:

• Created test assets in a workspace.

• Installed Maven if you are running tests from the Maven build.

For information about creating tests and installing Maven, see related links.

About this task

Previously, you created the config file manually by adding parameters to it for running the tests by using the config

file from the command line. Now, you can create a command-line config file from the product by right-clicking the

test asset. The required parameters are automatically assigned, and you can specify any optional parameters, while

creating the config file. You can use this config file to run the tests from the command-line interface and Maven plug-

in that is provided with the product as part of Maven build.

1. In the Test Navigator, browse and select the test.

2. Right-click the test, and then click Create command line config file.

3. In the Create New Config File window, enter a name for the new configuration file and then click Next.

4. Perform the following sub-steps in the Command Line Arguments window:

a. Select the format of the config file from the following options:

▪ Regular – Use this format to run tests from the command-line interface.

▪ Maven – Use this format to run tests from the Maven build.

b. If you want to add more parameters to a config file, specify the values in the fields from the available

configuration options.

5. Click Finish.

Results

The Config file created dialog box displays the location of the config file.

What to do next

You must complete the following steps:

1. Close the product.

2. Run a test by using the config file either from the command-line interface or from the Maven build.

1145

HCL OneTest™ UI

1146

Related information

Creating Web UI tests on page 413

Testing with Maven on page 313

Running Web UI tests from the command-line
You can run a Web UI test without using the desktop client by using the command-line interface. You must use the

-varfile parameter that specifies the complete path to the XML file in the command. The XML file contains the name-

value pairs of the variables. The variables file specifies the web browser on a computer, device, emulator, or device on

a cloud on which to run the test.

Running the command

Before you can run the command to run Web UI tests from the command line, you must create a variable file that

contains the details of the computer, device, emulator, or device on a cloud on which you want to specify the web

browser to run the test. You must have also recorded the Web UI test.

You can issue the following command to run a Web UI test from the command-line:

cmdline -workspace <workspace_full_path> -project <proj_relative_path> -eclipsehome <eclipse_full_path>

-plugins <plugin_full_path> -suite <suite_relative_path> -importzip <full_path.zip> -varfile <variable_file_full_path>

-configfile <file_full_path> -results <result_file> -overwrite <{"true" | "false"}> -quiet -vmargs <JVM_args> -publish

<serverURL#project.name=projectName -publish_for {ALL,PASS,FAIL,ERROR, INCONCLUSIVE}> -labels <labelname1,

labelname2> -exportlog <log_full_path> -exportstats <local_dir_path> -exportstatshtml <local_dir_path>

-exportstatsformat <name of the file format> -compare <"result_path1, result_path2"> -exportstatreportlist

<stats_list> -execsummary <local_dir_path> -execsummaryreport <reportID> -usercomments <"any user comment">

-publishreports <"FT, STATS, TESTLOG"> -stdout -swapdatsets <existing_dataset_file_path:new_dataset_file-path>

Important: When you use the command to run a Web UI test, you must ensure that the following conditions

are satisfied:

• Use the variable file that contains the details of the computer, device, emulator, or device on a cloud

on which you want to select the web browser.

• Specify the details of the variable file in the command.

Creating a variable file

You must create a variable file that contains the variable names and values as pairs that are required to connect to

the web browser. You can connect and run the Web UI tests on browsers on any of the following computers, devices,

emulators, or devices on a cloud:

Chapter 8. Test Execution Specialist Guide

• Computer on which you have installed HCL OneTest™ UI on page 1147

• UI Test Agent on page 1147

• BitBar cloud on page 1148

• Perfecto mobile cloud on page 1149

• pCloudy cloud on page 1150

Variable file for a computer on which you have installed HCL OneTest™ UI

Create an XML file as a variable file that specifies the browser to use on the computer on which you have installed .

The format of the variable file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<browser>" name="RTW_WebUI_Browser_Selection"/>
</inits>

For example, if you connect Emulator:Pixel_2_API_28 as the mobile emulator and you want to use the Chrome browser

to run the test, the variable file can be as follows:

<?xml version="1.0" encoding="UTF-8"?><inits>
<variable_init value="Chrome(Emulator:Pixel_2_API_28)" name="RTW_WebUI_Browser_Selection"/>
</inits>

Variable file for UI Test Agent

Create an XML file as a variable file that specifies the browser to use on a device or an emulator connected to the

remote computer. The format of the variable file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<browser(device or emulator name)>" name="RTW_WebUI_Browser_Selection"/>
<variable_init value="<UI Test Agent host URL>" name="appium.server.host"/>
<variable_init value="<port number>" name="appium.server.port"/>
</inits>

The following table lists the variables and the actions required for the value field:

Name of the variable Value

RTW_WebUI_Brows

er_Selection

Specify the browser to be used on the device or emulator that is connected to the UI Test

Agent on the remote computer.

appium.server.host Specify the host name or IP address of the remote computer that contains the UI Test

Agent.

Note: The default value for this variable is 127.0.0.1. If no value is specified, the de

fault value is used during the playback.

appium.server.port Specify the port number of the UI Test Agent that is installed on the remote computer.

1147

HCL OneTest™ UI

1148

For example, if you connect Emulator:Pixel_2_API_28 as the mobile emulator to a remote computer where the UI Test

Agent URL is 10.115.50.61, and the UI Test Agent port is 7082, and you want to use the Chrome browser, the variable

file can be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="Chrome(Emulator:Pixel_API_28)" name="RTW_WebUI_Browser_Selection"/>
<variable_init value="10.115.50.61" name="appium.server.host"/>
<variable_init value="7082" name="appium.server.port"/>
</inits>

Variable file for BitBar Cloud

Create an XML file as a variable file that specifies the browser to be used on the device on the BitBar cloud. The

format of the variable file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<Browser(BitBar device name)>" name="RTW_WebUI_Browser_Selection"/>
<variable_init value="<BitBar API key>" name="bitbar.apikey"/>
<variable_init value="<BitBar host URL>" name="bitbar.host"/>
<variable_init value="<project name>" name="bitbar.project"/>
<variable_init value="<test name>" name="bitbar.testrun"/>
</inits>

The following table lists the variables and the actions required for the value field:

Name of the Variable Value

RTW_WebUI_Brows

er_Selection

Specify the browser to be used on the mobile device that is connected to the BitBar cloud.

bitbar.apikey Specify the user token generated for your BitBar account to authenticate your connection

with the BitBar Cloud.

bitbar.host Specify the host name of the BitBar cloud instance.

bitbar.project Specify the name of the project that contains the recorded test.

bitbar.testrun Specify a name for the test run that must be displayed in the BitBar dashboard for the test

run.

Consider the following values that are used to create a variable file for BitBar Cloud:

Name of the Variable Value

RTW_WebUI_Brows

er_Selection

Chrome(BitBar:Google Pixel 2)

bitbar.apikey LkBldnjcnzrIcwWZpCZZxy

bitbar.host appium.bitbar.com

bitbar.project PlaybackWebUI

Chapter 8. Test Execution Specialist Guide

Name of the Variable Value

bitbar.testrun CLIExecution

The example variable file for the values in the table is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="Chrome(BitBar:Google Pixel 2)" name="RTW_WebUI_Browser_Selection"/>
<variable_init value="LkBldnjcnzrIcwWZpCZZxy" name="bitbar.apikey"/>
<variable_init value="appium.bitbar.com" name="bitbar.host"/>
<variable_init value="PlaybackWebUI" name="bitbar.project"/>
<variable_init value="CLIExecution" name="bitbar.testrun"/>
</inits>

Variable file for Perfecto Mobile cloud

Create an XML file as a variable file that specifies the browser to be used on the device on the Perfecto Mobile cloud.

The format of the variable file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<browser(device name)>" name="RTW_WebUI_Browser_Selection"/>
<variable_init value="<security token>" name="perfecto.securitytoken"/>
<variable_init value="<perfecto host URL>" name="perfecto.host"/>
</inits>

The following table lists the variables and the actions required for the value field:

Name of the Variable Value

RTW_WebUI_Brows

er_Selection

Specify the browser to be used on the mobile device that is connected to the Perfecto mo

bile cloud.

perfecto.securityto

ken

Specify the user token generated for your Perfecto account to authenticate your connection

with the Perfecto Mobile cloud.

perfecto.host Specify the URL of the Perfecto mobile device cloud.

Consider the following values that are used to create a variable file for Perfecto Mobile cloud:

Name of the Variable Value

RTW_WebUI_Brows

er_Selection

Chrome(Perfecto:R48904TNSAZ)

perfecto.securityto

ken

LkBldnjcnzrIcwWZpCZZxy

perfecto.host partners.perfectomobile.com

The example variable file for the values in the table is as follows:

1149

HCL OneTest™ UI

1150

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="Chrome(Perfecto:R48904TNSAZ)" name="RTW_WebUI_Browser_Selection"/>
<variable_init value="LkBldnjcnzrIcwWZpCZZxy" name="perfecto.securitytoken"/>
<variable_init value="partners.perfectomobile.com" name="perfecto.host"/>
</inits>

Variable file for pCloudy cloud

Create an XML file as a variable file that specifies the browser on the device connected to the pCloudy cloud. The

format of the variable file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<browser(device name)>" name="RTW_WebUI_Browser_Selection"/>
<variable_init value="<api key>" name="pcloudy.apikey"/>
<variable_init value="<pcloudy host URL>" name="pcloudy.host"/>
<variable_init value="<pcloudy user name>" name="pcloudy.username"/>
</inits>

The following table lists the variables and the actions required for the value field:

Name of the Variable Value

RTW_WebUI_Brows

er_Selection

Specify the browser to be used on the device that is connected to the pCloudy cloud.

pcloudy.apikey Specify the API key of your pCloudy account to authenticate the user name for a successful

connection.

pcloudy.host Specify the URL of the pCloudy cloud instance.

pcloudy.username Specify the user name of your pCloudy account.

Consider the following values that are used to create a variable file for pCloudy cloud:

Name of the Variable Value

RTW_WebUI_Brows

er_Selection

Chrome(pCloudy:SAMSUNG_GalaxyS8_Android_7.0.0_3ced4)

pcloudy.apikey csv7wxjyyzzgrzbqym62cvfg

pcloudy.host poc.pcloudy.com

pcloudy.username myUserName@pcloudy

The example variable file for the values in the table is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="Chrome(pCloudy:SAMSUNG_GalaxyS8_Android_7.0.0_3ced4)"
 name="RTW_WebUI_Browser_Selection"/>
<variable_init value="csv7wxjyyzzgrzbqym62cvfg" name="pcloudy.apikey"/>
<variable_init value="poc.pcloudy.com" name="pcloudy.host"/>

Chapter 8. Test Execution Specialist Guide

<variable_init value="myUserName@pcloudy" name="pcloudy.username"/>
</inits>

Related information

Configuration of test runs from the command line on page 1130

Running a Web UI test or compound test in the headless mode from the command
line
When you do not want to view the GUI as the recorded test is played back on a web browser, you can choose to run

the test in the headless mode from the command line. Running of tests in the headless mode is useful when you use

an automated testing environment.

Before you begin

You must have completed the following tasks:

• You must have recorded a single Web UI test, compound test with multiple Web UI tests, or an AFT Suite that

you want to run in the headless mode.

• Read and been familiar with the command line arguments to use with the cmdline command. See

Configuration of test runs from the command line on page 1130.

Restriction: Web UI tests contained in multiple groups in an AFT Suite that are configured to run in the

headless mode and in the private mode and grouped based on the browsers are not supported.

1. Navigate to the directory that contains the cmdline.bat and cmdline.sh files.

On Windows™ operating systems, this directory can be as productInstallationDirectory\cmdline.

For example, C:\Program Files\HCL\HCLProducts\UI\cmdline.

2. Issue the following argument for the specific browser along with the other arguments in the cmdline

command to run the test in the headless mode:

Browser Argument

Chrome -protocolinput "webui.chrome.headlessmode.selected=TRUE"

Edge -protocolinput "webui.edge.headlessmode.selected=TRUE"

Firefox -protocolinput "webui.firefox.headlessmode.selected=TRUE"

For example, consider the following values for the different arguments:

Argument Value

-workspace D:\My Workspace

1151

HCL OneTest™ UI

1152

Argument Value

-project myProject

-eclipsehome C:\Program Files\HCL\HCLOneTest

-plugins C:\Program Files\HCL\HCLIMShared\plugins

-suite myWebUITest.testsuite

If you want to run the Web UI test or compound test in the headless mode by using the Chrome browser, then

the arguments that you can enter in the command line are as follows:

cmdline -workspace D:\My Workspace -project myProject -eclipsehome C:\Program
 Files\HCL\HCLOneTest -plugins C:\Program Files\HCL\HCLIMShared\plugins -suite
 Tests\myWebUITest.testsuite -protocolinput "webui.chrome.headlessmode.selected=TRUE"

Related information

Running tests from a schedule on page 1116

Running a Web UI test using IBM Rational Quality Manager on page 1114

Running Web UI tests in the private mode from the command line
When you play back Web UI tests, if the user profile that is stored in the browser prevents the test from running

without intervention, then you can use the private or incognito mode from the command line. Also, when you do not

want cookies and caches to affect your test play back, you can choose the private mode.

Before you begin

You must have completed the following tasks:

• Recorded a Web UI test to run in the private mode.

• Read and been familiar with the command line arguments to use with the cmdline command. See

Configuration of test runs from the command line on page 1130.

• Read and been familiar with the usage of variable files. See Using a variable file on page 1132.

Restriction: Web UI tests contained in multiple groups in an AFT Suite that are configured to run in the

headless mode and in the private mode and grouped based on the browsers are not supported.

1. Create a variable file with the following variable name and its value:

<variable_init name="<browser_name>.private" value="true" />

Use the following values for the specific browser:

Chapter 8. Test Execution Specialist Guide

Browser Value

Chrome <variable_init name="chrome.private" value="true" />

Edge <variable_init name="edge.private" value="true" />

Firefox <variable_init name="firefox.private" value="true" />

Opera <variable_init name="opera.private" value="true" />

The sample variable file for running a test in the private mode of Chrome browser is as follows:

<?xml version="1.1" encoding="UTF-8"?>
<inits xmlns="http://www.ibm.com/rational/test/lt/varinit">
 <variable_init name="chrome.private"
 value="true" />
</inits>

2. Go to one of the following directories:

◦ <productInstallationDirectory>\cmdline directory that contains cmdline.sh on Linux

operating system.

◦ <productInstallationDirectory>\cmdline directory that contains cmdline.sh on Mac

operating system.

◦ <productInstallationDirectory>\cmdline directory that contains cmdline.bat on

Windows operating system.

3. Close HCL OneTest™ UI, if it is open, before running the cmdline command.

4. Enter the following command to run the test in the private mode:

cmdline -workspace <workspacename> -project <projectname> -suite <suitename> -varfile

<variable_file_full_path>

For example:

cmdline -workspace D:\My Workspace -project myProject -suite Tests\myWebUITest.testsuite -varfile
 "D:\My Workspace\priv.varinit"

The test run starts, and the status is displayed on the screen.

Results

You have run the test in the private mode from the command line.

Running a Web UI test or compound test from the command line on multiple
browsers
In addition to running a Web UI test from the product interface, you can automate the test effort by running the test

from the command line. To accelerate test execution, you can run a single Web UI test and/or a compound test

containing Web UI tests on multiple browsers and devices simultaneously.

About this task

1153

HCL OneTest™ UI

1154

Use the -vmargs command line argument to run the Web UI or compound test on multiple browsers or on all browsers

and connected mobile devices simultaneously. Use variable names from the following table to specify the browsers

to run the command on. To specify multiple browsers, separate the variable names with commas, for example,

ff,chrome,ie. To run the test on all browsers and connected mobile devices, use the variable name all. Do not use

spaces for the -vmargs arguments.

Browser Variable

Mozilla Firefox ff

Google Chrome chrome

Internet Explorer v9 32-bit ie

Internet Explorer v9 64-bit ie64

Internet Explorer v10 and v11 ie

Microsoft Edge edge

Apple Safari safari

1. To run a test from the command line, go to the directory that contains the cmdline.bat

and cmdline.sh files. On Windows™ operating systems, this directory is typically

productInstallationDirectory/cmdline, for example, C:\Program Files__BRAND_NAME__

__SDP_PATH__\cmdline.

2. Issue the cmdline command, followed by the arguments defined in the Configuration of test runs from the

command line on page 1130 topic.

3. To run the test simultaneously on all supported desktop browsers and connected mobile devices, use the

-vmargs argument, as follows:

-vmargs "-Dall.available.targets.in.parallel=all"

4. To run the test simultaneously on a selected set of browsers, use the -vmargs argument, as follows:

-vmargs "-Dall.available.targets.in.parallel=ie,ff,chrome"

Exemple

cmdline -workspace D:\My Workspace -project myProject -eclipsehome C:\Program Files\HCL\HCLOneTest
 -plugins C:\Program Files\HCL\HCLIMShared\plugins -suite Tests\myWebUITest.testsuite -vmargs
 "-Dall.available.targets.in.parallel=ie,ff,chrome"

Related information

Running tests from a schedule on page 1116

Running a Web UI test using IBM Rational Quality Manager on page 1114

Chapter 8. Test Execution Specialist Guide

Using an XML file to run multiple Web UI tests and compound tests simultaneously
from the command line
You can use an XML file and the command line to run multiple Web UI tests and compound tests simultaneously

on instances of Chrome and Firefox. You can also distribute these tests across multiple remote agent computers.

Starting from 9.1.1.1, this feature is also available from the command line.

Before you begin

• See Running multiple Web UI tests on multiple browsers and platforms simultaneously on page 1107 for the

installation and shell-sharing requirements for running tests across multiple browsers and remote agents.

• There are licensing limitations when attempting to run multiple combinations of tests, browsers, and remote

agents. See Enabling runtime licenses for testing.

1. Set up an XML file similar to one of the following samples.

Sample XML file 1

This sample XML file lists the full path to the tests and compound tests to run and the browsers (Firefox,

Chrome, or both) on which to run the tests. An XML file such as this one is supported in 9.1 and later.

<?xml version="1.0" encoding="UTF-8"?>
 <inits>
 <tests>
 <test path="/TestProject/CompoundTests/ACompound.testsuite"/>
 <test path="/TestProject/Tests/AWebTest.testsuite"/>
 </tests>
 <browsers>
 <browser name="chrome"/>
 <browser name="ff"/>
 </browsers>
 </inits>

Sample XML file 2

Starting from 9.1.1.1, you can also list the remote agents where you can run the tests. This sample XML file

automatically distributes multiple tests across different browsers, remote agents, and the local computer.

In this sample, tests that run in Chrome use Chrome Device Mode to emulate an Apple iPhone6 Plus and a

Google Nexus 5 and also run in Chrome headless mode. With headless mode, tests can run in an automated

testing environment where a visible user interface shell is not required.

<?xml version="1.0" encoding="UTF-8"?>
 <inits>
 <group>
 <tests>
 <test path="/WebUProj/ariesweb1.testsuite"/>
 <test path="/WebUProj/ariesweb2.testsuite"/>
 <test path="/WebUProj/ariesweb3.testsuite"/>
 <test path="/WebUProj/ariesweb4.testsuite"/>
 <test path="/WebUProj/ariesweb5.testsuite"/>
 </tests>

1155

https://www.ibm.com/support/knowledgecenter/SSMMM5_9.1.1/com.ibm.rational.test.lt.install.doc/topics/clicenserpt.html

HCL OneTest™ UI

1156

 <browsers>
 <browser name="chrome" devicemode="Apple iPhone 6 Plus" headless="true"/>
 <browser name="chrome" devicemode="Google Nexus 5"/>
 <browser name="firefox"/>
 </browsers>
 <locations>
 <location host="9.113.29.29"/>
 <location host="9.113.29.30"/>
 <location host="9.113.29.31"/>
 <location host="9.113.29.32"/>
 <location host="civcez228.company1.com"/>
 </locations>
 </group>
 <group>
 <tests>
 <test path="/WebUProj/ariesweb6.testsuite"/>
 </tests>
 <browsers>
 <browser name="chrome" devicemode="Apple iPhone6 Plus" headless="true"/>
 <browser name="firefox"/>
 </browsers>
 <locations>
 <location host="localhost"/>
 </locations>
 </group>
 </inits>

2. Change to the directory that contains the cmdline.bat and cmdline.sh files. On Windows™ operating

systems, this directory is typically productInstallationDirectory/cmdline, for example, C:

\Program Files__BRAND_NAME____SDP_PATH__\cmdline. (Alternatively, you can include the full

path on the command line.)

3. Issue the cmdline command as shown in the following example for a Windows™ computer. The command

requires the name of at least one valid test suite with a specific project, even though the test suites and

projects are listed in the XML file. The XML file is specified in the -protocolinput argument. See Running

tests from the command line on page 1130 for details about the command line arguments.

Exemple

cmdline> cmdline.bat -workspace C:\workspaces\workspace -project Demo_Proj -plugins "C:\Program
 Files\HCL\HCLIMShared\plugins" -eclipsehome "C:\Program Files\HCL\HCLOneTest" -aftsuite "aftSuiteName"
 -results "Results\webUItest_on_off" -exportlog "C:\temp\webLog.txt"

Related information

Running multiple Web UI and compound tests simultaneously on page 1109

Running a Web UI test or compound test from the command line on multiple browsers on page 1153

Running tests from a schedule on page 1116

Recording a test with Google Chrome Device Mode on page 429

Running tests in the headless mode on page 1027

Chapter 8. Test Execution Specialist Guide

Running mobile tests for Android applications from the command-line
You can run a mobile test without using the desktop client by using the command-line interface. You must use the

-varfile parameter that specifies the complete path to the XML file in the command. The XML file contains the name-

value pairs of the variables. The variables specify the path to the computer to which the Android device or emulator is

connected, and the other configurations required to run the mobile test on the connected device.

Running the command

Before you can run the command to run mobile tests from the command line, you must create a variable file that

contains the details of the computer to which the mobile device is connected. You must have also recorded the

mobile test.

You can issue the following command to run a mobile test from the command-line:

cmdline -workspace <workspace_full_path> -project <proj_relative_path> -eclipsehome <eclipse_full_path>

-plugins <plugin_full_path> -suite <suite_relative_path> -importzip <full_path.zip> -varfile <variable_file_full_path>

-configfile <file_full_path> -results <result_file> -overwrite <{"true" | "false"}> -quiet -vmargs <JVM_args> -publish

<serverURL#project.name=projectName -publish_for {ALL,PASS,FAIL,ERROR, INCONCLUSIVE}> -labels <labelname1,

labelname2> -exportlog <log_full_path> -exportstats <local_dir_path> -exportstatshtml <local_dir_path>

-exportstatsformat <name of the file format> -compare <"result_path1, result_path2"> -exportstatreportlist

<stats_list> -execsummary <local_dir_path> -execsummaryreport <reportID> -usercomments <"any user comment">

-publishreports <"FT, STATS, TESTLOG"> -stdout -swapdatsets <existing_dataset_file_path:new_dataset_file-path>

Important: When you use the command to run a mobile test, you must ensure that the following conditions

are satisfied:

• Use the variable file that contains the details of the computer, server, or cloud to which the Android

devices or emulators are connected.

• Specify the details of the variable file in the command.

Creating a variable file

You can create a variable file that contains the variable names and values as pairs that are required to connect to

the Android device or emulator. You can connect and run the mobile tests on Android devices or emulators that are

connected to the following computers, servers, or mobile clouds:

• Computer on which you have installed HCL OneTest™ UI on page 1158

• UI Test Agent on page 1159

• BitBar Cloud on page 1160

• Perfecto Mobile cloud on page 1162

• pCloudy cloud on page 1163

• Variable file to run mobile tests on multiple mobile clouds on page 1165

1157

HCL OneTest™ UI

1158

Variable file for a computer on which you have installed HCL OneTest™ UI

You can create a variable file in XML format to specify the details required to run the mobile test on selected device.

You can also add the details to enable the Rational® Functional Tester to collect metrics for certain parameters of the

resources used by the mobile devices.

A sample of the syntax or structure is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<Android device or emulator name>" name="Mobile_Device_Selection"/>
<variable_init value="true" name="rm.selected"/>
<variable_init value ="any value equal to or above 1000" name="rm.polling.interval"/>
</inits>

Refer to the following table to know the variables and values for the attributes mentioned in the XML sample:

Attribute Variable Description

Mobile_Device_Selec

tion

<Android device or

emulator name>

Specifies the name of the Android device or emulator that is con

nected to the computer.

Example:

<variable_init value="Emulator:Pixel_2_API_28"
 name="Mobile_Device_Selection"/>

rm.selected <true>
Optional. If you want to collect the metrics for certain parameters

of resources used by mobile applications or devices, set the value

to true. Collection of Resource Monitoring metrics and displaying of

the data graphically is supported only when you run a single test on

a single device. For example, the entry in the XML file can be as fol

lows:

<variable_init value="true" name="rm.selected"/>

rm.polling.interval <Any value equal to or

above 1000>
Specifies the interval in milliseconds to collect the metrics for cer

tain parameters of resources used by mobile application or device.

The minimum value that you can enter is 1000 milliseconds. Enter

the value, if you set the attribute rm.selected to true. For example,

the entry in the XML file can be as follows:

<variable_init value ="1000" name="rm.polling.interval"/>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Chapter 8. Test Execution Specialist Guide

Variable file for UI Test Agent

You can create an XML file as a variable file that specifies the details of the remote computer on which you have

installed the UI Test Agent and connected the Android device or an emulator.

You can also add the details to enable the Rational® Functional Tester to collect metrics for certain parameters of the

resources used by the mobile devices.

A sample of the syntax or structure is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<Android device or emulator name>" name="Mobile_Device_Selection"/>
<variable_init value="<UI Test Agent host URL>" name="appium.server.host"/>
<variable_init value="<port number>" name="appium.server.port"/>
<variable_init value="true" name="rm.selected"/>
<variable_init value ="any value equal to or above 1000" name="rm.polling.interval"/>
</inits>

Refer to the following table to know the variables and values for the attributes mentioned in the XML sample:

Attribute Variable Description

Mobile_Device_Selec

tion

<Android device or

emulator name>

Specifies the name of the Android device or emulator that is con

nected to the computer.

Example:

<variable_init value="Emulator:Pixel_2_API_28"
 name="Mobile_Device_Selection"/>

appium.server.host <UI Test Agent host

URL>

Specifies the host name or IP address of the remote computer on

which you have installed the UI Test Agent.

Note: The default value for this variable is 127.0.0.1. If no

value is specified, the default value is used during the play

back.

Example:

<variable_init value="10.115.50.61"
 name="appium.server.host"/>

appium.server.port <port number> Specifies the port number of the UI Test Agent that is installed on

the remote machine.

<variable_init value="7082" name="appium.server.port"/>

rm.selected <true>
Optional. If you want to collect the metrics for certain parameters

of resources used by mobile applications or devices, set the value

1159

HCL OneTest™ UI

1160

Attribute Variable Description

to true. Collection of Resource Monitoring metrics and displaying of

the data graphically is supported only when you run a single test on

a single device. For example, the entry in the XML file can be as fol

lows:

<variable_init value="true" name="rm.selected"/>

rm.polling.interval <Any value equal to or

above 1000>
Specifies the interval in milliseconds to collect the metrics for cer

tain parameters of resources used by mobile application or device.

The minimum value that you can enter is 1000 milliseconds. Enter

the value, if you set the attribute rm.selected to true. For example,

the entry in the XML file can be as follows:

<variable_init value ="1000" name="rm.polling.interval"/>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file for BitBar Cloud

You can create an XML file as a variable file that specifies the details of the BitBar Cloud.

You can also add the details to enable the Rational® Functional Tester to collect metrics for certain parameters of the

resources used by the mobile devices and applications.

Restriction: Resource Monitoring metrics of mobile device resources are not collected when the tests are run

as an AFT suite.

A sample of the syntax or structure is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<BitBar device name>" name="Mobile_Device_Selection"/>
<variable_init value="<BitBar API key>" name="bitbar.apikey"/>
<variable_init value="<BitBar host URL>" name="bitbar.host"/>
<variable_init value="<project name>" name="bitbar.project"/>
<variable_init value="<test name>" name="bitbar.testrun"/>
<variable_init value="true" name="rm.selected"/>
<variable_init value ="any value equal to or above 1000" name="rm.polling.interval"/>
</inits>

Note: When you want to run an AFT Suite on devices connected to BitBar Cloud, create the XML file without

the variable Mobile_Device_Selection.

Refer to the following table to know the variables and values for the attributes mentioned in the XML sample:

Chapter 8. Test Execution Specialist Guide

Attribute Variable Description

Mobile_Device_Selec

tion

<BitBar device name> Specifies the name of the mobile device that is connected to the Bit

Bar cloud.

Example:

<variable_init value="BitBar:Google Pixel 2"
 name="Mobile_Device_Selection"/>

bitbar.apikey <BitBar API key> Specifies the user token generated for your BitBar account to au

thenticate your connection with the BitBar Cloud.

Example:

<variable_init value="LkBldnjcnzrIcwWZpCZZxy"
 name="bitbar.apikey"/>

bitbar.host <BitBar host URL> Specify the host name of the BitBar cloud instance.

Example:

<variable_init value="appium.bitbar.com"
 name="bitbar.host"/>

bitbar.project <project name> Specifies the name of the project that contains the recorded test.

Example:

<variable_init value="PlaybackMobile"
 name="bitbar.project"/>

bitbar.testrun <test name> Specifies a name for the test run that must be displayed in the BitBar

dashboard for the test run.

Example:

<variable_init value="CLIExecution" name="bitbar.testrun"/>

rm.selected <true>
Optional. If you want to collect the metrics for certain parameters

of resources used by mobile applications or devices, set the value

to true. Collection of Resource Monitoring metrics and displaying of

the data graphically is supported only when you run a single test on

a single device. For example, the entry in the XML file can be as fol

lows:

<variable_init value="true" name="rm.selected"/>

rm.polling.interval <Any value equal to or

above 1000>
Specifies the interval in milliseconds to collect the metrics for cer

tain parameters of resources used by mobile application or device.

The minimum value that you can enter is 1000 milliseconds. Enter

1161

HCL OneTest™ UI

1162

Attribute Variable Description

the value, if you set the attribute rm.selected to true. For example,

the entry in the XML file can be as follows:

<variable_init value ="1000" name="rm.polling.interval"/>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file for Perfecto Mobile cloud

You can create an XML file as a variable file that specifies the details of the Perfecto Cloud.

You can also add the details to enable the Rational® Functional Tester to collect metrics for certain parameters of the

resources used by the mobile devices.

Restriction: Resource Monitoring metrics of mobile device resources are not collected for mobile tests in an

AFT suite.

A sample of the syntax or structure is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<Perfecto device name>" name="Mobile_Device_Selection"/>
<variable_init value="<security token>" name="perfecto.securitytoken"/>
<variable_init value="<perfecto host URL>" name="perfecto.host"/>
<variable_init value="true" name="rm.selected"/>
<variable_init value ="any value equal to or above 1000" name="rm.polling.interval"/>
</inits>

Note: When you want to run an AFT Suite on devices connected to Perfecto Cloud, create the XML file without

the variable Mobile_Device_Selection.

Refer to the following table to know the variables and values for the attributes mentioned in the XML sample:

Attribute Variable Description

Mobile_Device_Selec

tion

<Perfecto device

name>

Specifies the name of the mobile device that is connected to the Per

fecto mobile cloud.

Example:

<variable_init value="Perfecto:R48904TNSAZ"
 name="Mobile_Device_Selection"/>

perfecto.securityto

ken

<security token> Specifies the user token generated for your Perfecto account to au

thenticate your connection with the Perfecto cloud.

Example:

Chapter 8. Test Execution Specialist Guide

Attribute Variable Description

<variable_init value="LkBldnjcnzrIcwWZpCZZxy"
 name="perfecto.securitytoken"/>

perfecto.host <perfecto host URL> Specifies the URL of the Perfecto Cloud.

<variable_init value="partners.perfectomobile.com"
 name="perfecto.host"/>

rm.selected <true>
Optional. If you want to collect the metrics for certain parameters

of resources used by mobile applications or devices, set the value

to true. Collection of Resource Monitoring metrics and displaying of

the data graphically is supported only when you run a single test on

a single device. For example, the entry in the XML file can be as fol

lows:

<variable_init value="true" name="rm.selected"/>

rm.polling.interval <Any value equal to or

above 1000>
Specifies the interval in milliseconds to collect the metrics for cer

tain parameters of resources used by mobile application or device.

The minimum value that you can enter is 1000 milliseconds. Enter

the value, if you set the attribute rm.selected to true. For example,

the entry in the XML file can be as follows:

<variable_init value ="1000" name="rm.polling.interval"/>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file for pCloudy cloud

You can create an XML file as a variable file that specifies the details of the pCloudy cloud.

You can also add the details to enable the Rational® Functional Tester to collect metrics for certain parameters of the

resources used by the mobile devices.

Restriction: Resource Monitoring metrics of mobile device resources are not collected for mobile tests in an

AFT suite.

A sample of the syntax or structure is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<pCloudy device name>" name="Mobile_Device_Selection"/>
<variable_init value="<api key>" name="pcloudy.apikey"/>
<variable_init value="<pcloudy host URL>" name="pcloudy.host"/>
<variable_init value="<pcloudy user name>" name="pcloudy.username"/>
<variable_init value="true" name="rm.selected"/>
<variable_init value ="any value equal to or above 1000" name="rm.polling.interval"/>
</inits>

1163

HCL OneTest™ UI

1164

Note: When you want to run an AFT Suite on devices connected to PCloudy Cloud, create the XML file without

the variable Mobile_Device_Selection.

Refer to the following table to know the variables and values for the attributes mentioned in the XML sample:

Attribute Variable Description

Mobile_Device_Selec

tion

<pCloudy device

name>

Specifies the name of the mobile device that is connected to the

pCloudy cloud.

Example:

<variable_init
 value="pCloudy:SAMSUNG_GalaxyS8_Android_7.0.0_3ced4"
 name="Mobile_Device_Selection"/>

pcloudy.apikey <api key> Specifies the user token generated for your Perfecto account to au

thenticate your connection with the Perfecto cloud.

Example:

<variable_init value="csv7wxjyyzzgrzbqym62cvfg"
 name="pcloudy.apikey"/>

pcloudy.host <pcloudy host URL> Specifies the URL of the pCloudy Cloud instance.

Example:

<variable_init value="poc.pcloudy.com" name="pcloudy.host"/>

pcloudy.username <pcloudy user name> Specifies the user name of your pCloudy account.

Example:

<variable_init value="myUserName@pcloudy"
 name="pcloudy.username"/>

rm.selected <true>
Optional. If you want to collect the metrics for certain parameters

of resources used by mobile applications or devices, set the value

to true. Collection of Resource Monitoring metrics and displaying of

the data graphically is supported only when you run a single test on

a single device. For example, the entry in the XML file can be as fol

lows:

<variable_init value="true" name="rm.selected"/>

rm.polling.interval <Any value equal to or

above 1000>
Specifies the interval in milliseconds to collect the metrics for cer

tain parameters of resources used by mobile application or device.

The minimum value that you can enter is 1000 milliseconds. Enter

Chapter 8. Test Execution Specialist Guide

Attribute Variable Description

the value, if you set the attribute rm.selected to true. For example,

the entry in the XML file can be as follows:

<variable_init value ="1000" name="rm.polling.interval"/>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file to run mobile tests on multiple mobile clouds

When you want to run mobile tests on devices that are connected to multiple mobile clouds, you can create an XML

file and use it as a variable file. You must specify the details of each of the mobile clouds in the variable file that

enable HCL OneTest™ UI to connect to the mobile clouds.

You can configure details of the mobile clouds as an xml file. You can use the following sample XML file to enter the

details of the name and value pairs for the mobile clouds.

For example, if you want to run on the BitBar Cloud and pCloudy Cloud, edit the XML file and remove the details of the

Perfecto Cloud.

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<BitBar API key>" name="bitbar.apikey"/>
<variable_init value="<BitBar host URL>" name="bitbar.host"/>
<variable_init value="<project name>" name="bitbar.project"/>
<variable_init value="<test name>" name="bitbar.testrun"/>
<variable_init value="<api key>" name="pcloudy.apikey"/>
<variable_init value="<pcloudy host URL>" name="pcloudy.host"/>
<variable_init value="<pcloudy user name>" name="pcloudy.username"/>
<variable_init value="<security token>" name="perfecto.securitytoken"/>
<variable_init value="<perfecto host URL>" name="perfecto.host"/>
</inits>

Note: You must only enter the details of the mobile clouds that you want to use.

Refer to the following table to know the details of the mobile clouds, that you need to enter in the XML file:

Mobile clouds Name of the variable Value of the variable

bitbar.apikey Specifies the user token generated for your BitBar ac

count to authenticate the connection with the BitBar

Cloud.

bitbar.host Specifies the host name of the BitBar Cloud instance.

bitbar.project Specifies the name of the project that contains the

recorded test.

BitBar Cloud

bitbar.testrun Specifies a name for the test run that must be displayed

in the BitBar dashboard for the test run.

1165

HCL OneTest™ UI

1166

Mobile clouds Name of the variable Value of the variable

pcloudy.apikey Specifies the API key of your pCloudy account to authen

ticate the user name for a successful connection.

pcloudy.host Specifies the URL of the pCloudy Cloud instance.

pCloudy Cloud

pcloudy.username Specifies the user name of your pCloudy account.

perfecto.securitytoken Specifies the user token generated for your Perfecto ac

count to authenticate your connection with the Perfecto

Cloud.

Perfecto Cloud

perfecto.host Specifies the URL of the Perfecto Cloud.

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Related information

Configuration of test runs from the command line on page 1130

Running mobile tests for iOS applications from the command-line
You can run a mobile test without using the desktop client by using the command-line interface. You must use the

-varfile parameter that specifies the complete path to the XML file in the command. The XML file contains the name-

value pairs of the variables. The variables specify the path to the computer to which the iOS device or simulator is

connected, and the other configurations required to run the mobile test on the connected device.

Running the command

Before you can run the command to run mobile tests from the command line, you must create a variable file that

contains the details of the computer to which the mobile device is connected. You must have also recorded the

mobile test.

You can issue the following command to run a mobile test from the command-line:

cmdline -workspace <workspace_full_path> -project <proj_relative_path> -eclipsehome <eclipse_full_path>

-plugins <plugin_full_path> -suite <suite_relative_path> -importzip <full_path.zip> -varfile <variable_file_full_path>

-configfile <file_full_path> -results <result_file> -overwrite <{"true" | "false"}> -quiet -vmargs <JVM_args> -publish

<serverURL#project.name=projectName -publish_for {ALL,PASS,FAIL,ERROR, INCONCLUSIVE}> -labels <labelname1,

labelname2> -exportlog <log_full_path> -exportstats <local_dir_path> -exportstatshtml <local_dir_path>

-exportstatsformat <name of the file format> -compare <"result_path1, result_path2"> -exportstatreportlist

<stats_list> -execsummary <local_dir_path> -execsummaryreport <reportID> -usercomments <"any user comment">

-publishreports <"FT, STATS, TESTLOG"> -stdout -swapdatsets <existing_dataset_file_path:new_dataset_file-path>

Important: When you use the command to run a mobile test, you must ensure that the following conditions

are satisfied:

Chapter 8. Test Execution Specialist Guide

• Use the variable file that contains the details of the computer, server, or cloud to which the iOS devices

or simulators are connected.

• Specify the details of the variable file in the command.

Creating a variable file

You must create a variable file that contains the variable names and values as pairs that are required to connect

to the iOS device or simulator. You can connect and run the mobile tests on iOS devices or simulators that are

connected to the following computers, servers, or mobile clouds:

• Computer on which you have installed HCL OneTest™ UI on page 1167

• UI Test Agent on page 1168

• BitBar Cloud on page 1169

• Perfecto Mobile cloud on page 1171

• pCloudy Cloud on page 1172

• Variable file to run mobile tests on multiple mobile clouds on page 1173

Variable file for a computer on which you have installed HCL OneTest™ UI

You can create a variable file in XML format to specify the details required to run the mobile test on selected device.

You can also add the details to enable the HCL OneTest™ UI to collect metrics for certain parameters of the resources

used by the mobile devices.

A sample of the syntax or structure is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<iOS device name>" name="Mobile_Device_Selection"/>
<variable_init value="true" name="rm.selected"/>
<variable_init value ="any value equal to or above 1000" name="rm.polling.interval"/>
</inits>

Restriction: Resource Monitoring metrics of iOS simulators are not collected nor graphically displayed.

Refer to the following table to know the variables and values for the attributes mentioned in the XML sample:

Attribute Variable Description

Mobile_Device_Selec

tion

<ios device or Simula

tor name>

Specifies the name of the iOS device or simulator that is connected

to the computer.

Example:

<variable_init value="Simulator:iPhone 11 Pro_14.0"
 name="Mobile_Device_Selection"/>

1167

HCL OneTest™ UI

1168

Attribute Variable Description

rm.selected <true>
Optional. If you want to collect the metrics for certain parameters

of resources used by mobile applications or devices, set the value

to true. Collection of Resource Monitoring metrics and displaying of

the data graphically is supported only when you run a single test on

a single device. For example, the entry in the XML file can be as fol

lows:

<variable_init value="true" name="rm.selected"/>

rm.polling.interval <any value equal to or

above 1000>
Specifies the interval in milliseconds to collect the metrics for cer

tain parameters of resources used by mobile application or device.

The minimum value that you can enter is 1000 milliseconds. Enter

the value, if you set the attribute rm.selected to true. For example,

the entry in the XML file can be as follows:

<variable_init value ="1000" name="rm.polling.interval"/>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file for UI Test Agent

You can create an XML file as a variable file that specifies the details of the remote computer on which you have

installed the UI Test Agent and connected the iOS device or a simulator.

You can also add the details to enable the Rational® Functional Tester to collect metrics for certain parameters of the

resources used by the mobile devices.

A sample of the syntax or structure is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<iOS device or simulator name>" name="Mobile_Device_Selection"/>
<variable_init value="<UI Test Agent host URL>" name="appium.server.host"/>
<variable_init value="<port number>" name="appium.server.port"/>
<variable_init value="true" name="rm.selected"/>
<variable_init value ="any value equal to or above 1000" name="rm.polling.interval"/>
</inits>

Restriction: Resource Monitoring metrics of iOS simulators are not collected nor graphically displayed.

Refer to the following table to know the variables and values for the attributes mentioned in the XML sample:

Attribute Variable Description

Mobile_Device_Selec

tion

<iOS device or a simu

lator name>

Specifies the name of the iOS device or a simulator that is connect

ed to the computer.

Chapter 8. Test Execution Specialist Guide

Attribute Variable Description

Example:

<variable_init value="Simulator:iPhone 11 Pro_14.0"
 name="Mobile_Device_Selection"/>

appium.server.host <UI Test Agent host

URL>

Specifies the host name or IP address of the remote computer on

which you have installed the UI Test Agent.

Note: The default value for this variable is 127.0.0.1. If no

value is specified, the default value is used during the play

back.

Example:

<variable_init value="10.115.50.61"
 name="appium.server.host"/>

appium.server.port <port number> Specifies the port number of the UI Test Agent that is installed on

the remote machine.

<variable_init value="7082" name="appium.server.port"/>

rm.selected <true>
Optional. If you want to collect the metrics for certain parameters

of resources used by mobile applications or devices, set the value

to true. Collection of Resource Monitoring metrics and displaying of

the data graphically is supported only when you run a single test on

a single device. For example, the entry in the XML file can be as fol

lows:

<variable_init value="true" name="rm.selected"/>

rm.polling.interval <value equal to or

above 1000>
Specifies the interval in milliseconds to collect the metrics for cer

tain parameters of resources used by mobile application or device.

The minimum value that you can enter is 1000 milliseconds. Enter

the value, if you set the attribute rm.selected to true. For example,

the entry in the XML file can be as follows:

<variable_init value ="1000" name="rm.polling.interval"/>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file for BitBar Cloud

Create an XML file as a variable file that specifies the details of the BitBar Cloud. The format of the variable file is as

follows:

1169

HCL OneTest™ UI

1170

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<BitBar device name>" name="Mobile_Device_Selection"/>
<variable_init value="<BitBar API key>" name="bitbar.apikey"/>
<variable_init value="<BitBar host URL>" name="bitbar.host"/>
<variable_init value="<project name>" name="bitbar.project"/>
<variable_init value="<test name>" name="bitbar.testrun"/>
</inits>

Note: When you want to run an AFT Suite on devices connected to BitBar Cloud, create the XML file without

the variable Mobile_Device_Selection.

The following table lists the variables and the actions required for the value field:

Name of the Variable Value

Mobile_Device_Selection Specify the name of the mobile device that is connected

to the BitBar cloud.

bitbar.apikey Specify the user token generated for your BitBar account

to authenticate your connection with the BitBar Cloud.

bitbar.host Specify the host name of the BitBar cloud instance.

bitbar.project Specify the name of the project that contains the record

ed test.

bitbar.testrun Specify a name for the test run that must be displayed in

the BitBar dashboard for the test run.

Consider the following values that are used to create a variable file for BitBar Cloud:

Name of the Variable Value

Mobile_Device_Selection BitBar:iPhone 11 Pro_14.0

bitbar.apikey LkBldnjcnzrIcwWZpCZZxy

bitbar.host appium.bitbar.com

bitbar.project PlaybackMobile

bitbar.testrun CLIExecution

The example variable file for the values in the table is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="BitBar:iPhone 11 Pro_14.0" name="Mobile_Device_Selection"/>
<variable_init value="LkBldnjcnzrIcwWZpCZZxy" name="bitbar.apikey"/>
<variable_init value="appium.bitbar.com" name="bitbar.host"/>
<variable_init value="PlaybackMobile" name="bitbar.project"/>

Chapter 8. Test Execution Specialist Guide

<variable_init value="CLIExecution" name="bitbar.testrun"/>
</inits>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file for Perfecto Mobile cloud

Create an XML file as a variable file that specifies the details of the Perfecto Mobile cloud. The format of the variable

file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<device name>" name="Mobile_Device_Selection"/>
<variable_init value="<security token>" name="perfecto.securitytoken"/>
<variable_init value="<perfecto host URL>" name="perfecto.host"/>
</inits>

Note: When you want to run an AFT Suite on devices connected to Perfecto Cloud, create the XML file without

the variable Mobile_Device_Selection.

The following table lists the variables and the actions required for the value field:

Name of the Variable Value

Mobile_Device_Selection Specify the name of the mobile device that is connected

to the Perfecto mobile cloud.

perfecto.securitytoken Specify the user token generated for your Perfecto ac

count to authenticate your connection with the Perfecto

Mobile cloud.

perfecto.host Specify the URL of the Perfecto mobile cloud that is con

figured to communicate with HCL OneTest™ UI.

Consider the following values that are used to create a variable file for Perfecto Mobile cloud:

Name of the Variable Value

Mobile_Device_Selection Perfecto:8D3E35CF16D8D827E4827AB

BCD0E582E2761CADA

perfecto.securitytoken LkBldnjcnzrIcwWZpCZZxy

perfecto.host partners.perfectomobile.com

The example variable file for the values in the table is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="Perfecto:8D3E35CF16D8D827E4827ABBCD0E582E2761CADA"
 name="Mobile_Device_Selection"/>
<variable_init value="LkBldnjcnzrIcwWZpCZZxy" name="perfecto.securitytoken"/>

1171

HCL OneTest™ UI

1172

<variable_init value="partners.perfectomobile.com" name="perfecto.host"/>
</inits>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file for pCloudy cloud

Create an XML file as a variable file that specifies the details of the pCloudy cloud. The format of the variable file is as

follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<device name>" name="Mobile_Device_Selection"/>
<variable_init value="<api key>" name="pcloudy.apikey"/>
<variable_init value="<pcloudy host URL>" name="pcloudy.host"/>
<variable_init value="<pcloudy user name>" name="pcloudy.username"/>
</inits>

Note: When you want to run an AFT Suite on devices connected to pCloudy Cloud, create the XML file without

the variable Mobile_Device_Selection.

The following table lists the variables and the actions required for the value field:

Name of the Variable Value

Mobile_Device_Selec

tion

Specify the name of the mobile device that is connected to the pCloudy cloud.

pcloudy.apikey Specify the API key of your pCloudy account to authenticate the user name for a successful

connection.

pcloudy.host Specify the URL of the pCloudy cloud instance.

pcloudy.username Specify the user name of your pCloudy account.

Consider the following values that are used to create a variable file for pCloudy cloud:

Name of the Variable Value

Mobile_Device_Selec

tion

pCloudy:Apple_iPhone8plus_Ios_14.4.0_9db66

pcloudy.apikey csv7wxjyyzzgrzbqym62cvfg

pcloudy.host poc.pcloudy.com

pcloudy.username myUserName@pcloudy

The example variable file for the values in the table is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="pCloudy:Apple_iPhone8plus_Ios_14.4.0_9db66" name="Mobile_Device_Selection"/>

Chapter 8. Test Execution Specialist Guide

<variable_init value="csv7wxjyyzzgrzbqym62cvfg" name="pcloudy.apikey"/>
<variable_init value="poc.pcloudy.com" name="pcloudy.host"/>
<variable_init value="myUserName@pcloudy" name="pcloudy.username"/>
</inits>

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Variable file to run mobile tests on multiple mobile clouds

When you want to run mobile tests on devices that are connected to multiple mobile clouds, you can create an XML

file and use it as a variable file. You must specify the details of each of the mobile clouds in the variable file that

enable HCL OneTest™ UI to connect to the mobile clouds.

You can configure details of the mobile clouds as an xml file. You can use the following sample XML file to enter the

details of the name and value pairs for the mobile clouds.

For example, if you want to run on the BitBar Cloud and pCloudy Cloud, edit the XML file and remove the details of the

Perfecto Cloud.

<?xml version="1.0" encoding="UTF-8"?>
<inits>
<variable_init value="<BitBar API key>" name="bitbar.apikey"/>
<variable_init value="<BitBar host URL>" name="bitbar.host"/>
<variable_init value="<project name>" name="bitbar.project"/>
<variable_init value="<test name>" name="bitbar.testrun"/>
<variable_init value="<api key>" name="pcloudy.apikey"/>
<variable_init value="<pcloudy host URL>" name="pcloudy.host"/>
<variable_init value="<pcloudy user name>" name="pcloudy.username"/>
<variable_init value="<security token>" name="perfecto.securitytoken"/>
<variable_init value="<perfecto host URL>" name="perfecto.host"/>
</inits>

Note: You must only enter the details of the mobile clouds that you want to use.

Refer to the following table to know the details of the mobile clouds, that you need to enter in the XML file:

Mobile clouds Name of the variable Value of the variable

bitbar.apikey Specifies the user token generated for your BitBar ac

count to authenticate the connection with the BitBar

Cloud.

bitbar.host Specifies the host name of the BitBar Cloud instance.

bitbar.project Specifies the name of the project that contains the

recorded test.

BitBar Cloud

bitbar.testrun Specifies a name for the test run that must be displayed

in the BitBar dashboard for the test run.

1173

HCL OneTest™ UI

1174

Mobile clouds Name of the variable Value of the variable

pcloudy.apikey Specifies the API key of your pCloudy account to authen

ticate the user name for a successful connection.

pcloudy.host Specifies the URL of the pCloudy cloud instance.

pCloudy Cloud

pcloudy.username Specifies the user name of your pCloudy account.

perfecto.securitytoken Specifies the user token generated for your Perfecto ac

count to authenticate your connection with the Perfecto

Cloud.

Perfecto Cloud

perfecto.host Specifies the URL of the Perfecto Cloud.

You can then use the variable file with the -varfile option in the command to run a test from the command line.

Related information

Configuration of test runs from the command line on page 1130

Running Windows tests from the command-line interface
You can run a Windows test without using the desktop client by using the command-line interface. You can either run

the Windows test on the local computer or on a remote computer.

Running the command

If you want to run the Windows test on your local computer, then you can run the following command from the

command-line:

Note: You must have recorded the Windows test.

cmdline -workspace workspace_full_path -project proj_rel_path -suite suite_rel_path

Creating a variable file

You need to create a variable file only when you want to run the Windows test in the following scenarios:

• On the local computer that has a different port number on page 1175

• On the remote computer that has a different port number and host number on page 1175

The -varfile parameter specifies the complete path to the XML file in the command. The XML file contains the name-

value pairs of the variables.

You must include the -varfile parameter in the following command when you run from the command-line:

Chapter 8. Test Execution Specialist Guide

cmdline -workspace workspace_full_path -project proj_rel_path -suite suite_rel_path -varfile

variable_file_full_path

Note: The variable file is not required when you run Windows test on a local computer that contains the same

port number.

Variable file for the local computer on which you want to run Windows test

Create an XML file as a variable file that specifies the details of the local computer on which you have installed the

Windows application and the UI Test Agent. The format of the variable file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<variable_init name="appium.server.port" value=<"port number"/>
</inits> </inits>

The following table lists the variable and the action required for the value field:

Name of the Variable Value

appium.server.port Specify the port number of the UI Test Agent that is in

stalled on your local machine.

For example,

<?xml version="1.0" encoding="UTF-8"?>
<variable_init name="appium.server.port" value="7082"/>
</inits>

Variable file for the remote computer on which you want to run Windows test

Create an XML file as a variable file that specifies the details of the remote computer on which you installed the

Windows application and the UI Test Agent. The format of the variable file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<inits xmlns=<"Windows application path">
<variable_init name="appium.server.host” value=<"host number"/>
<variable_init name="appium.server.port" value=<"port number"/>
</inits>

The following table lists the variable and the action required for the value field:

Name of the Variable Value

appium.server.host Specify the IP address of the remote computer on which

the UI Test Agent and the Windows applications are in

stalled.

appium.server.port Specify the port number of the UI Test Agent that is in

stalled on the remote machine.

For example,

1175

HCL OneTest™ UI

1176

<?xml version="1.0" encoding="UTF-8"?>
<inits xmlns="http://www.ibm.com/rational/test/lt/varinit">
<variable_init name="appium.server.host" value="10.115.160.148"/>
<variable_init name="appium.server.port" value="7082"/>
</inits>

Related information

Configuration of test runs from the command line on page 1130

Configuration of test runs from the Functional Test perspective
When you created functional tests, you must configure the run of the recorded functional tests from the Functional

Test perspective before you can view the test results.

You can run functional test scripts as part of your automated testing. See Running scripts on page 1177. You can run

scripts as part of any of the following test phases:

• Test development phase on page 1178

• Regression testing phase on page 1178

Prerequisites for functional test runs

You must have recorded test scripts in the Functional Test perspective of HCL OneTest™ UI. See Testing with

Functional Test perspective.

Before you can configure a test run of a functional test, you must ensure that the application-under-test is in the same

state that it was in when you recorded the script. See Restoring the test environment before playback on page 1178.

You can configure how unexpected windows are to be handled so that scripts can be played back smoothly without

interruption. See Configuring how to handle unexpected windows during playback on page 1179.

If changes are made to the application-under-test after it was recorded, there might changes in the object hierarchy

when you run such a test. You can avoid test failures by performing any of the following tasks:

• Insert dynamic objects. See Inserting dynamic test objects on page 1180.

• Enable the dynamic find feature when you configure a test run. See Enabling the dynamic find feature on

page 1181.

• Use ScriptAssure. See Using ScriptAssure on page 1182.

If there are multiple instance of the applications under test, which might cause HCL OneTest™ UI to not identify the

correct application, you can prevent or enable HCL OneTest™ UI to deal with this ambiguous recognition situation. See

Ambiguous object recognition in functional testing on page 1183.

Monitoring functional test runs

You can find information about monitoring test runs of a functional test:

Chapter 8. Test Execution Specialist Guide

• You can use the playback monitor to view the test details as the test is played back. See Playback Monitor on

page 1184.

• When you want to pause or stop the play back at any time after you started a run of the recorded script, you

can pause or stop the test run. See Pausing or stopping script playback on page 1185.

Running functional tests

You can find information about the following tasks that you can configure and run from the Functional Test

perspective:

• Running a script from HCL OneTest UI on page 1185

• Running functional tests for HTML applications by using the Web UI engine on page 1187

• Running a script from the Microsoft Edge browser on page 1188

Analyzing test runs

After you run tests from the Functional Test perspective, you can perform the following tasks to debug or view the

steps that failed in the test run:

• Debugging scripts on page 1189

• Screen snapshot on playback failure of functional tests on page 1190

Running scripts
When you play back a script, HCL OneTest™ UI replays your recorded actions, which automates the software testing

cycle.

Such automation allows you to test each new build of your application faster and more thoroughly than by manual

testing, reducing testing time and increasing both coverage and overall consistency.

There are two general phases of script playback:

In the Test Development Phase on page 1178 you play back scripts to verify that they work as intended, using the

same version of the application-under-test that you used to record. This phase validates the expected behavior for the

application.

In the Regression Testing Phase on page 1178 you play back scripts to compare the latest build of the application to

the baseline established during the test development phase. Regression testing identifies differences that may have

been introduced since the last build. You can evaluate these differences to determine whether they are defects or

changes.

Note:

You can run a script for these purposes:

1177

HCL OneTest™ UI

1178

• To play back a script locally from HCL OneTest™ UI or from Engineering Test Management.

• To play back a script remotely on different computers and platforms from Engineering Test Management.

• To play back a script to verify that it works on different Java™ environments or browsers.

• To debug a script.

You can use HCL OneTest™ UI plug-in for IBM® UrbanCode™ Deploy to continuously initiate the launch of functional

tests.

Test development phase
In the Test Development Phase, you play back scripts to verify that they work as intended, using the same version of

the application-under-test that you used to record. This phase validates the expected behavior of the application.

The test development phase consists of six steps:

1. Restore the test environment and set the playback options.

2. Play back each script against the same version of the application-under-test that was used for recording to

verify that the script performs as intended.

3. Analyze the results in the HCL OneTest™ UI log.

4. Use the HCL OneTest™ UI Verification Point Comparator to determine the cause of verification point failures.

5. If the script fails, edit, debug, or re-record it so that it runs as required.

Regression testing phase
When you have a baseline of expected behavior for your application-under-test, you can automate regression testing

for subsequent builds.

The regression testing phase consists of five steps:

1. Restore the testing environment and set the playback options.

2. Play back the test script against a new build of the application-under-test.

3. Analyze the results in the HCL OneTest™ UI log.

4. Use the HCL OneTest™ UI Verification Point Comparator to determine the cause of verification point failures. If

verification points fail because of intentional changes to the application-under-test, update the baseline data

using the Comparator.

5. If necessary, revise your test scripts to use new features in the application-under-test. Then play back the

revised test scripts against the current build and re-evaluate the results.

Restoring the test environment before playback
The state of both the environment and the application-under-test can affect script playback. If the recorded

environment and the playback environment are different, playback problems can occur.

About this task

Chapter 8. Test Execution Specialist Guide

Before playing back a script, verify that your application-under-test is in the same state that it was in when you

recorded the script. Any applications and windows that were open, displayed, or active when you started recording the

script must be open, displayed, or active when you start playback. In addition, restore any relevant network settings,

active databases, and system memory to the same state as when the script was recorded.

Note: Multiple open instances of the application-under-test will cause an ambiguous recognition error during

playback. For more information about ambiguous recognition, see Ambiguous Recognition window on

page 1183.

As part of your test process, you might want to do cross-JVM testing to verify that your applications run correctly

under various JVMs. For information about supported JVMs, see Java Support on page 1437.

1. Enable your web browsers and Java™ environments.

2. Use the Configuration Editor to configure your applications for recording and playback.

3. Set the appropriate playback preferences.

Configuring how to handle unexpected windows during playback
Problems can occur during script playback if unexpected windows are displayed. Unexpected windows such as

security and warning message dialog boxes or custom dialog boxes can cause playback failure with exceptions such

as object not found or window not activated. You can configure how unexpected windows can be handled so that

scripts can be played back smoothly without interruption.

About this task

You can identify unexpected windows in each test domain and specify how such windows must be handled during

script playback.

1. Click Configure > Configure Unexpected Windows to open the Configure Handling of Unexpected Windows

dialog box.

2. From the Test Domain list, select the domain for which you are configuring unexpected windows.

If you do not know the domain of the unexpected window, select All Windows to see a master list of

unexpected windows with window titles for all domains. The Unexpected Window Title field lists all

unexpected windows in the selected domain.

If the required window title is not listed in the Unexpected Window Title list, you can add the missing window

to the list by clicking the Add Window option. An empty row is added in the Unexpected Window Title list.

Double-click the cell in the empty row and type the window title. To remove a window from the list, select the

corresponding window row and click Remove Window.

3. Select the window for which you want to configure the action to be taken. You can configure an unexpected

window either to be closed automatically, or have a specific action performed on it, determined by additional

recognition properties that you can define. Do one of these procedures:

1179

HCL OneTest™ UI

1180

a. To indicate that the window must be closed automatically, select Close from the Select Action list.

b. To indicate that a specific action must be performed on the window, select Click Action from the

Select Action list to indicate that a specific action be performed on a specific control on the window.

The Configure action objects properties field displays the object recognition properties of the control

on the selected window such as Property Name and Property Value. To modify the recognition

properties, double-click the Property Name cell in the required row and type the required property

name.

If a required property name or value is not displayed, you can add the property by clicking Add

Property. An empty row is added in the Configure action objects properties field. Double-click the

Property Name cell in the empty row, and type the required property name. You can also use the Test

Object Inspector to get properties for the control on unexpected window. Open the unexpected window

and the Test Object Inspector. Move the cursor over the window to get the title. Move the cursor over

the specific control, to get its property name and value. See Displaying test object information on

page 681 for instructions to use the Test Object Inspector.

To remove recognition properties for the control on the selected window, select the required property

row and click Remove Properties.

To apply modified recognition properties to the control on the selected window, click Apply.

4. Select the Perform close action for 'non-configured' windows check box to set the Close action for all

windows that have not been configured. You can use this setting to close any unexpected windows that were

not captured during recording of the script.

5. After completing your configuration, click Finish to save your changes.

What to do next

Enable the unexpected window handling feature by selecting the Enable handling of unexpected windows check box

on the Unexpected Windows page in the Preferences dialog box. When you play back a script, displayed unexpected

windows are handled according to the configuration on the Configure Handling of Unexpected Windows dialog box.

Inserting dynamic test objects
You can also insert dynamic test objects by using Insert Dynamic Test Object. The hierarchy of a test object in the

object map represents the order of search of the particular control during playback. Over a series of application

changes, the hierarchy of the objects may change if new objects are introduced in the test application. This results in

a playback failure. Using dynamic test objects you can anchor a test object as a descendant to its parent.

1. From the test object map menu, click Applications > Run to open the Select an Application dialog box.

2. In the Application Name field, select the application that contains the controls you want to test and click OK.

3. In the Test Object Map toolbar, click Test Object > Insert Dynamic Test Object .

Result

Chapter 8. Test Execution Specialist Guide

HCL OneTest™ UI opens the Object Map dialog box.

4. On the Select an Object page, click the Object Finder icon and drag it into the application over the object

you want to add to the test object map. For other methods of selecting objects, see Select an Object on

page 1544.

5. Click Next.

6. In the Add Dynamic Test Object dialog box, select Anchor to Selected Parent.

By selecting Anchor to Selected Parent, you are making the new object a descendant of its parent. You can

now search for the object dynamically, anchoring to the parent. You can edit the recognition properties by

double clicking on the object properties.

7. Select the object that you want to insert and click Finish.

Note: To convert an existing mapped object to a dynamic object, right-click in the test object map

and click Convert To Dynamic Test Object . The Administrative property displays an additional

descriptionobject property. To convert a dynamic test object to a mapped test object, set the

descriptionobject property to false. However, you must ensure that the test object is a mappable

child of its parent.

Note: To prevent playback failure due to object hierarchy changes, you can also enable the dynamic

find feature, which enables HCL OneTest™ UI to locate test objects in the application-under-test whose

hierarchical position may have been altered from the position in the test object map. For information

about the dynamic find feature, see Enabling the dynamic find feature on page 1181.

Enabling the dynamic find feature
The test object map lists in a hierarchy the test objects in the application under test. Changes to the application-

under-test might result in changes in the object hierarchy. During playback, HCL OneTest™ UI is then unable to find

an object whose hierarchical position has changed, and this causes playback failure. With the dynamic find feature

you can prevent playback failure that results from hierarchy changes in the application under test. The dynamic

find feature performs searches for objects whose hierarchy has changed, when a search that is based on object

recognition scoring (ScriptAssure) fails to find such objects.

About this task

On the Dynamic Find Enablement page in the Preferences dialog box, you can enable or disable the dynamic find

feature for all functional test scripts in the integrated development environment (IDE). For an individual script, you can

enable or disable the feature on the Select Log page. For instructions, see the Select Log page topic. You can also

enable or disable from the command-line interface. For information, see theHCL OneTest™ UI command line interface

topic.

1181

HCL OneTest™ UI

1182

Note: When you enable the dynamic find feature in the Preferences dialog box, the setting applies to all

scripts in the IDE. You can override this preference for an individual script on the Select Log page, when you

run the script.

1. In the product menu, click Window > Preferences to open the Preferences dialog box.

2. Expand Functional Test, and then click Playback.

3. Click Dynamic find enabled.

4. Select the Enable script find if scoring find fails check box.

Note: To prevent playback failure because of hierarchy changes, you can also use the Insert Dynamic

Test Object method. Using this method, you can anchor a test object as a descendant of its parent.

This renders script playback resilient to object hierarchy changes. For information about inserting

dynamic test objects, see the Inserting dynamic test objects topic.

Related information

Inserting dynamic test objects on page 1180

Using ScriptAssure
Using ScriptAssure™, you can play back scripts successfully even when the application-under-test has been updated.

Each object in a test object map has a set of recognition properties, which are typically established during recording.

For example, a button has five recognition properties: name, type, role, class, and index. To find an object in the

application-under-test during playback, HCL OneTest™ UI compares the object in the application with recognition

properties in the test object map.

Each property of a test object has an associated recognition weight value, which is a number from 0 to 100. HCL

OneTest™ UI uses the weight value for each recognition property to determine the importance of the property. For

example, the name, type, role, and class recognition properties of the button object have a weight of 100; the class

recognition property has a weight of 50.

HCL OneTest™ UI uses criteria to assign a recognition score to objects in the application-under-test. For example,

if the object exactly matches the recognition properties in the test object map, its score is 0. If the object has one

property with a weight of 100 that does not match, its score is 10,000. If the object has two properties that do not

match, its score is 20,000, and so on. The higher the recognition score, the less exact the match.

For HCL OneTest™ UI to recognize an object in the application-under-test, the object properties must match the

properties recorded in the test object map. If the object properties do not match and the weight of the recognition

property is less provided that their score lies within 10,000, HCL OneTest™ UI still proceeds with the test. If the score

exceeds the value of 10,000 but less than the default threshold of 20,000, HCL OneTest™ UI writes a weak recognition

warning to the log.

Chapter 8. Test Execution Specialist Guide

You can also enter values to set thresholds for recognition scores, such as the maximum acceptable recognition

score, last chance recognition score, ambiguous recognition scores difference threshold, and warn if accepted score

is greater than. During playback, the recognition scores for a test object's recognition properties are added and the

total compared to the thresholds set in the ScriptAssure Page.

If objects in the application-under-test have changed, you can still play back scripts in HCL OneTest™ UI by using the

ScriptAssure™ feature to control object-matching sensitivity.

You can use ScriptAssure™ in two ways:

Standard -- The ScriptAssure Page-Standard on page 651 controls object-matching sensitivity during playback by

using a slider control. To set the tolerance for differences between the object in the application-under-test, you move

the Recognition Level slider between Strict and Tolerant. To find differences between the object and the recognition

properties, you move the Warning Level slider between High and None.

Advanced -- The ScriptAssure Page-Advanced on page 650 sets thresholds for recognition scores. You can set

a maximum score to consider a test object as a candidate for recognition; you can also request warnings when

candidate objects have a score higher than the designated threshold.

Tips for using ScriptAssure

• If you want the script to play back faster and with fewer warnings, set the thresholds high. The recognition is

less fussy but more prone to error. This behavior might be useful in some situations.

• If recognition is weak, examine your test object map. Have accessible names changed? (For example, is

"Place Order" now "Place Your Order?") If the application has changed permanently, update the test object

map to reflect the change. In an internationalization situation, change the label of the test object, not its

accessible name.

• If the application has a dynamic object or if several versions of the application are slightly different, correct

versions of an object, replace the recognition property with a regular expression. You can also use a numeric

range to accept more than one value of a property. For information, see Replacing an Exact-Match Property

with a Pattern.

• If it is late in the development cycle and you are doing maintenance, verify that your scripts work and have

the best possible recognition by setting the warning level to High. You will receive warnings about possible

problem areas, and if you do, fix the map.

Ambiguous object recognition in functional testing
Ambiguous recognition occurs when HCL OneTest™ UI can not uniquely identify an object in the system-under-test.

This commonly happens when HCL OneTest™ UI cannot differentiate between an instance of the application-under-

test started by a script playback and an instance of the same application inadvertently left open previous to script

playback. This also applies to identical windows from one application and identical HTML documents. Ambiguous

recognition will cause script playback failure unless the duplicate application is closed.

1183

HCL OneTest™ UI

1184

If HCL OneTest™ UI finds more than one instance of the application-under-test during the playback of a script the

Ambiguous Recognition window will open allowing you to close the duplicate instance and resume playback.

Preventing ambiguous recognition

One common cause of ambiguous recognition is residual windows left open from a previous playback of a test script.

To avoid this issue take the following actions:

• Make closing the application-under-test the last action recorded in the test script.

• If script playback fails, close all windows opened by script playback before replaying the script.

Dealing with ambiguous recognition

If the Ambiguous Recognition window opens correct the situation and restart playback.

The Ambiguous Recognition window opens and playback pauses.

1. Minimize open windows until the Ambiguous Recognition window is visible.

2. Find and close the duplicate application instance using the information in the Ambiguous Recognition

window.

3. Click OK in the Ambiguous Recognition window to resume playback.

Playback Monitor
During playback you can view the script name, the number of the line that is executing, status icons, and a description

of the action in progress from the Playback Monitor.

The Playback Monitor consists of four parts:

• Script name

• Description of action in progress

• Status icons

• Script line number

• Stop and pause or resume buttons

Playback Monitor icons

The Playback Monitor includes four status icons:

Status Icon Description

HCL OneTest™ UI is looking for an object in an application.

HCL OneTest™ UI is not looking for an object in an application.

HCL OneTest™ UI is waiting for an object in an application to appear or for a script de

lay to end.

Chapter 8. Test Execution Specialist Guide

Status Icon Description

HCL OneTest™ UI is executing the current script.

Turning off the Playback Monitor

You can turn off the Playback Monitor.

By default, the Playback Monitor is on.

1. Click Window > Preferences .

2. In the left pane expand Functional Test, expand Playback, and click Monitor.

3. Clear the Show monitor during playback check box.

Pausing or stopping script playback
Playback of a script can be paused or stopped.

Pausing and resuming playback

About this task

The script is currently playing and the playback monitor is open.

1. Press F12 to pause playback.

2. Click the resume button on the playback monitor to restart playback.

Stopping script playback

About this task

The script is currently playing back and the Playback Monitor is open.

Press F11 to stop playback.

Note: If playback is paused you can click the stop button on the Playback Monitor to stop playback.

Results

Script playback ends and a failure is recorded in the playback log.

What to do next

Close the application that was associated with the script being played back.

Running a script from HCL OneTest™ UI
When you run a script from HCL OneTest™ UI, it plays back all of your recorded actions, such as starting an

application, the actions you take in the application, verification points, and stopping the application.

About this task

1185

HCL OneTest™ UI

1186

You can play back functional tests in the Google Chrome, Microsoft Edge, Firefox, and Internet Explorer browsers.

When you play back any HTML test in the Edge or Google Chrome browser, if there is a browser and driver

incompatibility, HCL OneTest™ UI automatically downloads the appropriate driver. Then, the test is played back

successfully.

1. Configure your application for testing by setting the appropriate Java™ environment or web browser to run the

application.

2. Run the script in any of the following ways:

◦ In the Projects view, click a script and click Run Functional Test Script in the HCL OneTest™ UI

toolbar.

◦ In the Projects view, right-click a script and click Run.

◦ In the Projects view, click a script and then click Script > Run.

The Script Launch Wizard appears.

3. Optional: To prevent the Script Launch Wizard from opening when you run a test script, do the following:

a. Click Windows > Preferences.

b. Click Functional Test > Playback > Logging.

c. On the Logging options page, select Don't show script launch wizard.

4. On the Select Log page, keep the default log name or select a log name.

5. Optional: You can enter run arguments or set a dataset iteration count:

a. Click Next to display the Specify Playback Options page.

b. In the Run arguments field, enter or select command-line arguments to pass to the script if required.

c. In the dataset Iteration Count field, select a number or Iterate Until Done to specify how many times a

test script runs when you run the script.

6. If the unexpected window handling feature has been enabled for all scripts in the Preferences dialog box, the

Enable handling of unexpected windows check box is selected on the Select Log page. Clear the check box if

you do not want to enable the feature for the script you are running.

If the unexpected window handling feature has not been enabled for all scripts in the Preferences dialog box,

the Enable handling of unexpected windows check box is not selected. Select the check box if you want to

enable the feature for the script you are running. Actions that have been configured for specific controls on

unexpected windows in the Configure Handling of Unexpected Windows dialog box are performed.

7. If the dynamic find feature has been enabled for all scripts in the Preferences dialog box, the Enable script

find if scoring find fails check box is selected on the Select Log page. Clear the check box if you do not want

to enable the feature for the script you are running. The dynamic find feature enables HCL OneTest™ UI to

locate test objects in the application-under-test whose hierarchical position may have been altered from the

position in the test object map, ensuring that playback does not fail.

Chapter 8. Test Execution Specialist Guide

If the dynamic feature has not been enabled for all scripts in the Preferences dialog box, the Enable script find

if scoring find fails check box is not selected. Select the check box if you want to enable the feature for the

script you are running.

8. Click Finish to begin running a test script.

Results

The Playback Monitor starts and provides information as the script plays back. If the Playback Monitor does not start,

check the settings in the Playback Monitor Preferences Page.

After the script runs, a log file opens. If a log does not open, in HCL OneTest™ UI, check the settings in the Logging

Preferences Page.

Notes:

• When running test scripts through command-line or through IBM® UrbanCode™ Deploy, you should

ensure that at any given time, only a single playback process is running on the machine hosting HCL

OneTest™ UI.

• If the recording was performed in one document mode on Internet Explorer, the play back needs to be

done on the same document mode in Internet Explorer. Using different document modes may render

the controls differently and playback may vary.

• For information about providing more granular control of mouse and keyboard actions, see Playing

Back Low Level Mouse and Keyboard Actions on page 988.

• For information about pausing or stopping script playback, see Pausing or stopping script playback on

page 1185.

Running functional tests for HTML applications by using the Web UI engine
When you want to run functional tests for HTML applications in browsers without enabling the Java environments

and browsers, you can do so by using the Web UI engine.

About this task

To run functional tests for the HTML applications in web browsers, you must first enable the Web UI engine for the

functional test from the Preferences menu.

You can also configure HCL OneTest™ UI to select a specific browser profile that you configured to add the home

page, extensions, and settings for the browser to run the tests. You can select the profile in Preferences by going to

Window > Preferences > Test > Test Execution > UI Test Playback > Browser. For more information, see the related

information.

If you select a specific profile for the browser, the browser displays the details that are set for the profile before the

actual Application Under Test (AUT) is loaded.

1187

HCL OneTest™ UI

1188

If you do not select a specific profile for the browser, the test runs on the browser with a temporary profile, which is

not configured with any predefined settings.

1. Enable the Web UI extension from the Functional Test perspective by performing the following steps:

a. Go to Windows> Preferences> Functional Test> Playback menu.

The Playback settings page is displayed.

b. Select the following checkboxes:

▪ Play back with Web UI Extension

▪ Play back with Web UI action

c. Click Apply.

2. Run the functional test.

Notes:

◦ When you run the functional test for any HTML application in the Mozilla Firefox, Microsoft

Edge, or Google Chrome browser by using the Web UI engine, and if there is a browser and

driver incompatibility, HCL OneTest™ UI automatically downloads the appropriate driver to play

back tests successfully.

◦ You can clear the cache and history of the Mozilla Firefox, Microsoft Edge, and Google Chrome

browsers by selecting certain checkboxes in the Preferences menu. You can select the

Clear cache and Clear history checkboxes by going to Window > Preferences > Test > Test

Execution > UI Test Playback > Desktop.

Results

You have run functional tests for HTML applications by using the Web UI engine.

Related information

Enabling web browsers on page 588

Setting a specific browser profile for the playback of functional HTML tests on page 591

Google Chrome browser support on page 592

Running a script from the Microsoft™ Edge browser
You can use HCL OneTest™ UI to play back test scripts using the Microsoft™ Edge browser.

About this task

Chapter 8. Test Execution Specialist Guide

When you play back functional tests in the Edge browser by using the Web UI extension, if there is a browser

and driver incompatibility, HCL OneTest™ UI automatically downloads the appropriate driver to play back tests

successfully. For more information, see the related links.

1. Start the Edge browser using either startBrowser() or startApp().

Choose from:

◦ To use startBrowser(): startBrowser("Edge", "https://www.google.co.in/");

◦ To use startApp():

a. Click Configure > Enable Environments for Testing > Web Browsers and click Add.

b. Browse to C:\Program Files (x86)\Microsoft\Edge\Application and click Add.

c. Add an HTML application and select Edge as the browser in the Configure > Configure

Applications for Testing wizard.

2. Add sleep() of at least 15 seconds after startBrowser() or startApp().

Related information

Running functional tests for HTML applications by using the Web UI engine on page 1187

Debugging scripts
You can use the same process to debug a Functional Test script as you would to debug other Visual Basic or Java™

applications. If you prefer, in HCL OneTest™ UI, Eclipse Integration, you can debug your script in the HCL OneTest™ UI

Debug Perspective which makes it easier to start the debugger that comes with the Java™ Development Toolkit.

About this task

In HCL OneTest™ UI, Eclipse Integration, Functional Test scripts are recorded in the Java™ programming language.

Debugging these scripts is the same process as debugging a conventional Java™ application. For more information

about using the Test Debug Perspective, see the IBM® Java™ Development User Guide (Getting Started: Debugging

Your Programs).

In HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, Functional Test scripts are recorded in the Visual

Basic programming language. Debugging these scripts is the same process as debugging a conventional Visual

Basic application. For more information about debugging in Visual Basic, see the Microsoft® Developer Network

(MSDN) Developing with Visual Studio.NET (Building, Debugging, and Testing). In HCL OneTest™ UI, Microsoft Visual

Studio .NET Integration, more views appear when a script is in debugging mode.

Setting the Debug Perspective preference

1. Click Window > Preferences.

2. In the left pane, expand Functional Test.

3. Click Workbench > Advanced.

4. Clear the Switch to Test Debug Perspective when debugging check box.

Results

1189

HCL OneTest™ UI

1190

Debugging a script

1. Configure your application for testing by setting the appropriate Java™ environment or web browser as the

default to run the application you are testing.

For information, see Before you record related topic.

2. Open the Debug Perspective in any of the following ways:

◦ In the Projects view, click a script and click the Debug Functional Test Script button in the

Functional Test toolbar.

◦ In the Projects view, right-click a script and click Debug.

◦ In the Projects view, click a script and from the Functional Test menu, click Script > Debug.

Result

The Test Debug Perspective opens and provides information as the script plays back under the debugger.

After the script runs, a log file is displayed. If a log is not displayed, check the settings in the Logging page.

If a verification point fails, the Comparator appears so that you can analyze the results. If the Comparator

does not start, check the settings in the Logging page.

Screen snapshot on playback failure of functional tests
If playback of a script causes an exception to be thrown, HCL OneTest™ UI takes a screen snapshot at the time of the

failure. The screen snapshot is accessible through the log.

Accessing the screen snapshot in an HTML log type

HTML is the preferred log type to access the screen snapshot.

Select HTML as the log type in the Logging Preferences Page in FT Java™ or the Logging Options Page in FT .Net.

After playback fails the log opens in your browser.

1. Find the screen snapshot image near the bottom of the log.

◦ Click the image or link to view full size.

◦ Right click to save, print, or email the JPEG image.

Taking a screen snapshot with scripting

RootTestObject exposes a getScreenSnapshot method that will return a snapshot of the screen. GuiTestObject

exposes the same method, but only captures the portion of the screen rendering the TestObject. LogInfo, LogError,

and LogWarning all have overloads that will take a snapshot and add it to the log.

Chapter 9. Test Manager Guide
This guide describes how to keep track of the performance of the application by evaluating the test results. Following

topics cover how you can work with the test results.

Publishing test result to HCL OneTest™ Server
The test result indicate the quality of the application under test. There could be different stakeholders to the

application who do not have the product installed but want to check the quality of application. You, as the user of the

product, can publish the test result to HCL OneTest™ Server so that others can view it from the web browser.

Before you begin

• You must have installed the HCL OneTest™ Server and started it. The server is part of the product package.

For more information about HCL OneTest™ Server, see the Information Center.

• If the HCL OneTest™ Server server is behind a firewall, you might not be able to connect to it. You must

configure the firewall so that it can allow connections on ports 5443 and 7828.

About this task

You can publish only XML and HTML logs. Also, you cannot open Verification Point Comparator from the published

result.

Note: This feature is available only with the Eclipse-based HCL OneTest™ UI.

To play back Web UI tests and generate reports in HCL OneTest™ Server, you must configure HCL OneTest™ Server

from the Web UI Test perspective. To play back Functional tests and generate reports in HCL OneTest™ Server, you

must configure HCL OneTest™ Server from the Functional Test perspective.

You can choose to set the publish parameters once in the Preference page so that you do not have to do it after every

run or you can set the parameters every time for the specific result that you want to publish. Based on the publish

parameters, the test result is published after the test run. For information about how to publish specific test result,

see Publishing specific result to HCL OneTest Server.

To set the publish parameters:

1. Click Window > Preferences > Test > HCL OneTest Server > Results.

2. Type the URL of the server. The format is https://servername:5443 and click Test Connection.

3. Specify the offline user token that you created on the server. To create a token on HCL OneTest™ Server, see

Generating an offline token.

4. In Publish result after execution, select when to publish test result. In the initial stage when you are

debugging a test, you might not want to publish the test result. Select one of the options based on your need.

◦ Select Never to never publish the test results to the server.

◦ Select Prompt to ask you to publish the test results after every test run.

1191

https://help.hcltechsw.com/onetest/hclonetestserver/index.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

HCL OneTest™ UI

1192

Note: A command line run will always publish the test results even if the workbench is set to

Prompt.

◦ Select Always to publish the test results after every test execution.

5. In Publish to Project, select a project that you are a member of on the server. The test result is published to

that project. You cannot create a new project from the desktop client. If there are no projects or you are not a

member of any project, create the project or become a member of a project on the server.

6. In Reports, select the reports that you want to publish to the server.

7. Click Apply and Close.

Results

Test results are automatically published to the HCL OneTest™ Server, depending on the parameters that you have set.

What to do next

To view the test results:

1. Log in to the server.

2. Click the Results page and then expand the test.

3. Click the published report links. The report opens in a new browser.

Publishing specific results to the server
If you have a single test result or multiple test results that are not published to HCL OneTest™ Server, you can publish

a single or all of them simultaneously.

Before you begin

• You must have installed the HCL OneTest™ Server and started it. The server is part of the product package.

For more information about HCL OneTest™ Server, see the Information Center.

• If the HCL OneTest™ Server server is behind a firewall, you might not be able to connect to it. You must

configure the firewall so that it can allow connections on ports 5443 and 7828.

About this task

You can publish the statistical reports to HCL OneTest™ Server at this moment.

1. Open HCL OneTest™ Performance, and then go to File > Export.

2. Expand the Test folder, and then select Execution Result to HCL OneTest Server.

3. Click Next.

4. Expand the project, and then select one or more test results that you want to publish.

Alternatively, you can right-click on all the test results that you want to publish from Test Navigator, and then

select Publish Results.

http://hclonetestserver.hcldoc.com/v10/help/index.jsp

Chapter 9. Test Manager Guide

Tip: You can press the Ctrl key to select the results from across projects.

5. Click New Server and specify the URL of HCL OneTest™ Server.

The format of the URL is https://fully-qualified-domain-name:443.

Note: If you had added the publish parameters in the product Preferences, then the Server field auto-

populates the URL of HCL OneTest™ Server.

6. Enter an offline user token that you created on HCL OneTest™ Server.

7. Select a project from the Project Name drop-down list.

The Project Name drop-down list displays all the projects on HCL OneTest™ Server.

8. Click a row against the result and type the name of the label in the Labels column to add labels to the result.

Note: If you run the test assets by using the -labels option from the command-line interface, then the

Labels field contains the name of the labels that you provided during the run time and labels that you

added to the performance report.

9. Optional: Click Add Common Labels and type the name of the label to apply a common label to the selected

results.

10. Select the reports that you want to publish to the server from the Reports section.

11. Click Publish.

Results

You have published the test results to HCL OneTest™ Server.

What to do next

To view the test results:

1. Log in to the server.

2. Click the Results page and then expand the test.

3. Click the published report links. The report opens in a new browser.

Unified reports
Unified reports in HCL OneTest™ UI provide a detailed overview of the test results. Unified reports also provide an

extensive user interface that you can use to analyze or apply filters on the test results.

You can view the unified reports that is generated by HCL OneTest™ UI for all functional, mobile tests, or Web UI tests

immediately after a test run.

1193

HCL OneTest™ UI

1194

If you want to view the unified reports of tests that ran, you can right-click the test result in the Test Navigator view,

and then select the Display Unified Report option. See Viewing a unified report for Web UI tests, compound tests, and

AFT Suites.

Note: If the Results folder is not available in the project, the unified report is stored in the Web UI test,

compound test, or AFT Suites folder.

When you play back a functional test script, the report is displayed in the browser that you configure in Preferences

of HCL OneTest™ UI. You can view the generated results as a unified report, which is the default option when you play

back functional test scripts. When you want to view the test logs in any of the supported formats, you can change the

default format for the test logs. See Logging page on page 644.

For Web UI tests including mobile tests, the unified report displays the details of the application along with their icons.

For functional tests, the unified report displays the details of the application along with a generic icon.

The Details pane of the unified report displays test details, test steps, and different iterations of each test run. The

following table lists the details that are displayed for each test type:

Test type The Details pane displays ...

Functional test Test details and test steps.

Web UI test Test details and test steps.

AFT suite Web UI tests, functional test scripts, and compound

tests that are available.

Compound test Web UI tests, and functional test scripts that are avail

able.

When you play back SAP GUI tests from the Web UI perspective, the unified report is also displayed in the browser

apart from the Statistical Report, and UI report.

You can perform the following actions on the unified report:

Chapter 9. Test Manager Guide

• Expand a test by using the icon in the Details pane, to view all the passed and failed steps for each test.

You can select each test step to view the details. Test steps that fail with an exception are highlighted.

• Use the Filters option to filter the passed and failed test suites.

• Click to navigate from the unified report to the workbench and view a specific test or test step.

Note: For a Web UI test, the test step is highlighted in the workbench. But for a functional test script,

the line number of the test script is highlighted in the workbench.

• Click in the test steps pane to expand and view the complete details of test steps that have a truncated

description.

Restriction: The Internet Explorer browser does not display the Resize button .

The following table lists the User Interface (UI) elements that are available in the unified reports:

UI element Description

Indicates that a single test is used for playback

1195

HCL OneTest™ UI

1196

UI element Description

Indicates that a compound test is used for playback

Indicates that an AFT Suite is used for playback

Displays the runtime environment for non-web-based applications

Displays the screen captures as a slide show

Displays the test information

Enables you to view the selected test and the test step in the work

bench

Displays the number of failed tests in a compound test

Displays the number of failed steps in a single test

Note: The unified report that is generated after you enable the remote access either in the secure or non-

secure mode, which can be enabled by clicking Windows > Preferences > Test > Performance Test Reports

> Web Reports > Allow remote access from a web browser check boxes, does not display contents in the

browser page.

To resolve this, you must first restart the workbench and then play back tests, after you enable the remote

access. The unified report gets generated successfully.

You can view the following details from the unified report of the mobile test:

• The details and screen capture that are associated with each test step. To view these details, you can click

each test step in the Details pane.

• Android device on which the test was played back. To view the device, you can click the icon.

• Test information such as AUT, host computer, and duration of the test. To view such information, you can click

the icon.

• All the screen captures in a slide show format. To view the screen captures, you can click the icon.

Chapter 9. Test Manager Guide

Exporting unified reports

To export unified reports to download them in different formats: as a compressed file which contains an HTML file or

as a PDF file, see Exporting unified reports on page 1197

Related reference

Logging page on page 644

Exporting unified reports
After you run tests and when the unified report is generated, you can export the unified report to different file formats

such as HTML, PDF, or XML(JUnit). By using the exported file, you can view the test details in the desired format and

save the exported file for later use.

About this task

On the unified report page, you can click the Export button at the top-right corner to directly export the unified report

to an HTML file, which is the default option. The exported report includes the summary, test steps, and screenshots.

You can also export the unified report to other available file formats and set preferences for the details that you want

to export.

1. Click the ellipses button .

2. Select one of the following file formats from the Choose File Format list:

◦ HTML(Default): Select HTML(Default) to export the report in an HTML file.

Note: The HTML file is downloaded as a zip file. You must extract the zip file to view the HTML

file.

◦ PDF: Select PDF to export the report in a PDF file.

Restriction:

▪ The verification points that are captured for functional tests are not included in the PDF

file.

▪ The icons of the applications under test are not supported in the PDF file.

▪ The text in a table that contains the greater than symbol > is printed as > in the

generated PDF of the unified report.

◦ XML(JUnit): Select XML(JUnit) to export the report in the JUnit format. You can use the JUnit XML

to publish test results to Continuous integration/continuous delivery (CI/CD) pipelines. For example,

Azure Pipeline.

3. Select one of the following checkboxes to specify the details that must be included in the exported file.

1197

HCL OneTest™ UI

1198

◦ Include Steps: Select this checkbox to include the summary and steps of the playback in the report.

◦ Include Screenshots: Select this checkbox to include the summary, test steps, and screenshots of the

playback in the report.

◦ Notes:

▪ When both the checkboxes are not selected, then the exported report contains only the

summary.

▪ These checkboxes are disabled when you select XML(JUnit) because they are not

applicable for the JUnit format.

4. Click Export.

Note: If you encountered any errors after you clicked Export that indicate insufficient disk space

or memory, you must increase the default memory allocated in the eclipse configuration file

eclipse.ini that is located in your eclipse installation directory. Open the file, find the -Xmx4000m

or -Xmx4g attribute, and then change it to -Xmx6000m or -Xmx6g.

Results

You exported the unified report in the selected format.

Languages supported for PDF export
HCL OneTest™ UI supports localization of some languages when you export the unified report to a PDF file.

The following languages are supported for the PDF export:

• English (en_US)

• French (fr_FR)

• German (de_DE)

• Brazilian Portuguese (pt_BR)

• Hungarian (hu_HU)

• Italian (it)

• Spanish (es)

Results for tests in UI Test perspective
In this section, you will learn how to analyze test results in the Web UI Test perspective.

UI Test Statistical report
You can use the UI Test Statistical report to view the performance data for your application. This report displays

performance data for all of the transactions in the test, all of the steps in the test, and all of the supported computer

resources.

Chapter 9. Test Manager Guide

The UI Test Statistical report provides you with the following information:

Page Description

Overall Displays the high-level data such as the name of the test, total time taken to run the

test, the number of steps attempted, and the number of steps that passed or failed.

Transaction Performance Displays the Net End-to-End time and Net Server time for all of the transactions in the

test.

Step Performance Displays the Net End-to-End Time, Net Server Time, and On App Time for all of the

steps in the test. You must scroll down the page to view the response times for all of

the browsers that were used for the run.

Resources Displays graphically the metrics collected of the mobile device resources and re

sources used by the mobile applications for Android or iOS mobile tests.

You can find the following key Resource Monitoring parameters that are supported for

Android or iOS mobile tests:

Parameter Android tests iOS tests Description

Application

CPU%

Yes Yes
Displays the CPU utilization by the

application that was tested during

the test run.

Device CPU% Yes No
Displays the CPU utilization of the de

vice on which the tests were run for

the duration of the test run.

Note: A lag is observed in the

metrics reported for the initial

part of the test run.

Application

Used Physical

Memory

Yes Yes
Displays the utilization of memory for

the application that was tested dur

ing the test run.

Device Bat

tery%

Yes Yes
Displays the power utilization by the

device battery during the test run.

1199

HCL OneTest™ UI

1200

In a UI Test Statistical report, you can sort the order of the test steps, which are listed in the Step pane, either by

alphabetical order or by the order of execution of the test steps. The default sorting of the test steps is by the order of

execution.

You can either click the Execution order icon or the Alphabetical order icon to toggle between the sorting

options. You can also click the Up Arrow icon to sort the test steps in the correct order of execution or the correct

alphabetical order. Similarly, you can click the Down Arrow icon to sort the test steps in the reverse order of

execution or the reverse alphabetical order.

Evaluating desktop Web UI results
After the test run, Unified Report the statistical report, and test log is displayed. The statistical report displays

response time data for transactions and test steps. The live report displays result for the functionality of each step

and the test log shows details of each test step.

You can customize and export the reports.

Customizing reports

To view reports in the manner that you want, you can customize a report. For information about the options available

to customize a report, see Customizing reports on page 1206.

Exporting reports

To create executive summary and export reports in HTML and CVS format, see Exporting data from runs on

page 1216.

UI Test live report
When you initiate a test run, the Test Execution perspective displays the UI Test report. This report shows the status

of each step that is being currently running on the browser. After the test run completes, the UI Test Report shows up

in a new tab.

You must complete the following steps if you want the UI Test live report to be generated:

1. Open the eclipse.ini file that is located in the path as: /opt/HCL/HCLOneTest/eclipse.ini.

2. Add the following property:

-DdisableMoebReport=false

3. Save and close the eclipse.ini file.

4. Restart HCL OneTest™ UI.

When you run Web UI or mobile tests, the UI Test Live report is generated and stored in the Results folder.

If a test script includes many steps or if a test is run on multiple browsers simultaneously, navigating the errors in the

UI Test report is cumbersome.

Chapter 9. Test Manager Guide

The test header shows the browser name and version the test was run and the steps that failed

against the browser. You can also navigate from one error to another by clicking the red color

arrow shaped icons. The blue color arrow shaped icons are used to reach to the header of the

test.

If you chose to run the test on multiple browsers in parallel, the report lists each browser on which the test was run.

Generating Functional Test Report
To create an HTML report that can be printed or used outside of the workbench, generate a functional test report. The

functional test report shows the verdicts for the test and for each step of the test. Functional reports are generated

from the test run as HTML files that use predefined report designs.

To generate a report:

1201

HCL OneTest™ UI

1202

1. In the Test navigator view, right-click a test run and click Generate Functional Test Report.

2. Select a project to store the report, specify a name, and click Next.

3. Select one of the following report templates and click Finish:

a. To generate a report for Web UI tests, click Web UI reports (XSL).

b. To generate a report for Selenium tests, click Selenium reports (XSL).

c. To generate a report for a HCL OneTest™ UI test that is part of a compound test, click Functional GUI

reports (XSL).

Results

The report is displayed in the new tab. If you close the tab, you have to generate the report again.

Low Intensity Performance Testing
In performance testing, the user load is gradually increased from low intensity to high intensity. Testing the

performance of the application with very few users is referred to as Low Intensity Performance Testing. Typically,

you require performance test assets to do performance testing. However, in HCL OneTest™ UI, you can do functional

testing and low intensity performance testing with the same functional test assets.

Doing low intensity performance testing helps you find performance bottlenecks in the initial phase of development

itself thereby reducing the cost and effort that would be required when the performance issue is discovered in the

later phases of the release.

As part of low intensity performance testing, you can measure the various response times such as Net End-to-

End time, Net Server Time, On App and Off App response time for the transactions and each UI action. The UI Test

Statistical report displays all of these response times.

• Net End-to-End time : It is a measured time of interactions with the server and a client such as a browser or a

device. Time taken over the network is also taken into account. Typically, this does not include think time or

processing time by the workbench.

• Net Server time : It is a sum of the time of interactions with the server and the network. This time does not

include client (browser or device) time, think time or processing time by the workbench.

• On App time - It is a measured time of interactions on the client (browser or device) itself.

• Off App time - It is a sum of the time of interactions with the server and the network. The time spent on the

client is not taken into account.

A transaction is a logical grouping of a few UI actions. For example, creating a user is a transaction and filling up each

user field to create a user is a UI action. For an end user, time taken to complete a business task (transaction) is more

useful than time taken for each UI action. Over time certain business tasks get higher priority to be measured for

performance improvement. The Transaction report displays information about all of the transactions in a test.

Using a transaction might give you data about the response time taken by a transaction. However, it would be more

useful if you knew that that response time for a transaction is at the expected level. The end users would have already

defined response times for each business task in the service level agreement. So, you can define those performance

Chapter 9. Test Manager Guide

requirements in the tool and check whether the measured response time adheres to the agreement. The Performance

Requirement report displays information whether the transactions adheres to the performance criteria.

Adding a transaction
A transaction is a business scenario in the application under test such as logging in, checking out a product, or

making a payment. It is a logical grouping of certain UI actions. You add a transaction to the test to check the

performance for the entire transaction rather than each UI action in the transaction.

About this task

You can add a transaction only for the Launch App or In App nodes. So, if you have a bunch of steps that justifies a

transaction, split them from the rest of the steps to add a transaction.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. In the test editor, select one or more steps in the test script for splitting into one or more application nodes.

3. Right-click the selected steps, and then select Split Mobile actions or Web UI actions.

4. In the refactoring dialog box that opens, click Split and create containers. Ensure that Transaction is selected.

5. To add a transaction only for the selected steps, select the Create containers for selected nodes only option.

6. To add a transaction for all the nodes (Launch App and In App) in the test, select the Create containers for all

group of nodes option.

7. Click Finish.

1203

HCL OneTest™ UI

1204

Result

The group of steps are nested in the In App node which is also nested in a Transaction.

What to do next

After the test run completes, to view the Transaction report, in the Statistical report tab, select Transaction Report. To

view information about each report, click the help icon.

Defining performance requirements in transactions
You can define performance requirements for transactions in a test. These requirements specify acceptable

thresholds of performance for transactions and validate service level agreements.

Before you begin

Add a transaction to the test. See Adding a transaction on page 1203.

About this task

For example, you might define that the login action should take between 1-2 seconds and the check-out action should

take between 4-5 seconds. If the response time is outside of these threshold values, the Performance Requirements

report will display the results. You define a performance requirement as standard or supplemental. A standard

performance requirement is a requirement that you determine as significant enough to cause the entire run to be

declared a failure if it fails. A supplemental performance requirement, although important, is not significant enough to

cause the run to fail.

1. Select a transaction in the test and in the Transaction Details area, click the Advance tab.

2. Select the Enable Performance Requirements check box.

3. Click the performance requirement to define, and add a definition, as follows:

Option Description

Name You can change the name of a performance require

ment to improve readability. However, changing a

requirement name causes a mismatch between the

Performance Requirements report, which uses the

changed name, and the other reports, which use

the default name. Therefore, when you change a re

quirement name, be sure to keep track of the original

name.

Operator Click to select an operator.

Value Type a value.

Standard
Select to make the requirement standard.

Chapter 9. Test Manager Guide

Option Description

A standard requirement can cause a test to have a

verdict of fail. Clear to make the requirement supple

mental. In general, supplemental requirements are

used for requirements that are tracked internally. A

supplemental requirement cannot cause a run to fail,

and supplemental results are restricted to two pages

of the Performance Requirements report.

4. Optionally, apply the requirements to the other transactions in the test:

a. In the Requirements table, right-click the requirement row, and select Copy Requirements.

b. Select the transaction to apply requirements, and in the Requirements table right-click a requirement

row and select Apply Requirements.

5. Optionally, to remove the definitions of a requirement, right-click a requirement and click Clear.

What to do next

Now, run the test and see the Performance Requirements report.

Viewing On App and Off App response time
When you initiate a test run from the test workbench, by default, the response time is collected and displayed in the

UI Test Report after the run. This report shows the overall response time for each test step. The response time is also

displayed on the Step Performance tab of the statistical report. This report shows the average response time for each

test step.

About this task

If you used the Mozilla Firefox or Google Chrome browser to run the test, you can drill down further and see the

response time taken at each step by the application (On App), and the server and network (Off App).

To view the On App and Off App data for all of the steps on a page, from the Step Performance page, click the >

symbol after the Step Performance header and then click Step Response Time Contributions.

1. Click Run Test in the test workbench.

2. In the Run Configuration wizard, select the Firefox or Chrome browser and click Run.

When the test is completed, the statistical report displays graphs that represent the response time for each

step in the test. By default, only the 10 highest response times are collected during playback. You can modify

the filter by using the context menu on the legacy report and by going to the edit mode on the web report.

3. Click any response time graph and select Step Response Time Contributions. The report displays two bars,

one to show the time spent by the step on the application (On App Time) and another to show the time spent

on the network and server (Off App Time).

1205

HCL OneTest™ UI

1206

Note: The Step Response Time Contributions option is available only if you played back the test with

the Firefox or Chrome browser.

Figure displaying the Step Performance tab with Step Response Time Contributions context

menu.

Figure displaying On App Time and Off App Time.

4. To return to the main page, click the Step Performance link at the top of the Step Performance tab.

Customizing reports
You can customize reports to specifically investigate a performance problem in more detail than what is provided in

the default reports.

Creating custom reports
If the default reports do not address your needs, you can create your own reports.

About this task

Before you create a custom report, determine the ways in which the custom report will be different from or similar

to the system-supplied reports. You can use a default report as a template, modify the counters, and save it with a

Chapter 9. Test Manager Guide

different name. You can create a copy of pages or charts in a report that are based out of existing pages or charts. To

copy the pages or charts, go to the Edit view and click the Duplicate icon.

1. From the report, click Menu and click New.

2. In Create a new report dialog box, specify a name and description about the new report and click Create.

3. To change the page title, click the default page title and specify a different name.

4. Click Click to insert a row and specify the number of columns to add the views.

Each view represents a bar chart, line chart, or pie chart.

5. Select a view. To add counters to the view, click Settings .

6. On the View Settings page, select a counter and add its details.

7. Click Apply and from the Menu, click Save to save the report.

8. To add more views to the report, repeat steps 4 through 7 again.

Viewing trending reports
To view the trend of response time for an application over a period of time, open the trend report for a run. In addition

to the response time, you can view the trend for the loops, transactions, and performance requirements for the

application.

About this task

The trend report can help you determine the response times of the application at different milestones. For instance,

you can run the performance test for sprint or milestone builds and tag them. When generating the trend report, you

can specify conditions such as results that are less than 60 days old and include 'milestone' tag.

1207

HCL OneTest™ UI

1208

You cannot save a trend report. So, if you close the report, you have to generate it again.

To view the trend report:

1. In the Test Navigator view, select the run for which to open the trend report.

2. Right-click the run and click View Trend Report.

3. To view the trend that is based on certain criteria, in Filter, select a filter criteria.

If there is no customized filtering criteria, create one by clicking Manage and then Add.

4. To save the criteria, click Save, specify a name to the filter, and click OK.

The results in the execution results table are filtered out according to the specified criteria.

5. Click OK.

Result

The trend report is generated.

Chapter 9. Test Manager Guide

Filtering data in test results
You can filter the data in a test result that is displayed in a report so that you can remove the unnecessary data and

focus on the data that is significant for the analysis.

Before you begin

You must have a test result.

1. Double-click the test result from the Test Navigator.

2. Select a report from the drop-down list.

For example, the Performance Report.

3. Click the Menu icon , and then click Edit.

4. Select a page from the left pane in which you want to filter the data.

For example, the Page Performance page.

5. Click the Settings icon on a specific graph or table.

6. Click the Filters tab on the View Settings page.

7. Perform any of the following actions described in the following table to filter the data:

Op

tions

Actions

Fil

ter by

count

Perform the following steps:

a. Clear the Show highest values check box to display the smallest values for the pages.

Note: By default, the Show highest values check box is selected.

b. Enter a value in the Number to display field to display the items on the graph or table based

on the specified value for the selected counter.

Note: The title of the page is updated with the value that you specified along with the

Show highest values field.

For example, if you selected the Show highest values check box and entered 10 in

the Number to display field for the Performance Summary page, then the title is dis

played as follows:

Performance Summary (10 Highest).

c. Select the counter from the Primary counter for table filtering field by using the drop-down

list if you want to filter the data for the other counter.

d. Select the component for the counter that you selected from the Component drop-down list.

1209

HCL OneTest™ UI

1210

Op

tions

Actions

For example, consider that you performed the following actions to filter the data:

◦ Selected the Show highest values check box.

◦ Entered 5 as a value in the Number to display field.

◦ Selected Page Response Time as Primary counter for table filtering and Average as Compo

nent.

Then, the graph or table displays 5 pages that include the highest Average Page Response Time dur

ing the test run.

Fil

ter by

value

Perform the following steps:

a. Clear the Show counters above value check box to display the lower values for the pages.

Note: By default, the Show counters above value check box is selected.

b. Enter a value in the Filter value field to display the items on the graph or table based on the

specified value for the selected counter.

c. Select the counter from the Primary counter for table filtering field by using the drop-down

list if you want to filter the data for the other counter.

d. Select the component for the counter that you selected from the Component drop-down list.

For example, consider that you performed the following actions to filter the data:

◦ Cleared the Show counters above value check box.

◦ Entered 800 as a value in the Filter value field.

◦ Selected Page Response Time as Primary counter for table filtering and Average as Compo

nent.

Then, the graph or table displays the pages that include the Average Page Response Time lesser

than 800 ms during the test run.

Fil

ter by

name

Perform the following steps:

a. Enter a label name in the Filter value field.

The label name is the name that you provided for a page when you recorded the test.

b. Select the Case sensitive check box to find the pages that exactly match with the letter case

of the name that you entered in the Filter value field.

c. Select any of the following options to find pages more effectively:

Chapter 9. Test Manager Guide

Op

tions

Actions

▪ Include counters whose label contains filter value

▪ Include counters whose label equals filter value

▪ Exclude counters whose label contains filter value

▪ Exclude counters whose label equals filter value

Note: The fields Cumulated, Label, Path, and Unit are non-editable and display the preconfigured

values for the selected counter.

Result

In the Preview section, the values in the graph or table change as and when you change the filter options.

8. Click Apply to apply the changes that you made for the filters.

9. Click Save from the menu to save the data that you filtered.

10. Click Edit from the menu to exit the edit mode.

Results

You have filtered the data on the specific page for the report.

Customizing the appearance of graphs in a report
To display the data in a table, bar chart, or line chart in a manner that caters to your test requirements, use the

controls that are available in the View Options of a report.

1. In the Test Navigator, expand the project until you locate the run.

Each run begins with the name of the schedule or test, and ends with the date of the run in brackets.

2. Double-click the run.

Result

The default report opens.

3. Click the Menu icon and click the Edit icon.

4. Click the Settings icon for the graph or table to modify.

5. The controls that are available in the View Options section depend on the graph type: bar chart, line chart, or

table. For each graph type, only the applicable controls are displayed. You can adjust the following controls:

Option Description

Adapt Y Scale To compute minimum and maximum limit on the Y

axis, select the check box. (all charts)

Title Specify a title to the graph.

Show title To hide the title, clear the check box.

1211

HCL OneTest™ UI

1212

Option Description

X Axis Main items Select the item to view on the X Axis.

Stacked Items Select the item such as Pages or Time Ranges to

view them in stack instead of separate bars.

Adapt Y scale on zoomed data To adjust the Y scale according to zoomed data, se

lect the check box. (line charts)

Show time ranges To display the time range in the background of the

chart, select the check box.

Line smoothing To apply corners, clear the check box.

Orientation To view bar charts horizontally or vertically, select an

orientation.

Labels display policy To hide the labels in a bar chart, select Hidden. To be

able to accommodate labels within the frame of a bar

chart, select Adaptative. If you select Fixed, long la

bels might not be visible.

Time line visibility To view the time line of the chart in partial or full view,

select Small or Full options. Drag the time line to cre

ate a new time range. If those options are specified,

you can drag and create a new time range on the

chart itself. If you select None, the time line is not vis

ible and you cannot create a new time range on the

chart.

6. After making the changes, click Apply and from the Menu click Save.

To apply the changes to other reports, you can export the report definition and import it back. See Exporting

report metadata on page 1218.

Changing the report displayed during a run
Use this page to select the default report that opens during a run. Typically, you select Determine default report

based on protocols in test, which determines the protocols that you are testing and automatically opens the

appropriate protocol-specific reports.

1. Open the Default Report Preferences page. Click Window > Preferences > Test > Performance Test Reports >

Default Report.

2. In the Default Report window, select Determine default report based on protocols in test or a specific default

report to display a customized report or if the default reports do not meet your needs. Note, however, that you

will have to change this setting when you record other protocols.

3. Click Apply, and then click OK.

Chapter 9. Test Manager Guide

Modifying counters in a graph
To gather additional information for diagnosing performance problems, you can modify the counters that are

displayed in a graph.

About this task

Counters are specific in-built queries that gather statistical information from the recorded test. The information can

be the number of page hits, response time, and user load. By default, each report has pre-defined counters. You can

add or remove the counters from the graphs in the report.

1. Double-click the report from the Test Navigator to modify the counters.

2. Click the Menu icon , and then click Edit.

3. Click the Settings icon to modify counters on a specific graph.

4. Select the Counters tab on the View Settings page, and then perform the following steps to add, remove, or

move the counters in a graph:

a. Click the Plus button , and then select the counters from the drop-down list to add a counter.

b. Click the Remove button to remove the selected counter.

c. Use the up-down control buttons to move a counter.

The Preview section displays the result of the actions.

5. Optional: For a selected counter, you can change the component of the counter. Based on the counter

selection, the Component field shows the options available for that counter.

6. Perform the following steps to define a percentile value as decimal number for the counter:

a. Select the Percentile as component from the Component drop-down list.

b. Enter a new value in the Percentile value field.

For example, 99.9.

7. Optional: You can change the Cumulated value for the selected counter if you want to show the cumulation

values on a graph. Select one of the following options based on the requirement:

Choose from:

◦ Select No to display the value of the last interval on the current time range.

◦ Select From the beginning of the time range to display the cumulation of all values of the current time

range.

◦ Select From the beginning of the run to display the cumulation of all values from the beginning of the

run to the end of the current time range.

Notes:

1213

HCL OneTest™ UI

1214

◦ For line charts, the default value is No.

◦ For bar chart, pie chart, and tables, the default value is From beginning of time range.

◦ The fields Label, Path, and Unit are non-editable.

8. Click Apply.

9. Click Save from the menu.

10. Optional: Click Save As to create another report with these changes.

11. Click the Edit icon to exit the edit mode.

Results

You have updated the counter information for the specific report.

Correcting time offset
Response time breakdown and resource monitoring data is time stamped using the system clock of the host

computer. If there are differences between the system clocks of the host computers that you include in a test, then

response time breakdown and resource monitoring data are skewed in reports. The best practice is to synchronize

the system clocks on all computers that you include in a test. When this is not possible, you can correct the time

offset of each host computer after a test run. Typically, correct the time offset on all computers to match the system

clock of the workbench computer.

After you run tests with resource monitoring or response time breakdown enabled, follow these steps to correct the

time offset:

1. In the Test Runs view, right-click the host where you want to correct the time offset; then click Correct Time

Offset.

2. Select a Shift Direction of positive or negative. A positive shift moves the response time breakdown and

resource monitoring data on the selected host to the right. A negative shift moves the response time

breakdown and resource monitoring data on the selected host to the left.

3. Type the hours, minutes, or seconds of the time offset you want to use, and click OK.

Results

The response time breakdown and resource monitoring data on the selected host displays with a corrected time

offset.

Export test results
You can export the test result in different formats to share it with different stakeholders.

Creating an executive summary from the workbench
To create a printable report that summarizes the findings of the performance test run on a single view, create an

executive summary. You can export the data of the test run as an executive summary from a single report or from

Chapter 9. Test Manager Guide

multiple reports such as Performance Report, Mobile and Web UI Statistical Report, Transaction Report, and Loop

Report. You can then open the summary in a word-processing program to further format and annotate the data.

About this task

You export the executive summary to a local or a shared directory. You can export a test run from the Web Analytics

report, from the test workbench, and from the command line.

When you use the workbench approach to create an executive summary, you can choose to create the summary for

multiple runs and multiple report types at the same time. When you use the Web Analytics reports or the command

line, you create executive summary for a particular run and a report at a time.

To create an executive summary from the workbench:

1. Click File > Export > Test > Executive Summary. You can also right-click the runs to create executive

summaries for from the Test Navigator view and click Export > Test > Executive Summary. Each run would

have one executive summary.

2. In Export Directory, specify the folder path to save the executive summary and click Next.

3. Select the runs to create the executive summary for. To create an executive summary for comparing two runs,

select the Generate a compare report check box and select the main run to compare the report with and click

Next.

4. Select a report to export and click Finish.

What to do next

A folder with the name of the run is created on the specified folder. To view the executive summary, open the

index.html file.

Creating an executive summary from the Web Analytics report
To create a printable report that summarizes the findings of the performance test run on a single view, create an

executive summary. You can choose to view the executive summary on a web browser or save it on a computer.

About this task

To generate an executive summary for a particular report such as Transaction report or Performance report, open

that report and then follow the steps in this topic. To generate an executive summary for multiple reports or test runs

at the same time, see Creating Executive Summary from Workbench on page 1214.

To create an executive summary from the Web Analytics report:

1. Open the test run to create executive summary for. The test run opens in a web browser.

2. From the dropdown, open the report for which to create executive summary.

3. Click the Menu icon , click the Share icon , and click Executive Summary.

1215

HCL OneTest™ UI

1216

4. To view the executive summary of the report in another browser tab, click View on another tab or page of the

browser. To save the executive summary, click Save as an HTML file on the local computer.

5. Click Generate.

Exporting reports to HTML format
When you export a test run and share it, people can analyze test data without using the test workbench. You can also

email the test run or post it on a web server. The exported run can be displayed and printed from any browser. A test

run contains multiple reports. You can choose to export any or all of the reports.

About this task

You can export a single run to a local directory or multiple runs in the compare mode to a directory. In addition to

exporting a test run from Web Analytics, you can export it from the test workbench itself and from command line.

To export from the workbench, select a single run or multiple runs and click Export > Test > Performance Test Run

Statistics as HTML application . To generate a single report comparing multiple runs, in the Export wizard, select the

Generate a compare report check box and select a base run from the dropdown. To generate one report for each run,

do not select the check box.

To export from Web Analytics:

1. Open the test run to export.

The test run opens in an external or internal web browser.

2. Click the Menu icon , click the Share icon , and click Export Session to HTML.

3. Select the type of report to export and click Export.

4. When you export from the workbench, specify a path to the folder to save the exported report.

Your current project is the default save location. You can create a folder outside of the project to store

exported reports.

When you export from an external browser, the report is compressed and saved to the default download

location of the browser.

What to do next

You can now share the test run with others. You can also export the test run from command line.

Related information

Configuration of test runs from the command line on page 1130

Exporting results to a CSV file
To further analyze test results, you can export all statistics or specific statistics captured during a run to a CSV file.

About this task

Chapter 9. Test Manager Guide

You can export a single run to a local directory or multiple runs in the compare mode to a directory. You can export

the runs from Web Analytics report, workbench, and command line. To export from the workbench, select a single

run or multiple runs and click Export > Test > Performance Test Run Statistics as CSV File. To export data of specific

time ranges, on a subsequent page select a time range.

To export the run from command line, see the parameters in the Configuration of test runs from the command line on

page 1130 topic.

1. Open the test run to export.

2. Click the Menu icon , click the Share icon , and click Export Session to CSV.

3. Select the encoding system for the export.

4. Complete either one of the following steps:

Choose from:

◦ To export only the last value of each counter from the results or to export data of specific time ranges,

select Simple.

Note: When you export data of specific time ranges, for example, 5 Users or 15 Users, a

separate column is created in the CSV file for each time range.

▪ To create multiple CSV files if the number of columns exceed the specified value, select the

Split output if column exceeds check box and specify a value.

◦ To export all of the data for the run, select Full.

To include description about the name of the run, node name, and time range for each counter, select

the Include per instance counters.

◦ To export data of each location (agent) in a separate section in the CSV file, select the Export each

agent separately

To export data of each location (agent) to separate CSV files, select the One file per agent check box.

5. Click Export. If you export from the workbench, the report is saved in the specified folder. If you export from

an external browser, the report is downloaded in a compressed format to the default download location of the

browser.

What to do next

You can now analyze and share the report with people who are not using the workbench.

Related information

Exporting reports to HTML format on page 1216

1217

HCL OneTest™ UI

1218

Sharing URL of test run
When you share the URL of the test run with other people, they can view and analyze the test results on a browser on

their computer if the test workbench is running on your computer at that time.

To share the URL of the test run:

1. Open the test run to share.

2. Click the Menu icon and click the Share icon and select Share Execution Result URL.

A unique URL is created for the test run.

3. Copy the URL and click Close.

What to do next

You can now share the URL of the test run with anybody.

Exporting report metadata
To share report metadata with another test workbench user, export the report definition. Use this option to share

customized report formats with other users. The recipient imports the metadata with Eclipse's Import option and

views the report from the Test Navigator or in the list of reports in the web report.

To export report metadata:

1. Click File > Export.

2. In the Export window, expand the Test folder, select Report Definitions, and click Next.

3. In Save to File, select the file that will contain the report. This file is created if it does not exist.

4. In Select Report, select the report to export, and then click Finish.

The file is saved in the .report format.

What to do next

To apply another report definition to your reports, import that report metadata by clicking File > Import > Report

Definition, and browse to the .report file.

Evaluating mobile test run results
To check whether or not the mobile test ran successfully, you can open the test report. You can also view each

recorded functional action in the report.

About this task

When you run a test from , you can view both the mobile web report and the statistical report. By default, the mobile

web report is displayed after the run. You can also view this report on the mobile device.

To open the mobile web report and statistical report, from the Test Navigator view double-click a result from the

Results folder.

Chapter 9. Test Manager Guide

When you run a test from the mobile device or emulator, at the end of play back, the report opens up automatically on

the device or emulator. After the run, the report is uploaded to automatically. There is no statistical report for the test

that is run from the device or emulator.

The report is in a tabular format and displays the application that was tested, its execution status, and duration of

the test and the measured response time. Each action is displayed in a row with the screen capture of the action

highlighted and the time taken for that action from the beginning of the test.

If you added verification points to the test, you can also view the verification points entries in the report. The

Execution Status of the report displays Failure, if the verification points fail.

Evaluating results in the web browser
When a test is run from IBM® Rational® Quality Manager, the result is displayed in a web browser. You can also

change the default behavior of test workbench to view the results in a web browser within the workbench.

Customizing reports

To view reports in the manner that you want, you can customize a report. For information about the options available

to customize a report, see Creating an executive summary from the Web Analytics report on page .

Exporting reports

To create executive summary and export reports in HTML and CVS format, see Export test results on page 1214.

Logs overview
HCL OneTest™ UI uses logs to store different types of information, which you can use to determine the reason for a

test failure.

HCL OneTest™ UI has the following logs:

Test logs

The test log contains a historical record of events that occurred during a test run or a schedule run, as well as the

status of each verification point. The test log sets a verdict for each run as follows:

• Pass indicates that all verification points matched or received the expected response and all the test steps

successfully completed. A verification point is set to PASS when the recorded/expected property value is

received during playback. A Web UI test step is set to PASS when it has been executed successfully on the

specified UI object.

• Fail indicates that at least one verification point did not match the expected response or that the expected

response was not received or a Web UI step did not run successfully.

• Error indicates one of the following results: a primary request was not successfully sent to the server, no

response was received from the server for a primary request, or the primary request response was incomplete

or could not be parsed.

• The verdict is set to Inconclusive only if you provide custom code that defines a verdict of Inconclusive.

1219

t_creat_exe_sum_report.html#task_rgk_mgb_3y
t_creat_exe_sum_report.html#task_rgk_mgb_3y
t_creat_exe_sum_report.html#task_rgk_mgb_3y
t_creat_exe_sum_report.html#task_rgk_mgb_3y

HCL OneTest™ UI

1220

The verdict is rolled up from the child elements to the test level. For example, if a user group contains 25 virtual users,

and five virtual users have failed verdicts, that user group has only one failed verdict, not five.

The test log file is stored in binary format with a .executiondlr file name extension in the project directory of your

workspace. You can also view the test log in the user interface.

For more information about viewing test logs, see Viewing test logs on page 1221.

Problem determination logs
You can set the level of information that is saved in the problem determination log during a run. By default, only

warnings and severe errors are logged. Typically, you change this log level only when requested to do so by the

Support person.

For more information about setting problem determination level, see Setting the problem determination level on

page 1223.

Agent logs

Look in %TEMP% directory for the majordomo.log file. This file contains information about the attempts to contact the

workbench including information about any failures and the reason for the failures.

On the Microsoft™ Windows operating system, the %TEMP% directory is typically at %USERPROFILE%\AppData\Local

\Temp.

If the majordomo service is configured to log in as Local System Account, then the %TEMP% directory is at

%SystemRoot%\TEMP, typically C:\Windows\TEMP.

Test log overview
The test log contains a historical record of events that occurred during a test run or a schedule run, as well as the

status of each verification point. The test log for SAP tests contains the verdict of all the test steps in addition to the

verification points.

About this task

The test log sets a verdict for each run as follows:

• Pass indicates that all verification points matched or received the expected response and all the test steps

successfully completed. A verification point is set to PASS when the recorded/expected property value is

received during playback. A Web UI test step is set to PASS when it has been executed successfully on the

specified UI object.

• Fail indicates that at least one verification point did not match the expected response or that the expected

response was not received or a Web UI step did not run successfully.

• Error indicates one of the following results: a primary request was not successfully sent to the server, no

response was received from the server for a primary request, or the primary request response was incomplete

or could not be parsed.

• The verdict is set to Inconclusive only if you provide custom code that defines a verdict of Inconclusive.

Chapter 9. Test Manager Guide

The verdict is rolled up from the child elements to the test level. For example, if a user group contains 25 virtual users,

and five virtual users have failed verdicts, that user group has only one failed verdict, not five.

Viewing test logs
To see a record of all the events that occurred during a test run or a schedule run, as well as the status of each

verification point, open the test log for that run. You can also compare an event from the test log with the request or

response in the test to view the differences between the recording and the playback of the test.

About this task

The test log file is stored in binary format with a .executiondlr file name extension in the project directory of your

workspace. You can also view the test log in the user interface.

1. In the Test Navigator view, right-click the executed test; then click Display Test Log.

2. On the Overview tab, view the verdict summary for the executed test. To see the potential data correlation

errors in a separate view, click Display Potential Data Correlation Errors.

3. On the Events tab, view the errors, failures, and passes for each event in the test.

◦ To navigate to the verdict type, click the Select the verdict type icon.

4. On the Data Correlation tab, see all the references and substitutions that occurred during a test execution,

as well as the data correlation errors. By default, you view both references and substituters. To view only

substituters, click the Show References icon. To view the correlation data for each virtual user that was

executed, click the Merge Users icon. This icon is enabled only for a schedule. In the Data Correlation

section, when you click an event, you can see the correlation data in either the Content View or the Table View.

What to do next

From the test log, you can submit, search, and open defects in a defect tracking system. For details on configuring the

test log preferences and working with defects, see Associating defects with a test log.

Viewing errors while running tests
To view errors and other events while a test is running, use the Execution Event Console view. If problems occur in a

test run, you can examine the Execution Event Console view to determine whether to stop or continue the test.

1. Open the Execution Event Console view by clicking Window > Show View > Execution Event Console.

2. In the Execution Event Console view, click the Filters toolbar button in the upper, right corner.

Result

The Event Console Configuration window opens.

3. Select the types of messages and verdicts to display in the event console, and then click OK.

You can also limit the number of events that are displayed per user and per run, and you can limit events to

specific user groups or agent computers (locations). To configure other settings for the event console, click

Settings.

4. Run performance tests as you normally do.

1221

http://help.eclipse.org/helios/topic/org.eclipse.hyades.test.doc.user/tasks/t_associating_defects.html

HCL OneTest™ UI

1222

5. While a test is running, double-click an event in the Execution Event Console view to open the Event Details

window.

a. To change the order in which events are listed, click the View Menu toolbar button, and then select

Group By.

6. To load events from the test log, ensure that the Test Log view is open and in the Console view, click the Load

Test Log Events icon .

Exporting test logs
To process data from a performance test in another application or to use search tools to locate text in a test log,

export the test log to a text file.

1. In the Test Navigator, right-click the run, and select Export Test Log.

a. Optional: To export only a portion of the test log, open the test log by right-clicking the test run

and then selecting Display Test Log. Right-click the elements to export, and then select Export Log

Element.

Result

The Export Test Log window opens.

2. In the Export Test Log window, specify a location for saving the file, and then select options as follows:

Option Description

Export format Select default encoding or Unicode encoding.

Include event time stamps Select to include event time stamps.

Include detailed protocol data Select to include detailed protocol data. This option

is available only for HTTP test runs.

Include response content Select to include response content. This option is

available only for HTTP test runs.

Include known binary data Select to export binary data. This option is available

only for HTTP test runs.

3. Click Finish.

Result

The test log is exported to a text file.

Exporting event log
To view all the events that occurred during the run of a test from another file, you can export this data from the Event

Log panel, to an XML, CSV, or text file.

Before you begin

You must run a test to view data in the Event Log panel.

Chapter 9. Test Manager Guide

1. On the Event Log panel toolbar click the View Menu arrow icon and select Export Event Log.

2. In the Save dialog box, specify the location and format in which you want to save the events.

Exporting event console output
To view errors and other events of a test run from another file, you can export this data from the Execution Event

Console view to an XML, CSV, or text file.

Before you begin

• Ensure that the Execution Event Console view is open by clicking Window > Show View > Execution Event

Console.

• Ensure that the test is run and the Execution Event Console view contains data.

1. From the Execution Event Console view toolbar, click the View Menu arrow icon and select Export.

2. In the Save dialog box, specify the location and format in which you want to save the events.

Setting problem determination level for tests
You can set the level of information that is saved in the problem determination log during a run. By default, only

warnings and severe errors are logged. Typically, you change this log level only when requested to do so by the

Support person.

About this task

The problem determination logs contain internal information about the playback engine. These logs are particularly

useful for debugging problems such as Kerberos authentication, SSL negotiation, and resource constraints on

an agent. The log files are named CommonBaseEvents00.log and are located in the deployment directory.

For example, if you play back a schedule on an agent and set C:\Agent as the deployment directory, the

problem determination log files are in a directory similar to C:\Agent\deployment_root\<UserName>

\A1E14699848784C00D2DEB73763646462\CommonBaseEvents00.log. If a large amount of log information is

generated, multiple CommonBaseEvents files are created.

1. Open the test for which you want to set the problem determination log level.

2. Select the root node and from the Test Details section, select Problem Determination.

3. On the Problem Determination page, set Problem determination log level to one of the following options:

All, Finest, Finer, Fine
Set these options only if you are requested to do so

by technical support.

Config
Logs static configuration messages. Configuration

messages, which include hardware specifications or

system profiles, require no corrective action.

1223

HCL OneTest™ UI

1224

Info
Logs informational messages. Informational mes

sages, which include system state, require no correc

tive action.

Warning
Logs warning messages. This is the default setting.

Warning messages, which might indicate potential

problems, require no corrective action.

Severe
Logs critical and unrecoverable errors. Critical and

unrecoverable messages interrupt normal program

execution, and require corrective action.

None
Turns logging off.

4. Save the test.

Results for tests in Functional Test perspective
In this section, you will learn how to analyze test results in the Functional Test perspective.

Functional test logs
After the playback is complete, you can view the results in the log. The results include any logged events such as

verification point failures, script exceptions, object recognition warnings, and any additional playback information.

You can view Functional Test logs by setting the preferences in Logging page on page 644 .

Types of logs

You can use different types of Functional Test logs to view your playback results. These logs contain the same

information in different formats. For more information, see Logging page on page 644.

Location of logs

When you set the log type to HTML or Text, HCL OneTest™ UI stores these logs in a log folder in the same location

as the Functional Test project, but not in the Functional Test project. The name of the log folder is the project name

with a suffix of _logs. For example, if your Functional Test project is CalendarApp, HCL OneTest™ UI stores its HTML

or text logs in the CalendarApp_logs directory. You can open these logs from HCL OneTest™ UI in the Projects view.

If you select HTML, your default browser opens the HTML log file. If you select Text, the text log file opens in the

Functional Test script window.

Chapter 9. Test Manager Guide

In the Projects view, the HTML and text logs are listed within each project. Each script in the project has its own node

in the logs directory. You can right-click the script log node to open, rename, delete, import, export, or view any logs or

verification points.

To set the product to open the HTML and XML logs in a web browser, use the following commands:

• Internet Explorer :

assoc.html=htmlfile

• Mozilla Firefox:

assoc.html=FirefoxHTML-308046B0AF4A39CB

• Google Chrome:

assoc .html=ChromeHTML

Managing logs

You can use the Projects view to manage HTML or text logs. The logs appear below the project directory. Each

script in the project has its own node under the logs directory. You can select a log and right-click Open Log, Final

Screen Snapshot, Delete, or Rename. If your script has a verification point, you can select the log and open it in

the Verification Point Editor by clicking Open VP, or open it in the Verification Point Comparator by clicking Open

Comparator.

You can view the results of a verification point from the HTML log. At the end of each verification point entry in

the HTML log is a View Results link. You should click this to open that verification point in the Verification Point

Comparator. If the verification point fails, the baseline and actual files are shown beside one another which allows

you to compare the data. If you receive an error about the Java™ plug-in while trying to start the Comparator, you must

verify whether your plug-in is configured properly. For instructions, see Enabling the Java Plug-in of a Browser on

page 607.

Logging page
You use the Logging page to set log and comparator options, such as preventing the script launch wizard from

displaying on playback, displaying the log viewer after playback, and displaying a message before overwriting an

existing log. You also use this page to indicate the type of log generated.

To access the logging page, click Window > Preferences. In the left pane, expand Functional Test > Playback and

click Logging.

Note: For Microsoft Visual Studio, click Tools > Options. In the left pane, expand Functional Test > Playback

and click Logging.

The Logging page contains the following options:

Don't show script launch wizard: When selected, prevents the script launch wizard from displaying each time you play

back a script.

1225

HCL OneTest™ UI

1226

Display log viewer after script playback: When selected, this option displays the log after you play back a script. If the

log type is HTML, the log opens in your default browser. If the log type is Text, the log opens in the Script Window of

HCL OneTest™ UI. If the log type is XML, the log opens in your default browser.

Generally, the log file opens in the default browser that is associated with the html file extension in your computer. To

view the html files in your desired browser, you can associate the html file extension with the specific browser. The file

extension for different browsers are as follows:

• For Google Chrome, you must associate .html=ChromeHTML

• For Internet Explorer, you must associate .html=htmlfile

• For Firefox, you must associate .html=FirefoxHTML-308046B0AF4A39CB

Log screen snapshot for each action on the application: When selected, this option records a screen snapshot in the

playback log against every action performed on the application.

Prompt before overwriting an existing log: When selected, this option prompts you before you overwrite a log.

Log the count of test objects created/unregistered at particular script line: When selected, this option logs these

details:

• Number of objects created and unregistered at a specific script line

• Total number of objects created and unregistered per call script

• A cumulative number of test objects created and unregistered for the whole script during playback if HCL

OneTest™ UI scripting methods have been used to return test objects.

Warning messages are also logged at the call script level and the main script level, if the number of test objects

created exceeds the number of test objects unregistered, which would suggest the possibility of memory leaks during

playback.

Log a screen snapshot when playback fails: When you select this option, it captures a screen snapshot at the time of

the failure and stores it in the log. You must clear the check box to save storage space (172 KB per snapshot).

Log GUI actions on the application: When you select this option, it adds a detailed record of any GUI-related actions

performed on the application (without a screen snapshot) to the playback log.

Log type: This option Indicates the type of log HCL OneTest™ UI generates to write results of script playback. The log

types are as follows:

• None: Generates no log, if selected.

• Text: Displays the log in ASCII format in the Functional Test script window.

• HTML: Displays the log in HTML format in your default browser. The left pane in the HTML log contains three

boxes: Failures, Warnings, and Verification Points. The list of items in each box help you navigate to a specific

location in the log. You can select an item to quickly find important errors, warnings, and verification point

results in the log. To do so, double-click an item in a list, and HCL OneTest™ UI scrolls to and displays the item

in the log.

Chapter 9. Test Manager Guide

• TPTP: Displays a log using TPTP in the Functional Test script window.

• XML: Displays a log of XML data rendered in HTML format [using transformation and Cascaded Style Sheets]

in your default browser.

• Default: Displays the unified report for the test scripts in the browser window. This is also the default option to

generate result for Functional test scripts.

• JSON: Displays a log in JSON format in the Functional Test Script window. Each event in this log type is a

separate JSON.

Note: The JSON log type is not supported in the integration of HCL OneTest™ UI with Visual Studio.

Use Default: Clear the check box to change the value in the Log type field. Select the check box to restore the default

value.

Restore Defaults: Restores the default values on this page.

Apply: Saves your changes without closing the dialog box.

Setting log preferences
You can set your log preferences to view functional test logs.

1. Click Window > Preferences.

2. On the left pane, expand Functional Test , expand Playback, and click Logging.

3. Select Display log viewer after script playback to open the log automatically after playback.

4. Select other logging options as required.

5. Set the viewing preferences in the Log type list:

a. By default, the log type is XML. To change the log type, clear the Use Default check box, and select

Text, HTML, XML, or JSON.

▪ If you select Text or JSON , the text log file opens in the Functional Test Script window.

▪ If you select HTML or XML, the HTML or XML log file opens in your default browser.

Notes:

▪ To view the results of a particular verification point in the HTML log, click View Results

at the end of a verification point entry. The Verification Point Comparator displays the

baseline and actual files side by side if the verification point failed, so that you can

compare the data.

▪ If you get an error about the Java plug-in when you click the View Results link in the

HTML log, verify that your plug-in is configured correctly. If you select XML, the XML

log file opens in your default browser.

▪ Ensure that the functional testing product supports the default browser version.

b. If you select TPTP, the TPTP log file opens in the Functional Test Script window.

1227

HCL OneTest™ UI

1228

Note: You can only view TPTP log files in the HCL OneTest™ UI Eclipse Integrated Development

Environment, not in the Microsoft Visual Studio Integrated Development Environment.

Customized or extended log files in other formats cannot be viewed in either the Eclipse IDE or

the Visual Studio IDE.

c. Click Apply to save the new settings and to continue changing options or click OK to save the new

setting and to close the Preferences dialog box.

Disabling enhanced log results
Logged events such as verification point failures, script exceptions, object recognition warnings, and other additional

playback information are displayed in the playback log results. From HCL OneTest™ UI version 8.2 and later, the

results of the getProperty() command are also displayed in the log results. If you do not require the log event to be

displayed in the playback log, you can disable the event in the log results.

Before you begin

Ensure that you have access to modify the ivory.properties file.

About this task

To disable the getProperty() log event, you must modify the ivory.properties file.

1. Open the ivory.properties file available in the <installation_folder>\bin\ directory.

2. Add the following line of code at the end of the file contents:rational.test.ft.log.enhanced=false

Note: To enable the getProperty() log event again, set rational.test.ft.log.enhanced=true.

Viewing logs in the Projects view
You can open a log from the Projects view. In Projects view, the HTML, XML, and text logs are listed within each

project. The log list is displayed below the project. The log has the same name as the project, with _logs appended,

for example, projectname_logs.

Do one of the following procedures:

• To view a log, select a log in the Projects view and right-click Open Log.

• To open the log in the Verification Point editor, select a log in the Projects view and right-click Open VP.

Chapter 9. Test Manager Guide

• To open a log in the Verification Point Comparator, select the log in the Projects view and right-click Open

Comparator.

Note: You can only view TPTP log files in the HCL OneTest™ UI Eclipse Integrated Development

Environment, not in the Microsoft Visual Studio Integrated Development Environment. Customized or

extended log files in other formats cannot be viewed in either the Eclipse IDE or the Visual Studio IDE.

Viewing Dojo logs
Dojo logs are based on XML logs and display a graphical representation of the test results. You can use Dojo logs to

select filters and view verification points, failed verdicts, warning verdicts, and the detailed information on each action

that is recorded in the script. Dojo logs open in the default browser after script execution.

1. Start HCL OneTest™ UI.

2. Record a script.

3. Click Window > Preferences.

4. On the left pane, expand Functional Test > Playback.

5. Click Logging.

6. Ensure that the Use Default check box is cleared.

7. Select xml from the Log type list, and click OK.

8. Playback your script. The Dojo log is displayed in the default web browser.

Note: For detailed information about viewing Dojo logs in the Firefox browser, see Unable to view Dojo

logs in Firefox version 3.0.

Renaming and deleting logs
You can rename and delete logs from the Projects view.

• To rename a log, select a log in the Projects view and right-click Rename.

• To delete a log, select a log in the Projects view and right-click Delete.

Log Extension
You can create customized HCL OneTest™ UI logs in addition to the standard log formats: text, HTML, Test and

Performance Tools Platform (TPTP), and XML. You can use the customized logs to view your playback results.

Extending a log
You can customize your log files by configuring the plug-ins to extend an extension point and writing a class that

designs your log.

1. Create a new plug-in project.

Result

1229

HCL OneTest™ UI

1230

By default, the Eclipse environment displays the project Overview after you create the project.

Note: If the project Overview is not displayed by default, right-click MANIFEST.MF under the META-INF

folder, and click Open With > Plug-in Manifest Editor.

2. Click the Dependencies tab, and click Add under Required Plug-ins.

3. Select com.ibm.rational.test.ft.playback from the Plug-in Selection list, and click OK.

4. Save the plugin.xml file.

5. Click the Extensions tab, and click Add.

6. Select the com.rational.test.ft.playback.logExtension extension point from the list, and click Finish.

7. Type the extension ID and Name.

8. Right-click com.ibm.rational.test.ft.playback.logExtension in the left pane of Extensions window.

9. Click New > Log.

Result

The log file is displayed under the extension file.

Note: Customized or extended log files in formats other than the standard formats cannot be viewed

in either the HCL OneTest™ UI Eclipse Integrated Development Environment or the Visual Studio IDE.

10. In Extension Element Details, specify the properties of the log.

a. Type a unique ID for the log in LogID field. HCL OneTest™ UI uses this LogID to list the log type on the

Preference Page.

b. Type a class name in Class field. This class name extends the base class LogExtensionAdapter.

c. Optional: Type a description of the log in Description field.

11. Save the project.

Deploying the extended log file
You can deploy your customized log file by exporting the plug-in in a format suitable for deployment.

1. In the project folder in the left pane of the window, right-click plug-in.xml.

2. Click Export.

3. Select Deployable plug-ins and fragments in Plug-in Development folder.

4. Click Next.

5. Select the plug-in from the Available Plug-ins and Fragments list.

6. Set the destination directory to export the selected projects for deployment.

The default destination directory on Windows is C:\Program Files\HCL\hclonetest and on Linux is /

opt/HCL/hclonetest.

If the Eclipse environment is extended during installation of HCL OneTest™ UI, the log plug-ins need to be

exported to the extended Eclipse location.

7. Click Finish.

8. In the Save Resource dialog box, click Yes.

Chapter 9. Test Manager Guide

Example: Creating a text log
The following example shows how to create a text-log output from an empty test script.

Implement the subclass that inherits the base class LogExtensionAdapter to implement the following methods to get

the log result that you want.

public void initLog()
public void writeLog(ILogMessage message)
public void closeLog()

Here is an example of text-log output from an empty test script.

July 23, 2007 8:30:12 PM IST :Script Name Script1.java Result :INFO Event SCRIPT START headlind Script
 start [Script1]
Property Name =line_number Property Value =1
Property Name =script_name Property Value =Script1
Property Name =script_id Property Value =Script1.java

July 23, 2007 8:30:12 PM IST :Script Name Script1.java Result :PASS Event SCRIPT END headlind Script end
 [Script1]
Property Name =line_number Property Value =-1
Property Name =script_name Property Value =Script1
Property Name =script_id Property Value =Script1.java

Exemple

The following example shows an implementation of a text-log to get the text-log output that is shown in the previous

example:

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Vector;

import com.rational.test.ft.services.ILogMessage;
import com.rational.test.ft.services.LogException;
import com.rational.test.ft.services.LogExtensionAdapter;
import com.rational.test.ft.services.LogMessageProperty;

public class ExampleLog extends LogExtensionAdapter {

private String logName=null;
private String logDirectory=null;
private PrintWriter out=null;

public ExampleLog(String logName) {
 super(logName);
 this.logName=logName;
 this.logDirectory=null;
}

public ExampleLog() {
 super();
 this.logName=null;
 this.logDirectory=null;

1231

HCL OneTest™ UI

1232

}

/**
* Initialize the stream to write the log.
*/
public void initLog() throws LogException {
 try{
 this.logName=getLogName();
 this.logDirectory=getLogDirectory();
 File logFile=new File(logDirectory,logName+".txt");
 FileOutputStream fos=new FileOutputStream(logFile);
 out=new PrintWriter(fos);
 }catch(IOException e)
 {

 }
}

/**
* Write log events/message to the file stream
*/
public void writeLog(ILogMessage message) {
 Vector properties=message.getProperties();
 String result=getResult(message);
 String event_type=getEventType(message);
 String headline=getHeadline(message);
 String timestamp=getTimestamp();
 String currentScriptName=getScriptName(message);
 out.println(timestamp + " :Script Name " + currentScriptName + " Result :" + result + " Event " +
 event_type + " headlind " + headline);
 for(int i=0,size=properties.size();i<size;i++) {
 LogMessageProperty property =
 (LogMessageProperty) properties.elementAt(i);
 out.println("Property Name =" + property.getName().toString() + " Property Value ="
 +property.getValue().toString());
 }
 out.println();
}

/**
* Close the stream to persist the logs.
*/
public void closeLog() {
 try{
 out.close();
 }catch(Exception e) {

 }
}

/**
* Return the result from the log message.
*/
private String getResult(ILogMessage message) {
 String result=null;
 switch (message.getResult())
 {
 case LOG_FAILURE : result="FAILURE";break;

Chapter 9. Test Manager Guide

 case LOG_PASS : result="PASS";break;
 case LOG_WARNING : result="WARNING";break;
 default: result= "INFO";
 }
 return result;
}

/**
* Return string representation of event from the ILogMessage.
*/
private String getEventType(ILogMessage message) {
 String eventType=null;
 switch(message.getEvent())
 {
 case EVENT_SCRIPT_START : eventType="SCRIPT START";break;
 case EVENT_SCRIPT_END : eventType="SCRIPT END";break;
 case EVENT_VP : eventType="VERIFCATION POINT";break;
 case EVENT_CALL_SCRIPT : eventType = "CALL_SCRIPT"; break;
 case EVENT_APPLICATION_START : eventType="APPLICATION START";break;
 case EVENT_APPLICATION_END : eventType="APPLICATION END";break;
 case EVENT_TIMER_START : eventType="TIMER START";break;
 case EVENT_TIMER_END : eventType= "TIMER END" ;break;
 case EVENT_CONFIGURATION : eventType="CONFIGURATION"; break;
 default : eventType="GENERAL";
 }
 return eventType;
}

/**
* Returns the headline from the ILogMessage.
*/
private String getHeadline(ILogMessage message) {
 return message.getHeadline();
}

/**
* Return the script name from the ILogMessage.
*/
private String getScriptName(ILogMessage message) {
 String scriptName=null;
 Vector properties=message.getProperties();
 for(int i=0,size=properties.size();i<size;i++) {
 LogMessageProperty property =
 (LogMessageProperty) properties.elementAt(i);
 if(property.getName().equalsIgnoreCase(PROP_SCRIPT_ID))
 {
 scriptName=property.getValue().toString();
 }
 }
 return scriptName;
}
}

1233

1234

Chapter 10. Troubleshooting
This guide describes how to analyze and resolve some of the common problems that you might encounter while you

work with HCL OneTest™ UI.

Troubleshooting in the UI Test perspective
You can find information about the issues or problems that you might encounter while working with HCL OneTest™ UI

in the UI Test perspective. Details about issues, their causes and the resolutions that you can apply to fix the issues

are described.

The troubleshooting issues are presented to you in the following table based on where or when you might encounter

these issues:

• Table 56: Troubleshooting issues: test runs on page 1234

Table 56. Troubleshooting issues: test runs

Problem Cause Solution

You are not able

to run Web UI

tests on a remote

agent that runs

on Linux because

the browser fails

to launch.

Browser launch is

prevented when

the remote agent

runs as root or

sudo.

To resolve this issue, you must perform the following steps after you have

installed the remote agent:

1. Stop the agent.

2. Start the agent as the logged in user by performing the following

steps:

a. Open a terminal on Linux.

b. Enter the following commands:

/opt/HCL/HCLOneTest/Majordomo/

sudo ./MDStop.sh

./MDStart.sh

Support information for HCL OneTest™ Studio
IBM® Rational® Support provides information about software issues, including technotes, tips, and workarounds.

Frequently Asked Questions
This document answers some of the common queries in mobile testing.

Chapter 10. Troubleshooting

Questions

• Q 1. Why am I unable to connect my device to the workbench? on page 1235

• Q 2. Why am I asked to uninstall and install apk files for record and playback? on page 1235

• Q 3. Why am I not able to upload my app to the workbench? on page 1235

• Q 4. Why am I unable to select a device in the Run configuration wizard? on page 1236

• Q 5. Why are some of the UI elements or actions are not captured by HCL OneTest™ Studio? on page 1236

• Q 6. When running a test from command line, UrbanCode Deploy, or Rational Quality Manager, how can my

test select the devices? on page 1236

• Q 7. Can I use a native browser to record and playback web tests on my mobile device? on page 1236

• Q 8. Do I need to re-instrument my mobile app on its each new version? on page 1236

• Q 9. Do I need to re-instrument the app on each new version of HCL OneTest™ Studio? on page 1236

• Q 10. Do I need to install the latest mobile client after upgrading the workbench? on page 1236

• Q 11. Can I instrument my application from the command line? on page 1236

• Q 12. Can the mobile client connect to a number of workbenches at the same time? on page 1236

Answers

• A 1. Make sure that the device and test workbench are in the same network.

• A 2. Before you can test a mobile application, the application must first be instrumented. An instrumented

application contains the application under test augmented with code that allows you to record or play back a

test.

When you record a test, the Android application (the .apk file) is recompiled into a recording-ready app

that has been heavily instrumented to capture user actions. Because Android does not allow two versions

of an application to be installed at the same time, the test workbench uninstalls the original application

and replaces it with the recording-ready app. When you play back a test, the test workbench uninstalls the

recording-ready app and replaces it with a playback-ready app , a version of the original application that has

been signed with a test workbench certificate.

There is also another version of the app, the Tester app. This app contains the runtime code that is needed

to replay a test. This app will not be noticeable if you run in silent mode. When the application under test

is modified, only the recording-ready app and the playback-ready app are generated. You can simplify this

process of installing and uninstalling versions of the Android app by choosing Playback on instrumented from

the Settings page on your Android device or emulator. This lets you play back a test using the more heavily

instrumented recording version of the app, rather than the lighter weight playback version of the app. This is at

the expense, however, of slower playback speed and greater memory consumption.

• A 3. There could be many reasons. Some of the reasons include:

◦ Ensure that the devices and test workbench are connected.

◦ Ensure that a supported version of Android SDK is installed on the computer where workbench is

installed.

1235

HCL OneTest™ UI

1236

• A 4. Ensure that the devices are connected to the test workbench.

• A 5. The UI elements or actions might not be supported by the product. You can manually add an action to

the test script.

• A 6. If there is only one compatible device configured with the workbench and set to passive mode, it will

automatically be selected. If there are several devices, follow the steps in Defining a variable to run a test with

a selected mobile device.

• A 7. HCL OneTest™ Studio provides a native browser called mobile web recorder to record and playback web

tests. For Android, when you tap Manage Web Applications for the first time, the browser is installed. For iOS,

you must install it from the Apple store or from the build archive on an iOS simulator.

• A 8. Yes. The instrumented application must be produced again from the new version of the app.

• A 9. Yes, you must re-instrument the app to use the latest workbench runtime code that is embedded in the

instrumented application.

• A 10. While it is not strictly required, not doing so will usually prevent you from making use of the new

features of the product.

For iOS web client, clear the Safari browser cache before browsing the workbench URL.

• A 11. Yes, you can instrument your app from the command line.

• A 12. No, you cannot connect the mobile client to multiple workbenches at the same time.

Unable to play back Web UI tests when certain web applications are redirected to a
different URL
When you record a Web UI test and enter the URL of the web application that you want to test, the application might

be redirected to a different URL. When you play back this recorded Web UI test, the playback fails.

Cause

When you record a Web UI test by starting a web application that redirects to a different URL, the following changes

occur:

• The Web UI recorder captures the redirected URL instead of the URL of the web application.

• The URL field in the Application Details pane of Launch application is updated with the redirected URL while

recording.

When you play back the recorded Web UI test, the URL of the Launch application node differs from the URL that you

use to start the web application during the recording.

Chapter 10. Troubleshooting

Resolution

In the recorded Web UI test, you must change the redirected URL to the URL of the web application in the Application

Details pane of Launch application.

HCL OneTest™ UI error messages
This section provides information about error messages that you might encounter with HCL OneTest™ UI. This

section lists the error messages by ID, explanation, system action and your response to correct the error message.

CRRTWF0001E
There was an error in asserting the HCL OneTest™ UI log type.

Explanation: There was an error in asserting the log type of HCL OneTest™ UI in the test navigator.

System action: None

User response: Refresh the HCL OneTest™ UI project in the Functional Test perspective.

CRRTWF0002E
There was an error in getting an image for the HCL OneTest™ UI type.

Explanation: There was an error in getting the images for HCL OneTest™ UI assets

System action: None

User response: Refresh the HCL OneTest™ UI project in the Functional Test perspective.

CRRTWF0003E
There was an error while verifying if HCL OneTest™ UI is installed.

Explanation: There was an error while verifying if HCL OneTest™ UI is installed.

System action: None

User response: Start __WUT_PRODUCT_NAME__ in administrator mode. Alternatively, reinstall HCL OneTest™ UI in

shell-shared mode with __WUT_PRODUCT_NAME__

CRRTWF0004I
HCL OneTest™ Studio sending command to open Log

Explanation: This is a trace statement for debugging while opening the test script log file.

System action: None

User response: This message is for information only.

1237

HCL OneTest™ UI

1238

CRRTWF0005I
After sending command to open Log

Explanation: This is a trace statement for debugging while opening the test script log file.

System action: None

User response: This message is for information only.

CRRTWF0006E
There was an error in opening the HCL OneTest™ UI script.

Explanation: The HCL OneTest™ UI script could not be opened from the __TW_SUITE_NAME__.

System action: None

User response: Refresh the HCL OneTest™ UI assets in the Functional Test perspective.

CRRTWF0007I
HCL OneTest™ Studio sending command to open Script

Explanation: This is a trace statement for debugging while opening the test script.

System action: None

User response: This message is for information only.

CRRTWF0008I
After sending command to open Script

Explanation: This is a trace statement for debugging while opening the test script.

System action: None

User response: This message is for information only.

CRRTWF0009I
Opening HCL OneTest™ UI Script in HCL OneTest™ Studio Perspective

Explanation: This is a trace statement for debugging while opening the test script.

System action: None

User response: This message is for information only.

Chapter 10. Troubleshooting

CRRTWF0010I
Opening HCL OneTest™ UI Script in HCL OneTest™ Studio Perspective

Explanation: This is a trace statement for debugging while opening the test script.

System action: None

User response: This message is for information only.

CRRTWF0011E
There was an error in opening the HCL OneTest™ UI script in the __WUT_PRODUCT_NAME__ perspective.

Explanation: There was an error in opening the Java editor in __WUT_PRODUCT_NAME__.

System action: None

User response: Open the project in a new Eclipse workspace

CRRTWF0012I
About to execute HCL OneTest™ UI Script

Explanation: This is a trace statement for debugging while opening the test script.

System action: None

User response: This message is for information only.

CRRTWF0013I
After the HCL OneTest™ UI Script Execution

Explanation: This is a trace statement for debugging while opening the test script.

System action: None

User response: This message is for information only.

CRRTWF0014E
There was an error in executing the HCL OneTest™ UI script.

Explanation: A HCL OneTest™ UI script could not be executed from __WUT_PRODUCT_NAME__

System action: None

User response: Install HCL OneTest™ UI in shell-shared mode with __WUT_PRODUCT_NAME__

1239

HCL OneTest™ UI

1240

CRRTWF0015E
Shell-sharing of HCL OneTest™ UI with __WUT_PRODUCT_NAME__ might not be configured.

Explanation: There was an error in running certain actions for HCL OneTest™ UI.

System action: None

User response: Install HCL OneTest™ UI in shell-shared mode with __WUT_PRODUCT_NAME__.

CRRTWF0016E
No selection is available to complete the operation.

Explanation: There was an error in determining the file that was selected from the test navigator.

System action: None

User response: Refresh the HCL OneTest™ UI Assets in the Functional Test perspective. Alternatively, reinstall HCL

OneTest™ UI in shell-shared mode with __WUT_PRODUCT_NAME__.

CRRTWF0017E
An invalid extension was defined for HCL OneTest™ UI integration.

Explanation: There was an error in running certain actions for the HCL OneTest™ UI assets.

System action: None

User response: Install HCL OneTest™ UI in shell-shared mode with __WUT_PRODUCT_NAME__.

CRRTWF0018E
There was an error in sending requests to HCL OneTest™ UI.

Explanation: There was an error in running certain actions for the HCL OneTest™ UI assets.

System action: None

User response: Install HCL OneTest™ UI in shell-shared mode with __WUT_PRODUCT_NAME__.

CRRTWF0019E
There was an error in obtaining the HCL OneTest™ UI test path.

Explanation: An error occurred in determining the location of the HCL OneTest™ UI asset that was selected from the

test navigator.

System action: None

Chapter 10. Troubleshooting

User response: Refresh the HCL OneTest™ UI assets in the Functional Test perspective. Alternatively, reinstall HCL

OneTest™ UI in shell-shared mode with __WUT_PRODUCT_NAME__.

CRRTWF0020E
There was an error in generating code for HCL OneTest™ UI.

Explanation: An error has been detected while generating code for HCL OneTest™ UI.

System action: None

User response: Add the functional test again to a new compound test.

CRRTWF0101E
Exception in Setting Test Path of HCL OneTest™ UI Test

Explanation: The path of the HCL OneTest™ UI script could not be determined.

System action: None

User response: Contact HCL® Support with the error log.

CRRTWF0102E
Exception in refresh of Editor Tree

Explanation: The test navigator could not be refreshed.

System action: None

User response: Open the project in a new workspace.

CRRTWF0103E
Exception in opening the editor

Explanation: There was an error in opening the test editor

System action: None

User response: Open the project in a new workspace

CRRTWF0104E
Exception while renaming Functional Test Script Assets

Explanation: There was an error in refreshing the test navigator assets while the HCL OneTest™ UI scripts were

modified.

System action: None

1241

HCL OneTest™ UI

1242

User response: Refresh the test assets.

CRRTWF0105E
Exception while setting the job schedule for Renaming Functional Test Script Assets

Explanation: There was an error in refreshing the test navigator assets while the HCL OneTest™ UI scripts were

modified.

System action: None

User response: Refresh the test assets.

CRRTWF0201I
HCL OneTest™ UI is not installed.

Explanation: HCL OneTest™ UI must be installed before you can run a compound test that contains HCL OneTest™ UI

scripts.

System action: None

User response:  Install HCL OneTest™ UI in shell shared mode with HCL OneTest™ Studio. 

CRRTWF0202I
Inflating Project during execution

Explanation: This information is used for debugging while extracting the test project.

System action: None

User response: None

CRRTWF0203E
There was an error while executing a HCL OneTest™ UI script.

Explanation: The HCL OneTest™ UI script could not be executed.

System action: None

User response: Install HCL OneTest™ UI in shell-shared mode with HCL OneTest™ UI.

CRRTWF0204E
Exception in parsing Functional Log

Explanation: An error occurred in processing the log while executing the Functional Test Script.

System action: None

Chapter 10. Troubleshooting

User response: Consider contacting support with the error log

CRRTWF0205E
A class could not be loaded during execution

Explanation: An error occurred in executing the HCL OneTest™ UI script.

System action: None

User response: Reinstall HCL OneTest™ UI in shell-shared mode with HCL OneTest™ UI

CRRTWF0206E
A directory could not be created during execution

Explanation: There was an error in adding snapshots to the HCL OneTest™ UI log file.

System action: None

User response: Run HCL OneTest™ UI in administrator mode.

CRRTWF0301E
The execution results could not be parsed.

Explanation: There was an error in parsing the results of the HCL OneTest™ UI script playback

System action: None

User response: Contact Support with the error log file.

CRRTWF0302E
The property value of a verification point could not be fetched.

Explanation: There was an error in parsing the log events of the HCL OneTest™ UI script playback.

System action: None

User response: Contact Support with the error log file.

CRRTWF0303E
A command to get the verification point could not be created.

Explanation: There was an error in opening the verification point of the HCL OneTest™ UI script.

System action: None

User response: Install HCL OneTest™ UI in the shell-shared mode with HCL OneTest™ UI.

1243

HCL OneTest™ UI

1244

CRRTWF0304E
There was an error in getting a command parameter that is needed to open the verification point comparison editor.

Explanation: A property required to open the verification point of the HCL OneTest™ UI script is missing.

System action: None

User response: Install HCL OneTest™ UI in shell-shared mode with HCL OneTest™ UI.

CRRTWF0305E
The verification point comparison editor could not be opened.

Explanation: There was an error in opening the verification point of the HCL OneTest™ UI script.

System action: None

User response: Install HCL OneTest™ UI in shell-shared mode with HCL OneTest™ UI.

CRRTWM0001E
Missing message for log entry '{0}' in class: {1}

Explanation: A text message is missing for a loggable key.

User response: Contact HCL® Software Support if you cannot resolve the issue.

CRRTWM0002E
Cannot get Log key '{0}': SecurityException raised.

Explanation: Java VM raise a security exception when trying to check a loggable message.

User response: Contact your support.

CRRTWM0003E
Cannot initialize Log key '{0}'

Explanation: The Java VM raised an exception during initialization of a log message.

User response: Contact IBM Software Support if you cannot resolve the issue.

CRRTWM0004E
IExtendedType '{0}' already defined, at extension point '{1}'

Explanation: An extension is registered twice with the same ID used for the same extension or two different

extensions.

User response: Contact HCL® Software Support if you cannot resolve the issue.

Chapter 10. Troubleshooting

CRRTWM0008W
Warning: field '{0}' is not defined in class: {1}

Explanation: A log message is not defined by the class.

CRRTWM0009W
Warning: Cannot check a message against log key mapping for '{0}' of class {1}, SecurityException raised.

Explanation: The Java VM raised an exception the checking the validity of a log message key using existing text.

User response: Contact HCL® Software Support if you cannot resolve the issue; however, note that this will not affect

the functioning of the product.

CRRTWM0010E
Unexpected exception, please check Error Log view: {0}

Explanation: An unexpected exception occurs during processing

System action: Workbench may not work properly depending on exception raised.

User response: Try again, contact your support if problem persist.

CRRTWM0011W
Mismatch between number of formal bindings and number of icu bindings for key {0}

Explanation: The number of types given to format ICU numbers correctly doesn't match the number of formal

parameters for this translated message

System action: None.

User response: Nothing to do, product will work properly except for the ICU formatting of some of the parameters of

this translated message in the report

CRRTWM0012W
Cannot parse number from string '{0}', a parameter of the translated message {1} for icu bindings

Explanation: This string is not a valid number

System action: None.

User response: Nothing to do, product will work properly except for the ICU formatting of some of the parameters of

this translated message in the report

CRRTWM1001E
unexpected exception

1245

HCL OneTest™ UI

1246

Explanation: An exception that could not be handled occurs during processing.

System action: None.

User response: Close test editor and report exception to product support.

CRRTWM1002E
Error getting persistent property '{0}'

Explanation: Persistent properties are used to store some editor configuration and cannot be loaded.

System action: Editor may not restore some of editor configuration, but should works correctly.

User response: Nothing to do as editor should works correctly.

CRRTWM1003E
Error setting persistent property '{0}'

Explanation: Persistent properties are used to store some editor configuration and cannot be saved.

System action: None.

User response: Nothing to do as editor should works correctly.

CRRTWM1004E
Cannot reload device list

Explanation: Device editor is not able to reload device list.

System action: Device editor display empty device list.

User response: Close and restart workbench, open Device editor again, if problem persist, please contact your

support.

CRRTWM1005E
Cannot reload application list

Explanation: Cannot reload application list

System action: Application editor display empty application list

User response: Close and restart workbench, open Application editor again, if problem persist, please contact your

support.

CRRTWM1006E
Cannot save editor '{0}'

Chapter 10. Troubleshooting

Explanation: For some reason an editor cannot be saved.

System action: Editor data are not saved, modified data will be lost.

User response: Close workbench and retry, if problem persist, please contact your support

CRRTWM1007E
Cannot reload resource '{0}'

Explanation: For some reason a workbench resource cannot be reloaded.

System action: None.

User response: Close editor and open it again, if problem persist, please contact your support.

CRRTWM1008E
IExtendedTypeUI '{0}' already defined, at extension id='{1}'

Explanation: An editor extension is registered twice, this must be fixed.

System action: Editor may not be able to edit right type of data.

User response: Report the error to your product support.

CRRTWM1009E
Failed to generate QRCode image, content is:'{0}'

Explanation: QRCode image cannot be generated.

System action: Workbench is not able to display QRCode image.

User response: Report the error to your product support.

CRRTWM1010I
Imported package '{0}' is not rebuild because application '{1}' already exists ({2})

Explanation: The imported application already exist in your workbench and cannot be built.

System action: Application Editor display both (same) application.

User response: Open Application Editor to checks for both application, remove the already existing application.

Before importing again, do not forget to remove imported application.

CRRTWM1011E
Cannot update original package of Web application: '{0}' (build dir: '{1}')

1247

HCL OneTest™ UI

1248

Explanation: User edits Web properties and Application Editor cannot save changes in original package nor update

managed application workspace resource. Note that Application Editor will display right properties values.

System action: Application Editor display right properties values, but user won't be able to rebuild application with

that properties in the future.

User response: Check if build exists and is accessible.

CRRTWM1012E
Mobile Run Wizard extension already defined for '{0}'

Explanation: More than one feature provide Mobile Run Wizard extension with same id.

System action: Extension is ignored, you may missing feature when using Mobile Run Wizard

User response: Report the error to your product support.

CRRTWM1013E
Unable to run external command '{0}'

Explanation: Product failed to try to run an external command.

System action: Subsequent action are ignored.

User response: Report the error to your product support.

CRRTWM1014E
Unable to handle menu from report: reason '{0}'

Explanation: Product failed to handle a menu from report.

System action: None.

User response: Depending on the given reason, you may be missing the test suite corresponding to this UI report, or it

may have been moved to another location in the workspace.

CRRTWM1015E
Failed to download the driver for '{0}' browser.

Explanation: Product failed to download compatible driver version for browser.

System action: None.

User response: Report the error to your product support.

Chapter 10. Troubleshooting

CRRTWW0031E
Exception in starting Edge browser.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWM1101E
unexpected exception

Explanation: An unexpected exception occurs during processing.

User response: Try again, and contact your product support if issue continue.

CRRTWM1102E
IExtendedTypeTegGen '{0}' already defined, at extension id='{1}'

Explanation: A test generation extension is registered twice.

User response: report the issue to your product support.

CRRTWM1201E
Execution exception

Explanation: An exception during the execution

User response: contact your support.

CRRTWM1202E
Unexpected exception

Explanation: An unexpected exception occurs during processing

User response: Contact your support.

CRRTWM1203I
Information: %1

Explanation: This message display an information from execution engine.

User response: Check information message.

1249

HCL OneTest™ UI

1250

CRRTWM1206E
Exception thrown during server address check

Explanation: An exception is raised when checking the address of a server

User response: Contact your support

CRRTWM1210E
Exception thrown during data harvest

Explanation: An exception is raised during the processing of a data harvest

User response: Check exception message, try again or contact your support.

CRRTWM1211E
Exception thrown during substitution

Explanation: An exception is raised during the processing of a substitution

User response: Check exception message, try again or contact your support.

CRRTWM1301E
Unexpected exception

Explanation: An unexpected error occured during processing.

System action: None.

User response: Contact __VENDOR_NAME__ Support.

CRRTWM1302I
Android USB controller process exited with exit code {0}\n{1}

Explanation: This is only an informational message about the Android USB controller external process.

System action: None.

User response: None.

CRRTWM2001E
unexpected exception

Explanation: An exception that could not be handled occurs during processing.

User response: Report exception to product support.

Chapter 10. Troubleshooting

CRRTWM2002E
Enumeration type {0} doesn't exist in grammar {1}

Explanation: Expected enumeration type is not provided by grammar.

User response: Contact your support.

CRRTWM2003E
IExtendedTypeCodeGen '{0}' already defined, at extension id='{1}'

Explanation: A mobile extension is registered twice (same or two different with same identifier).

User response: Contact your support.

CRRTWM3001E
Unable to find field {0} in object

Explanation: Android object doesn't provide the expected field.

User response: Contact your support.

CRRTWM3002E
Unexpected exception

Explanation: A unexpected exception occurs during processing

User response: Try again, contact your support if problem persist.

CRRTWM4001E
Unable to find field {0} in object

Explanation: iOS object doesn't contains the expected field.

User response: Contact your support.

CRRTWM4002E
Unexpected exception

Explanation: A unexpected exception occurs during processing

User response: Try again, contact your support if problem persist.

CRRTWM5001E
Unexpected exception

1251

HCL OneTest™ UI

1252

Explanation: A unexpected exception occurs during processing

User response: Try again, contact your support if problem persist.

CRRTWM6001E
unexpected exception

Explanation: A unexpected exception occurs during processing

System action: None.

User response: Report the exception to your product support.

CRRTWM6002E
cannot load resource '{0}'

Explanation: A workbench resource cannot be loaded

System action: Workbench may not work properly.

User response: Close, reopen workbench and try again, if problem persist, contact your support.

CRRTWM6003E
cannot save resource '{0}'

Explanation: A workbench resource cannot be saved, some data may be lost if you close workench.

System action: Workbench may not work properly.

User response: Try again, or contact your support.

CRRTWM6004E
cannot create directory '{0}'

Explanation: A director cannot be created on you system.

System action: None.

User response: Check if there are enough disk space, or if you have enough right to create directory.

CRRTWM6005E
cannot copy file '{0}' to directory '{1}'

Explanation: A file cannot be copied to a directory.

System action: None.

Chapter 10. Troubleshooting

User response: Check if there are enough disk space, if directory exists and it's accessible, or if you have enough right

to create directory.

CRRTWM6011E
exception thrown while configuring '{0}'

Explanation: An exception occurs during the configuration of an element.

System action: None.

User response: Try again.

CRRTWM6012E
exception thrown from component {0} while building from '{1}'

Explanation: An exception occurs during the build of a mobile application.

System action: Application editor display failed application with error or processing status.

User response: Remove application, retry to add or import application again.

CRRTWM6013I
from component {0}: {1}

Explanation: A build component display some log entry

System action: None.

User response: Check the entry displayed.

CRRTWM6020W
state machine error thrown during execution

Explanation: Execution engine detect that a invalid state occurs.

System action: None.

User response: Try again or contact your support.

CRRTWM6021E
user error detected during execution: {0}

Explanation: This message can also be read in the log entry.

System action: None.

User response: Follow the directions provided in the displayed message.

1253

HCL OneTest™ UI

1254

CRRTWM6030W
device data corrupted during properties update (data: '{0}')

Explanation: Mobile client send invalid or corrupted data to workbench.

System action: None.

User response: restart workbench, reboot mobile or contact your support.

CRRTWM7001E
unexpected exception

Explanation: A unexpected exception occurs during processing

User response: Please contact your support

CRRTWM8001E
Unexpected exception while dealing with {0}

Explanation: A unexpected exception occurs during processing

User response: Report the exception to your product support.

CRRTWM8010W
Missing translation for key {0}

Explanation: A translation key is missed.

User response: Report the exception to your product support.

CRRTWM9010E
error while serving landing page

Explanation: An error has been detected while reading the content of the help landing page in the current installation.

The installation might have been altered and is, hence, unreadable.

System action: None.

User response: Reinstall the product.

CRRTWS0001E
An %1 exception occured during translation

Explanation: Exception in execution of Selenium Script.

Chapter 10. Troubleshooting

User response: Verify the Selenium Java Project is open in the workspace and the Selenium Script path referenced in

the Compound Test is available in the workspace.

CRRTWS0002I
"ClassName : %1 ProjectName : %2 IsJunit : %3 ExecutionArgs : %4"

Explanation: The Information to the user of the Selenium Script being executed.

User response: None, as this is an information for debugging purposes.

CRRTWS0101W
Exception in opening Script %1 Editor

Explanation: Error in opening the Selenium Java Script from the hyperlink in the Compound Test Editor

User response: Verify if a simple java file can be open from the Package Explorer

CRRTWS0201W
Exception in getting Source (src) folder from Project %1

Explanation: Error in obtaining the Source folder of the project while opening the Selenium Script

User response: Verify the Selenium Java Project has read access and the Selenium Java Project is present is present

in the workspace

CRRTWS0202W
Exception in setting Source for IFile : %1

Explanation: Exception in adding a Selenium Test to the Compound Test.

User response: Refresh the Selenium Java Project in the Package Explorer view and Verify if the Selenium Java

Project has read access

CRRTWW0001I
Start of Web UI Recorder

CRRTWW0002I
Java Script Request Received

CRRTWW0003I
Java Script Sent in (ms) = %1

1255

HCL OneTest™ UI

1256

CRRTWW0004I
Xhr Request Received

CRRTWW0005I
Xhr Request Process Start

CRRTWW0006I
Xhr Response Time (ms) = %1

CRRTWW0007E
Exception in processing Action

Explanation: An exception occurs while recording an action.

System action: None.

User response: Report exception to product support.

CRRTWW0008E
Exception while sending JavaScript

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0009I
Start of capturing snapshot;

CRRTWW0010I
End of capturing snapshot in (ms) = %1

CRRTWW0011E
Exception in capturing snapshot

Explanation: An exception occurs while capturing the screenshot.

System action: None.

User response: Report exception to product support.

Chapter 10. Troubleshooting

CRRTWW0012E
Exception in sending Xhr response

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0013I
Processing Xhr Request by Recorder.

CRRTWW0014I
Stopping the recorder as browser is closed

CRRTWW0015I
Seems like Browser is Closed.

CRRTWW0016I
Web Application Node Added

CRRTWW0017E
Exception in Recorder Delegate

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0018E
Empty Json Action String. No Operation in Recorder.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0019E
Exception in setting recorder preferences.

Explanation: An error occurred while recording.

1257

HCL OneTest™ UI

1258

System action: None.

CRRTWW0019I
InWindow Found

CRRTWW0020I
InWindow Added

CRRTWW0021E
Exception in setting Firefox browser preferences.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0022E
Exception in starting Chrome browser.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0023E
Exception in bringing browser to front.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0024E
Exception in starting Internet Explorer.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

Chapter 10. Troubleshooting

CRRTWW0025E
Exception in starting Safari.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0026E
Exception in starting Firefox.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0027E
Exception in computing the port from json.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0028E
Exception in serialization.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

CRRTWW0029E
Exception in computing the browsers connected to workbench.

Explanation: An internal exception occurs while recording.

System action: None.

User response: Report exception to product support.

1259

HCL OneTest™ UI

1260

CRRTWW0101I
Registered %1 (%2), located at %3

CRRTWW0102I
Found %1 at %2

CRRTWW0103W
Web UI testing is supported on %1 version %2 or later. Found version %3

Explanation: The version of the browser installed in the user's machine is not supported by Web UI.

System action: None.

User response: Install the version of the browser which is supported by Web UI and retry.

CRRTWW0104W
Could not find %1

Explanation: Could not find the browser installed on the machine.

System action: None.

User response: If the user intends to use this browser for playback, then install it and retry. Ignore otherwise.

CRRTWW0105E
Error determining the version of %1

Explanation: An exception occurs while trying to find the version of the browser.

System action: None.

User response: Report this problem to the product support.

CRRTWW0106E
There was a problem adding the browser %1

Explanation: An exception occurs while adding the browser to the wizard.

System action: None.

User response: Report exception to product support.

CRRTWW0107E
There was a problem setting the Web UI playback preference

Chapter 10. Troubleshooting

Explanation: An exception occurs while setting the Web UI playback preference.

System action: None.

User response: Report exception to product support.

CRRTWW0109E
There was an exception.

Explanation: An exception occurs in the UI.

System action: None.

User response: Report exception to product support.

CRRTWW0110E
There was a problem scanning and marking the test.

Explanation: An exception occurs while scanning and marking the test.

System action: None

User response: Report exception to product support.

CRRTWW0140I
Register Browsers

CRRTWW0150I
Hybrid, invoking action using WebDriver

CRRTWW0151I
Script Method : %1

CRRTWW0152I
Invoke action "%1" on "%2"

CRRTWW0153I
Hybrid, invoking JavaScript

CRRTWW0154I
Start %1 using %2

1261

HCL OneTest™ UI

1262

CRRTWW0155I
Done with execution.

CRRTWW0156I
Creating xpath for %1

CRRTWW0157I
Generated XPath %1

CRRTWW0158I
Searching by %1

CRRTWW0159I
Execute : %1

CRRTWW0160I
Found %1 objects

CRRTWW0161I
Time taken (%1) = %2

CRRTWW0162I
Switched to window : %1

CRRTWW0163I
Return value from JS : %1

CRRTWW0200E
Exception : %1

Explanation: An unexpected exception occurs during playback.

System action: None.

User response: Report exception to product support.

CRRTWW0201E
%1 is not implemented.

Explanation: An action specified in the test is not implemented in playback.

Chapter 10. Troubleshooting

System action: None.

User response: Report this problem to the product support.

CRRTWW0202E
Unexpected return value from JS, %1

Explanation: An unexpected value is found during playback.

System action: None.

User response: Report this problem to the product support.

CRRTWW0203W
Unable to delete file

Explanation: An unexpected exception occurs during playback.

System action: None.

User response: Report exception to product support.

CRRTWW0300W
Failure to create directory during test generation.

Explanation: An exception occurs while generating a Web UI test.

System action: None.

User response: Report exception to product support.

HOTC0009E
License server connection test failed: %1

Explanation: A license server connection test failed.

System action: License server details cannot be displayed.

User response: Refer to the licensing error message for more details.

RMSE0003W
RMSE0003W There are currently no selected counters for the source named {0}.

Explanation: The source has no counters selected.

System action: Execution of the schedule will continue but the information related to this source won't be collected.

1263

HCL OneTest™ UI

1264

User response: Consider selecting at least one counter from the Resource Monitoring Service web console.

RMSE0004W
RMSE0004W The source named {0} is no longer available.

Explanation: This source has been removed from the Service web console after it was added to this schedule.

System action: Execution of the schedule will continue but the information related to this source won't be collected.

User response: Consider adding it back, then edit the schedule to update the sources to be monitored during its

execution.

RMSE0005W
RMSE0005W The source named {0} is reporting the error message {1}.

Explanation: Look at the reported error.

System action: Execution of the schedule will continue but the information related to this source won't be collected.

User response: Consider fixing it from the Resource Monitoring Service web console.

Troubleshooting in the Functional Test perspective
In this section, you will learn how to troubleshoot the tests in the Functional Test perspective.

Troubleshooting functional tests in Mozilla Firefox browsers
If you encounter problems while testing in Mozilla Firefox browsers, the following workarounds might help resolve

them.

Note: The following issues and workarounds are applicable to HCL OneTest™ UI 9.1 and above and Firefox 18

and above on Windows™ computers.

It is not possible to record on a Firefox browser

This problem could occur for the following reasons:

• The browser was not properly enabled. To ensure that the browser is properly enabled, in Firefox, click Tools >

Add-ons > Extensions, and verify that the HCL OneTest™ UI Firefox Enabler is present and enabled.

• Mozilla Firefox browser is associated with JRE 1.6. Ensure that your test environment has JRE 1.7, which is

enabled and associated with the Firefox browser. On your Windows™ computer, this option can be controlled

from Control Panel > Java (Choose Java™ 1.7) > Advanced > Default Java for Browsers> Mozilla Family.

• JavaScript™ is not enabled on your browser. Navigate to Firefox > Options > Content and select the Enable

JavaScript box.

Chapter 10. Troubleshooting

• The web page that you are trying to run is available on the local file system. Host the web page on a web

server and then try recording. In Firefox 25, pages that are loaded from local file systems can be tested.

• The browser was started with a blank home page that is without a home URL. Always specify a home URL for

the browser.

• The Firefox enabler extension that is installed is not the correct extension for your browser version. If you

uninstall a newer version of Firefox and install an earlier version, the extension that supports testing on

Firefox is not compatible with the earlier version. To ensure that you have the correct extension when you are

changing versions, disable Firefox from the Enablement Wizard, and then re-enable it. Re-enabling Firefox

installs the proper extension for your browser version.

• The port number that is specified in the Firefox enabler extension options is not the same as the specified the

port number specified in HCL OneTest™ UI Webserver Configuration preferences. To verify the port number in

HCL OneTest™ UI, select Window > Preferences > Functional Test > Webserver Configuration.

• For Firefox version 18 and above, when a document is loaded, the HCL OneTest™ UI Firefox Enabler loads an

applet that enables communication with HCL OneTest™ UI. In some instances, you see an initializing screen

indefinitely. This issue is most likely because the applet cannot be validated without an internet connection.

To address this issue, online validation must be disabled. To disable online validation, open the Java Control

Panel. In the Advanced tab, under Perform certificate revocation checks on" select the Do not check (not

recommended) option. Click Apply save the changes and then click Ok to restart the browser. HCL OneTest™

UI uses applets that are signed with secure certificates in order to comply with Java™ security features. When

prompted by the browser, accept to run applet permanently to ensure HCL OneTest™ UI functions properly.

Also, ensure that the proper delays are in place for playback.

While recording on Mozilla Firefox browsers, some dialog boxes are recordable while others are
not

HCL OneTest™ UI supports the following dialog boxes:

• Dialog boxes that are supported by Frameworks. Example: Dojo dialog box.

• Native or XUL dialog boxes

HCL OneTest™ UI does not support the following dialog boxes:

• Recording on JavaScript™ alert boxes is not supported.

Unable to test Adobe™ Flex applications with HCL OneTest™ UI on Mozilla Firefox browsers

HCL OneTest™ UI supports testing Flex applications on Firefox up through Mozilla Firefox ESR version 10 and later

releases of version 10.

Unable to test applications in Linux® with HCL OneTest™ UI on Mozilla Firefox browsers

HCL OneTest™ UI supports testing applications on Linux® with Firefox through Mozilla Firefox ESR version 17 and

later releases of 17.

1265

HCL OneTest™ UI

1266

Unable to use Ajax related APIs on an Ajax application that is running on Mozilla Firefox browsers

Record and playback on Ajax-based actions work as expected. However, for Firefox version 18 and above, the

following Ajax related APIs are not supported.

• waitForAjaxCompleteRequests

• waitForAjaxPendingRequests

• setAjaxTrace

• getAjaxPendingRequests

• getAjaxCompletedRequests

To introduce delays, use the sleep API. For more information, see AJAX support on page 1426.

Unable to test embedded PDF files in Firefox browsers

In HCL OneTest™ UI 9.1, embedded PDF files in Firefox 18 and above are supported only when the PDF file is present

in the browser along with other HTML controls. For example, the Recorder and Player will not recognize the PDF

controls correctly if the file was opened by right-clicking the document and selecting Open with > Firefox.

Unable to launch the Verification Point Comparator from execution logs generated through
Rational® Quality Manager

In the playback log, the ComparatorApplet,which is responsible for launching the Verification Points Comparator is

hosted on a local server started by HCL OneTest™ UI or one of its client processes. In the absence of this server, the

comparator does not launch. To address this issue, ensure that HCL OneTest™ UI is running on the computer where

playback logs from Rational® Quality Manager are being viewed.

Unable to launch the Verification Point Comparator from playback logs on Linux® installations

On Linux® installations, the Verification Point Comparator cannot be opened through the playback logs. Instead, open

the comparator from the project's logs folder (<projectname>_logs).

Unable to play a script that was recorded on a stand-alone PDF document in Firefox on an
embedded PDF document

In Firefox version 19 and above, the plugin pdf.js is used to render PDF documents. This plugin renders PDF

documents as HTML pages, thus HCL OneTest™ UI records the controls as HTML. For a script recorded on a stand-

alone PDF document to be compatible on an embedded PDF document in Firefox, you can disable the pdf.js plugin

by typing about:config in the address. When prompted, click the I'll be careful, I promise!! button. Search for the

pdfjs.disabled flag and right-click then select Toggle to change the value from false to true. Restart Firefox to apply

the changes.

Chapter 10. Troubleshooting

Unable to playback scripts on listbox controls when Firefox is maximized

During playback on Firefox, HCL OneTest™ UI sometimes fails to click listbox controls when the browser is

maximized. In order to correct this, you can adjust the zoom level of the browser or run the playback with the browser

window not maximized.

Related information

AJAX support on page 1426

HTML and HTML 5 support on page 1434

Unable to test eclipse-based applications
Generally the applications that are enabled for functional testing is in the enabled state after you upgrade HCL

OneTest™ UI. If you find any issues while testing the applications, disable the Eclipse application and enable it again

for functional testing.

Disabling eclipse-based applications:

If you enabled the Eclipse application using the HCL OneTest™ UI enable applications option, disable the application

from the Enable Applications window in HCL OneTest™ UI.

To disable the Eclipse application that was enabled using the Eclipse Software Updates feature:

1. Open the application under test.

2. Click Help > Software Updates.

3. Click the Installed Software tab.

4. Select the Eclipse application and click Uninstall.

Ambiguous object recognition in functional testing
Ambiguous recognition occurs when HCL OneTest™ UI can not uniquely identify an object in the system-under-test.

This commonly happens when HCL OneTest™ UI cannot differentiate between an instance of the application-under-

test started by a script playback and an instance of the same application inadvertently left open previous to script

playback. This also applies to identical windows from one application and identical HTML documents. Ambiguous

recognition will cause script playback failure unless the duplicate application is closed.

If HCL OneTest™ UI finds more than one instance of the application-under-test during the playback of a script the

Ambiguous Recognition window will open allowing you to close the duplicate instance and resume playback.

Preventing ambiguous recognition

One common cause of ambiguous recognition is residual windows left open from a previous playback of a test script.

To avoid this issue take the following actions:

1267

HCL OneTest™ UI

1268

• Make closing the application-under-test the last action recorded in the test script.

• If script playback fails, close all windows opened by script playback before replaying the script.

Dealing with ambiguous recognition

If the Ambiguous Recognition window opens correct the situation and restart playback.

The Ambiguous Recognition window opens and playback pauses.

1. Minimize open windows until the Ambiguous Recognition window is visible.

2. Find and close the duplicate application instance using the information in the Ambiguous Recognition

window.

3. Click OK in the Ambiguous Recognition window to resume playback.

Screen snapshot on playback failure of functional tests
If playback of a script causes an exception to be thrown, HCL OneTest™ UI takes a screen snapshot at the time of the

failure. The screen snapshot is accessible through the log.

Accessing the screen snapshot in an HTML log type

HTML is the preferred log type to access the screen snapshot.

Select HTML as the log type in the Logging Preferences Page in FT Java™ or the Logging Options Page in FT .Net.

After playback fails the log opens in your browser.

1. Find the screen snapshot image near the bottom of the log.

◦ Click the image or link to view full size.

◦ Right click to save, print, or email the JPEG image.

Taking a screen snapshot with scripting

RootTestObject exposes a getScreenSnapshot method that will return a snapshot of the screen. GuiTestObject

exposes the same method, but only captures the portion of the screen rendering the TestObject. LogInfo, LogError,

and LogWarning all have overloads that will take a snapshot and add it to the log.

Tips and tricks for functional testing HTML applications
This topic provides tips and tricks for recording and playing back scripts to test HTML applications.

Start recording first and then start the application

When recording scripts on your HTML applications, useHCL OneTest™ UI to start the application during recording.HCL

OneTest™ UI opens the HTML page that you specify in your default browser or in a specific browser.

Chapter 10. Troubleshooting

Recording a hover on HTML menus

When recording scripts on your HTML applications, you can record a hover on drop-down menus that are activated

when you roll the mouse over the drop-down menu. These drop-down menus are implemented with DIV tags. To

record a hover for drop-down menus, and make the sub-menu drop down, hover the mouse over the menu item text

and press Shift. Make sure the mouse is on the text of the menu item and not on the blank space to the right of the

menu item text.

Use deleteCookies method in your scripts

Two versions of the deleteCookies method are available. One method deletes all cookies for the current profile or

user and the other method deletes cookies in a specific path or domain for the current profile or user. For information,

see theHCL OneTest™ UI API Reference, in the com.rational.test.ft.object.interfaces package, under IBrowserObject.

Avoid including menu items in scripts

Because selections on browser menus are recorded based on their screen coordinates, scripts may not play back

reliably if the browser size or position change. Also, menus are different on different browsers, which may also cause

scripts to play back incorrectly.

Make sure Java applets are in full view during playback

If you resize the browser to a smaller size,HCL OneTest™ UI does not scroll the applet objects into view during

playback if they are not in view.

Use the loadURL() method to change URLs

The location of the Address field in a browser is based on screen coordinates, which can change if the browser's size

and position change. A script usually fails if you click in the Address field and type the new URL. When recording,

insert a browser click (Browser_htmlBrowser) in your script to change URLs.

1. When recording, click any empty space in the browser header to include a browser click in your test object

map.

2. After recording, view the script and place the cursor on a blank line in the script.

3. In the Script Explorer, expand Test Objects, right-click Browser_htmlBrowser, and select Insert Asset at

Cursor.

4. Select the loadURL(String)method.

5. Type the name of the new URL between the parentheses of the loadURL statement.

6. Insert a semicolon (;) at the end of the line for only Java™, and not for VB.NET.

Using .size property for INPUT elements

If you use .size Property for INPUT elements and do not specify the .size property within the Html of an INPUT

element, the default value returned by the Internet Explorer is 20.

1269

HCL OneTest™ UI

1270

Use toolbar buttons common to both browsers

When you create a cross-platform script, avoid toolbar buttons that only appear in one browser. The following toolbar

buttons are common to both browsers:

• Back

• Bookmarks /Favorites (Internet Explorer)

• Close

• Forward

• Home

• Maximize

• Minimize

• Search (button only)

• Stop

Use the close button to exit a browser

The Close button is available in the Internet Explorer. When you record a cross-platform script, avoid using

alternative methods of exiting the browser. For example, pressing Alt+F+C works only for Internet Explorer. Either key

combination causes a script to fail when run on the other browser.

Check the .readystate of the browser object

Sometimes script playback for testing HTML application fails if the ready state of the browser object is not 4. Ensure

that the ready state of the browser is 4 while playing back a script. You can do this by modifying the test script

manually as shown in the examples.

Script to check the browser state in Java™: logInfo("Ready State #:

"+browser_htmlBrowser().getProperty(".readyState").toString());

Script to check the browser state in .Net: LogInfo("Ready State #: " &

Browser_HtmlBrowser().GetProperty(".readyState").ToString)

Use waitForExistence method to compensate for browser startup speed

Use a waitForExistence method when recording cross-browser scripts to wait for a browser. For example:

1. When recording, start the application.

2. Click the Insert Verification Point or Action Command button on the Recording toolbar.

3. In the Select an Object page of the Verification Point and Action Wizard, click the Object Finder icon and

drag it over the HTML page (not the browser itself).

4. Click Next.

5. In the Select an Action page of the Verification Point and Action Wizard, click the Wait for Selected

TestObject option.

Chapter 10. Troubleshooting

6. If necessary, clear Use the defaults to change the Maximum Wait Time and Check Interval settings, which are

2 minutes and 2 seconds, respectively.

7. Click Finish.

Avoid these click and key combinations in cross-platform scripts

To handle a pop-up menu, some browsers ignore a click action on a link immediately following a right-click. When this

click combination is necessary, right-click the link, click an empty space in the document, and then click the link.

In some browsers, pressing Ctrl and clicking a link opens the page in another instance of the browser. This same key

sequence results in a normal link click in other browsers. A script that contains this combination of actions plays

back differently and should be avoided for cross-browser testing.

Run a utility to fix badly formed HTML

Occasionally errors in HTML can cause different browsers to interpret the HTML DOM hierarchy differently. A script

that runs successfully in one browser can fail in another. Record one script against each browser and compare the

resulting test object maps. If the maps show a different hierarchy, run a utility, such as HTML Tidy. If the utility reports

errors, it is possible that the errors are causing the different interpretations of the object model, resulting in different

hierarchies. HTML Tidy is available from the World Wide Web Consortium, www.w3.org.

Handling pop-up message boxes

When recording a script in some browsers, a pop-up message (browser user interface dialog boxes), such as

encryption notices occasionally appear. When recording a cross-browser script, you do not want to include these

message boxes, because they may not appear in other browsers. To avoid this problem:

1. When a pop-up message appears, pause recording.

2. Select any check box on the message that prevents the message from appearing again.

3. Click Cancel to close the message box.

4. Resume recording.

You can modify your script to handle these kinds of message boxes, but the code can be complicated. For more

information, see the ExtendingHCL OneTest™ UI functionality topics.

When you record a cross-browser compatible (a script that is compatible across all browsers thatHCL OneTest™

UI supports) script, try to avoid recording any pop-up message boxes. If you are not recording a cross-browser

compatible script, you can record pop-up message boxes in your script.

HCL OneTest™ UI supports the Login, File Download, Certificate/Security Warnings, File Picker (File Open/File Save),

and Print dialog boxes on the Windows® platform. These user interface dialog boxes are for a specific browser and

are not cross-browser compatible. In most cases, the Login dialog box is cross-browser compatible.

1271

HCL OneTest™ UI

1272

Testing URLs without configuring the application

When you configure an application, Functional Test adds the application name to the Application Configuration Tool.

If you test a lot of different URLs, the Applications list can become long. If you do not want to add a URL to the list,

you can use the startBrowser command in an empty script to test it.

1. Create a new functional test script without recording.

2. On a blank line, type the following command:

startBrowser ("url");

3. Save the script and run it.

4. When the page is displayed, on the Functional Test toolbar, click Insert Recording into Active Functional Test

Script and start recording against the page.

Testing HTAs

HCL OneTest™ UI supports testing Microsoft® HTML Applications (MSHTA). Before you can test a MSHTA, you must

configure it by running mshta.exe. To configure each HTA you want to test:

1. In the Kind field of the Application Configuration Tool, select executable or batch.

2. In the Executable file field, select mshta.exe.

3. In the Args field, pass the parameter x.hta to the executable, where x is the name of the HTA file.

For more information, see Configuring Applications for Testing.

Handling Java plug-in errors

If an error about the Java™ plug-in is returned, when you test HTML applications or start the Comparator from the

View Results link in the HTML log, you need to verify that your browser's Java™ plug-in is configured properly. For

instructions, see the related topic about enabling the Java plug-in of a browser.

Java applets in HTML pages
You can test Java™ applets within a browser (Firefox, Internet Explorer). Java™ applets are not mapped as nested

within HTML but are recorded as top-level objects. In the test object map, applets appear at the top level.

If the object cannot be found by "The Java™ Test Domain", the HTML Applet Test Object (HTML AppletProxy) is used

as the fall-back test object, which provides only coordinate-based recording.

Requirements for testing applets within a browser

• ◦ The Sun Java™ Plug-in is required for running and testing applets.

◦ To use Java™ applets with Firefox, Java™ 2 Standard Edition Runtime version 1.4 or greater is required,

and the associated Java™ Plug-in must be installed.

Chapter 10. Troubleshooting

• Internet Explorer

◦ The Sun Java™ Plug-in is not required to run applets, but it is required for testing applets with HCL

OneTest™ UI. If the Java™ Plug-in is not installed, the Microsoft® JVM is used to run applets, and HCL

OneTest™ UI is not designed to enable the Microsoft® JVM.

◦ If you want to use a Java™ Plugin older than 1.4 with Internet Explorer, you must turn off Applet

Support:

1. From the Windows® Start menu, run regedit.

2. Open HKEY_LOCAL_MACHINE\Software\HCL Technologies\HCL OneTest UI.

3. In the right pane, right-click and click New > String Value.

4. Set the name of the new string to Applet Support.

5. Double-click the newly created string.

6. In the Value data field of the Edit String dialog box, type 0.

7. Restart your computer.

• HCL OneTest™ UI

◦ For Internet Explorer, use Java™ Plug-in version 1.4 greater. Earlier versions of the Java™ Plug-in,

including 1.2.2, and 1.3.1_01 do not work with HCL OneTest™ UI.

◦ You must enable the JVM (JRE) that the Java™ Plug-in is using. When a JavaSoft JRE or JVM is

installed, it may install a Java™ Plug-in also. If so, you must use HCL OneTest™ UI to enable the JVM

used by the Java™ Plug-in. For information, see Enabling Java Environments on page 586.

◦ HCL OneTest™ UI uses the most recently installed Java™ Plug-in/JRE. If an unsupported Java™ Plug-

in is installed (for example, Version 1.2.2 in Internet Explorer), HCL OneTest™ UI stops working with the

browser.

◦ The Java™ Plug-in uses its default JRE (the JRE with the same version as the plug-in), unless specified

otherwise. You can change the default JRE in the Java™ Plug-in control panel application.

◦ HCL OneTest™ UI attempts to locate the most recently installed Java™ Plug-in and enable its default

JVM.

◦ Java™ Applets in HTML

▪ An applet can be specified in HTML using an APPLET tag, an OBJECT tag, or an EMBED tag.

▪ For Internet Explorer, until version 1.3 of the Java™ Plug-in, the OBJECT tag had to be used to

specify the use of the Sun JVM for applets. In version 1.4 and later, during installation of the

Java™ Plug-in, the use of the Java™ Plug-in/JRE may be selected as the default for Internet

Explorer (APPLET tags), allowing both APPLET and OBJECT tags to be used.

1273

HCL OneTest™ UI

1274

▪ A Java™ Plug-in HTML Converter is available from Sun Microsystems to convert APPLET tags

to a set of OBJECT and EMBED tags within the HTML document.

▪ Make sure Java™ applets are visible during playback. If you resize the browser to a smaller

size, HCL OneTest™ UI does not scroll the applet objects into view during playback.

Standard properties available for functional testing HTML objects
Standard properties provide a common way to access properties and their values across browsers. This topic lists

the standard properties available for HTML objects.

Most of these properties are modeled on HTML element attributes defined by the W3C.

Property Use

.align Value of the align attribute of the element. Valid values are bottom, middle, and top.

.alt Value of the alt attribute of an element. This is the "alternate" text for the element, usually displayed by

the browser when the mouse hovers over the element.

.border Value of the border attribute of the element. Returns the number of pixels.

.bounds Rectangle that represents the bounding rectangle of the object in screen coordinates.

.caption For TABLE elements, the value of the caption attribute. For an HTML dialog box, this is the name of the

dialog box.

.cellIndex Cell index of an element with respect to its row (>=0).

.checked Boolean value that indicates whether a check box is checked (true) or not (false).

.class TestObject class name; for example, "HtmlTable" for a TABLE element.

.class

Name

Value of the class attribute of an element (used for stylesheets in HTML).

.clientRect Bounding rectangle of the element in client coordinates.

.code Value of the code attribute of an APPLET element.

.codeBase Value of the codeBase attribute of an APPLET element.

.colSpan Value of the colSpan attribute of an element.

.cookie Current value of the cookie for the document.

.coords Value of the coords attribute of an element. This is a string containing the coordinates used to define

the AREA element of a client-side image map. In the form x1, y1, x2, y2, and so on.

.default

Checked

Boolean value for the defaultChecked attribute of the element.

.defaultS

elected

Boolean value; when true indicates that the OPTION element in a SELECT element (listbox or drop

down) is selected by default when the page is displayed.

Chapter 10. Troubleshooting

Property Use

.defaultVal

ue

Value of the defaultValue attribute of the element.

.disabled Value of the disabled attribute of an element, returned as a boolean. If true, user input is currently dis

abled for this item.

.hasFocus Indicates whether the current element has focus.

.hasScript Boolean value; true when a script has been associated with actions on this element.

.height Value of the height attribute of an element. For an Image element, this is the display height in pixels for

the image.

.href Value of the href attribute of an element. This is a URL used by ANCHOR and AREA elements to indi

cate the result of clicking the corresponding element.

.hspace Value of the hspace attribute of an element, the amount of whitespace inserted to the left or right of an

IMG, OBJECT, or APPLET element.

.id Value of the id attribute of an element.

.indetermi

nate

Boolean value; true when the status of the check box has been changed.

.index Index of the OPTION element within a listbox or combodropdown list.

.isMap Boolean value; for Image elements (IMG), this value is true when the element is a server-side image

map.

.length Value of the length attribute of an element. For a SELECT element, this indicates the number of items

in the list.

.maxLength For an edit control (Input type=Text or TextArea) this indicates the maximum number of characters a

user can enter.

.multiple Boolean value; for a SELECT element (listbox or combo dropdown), a value of true indicates that the

list supports multiple selections.

.name Value of the name attribute (Form elements and Frames only).

.noHref Value of the noHref attribute of an element. When set on an AREA element, indicates that the corre

sponding area has no associated action.

.offset

Height

Height of the element.

.offsetLeft Offset, in pixels, of the element from its left edge to the left edge of its parent element in the DOM.

.offsetRight Offset, in pixels, of the element from its right edge to the right edge of its parent element in the DOM.

.offsetTop Offset of the element from the offset of its parent element in the DOM.

1275

HCL OneTest™ UI

1276

Property Use

.offset

Width

Width of the element.

.readOnly Value of the readOnly attribute of an element. Boolean value; true when the form element is read-only.

.readyState
Current status of a browser, indicating whether it is currently loading a document or ready for user in

put. This is an integer value:

0 - Uninitialized

1 - Loading

2 - Loaded

3- Interactive

4 - Complete (ready)

.rowIndex Row index of an element in a table (>=0).

.rows Value of the rows attribute of a TEXTAREA element, indicating the size of the edit control in the number

of rows of text.

.rowSpan Value of the rowSpan attribute of an element.

.screenLeft Upper left corner of bounding rectangle in screen coordinates, x component.

.screenTop Upper left corner of bounding rectangle in screen coordinates, y component.

.select Boolean value; true when the FORM element is highlighted to receive user input.

.selected Boolean value; true when the OPTION element in a SELECT element (listbox or dropdown) is selected.

.selectedIn

dex

Value of the selectedIndex attribute of an element. For a single selection Select element, this indicates

which option element is selected. Integer in the range of >=0.

.shape Value of the shape attribute of an element. Used for AREA elements in client-side image maps. Valid

values are default, rect, circle, and poly.

.size Value of the size attribute of an element. For a Select element, the number of items displayed at one

time in the list. If size > 1, the list appears as listbox; otherwise the list appears as a Combodropdown.

.src Value of the src attribute for the element. For images and image buttons, this is a URL specifying the

image file.

.tag HTML tag for the element.

.target Value of the target attribute of an element. For anchors, this indicates the name of the target frame,

that is, the frame where the document should be opened.

.text
Text inside of the HTML tags for bounding the element. For example:

Chapter 10. Troubleshooting

Property Use

<A>This is an Anchor

The text property returns "This is an Anchor." If consecutive white space characters are found, all white

spaces are combined and reduced to a single blank character.

.title Value of the title attribute of an element. This is frequently the text displayed when hovering over the

element with the mouse.

.type Value of the type attribute of an element. For example, for an Input element this is text, password,

check box, radio, submit, image, reset, button, hidden, or file.

.url URL of the document.

.useMap Value of the useMap attribute of an element. The value is a string specifying a URL and is used for

IMAGE elements (IMG) to indicate a client-side image map. The URL points to the map associated

MAP element. Frequently, this is a document-relative reference.

.value Value of the value attribute of an element. In Form elements this represents the value sent when the

form is posted.

.vspace Value of the vspace attribute of an element, the amount of whitespace inserted to the above or below

an IMG, OBJECT, or APPLET element.

.width Value of the width attribute of an element. For an IMAGE element, this is the display width in pixels for

the image.

.window Heavyweight window for the element returned as a long. For the Browser, this is the top-level window.

Uninstalling HCL OneTest™ UI cleanly
If you have any issues during uninstall and reinstall of HCL OneTest™ UI, you can perform a few tasks to verify

whether the required processes are stopped and all the files are deleted from the computer.

About this task

To uninstall HCL OneTest™ UI cleanly:

1. To uninstall the packages, you must log in to the system using the same user account that you used to install

the product packages.

2. Before you uninstall HCL OneTest™ UI, close the Eclipse and Visual Studio IDEs, as well as any open web

browsers, and all other applications that are enabled by HCL OneTest™ UI. To ensure that all the processes

have stopped, you can use any of the following tools:

◦ Use the Task Manager to kill all the HCL OneTest™ UI processes such as java.exe and javaw.exe.

◦ You can use Process Explorer from Microsoft to search and stop all the HCL OneTest™ UI processes.

a. In the Process Explorer, click Find > Find Handle DLL.

b. Type rtx in the Handle or DLL substring field.

c. Kill all the processes that are listed in the Process Explorer Search window.

3. Uninstall HCL OneTest™ UI using the Installation Manager.

1277

HCL OneTest™ UI

1278

4. After uninstalling HCL OneTest™ UI, verify if the uninstallation process has deleted the assembly entries.

a. Click Start > Run and type assembly.

b. Delete the following assembly instances if they still exist:

▪ rtxftnet

▪ SiebelDomainProxies

▪ SiebelIEHelper

▪ SiebelNotificationListener

▪ policy.7.0.rtxftnet

Note: If you are unable to delete the assembly entries, open the Windows Registry editor

and search for the assembly. Delete the entries from the Registry and then try to delete the

assembly instance.

5. Click Start > Run and type regedit to open the registry editor. Expand HKEY_LOCAL_MACHINE > SOFTWARE >

HCL Technologies > HCL OneTest UI > and delete the HCL FT JRE folder.

6. Delete all the files and folders in the product installation directory if they still exist. For example, C:\Program

Files\HCL\HCLOneTest.

7. To delete the configuration and customization files, delete the OneTestUI folder that is available by default at

C:\ProgramData\HCL location.

8. To delete the user preference settings of HCL OneTest™ UI, delete the OneTestUI folder that is available by

default at C:\Users\<user name>\AppData\Roaming\HCL location.

9. To delete the workspace data, delete the OneTestUI_private_workspace folder that is available at C:

\Users\<user name>\HCL\HCLOneTest\workspace location if it still exists.

Problems with object recognition
If you encounter a problem with object recognition during testing, you might be able to resolve the problem by

following these instructions.

These issues might occur during object recognition:

• Objects and controls are not recognized on page 1278

• Previously recorded scripts do not work on page 1279

• Siebel controls are not recognized as Siebel objects on page 1279

Objects and controls are not recognized

Problem

Some controls in an application are not recorded in the same way that other objects from the same domain are

recorded. This is due to one of the following reasons:

Chapter 10. Troubleshooting

• The controls are custom controls that HCL OneTest™ UI does not officially support. Therefore, the controls are

recorded in a generic domain, as shown in this example::

afxWnd90uwindow().click(atPoint(252,212));

• The environment for the domain was not configured correctly, as in the case of Siebel or Flex applications.

For example, actions on controls in Seibel or Flex domains that are configured incorrectly are recognized as

follows:

oleObjectactiveXControl2().click(atPoint(102,10));

Resolution

To resolve this problem, complete these steps:

1. Create a custom proxy for those controls or submit an enhancement request to get your application

supported by HCL OneTest™ UI. For instructions to create custom proxies, see HCL OneTest UI proxy SDK on

page 865.

2. Correctly configure the domain by completing the instructions in Flex applications testing process on

page 616.

Previously recorded scripts do not work

Problem

The test object map lists the test objects in the application-under-test, in a hierarchy. If the application-under-

test changes, the object hierarchy might change. During playback, HCL OneTest™ UI cannot find an object whose

hierarchical position changed, and as a result, playback fails.

Resolution

1. Use the dynamic find feature. When a search that is based on object recognition scoring (ScriptAssure) fails

to find objects whose hierarchy has changed, the dynamic find feature searches for such objects. To convert

an object to a dynamic object:

a. From the test object map menu, right-click the test object map, and click Convert To Dynamic Test

Object ().

b. In the Convert To Dynamic Test Object window, select Select the parent to anchor in the object

hierarchy. The new object becomes a descendant of its parent.

c. Select the object to convert, and click Finish.

2. Search for the object by using the find method instead of the Record-Playback method. When you use

find(), HCL OneTest™ UI searches for a matching object in the entire hierarchy. Therefore, a change in the

hierarchy does not cause the playback failure.

Siebel controls are not recognized as Siebel objects

Problem

1279

HCL OneTest™ UI

1280

Siebel objects are not recognized. This issue might occur because Siebel drivers are not being properly loaded on the

system, or because the Siebel services are not started on the workstation where HCL OneTest™ UI is installed.

Resolution

1. If you see the following message displayed when you log on to the Siebel server for the first time, the Siebel

drivers are not installed on your workstation:

Your version of the Siebel High Interactivity Framework for IE, required for use of this
 Siebel application, may not be current. In order to download a current version of the
 Siebel High Interactivity Framework, please ensure that your browser security settings
 are correct and then log in to the application again. Consult your system administrator
 for details about the Siebel High Interactivity Framework and correct browser settings.

Specify your user ID and password for the Siebel application.

2. Press the Ctrl key to log on to the Siebel server.

3. Continue to press the Ctrl key. You are prompted to install the Siebel High Interactivity Framework. Proceed

with its installation.

Troubleshooting issues in SAP tests
You can find information about the issues or problems that you might encounter while you test the SAP GUI. Details

about issues, their causes and the resolutions that you can apply to fix the issues are described in the following table.

Problem Description Solution

The controls on the SAP Logon win

dow are not recorded.

While you record the controls on the

SAP Logon window, either the con

trols are not captured or the recogni

tion of the controls is very slow.

You must first select the configured

server name in the Connections col

umn, and then click Logon.

The Close icon at the upper-right cor

ner of the SAP Logon window is not

recorded.

The action performed on the Close

icon on the SAP Logon window is not

recorded. Even though if it is record

ed correctly, the playback of the ac

tion on the Close icon fails.

While you record, you can click the

context menu at the upper-left side

of the SAP Logon window, and then

click Close to close the application.

On the SAP server screens, the play

back fails for some of the controls.

During the recording, even though the

controls are captured correctly, when

you use the Highlight option from the

Object map, the correct control might

not be highlighted. These controls

might not be recognized correctly

You can do the following steps:

1. Insert controls by using the

Insert test object tool.

2. Update the existing control

name with the inserted con

trol name.

Chapter 10. Troubleshooting

Problem Description Solution

during the playback and the playback

fails.

The recording monitor does not dis

play the steps as soon as they are

recorded.

When you record the test, the record

ing monitor is updated with each

step that you record. But, sometimes

the steps are not displayed in the

recording monitor.

Due to buffering, the test steps might

be updated in the recording monitor

with some delay. You can proceed

with recording. The steps are dis

played in the recording monitor after

the buffering is completed.

Problems with environment enablement
When it is not possible to record on the application-under-test, you must verify whether the test environment was

enabled for functional testing.

Problem

HCL OneTest™ UI is unable to record on the application-under-test, or it records incorrect statements.

Resolution

Verify that the domain was enabled for functional testing. For example, for HTML applications, verify whether the

browsers and their associated Java Runtime Environments (JREs) were enabled for testing. For information about

preparing the functional test environment for testing, see Preparing the functional test environment on page 582.

In HCL OneTest™ UI version 9.1 and later, the test environment is automatically enabled for functional testing under

certain conditions; no manual enablement is required. For information about the conditions in which automatic

enablement occurs, see Automatically enabled environment for functional testing on page 582.

If the environment is not automatically enabled, you must enable the components manually. For information about

enabling components manually, see these topics:

• Enabling web browsers on page 588

• Enabling Java environments on page 586

Handling exceptions
If an exception occurs during testing, you might be able to handle it by following these instructions. Two common

exceptions are the ambiguous recognition exception and the Mutex timeout exception during playback.

• Ambiguous recognition exception on page 1282

• Mutex timeout exception during playback on page 1282

1281

HCL OneTest™ UI

1282

Ambiguous recognition exception

Problem

In certain cases during playback, for example, when multiple instances of a browser are running, HCL OneTest™

UI might be unable to differentiate between two similar objects in the software that is being tested. At such times,

an AmbiguousRecognition exception occurs. For example, this problem might occur when multiple instances of a

browser are running.

Resolution

1. Find the duplicate instance of the application, close the instance, and click Retry.

2. Add a unique property to the object in the test object map to distinguish the ambiguous objects.

3. Open the test object map from the Script Explorer.

4. Find the object that the ambiguous exception was thrown for, right-click the object, and highlight it. This action

highlights the objects that HCL OneTest™ UI finds similar.

5. Identify a unique property among these objects and use the find() API, passing the unique property to find

the method, and then do the required operation. For example, to click a button that is named Back, use this

approach:

 TestObject [] backBtn = find(atDescendant(".class", ".PushButton", ".text", "Back"));
 if(backBtn.length == 1){
 ((GuiTestObject)backBtn[0]).click();
 }
 else{
 //Add code to log message that more than one instance of object is still found
 }

Mutex timeout exception during playback

Problem

During the playback of functional test scripts, this Mutex timeout exception might

occur:com.rational.test.ft.svs.Mutex$TimeoutException .

Resolution

The default SpyHeapSize that is set in HCL OneTest™ UI is 1048576. Increase this value by adding a DWORD value

named SpyHeapSize to the registry and setting its value to 2097152. Complete these steps:

1. Click Start and then click Run. Type regedit. The Windows Registry Editor opens.

2. Navigate to the [HKEY_LOCAL_MACHINE\Software\HCL Technologies\HCL OneTest UI registry key.

3. Create a new DWORD value named SpyHeapSize and set its value data to 2097152 (or 200000 hexadecimal)

You can also add the SpyHeapSize key by creating and then running a .reg file that has these contents:

Windows Registry Editor Version 5.00

Chapter 10. Troubleshooting

[HKEY_LOCAL_MACHINE\Software\HCL Technologies\HCL OneTest UI]
"SpyHeapSize"=dword:00200000

Collecting HCL OneTest™ UI error logs
While working with HCL OneTest™ UI, you might encounter some problems that you can easily troubleshoot.

About this task

To generate HCL OneTest™ UI error logs:

1. Set the preferences for logging and tracing in the Logging and Tracing page. Click Window > Preferences,

expand Functional Test in the left pane, and then click Logging and Tracing. You can collect the errors,

warning, and information messages into a log file (rft_log.txt). The debug information is collected as trace

date into the trace file. The trace file can be either a .txt file or a .log file, depending on your specification in the

Logging and Tracing page. Trace files in the .log format can be imported into the Eclipse Error Log view within

HCL OneTest™ UI for viewing and filtering. You can specify the log file and the trace file directory.

2. Perform the operation that caused the problem.

Viewing trace files within HCL OneTest™ UI
You can view HCL OneTest™ UI trace files in the HCL OneTest™ UI integrated development environment (IDE) Error

Log view.

Before you begin

Complete these steps:

1. Set the preferences for trace files in the Logging and Tracing page. Click Window > Preferences, expand

Functional Test in the left pane, and then click Logging and Tracing.

2. Enable the generation of trace files by selecting the Enable Tracing check box

3. Enable the generation of trace files in the Eclipse error log format (.log) by selecting the Generate traces in

Eclipse error log format check box.

4. Specify other details for the trace files, such as the level of detail, allowable file size, number of files to be

retained, and the location where the trace files should be stored, and save your settings.

About this task

HCL OneTest™ UI trace files contain debug information which you can use to troubleshoot problems you encounter.

You can configure HCL OneTest™ UI to generate trace files in the .txt format, or the Eclipse error log (.log) format. Only

trace files generated in the .log format can be imported into the Eclipse Error Log view within HCL OneTest™ UI. After

importing the .log trace file into the Error Log view, you can work with the data using Eclipse log filtering operations.

1. In HCL OneTest™ UI, click Window > Show View, and then click Other.

2. In the Show View dialog box, expand General, and click Error Log.

Result

The Error Log view is displayed as a tab in HCL OneTest™ UI.

3. In the Error Log view, click the Import Log icon.

1283

HCL OneTest™ UI

1284

4. Navigate to the directory where the trace files are stored, and select the trace file (rft_trace.log) to import.

Result

The trace file details are shown in the Error Log view.

5. You can use the Eclipse filter operations to work with the trace data. Right-click a trace data item to open the

Log Filters dialog box. You can filter event types, limit the number of visible items in the log, filter events from

the most recent session, and enable filters to hide stack trace elements.

AutoPD Collection artifacts in IBM® Support Assistant
HCL OneTest™ UI, contributes a few files that the Automated Problem Determination (AutoPD) Collector tool in the

IBM® Support Assistant application uses.

The following files from the functional testing product are contributed to the AutoPD Collector tool:

• The user preferences file, and the logging and tracing preferences file.

• The extension preferences file.

• A collection of browser details from Internet Explorer (only on Microsoft® Windows®) and Firefox (on both

Microsoft® Windows® and Linux®)

• A collection of Microsoft® .NET framework details (only on Microsoft® Windows®)

Frequently asked questions
This section provides answers to frequently asked questions about HCL OneTest™ UI.

Frequently asked questions about HCL OneTest™ UI
For answers to some generic questions on using HCL OneTest™ UI, see this topic.

• Does HCL OneTest UI support the testing of my application? on page 1285

• Can HCL OneTest UI be used to test Eclipse-based applications? on page 1285

• Is the Eclipse integrated development environment (IDE) provided with HCL OneTest UI? on page 1285

• How do I enable debugging in HCL OneTest UI? on page 1285

• How do I transfer the information specified in the HCL OneTest UI Application Configuration Tool to playback

agent machines? on page 1285

• How do I run HCL OneTest UI under a different Java™ Runtime Environment (JRE)? on page 1286

• How do I cleanly uninstall HCL OneTest UI versions 7.x, 8.0 and 8.1.x on Microsoft Windows? on page 1286

• How do I enable the browser environments for testing applications on Microsoft Windows systems compliant

with Federal Desktop Core Configuration (FDCC)? on page 1286

• Can HCL OneTest UI be used with a project enabled for Unified Configuration Management (UCM)? on

page 1287

• Does configuring the application under test (AUT) modify the AUT? on page 1287

• What happens when Internet Explorer is enabled? on page 1287

• What are the language limitations for HCL OneTest UI scripts? on page 1287

Chapter 10. Troubleshooting

Does HCL OneTest™ UI support the testing of my application?

HCL OneTest™ UI supports applications that are developed using certain technologies. Verify the type of technology

that is used to develop the test application, and verify if HCL OneTest™ UI supports functional testing of the domains

and the controls in the application. If HCL OneTest™ UI supports the technology, and does not support a specific

control for functional testing by default, you can use Proxy SDK to develop proxies that enable support for specific

controls.

For information about supported domains, see Test application domain support on page 1423.

For information about using Proxy SDK, see Introduction to Proxy SDK on page 865.

Can HCL OneTest™ UI be used to test Eclipse-based applications?

Yes. For configuration details, see Eclipse Support on page 1430.

Is the Eclipse integrated development environment (IDE) provided with HCL OneTest™ UI?

If your HCL OneTest™ UI installation detects another HCL product on the workstation or an existing Eclipse

installation, it shares the IDE shell on the workstation. If no other HCL tool is found on the workstation, HCL OneTest™

UI installs its own instance of the shell. HCL OneTest™ UI shares the shell with Rational® Software Architect,

Rational® Application Developer, HCL OneTest™ Performance, or any of the HCL products.

How do I enable debugging in HCL OneTest™ UI?

When you encounter a problem, debugging might be helpful to obtain more information about the possible causes of

the problem. The problem can be in playback as well as in recording. To set the HCL OneTest™ UI Debug Perspective

preference, see the instructions in Debugging scripts on page 1189.

How do I transfer the information specified in the HCL OneTest™ UI Application Configuration Tool
to playback agent machines?

HCL OneTest™ UI scripts contain startApp API calls to start your application under test at run time. For example:

startApp("HCL.com");

At run time, the startApp command matches the string that is passed to it, with the corresponding entry in the

Application Configuration Tool on the local playback machine. If no matching entry is found, an exception occurs and

playback fails:

com.rational.test.ft.script.RunException: CRFCN0630E: Cannot find application [HCL] in the configuration
 file.

To avoid this exception, applications must be configured for testing on the playback workstation before the scripts

are played back. For instructions to configure your applications for testing, see Configuring applications for testing on

page 603.

To transfer your configured applications list between workstations, do these steps:

1285

HCL OneTest™ UI

1286

1. Open the Application Configuration Tool (click Configure > Configure Applications for Testing).

2. Open the C:\ProgramData\HCL\OneTestUI\configuration\configurations.rftcfg file in a text

editor. This XML file stores the information specified in the Application Configuration Tool.

3. Copy the information contained within these tags:

<ApplicationList L=".ApplicationList">
</ApplicationList>

4. Paste this information in the C:\ProgramData\HCL\OneTestUI\configuration

\configurations.rftcfg file on your additional workstations.

5. Save the changes and restart HCL OneTest™ UI. The updated information is displayed in the Application

Configuration Tool.

How do I run HCL OneTest™ UI under a different Java™ Runtime Environment (JRE)?

In a normal Eclipse-based HCL OneTest™ UI installation, HCL OneTest™ UI uses its own JRE, or the JRE of the Eclipse-

based shell in which it has been installed. However, you can specify the JRE to be used, if required. Use the -vm

argument at the command prompt to specify the JRE to be used:

"C:\Program Files\HCL\HCLOneTest\eclipse.exe" -vm "C:\Progra~1\j2sdk1.4.1_02\bin\javaw.exe"

Note: The Java version is only provided as an example. You can specify any Java version that is supported by

HCL OneTest™ UI.

You can also change the JRE permanently by editing the eclipse.ini file in the SDP directory or by editing this

registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\HCL Technology\HCL OneTest UI\HCL FT JRE

Note: These steps to change the JRE are applicable only to Java-based HCL OneTest™ UI installations and not

to installations in Microsoft Visual Studio for .NET.

How do I cleanly uninstall HCL OneTest™ UI versions 7.x, 8.0 and 8.1.x on Microsoft® Windows®?

See Uninstalling HCL OneTest UI cleanly on page 1277.

How do I enable the browser environments for testing applications on Microsoft® Windows®
systems compliant with Federal Desktop Core Configuration (FDCC)?

Do these steps if you encounter problems trying to enable the browser environment for testing applications on FDCC

compliant Microsoft® Windows® computers:

To enable the Internet Explorer 7 and Internet Explorer 8 browsers:

Chapter 10. Troubleshooting

Note: This workaround is not required when you enable these browsers in HCL OneTest™ UI, version 8.1.1.2.

1. Click Start > Run. In the Run window, type regedit.

2. In the HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Internet Explorer\Main\Enable

Browser Extensions key in the Registry Editor, enable the third party browser extensions.

Note: Ensure that the Java Runtime Environment (JRE) corresponding to Internet Explorer 7 and Internet

Explorer 8 is properly enabled and aligned with the browser.

To enable the Mozilla Firefox browser:

1. Click Tools > Add-Ons.

2. Navigate to the <product installation directory>\FunctionalTester\bin\enabler directory.

3. Drag the enabler files RtxFFEnabler.xpi (for Firefox 2.0) , RtxFF3Enabler.xpi (for Firefox 3.0) ,

RtxFF35Enabler.xpi (for Firefox 3.5) and RtxFF36Enabler.xpi (for FireFox 3.6) to Add-Ons in Firefox.

4. Click Install.

Can HCL OneTest™ UI be used with a project enabled for Unified Configuration Management
(UCM)?

Yes. However, HCL OneTest™ UI supports only single-stream UCM.

Does configuring the application under test (AUT) modify the AUT?

Configuring an application does not modify it. It is analogous to setting up a system of shortcuts so that HCL

OneTest™ UI can start the application.

What happens when Internet Explorer is enabled?

Internet Explorer is enabled by registering a browser helper object (BHO) with Internet Explorer. In the registry, this key

is added if Internet Explorer has been properly enabled:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper
 Objects\{1E9FB1C4-F40B-4E10-898E-D6209B122F6B} Rational IE Enabler

What are the language limitations for HCL OneTest™ UI scripts?

HCL OneTest™ UI uses standard Java. All the normal Java functions are available in functional test scripts and no

subset of the language with custom extensions is used.

Frequently asked questions about recording scripts with HCL OneTest™ UI
This topic provides answers to some frequently asked questions about recording functional test scripts using HCL

OneTest™ UI.

1287

HCL OneTest™ UI

1288

• Which controls does HCL OneTest UI support for functional testing? on page 1288

• Is there only one dataset for a script? on page 1288

• How do I test a popup window with HCL OneTest UI? on page 1288

• Is it required to start an application with HCL OneTest UI to make it testable? on page 1289

• Can scripts recorded under a JRE be played back on a different JRE? on page 1289

• Does HCL OneTest UI support recording against the menu in browsers? on page 1289

Which controls does HCL OneTest™ UI support for functional testing?

For a list of supported controls, see the following topics:

• Adobe PDF documents support on page 1423

• Dojo support on page 1428

• Flex support on page 1430

• .NET support on page 1437

• Windows support on page 1440

• PowerBuilder support on page 1443

• SAP support on page 1445

• Silverlight support on page 1447

• Visual Basic support on page 1448

Is there only one dataset for a script?

Yes. datasets can be private or shared, much like object maps, so several scripts may use the same dataset.

In Simplified Scripting, more than one shared dataset can be used at a group level but not at a script level.

How do I test a popup window with HCL OneTest™ UI?

HCL OneTest™ UI has a special function to test popup windows. Do these steps to capture a popup window on the

application under test (AUT):

1. Begin recording and open the AUT.

2. Click the Insert Verification Point or Action Command button on the Recording Monitor toolbar.

3. Select Time Delayed Selection from the Selection Method list. Specify a time to delay before selection to

allow sufficient time to navigate to the popup window and display it; for example, 10 seconds.

4. Click the object finder.

As the timer counts down, move the mouse into the popup window, without actually pointing to a specific

object. A good place to move the mouse is between the items on the list. Make sure that the mouse pointer is

a regular pointer, not a pointing hand, and that you are not pointing to a specific item in the menu, unless that

is all you want to capture. When the time expires, HCL OneTest™ UI highlights the data that will be captured in

red and returns to the Verification Point dialog box. Here, you can choose to do a data verification point and

test the table contents.

Chapter 10. Troubleshooting

For information about the Time Delayed Selection object selection method, see Select an Object page of the

Verification Point and Action Wizard on page 1548.

5. After clicking Next, you see the popup window content.

Is it required to start an application with HCL OneTest™ UI to make it testable?

No. If the environment has been correctly enabled, the application is testable even if HCL OneTest™ UI is not used to

start it.

For information about enabling environments, see Preparing the functional test environment on page 582.

Can scripts recorded under a JRE be played back on a different JRE?

Scripts recorded under a JRE can be played back on a different JRE without requiring maintenance. However, when

recording on JRE 1.3.x and playing back under JRE 1.4.x, object properties might change due to changes in the JRE.

This causes errors during playback. To eliminate the errors, you must update the object properties.

For information about updating object properties, see Updating recognition properties.

Does HCL OneTest™ UI support recording against the menu in browsers?

HCL OneTest™ UI does not support recording against the menu in Internet Explorer or Firefox browsers. Only toolbar

buttons that are common to both Internet Explorer and Firefox are supported: Back Bookmarks (Firefox) and

Favorites (Internet Explorer), Close, Forward, Home, Maximize, Minimize, Search (push button only), Stop. The HTML

support of HCL OneTest™ UI is targeted at cross-browser support, and attempting to support the menu in the two

targeted browsers, Internet Explorer and Firefox, would lead to incompatibilities.

See the topic Tips and tricks for functional testing HTML applications on page 1268 in the information center.

Related information

Working with functional test scripts (Windows-only) on page 664

Frequently asked questions about object recognition and object maps in HCL
OneTest™ UI
This topic provides answers to some frequently asked questions about object recognition and test object maps.

• What is an object map and why is it needed? on page 1290

• What happens if two different objects have the same name? on page 1290

• What is the difference between a private and public object map? on page 1290

• What do the weights on the recognition properties mean and how are they used? on page 1290

• Can the default weights that are assigned to each property be modified? on page 1291

• Can a property weight or value be modified for all objects in a project or all objects of a specific type? on

page 1291

1289

HCL OneTest™ UI

1290

• Can scripts that were created with private maps be merged to a public map? on page 1291

• Can a private map be made public? on page 1291

• Do changes to the object map hierarchy need new sections in the object map for all child objects? on

page 1291

• Can properties that are used for object recognition be modified? on page 1292

• Can a script reference more than one object map? on page 1292

• Can individual objects be copied from one map to another? on page 1292

• What are the performance metrics of an object map as it grows in size? on page 1292

What is an object map and why is it needed?

An object map contains each object that was acted upon during recording, as well as the object's recognition

properties. For each property, the map also contains a weight that indicates how heavily HCL OneTest™ UI relies on

that property for recognition.

The object map can be automatically populated when a script is recorded, or manually by adding objects to the map.

The object map aids efficient script maintenance. When objects in the application under test are modified, the object

map is a single source that can be updated. By updating the map, all scripts that reference the modified object use

the updated object information.

What happens if two different objects have the same name?

HCL OneTest™ UI differentiates objects based on recognition properties and hierarchy. For example, if a button exists

in a different top-level window, then it appears as a different button in the map. If two or more different objects have

the same name, to make the name unique, HCL OneTest™ UI adds number suffixes to the name of the object that is

second, third, and so on.

If there are two identical instances of any objects, such as two instances of a browser, HCL OneTest™ UI provides a

method to handle identification.

What is the difference between a private and public object map?

A private object map is used by a single script. A public (shared) object map is used by multiple scripts. The default

setting is for each script to use a private object map. This is appropriate for single users who are starting to learn the

tool. However, a team of testers working on a common application should use a shared object map so that they can

take advantage of objects being globally defined in a single map.

What do the weights on the recognition properties mean and how are they used?

The weights indicate how important a specific property is for identifying an object during script execution. The

possible settings are 0 (not important) to 100 (very important). You can change the weights of most of the properties.

The .class property is fixed and cannot be changed.

If you set the weight to 0, the value of that property is ignored when attempting to identify an object.

Chapter 10. Troubleshooting

Can the default weights that are assigned to each property be modified?

Use the Object Property Configuration Tool to assign new default weights to properties and also define new

properties to be used when identifying objects in future recordings.

Can a property weight or value be modified for all objects in a project or all objects of a specific
type?

You can use the Object Map Find and Modify utility to find all objects that match a criteria such as property name,

property value, or various custom filters. Actions that can be taken on the matching objects include Add Property,

Remove Property, Change Value, and Change Weight. Modifications can be applied to objects either one at a time or

globally.

Can scripts that were created with private maps be merged to a public map?

Yes. To merge the scripts, create a new public map by clicking File > New > Test Object Map. If a wizard page

opens, close it. Right-click the created map and select Merge Objects into. In the dialog box that is displayed, select

the scripts to merge. Ensure that you select the Connect selected Functional Test scripts check box to attach the

selected scripts to the new merged object map.

For information about merging multiple maps, see Merging multiple test object maps.

Can a private map be made public?

Yes. The contents of a private map can be copied to a public map by doing these steps:

1. Select File > New > Test Object Map.

2. Select the folder where you want the new public map created and then type the new map name. You can also

select the check box to set this test object map as the default choice for new HCL OneTest™ UI scripts. Click

Next.

3. Select Test Object Maps and scripts to copy Test Objects from.

4. Select the script that contains the private map that you want to be made public. You can also select the

Connect selected scripts with the new Test Object Map check box.

Do changes to the object map hierarchy need new sections in the object map for all child objects?

If the properties of parent node change due to insertions or deletions, or a new node is added to the hierarchy, you

can update the map. To update the map, use the map editor to insert references to objects that have a newly inserted

parent. You then have duplicate references for the child objects of the new object. For each of these references, drag

the old object to the new, so that the map editor unifies the objects. You can use the same steps to delete an object

from the map hierarchy.

1291

HCL OneTest™ UI

1292

Can properties that are used for object recognition be modified?

Yes. Open the object in the object map then select Test Object > Update Recognition properties. Use the object

finder to point to the object. When the Update Recognition Properties dialog box with the three panes appears, right-

click a property in the All Active Properties pane and select Add to Unified Test Objects Properties.

Can a script reference more than one object map?

No.

Can individual objects be copied from one map to another?

No.

What are the performance metrics of an object map as it grows in size?

As an object map grows, the time required to open and load the map increases.

When a script runs, the object map is loaded the first time it is needed during the run. If you have a test case suite that

uses functional test scripts, the map loads as each script runs, because each script is a separate process. A typical

application would have approximately 2000-3000 objects (some maps could be larger or smaller).

The metrics shown in Table 1 were computed at script run time but can also apply when the map is loaded. They

show that a significant increase in map load time does not occur till a map well beyond normal size is encountered.

Playback time increases only at the beginning of the script run when the map is loaded, and it does not slow down

the script run after the map is loaded. Additionally, nested scripts (using the callScript function) that share the same

object map also share the same map instance during script run. Hence, nested scripts do not increase the load time.

Table 57. Object map metrics

Objects in map

Seconds for to

tal script execution

10 X seconds

600 - 2000 X + 2 seconds

2000 - 11000 X + 3 seconds

more than 11000 X +10 seconds

Related information

Working with functional test object maps

Frequently asked questions about integrations with HCL OneTest™ UI
This topic provides answers to some frequently asked questions about HCL OneTest™ UI integrations with other

Rational products.

Chapter 10. Troubleshooting

• Does HCL OneTest UI integrate with test management systems? on page 1293

• What are the benefits of connecting a functional test project to a test management solution? on page 1293

• How does keyword testing work ? on page 1293

• When working with keywords, when are licenses for Rational Quality Manager and HCL OneTest UI required?

on page 1293

• Can HCL OneTest UI be installed with Rational Application Developer or Rational Software Architect? on

page 1293

• Which source control management tools does HCL OneTest UI integrate with? on page 1294

• Why should I use source control management systems with HCL OneTest UI? on page 1294

• Can HCL OneTest UI be used without a source control system? on page 1294

•

Does HCL OneTest™ UI integrate with test management systems?

HCL OneTest™ UI can be integrated with Rational® Quality Manager.

What are the benefits of connecting a functional test project to a test management solution?

HCL OneTest™ UI is a test implementation application. On its own, it does not provide capabilities for test planning,

test design, sophisticated test execution options, or in-depth results analysis. These capabilities come from a test

management system that can use HCL OneTest™ UI as one of several possible implementation and automation tools.

How does keyword testing work ?

Rational® Quality Manager users define the manual tests in the Rational® Quality Manager editor. They can identify

test steps or sets of steps as keywords. These keywords are logical groupings of steps that can be reused across

multiple manual tests.

The keywords are also visible within HCL OneTest™ UI. An automation specialist can select a keyword and can record

or associate it with a HCL OneTest™ UI automated test. When the test is run, the keyword can be executed as an

automated test. This provides limited automation specialists with the ability to automate the most high leverage test

steps.

When working with keywords, when are licenses for Rational® Quality Manager and HCL OneTest™
UI required?

To create manual tests, define keywords, and run tests containing keywords implemented with manual steps, a

Rational® Quality Manager license is needed. To record automated tests as implementations of keywords, HCL

OneTest™ UI bits and license are needed. To run a manual test with automated keywords, both Rational® Quality

Manager and HCL OneTest™ UI must be installed, as well as a HCL OneTest™ UI license.

Can HCL OneTest™ UI be installed with Rational® Application Developer or Rational® Software
Architect?

HCL OneTest™ UI installs as a perspective into Rational® Application Developer or Rational® Software Architect.

1293

HCL OneTest™ UI

1294

Which source control management tools does HCL OneTest™ UI integrate with?

HCL OneTest™ UI can be integrated with IBM® Rational® Team Concert™.

Why should I use source control management systems with HCL OneTest™ UI?

HCL OneTest™ UI can integrate with source control management systems such as Rational® Team Concert™ to

manage concurrent changes to test assets and to version test scripts changes. The Eclipse Shell (WSW), which is

the HCL OneTest™ UI integrated development environment (IDE), assumes the use of a version control system. So,

in a team environment where you want to share scripts, script templates, or object maps with others in your testing

team, and prevent others from overwriting test assets, a source control management system is useful. Source control

management systems also provide the benefit of storing versions of test scripts, merging scripts, and allowing

branching.

Can HCL OneTest™ UI be used without a source control system?

Yes, provided the environment is either a single tester working in a datastore, or testers who are not sharing any

object maps or scripts. HCL OneTest™ UI can also be used without a source control system if the environment is a

team of testers sharing assets in a datastore, but you might still need some specific procedures to prevent users from

overwriting each other’s work.

HCL OneTest™ UI error messages
This section provides information about error messages that you might encounter with HCL OneTest™ UI. This

section lists the error messages by ID, explanation, system action and your response to correct the error message.

CRFCC0006E
Object Maps not merged because target map file is read-only

Explanation: The target map file cannot be changed because the file is read-only.

User response: Check the permissions of the target map file. If necessary, change the read-only status of the file, and

try to merge the maps again.

CRFCC0007E
Map merge problems

Explanation: An internal error occurred during the object map merge operation.

System action: The merge operation fails

User response: Try to merge the object maps again. If the problem persists contact support

CRFCC0008E
Script Definition: Merge: The test object name is a reserved word test_object. Rename the test object {0}, and then

check the script in.

Chapter 10. Troubleshooting

Explanation: The test_object test object name is a reserved word and cannot be used as a name.

User response: Rename the test_object test object, and check in the script.

CRFCC0009E
Option option_name is not defined

Explanation: The option definition is null. The option must be defined. The option definitions are stored in the

rational.rftcust file in FunctionalTester\bin folder

User response: Check the defined options, and specify only a defined option. The option definitions are stored in the

rational.rftcust file in the FunctionalTester\bin folder.

CRFCC0010E
-option_name option must be preceded by a -from mapFileName option.

Explanation: A -from mapFileName option and source file did not precede the option_name option.

System action: Execution of the command fails.

User response: Specify the -from mapFileName option and source file before the option, and try the operation again.

CRFCC0011E
-option_name option must be preceded by a -to mapFileName option.

Explanation: A -to mapFileName option and source file did not precede the option_name option. The correct option

and source file name must be precede the option_name option.

User response: Specify the -to mapFileName option and source file before the option and try the operation again.

CRFCC0012E
The -option_name option must be followed by a map file name.

Explanation: The option_name option must be followed by a map file name.

User response: Specify the map file name after the option and try the operation again.

CRFCC0013E
Unable to complete the operation. The file file_name could not be copied. Typically, this is because you are out if disk

space.

User response: Check disk space. If enough space is available, check error message detail for information about a

resolution, and try to copy the file again.

1295

HCL OneTest™ UI

1296

CRFCC0014E
Unable to complete the operation. The file file_name could not be copied. Typically, this is because you are out if disk

space.

User response: Check disk space. If enough space is available, check the error message detail for information about

a resolution, and try to copy the file again.

CRFCC0015E
Unable to create file file_name. Check to see if you have sufficient disk space.

Explanation: The target disk might not have sufficient space. The file_name file could not be created; there is no

backup of the file to be merged.

User response: Check the disk space. If enough space is available, check the error message detail for information

about a resolution, and try to merge the files again.

CRFCC0018E
Unable to merge the directory. You must remove the conflict by renaming the file or script, or complete the graphical

merge.

Explanation: A conflict with the name of the file or the script is preventing the merge. The script and file names must

be unique.

User response: Remove the conflict by renaming the file or script, and try to merge the files again.

CRFCC0020E
Unable to copy file_name to file_path. Copy the file manually.

User response: Copy the file manually.

CRFCC0021E
Unable to checkout file_path. Make sure you have enough disk space.

Explanation: Disk space limitations might prevent making changes to the cached version of the file to reflect changes

made to the state such as checked in, checked out, or hijacked.

System action: Changes that are made to the state are not saved.

User response: Check disk space and ensure that sufficient space is available; then try the operation again.

CRFCC0022E
Unable to copy current_path to destination_path

User response: Check the log file for information related the copying the directory.

Chapter 10. Troubleshooting

CRFCC0023E
Unable to rename the file file_path

User response: Check the log file for information related to renaming the file.

CRFCC0024E
Unable to checkout file_path

Explanation: There might be a write-protected file with the same name in the destination folder.

System action: No changes to the cache are made to reflect changes in the state.

User response: Check the log file for information related the checking out the file.

CRFCC0030W
You cancelled the merge. The selected item is not merged or checked in.

System action: The merge was canceled.

User response: You can perform the merge and checkin later if necessary.

CRFCC0031E
You cancelled the merge. The shared map was merged and checked in. None of the other files in the script were

checked in.

System action: The merge was canceled.

User response: Make the changes to the files and perform the merge operation and check in the files. If you do not

want to perform the merge operation, check in the files with or without any changes.

CRFCC0032E
You cancelled the merge. None of the files in the script were checked in.

System action: The merge was canceled.

User response: Merge the files before checking in the files.

CRFCC0033E
The checkin did not complete because object map could not be merged.

Explanation: The object map is not merged and a later version of the map file exists when you try to check in the

script

System action: The check in fails because the merge operation is not completed

1297

HCL OneTest™ UI

1298

User response: Merge the object maps, and then try to check in the script.

CRFCC0034E
Unable to update the Script Helper file. Select Script > Update Script Helper to re-create the helper. Then check in the

script.

User response: Click Script > Update Script Helper to create the helper again. Check in the script after updating the

Script Helper.

CRFCC0035E
Selected project is not a Functional Test project. Specify another repository type.

System action: The project is not loaded.

User response: Specify a functional test project to load.

CRFCC0037E
Unable to perform operation. The functional test script needs to be checked-out before performing this operation.

Explanation: The functional test script is not checked out. The script must be checked out before performing this

operation. The script is not storing the script definition to persistent storage.

User response: Check out the test script, and try the operation again.

CRFCN0001E
An invalid subitem was specified or HCL OneTest™ UI does not support the specified subitem.

Explanation: HCL OneTest™ UI requires valid subitems that the application supports.

System action: Recording of the subitem stops.

User response: Verify that the subitem is valid and that HCL OneTest™ UI supports the subitem, and try recording

again.

CRFCN0002E
Attempt to perform mouse operation on co-ordinates that are off-screen.

Explanation: Two situations cause this error. When a screen snapshot has to be taken during playback and the control

is not fully visible in the screen, the mouse action cannot be completed. When a point that is off the screen is clicked,

the mouse action cannot be processed.

System action: Playback stops and the message is displayed in the HCL OneTest™ UI console and in the playback log.

User response: Ensure that the control is not off the screen. The control has to be completely visible within the

desktop screen coordinates.

Chapter 10. Troubleshooting

CRFCN0003E
Attempt to perform mouse operation on co-ordinates that are off-screen

Explanation: Two situations cause this error. When a screen snapshot has to be taken during playback and the control

is not fully visible in the screen, the mouse action cannot be completed. When a point that is off the screen is clicked,

the mouse action cannot be processed.

System action: Playback stops and the message is displayed in the HCL OneTest™ UI console and in the playback log.

User response: Ensure that the control is not off the screen. The control has to be completely visible within the

desktop screen coordinates.

CRFCN0004E
The requested action cannot be completed

Explanation: The object in the application under test might not support the action or HCL OneTest™ UI might not

support the action. For example, this error might occur if a click action cannot be performed on an object in the

application under test.

System action: Recording or playback fails.

User response: Verify that HCL OneTest™ UI supports testing the specified object and that the application object

supports the action that you are attempting.

CRFCN0005E
Operation not supported on UNIX

Explanation: This operation is not supported on Unix environment.

System action: The operation stops.

User response: Use an alternative Unix function to perform the same operation.

CRFCN0006E
Operation not supported on UNIX

Explanation: The specified operation is not supported on Unix environment.

System action: The operation stops.

User response: Use an alternative Unix function to perform the operation.

CRFCN0007E
The action cannot be completed.

1299

HCL OneTest™ UI

1300

Explanation: Action failed during the retry operation after waiting for the specified time. Retrying the action failed

even after waiting for the specified time. Testing the object must be supported by HCL OneTest™ UI and the object

being tested must support the attempted action.

System action: Operation stops.

User response: Verify that HCL OneTest™ UI supports testing the specified object and that the object supports the

attempted action.

CRFCN0008E
Attempt to use a registered object after its associated object has been disposed.

Explanation: This error message is displayed when HCL OneTest™ UI internally accesses a native web element

reference that is not valid.

System action: This message does not cause any problem in playing back the script. This message is displayed on

HCL OneTest™ UI console. HCL OneTest™ UI automatically handles the error by getting the valid reference.

User response: Contact support in case of playback failure with this message.

CRFCN0009E
An attempt was made to use a {0} type TestObject after its associated object had been disposed of.

Explanation: The application internally has attempted to access an invalid native web element reference.

System action: The error is handled when a valid reference is obtained automatically. The message is displayed in the

console window, but typically does not cause playback failure.

User response: If playback fails and this error message is displayed, contact support.

CRFCN0012E
Test object name is not included in the script definition script definition

Explanation: The specified test object name is missing in the script.

System action: Playback fails.

User response: Insert the test object in the script.

CRFCN0013E
The jvm_name JVM name is not defined.

Explanation: The specified JVM is not enabled. The JVMs must be enabled for recording and playing back tests on

certain applications.

Chapter 10. Troubleshooting

System action: Record or playback while testing applications such as terminal-based applications might not work

correctly.

User response: Configure the JVM in the Enable Environments for Testing window. For more information, see the

Enabling Java environments help topic.

CRFCN0014E
The specified JVM name is an empty string.

Explanation: JVM name cannot be empty strings.

System action: JVM is not enabled for functional testing.

User response: Specify null to reset the current JVM or specify a defined JVM name. Type a valid JVM name in the

Enable Environments for Testing window.

CRFCN0015E
The browser browser_name is not defined.

Explanation: The browser is not enabled for functional testing.

System action: The applications that are loaded in the specified browser cannot be tested.

User response: Configure the browser for functional testing in the Enable Environments for Testing window. For more

information, see the Enabling web browsers help topic.

CRFCN0016E
The browser name specified was an empty string.

Explanation: Invalid browser name. Specified browser names must cannot be empty strings and must be valid.

System action: The Browser is not enabled for functional testing.

User response: Specify null to reset the current browser or specify a defined, valid browser name.

CRFCN0017E
The java_environment Java environment is not enabled.

Explanation: The specified Java environment is not enabled for functional testing.

System action: The default Jave SE Runtime Environment (JRE) is used during playback. Playback behavior might not

be as expected.

User response: Configure the required Java environment in the Enable Environment for Testing window. For more

information, see the Enabling Java environments help topic

1301

HCL OneTest™ UI

1302

CRFCN0018E
The line_number line of the script_name script contains an exception.

Explanation: The specified line in the code contains exception.

System action: Playback fails.

User response: Resolve the exception and try the operation again.

CRFCN0019E
The script_name script contains the exception on line line_number.

Explanation: The specified line in the script contains exceptions.

System action: Playback fails.

User response: Resolve the exception and try the operation again.

CRFCN0020W
No dataset has been initialized for this script

Explanation: datasets must be created and enabled for use in scripts.

System action: dataset actions are not performed.

User response: Create a dataset and initialize it. For more information see the Creating a dataset help topic.

CRFCN0021E
The key_string keystring is not a valid character or tool name for an unprintable character.

Explanation: The input keys are not valid or might not be supported by HCL OneTest™ UI.

System action: Record and playback fails.

User response: Type a valid input key.

CRFCN0022E
The mouse_move mouse event is not a valid low-level mouse action.

Explanation: An invalid mouse action event or event has not been recorded. Valid mouse action events are right-click,

left-click, middle-click, scroll or mouse move.

System action: Record or playback fails.

User response: Try the mouse action event again.

Chapter 10. Troubleshooting

CRFCN0023E
A script asset cannot be renamed to the reserved word, reserved_word.

Explanation: Reserved words cannot be used for the naming the script asset.

System action: The script asset name is not changed.

User response: Use a name that is not reserved.

CRFCN0024E
The test object cannot be renamed to this name that is already in use: object_name

Explanation: A test object name must be unique and cannot be reserved words.

System action: The test object name is not changed.

User response: Use a unique name for the test object.

CRFCN0025E
The specified test object name does not exist: object_name

Explanation: The test object is missing in either the test object map or the script.

System action: The test object is not renamed.

User response: Insert the test object in the script or the object map before renaming it.

CRFCN0026W
A file already exists with the name of the proposed new project log folder: folder_name

Explanation: A log folder with the specified name already exists in the location. The new project log in this location

must have a different name.

System action: The log folder is not created.

User response: Specify a different name for the log folder or save the log folder in a different location.

CRFCN0010E
Invalid iteration count on playback of script.

Explanation: This message is displayed when invalid iteration count like --1 is typed.

System action: The error is handled by executing the script once.

User response: Type the correct iteration count number.

1303

HCL OneTest™ UI

1304

CRFCN0011E
Error loading the Object Map.

Explanation: The object map is not loaded from the script explorer. This might be because the object map is deleted

or does not exist.

System action: Playback stops.

User response: Verify that the object control is present in the script explorer. If the object is not present, add the test

object.

CRFCN0029E
Error copying template.

Explanation: The template file cannot be copied from the installation directory to project directory when creating a

HCL OneTest™ UI project. It might be due to not having access or the network might be down.

System action: Operation stops. The error is logged in the log and trace files.

User response: Verify that the template directory exits and the file exits in the HCL OneTest™ UI installation directory.

CRFCN0036E
Cross project script call to project project_name not supported on agent machine.

Explanation: The callscript is not able to download script from the cross project when you use cross project with

agent machine.

System action: The error message is logged in the HCL OneTest™ UI console, the log file and the trace file.

User response: Verify that the project that is called exists and script is accessible. If error persists contact support.

CRFCN0037E
Unable to load script script_name from project project_name.

Explanation: The script from the datastore is not loaded. The script name might not be complete or the script does

not exists due to non existence of the data store.

System action: Playback stops. The error is logged in HCL OneTest™ UI console, the log, and the trace file.

User response: Verify that the script exists in the project directory. .

CRFCN0038E
Exception occurred during playback of script.

Chapter 10. Troubleshooting

Explanation: This message is displayed during playback. The object not found or class does not happen. For more

detail refer the complete error message. This happens when there is some problem running (playback) the functional

test script.

System action: A message is displayed an exception occurred during script playback.

User response: Check if the datastore path is correct.

CRFCN0039E
Specified class cannot be found in the project

Explanation: During playback of a test script the specified class cannot be found in the project location specified.

System action: While playing back a script, the corresponding class gets loaded from the project location. If the class

file is not present then you get this error.

User response: Ensure that the HCL OneTest™ UI project is correct and not corrupted. Try building the project again

and ensure that the class is recreated on the file system.

CRFCN0042E
Shared dataset could not be loaded

Explanation: The shared dataset is not available. The shared dataset might have been moved or deleted.

System action: Recording stops. An exception is displayed while recording.

User response: Ensure that the shared dataset is available for the script.

CRFCN0043E
Failed to insert script commands into script at suggested location, line count failure.

Explanation: The message is displayed when inserting line outside the class area during recording in an already

recorded script. The line count does not match till a line and there are extra information at the end of the cache. There

is a difference in the line counting scheme that might be due to non-LineFeed line terminators.

System action: Error message is displayed and the execution continues.

User response: Verify that you insert the script commands within HCL OneTest™ UI lines in the class.

CRFCN0045E
Please inspect your script file for special characters that may affect line computations.

Explanation: This problem occurs when you insert special characters in the script while recording.

System action: An error dialog box is displayed. However, the recording operation continues.

1305

HCL OneTest™ UI

1306

User response: You must remove special characters in the script.

CRFCN0047E
dataset could not be loaded

Explanation: The dataname is incorrect or the dataset does not exists.HCL OneTest™ UI cannot load a dataset that is

associated with the script while recording.

System action: Recording stops and an error message dialog box is displayed.

User response: Ensure that the dataset exists.

CRFCN0048E
Unable to record while there is an open modal dialog.

Explanation: When a modal dialog box is open, the recorder cannot be activated.

System action: Recording does not start.

User response: Close all open modal dialog boxes, and restart the recorder.

CRFCN0056E
The verification point name contains invalid characters.

Explanation: The verification point name might contain invalid characters such as ', " and so on, and the verification

point name cannot be empty.

System action: The verification point is not saved.

User response: Specify a name with valid characters.

CRFCN0064E
The specified dataset iteration count iteration_count is not valid.

Explanation: This message is displayed when dataset iteration is invalid.

System action: System will handle by executing the dataset once.

User response: Correct the datapool iteration count during playing back.

CRFCN0073E
Application of unknown type.

Explanation: The selected object is in a domain that HCL OneTest™ UI does not support. If HCL OneTest™ UI cannot

get a proper name to display the objects in the object map while selecting an object from the object browser, adding

the object to the object map or taking verification point, then this error message is displayed.

Chapter 10. Troubleshooting

System action: The system displays an exception. The name displayed in the object map tree is not correct.

User response: No user response required

CRFCN0074E
Could not start the application

Explanation: The application cannot be started as the application configured, is not available at the configured

system path specified in the configuration tool.

System action: The system displays an error dialog box with the error id and the error message. HCL OneTest™ UI

does not start the application.

User response: Verify that the configured application is located in the path that is specified in the configuration tool.

CRFCN0081E
No Customization directory is specified.

Explanation: The Customization directory is not specified. For Windows the registry settings and for Unix the

environment variable is not set correctly.

System action: An exception is logged in HCL OneTest™ UI debug file.

User response: Depending on your operating system, complete one of these tasks:

• For Windows environment check the registry key HKEY_LOCAL_MACHINE\Software\HCL Technologies

\HCL OneTest UI\HCL FT Customization Directory customization directory and verify that it is set

properly.

• For the Unix environment check the environment variable HCL_FT_CUSTOMIZATION_DIRECTORY is properly

set.

You can also check the error details in the debug file. To enable the debug file:

1. Open the ivory.properties file located at <HCL OneTest UI installation directory>\HCLOneTest

\FunctionalTester\bin

2. Set rational.test.ft.debug.enabled=true

3. Set rational.test.ft.debug.filter=default,1

4. Save the file and open HCL OneTest™ UI.

CRFCN0082E
Error in RecognitionAttributes format error.

Explanation: HCL OneTest™ UI has attempted to find a domain implementation section and another child element.

System action: The system displays an exception.

1307

HCL OneTest™ UI

1308

User response: Verify that the customization and .rftop files contain only domain implementation child elements that

are present at the same level.

CRFCN0094E
The subitem subitem_name is not valid for a Find Property Set.

Explanation: When the correct subitem such as atDescendant(), atChild(), atPrpoerty() and so on is not provided in

the dynamic find() method.

System action: The playback stops and the exception is displayed in HCL OneTest™ UI console and in the playback

log.

User response: Pass the valid subitem parameters in the find() method to resolve the exception.

CRFCN0096E
Unable to locate entry in map with a null map id.

Explanation: During playback when HCL OneTest™ UI is unable to find control and read from object map as the object

ID is null .

System action: Playback stops.

User response: Add that control that could not be found to the test object.

CRFCN0104E
Errors encountered processing source files in Object Map merge operation.

Explanation: HCL OneTest™ UI is either unable to merge object maps or is not able to save the merged map.

System action: Object maps cannot be merged.

User response: Verify that the object maps to be merged exists. If the error persists, contact support.

CRFCN0105E
Clipped screen rectangle is empty.

Explanation: When a clipped rectangle of the control is empty, such a situation indicates that the control is completely

clipped by a clipping parent. Because the clipped rectangle is empty, HCL OneTest™ UI cannot perform input actions

such as click and so on. The clipped rectangle returns the clipped-screen rectangle for the associated control relative

to the top-left corner of the screen. Although getScreenRectangle() returns the true rectangle of the control, this

method clips the true screen rectangle to the bounds of any clipping parent control. Clipping parents such as scroll

panes or a browser window, may hide part or all of the true screen rectangle. Only the screen-level viewable rectangle

is returned, null if the object is not showing, or is completely clipped by a clipping parent.

System action: Playback stops and the message is displayed in HCL OneTest™ UI console and in the playback log.

Chapter 10. Troubleshooting

User response: Ensure that the control is not completely clipped by its clipping parent. If you are taking a screen

snapshot, make sure that the control is not clipped by its parent at all.

CRFCN107E
Unexpected test data type in dynamic VP

Explanation: The dynamic verification point cannot be processed. This might occur if the verification point file has

been manually edited.

System action: Playback stops and an exception is displayed in the log.

User response: Verify that the tag formats in the verification point file are correct.

CRFCN0110E
InvokeTimeoutException raised for method on object id

System action: The system displays an exception. Play back stops and an exception is created in the log file and IDE.

User response: In the Maximum time to attempt to find Test Object field, increase the default timeout for HCL

OneTest™ UI. Click Window > Preference > Functional Test > Playback.

CRFCN0113E
Cannot construct a registered object

Explanation: A registered object cannot be constructed when HCL OneTest™ UI associates a registered object with

the Application Under Test. The registered objects fails to get constructed if there is an installation problem or HCL

OneTest™ UI internal error.

System action: The system displays an exception.

User response: No response is required.

CRFCN0114E
Construct valuemanager failed while trying to add it to the test system.

Explanation: The system encountered an installation error or HCL OneTest™ UI internal error.

System action: The system displays an exception.

User response: No user response required.

CRFCN0115E
Construct property converter failed while trying to add it to the test system.

Explanation: The system encountered an installation error or HCL OneTest™ UI internal error.

1309

HCL OneTest™ UI

1310

System action: The system displays an exception.

User response: No user response required.

CRFCN0116E
Construct value converter failed while trying to add it to the test system.

Explanation: The Construct value converter fails when HCL OneTest™ UI instantiates the Value converter on the

Application Under Test. The system encountered an installation error or HCL OneTest™ UI internal error.

System action: The system displays an exception.

User response: No user action required

CRFCN0117E
Construct display value class failed while trying to add it to the test system.

Explanation: The Construct display value fails when HCL OneTest™ UI creates the display in the Application Under

Test for Software Widget Toolkit and Java Swing based applications. The system encountered an installation error or

HCL OneTest™ UI internal error.

System action: The system displays an exception.

User response: No action required

CRFCN0118E
Unable to open file

Explanation: This problem occurs while reading the XML file. The error message displays the name of the file. If this

file is not present in the physical location, then this error message is displayed.

System action: The system displays an exception. This exception is displayed along with the other exceptions while

reading HCL OneTest™ UI script assets. For example: ObjectMap, DatastoreDefinition.

User response: Verify that the XML file exists in the file system, is correct and well formed.

CRFCN0120E
Could not locate the data file

Explanation: This problem occurs while reading the XML file. The error message displays the name of the file. If this

file is not present in the physical location, then this error message is displayed.

System action: This exception is displayed along with the other exceptions while reading HCL OneTest™ UI script

assets. For example: ObjectMap, DatastoreDefinition.

User response: Verify that the XML file exists in the file system, is correct and well formed.

Chapter 10. Troubleshooting

CRFCN0121E
Unprocessed objects from XML file

Explanation: The XML file cannot be read as some elements are not parsed. The XML file is either corrupted or not

well formed.

System action: This exception is displayed along with the other exceptions while reading HCL OneTest™ UI script

assets. For example: ObjectMap, DatastoreDefinition.

User response: Verify that the XML file is correct and well formed.

CRFCN0122E
Extra base elements in XML file

Explanation: The XML file cannot be read as some elements are not parsed. The XML file is either corrupted or not

well formed.

System action: This exception is displayed along with the other exceptions while reading HCL OneTest™ UI script

assets. For example: ObjectMap, DatastoreDefinition.

User response: Verify that the XML file is correct and well formed.

CRFCN0140E
Unable to resize window to specified dimensions dimension1, dimension2.

Explanation: When the values specified for window width and height are not valid, the window cannot be resized.

System action: Playback stops and the message is displayed in HCL OneTest™ UI console and in the playback log.

User response: Specify valid values for the resize operation. If the problem persists, contact support.

CRFCN0141E
Invalid argument to window move operation.

Explanation: The window cannot be moved because the point_argument value that is provided to the Point argument

is invalid.

System action: Playback stops and the message is displayed in HCL OneTest™ UI console and in the playback log.

User response: Specify valid values for the move operation. If the problem persists contact support.

CRFCN0142E
Unable to move window to specified location: location1, location2.

Explanation: The x-coordinate and y-coordinte values being passed as an argument to Point might not be valid. Values

cannot be null.

1311

HCL OneTest™ UI

1312

System action: Playback stops and the exception will be shown in HCL OneTest™ UI console and in the playback log.

User response: Specify valid values to be passed to the Point argument.

CRFCN0144E
Cannot capture mouse: mouse already captured.

Explanation: When a call attempts to capture the mouse that is already captured by the Mouse method. Only

one mouse action can be captured at a time is allowed. If the mouse action is already captured at the time of a

Mouse.capture() call, the message is displayed.

System action: Playback stops and the message is displayed in the HCL OneTest™ UI console and in the playback log.

User response: Capture the mouse action once at a time.

CRFCN0145E
LD_PRELOAD not set correctly

Explanation:

System action:

User response:

CRFCN0151E
A visible property set method could not be located for Property: property_name: Class: class_name.

Explanation: The setproperty method has been called on an object that does not have this property or cannot set this

property.

System action: Playback stops and the message is shown in the log.

User response: Playback stops and the message is shown in the log.

CRFCN0152E
Cannot get screen rectangle for subitem.

Explanation: No action can be performed on a subitem that is not visible. When a subitem is hidden the screen

rectangle cannot be determined.

System action: The playback stops and the error message is displayed in the HCL OneTest™ UI console and in the

playback log.

User response: Contact IBM Software Support.

Chapter 10. Troubleshooting

CRFCN0153E
Cannot get screen point for subitem.

Explanation: A test is playing back against a subitem and the screen point for clicking the subitem cannot be located.

System action: The playback stops and the message is displayed in the HCL OneTest™ UI console and in the playback

log.

User response: Contact Support.

CRFCN0160E
Error getting option information from the customization file.

Explanation: Option information cannot be obtained from the customization file when there is a problem with the HCL

OneTest™ UI customization file which is related to options or RecognitionProperties section.

System action: The controls in the application under test is not recognized.

User response:

• Verify that the *.rftcust file is present in the C:\Users\ADMIN\AppData\Roaming\HCL\HOTUI and

HCL_HOTUI_INSTALL_DIR. Verify that the options section is present and correct.

• Verify that the *.rftop file is present in C:\Users\ADMIN\AppData\Roaming\HCL\HOTUI and

HCL_HOTUI_INSTALL_DIR. Verify that RecognitionProperties section is present and correct.

CRFCN0161E
Error getting proxy information from the customization file.

Explanation: Proxy information cannot be obtained when there is a problem with the HCL OneTest™ UI customization

file related to the proxies section.

System action: The controls in the application under test is not recognized.

User response: Verify that the *.rftcust file is present in C:\ProgramData\HCL\HOTUI\customization and in the

HCL OneTest™ UI installation directory. Verify that the proxies section is present and correct.

1313

HCL OneTest™ UI

1314

CRFCN0162E
Error

getting

property

converter

information

from

the

customization

file

System action: The controls in the application under test is not recognized.

User response: Verify that the *.rftcust file is present in C:\ProgramData\HCL\HOTUI\customization. Verify

that propertyConverters section is present and correct.

CRFCN0163E
Error getting value manager information from the customization file

Explanation: This problem occurs when HCL OneTest™ UI IDE or the playback or recorder processes are started.

System action: The system displays an exception.

User response: Verify that the *.rftcust file is present in C:\ProgramData\HCL\HOTUI\customization. Verify

that propertyConverters section is present and correct.

CRFCN0164E
Error getting value converter information from the customization file

Explanation: This problem occurs when HCL OneTest™ UI IDE or the playback or recorder processes are started.

System action: The system displays an exception.

User response: Verify that the *.rftcust file is present in C:\ProgramData\HCL\HOTUI\customization and

HOTUI_INSTALL_DIR. Verify that valueConverters section is present and correct.

CRFCN0165E
Error getting role information from the customization file

Explanation: This problem occurs when HCL OneTest™ UI IDE or the playback or recorder processes are started.

System action: The system displays an exception.

Chapter 10. Troubleshooting

User response: Verify that the *.rftcust file is present in C:\ProgramData\HCL\HOTUI\customization, and

verify that the rolesMap section is present. Verify that the roleMap node is correct in XML data.

CRFCN0166E
Error getting configuration information from the configuration file

Explanation: Configuration information cannot be obtained when there is a problem with the *.rftcfg file. These

configurations are related to the environment enabled or the configured applications for testing. This problem occurs

during playback or while opening the Application Configurator wizard.

System action: The system displays an exception.

User response: Verify that the HCL OneTest™ UI configuration file is correct and contains the section configurations.

CRFCN0168E
Error getting image library information from the customization file

Explanation: Third-party software that is used for an image verification point or for optical character recognition can

cause problems. This problem occurs when HCL OneTest™ UI IDE or the playback or recorder processes are started.

System action: The system displays an exception.

User response: Check the HCL OneTest™ UI configuration file and make sure the path of the third-party software is

correct. Verify that the imageVPLibrary or ocrVPLibrary node, if present in the configuration file, is set correctly.

CRFCN0169E
Error loading configuration file

Explanation: This problem occurs when you try to use the Configure Application tool or Enable Environment tool.

System action: HCL OneTest™ UI cannot open the Configure Application tool or Enable Environment tool. You may not

be able to add application using the application configuration tool. While recording the application is not displayed, in

the application list.

User response: Verify that the HCL OneTest™ UI configuration file is correct. Try restarting HCL OneTest™ UI by

closing all the applications that HCL OneTest™ UI recorded or played back.

CRFCN0170E
Error storing configuration file

Explanation: Saving after making changes in the Configure Application tool, Enable Environment tool, or Configure

Object Recognition tool without write privileges, can cause errors.

System action: HCL OneTest™ UI does not save the changes made using the configuration wizard in the configuration

files.

1315

HCL OneTest™ UI

1316

User response: Verify that you have permissions to write the customization and configuration file present in C:

\ProgramData\HCL\HOTUI.

CRFCN0182E
Value Out Of Range: value not in minValue to maxValue.

Explanation: The value_number value is out of range. The entered value must be within minValue to maxValue.

User response: Specify a value within the given range, and try the operation again.

CRFCN0185W
Invalid numeric range specified: value

Explanation: A null range was specified by this value. For example, the function to get updated object, the two

arguments that have to be passed are object and display. If the display is an instance of PropertySheet, but its

Propertyset is null or display is an instance of TextEditor or TextComparator but the object is not an instance of

NumericRange this exception can occur.

User response: Specify a valid range and try the operation again.

CRFCN0192E
The verification point baseline file is not available.

Explanation: The baseline file for the verification point is missing.

System action: Playback stops and an exception is displayed in the log.

User response: Verify if the baseline file for the verification point <script name>.<vp name>.base.rftvp exists

in the resources folder.

CRFCN0193E
Cannot record dynamic VP baseline when not in interactive mode: need to set option -rt.interactive true

Explanation: The rt.interactive option is not set to true in the command line.

System action: Playback does not start

User response: Use the rt.interactive=true option in the command line.

CRFCN0194E
Verification Point file does not exist

Explanation: Baseline file for the verification point is missing. This might occur during playback or when you try to

open the verification point editor

Chapter 10. Troubleshooting

System action: Operation fails

User response: Verify if the baseline file <script name>.<vp name>.rftvp for the verification point exists in the

resources folder. Also, verify if the full path for the baseline file is valid

CRFCN0195E
Dynamic Verification Point cannot update script definition

Explanation: The script definition file is open or no permissions to update the script definition file.

System action: Record operation fails

User response: Verify whether the corresponding script definition file is not open and is writable.

CRFCN0200E
Error displaying help file file_name.

Explanation: When you click Help or press F1 to view the help content, the Help is not displayed.

System action: The requested help topic is not displayed. An error message is displayed with the name of the Help

file that did not open along with the exception stack trace and message.

User response: Verify that you are connected to the internet if online help option is selected. If not, verify that the help

was downloaded and installed. If the error persists, contact IBM Software Support.

CRFCN0203E
Highlight failed: Test object name not found in script: object_id.

Explanation: When highlighting an object in the application under test, the highlighted object is not found in the script.

System action: Playback stops.

User response:

To resolve this issue, try one of these actions:

1. Start the application under test from the Application Configuration Tool

2. Open the script with which the test object is associated

CRFCN0209E
Exception: className: exception

Explanation: The type is not supported. To be displayed, class names and file types must be supported.

User response: Specify a supported file type, and then try the operation again.

1317

HCL OneTest™ UI

1318

CRFCN0210W
No data selected for comparison. Select the checkboxes of the nodes you wish to test. Click YES to continue, NO to

cancel.

Explanation: No data is selected for comparison. A comparison requires that comparison data be selected.

User response: Select the check boxes of the nodes to test. Click Yes to continue with no data for comparison. Click

No, select data for comparison, and then continue.

CRFCN0211W
Do you want to keep a copy of the existing baseline?

Explanation: This message is asked before the verification point is updated with the changes made.

User response: Decide if a copy of the existing baseline must be kept.

CRFCN0213W
Unable to access assets for script: scriptName : className

Explanation: The script definition file could not be found. The script cannot be played back if the assets cannot be

found. The permission level denied the user access to the script assets. The correct user permission level is required

to access these assets.

System action: The operation to get script description fails.

User response: Verify that the script definition (scriptname.rftdef) file exists in the workspace. If the file exists, check

the permission level and try the operation again. If the problem persists contact IBM Software Support.

CRFCN0215W
Test Object Map has been changed. Save changes?

Explanation: This is a prompt for user to save the changes to the test object map.

User response: Decide whether to save changes or not.

CRFCN0216W
Do you really want to overwrite an existing Object Map?

Explanation: This is a prompt to confirm while overwriting an existing object map.

User response: Decide whether to overwrite changes or not.

CRFCN0219W
The map editor could not be hidden before displaying the Insert Test Object wizard opened.

Chapter 10. Troubleshooting

Explanation: The top-level window has not changed. This message notifies you of the situation.

System action: The top level window was not changed to display the insert object wizard.

User response: The map editor is still the top level window. Close the map editor before starting the insert object

wizard.

CRFCN0225W
Unable to display help about new Test Objects in the Object Map

Explanation: Help is not available for this feature.

System action: The help on adding new test objects in the object map is not displayed.

CRFCN0226W
Requested Test Object not in Map: Map id: mapId

Explanation: The test object might not belong to the script. The requested test object is not included in the mapId

map.

System action: The operation to set selected test object fails.

User response: Select a valid test object and try the operation aga. If the error persists, contact support.

CRFCN0227E
The source node can not be a child of the target node.

Explanation: When you drag an object within an object map, the object is moved within the hierarchy that it is

currently part of. Moving an object to a higher level within its hierarchy is not permitted.

System action: The current operation stops.

User response: Do not move the object to a higher level within the hierarchy that it is already a part of.

CRFCN0228E
The target node can not be a child of the source node.

Explanation: When you drag an object within an object map, the object is moved within the hierarchy that it is

currently part of. Movement of an object to a lower level within its hierarchy is not permitted.

System action: The current operation is aborted.

User response: Do not move the object to a lower level within the hierarchy that it is already part of.

CRFCN0232W
Verification Point has been changed. Save changes?

1319

HCL OneTest™ UI

1320

Explanation: The verification point has been changed and must be saved to keep the changes.

User response: Decide whether you want to save the changes to the verification point.

CRFCN0234E
The text editor cannot be edited while it is showing hidden characters.

Explanation: Data verification point is created for a control and Show Hidden Characters option is selected for the

text in the text editor of verification point wizard. No editing is allowed in this mode when you modify text in the text

editor while this option is selected.

User response: Disable Show Hidden Characters mode and try the operation again.

CRFCN0238W
No test object selected to update recognition properties from.

System action: No test object has been selected for updating recognition properties.

User response: Select a test object and try the operation again.

CRFCN0239W
Be aware that updating an object with a different type of object is typically an error.

System action: An attempt was made to update an object of one type with another object of another type. Only

objects of the same type can be used for updating.

User response: Use objects of the same type for updates.

CRFCN0240E
No test objects that meets the search criteria were found.

Explanation: When you click Find and Modify option in the object map, the search criteria does not match any of the

objects in the object map.

System action: No search result is displayed for the search criteria.

User response: Modify search criteria and try the search again.

CRFCN0245E
The type of value in line {lineNumber} is not correct

Explanation: The type of value in line line_number is not correct. When you modify the value of a property in the object

map, a valid value must be used. A valid value is a non-null value.

System action: Validate action row failed.

Chapter 10. Troubleshooting

User response: Verify the type of value in the line, and try the operation again.

CRFCN0246E
.class property cannot be removed or changed weight

Explanation: The .class property of an object cannot be removed and the weight of the .class property of an object

cannot be changed. Only value of the .class property can be changed. You can change the value or weight of other

properties such as .classindex.map.ui.find.quick.stringempty

System action: Validate action row failed. The original .class property and its weight are retained.

User response: Do not remove the .class property or its weight.

CRFCN0247E
The search could not be completed.

Explanation: The quick find function requires string that are not empty.

System action: No results are displayed.

User response: Type a string that contains characters as a search for the quick find function.

CRFCN0248W
You are now in Pause mode. Click the Resume toolbar button to resume browsing the application.

Explanation: The operation performed in pause mode will not be recorded.

System action: The operation to perform action fails.

User response: Click Resume in the toolbar to resume the recording.

CRFCN0249E
The file_name help file cannot be displayed.

Explanation: The help information cannot be displayed because it is read-protected.

System action: The help file could not be displayed.

User response: Verify the status of the file to make sure that it is not read-protected. If the file is not read-protected,

try opening the help information again.

CRFCN0251W
To capture data for Windows and Net apps you must first hover over a window in the desired application and select

the SHIFT key.

Explanation: This is a warning on capturing data in Windows and .Net applications.

1321

HCL OneTest™ UI

1322

System action: The data is not captured properly.

User response: Hover over the window in the desired application and select the SHIFT key.

CRFCN0252E
Error updating method names in script.

Explanation: An internal error prevented renewing the name of the object in the scripts that the object is associated

with.

System action: The script is not updated.

User response: Close the wizard and reopen. Try the operation again. If the error persists, contact support.

CRFCN0253E
The page_name wizard page cannot be created.

Explanation: The page name is either null or has zero length. To be valid, wizard page names must contain

characters.

System action: The wizard page is not created.

User response: Type a valid page name.

CRFCN0254E
Configuration directory variable not set in registry. Changes will not be saved. Do you want to continue?

Explanation: The configuration directory variable values in the registry is modified.

System action: Changes in the application configuration tool is not saved if Yes option is selected. But you can

continue to use the tool and run the application from this tool. The application configuration tool is closed if No

option is selected.

User response: Try to reinstall the product. If the problem persists contact support.

CRFCN0255E
The RATIONAL_FT_CONFIGURATION_DIRECTORY environment variable is not set or has been changed. If you

continue, your changes will not be saved. Do you want to continue?

Explanation: The variable values of the configuration directory in the registry are not set or have been changed.

System action:

• If you click Yes, the changes in the application configuration tool is not saved. You can continue to use the

tool and run the application from this tool using the already existing setting.

• If you click No, the application configuration tool is closed.

Chapter 10. Troubleshooting

User response: Reinstall HCL OneTest™ UI. If the problem persists contact support.

CRFCN0256W
You are about to set a disabled JRE as the default. Are you sure you want to continue?

Explanation: The JRE that you want to set as default has been disabled.

System action: Displays the message and waits for user response.

User response: Decide whether you want to continue with the activity or not.

CRFCN0257W
You are about to set a disabled browser as the default. Are you sure you want to continue?

Explanation: The browser that you want to set as default has been disabled.

User response: Decide whether you want to continue with the activity or not.

CRFCN0258W
Are you sure you want to remove the default JRE?

User response: Decide whether you want to continue with the activity or not.

CRFCN0259W
Are you sure you want to remove the default browser?

User response: Decide whether you want to continue with the activity or not.

CRFCN0260W
You are about to enable a currently unsupported browser. This is not recommended, and may result in browser

corruption. Are you sure you want to continue?

User response: Decide whether you want to continue with the activity or not.

CRFCN0261W
Are you sure you want to disable the default JRE?

User response: Decide whether you want to continue with the activity or not.

CRFCN0262W
Are you sure you want to disable the default browser?

User response: Decide whether you want to continue with the activity or not.

1323

HCL OneTest™ UI

1324

CRFCN0264E
JVM configured already. The JVM [jvmName] is at the same location.

Explanation: A JVM at the specified location is already configured.

System action: The JVM is not added

User response: Specify another JVM or to configure a new JVM, specify the location and try the operation again.

CRFCN0265E
Browser configured already. The browser [browserName] is at the same location.

Explanation: A browser at the specified location is already configured.

System action: The browser is not added.

User response: Specify another browser or to configure a new browser, specify its location and try the operation

again.

CRFCN0266E
The name cannot be changed as specified.

Explanation: Names cannot be empty-strings.

System action: The old name is retained.

User response: Specify a name with characters.

CRFCN0267E
A JVM named [jvmName] already exists - retaining the old JVM

Explanation: A JVM by the same name already exists for the project.

System action: The old JVM name is retained.

User response: Specify another JVM.

CRFCN0268E
The name field cannot be empty. The current value, name, is retained.

Explanation: The Name field cannot be empty for a browser, Java Virtual Machine, or an application while enabling

the environments.

System action: The name is changed. The current name is retained.

User response: Specify a valid browser, Java Virtual Machine, or an application name.

Chapter 10. Troubleshooting

CRFCN0269E
A browser is already named. The current browser and name are retained. browser_name.

Explanation: Browser name is used to identify the browser, so the name must be unique.

System action: The current name and browser are retained.

User response: Specify a unique browser name.

CRFCN0270E
An Eclipse platform is already named. The current platform and name are retained. eclipse_platform.

Explanation: Instances of the Eclipse platform must have unique names. The current platform is retained because its

name is specified. Eclipse Platform name must be unique.

System action: The current name is retained.

User response: Specify a unique name for the platform.

CRFCN0271E
Errors encountered while starting browser.

Explanation: In HCL OneTest™ UI you can verify whether the web browser is enabled. The application attempts to

start the browser, but it cannot be started for the enablement test.

System action: The enablement test for the browser fails.

User response: Verify that the browser is installed correctly and that you can start it from a command line. If you

cannot start the browser from a command prompt, try to reinstall it.

CRFCN0273W
There is already another instance of the Enabler running. More than one Enabler instance cannot be started.

Explanation: HCL OneTest™ UI allows only one instance of the enabler to run.

System action: HCL OneTest™ UI does not allow you to launch another enabler.

User response: You must ensure that only one instance of the enabler is running.

CRFCN0274W
The Application Configuration tool and Enabler cannot be run simultaneously.

Explanation: One of the operations must be completed before starting another. Therefore the Object Properties

Configuration tool and Enabler cannot run at the same time.

System action: The launch of one of the application is cancelled, as no two applications can run at the same time

1325

HCL OneTest™ UI

1326

User response: You must ensure that only one application is running at a time.

CRFCN0275W
The Object Properties Configuration Tool and Enabler cannot be run simultaneously.

Explanation: One operation should be completed before starting the other.

System action: Either of them is launched based on your response.

User response: You can decide which operation must be opened or closed.

CRFCN0276E
JVM_name is not a file or directory in a Java environment. The Java Virtual Machine (JVM) cannot be enabled.

Explanation: The specified file or directory does not contain a JVM, so the JVM cannot be enabled.

System action: No JVM is enabled

User response: Specify the name of a valid file or directory that contains a JVM.

CRFCN0279E
The JVM jvmName cannot be enabled until after the system is rebooted.

Explanation: Java Virtual Machine (JVM) cannot be enabled until system reboot. Prohibiting the JVM from being

enabled until after the computer is restarted prevents some required files from being deleted.

System action: The JVM was not enabled .

User response: Restart the computer, and then try to enable the JVM.

CRFCN0280E
Error enabling JVM JVM_name: exception_message.

Explanation: This is the error message that you get when you enable a Java Environment (JVM). The error message

states that the JVM cannot be enabled.

System action: The Java virtual machine (JVM) cannot be enabled. Java applications using this JVM cannot be

tested.

User response:

• Verify that the user has Administrator privileges.

• Verify that the JVM bin directory has write permission for the user.

• Verify that the JVM is installed correctly.

Chapter 10. Troubleshooting

CRFCN0281E
Failed to get install directory.

Explanation: When you enable your environment for testing, the HCL OneTest™ UI installation directory is not found.

System action: The environment is not enabled for testing.

User response:

To resolve the directory location problem, perform these actions:

• Verify that HCL OneTest™ UI is installed correctly. If the software application is not installed correctly, reinstall

it.

• Verify that the environment variable HCL_INSTALL_DIR is set correctly.

CRFCN0282E
A valid JVM could not be found at path jvmPathname.

Explanation: The specified path does not contain the required JRE

System action: JRE is not enabled.

User response: Verify the JRE path, and try to enable the JRE again.

CRFCN0283E
Internal error (invalid JVM object)

Explanation: An internal error occurs if the configuration file is corrupted. The JVM is not enabled if the configuration

file is corrupted.

System action: The enable operation fails.

User response: You must configure JVM again to resolve this problem.

CRFCN0284W
Disabling the product's JRE is not recommended. Are you sure you want to disable this JRE?

Explanation: Disabling the product's JRE is not recommended.

System action: The computer waits for you to decide whether to disable the JRE.

User response: You must decide if you want to disable the JRE or not.

CRFCN0285E
Error disabling JVM JVM_name: exception_message.

1327

HCL OneTest™ UI

1328

Explanation: This error message is displayed when you disable the Java environment.

System action: Java virtual machine (JVM) is not fully disabled.

User response:

• Verify that the Java directory has write permissions for the user.

• Restart the computer, and then enable and disable JVM.

CRFCN0286W
A few of the enablement files used by the running JVM will be removed after the system restarts. You must not

enable the JVM after a system restart.

Explanation:

System action: JVM is disabled.

User response: Click OK. Restart the system and enable JVM again.

CRFCN0288E
fileName file cannot be found among the installation files.

Explanation: The specified file cannot be found due to installation problems

System action: The installation could not be completed because the JVM file is not enabled correctly.

User response: You must reinstall the application to obtain the missing files in the installation directory.

CRFCN0289E
The accessibility.properties file could not be read.

Explanation: The accessibility.properties file is read protected.

System action: The JVM is not enabled.

User response: Ensure that the file is not read protected.

CRFCN0291E
Cannot find HCL OneTest™ UI installation directory

Explanation: The environment variable HCL_HOTUI_INSTALL_DIR does not exist or the variable path is not a valid

HCL OneTest™ UI installation directory.

System action: Enable environment operation fails

User response: Set the environment variable HCL_HOTUI_INSTALL_DIR and point the full path of the HCL OneTest™

UI installation directory.

Chapter 10. Troubleshooting

CRFCN0292E
Error enabling browser.

Explanation: This message is displayed when not able to enable the browser to perform the recording and playing

back action.

System action: You are prevented from recording and playing back any action against the browser in the HTML

domain.

User response: Check the troubleshooting section to enable the browser. If still the problem persists, contact support.

CRFCN0294E
Error enabling third-party browser extensions.

Explanation: Internet Explorer third party extensions must be enabled for theHCL OneTest™ UI browser helper to run.

System action: Internet Explorer third-party extensions is not enabled.

User response: Check the troubleshooting section in HCL OneTest™ UI Help to enable the browser. If still the problem

persists, contact IBM software support.

CRFCN0296E
The browser at browser_path directory cannot be disabled. Reason: error_message

Explanation: For testing, the browser must be disabled. Disabling the browser requires administrator privileges.

System action: The browser is not disabled and testing cannot continue.

User response: Verify that you are logged in with administrator privileges. If you are logged in with administrator

privileges and the problem persists, contact support.

CRFCN0299E
Cannot modify installed-chrome.txt.

Explanation: This message is displayed when enabling or disabling the browser.

System action: HCL OneTest™ UI will not be able to enable or disable the plug-ins properly from the browser. To

enable or disable the browser, the installed-chrome.txt file must be modified. Administrator privileges are required to

modify this file.

User response: Verify that you are logged in with administrator privileges. If you are logged in with administrator

privileges and the problem persists, contact support.

CRFCN0300E
Cannot write overlays.rdf.

1329

HCL OneTest™ UI

1330

Explanation: To enable or disable the browser, the overlays.rdf file must be saved. Administrator privileges are

required to save the file.

System action: HCL OneTest™ UI will not be able to enable or disable the plug-ins from the browser. If the plugin is not

properly enabled then HCL OneTest™ UI will not be able to record or playback the actions.

User response: Verify that you are logged in with administrator privileges. If you are logged in with administrator

privileges and the problem persists, contact support.

CRFCN0302E
A browser is required to have a name

Explanation: A browser must have a name.

System action: Unable to create a browser object with the specified name, as it is not a valid name . The invalid name

might be null or the length of name might be zero.

User response: Specify a valid name for the browser.

CRFCN0303E
The file_name file is not the specified directory for an installed browser.

Explanation: Either no browser is installed or an unsupported browser is installed in the specified path.

System action: Unable to add a browser from the path specified.

User response: Select a path that contains a supported and installed browser.

CRFCN0304E
Search directory does not exist.

System action: No search results are displayed.

User response: Specify a valid directory to search.

CRFCN0305E
The enable_File cannot be modified.

Explanation: Writer privileges are required to modify the file. The user must have these privileges.

System action: The modify operation cannot be completed.

User response: Verify that you have write privileges for the file to be modified. Access to the enabler directory is

required to change the file.

Chapter 10. Troubleshooting

CRFCN0306E
An Eclipse shell is required to have a name

Explanation: An exception is thrown if no Eclipse name is specified.

System action: Invalid Eclipse exception is displayed.

User response: Specify a valid Eclipse shell name.

CRFCN0307E
The folder_name directory is not the directory of an installed Eclipse shell.

Explanation: The specified directory must contain an Eclipse shell installed.

System action: The directory was not approved. Unable to add a JVM from the path specified.

User response: Specify a valid directory that contains an installed Eclipse shell.

CRFCN0308E
The file_name file could not be opened. Exception_message.

Explanation: Appropriate permissions are required to open the file. The security settings of the log file prevents from

opening the file.

System action: The HTML log file does not open.

User response: Check the permissions and try the operation again.

CRFCN0309E
Error creating verification point display.

Explanation: After a verification point fails during script playback, an HTML log is displayed. However, if the Java SE

Runtime Environment (JRE) is earlier than version 1.3.2_02, the HTML log cannot be displayed.

System action: A message is displayed that the JRE associated with the browser should be of version 1.3.1_02 or

later for the verification point comparator to be displayed.

User response: Install JRE version 1.3.1_02 or later. Enable this JRE, and retry displaying the log. For more

information on enabling JRE, see Enabling Java environments topic and for enabling web browsers, see Enabling web

browsers topic in Help.

CRFCN0310E
Has been commented out in FtIdMessages.properties

Explanation:

1331

HCL OneTest™ UI

1332

System action:

User response:

CRFCN0317E
The TSS log could not be opened.

System action: The TestScriptServices (TSS) log could not be opened.

User response: Specify the build, log folder and log name using: setLogBuild(String logBuild), setLogFolder(String

logFolder) and setLogName(String logName) respectively.

CRFCN0321E
The log file could not be written to. The event_code code is unknown.

Explanation: The event code specified does not correspond to the standard set of events. Event codes must

correspond to the standard set of events.

System action: The write to log file operation fails.

CRFCN0325E
The TSS_measure timer could not be started. The exception_code exception is reported.

System action: The timer does not start. Playback fails.

User response: See the troubleshooting information regarding the exception and try the operation again. If the

operation fails, contact support.

CRFCN0326E
The TSS_measure timer could not be stopped. The exception_code exception is reported.

System action: The timer does not stop.

User response: See the troubleshooting information regarding the exception and try the operation again. If the

operation fails, contact support.

CRFCN0327E
The button_icon toolbar image could not be created. exception_message.

System action: The toolbar button is not created.

User response: Follow the troubleshooting in the error message.If the operation fails, contact support.

CRFCN0328E
The file_name file could not be saved. exception_message.

Chapter 10. Troubleshooting

Explanation: Appropriate permissions are required to save the file.

System action: The text is not saved to the file.

User response: Check the file permissions and try the operation again.

CRFCN0329E
The message cannot be displayed correctly. message_level.

Explanation: The error level or kind of message specified is not in standard format. For example, if the

msgKind_variable is set to 0, only the error messages is displayed. If the msgKind_variable is set to 2, even the

information messages is displayed. This error might occur due to internal errors.

System action: The message is not displayed.

User response: Specify a valid error message level or type in the Monitor Message Preferences in the recorder

monitor.

CRFCN0330E
Error trying to output to the monitor exception_message.

Explanation: An internal generic method to log error messages is called while trying to output script-related

messages during recording or playback.

System action: The error message is written to the log file.

User response: No action is required.

CRFCN0331E
The Test Manager data store cannot be accessed.

Explanation: Logging into the Rational project is required for access to the Test Manager datastore for the project.

System action: Could not retrieve the datastore path. The getProjectDatastorePath() could be called from a number

of process including script playback.

User response: Log into the Rational project with appropriate credentials.

CRFCN0337E
The source_name script source was not created in the current Rational project.

Explanation: In a project, script source names must be unique. The specified name of the script source is used.

System action: The project is not connected.

User response: Specify a different logical name and try the operation again.

1333

HCL OneTest™ UI

1334

CRFCN0342E
The file_name file could not be opened. exception_message.

Explanation: Appropriate permissions are required to open this file. The security settings of the file prevents from

opening the file.

System action: The file is not opened.

User response: Verify that the user has the appropriate permissions and try the operation again. If the problem

persists, contact IBM Software Support.

CRFCN0343E
Exception {result}

Explanation: This message is displayed when the type of event is general and there is a property name to describe the

name of an exception.

User response: The response should be based on the type of exception. For example, events like Script Start,

Configuration and so on. If the problem persists, contact support.

CRFCN0345W
The log already exists. Overwrite?

System action: Waits for the user response.

User response: Decide whether to overwrite the existing log or create a new log.

CRFCN0346W
Unable to remove the asset files for script scriptname. You can remove the script asset files using the Navigator view.

System action: Delete operation fails.

User response: Remove the script asset files using the Navigator view.

CRFCN0347W
Deleting mapname object map will make following projectname script(s) unusable. Do you want to delete mapname?

System action: Wait for the response.

User response: Decide whether you want to delete the map name or not.

CRFCN0348W
Deleting dataset dataset will make following projectname script(s) unusable. Do you want to delete dataset?

Chapter 10. Troubleshooting

Explanation: The dataset that is associated with the script(s) is mentioned and deleting the dataset makes the script

unstable.

User response: Decide whether you want to delete the dataset or not.

CRFCN0349W
Project project1 is associated with Rational project project2. If you delete this project, the corresponding script source

in the Rational project will become invalid. Would you like to proceed?

System action: Wait for user response.

User response: Decide whether you want to delete the associated project or not.

CRFCN0351E
Could not create project

System action: You cannot create a HCL OneTest™ UI project. Record and Playback options does not work.

User response: Check that you have privileges to write to the folder where you are creating the project. If you have

privileges, try to create the project again.

CRFCN0352E
The project could not be connected to.

Explanation:

The project is not Java based. This message is displayed in these instances:

• The subtype of the datastore project does not match the runtime type. Datastore project subtypes and

runtime types must match for connections to be established.

• FtInstallOptions.ALLOW_VBNET_REMOTE_TESTING is not true.

 This indicates that the current setting has to be a Java project only. The valid project subtype is

JAVA_PROJECT_SUBTYPE. 

User response:

Do one these steps, and then try the operation again:

• Use a Java project.

• Verify that the datastore subtype and the runtime type match.

• Make FtInstallOptions.ALLOW_VBNET_REMOTE_TESTING true in ivory.properties file.

CRFCN0353E
Could not connect to the project

1335

HCL OneTest™ UI

1336

Explanation: Projects that are created with a newer version of the product cannot connect to projects created with an

older version of the product.

System action: You cannot connect to the project.

User response: Ensure that the project is created with a newer version of HCL OneTest™ UI. Verify that the project

directory contains the project and the datastore definition is present.

CRFCN0354W
This project was created with an older version product which has been upgraded with major change. Click Yes to

upgrade the project and connect, click No to abort. Warning: After upgrade, previous versions of the product will not

be able to connect to the project. If the project is under Source Control, this operation will modify the server copy as

well.

System action: Displays the message and waits for response.

User response: Decide whether to upgrade or not.

CRFCN0355W
This project was created with an newer version product. Incompatibilites could arise. Would you like to continue

anyway?

User response: Decide whether to continue with the operation or not.

CRFCN0356W
This project was created with an older version product which has been upgraded with minor change. Click Yes to

upgrade the project and connect, click No to continue.

System action: Displays the message and waits for user response.

User response: Decide whether to upgrade the project or not.

CRFCN0357W
Test suite support may not work properly without upgrading the project!

Explanation: This message is displayed after the project is created with an older version product that has been

upgraded with minor change.

System action: Displays the message and waits for user response.

User response: Decide whether to upgrade the project or not.

CRFCN0358E
No expected VP found

Chapter 10. Troubleshooting

Explanation: The expected verification point file in the log folder is missing.

System action: Verification point comparator is not opened

User response: Ensure that the expected verification point file exists in the log folder.

CRFCN0359E
The Object Map associated with script does not exist.

Explanation: This message is displayed when the object map does not exist. Object file is either deleted, moved or

corrupted

System action: Playback stops and an exception is displayed.

User response: Ensure that the object map exist.

CRFCN0360W
You cannot start recording while the Application Configuration Tool is open. Do you want to close the Application

Configuration Tool and start recording?

System action: Displays the message and waits for user response.

User response: Close the Application configuration tool befroe you start recording.

CRFCN0361W
You cannot start the Enabler while the Application Configuration Tool is open. Do you want to close the Application

Configuration Tool and start the Enabler?

System action: Displays the message and waits for user response.

User response: Close the Application configuration tool before starting the Enabler.

CRFCN0362W
You cannot start the Object Properties Configuration Tool while the Application Configuration Tool is open. Do you

want to close the Application Configuration Tool and start the Object Properties Configuration Tool?

System action: Displays the message and waits for user response.

User response: Close the Application configuration tool before starting the Object properties configuration tool.

CRFCN0363E
The script cannot be loaded.

Explanation: The script is not loaded and so the script cannot be edited, copied, or run.

System action: System will show an error and will continue with null exception.

1337

HCL OneTest™ UI

1338

User response: Check that the script has a script definition file. The script definition file has a .rftdef format. The

location of the file is <workspace folder>\<project_name>\resources.

CRFCN0364W
Couldn't find Test Object in application-under-test. Application may not be running or enabled, or your environment

may not be enabled. Test Object may not be visible. Would you like to configure application for testing?

System action: Displays the message and waits for user response.

User response: Check that the application and environment are enabled, and the application is running. If not,

configure and run the application.

CRFCN0365W
You cannot start recording while the Enabler is open. Do you want to close the Enabler and start recording?

System action: Displays the message and waits for user response.

User response: Close the Enabler before you start recording.

CRFCN0366W
You cannot start the Application Configuration Tool while the Enabler is open. Do you want to close the Enabler and

start the Application Configuration Tool?

Explanation:

System action: Displays the message and waits for user response.

User response: Close the Enabler before starting the Application Configuration Tool.

CRFCN0367W
You cannot start the Object Properties Configuration Tool while the Enabler is open. Do you want to close the Enabler

and start the Object Properties Configuration Tool?

System action: Displays the message and waits for user response.

User response: Close the Enabler before starting the Object properties configuration tool.

CRFCN0368W
You cannot start recording while the Object Properties Configuration Tool is open. Do you want to close the Object

Properties Configuration Tool and start recording?

System action: Displays the message and waits for user response.

User response: Close the Object properties configuration tool before you start recording.

Chapter 10. Troubleshooting

CRFCN0369W
You cannot start the Application Configuration Tool while the Object Properties Configuration Tool is open. Do you

want to close the Object Properties Configuration Tool and start the Application Configuration Tool?

System action: Displays the message and waits for user response.

User response: Close the Object properties configuration tool before you start the Application configuration tool.

CRFCN0370W
You cannot start the Enabler while the Object Properties Configuration Tool is open. Do you want to close the Object

Properties Configuration Tool and start the Enabler?

System action: Displays the message and waits for user response.

User response: Close the Object properties configuration tool before you start the Enabler.

CRFCN0371E
The command-line value command_value for the option_variable option is not a valid number.

Explanation: The command-line value that is specified for the option is not in the standard format. The standard

format consists of type string, boolean, integer, double, long or float.

System action: The correct value is not set.

User response: Type the command-line value for the option in correct format, and retry the operation.

CRFCN0372E
The option_name option cannot be found.

Explanation: The specified option does not exist. Depending on the scenario specify a valid option name. For

example :DEBUG_ENABLED is a valid option name.

System action: The correct value is not set.

User response: Type the option name in a supported format. The valid options are in .rftcust file in FunctionalTest\bin

folder.

CRFCN0373E
Error reading the configuration file

System action: Record or playback stops with an exception. Playback stops and an error box is displayed. Recorder

stops with a message written to the log and trace file.

User response: Verify that the HCL OneTest™ UI configuration file is present in C:\ProgramData\HCL\HOTUI

\configuration and in the HCL OneTest™ UI installation directory.

1339

HCL OneTest™ UI

1340

CRFCN0374E
The compile operation could not be completed.

Explanation: When constructing a ScriptCompile object, neither the script nor the language were specified. If the

script is specified, the language is the same as specified by the script definition language. If an command that is

similar to compile all is run, the language must be specified. Depending on the scenario, either the script name or the

language must be specified.

System action: The compile operation stops.

User response: Specify the script name or the language depending on the compile scenario.

CRFCN0375E
File not found: file_name. The script script_name cannot be compiled.

Explanation: The definition_filename script definition file for the script_name script file that defines the language

cannot be found. In scenarios where the script file is specified, the language is specified in the script definition file. If

the script definition file is not found, the script cannot be compiled.

System action: The compile command does not run.

User response: Verify that the script definition file with .rftdef format exists in the <workspace folder>\<project_name>

\resources folder and try the operation again.

CRFCN0376E
The command_name Java compiling command cannot be run. The Java error message follows: JavaError_message.

Explanation: A compile-time error occurred while compiling the script file in Java.

System action: The compile command fails.

User response: Try correcting the Java error. If the error persists, contact support.

CRFCN0377E
Executing Java compiler command [{0}]\nExit code:\n[{1}]

Explanation: The command returns a non-zero exit code.

System action: Compilation fails because of some Java syntax errors.

User response: You must check for Java syntax errors.

CRFCN0379E
Load script class failed [script class] [msg]

Explanation: The class fails while loading the script.

Chapter 10. Troubleshooting

System action: The system displays a ClassNotFound Exception

User response: You must verify if the class exists and then load the script again.

CRFCN0380E
Construct script class failed.

Explanation: The class file of script is either not created, missing or deleted. This happens when script resources like

rftdef file is missing.

System action: Playback stops and an exception is displayed.

User response: Ensure that all script resources exist and the required libraries are added to the path.

CRFCN0381E
If either -{0} or -{1} options are specified, then both must be specified.

Explanation: Information for groups like user name and project information is obtained from the command line. If any

of the information is not complete, then an invalid command line exception is displayed.

System action: The input validation fails.

User response: You must enter absolute information for groups like user name and project information.

CRFCN0382E
Error occurred while trying to create the record toolbar

Explanation: Problem encountered when the recording begins.

System action: Script cannot get recorded if this exception is displayed.

User response: Try starting the recording again. If the problem persists, contact support.

CRFCN0383E
-{0} must be followed by a path

Explanation: In keyword section, when the option specified is either DATASTORE, RMT_PROJECT or GENIE_PROJECT

the path also must be specified.

System action: An InvalidCommandLineException is displayed.

User response: A valid path must be provided.

CRFCN0384E
Only one -{0} allowed in the command line arguments

1341

HCL OneTest™ UI

1342

Explanation: Only one command line argument is allowed. All option pairs (name/value) start with a hyphen (-). Any

option not starting with a hyphen is an argument to the command preceding it on the command line (playback) when

the option is DATASTORE and datastore != null.

System action: An InvalidCommandLineException is displayed.

User response: Support must be contacted.

CRFCN0385E
-openscript command line option must be followed by a script name

Explanation: The openscript command line option must be followed by a script name.

System action: The openscript operation fails.

User response: You must specify a valid script name after the openscript command

CRFCN0386E
-line must be followed by a line number

Explanation: The line command must be followed by a line number.

System action: The line operation fails.

User response: You must specify a valid, non-negative line number after the line option

CRFCN0387E
Line number must be a positive integer

Explanation: The line command must be followed by a positive integer.

System action: The line operation fails if a negative value is entered.

User response: You must specify a valid, positive integer for line number.

CRFCN0388E
-openhelp command line option must be followed by a help topic

Explanation:

System action:

User response:

CRFCN0389E
The IDE specified "{0}" is not supported

Chapter 10. Troubleshooting

Explanation: WSWPlugin and Visual Studio IDE's are supported by HCL OneTest™ UI.

System action: The operation that requires IDE's different from the ones supported by HCL OneTest™ UI fails.

User response: You must verify that the operations carried out are supported by the WSWPlugin and Visual Studio

IDE.

CRFCN0390E
Executing rational_ft command failed

Explanation:  This error message is displayed when Rational Test Manager does not launch the Functional Test

script. The message also has the command that is used to launch the script. 

System action:  The test script is not launched and the error message is displayed in the Rational Test Manager. 

User response:

• If the command in the error message is a Java script, ensure that the JVM arguments are correct. The JVM

arguments can be modified through the option rational.test.ft.client.jvm_options in product installation

directory\ivory.properties file.

• If the command in the error message is a Vb.net \hcl_ft.exe script, ensure that product installation

directory is present. If the file is not present, the .Net framework might have not been installed or installed

after HCL OneTest™ UI is installed.

• Ensure that the project does not end with backward slash.

CRFCN0391E
Executing rational_ft command [{0}] Error message [{1}]

Explanation: An error occurs while executing the rational_ft command.

System action: The operation fails.

User response: Try resolving the problem based on the error message that is displayed or contact support.

CRFCN0392E
-startide must precede -openhelp <help-topic>

Explanation: An Integrated Development Environment (IDE) must be started before accessing Help topics.

System action: The help topic does not open.

User response: You must start the IDE and then access the help topics.

CRFCN0393E
-startide must precede -openscript <script-name>

1343

HCL OneTest™ UI

1344

Explanation: A script opens only in an Integrated Development Environment.

System action: The open script command fails.

User response: You must start the IDE before opening the script.

CRFCN0394E
-startide must precede -recordscript

Explanation: You can record a script only in a running Integrated Development Environment (IDE).

System action: The record script command fails.

User response: The IDE must be started before creating a script.

CRFCN0395E
-startide must precede -createscript

Explanation: A script can be created only in a running Integrated Development Environment (IDE).

System action: The create script command fails.

User response: The IDE must be started before creating the script.

CRFCN0396E
-startide must precede -activate

Explanation: An Integrated Development Environment (IDE) must be started in order to activate it.

System action: Activate command fails.

User response: You must start the IDE, before performing the activate operation.

CRFCN0397E
No datastore specified

Explanation: A datastore must be specified to initiate a session. Session can be any process with separate process id,

For example: Playback.

System action: The session initiation fails.

User response: You must specify a datastore, and then initiate a session.

CRFCN0398E
Invalid line number [{0}] specified. Must be greater than or equal to zero (0).

Explanation: Line number cannot be a negative value.

Chapter 10. Troubleshooting

System action: The recording of a script fails.

User response: You must specify a positive integer as the line number.

CRFCN0399E
No file name specified

Explanation:

System action:

User response:

CRFCN0400E
No file name specified

Explanation: A file name must be specified while editing or displaying a file.

System action: Edit file operation failed.

User response: You must specify an editable file name.

CRFCN0401E
No map name specified

Explanation: To create an object map a map name must be specified.

System action: The create map operation fails.

User response: You must specify a valid map name.

CRFCN0402E
No actual VP file name specified

Explanation: A file name for the verification points must be specified.

System action: The compare verification operation fails.

User response: You must specify a valid verification point file name.

CRFCN0403E
Combine Maps: No target map file name specified

Explanation: Combine the specified object maps and optionally update the specified script definitions to use the

target object map.

System action: The combine maps operation fails.

1345

HCL OneTest™ UI

1346

User response: You must specify a valid target map file name.

CRFCN0404E
Combine Maps: No source script definition or map file names specified

Explanation: The source script definition or map file names specified

System action: The combine maps operation fails.

User response: You must specify a valid target map file name.

CRFCN0405E
Enabler does not have a JRE or browser by the name [{0}]

Explanation: The enabler must have a valid JRE or a browser name specified.

System action: The enable operation fails.

User response: You must provide a valid JRE or browser name and then try enabling the JRE or the browser again.

CRFCN0406E
A failure occurred trying to write the config for the executable.

Explanation: This error message is displayed when HCL OneTest™ UI is not able to create the config file for the

executable so that testing assembly can be used with it.

System action: The system displays an error message.

User response: You must check if assembly can be run using .NET 1.0 framework.

CRFCN0407E
The Java system property specifies HCL OneTest™ UI install directory that cannot be found.

Explanation: The installation directory that the HCL_HOTUI_INSTALL_DIR environment variable specifies does not

exist.

System action: Record and playback fails.

User response: Specify the correct installation directory in the HCL_HOTUI_INSTALL_DIR environment setting.

CRFCN0408E
The installation directory specified in the system environment variable is null.

Explanation: The HCL_HOTUI_INSTALL_DIR variable must include the correct path information for the installation

directory.

Chapter 10. Troubleshooting

System action: Record and playback fails.

User response: Specify the correct installation directory in the HCL_HOTUI_INSTALL_DIR environment setting.

CRFCN0409E
-startide command line option must be followed by an idetype: wswplugin or vsdotnet

Explanation: You must specify the type of IDE to be started.

System action: The Start IDE operation fails.

User response: You must specify an IDE type after startide command.

CRFCN0410E
-openscript command line option must be followed by a script name

Explanation: A script name must be specified to open the script specified in the openscript command.

System action: The Open script command fails.

User response: You must specify a valid script name after the command.

CRFCN0411E
-{0} must be followed by a help topic

Explanation: The openhelp option must be followed by the help topic you want.

System action: The open help command fails.

User response: You must specify a help topic.

CRFCN0412E
Only one -{0} allowed in the command line arguments

Explanation: The command line allows only one argument. All option pairs (name/value) start with a hyphen (-). Any

option not starting with a hyphen is an argument to the command preceding it on the command line (playback) when

the option is DATASTORE and datastore != null

System action: The command fails.

User response: You must specify only one option at a time.

CRFCN0413E
The -{0} directory [{1}] can not be found.

Explanation: The directory in which the datastore is located cannot be found.

1347

HCL OneTest™ UI

1348

System action: The command fails.

User response: You must provide a valid directory.

CRFCN0414E
-{0} command line option must be followed by a script name, or follow an option which specifies the script name

Explanation: Command line option must be followed by a script name.

System action: The command fails.

User response: You must specify a script name or options that imply a script name.

CRFCN0415E
-{KeywordRecordOption}-{0} command line option must be followed by a keyword, RMT Datastore, keyword file and

keyword script name

Explanation: A command line option must be followed by a keyword, RMT Datastore, keyword file and keyword script

name.

System action: The system does not execute the command.

User response: You must specify the keyword, RMT Datastore, keyword file and keyword script name after the

KeywordRecordOption option

CRFCN0418E
There is no data after the -{0} command line option

Explanation: There is no data after the command line option.

System action: The script fails to execute.

User response: You must specify the argument values.

CRFCN0419E
-{0} option only valid after a -playback option. It must follow a playback option and before the next record option.

Explanation: In a command line exception, valid operation is to follow the instruction in the error message, For

example: Execute the option only after -playback.

System action: The command fails to execute.

User response: You must perform only valid operations.

CRFCN0420E
There is no project path after the -{projectPathOption} command line option

Chapter 10. Troubleshooting

Explanation: Project path is not specified.

System action: The command fails to execute.

User response: You must specify the required project path.

CRFCN0421E
-{enableNameOption} option must be followed by a name of a browser or JRE configured in the Enabler.

Explanation: -{enableNameOption} option must be followed by a name of a browser or must be JRE configured in the

Enabler.

System action: The command fails to execute.

User response: You must specify the name of the JRE configured or a browser.

CRFCN0422E
-{displayOption} option must be followed by a filename

Explanation: The file to be displayed must be specified.

System action: The command fails to execute.

User response: You must specify the filename to be displayed.

CRFCN0423EE
-{editOption} option must be followed by a filename.

Explanation: The file to be displayed must be specified.

System action: The command fails to execute.

User response: You must specify the filename to be displayed.

CRFCN0424E
Expected/actual/baseline option must be followed by expected and actual RFTVP filenames

Explanation: The actual and the expected verification point file names are missing in the command-line.

System action: Comparator is not opened. An invalid command line option with the error ID and message is

displayed.

User response: Specify the expected and actual verification point file names in the command.

CRFCN0426EE
-{createOption} option must be followed by a script name.

1349

HCL OneTest™ UI

1350

Explanation: The file to be displayed must be specified.

System action: The command fails to execute.

User response: You must specify the filename to be displayed.

CRFCN0427E
-{createMap} option must be followed by a map filename.

Explanation: A map file name must be specified to create a map file.

System action: The command fails to execute.

User response: You must specify the map filename.

CRFCN0428E
-{combineMaps} option must be preceded by a -map mapFileName option.

Explanation: The maps to be combined must be specified.

System action: The command fails to execute.

User response: Specify the -map mapFileName option.

CRFCN0429E
-{helperOption} option must be followed by a script name.

Explanation: The file to be displayed must be specified.

System action: The command fails to execute.

User response: You must specify the filename to be displayed.

CRFCN0430E
-{createHelperSuper} option must be followed by a full class name specification.

Explanation: -{createHelperSuper} option must be followed by a full class name specification.

System action: helperSuper class name is not created.

User response: You must specify a full class name and try the operation again.

CRFCN0431E
-{CLIENT_MAILSLOT}option must be followed by a mail slot name

Explanation: An error message is displayed while parsing the command line arguments when the option is

CLIENT_MAILSLOT but a mailslot name is not specified

Chapter 10. Troubleshooting

System action: The command execution failed.

User response: You must specify a mail slot name and try the operation again.

CRFCN0432E
-{IDE_TYPE} option must be followed by the IDE type

System action: The command execution fails.

User response: You must specify either WSWPlugin or Visual Studio IDE type.

CRFCN0433E
-session_host must be followed by a hostname

Explanation:

System action: The command fails to execute.

User response: Specify the required hostname.

CRFCN0434E
-session_port must be followed by a port number

Explanation:

System action: The command fails to execute.

User response: You must specify the required port number.

CRFCN0435E
-session_id must be followed by a session id number

Explanation: No session ID number was specified. The - session_id variable must be followed by a session ID number.

User response: Specify the required session ID number and try running the command again.

CRFCN0437E
The -passwordOption option must be followed by a password.

Explanation: A password did not follow the -passwordOption option. This option must be followed by a password.

User response: Specify the password after the option and run the command again.

CRFCN0438E
The -TM_PROJECT option must be followed by a full path and project file.

1351

HCL OneTest™ UI

1352

Explanation: A full path and project file did not follow the - TM_PROJECT option. This option must be followed by a

full path and project file.

User response: Specify the full path and project file after the option and run the command again.

CRFCN0439E
The -LOG_BUILD option must be followed a build name.

Explanation: A build name did not follow the - LOG_BUILD option. This option must be followed a build name.

User response: Specify a build name after the option and run the command again.

CRFCN0440E
The -LOG_FOLDER option must be followed the name of a log folder.

Explanation: A log folder name did not follow the - LOG_FOLDER option. This option must be followed by the name of

a log folder.

User response: Specify the log folder name after the option and run the command again.

CRFCN0441E
The -LOG_NAME option must be followed by a log name.

Explanation: A log name did not follow the - LOG_NAME option. This option must be followed by a log name.

User response: Specify a log name after the option and run the command again.

CRFCN0442E
-RESET_OPTION option must be followed by an option name

Explanation: An option name did not follow the - RESET_OPTION option. This option must be followed by an option

name

User response: Specify the required option name and run the command again.

CRFCN0443E
The -UPDATESCRIPTDEFS option must be followed by a boolean value (true or false).

Explanation: A Boolean value did not follow the - UPDATESCRIPTDEFS option. This option must be followed by a

Boolean value (true or false).

User response: Specify the Boolean value as Trueto update the script definitions or specify False to maintain the

script definitions unchanged. Run the command again with the required Boolean value.

Chapter 10. Troubleshooting

CRFCN0444E
The -MAP/FROMMAP option must be followed by a datastore relative map file name.

Explanation: A datastore relative map file name did not follow the - MAP/FROMMAP option. This option must be

followed by a datastore relative map file name.

User response: Specify the datastore relative map file name after the option and run the command again.

CRFCN0445E
The - option must be followed by a datastore relative dataset file name.

Explanation: A datastore relative dataset file name did not follow the - option_name option. This option must be

followed by a datastore relative dataset file name.

User response: Specify a datastore that is relative to the dataset file name and run the command again.

CRFCN0446E
The -ITERATION_COUNT option must be followed by an iteration count

Explanation: An iteration count did not follow the - ITERATION_COUNT option. This option must be followed by an

iteration count.

User response: Specify an iteration count after the option and run the command again.

CRFCN0447E
The -ITERATION_COUNT option must be followed by a valid iteration count: value is not valid use ALL or a positive

value

Explanation: The - ITERATION_COUNT option must be followed by a valid iteration count; the value count is not valid.

A valid iteration count is ALL or a positive integer. Iteration count cannot be negative or greater than the available

iterations.

User response: Specify a valid iteration count and run the command again.

CRFCN0448E
The -script option must be followed by a full script name.

Explanation: A full script name did not follow the - script option. This option must be followed by a full script name.

User response: Specify a full script name after the option and run the command again.

CRFCN0449E
The INSERTAFTER option has an invalid line number: value

1353

HCL OneTest™ UI

1354

Explanation: The value line number associated with the INSERTAFTER option is not valid. The line number specified

cannot be negative or greater than the number of lines.

User response: Specify a valid line number after the option and run the command again.

CRFCN0450E
-CREATE_TESTOBJECT option must be followed by a script name.

Explanation: A script name did not follow the - CREATE_TESTOBJECT option. This must be followed by a script name.

User response: Specify a script name after the option and run the command again.

CRFCN0451E
-option command line option must be followed by a script name, or follow an option which specifies the script name

Explanation: A script name was not specified for the - option command-line option. This command-line option must

be followed by a script name or the command-line option must follow an option that specifies a script name.

User response: Specify the script name after the option or include an option that specifies the script name before the

- option command-line option.

CRFCN0452E
-insertionPoint command line option must be preceded by an insertion point, use option -INSERTBEFORE or -

INSERTAFTER

Explanation: An insertion point or use option did not precede the - insertionPoint command-line option. This option

must be preceded by an insertion point or a use option, - INSERTBEFORE or - INSERTAFTER

User response: Specify an insertion location after the option and run the command again.

CRFCN0454E
Option option_argument has no value

Explanation: The option_argument argument has no value. This argument must have a value.

User response: Specify a valid value, and run the command again. See the rational.rftcust file in Functional

Tester/bin folder for valid options.

CRFCN0455E
Log format log_formatis not a known log format; must be in valid_log_format

Explanation: The log log_format format is not a known format. The valid format is expressed this way:

valid_log_format

User response: Follow the valid log format, and run the command again.

Chapter 10. Troubleshooting

CRFCN0456E
Command line argument argument considered to be an argument for the last -playback option because it does not

match anything else. But no -playback option has been specified on the command line prior to this.

Explanation: No -playback option has been specified on the command line prior to this.

System action: Playback fails and an invalid command line exception is thrown.

User response: Specify an option for the command line such as -playback, and run the command again.

CRFCN0457E
An application is required to have a name

System action: Displays InvalidApplication exception.

User response: Specify a valid application name.

CRFCN0458E
appName is not a valid application

Explanation: The application is not supported by HCL OneTest™ UI.

User response: Specify a valid application and try the operation again.

CRFCN0461E
excMsg Default information will be loaded.

System action: Internal error on running configure application tool. The changes are not saved and the default

information is loaded.

User response: Specify a valid operation and try loading the information again. If the issue persists, contact support.

CRFCN0462E
Error getting application information

Explanation:  While opening the application configuration tool, the configuration details could not be found. 

System action:  The configuration tool is not displayed. 

User response:

• Verify that the HCL OneTest™ UI configuration file is present in C:\ProgramData\HCL\HOTUI

\configuration.

• Verify that the configuration directory is present in HOTUI_INSTALL_DIR. If the installation directory path is

incorrect, correct it.

1355

HCL OneTest™ UI

1356

CRFCN0463E
Could not start the application

Explanation: The application name might or specified path might not be correct.

User response: Verify the application name and path, and then try to start the application again.

CRFCN0465E
Empty name field not allowed - retaining old name of name

Explanation: A name was not provided in the Name field. An application cannot be renamed with a null or empty

string.

System action: The previous application name, name, is retained.

User response: Provide non-empty string in the Name field, and try to rename the application again.

CRFCN0466E
An application named value already exists - retaining original name oldname.

Explanation: An app_name application name already exists. The application name must be unique.

System action: The previous application name, oldname, is retained.

User response: Specify a unique application name and try to name the application again.

CRFCN0468W
There is already another instance of the Application Configuration Tool running.

Explanation: Another instance of the Application Configuration Tool is already running. Only one instance of the

application configuration tool can run at a time.

System action: The new instance is not started.

User response: Close the first instance and start the tool again or wait until the first instance has run.

CRFCN0469W
The Enabler and Application Configuration Tool cannot be run simultaneously.

System action: The Enabler and Application Configuration tool cannot be run simultaneously. The Enabler or the

Application Configuration tool is running.

User response: Make sure that one action is completed, and then start the other action.

Chapter 10. Troubleshooting

CRFCN0470W
The Object Properties Configuration Tool and Application Configuration Tool cannot be run simultaneously.

Explanation: One of the tools is already running. The Object Properties Configuration tool and Application

Configuration tool cannot run simultaneously.

System action: Only one tool will run at a time.

User response: Make sure that one action is completed, and then start the other action.

CRFCN0471E
AppConfigTool.mainFromDialog() caught exception: exception

System action: The previous application that was selected is shown.

User response: Try to rectify based on the exception shown. If the error persists, contact IBM Software Support.

CRFCN0472E
Cannot find or read the application information.

Explanation: The configuration tool from the HCL OneTest™ UI is unable to read the configuration file.

System action: The configuration tool does not open. The Error Dialog box with the error ID and message is displayed.

User response: Verify that the HCL OneTest™ UI configuration file is present in C:\ProgramData\HCL\HOTUI

\configuration.

CRFCN0473E
File read error

Explanation:  Permission to read and write the customization file is required 

System action:  An Error Dialog box with the error ID and the message is displayed 

User response:

• Verify that the customization file located in C:\ProgramData\HCL\HOTUI\customization has read and

write privileges.

• Verify that the configuration directory is present in the C:\ProgramData\HCL\HOTUI\configuration.

CRFCN0476E
Invalid dataset specification to iterator

Explanation: The dataset cannot be found or the dataset contains no data.

1357

HCL OneTest™ UI

1358

User response: If the script uses the dataset, verify that the dataset exists, provide the correct path, and try to run the

script again.

CRFCN0477E
Invalid dataset equivalence class class specified to iterator

Explanation: The dataset equivalence class_name class that was specified to iterator either a negative integer or is

greater than the equivalence class count. The number specified to the iterator can neither be negative nor greater the

equivalence class count.

User response: Check the equivalence class count, and specify a valid equivalence class to the iterator and try to run

the operation again.

CRFCN0478E
Variable name variableName not found in dataset

System action: The getCell operation fails.

User response: Specify a valid name and index and try the operation again.

CRFCN0476E
Invalid dataset specification to iterator

Explanation: The dataset cannot be found or the dataset contains no data.

User response: If the script uses the dataset, verify that the dataset exists, provide the correct path, and try to run the

script again.

CRFCN0480E
Invalid dataset iterator class name: class

Explanation: The class dataset iterator class name is not valid. The specified class is not a dataset iterator class

name. Valid iterator class names are: random and sequential.

User response: Specify a valid iterator class and try to create the dataset iterator again.

CRFCN0481E
Unable to construct dataset iterator class: class

System action: The dataset iterator is not created.

CRFCN0482E
Invalid dataset iterator class, not an iterator: iterator

Chapter 10. Troubleshooting

System action: The dataset iterator is not created. Valid dataset iterators are: random and sequential

User response: Specify a valid dataset iterator and try the operation again.

CRFCN0483E
dataset file not found

Explanation: This message is displayed when dataset CSV file is missing.

System action: Playback stops and an exception is displayed.

User response: Ensure that the CSV file exists.

CRFCN0484E
dataset could not be read

Explanation: HCL OneTest™ UI is unable to parse the dataset file. This might be due to incorrect file format.

System action: Playback stops and an exception is displayed.

User response: Check the dataset file format.

CRFCN0485E
Error persisting a dataset in CSV format: file not found: fileName

Explanation: The fileName CSV file into which the dataset is to be written cannot be found. The CVS must be created

before saving dataset data in the file.

User response: Verify that the CSV file exists at the specified path or create the CVS file and try the operation again.

CRFCN0486E
Exception persisting a dataset in CSV format: file

System action: The operation to store as CSV fails.

User response: Try to rectify based on the exception message displayed. If the error persists, contact IBM Software

Support.

CRFCN0487E
dataset not found: null

Explanation: The specified dataset contains no data. Empty, or null, dataset files cannot be loaded.

User response: Specify a non-null dataset file, and try to load the dataset again.

1359

HCL OneTest™ UI

1360

CRFCN0488E
dataset could not be found: path

Explanation: The dataset cannot be found.

User response: Verify that the dataset exists in the specified path, and try the operation again.

CRFCN0489E
Exception serializing dataset: dataset

Explanation: The dataset could not be serialized for storage.

User response: Try to rectify based on the exception message displayed. If the error persists, contact support.

CRFCN0490E
Invalid equivalence class index index specified in method methodname

Explanation: The index equivalence class index that is specified in the methodname method is not valid. The index

value is either negative or greater than the maximum index possible. The index value can neither be negative nor

greater than the maximum possible. The maximum value of index is one less than the number of items in dataset.

User response: Specify a valid index and try the operation again.

CRFCN0491E
Invalid variable index index specified in method method_name

Explanation: The index variable index that is specified in method_name method is not valid. The index value is either

negative or greater than the maximum index possible. The index value can neither be negative nor greater than the

maximum possible.

User response: Specify a valid index and try the operation again.

CRFCN0492E
Invalid column specification columnIndex in method

Explanation: The columnIndex column specification in the method_name method is not valid. The specified column

index is either 0 or greater than the number of variables. The column specification can neither be 0 nor greater than

the number of variables.

User response: Specify a valid column index and try the operation again.

CRFCN0494E
Invalid equivalence class specification {0} in {1}

Chapter 10. Troubleshooting

Explanation: The index equivalence class specification in the method_name method is not valid. The index is either

negative or greater than the maximum index. The index can neither be negative nor greater than maximum. The

maximum value of index is one less than the number of items in dataset.

User response: Specify a valid index, and try the operation again.

CRFCN0495E
Unable to convert value to toType

Explanation: Certain values cannot be converted to data types. The value might be null.

User response: Specify a valid value and try the operation again.

CRFCN0496E
Unable to reorder records, reorder list is null

Explanation: The reorder list is empty or cannot be found. Null sets cannot be manipulated.

User response: Specify a non-null record list and try to reorder the records again.

CRFCN0497E
Unable to reorder records, record set contains value1 not value2elements

Explanation: The value specified as the size of the record set is incorrect. The record set contains value1 element not

value2 elements. The record size must be correct.

User response: Check the record size, specify the correct size, and try to reorder the records again.

CRFCN0498E
Unable to reorder records, record record_order in reorder list multiple times

Explanation: The record_order record is included in the reorder list multiple times. Records can be included once in

the reorder list.

User response: Verify that each record is listed only once in a set, and try to reorder the records again.

CRFCN0499E
Invalid record index index in method

Explanation: The index record index in the method_name method is not valid. The index is either negative or greater

than the maximum index. The index can neither be negative nor greater than the maximum. The maximum value of

index is one less than the number of items in dataset.

User response: Specify a valid index and try the operation again.

1361

HCL OneTest™ UI

1362

CRFCN0500E
Invalid cell specification index in method

Explanation: The index cell specification in method_name method is not valid. The index is either negative or greater

than the maximum index. The index can neither be negative nor greater than the maximum index. The maximum

value of index is one less than the number of items in dataset.

User response: Specify a valid index and try the operation again.

CRFCN0501E
Attempt to access a cell in a record that is not a member of a dataset

Explanation: This problem occurs when the dataset record cell that is not in the dataset is accessed. The dataset cell

is either deleted or the dataset is changed.

System action: Playback stops and an exception is displayed.

User response: Ensure that the required cell exist in dataset.

CRFCN0504E
Multiple matches found while looking for a role with name "property".

Explanation: During playback, multiple matches are found while looking for a mappedObject using the properties.

User response: Change the weight of different properties of that mappedObject and try the operation again. If the

problem persists contact support.

CRFCN0505E
Multiple matches found while looking for a name.

Explanation: During playback, multiple matches are found while looking for a mappedObject using name.

User response: Change the weight of different properties of that mappedObject and try the operation again. If the

problem persists contact support.

CRFCN0506E
It appears that more than one instance of the HTML document name is open. Close all duplicate browser windows

except for the one being tested and click OK to retry.

Explanation: Only one HTML document to be tested can be open during the test.

System action: Waits for your response.

User response: Close all duplicate browser windows except for the one being tested, and click OK to try the test

again.

Chapter 10. Troubleshooting

CRFCN0507E
It appears that more than one instance of the application is running, containing a window with title appName. Try

closing instances of the application that are not being tested and click OK to retry.

Explanation: More than one instance of the application is running and contains a window with the appName title .

User response: Close instances of the application that are not being tested, and click OK to try to continue testing.

CRFCN0508E
It appears that the application has more than one identical window open. The window caption is windowName. Close

all identical windows except for the one being tested and click OK to retry.

Explanation: The application has more than one identical window open. The window caption is windowName.

User response: Close all identical windows except for the one being tested, and click OK to continue testing.

CRFCN0509E
Error while parsing the keyword file.

Explanation: The keyword file cannot found or is not in the correct format. The keyword recording fails. The keyword

file extension should be .rmt.

User response: Ensure that the keyword referenced exists and is in the correct format, and try to parse the file again.

CRFCN0510E
The location of the dialog box cannot be determined.

Explanation: An error is displayed while setting the display location for a dialog box next to its parent. While recording

a script, you click a button on the dialog box, a new dialog box opens, the location of this new dialog box is calculated

and is set relative to the parent dialog box. During this operation of calculating the location and positioning the dialog

in the user interface an exception is displayed.

System action: The dialog box location cannot be determined.

User response: Adjust the size of the parent dialog box and try the operation again.

CRFCN 0511E
The file_name image file cannot be found.

Explanation: The required image file is missing or in an incorrect location. The image

file must be in this folder: C:\Program Files\HCL\HCLIMShared\plugins

\com.ibm.rational.test.ft.graphics_8.1.1.v20091030_1158.jar\com\rational\test\ft

\graphics

System action: The operation stops. If the recorder stop button image is missing, the recorder does not start.

1363

HCL OneTest™ UI

1364

User response: Search for the image file elsewhere on the computer. If you find the file, move the file to the correct

folder. If you cannot find the file, contact Support.

CRFCN0512E
Playback cannot continue.

Explanation: When using the callScript(String scriptFullName, Object[] args, int iterationCount) method in the test

script, the scriptFullName variable does not extend from com.rational.test.ft.script.RationalTestScript. The class that

is represented by the scriptFullName variable must extend from com.rational.test.ft.script.RationalTestScript.

User response: Revise the class that is represented by scriptFullName such that it refers to a

com.rational.test.ft.script.RationalTestScript object, and try to play back the test again.

CRFCN0513E
RemoteProxyReferenceValue.fromStream - An attempt was made to create a test object in the application under test.

Explanation: A test object is a connection point between the test script and a proxy object that connects to the real

object in the application under test. HCL OneTest™ UI verifies that the referenced test context is a client. If an attempt

is made to create a test object in the application under test, which is never a client, recording cannot continue.

User response: Make sure there is no attempt to create a test object in the application under test while recording.

CRFCN0514E
No channel was found for {0}. The method_name method cannot be called.

Explanation: During playback channels provide a means of executing code that requires the GUI thread affinity.

Objects of a method call must be assigned a channel. No channel was found for the referenced object.

System action: An exception is displayed if a channel is not assigned to the object while trying to invoke a method.

User response: Verify that a channel is assigned to an object before calling a method that refers to the object.

CRFCN0515E
Playback has stopped.

Explanation: The stop() method was called. When the stop() method is called from the functional test script, playback

stops.

User response: No further action is required. You can remove the stop() method call, which is an API call, from the

script to prevent playback from stopping.

CRFCN0516E
Cannot create script helper from null object map.

Chapter 10. Troubleshooting

Explanation: A script helper cannot be created from a null object map. Recording a test script involves creation of a

script helper. This helper is created at the end of recording by making use of the script definition and the object map.

If the object map is null the script helper cannot be created and hence the recording operation is incomplete.

User response: Ensure that the object map is not null and try to create a script helper again.

CRFCN0517E
The test object cannot be activated or its visibility validated.

Explanation: Test script playback cannot be completed. During playback a GUI test object is encountered and the

data corresponding to this object needs to be captured. The GUI test object cannot be activated or its visibility cannot

be validated. If either the object does not exist or it is not visible playback fails the verification of expected data

against test object . For playback, the GUI test object must be activated or its visibility must be validated.

System action: Verification of expected data against the test object.

User response: Avoid unnecessary interactions with the application UI during playback. Make sure that the

application is responsive, and then try the play back of the script again.

CRFCN0518E
The command that is issued on the following line cannot be run: command_line.

Explanation: The playback and recording functions are formatted as commands and are passed to HCL OneTest™

UI. While processing this command HCL OneTest™ UI encountered an error. The problem is not a command syntax

problem.

User response: The error while processing the command depends on the many variations of the application

environment. You must take corrective actions based on the exception message.

CRFCN0519E
Property converter format error. The data cannot be retrieved.

Explanation: During playback property converter objects are retrieved from the XML file. This XML file must contain

the expected elements with the Component_Model name. The XML file provided this element: XML_element. Although

playback continues, running that specific line in the script fails.

System action: Data is retrieved from a supplied input object. The data must be retrieved using the name supplied

when the object was persisted. If this name does not match with the expected name then an exception is displayed

User response: Ensure that data is retrieved from the correct input object and try the operation again.

CRFCN0520E
HCL OneTest™ UI cannot start.

1365

HCL OneTest™ UI

1366

Explanation: The number of attributes on the Element_Tag XML element is not valid. The XML element can have only

one attribute.

User response: Make sure that the Element_Tag XML element has only one attribute and restart HCL OneTest™ UI.

CRFCN0521E
Playback cannot continue.

Explanation: The functional test script called the callScript(RationalTestScript script, Object[] args, int iterationCount)

method, but the script variable is a null reference. The script variable cannot be a null reference.

User response: Make sure that the script variable is not a null reference, and try to play back the test again.

CRFCN0524E
The script code cannot be added. The session must be active before adding the script code.

Explanation: A method specification has been added to the code sequence that is being generated. The session must

be active before script code can be added.

System action: Attempts to add a code sequence for an inactive session

User response: Ensure that the session is active when adding a code sequence to the script.

CRFCN0527E
Playback cannot continue.

Explanation:  There might be multiple instances of a test object found, which often happens when multiple instances

of the application under test are running. Playback requires that only one instance of a test object be found. 

System action:

Playback stops when it encounters more than one instance of a test object. In this case, counter_value instances of

the same test object were found. During playback, the test was looking for the object_name object. The test found

these objects:

• First object: Recognition score: score_1, description: description_1

• Second object: Recognition score: score_2, description: description_2

User response:  Make that only one instance of the an application is running when playback is started. 

CRFCN0531E
The script helper cannot be created from null script definition.

Chapter 10. Troubleshooting

Explanation: A script helper is generated based on a script definition file that reflects the set of nodes in an

associated map that is used by an instance of the script. If the script definition is null then the script helper cannot be

created.

System action: Attempts to create script helper from null script definition. Script definition is generated dynamically

during recording.

User response: Ensure that the script definition is present and try creating a script helper file again.

CRFCN0532E
Exception occurred during playback of automated script

System action: During playback, unexpected interaction with the application under test can cause playback to fail.

User response: Avoid interaction with the application under test during playback.

CRFCN0534E
Cannot start application application_Name: Cannot find browser browser_Name

Explanation: The application cannot be started because the browser_Name browser cannot be found. To test the

application_Name application, the browser_Name browser must be found.

System action: The application under test cannot be started for testing.

User response: Make sure that the specified browser is installed in the correct location and that the application is

configured correctly; then try to start testing again.

CRFCN0535E
Playback cannot continue.

Explanation: The limit for exceptions was exceeded in event handlers while calling the method_name method on the

object_name object. This limit exists to prevent infinite loops when handling an event and restarting the method. The

maximum number of exceptions per method is exception_number.

User response: Make sure that the control on which the method is called is visible before starting playback. If

playback problems persist, call support.

CRFCN0540E
The recording could not be stopped.

Explanation: An exception occurred when a request to stop the recorder was issued.

User response: Check the exception message for information about the exception, why the exception occurred, and

how to resolve the issue. Try restarting the recorder, which can resolve the problem. If the problem persists contact

support.

1367

HCL OneTest™ UI

1368

CRFCN0541E
Unable to generate XML: The test-script recording cannot be completed.

Explanation: While recording a test script, customization information is stored in an XML file. The information about

an object is serialized into an XML stream and stored in a specified file. The file_name file could not be created, and

the recording stopped with this exception: exception_data.

System action: Serialization of an object into an XML stream and storing it in the file specified fails.

User response: Problems with the serialization of customization information is available in the exception stack trace.

Review the trace, and make corrections based on the exception description. Then try to record the script again.

CRFCN0542E
Playback cannot continue

Explanation: An exception is displayed while closing an browser that does not respond.

System action: The system displays an exception.

User response: Close the browser manually, and try the operation again.

CRFCN0546E
Processing the command-line command cannot continue.

Explanation: The helper superclass full name variable did not follow the -option_name option in the command. The

-option_name option must be followed by a helper superclass full name variable.

User response: Make sure that the helper superclass full name option is entered after the -helpersuper option while

running the command from command-line: -helpersuper<helper superclass full name>. For more information see,

Command line interface on page 1449.

CRFCN0547E
The added object cannot be recognized during a test run.

Explanation: The property and weight recognition attributes for a class in ObjRecProp.rftop are not configured

correctly. To configure the properties correctly, the name tag must precede the weight tag in the file for an object

class.

User response: Configure the object class, correctly ordering the property tags, and start HCL OneTest™ UI again.

CRFCN0549E
The ObjectMap map cannot be stored in the object_map file.

Explanation: The object_map file was modified while the map was loaded into memory. The map cannot be stored if

the object_map file is modified while the map is loaded into memory. These methods cannot be used to store a map

Chapter 10. Troubleshooting

in this scenario: store(ObjectMap objectMap, java.io.File file,boolean silent) or public static void store(ObjectMap

objectMap, java.io.File file).

User response: Make sure that the ObjectMap file is not modified while the ObjectMap map is loaded into memory

while trying to store the ObjectMap map in the ObjectMap file by using the store() method call of the ObjectMap

class.

CRFCN0551E
Playback cannot continue.

Explanation: The weight_value value for the WeightedProperty object that the script specified is not valid. Valid

property weight values for the com.rational.test.ft.script.WeightedProperty object are 0–100.

User response: Specify a valid property weight and play back the script again.

CRFCN0552E
The recording could not be stopped.

Explanation: An exception occurred when a request to stop the recorder was issued.

User response: Check the exception message for information about the exception, why the exception occurred, and

how to resolve the issue. If debugging is enabled, check the debug log for details about the exception. Restarting the

recording might resolve this problem. If the problem persists contact support.

CRFCN0553E
Debugging is enabled, an error was encountered, and the debugging log includes an entry for this error.

Explanation: An internal method call attempted to release a registered object, but was unable to.

User response: No action is required. For more information on the error, see the exception message in the log.

CRFCN0555E
Playback cannot continue.

Explanation: The object map file cannot be found. To play back the script, the object map file is required. The object

map file is either missing or corrupted.

User response: Verify that the object map file is present and in the correct location. Open the object map file, and

verify that it is not empty. Verify that the XML elements in the opened file have matching start and end tags. Correct

tags without a pair. Try to play back the script again.

CRFCN0556E
The application does not start due to the absence of configuration information.

1369

HCL OneTest™ UI

1370

Explanation: The configuration information is found in the following directory: C:\ProgramData\HCL\HOTUI

\configuration\configurations.rftcfg 

User response: You must have the configurations.rftcfg file with write permission in the local drive.

CRFCN0557E
Playback cannot start.

Explanation: An attempt was made to play back a script in a terminal service environment, for example, on a

remote desktop, but the terminal window on the remote desktop was minimized. To play back scripts in a terminal

environment, the terminal window on the remote desktop cannot be minimized.

User response: Make sure that the terminal window is not minimized on the remote desktop, and play back the script

again.

Tip: The terminal window does not need to be full-screen; for script playback the window cannot be

minimized.

CRFCN0558E
Playback cannot continue.

Explanation: A mapped test object was passed as an argument to the equals method of the

com.rational.test.ft.object.interfaces.TestObject class. Mapped test objects cannot be passed as the argument to the

equals method for this class.

User response: Make sure that a mapped test object is not passed as an argument to the equals method of the

com.rational.test.ft.object.interfaces.TestObject class. For example, if you call the GetChildren() method on a mapped

test object to return all the children of that object, the returned children are unmapped test objects.

 applicationmenuBar().click(atPath("File"));
 TestObject to[] = applicationmenuBar().getChildren();
 for(int i=0;i<to.length;i++){
 System.out.println(applicationmenuBar().equals(to[i]));
 // Exception is not thrown here to[i] is an unmappedtestobject
 System.out.println(applicationmenuBar().equals(applicationmenuBar()));
 // Exception occurs here since applicationmenuBar() is a mappedtestObject
 }
 applicationmenuBar().click(atPath("View"));

CRFCN0561E
Recording cannot continue. Event handlers are nested too deeply.

Explanation: Event handlers are nested too deeply. This error occurs when one event handler calls a test object

method that triggers another event. A maximum nesting of nesting_number is supported. If the nesting level is

exceeded, recording stops.

Chapter 10. Troubleshooting

User response: Avoid recording events on the test object so that event handlers are not nested deeply.

CRFCN0562E
Playback cannot continue.

Explanation: The url string could not be parsed or the string does not contain a legal protocol. The string returned

from the getURL() method is null during playback.

User response: Make sure that the url string that is used as an HREF link is correctly formatted or that a legal protocol

is used.

CRFCN0563E
An exception occurs while writing data to the XML stream.

Explanation: An exception is displayed while writing data of the object to XML output stream.

User response: The reason for the failure is present in the exception stack trace. You must take the corrective action

based on the description of the exception.

CRFCN0564E
Playback cannot continue.

Explanation: The application under test is either not running or the test environment is not enabled correctly. Playback

might stop when the application runs in domains that do not require enablement, such as Java or HTML, but the

application is either not running or not enabled correctly.

User response: Make sure that the application is running and that the environment is enabled correctly; then play

back the script again.

CRFCN0565E
Script playback cannot be completed as the test object is not in the correct state.

Explanation: The expected test object cannot be found. The script playback fails because the test object is not in

the correct state. The object_name1 test object with the state_name1 state was not found. This object_name2 is the

possible failing candidate with this state_name2 incorrect state.

System action: Some HTML applications, browsers state is not loaded completely. This results in the test script

failing as the expected test object is not found.

User response: Try playing back the script again.

CRFCN0567E
The maps for the specified data objects cannot be combined into the target map file.

1371

HCL OneTest™ UI

1372

Explanation: There is a call to the public static void combineMaps(String datastore, String targetMapName, String[]

source, boolean updateScriptDefs) method from ObjectMap class. The source array that represents the source data

objects contains the name of a file that does not exist or is not a map file or a script definition file. The sourceName

source data object must be either a map files or script definition files. Specifying any other type of file is not valid and

causes an error.

User response: Make sure that the sourceName source data object is valid, and try to combine the data objects again.

CRFCN0570E
Playback cannot continue.

Explanation: The objectmap object map cannot be stored in the outputstream output stream. The objectmap variable

or the outputstream might be null in the static storeToStream(ObjectMap objectmap, OutputStream outputstream)

method that is called from an ObjectMap class. These variables cannot be null. The outputstream might not have

been closed before calling this method. The output stream must be closed before calling this method.

User response: Provide values for the variables and make sure that the outputstream is closed before calling this

method. Try playing back the script again.

CRFCN0574E
Playback cannot be started.

Explanation: A attempt was made to play back the script on a locked workstation. Scripts cannot be played back on

locked workstations.

User response: Unlock the workstation, and play back the script again.

CRFCN0578E
The script_name script cannot be played back.

Explanation: An unhandled exception occurred while playing back the script. Check the log for details about the

exception.

User response: See the playback log for the detailed cause of the problem. After correcting the issues found in the

log, try to play back the script again.

CRFCN0580E
The recorder could not be started.

Explanation: An unexpected error prevented the recorder from starting.

User response: Check the exception for details about the unexpected error and how to resolve the problem.

Restarting HCL OneTest™ UI and then starting the recorder might resolve the problem.

Chapter 10. Troubleshooting

CRFCN0582E
The test object does not contain a mapped reference.

Explanation: Playback has attempted to obtain a property value for the object map, but the object map reference is

not present for the test object.

User response: Ensure that the object map exists for the test object and try playing back the script again.

CRFCN0589E
The recording cannot be completed.

Explanation: See the error message exception report for information about the cause of the problem.

User response: Correct problems that the exception report identifies, and try to record the script again. Restarting the

application can resolve some problems. If problems persist, contact support.

CRFCN0590E
Playback cannot continue as the test object passed method must be an object that was found, it cannot be a mapped

test object.

Explanation: A test object cannot be found in the application under test. The test object that is passed to the

ITestObjectMethodState.setFoundTestObject() method must be an object that is found in the application under test.

The object cannot be a mapped test object. Playback attempts to find the object again and modify the state of the

method invocation. If the object that is found is not a test object in the application under test but is a mapped test

object, then playback stops.

User response: Try executing the statement again.

CRFCN0594E
The application_name application in the working_directory directory could not be started.

Explanation: The application path and the working directory might have been configured incorrectly in the Application

Configuration wizard. If the path information for the working directory is incorrect, the application cannot be started.

User response: Make sure that the correct working directory and correct path are used while configuring the

application before testing. Correct the configuration and try to run the test again.

CRFCN0596E
Playback has stopped.

Explanation: A manual script shutdown request was received.

User response: No action is required.

1373

HCL OneTest™ UI

1374

CRFCN0597E
Incorrect usage of command-line option.

Explanation: The -kwrecord command-line option must be followed by a keyword, a Rational Manual Tester datastore

name, a keyword file, and a keyword script name.

User response: Provide the specified elements after the command-line option and run the command again.

CRFCN0602E
The application cannot be started. The location of the application is not given in the configuration information.

System action: No application location was provided in the configuration information. The application cannot start

without this configuration information.

User response: Configure the application with all the required details in the Configure Applications for Testing

wizard.

CRFCN0604E
Playback cannot continue.

Explanation: The com.rational.test.ft.script.Row table row descriptor is not is not defined as a subitem specification

and the getSubitem method calls the descriptor. The table row descriptor must be specified as a subitem

specification.

User response: Make sure that the com.rational.test.ft.script.Row table descriptor is defined as a subitem

specification so that the getSubitem method can call it. Create a Row() object using the Row(SubItem) contructor

instead of another overriden constructor. The getSubitem() call works only with a Row(SubItem) created object.

CRFCN0606E
Unable to dynamically enable the .NET application because it uses an older framework that does not support

unification.

Explanation: The .NET application cannot be enabled because the application uses an older framework that is not

supported. The application must use a current .NET framework.

User response: You must supply a configuration file or adjust the current one to make the application work with a

new .NET framework.

CRFCN0607E
The recording could not be paused.

Explanation: An error prevented the recording from pausing. Many circumstances might have generated this error.

See the exception message for details about the error and ways to resolve the problem.

Chapter 10. Troubleshooting

User response: Restarting HCL OneTest™ UI and then starting the recorder might resolve the problem.

CRFCN0608E
Unsupported type, value class required: {0}

Explanation: The object type is not supported for serialization to XML stream. It must be a primitive value or must

have a value manager You can specify extensible components such as proxies, test object values, and value

managers in an external customization file with the .rftcust extension.

System action: Serialization of an object to XML stream fails as the object type is not supported for serializations.

User response: Ensure that the object type is supported for serialization. The object type must either be primitive or a

value manager. For more information see Customization file topic in the information centre.

CRFCN0611E
The test cannot be played back.

Explanation: To play back the test, the testing application must be able to read the script definition file. The script

definition file cannot be read. The script definition might be corrupted, missing, or in an unexpected location.

User response: Make sure that a .rftdef file is in the workspace/project/resources directory and that the file is

not corrupted. Open the .rftdef file, which is an XML file, to verify that it is not empty and that the file includes correct

starting and closing tags. Then try to play back the test again.

CRFCN0613E
The object map cannot be opened.

Explanation: The integer values specified for the property_name property in the object_class_name object class must

be in the range of 0 to 100. The specified value is not within that range.

User response: Change the ObjRecProp.rftop file to set the correct value for the recognition attribute and try to open

the object map again.

CRFCN0617E
Playback cannot continue.

Explanation: An attempt was made to set the property_name property from a script. The property_name property is an

object mapping property, which cannot be set from a script.

User response: Verify that object map properties are not set from scripts.

CRFCN0621E
The Flex application cannot be recorded.

1375

HCL OneTest™ UI

1376

System action: When the recorder is about to start recording a Flex application, the recorder was unable to find the

player ID. The player ID is required for getting the information about the application.

User response: Ensure that the application is configured and enabled for recording and start recording again.

CRFCN0622E
The script helper class cannot be created

Explanation: An exception is displayed while creating the script helper class. The recorder generates a ScriptHelper

class as part of the HCL OneTest™ UI script. The script helper class creation fails with an exception.

User response: Try recording the script again.

CRFCN0623E
Test objects passed to the application under test must be registered references.

Explanation: The test objects that were passed to the application were not registered references. Test objects that

are passed to the application under test must be registered references.

System action: The computer generates a generic Java object for another process (using spy memory). This Java

object is a test object and it contains an object reference, which is not a remote proxy reference.

User response: Change the test script so that the test objects that are passed to the application under test have

registered proxy references.

CRFCN0624E
Invalid POSIX character class syntax

Explanation: During recording or playback there are instances where regular expressions are evaluated and used. An

error is displayed when there is an invalid POSIX character class syntax in the regular expression. Compilation of a

character class which represents a regular expression has invalid syntax

User response: Correct the regular expression so that it conforms to the POSIX character class syntax and try

recording and playing back the script again.

CRFCN0625E
The template cannot be loaded.

Explanation: The template cannot be located from the specified path.

System action: There are several template files, for example, ScriptSuperHelper template file that help in creating the

corresponding types of files. An error is displayed when the template files are not found.

User response: Ensure that HCL OneTest™ UI is installed correctly and the template files are present at the specified

location.

Chapter 10. Troubleshooting

CRFCN0626E
Playback cannot continue.

Explanation: An object map cannot be found. The loadFromStream(java.io.InputStream input) method was called

on an ObjectMap class, but the input stream input is a null value. An object map is required for this operation, so the

input stream cannot be null.

User response: Provide a value for the input stream when you call the loadFromStream(java.io.InputStream input)

method on an ObjectMap class, and try the palyback again.

CRFCN0628E
The recording cannot be completed.

Explanation: An error is displayed while setting the display location for a dialog box next to its parent. While recording

a script, you click a button on the dialog box, a new dialog box opens, the location of this new dialog box is calculated

and is set relative to the parent dialog box. During this operation of calculating the location and positioning the dialog

in the user interface an exception is displayed.

System action: The dialog box location cannot be determined.

User response: Adjust the size of the parent dialog box and try the operation again.

CRFCN0639E
The application to be tested cannot be started.

Explanation: An application must be configured correctly so that the Start Application wizard can start the

application. The Start Application wizard was unable to start the application. The application might not be configured

correctly.

User response: Make sure that the application to start is configured correctly by using the configure application for

testing function. For information about configuring applications for testing, see Configuring applications for testing

on page 603.

CRFCN0647E
The script_name script cannot be played back.

Explanation: An unhandled exception occurred while playing back the script.

User response: Check the playback log for details about the cause of the problem. Correct the issues that are logged,

and try to play back the script again.

CRFCN0648E
Playback cannot be completed.

1377

HCL OneTest™ UI

1378

Explanation: During playback channels provide a means of running code that requires GUI thread affinity. If the

corresponding GUI thread is unresponsive the channel is also unresponsive. The request_name request that must be

run with the channel is ignored. The GUI thread and the channel must be responsive to requests.

User response: Close and reopen the application under test. Make sure that the current playback process is closed

completely. Then play back the script again.

CRFCN0649W
Playback cannot continue.

Explanation: A null baseline object was passed to the performTest() method call on a test object. A non-null baseline

verification point object must be specified to the TestObject.performTest method.

User response: Make sure that the baseline object passed to the method is not null. The baseline is the value being

passed to the performTest() method as an argument. You can make sure that the object that is passed to the

performTest() method is not null. For example, a performTest() method can be called manually and the method call

directly and indirectly passes a null. This situation can be avoided by adding a null check condition before making a

method call.

CRFCN0653I
An empty <obj> tag was encountered.

Explanation: The ObjRecProp.rftop file has an empty <obj> tag. The element for Obj: .RecognitionProperties is empty.

The <obj> tags in this file cannot be empty.

User response: Make sure that there are no empty <obj> tags in ObjRecProp.rftop file, and start HCL OneTest™ UI

again.

CRFCN0660E
The edited script_name script cannot be saved.

Explanation: The version of the script file saved in the file system and the file displayed in the script editor might not

be in sync. To save edited scripts; the file-system version and the version in the editor must be in sync.

User response: Refresh the project containing the script and save it. If you continue to get an error, try recording the

script again.

CRFCN0661W
The recognition score of the found object does not qualify the object as a match

Explanation: Playback expects to find the object_name object, but the recognition score of the found object does not

qualify the object as a match. The nearest match is the object_found object with a score of score_value. For example;

if the playback is trying to locate test object [{0}], the score of nearest match is [{1}].

Chapter 10. Troubleshooting

User response: Verify that the application under test is functioning correctly. Also determine whether multiple

instances of the application under test are running. If so, close all instances and try playback again.

CRFCN0663E
The Application View cannot display the object_name test object.

Explanation: After recording a script with simplified scripting enabled, the 'Application View' displays the test objects

visually. If the test object is not present in the object map then the above error is displayed.

User response: Try recording the script again in a stable HCL OneTest™ UI environment.

CRFCN0672E
Playback cannot continue.

Explanation: During the construction of the scriptFullName script, a java.lang.Throwable class was caught. The

scriptFullName is called by the callScript(String scriptFullName, Object[] args, int iterationCount) method, encounters

the error, and cannot continue.

User response: Verify that the script that is specified by the scriptFullName value exists in the project location to

avoid the problem. If the problem persists, you can omit this line from test script.

CRFCN0673E
The script cannot be played back.

Explanation: An attempt was made to use the RationalTestScript.setScriptName() method to change the name of

the script dynamically. Dynamic script changes are only supported for internal functions. If you use this method in a

script, the script cannot be played back.

User response: Edit the script to remove the method call, and then play back the script again.

CRFCN0682E
Remote playback cannot continue without dynamic download support.

Explanation: Remote playback is not supported without dynamic download support by the remote server for TPTP-

based remote execution. For TPTP-based remote execution, the remote server is requested to download files. If

downloading files is not supported by the remote server, then playback is also not supported by the server.

User response: Enable download support for the remote Java sever to support playback of functional test scripts,

and try the remote playback again. For more information see Setting up IBM Rational Agent Controller for Functional

Test execution from ClearQuest Test Manager scripts topic in the information centre.

CRFCN0698E
The recording cannot be completed.

1379

HCL OneTest™ UI

1380

Explanation: The utility class is responsible for creating an empty library class from the default template while

recording a script. This problem occurs if the template files from which the helper class is created are not available

for the utility class.

User response: A number of factors might have caused this problem. Review the exception message for details about

the issues that interrupted this recording. Ensure that the functional testing project is created correctly. Verify that

the template file exists in the correct folder. An example of a template file name and location follows: \templates

\ft_scripthelper.java.rfttpl.

CRFCN0699E
Flags must be a combination of PRE_DOWN, PRE_UP and POST_UP.

Explanation: Certain mouse events such as PRE_DOWN, PRE_UP and POST_UP are ignored by the recorder because

the recorder is configured so that it does not call the test object proxies for those events. The filter that prevents

recording these mouse events is not working correctly. Flags must be a combination of PRE_DOWN, PRE_UP and

POST_UP. An exception is displayed when the filter does not work correctly.

User response: This filter is configured by default. If the filter does not working correct, there is a problem with the

product. Uninstall the testing product, and install it again.

CRFCN0707E
Script playback cannot be started.

Explanation: If the rational_ft_impl class is not initialized then the value of datastore object is null. In this case any

other operations cannot be performed with this class.

User response: Ensure that the rational_ft_impl class is initialized before performing any operations with it.

CRFCN0710E
The application cannot be dynamically enabled. Recording the script cannot continue.

System action: The HCL OneTest™ UI recorder was unable to dynamically enable the application while recording

an action on a running application. To record a script, HCL OneTest™ UI must be able to enable the application

dynamically

User response: Before trying to record the script again, ensure that you configure the application for testing using

HCL OneTest™ UI configuration wizard. For more information see Configuring applications for testing topic in the

information centre.

CRFCN0712E
The recording cannot be completed as the script helper super class fails.

Chapter 10. Troubleshooting

Explanation: The script helper superclass creation fails while recording a script. The empty script helper superclass is

used to insert shared methods into it. If the template files from which the help superclass is created are unavailable,

the recording stops. The template files must be available in the correct location during recording.

User response: Make sure that the HCL OneTest™ UI project is created correctly. Verify that the

template file are correctly located. An example of the file name and location follows: \templates

\ft_scripthelpersuper.java.rfttpl

CRFCN0715E
The application cannot be started.

Explanation: Unsupported attribute types cannot be used for an XML element in a XML File. The XML_element_tag tag

is an unsupported attribute type. Supported attribute types are as follows: L, N , Z , B , C , S , I , J, F , D , U, Type, T, U8,

U32, U64, Decimal

User response: Revise the XML file using supported attribute types for XML elements. Start HCL OneTest™ UI again.

CRFCN0720E
Error creating the test object map. Playing back the script_name script cannot continue.

Explanation: To play back a script, a test object map must be created. The test object map cannot be created

because the object map file for the script cannot be found.

System action: An error message is displayed while creating a test object map as storing an object map file on a file

system fails.

User response: Ensure that the object map file is stored in the HCL OneTest™ UI project. For more information see

Creating a new test object map topic in the information center.

CRFCN0722E
The script_name script could not be created.

Explanation: An attempt was made to create a script while the recording function was active. Scripts cannot be

created while the recording function is active.

User response: Make sure to stop recording before attempting to create a script.

CRFCN0723E
The script cannot be played back.

Explanation: The script start and end calls are mismatched. If the size of the script end point is zero, playback fails.

The LogAdapter writes the test execution results to log during playback. At the script starting point the result size is

zero. Toward the script end point, the result size is equal to the number of statements in the script. If the LogAdapter

finds that the script end point result size is zero an error is displayed.

1381

HCL OneTest™ UI

1382

User response: Ensure that the size of the script towards the end of the execution is not zero. If the check continues

to fail then try executing the script again in a stable HCL OneTest™ UI environment. If the error persists then it is a

product defect.

CRFCN0724E
Playback found object_value matching candidate for an test object.

Explanation: During playback, the recorder finds a candidate that matches the search criteria starting at

ProxyTestObject. If the more than one candidate matches the search criteria then an error is displayed.

User response: Ensure that no other instance of the application under test is running during playback.

CRFCN0726E
XML: Cannot reconstruct object from data

Explanation: The XML code cannot reconstruct an object from the data. The code expected class_type1 class but

encountered class_type2 class.

System action: Data that persists in the XML format in the location <Product installation directory>

\FunctionalTester\bin\ObjRecProp.rftop is reconstructed as objects. During this process, if there is a

mismatch between argument types passed to the constructor of the class and the expected type an exception is

displayed, the object cannot be constructed.

User response: Ensure that the XML file is not corrupt and try the operation again.

CRFCN0726E
XML: Cannot reconstruct object from data

Explanation: The XML code cannot reconstruct an object from the data. The code expected class_type1 class but

encountered class_type2 class.

System action: Data that persists in the XML format in the location <Product installation directory>

\FunctionalTester\bin\ObjRecProp.rftop is reconstructed as objects. During this process, if there is a

mismatch between argument types passed to the constructor of the class and the expected type an exception is

displayed, the object cannot be constructed.

User response: Ensure that the XML file is not corrupt and try the operation again.

CRFCN0733E
Invalid POSIX character class class_name. Playback or recording cannot be completed.

Explanation: The class_name Portable Operating System Interface (POSIX) character is not valid. While recording or

playback there are instances where the verification point text is evaluated as regular expression. If the verification

point contains a regular expression with incorrect syntax, the process cannot continue.

Chapter 10. Troubleshooting

User response: Open the verification point from the script explorer and verify the syntax of the regular expression.

CRFN0752E
The default value of option_value is not in the set of valid values.

Explanation: The default value of option_value is not in the set of valid values. During playback, when a client test

context is created, all option definitions that are loaded from customization files are initialized with default values.

These values must be within the set of valid values for the option.

User response: The set of legal default values are present in the customization file located at <project folder>

\templates\ft_scripthelpersuper.java.rfttpl. Change the default value to a valid value.

CRFCN0754E
The file_name keyword file cannot be updated.

Explanation: The keyword file cannot be found or cannot be read. The keyword file must be in the location that is

specified. The product must be able to read the file.

User response: Refresh the keyword view and make sure that keyword file in the correct location and can be read.

CRFCN0759E
The script cannot be played back.

Explanation: Supported log types must be specified for playback logs. The specified playback log is not supported.

User response: Specify a supported log type for the playback log and play back the test again. For information about

supported log types, see Functional test logs on page 1224.

CRFCN0763E
The test cannot be played back.

Explanation: The test object ID is not in the test_object_name object map. For playback, the generated test object ID

must be correct, specified in the object map, and must not be empty.

User response: Verify that the unique, generated ID property tag in the .rftxmap file for the script has not been

changed or empty. Then try to play back the test again. If the ID property tag in the .rftxmap file is empty or test

cannot be played back, record the test again.

CRFCN0768E
Problems obtaining the location of cascading dialog boxes. Recording cannot continue.

Explanation: The display location of a child dialog box could not be calculated. While recording a script if a series

of dialog boxes are displayed, the display location of the child dialog box is calculated relative to the location of the

parent dialog box. The recording must be able to calculate this location.

1383

HCL OneTest™ UI

1384

User response: Try recording the script in a stable HCL OneTest™ UI environment.

CRFCN0770E
You cannot pass objects by reference to the application under test unless the object referenced comes from the

application under test.

Explanation: You cannot pass objects by reference to the application under test until the object referenced is from the

application under test.

System action: To pass a generic Java object to another process (through spy memory) the Java object must either

be a proxy or must wrapped in a proxy or must be referenced to an object from the application under test. If the object

that is passed is a client test context object and the system is supposed to pass this as reference to another test

context then an exception is displayed.

User response: Modify the HCL OneTest™ UI script so that the test objects which are passed to application under test

has registered proxy references. For more information see Locating a test object in the application in the information

centre.

CRFCN0771E
The recording stopped.

Explanation: A timeout value in an internal method call was reached. The low-level record turns off, pausing and

resetting the recording for restarting.

User response: To try to resume the recording, press Resume.

CRFCN0775E
The recording could not resume after a pause.

Explanation: An unknown error occurred during recording.

User response: Stopping, and then restarting the recording might resolve the issue. If the problem persists, contact

support.

CRFCN0778E
Playback cannot continue.

Explanation: An attempt was made to find the map_name object map file in the data_store directory, but the file is not

in this location.

User response: Make sure that the map_name file is in the data_store directory, and try the playback again.

CRFCN0779E
The script being recorded cannot be saved.

Chapter 10. Troubleshooting

Explanation: At the end of a recording session, the script definition is saved by checking all the referenced test

objects that are present in the associated map. The reference to the node_name node is not in the map_name map.

The test object that is referred to must be in the map.

User response: Ensure that the current functional testing workspace is not locked for use by any session.

CRFNC0783E
Application under test (AUT) is not responding while trying to find the object : {0}.Try playing back again after

restarting AUT. If the problem persists, avoid playing back on the above object.

Explanation: When playing back a functional test script the application under test may not respond while trying to find

the object. It is possible that the application is running, but while trying to find a specific object, the object hierarchy is

not set properly. This causes an infinite loop in the application and the object is not found.

System action: Playback fails to find an object.

User response: If multiple attempts to find the object fail, avoid interacting and playing back on that object.

CRFCN0784E
Application under test (AUT) is not responding while performing the action : {0} on control {1}. Try playing back again

after restarting AUT. If the problem persists, avoid performing the above action.

Explanation: When playing back a functional test script, the application under test is unable to perform a specific

action on an object. This could be because the specific action makes the application unresponsive.

System action: Playing back an action on an object fails.

User response: If multiple attempts to perform the action fail, avoid performing that specific action on that object

CRFCN0785E
-{0} must be followed by a playback type

Explanation: This message is displayed when execution variables are specified in an invalid format when playback is

invoked from a command line.

System action: Playback fails, throwing the invalid command line exception.

User response: Specify the execution variables in the proper (name=value) format separated by a semi-colon(';'), for

example, "login=user1;password=samplepasswd"

CRFCN0786E
Only one -{0} allowed in the command line arguments

Explanation:  This message is displayed when either the specified execution variables have been specified in an

invalid format, or the file that contains the execution variables is missing. 

1385

HCL OneTest™ UI

1386

System action:  Playback fails, throwing the invalid command line exception 

User response:

Do these actions:

1. Specify the execution variables in the proper (name=value) format separated by semi-colons(';'), for example,

"login=user1;password=samplepasswd".

2. Make sure that the file containing the execution variables exists and is present.

CRFCN0787W
Warning: The number of test objects created/registered exceeds the number of test objects unregistered for

the script. Unregister the test objects that were not unregistered in the script using the unregister(TestObject),

unregisterAll(), and the testobject.unregister() APIs.

Explanation: This message is displayed when test objects requested earlier in the current call script have not been

unregistered.

System action: Playback log contains a warning message.

User response: Unregister the test objects that were requested earlier, which were not unregistered in the script, using

the unregister(TestObject), unregisterAll(), and the testobject.unregister() APIs.

CRFCN0788W
Warning: The number of test objects created/registered exceeds the number of test objects unregistered for

the script. Unregister the test objects that were not unregistered in the script using the unregister(TestObject),

unregisterAll(), and the testobject.unregister() APIs.

Explanation: This message is displayed when test objects requested earlier at any time in the current call script have

not been unregistered.

System action: Playback log contains a warning message.

User response: Unregister the test objects that were requested earlier, which were not unregistered in the script, using

the unregister(TestObject), unregisterAll(), and the testobject.unregister() APIs.

CRFCN0791E
Failed to disable browser. Browser location is {0}.

Explanation: This message is displayed on trying to disable the Mozilla Firefox browser when it is open.

System action: The browser is not disabled.

User response: Close the browser and then disable it.

Chapter 10. Troubleshooting

CRFCN0792E
Failed to enable browser. Browser location is {0}.

Explanation: This message is displayed on trying to enable the Mozilla Firefox browser when it is open.

System action: The browser is not enabled.

User response: Close the browser and then enable it.

CRFCN0793E
Wrong option for dynamic find enablement

Explanation: When dynamic find is used through the command-line playback option, and the option is not true or

false, this error message is displayed.

System action: Script playback does not start.

User response: Correct the value to either true or false. Any value other than the boolean value is considered invalid.

CRFCN0794E
The Google Chrome browser was not enabled properly for testing.

Explanation:  The Google Chrome browser was not enabled properly for functional testing. 

System action:  Recording and playback of scripts that are used to test applications running on Google Chrome

browsers fail. 

User response:  If you suspect that the Google Chrome browser has not been successfully enabled for functional

testing, use the diagnostic tool to test the enablement of the Google Chrome browser in the Enable Environments for

Testing dialog box. The tool offers quick and simple directions to solve the problems it finds. Click the Test button to

open the Browser Enablement Diagnostic Tool on page 606. 

The browser may not have been properly enabled due to any of the following reasons:

• No Sun Java Runtime Environment (JRE) has been associated with the browser, or the associated JRE is not

enabled. To resolve this, associate Sun JRE 1.6 Update 10 with the Google Chrome browser, and enable the

JRE. For instructions to enable the JRE, see Enabling Java environments on page 586.

• The default port specified for the web server used for Google Chrome testing is being used by another

application on the workstation. Specify a port number that is not in use, in the Webserver Configuration

page on page 656 in the HCL OneTest™ UI Preferences dialog box, and in the Options for the extension

1387

HCL OneTest™ UI

1388

HCL OneTest™ UI for Google Chrome™. For instructions to do this, see Changing the web server port for

communication with Google Chrome on page 597.

Note: Ensure that you specify the same port number in both places. The port number for the web

server is used when you enable the browser manually in the Enable Environments for Testing dialog

box. Enablement fails if the port number has not been specified at both locations.

CRFCP0001E
Proxy format error. Expected the element DOMAIN_IMPLEMENTATION. XML contains the element element2.

Explanation: The input object from which the named data is accessed is not in the correct format. The proxy format

was not specified correctly. The DOMAIN_IMPLEMENTATION.xml element that contains the element2 element was

expected. PersistIn() and PersistOut() are used to write and read data in SPY memory. The exception message is

displayed when the rftcust file has been modified for custom controls and there is error in the XML modification.

System action: The PersistIn() operation fails.

User response: Specify the element according to the correct format, and try the operation again.

CRFCP0002E
Invalid Type: testDataType

Explanation: The control used for getTestDataTypes() has been implemented but getTestData() has not been

implemented. getTestDataTypes() is used to view hashtable of type and description pairs that is used to describe the

verification data available from this proxy.

User response: Implement getTestData() for that control. Specify a valid type and try the operation again.

CRFCP0003E
The field field_name does not exist, or the caller does not have sufficient permission to access the field.

Explanation: An attempt was made to obtain the field_name field. Either the field does not exist or permission

requirements prohibit access to the field.

User response: Verify that the field exists and check the permission, and try to run the script again.

CRFCP0004E
You cannot set a property on the Process domain.

Explanation: A setproperty method has been invoked on a DomainTestObject domain. The DomainTestObject domain

provides access to the domain.

System action: Playback stops.

Chapter 10. Troubleshooting

User response: Do not call setproperty on DomaintestObject.

CRFCP0005E
Screen rectangle could not be computed.

Explanation: The screen relative rectangle for the user interface control that the test is attempting to act on could not

be found. The rectangle is required to perform operations on the control or subitem.

System action: Playback stops.

User response: Verify that the control and the subitem exist and are visible on the screen.

CRFCP0006E
Screen rectangle could not be computed after scrolling.

Explanation: The screen that is relative to the rectangle for the user interface control could not be found. The

rectangle is required to perform operations on the control or subitem. HCL OneTest™ UI cannot scroll to find the

object if the object is not visible on the screen.

System action: Playback stops.

User response: Verify that the control and the subitem exist and are visible.

CRFCP0007E
Screen rectangle could not be computed

Explanation: The rectangle object is null or not valid.

System action: The rectangle object cannot be obtained and playback stops.

CRFCP0008E
Screen rectangle could not be computed

Explanation: The rectangle object is null or not valid.

System action: The rectangle object cannot be obtained and playback stops.

CRFCP0009E
Unabled to raise child context menu: subitem

Explanation: Playback requires the subitem child context menu, the context cannot be opened because the parent

menu is null.

System action: The screen rectangle cannot be obtained and playback stops.

1389

HCL OneTest™ UI

1390

CRFCP0010E
Invalid state for action: state

Explanation: The state of the check box is indeterminate. The clicktostate operation to click the check box did not

change the state of the check box. The state check box state must be defined for playback to continue. The state of

the check box is not SELECTED or NOT_SELECTED or if its a radio button,, the state is not selected.

User response: Specify a valid state and run the script again. Set the state using the setState() function.

CRFCP0011E
Can not deselect a radiobutton.

Explanation: An attempt was made to clear a radio button selection. However, a radio button cannot be cleared; as

the state is already deselected.

System action: The attempt to clear the radio button state cannot be performed and playback stops.

User response: Verify that the radio button is in a selected state before attempting to set the state, and then run the

script again.

CRFCP0012E
Can not set a checkbox to an indeterminate state.

Explanation: A check box has been set to indeterminate. Check boxes can only be selected or cleared.

System action: Playback stops. An UnsupportedAction exception message is written in the log.

User response: Verify that the state of check boxes is either cleared or selected.

CRFCP0013E
AWT List: Unable to scroll into view: subitem.

Explanation: The index is out of the visible range. The subitem object cannot be scrolled into view. For playback to

continue the object must become available on the screen.

System action: The screen cannot be obtained and playback stops.

User response: Try using ensureObjectIsVisible() before performing any action on the control. If the issue persists,

contact support.

CRFCP0014E
Unsupported action for list control: Item is item and Action is action

Chapter 10. Troubleshooting

Explanation: An unsupported action was attempted on an item. An action_name action was attempted on an

item_name item. Only select, clear, and extend selection are valid actions. The action is neither of Select, Deselect or

ExtendSelect states.

System action: The state is not set, and playback stops.

User response: Specify a valid action and try running the script again. Use the setState(action, Subitem item) function

to set the action.

CRFCP0015E
Unsupported action for list control: Action is action

Explanation: The action_name action is not supported. DeselectAll is the only valid state to set.

System action: The state cannot be set and playback stops.

User response: Specify valid state, and try playing back the script again. Specify the state using setState(Action

action).

CRFCP0016E
java.awt.Choice: popup window is not visible, so subitem can not be located.

Explanation: A combination-box popup window is not visible, therefore the subitem in the combination box cannot be

selected.

System action: Playback stops. An UnableToFindSubitem exception message is written in the log.

User response: Verify that the combination-box popup window is visible.

CRFCP0017E
java.awt.Choice: can not raise the popup window.

Explanation: A popup window can take time to be populated with the specified subitem. HCL OneTest™ UI internally

waits if the subitem is not visible for a specified amount of time. The subitem is not found even after the wait.

System action: Playback stops. An UnsupportActionException message is written in the log.

CRFCP0018E
setState method for Choice control can only be used to select a subitem. Current action is action

Explanation: The action_name action is not valid for this control. Only select and scroll actions can be performed. The

setState method for choice control can only be used to select a subitem.

System action: The state cannot be set and playback stops.

User response: Specify select or scroll for the choice control and try playing back the script again.

1391

HCL OneTest™ UI

1392

CRFCP0019E
Choice control can only set state to one item at a time: First item is item1, last item is itemlast

System action: There was an attempt to use the choice control to set the state of more than one item at the same

time. The choice control can only be set to one state.

System action: Playback stops.

User response: Specify the action on only one item only and try playing back the script again. Specify the state using

setState(Action action, Subitem item).

CRFCP0020E
AWT FileDialog associated window could not be found.

Explanation: The FileDialog window has taken too long to open. The window that is associated with the Abstract

Window Toolkit (AWT) FileDialog window could not be found. Playback requires that the window open within a certain

time limit.

System action: Playback stops.

User response: Verify that the window that is associated with the AWT FileDialog exists and try playing back the

script again.

CRFCP0021E
Unable to activate file dialog - dialog not found.

Explanation: There has been an attempt to activate a file dialog window, but the window cannot be found. The

window might already be active because another modal window is open or the required window cannot be displayed.

System action: Playback stops.

User response: Verify that the file dialog window exists and try playing back the script again.

CRFCP0022E
Unable to raise child menu: parent_object_name

Explanation: A parent menu is null or not valid, preventing the parent_object_name child menu from opening. Playback

requires that the child menu open.

CRFCP0023E
Unable to input keys - top level window not found.

Explanation: Keyboard input is performed on a top-level window, but the top-level window is not active.

System action: Playback stops.

Chapter 10. Troubleshooting

User response: Verify that the top level window is active.

CRFCP0024E
Unable to activate window - top level window not found.

Explanation: A top-level window is not found and the action on controls requires that the top-level window is available

and active.

System action: Playback stops. A WindowActivateFailedException message is written in the log.

User response: Verify that the top-level window exists before performing any action.

CRFCP0025E
Unable to activate window - top level window not found

Explanation: There has been an attempt to activate a window, but the window cannot be found. The window might

already be active because another modal window is open or the required window cannot be displayed.

System action: Playback stops.

User response: Verify that the window exists and can be displayed, and try playing back the script again.

CRFCP0026E
Can not resize a window to a negative size.

Explanation: Windows cannot be resized with negative parameters in the resize() method.

System action: Playback stops.

User response: Specify positive parameters in the resize() method.

CRFCP0027E
Can not move a window to a null location.

Explanation: TA null point is specified as an argument in the resize() method.

System action: Playback stops.

User response: Specify a non-null point as a parameter in the resize() method.

CRFCP0028E
Applet host window is not accessible.

System action: Playback stops. An UnableToPerformActionException message is written in the log.

User response: Ensure that the applet window is visible before performing any action.

1393

HCL OneTest™ UI

1394

CRFCP0029E
This action must be performed against the applet host window

Explanation: The action was not performed against the host applet window. This action must be performed against

the applet host window.

User response: Perform the action such as close, resize, maximize, minimize, restore, move, or contextHelp against a

host window and try playing back the script again. Use getAppletHostWindow(). action name.

CRFCP0030E
Invalid state for action: action

Explanation: The action_name action cannot be performed when the application is in the current state. The action

must be performed when the application is in the correct state. The control is JRadioButton and the state is not

SELECTED.

User response: Change to a valid state using mouse modifiers and try playing back the script again. Use setState()

function.

CRFCP0031E
JRadioButton does not support setStatestate

Explanation: The state provided is not a valid JRadioButton. JRadioButton does not support the state_name setState.

The valid state for the JRadioButton is SELECTED.

User response: Specify a valid state for JRadioButton using setState(SELECTED) and try to playing back the script

again.

CRFCP0032E
Can not set the state to INDETERMINATE

Explanation: The control_name control cannot be set to the indeterminate state. Only the selected and cleared states

are valid.

System action: Setting the state fails and playback stops.

User response: Specify a valid state and try playing back the script again.

CRFCP0033E
java.jfc.JTree: multiple selection is not allowed

Explanation: Multiple selections were attempted in a java.jcf.JTree option. JTree options do not support multiple

selections.

User response: Make a single selection in the JTree option and try playing back the script again.

Chapter 10. Troubleshooting

CRFCP0034E
java.jfc.JTable: Row Selection is not Allowed

Explanation: An row-selection action was attempted in a java.jfc.JTable. JTables do not support row selection.

User response: Specify a supported action and try playing back the script again.

CRFCP0035E
java.jfc.JTable: Column Selection is not Allowed

Explanation: A column-selection action was attempted in a java.jfc.JTable. JTables do not support column selection.

User response: Specify a supported action and try playing back the script again.

CRFCP0036E
java.jfc.JTable: Cell Selection is not Allowed

Explanation: A cell-selection action was attempted in a java.jfc.JTable. JTables do not support cell selection.

User response: Specify a supported action and try playing back the script again.

CRFCP0037E
Can not resize a window to a negative size: (dimension1, dimension2)

Explanation: An attempt was made to make a window size negative with these coordinates: (dimension1,

dimension2). Windows sizes cannot be negative.

User response: Specify a positive and valid size and try playing back the script again.

CRFCP0038E
Can not move a window to a null location

Explanation: An attempt was made to move a window to a null location. Windows cannot be moved to null locations.

User response: Specify a non-null location and try playing back the script again.

CRFCP0039E
Minimize is not supported

Explanation: This method attempts to minimize the associated window. The means by which the window is

minimized depends on the platform. If a window is already minimized this method has no effect. The actions

minimize, resize, tofront and moving to a null point is not supported.

System action: Playback fails.

1395

HCL OneTest™ UI

1396

User response: Specify a supported action and try to play back the script again.

CRFCP0040E
Resize is not supported

Explanation: There was an attempt to resize an object. Resizing is not supported. The actions minimize, resize,

tofront and moving to a null point is not supported.

User response: Specify a supported action and try to play back the script again.

CRFCP0041E
Can not move a window to a null location

Explanation: There was an attempt to move a window to a null location. Windows cannot be moved to null locations.

System action: Playback fails.

User response: Specify a non-null location for window and try to play back the script again.

CRFCP0042E
tofront is not supported

Explanation: There was an attempt to bring a window to foreground. This window cannot be brought to the front from

the background. The tofront action is not supported. The actions minimize, resize, tofront and moving to a null point

is not supported.

User response: Perform a supported action or action and try to play back the script again.

CRFCP0043E
Invalid state for action: state

Explanation: There was an attempt to set the state for an action. The state_value is not valid. If there is no toggle or

radio button, the state cannot be set. If there is a radio button but no option is selected or if the state is indeterminate

then the state is not valid.

User response: Change the state to a valid state using mouse modifiers and try to play back the script again.

CRFCP0044E
setState can only be used to scroll the split pane: action

Explanation: There was an attempt to scroll a single pane using the function setState(). The setState action can

be used only to scroll a split pane. On split pane the action could be a horizontal or vertical scroll. The valid actions

depend on the control. The valid actions are: SINGLE_SELECT, DESELECT, EXTENDSELECT, DESELECTALL, CHECK,

UNCHECK, UNDETERMINED, VSCROLL, HSCROLL, SCROLL_PAGEUP, SCROLL_PAGEDOWN, SCROLL_PAGELEFT,

Chapter 10. Troubleshooting

SCROLL_PAGERIGHT, SCROLL_LINEUP, SCROLL_LINEDOWN, SCROLL_LINELEFT, SCROLL_LINERIGHT,

EXPAND, EXPAND_AND_SELECT, EXPAND_AND_EXTENDSELECT, COLLAPSE, COLLAPSE_AND_SELECT,

COLLAPSE_AND_EXTENDSELECT, ACTION_FIRST, and ACTION_LAST.

User response: Scroll a split pane or correct the action for a single pane and try to play back the script again.

CRFCP0045E
No screen visible point found

Explanation: The specified coordinates are not visible on the screen. One of the two coordinates is null.

User response: Specify non-null coordinate and try playing back the script again.

CRFCP0046E
java.swt.Combo: setState can only be used to select a subitem: action}

Explanation: In java.swt.Combo, the setState action can only be used to select an actionsubitem.

User response: Specify a supported action and try playing back the script again.

CRFCP0047E
java.swt.CTabFolder: setState can only be used to select a subitem: subitem_action

Explanation: In java.swt.CTabFolder, the setState action can only be used to select an action subitem.

System action: Playback fails.

User response: Perform only supported operations.

CRFCP0048E
Property name was not found

User response: Verify the location of the property. Set the value for a valid property and try playing back the script

again.

CRFCP0049E
Property name is read only

Explanation: The name property is read-only. The value of a read-only property cannot be set.

User response: Cannot set value to a read only property. Remove the setProperty statement and playback the script.

CRFCP0050E
No screen point found for object.

1397

HCL OneTest™ UI

1398

Explanation: While a script was playing back on a control, either the screen point for the control cannot be found or

the control is not visible. This error might also occur when dual monitors are used.

System action: Playback stops.

User response: If the control is visible but playback still stops, try a point that is relative to the geometry to the control

and play back the script again.

Note: HCL OneTest™ UI does not support dual monitor issues currently.

CRFCP0051E
You cannot set a property on an Html Domain object.

Explanation: There was an attempt to set a property on an HTML domain object. Properties cannot be set on HTML

domain objects.

User response: Remove the property-set action and try playing back the script again.

CRFCP0052E
No screen visible point found for document.

Explanation: During playback HCL OneTest™ UI has to perform multiple clicks for a single action. After the first click(),

if the plugin is not properly enabled, HCL OneTest™ UI will not be able to record or playback the actions. After a click

action, the application cannot return to the correct state.

System action: Playback stops.

CRFCP0053E
Unable to click to desired state: action

Explanation:

The action state cannot be set or selected. The state is either indeterminate or no radio button has been selected.

When you click to change the state of the control, the control might be in one of these conditions:

• A check box and the state are indeterminate.

• A radio button is set but the radio button is not selected.

System action: Playback fails.

User response: Use setState() to set the state of the control. For radio button, the valid state is selected. For check

box, the valid states are selected or not selected.

Chapter 10. Troubleshooting

CRFCP0054E
Unable to set to desired state.

Explanation: A check box or radio button has been set to indeterminate state programatically.

System action: Playback stops.

User response: Check if the state of the check box or radio buttons is supported by the control. If the problem

persists, contact support.

CRFCP0055E
Unable to set text in a read-only text area

Explanation: There was an attempt to set text in an area that is read-only. Text cannot be set in a read-only area.

User response: Remove the text-set action and try running the script again.

CRFCP0056E
No screen visible point found for form.

Explanation: During playback HCL OneTest™ UI has to perform multiple clicks for a single action. After the first cick(),

if the plugin is not properly enabled, HCL OneTest™ UI will not be able to record or playback the actions. After a click

action, the application does not return to the correct state.

System action: Playback stops.

CRFCP0057E
No Subitems, Image is not an Image Map.

Explanation: This error message is displayed when HCL OneTest™ UI gets the subobject that matches the subitem

specification for an image control. The image might not have the isMap or useMap DOM properties to specify that it is

an image control.

System action: Playback stops and the message is displayed in HCL OneTest™ UI console and in playback log.

User response: Verify that the image has the isMap or useMap DOM properties.

CRFCP0058E
Can not resize a window to a negative size: ({dimension1}, {dimension2})

Explanation: There was an attempt to set the window to a negative size with these dimensions: dimension_1 and

dimension_2. A window cannot be set to a negative size.

User response: Specify a positive size for the window, and try playing back the script again.

1399

HCL OneTest™ UI

1400

CRFCP0059E
Can not move a window to a null location

Explanation: There was an attempt to move a window to a null location. Windows cannot be moved to null locations.

User response: Specify a non-null location for the window and try playing back the script again.

CRFCP0065E
Playback cannot continue.

Explanation: A top-level object was not found for a control. Top-level objects for controls must be available. Top-

level objects have no parents. During playback all the top-level objects are obtained from the application and then

the control where the GUI action is to be performed is searched inside a top-level Object. For example, Form is a top-

level object. The application under test can be designed such that a top-level object is in foreground when a graphical

action is performed on it. If during playback the top-level object is not in foreground, the scripted action cannot be

performed.

User response: Verify that objects on which actions are made in the script are visible during playback.

CRFCP0067E
Playback cannot continue.

Explanation: The DescribedObjectReference class was unable to interact with a top-level window. Before a script

can interact with a window, the window must be brought to the foreground. Sometimes, however, the target window

cannot be brought to the foreground. For example, if a modal dialog box, such as an authentication or login window, is

open, the script cannot interact with the target window. The main window must be active for interaction.

User response: Design the application so that the top-level application window is active and interacted with.

CRFCP0068E
The MXML file cannot be compiled into a .swf file.

Explanation: An error message is displayed while compiling mxml to swf at the command prompt.

System action: During compilation, the MXML file is compiled with Flex automation libraries and HCL OneTest™ UI

Flex libraries. The corresponding .swf file is generated and is tested by HCL OneTest™ UI. With the .swf file, a batch

file, and an HTML page is also generated that corresponds to the MXML file. When compilation fails, the JRE and,

the .swf file cannot be generated.

User response: Ensure that the JAVA_HOME variable is set. Run the batch file generated during compilation at the

Adobe® command prompt to generate the .swf file and use it for testing purpose. You can run the batch file at the

Microsoft® Windows® command prompt to get the details of the error that occurred and take appropriate action

based on that information.

Chapter 10. Troubleshooting

CRFQM0001E
The adapter is unable to connect to the project_name project area in IBM Rational Quality Manager.

Explanation: The HCL OneTest™ UIand Rational Quality Manager integration adapter fails to connect to the Rational

Quality Manager project area.

System action: The HCL OneTest™ UI and Rational Quality Manager integration adapter connects to a default project

instead of connecting to a project area on the Rational Quality Manager server.

User response: Try connecting the HCL OneTest™ UI and IBM® Rational® Quality Manager integration adapter to the

IBM® Rational® Quality Manager project area again. Verify that all steps are complete and settings are correct.

CRFQM0002E
The integration adapter was unable to connect to the server.

Explanation: If the Rational® Quality Manager server is not running and available, the integration adapter for HCL

OneTest™ UI cannot connect to the Rational® Quality Manager server.

System action: The Rational® Quality Manager adapter for HCL OneTest™ UI does not retrieve project area

information from the Rational® Quality Manager server does not disconnect correctly.

User response: Ensure that the Rational® Quality Manager server is running and available and the Rational® Quality

Manager - HCL OneTest™ UI adapter is connected to the server.

CRFQM0003E
The script could not be run: The project cannot be found.

System action: Rational® Quality Manager received a request to run a script as Rational® Quality Manager connects

with the Rational® Quality Manager - HCL OneTest™ UI adapter. The adapter cannot run the script because the HCL

OneTest™ UI project to which the script belongs cannot be found.

User response: Verify the location of the HCL OneTest™ UI project. Ensure that Rational® Quality Manager - HCL

OneTest™ UI adapter is specifying the correct location.

CRFQM0004E
The script name cannot be run

Explanation: Rational® Quality Manager has connected with a Rational® Quality Manager - HCL OneTest™ UI

adapter and received a request to run a script.HCL OneTest™ UI cannot run the test script because the scripts cannot

be found in the specified location.

User response: Ensure that the HCL OneTest™ UI script can be found at the location that is specified for the

Rational® Quality Manager - HCL OneTest™ UI adapter.

1401

HCL OneTest™ UI

1402

CRFQM0005E
The script cannot be run as the script is not built.

System action: Rational® Quality Manager is connected with a Rational® Quality Manager - HCL OneTest™ UI

adapter. Rational® Quality Manager receives a execution request for a script. The adapter cannot run the script as

the script is not compiled or built.

User response: Ensure that HCL OneTest™ UI script exists and it is complied or built at the location where the

Rational® Quality Manager - HCL OneTest™ UI adapter is trying to find it.

CRFQM0006E
The script {0} cannot be executed.

Explanation: Rational® Quality Manager adapter for HCL OneTest™ UI cannot run the script

System action: Rational® Quality Manager is connected with a Rational® Quality Manager - HCL OneTest™ UI

adapter. Rational® Quality Manager receives a execution request for a script. The adapter cannot run the script

User response: Refer the HCL OneTest™ UI logs.

CRFQM0007E
Failed to make task data available to execution.

Explanation: Rational® Quality Manager adapter for HCL OneTest™ UI creates a temporary task file for the request it

receives. This error occurs if the creation of the task file fails.

System action: Adapter either fails to create a temporary task file or fails to write the task data to the temporary file.

User response: Ensure that temporary file creation is permitted on the computer where the adapter is running.

CRFQM0008W
Server URL must be in the form {0}. Are you sure {1} is correct?

Explanation: The server URL specified on the Rational Quality Manager adapter user interface is not in the correct

form.

System action: A Warning message box is displayed with the message 'Server URL is in the form https://

<server>[:portnumber]/<ContextRoot>’

User response: Specify the server URL in the correct format.

CRFQM0009E
You cannot start multiple adapters with the same configuration on the same workstation.

Chapter 10. Troubleshooting

Explanation: An adapter instance is trying to connect to the server while another adapter instance on the same

workstation has already connected to the same server configuration using the same details. Multiple adapters with

the same configuration cannot be started on the same workstation.

System action: This error message is displayed in the adapter console of the second instance of the adapter

interface.

User response: Close the second adapter instance.

CRFWW0001E
Could not open file: {0}. Check if file is a part of workspace

Explanation: The file is not a part of the workspace. To be opened, files must be a part of the workspace.

User response: Check whether the file is a part of workspace. If the file is not part of the workspace, import the file to

workspace and try the operation again.

CRFWW0002W
Do you want to delete the existing private dataset?

System action: Displays the message and waits for user response.

User response: Decide whether you want delete the private dataset or not.

CRFWW0003E
Problem initializing the IDE.

Explanation: During recording or playing back a script, a reference to the IDE is required. When the IDE is launched

and registering the IDE in the shared memory is attempted internally by HCL OneTest™ UI, the registration operation

fails.

System action: The IDE is not registered.

User response: Try the operation again. If the error persists, contact support.

CRFWW0004E
Critical files are corrupted, missing or cannot be loaded. Reboot your system. If problem persists please reinstall HCL

OneTest™ UI.

Explanation: Critical files are corrupted, missing, or cannot be loaded.

User response: Restart the computer. If the problem persists reinstall HCL OneTest™ UI.

CRFWW0006E
Problem enabling default environments for testing.

1403

HCL OneTest™ UI

1404

Explanation: In HCL OneTest™ UI, default JRE or default browser could not be enabled.

System action: Playback cannot be started.

User response:

To resolve this problem, try one of these actions:

• Enable the default JRE and default browser.

• Restart the computer.

• Ensure that the default JRE path and default browser path are correct in the Enable Environment dialog.

CRFWW0010E
The major version of the project is not compatible with the product version.

Explanation: The project version is not compatible with the product version. The might occur when a project that

was created using an older version of HCL OneTest™ UI is used with new version resulting in the project being

incompatible with the version of the product. The user is given an option to upgrade the project to make the project

compatible with the product version.

System action: Project does not load.

User response: Check that the major version of the project in compatible with the product version. Right-click the

project and select Properties. Select Functional Test Project to see the project version.

CRFWW0011E
The minor version of the project does not match the minor version of the product.

Explanation: The project version does not match the version of the product. The might occur when a project that

was created using an older version of HCL OneTest™ UI is used with new version resulting in the project being

incompatible with the version of the product. The user is given an option to upgrade the project to make the project

compatible with the product version.

System action: Project does not load.

User response: Check that the project version is compatible with the minor version of the product. Right-click the

project and select Properties. Select Functional Test Project to see the project version.

CRFWW0013E
The major version of the project is not compatible with the product version. This project will be disconnected.

Explanation: The project version does not match the version of the product. The might occur when a project that

was created using an older version of HCL OneTest™ UI is used with new version resulting in the project being

incompatible with the version of the product. The user is given an option to upgrade the project to make the project

compatible with the product version.

Chapter 10. Troubleshooting

System action: Project does not load.

User response: Check that the project version is compatible with the minor version of the product. Right-click the

project and select Properties. Select Functional Test Project to see the project version.

CRFWW0017E
Please wait for another script to finish.

Explanation: A script was already running when an attempt was made to run another script. Two scripts cannot run

simultaneously.

User response: Wait for the current script playback to finish before running another script.

CRFWW0018E
Unable to find script.

Explanation: The script has been removed, moved, or the specified path might be incorrect.

System action: The script does not load.

User response: Verify that the path of the script is correct and that the script is present.

CRFWW0019E
Classpath error: {errmsg}

Explanation: A core exception occurred while the default runtime classpath_name classpath was being accessed.

User response: Follow the instructions in the error message. If the problem persists contact support.

CRFWW0020E
Try resetting the project java build path to resolve errors encountered running the script.

Explanation: Errors in the build path prevented the script from running.

System action: The script is not run.

User response: Reset the project Java build path to resolve the errors. Select Project > Properties > Java Build Path.

Verify that all the required libraries (Jars,external, Jars,variable, library, class folder and external class folder) are

added so that all the components on which the project is dependent is added. Select the required items under Order

and Export tab on which the project has dependency. If this error persists, contact IBM Software Support.

CRFWW0021E
Couldn't find a script to playback. Please check your selection.

Explanation: No script is active for playback.

1405

HCL OneTest™ UI

1406

System action: Script playback does not start.

User response: Check your selection and try the operation again.

CRFWW0023E
The specified dataset iteration count [count] is not valid.

Explanation: The specified dataset iteration count, [count], is not valid. The iteration count value is either negative or

greater than the maximum number of iterations possible. The maximum number is the number of rows in the dataset.

User response: Specify a valid iteration count.

CRFWW0024E
Object Map does not exist

Explanation: You open an object map that does not exist. Object map file is either deleted, moved, renamed or

corrupted

System action: Playback stops and an exception is displayed.

User response: Ensure that the object map exists.

CRFWW0025E
Problem renaming script assets

Explanation: The new name of the script assets might not be valid or might already be in use. Valid script names

must be unique.

User response: Specify a valid asset name.

CRFWW0026E
Problem opening file

Explanation: The correct permissions to open the file might not be set. To open a file the permissions settings must

be correct.

User response: Check the file permissions from File > Properties and retry the operation.

CRFWW0028E
Problem deleting script assets

Explanation: You cannot delete the script assets. Test assets are either deleted, renamed or corrupted.

System action: The HCL OneTest™ UI assets cannot be opened.

User response: Verify that the test assets are not being used by another user.

Chapter 10. Troubleshooting

CRFWW0030W
The destination file exists. Do you want to overwrite it?

System action: Waits for user response.

User response: Decide if you want to overwrite the destination file or not.

CRFWW0031E
There are no files to export.

Explanation: This error message is displayed when you try to export the functional test project from a location that

has no files to export

System action: No files are exported

User response: No action required.

CRFWW0032E
Problem encountered during the export.

Explanation: This error occurs when you try to export functional test project or dataset and the files are not saved in

the destination location

System action: Export operation fails

User response: Find out the reason for the failure of the write operation. Possible reasons: Invalid destination

location, not writable, not enough disk space.

CRFWW0033W
Unable to access script assets for scriptFile. Do you wish to proceed without this script?

Explanation: The script assets might not exist or might have been erroneously deleted.

System action: Waits for the user response.

User response: Decide whether to continue opening the project without the script or not.

CRFWW0034E
Problem encountered during the import

Explanation: This error occurs when you try to import a functional test project or a dataset

System action: Import operation fails

User response: Check the error message details to find out the problem and resolve it.

1407

HCL OneTest™ UI

1408

CRFWW0035E
Refresh failed.

Explanation: This error occurs when you try to import the functional test project or dataset and there is a problem

while refreshing the project after the import.

System action: Refresh operation on the destination project fails

User response: Use F5 key in the project explorer to refresh the project manually. Also check the error message

details to find out the problem and resolve it.

CRFWW0036E
Unable to update the destination.

Explanation: The specified destination might not be writable with current permission settings. To export a project, the

destination must have permissions set to enable writing.

User response: Verify that you have write privileges in the path specified for export from File > Properties. Try the

operation again.

CRFWW0037E
Unable to create the destination directory

Explanation: The permissions set for the destination directory do not permit writing. To export a project, the

destination directory must have permissions set to enable writing.

System action: The project is not exported.

User response: Verify that you have write privileges in the path specified for export. Try the operation again.

CRFWW0038E
Publish failed on {fileName} The following files were updated.{updatedFileList} Do you want to undo the operation?

Select No if you want to continue publishing the rest of the files.

Explanation: Correct permissions might not be set for the file. Correct permissions are required for exporting files.

System action: The application waits for a response.

User response: Decide whether to continue exporting the remaining files or undo the operation. To export the other

files, verify that you have write privileges for the files, and then export them to the destination.

CRFWW0039E
Unable to create backup directory

Chapter 10. Troubleshooting

Explanation: The path for the exported files might not have been specified correctly. If the backup directory cannot be

created, the export operation cannot continue.

User response: Verify that the path for the backup directory is specified correctly, and try the operation again.

CRFWW0040E
Unable to copy file to backup directory

Explanation: The permissions that are set for the file or the destination directory might not permit the file to be saved

to a temporary backup location Without the backup, the import process continue.

User response: Check the permissions of both the file and the backup directory and verify your privileges. Try the

operation again.

CRFWW0041E
Unable to read the file {fileName} while creating backup

Explanation: The permissions for the file might not be set to enable reading. To create the backup and continue the

export operation, the files must be read.

System action: The import fails because the file or files to be exported cannot be read

User response: Ensure that you have read privileges in the path specified for the files to be exported. Try the

operation again. If the error persists, contact support.

CRFWW0042E
Problem encountered during the publishing.

Explanation: The permissions for the file might not be set to enable reading. To continue the import operation, the

files must be read.

System action: The import operation fails because the files that have to be exported cannot be read.

User response: Ensure that you have read privileges for the files to be exported. If the problem persists, contact

support.

CRFWW0043W
Unable to access script assets for scriptFile. Do you wish to proceed without this script?

Explanation: The script assets might not exist or might have been erroneously deleted.

User response: Decide whether to continue opening the project without the script or not.

CRFWW0044W
dataset structure changed. Are you sure you want to change the association?

1409

HCL OneTest™ UI

1410

System action: Waits for user response.

User response: Decide if you want to change the dataset association or not.

CRFWW0045E
Problem associating dataset with scripts

Explanation: The dataset cannot be associated with scripts. To run a script, the specified datasets must be

associated with the script.

User response: Try to rectify the error based on the error message, else contact support.

CRFWW0046E
Could not insert data driven commands

Explanation: The data-driven commands could not be inserted.

User response:

CRFWW0047E
Problem encountered during the export.

Explanation: The correct permissions for writing to the destination directory might not be configured. To export files,

permission to write to the destination directory is required.

User response: Verify that you have the permission to write to the destination directory from File > Properties, and try

the operation again.

CRFWW0048E
Could not create dataset

Explanation: The correct permissions for writing to the specified path are not configured. To create datasets,

permission to write to the specified path is required.

User response: Verify that you have the permission to write to the specified path from File > Properties, and try the

operation again.

CRFWW0049E
Create dataset problems

Explanation: Although a dataset file was saved, the file has problems.

User response: Refer to the exception message for more information about the problems, and try to correct the error.

If the error persists, contact support.

Chapter 10. Troubleshooting

CRFWW0050E
Could not create dataset

Explanation: The correct permissions for writing to the specified path are not configured. To create datasets,

permission to write to the specified path is required.

User response: Verify that you have the permission level to write to the specified path, and try the operation again.

CRFWW0051E
Error showing dataset page.

Explanation: An internal errors prevents a dataset from being displayed the script explorer.

System action: The dataset view is not opened.

User response: Try the operation again. If the error persists, contact support.

CRFWW0052W
Scripts associated with this dataset will be made unusable. Are you sure you want to remove dataset association?

Explanation: This is a warning before deleting a script asset.

User response: Decide whether you want to remove the dataset association or not.

CRFWW0053E
Cannot modify a readonly file!

Explanation: The file has a read-only attribute and cannot be modified.

User response: Modify the file permissions from File > Properties and try the operation again.

CRFWW0054W
The following scripts are already associated with a dataset. Changing the dataset associated with a script can cause

the script to run incorrectly. Do you want to change the dataset associated with each script?

System action: Waits for user response.

User response: Decide if you want to change the dataset associated with each script or not.

CRFWW0055E
Problem associating dataset with scripts

Explanation: The script definition file might be read-only. The script definition file must be configured for changes to

associate a dataset with scripts.

1411

HCL OneTest™ UI

1412

System action: The dataset is not associated with scripts.

User response: Verify the permissions for script definition file, and try the operation again.

CRFWW0056E
Problem encountered during the import.

Explanation: Files in this format or of this type cannot be imported. File must be in these formats or of these types to

be imported.

User response: Check the file format and file type. Change the format or type, and try the operation again.

CRFWW0057W
dataset datasetName has been modified. Save changes?

System action: Waits for user response.

User response: Decide if you want to save changes made to the dataset or not.

CRFWW0059E
Could not create Object Map

System action: The object map is not created.

CRFWW0060E
Could not create script

Explanation: The recording operation was unsuccessful, so the script cannot be created. A script requires a

completed recording.

User response: Try the recording operation again. If the recording fails, contact support.

CRFWW0061E
Script copied however an error occurred updating the script with its new name and location. Any compile errors need

to be fixed manually.

Explanation: Files that the script requires might not have been copied while the script was being renamed. All

required files must be copied to the new location for the script copying operation to be completed.

User response: Verify that all the files that the script requires are copied to the new location. If the error persists,

contact support.

CRFWW0062E
Could save new script

Chapter 10. Troubleshooting

System action: Recording stops and an exception is displayed.

User response: Verify that the path is correct and you have appropriate privileges to access the scripts.

CRFWW0063E
Could not save the editor's copy of the script to the new location. Any changes made to the script since the last save

have been lost.

System action: Editors copy cannot be saved in the new location.

User response: Verify that you have appropriate privileges to access the folder.

CRFWW0064E
Could not record into script

System action: An Error Dialog box with the error ID and the message is displayed after the recording session closes.

User response: No user response required.

CRFWW0065E
Please make sure that a Functional Test script is active

Explanation: The test script is not active. To run, the test script must be active.

User response: Activate the test script by selecting the script from the project and try the operation again.

CRFWW0066E
Please select the line where callScript should be inserted

Explanation: No line has been selected to insert the callScript function. A line must be selected to insert a callScript

function.

User response: Select a line to insert the callScript function and try the operation again.

CRFWW0068E
Make sure that you selected one or more scripts or test folders containing scripts and that these scripts are from the

same project as current script.

Explanation: A script or test folder that contains scripts from the same project as the active script was not selected

for the callScript function. The scripts and test folders that contain scripts must be from the same project as the

active script.

User response: Select a script or a test folder that contains scripts from the same project as the active script and try

the operation again.

1413

HCL OneTest™ UI

1414

CRFWW0069W
Only scripts from the current project have been inserted

User response:

CRFWW0070E
Could not insert test object(s)

Explanation: This problem is encountered when you insert a test object from HCL OneTest™ UI Java IDE.

System action: An Error Dialog box with the error ID and the message is displayed.

User response: No user response required.

CRFWW0071E
Could not rebuild project

Explanation: The library files or jar files are missing.

System action: The project cannot be rebuild.

User response: Verify that the required jar files or library files exists.

CRFWW0073E
Could not create script helper superclass

Explanation: HCL OneTest™ UI cannot create script helper class or file.

System action: Recording stops and an exception is displayed.

User response: You must restart HCL OneTest™ UI and rebuild the script again

CRFWW0074E
Specified project path does not exist

Explanation: The specified project path does not exist.

User response: Create the directories specified in the path or specify another path and try the operation again.

CRFWW0075W
There are two connections "{0}" and "{1}" to the same project. But the associated test script source in current project

can only point to one of the copies. You should disconnect from one of them.

Explanation:

System action:

Chapter 10. Troubleshooting

User response:

CRFWW0078E
Error deleting files

System action: An Error Dialog box with the error ID and the message is displayed.

User response: No user response required.

CRFWW0079E
Problems renaming project item(s)

Explanation: Application can encounter an error when you rename the HCL OneTest™ UI project assets. For example:

dataset name, project name, script name.

System action: The project does not get renamed. An Error Dialog box with the error ID and the message is displayed.

User response: No user response required.

CRFWW0080E
Could not open project

Explanation:

This problem is encountered when:

• Opening a project from the HCL OneTest™ UI Java IDE.

• While updating the datastore definition. For example: association of the existing project with Test Manager.

System action:  The project does not open. An Error Dialog box with the error ID and the message is displayed. 

User response:  No user response required. 

CRFWW0081E
Could not create new project

Explanation: New project cannot get created in the HCL OneTest™ UI Java IDE

System action: A new project does not get created. An Error Dialog box with the error ID and the message is

displayed.

User response: No user response required.

CRFWW0082E
Could not open log.

1415

HCL OneTest™ UI

1416

Explanation:  The log from the HCL OneTest™ UI integrated development environment cannot be opened because the

editor that is associated with the log could not be found. 

System action:  The log is not opened. 

User response:

To open the log, try these actions:

• Ensure that the default browser is installed properly.

• Verify that the file association for the extension of the log file is valid.

CRFWW0083E
Select a verification point.

Explanation: A verification point has not been selected. To perform the comparison, a verification point must be

selected.

System action: The comparator is not started.

User response: Select a verification point and try to run the comparison again.

CRFWW0084E
Could not create test folder

System action: New folder is not created. An Error Dialog box with the error ID and the message is displayed.

User response: No user response required.

CRFWW0085E
The project is locked for publish by other users/application.

Explanation: The project is locked by another user or application. The files for export must be released from all other

users or applications.

System action: The project is locked by another process.

User response: Discover and stop the process that is accessing the project files and try the operation again.

CRFWW0094E
The specified dataset could not be created.

System action: The application is unable to create a dataset file with a valid path name. On some computers, creating

files requires that the user have specific permissions. Without these permissions, the file cannot be created.

Chapter 10. Troubleshooting

User response: Check user permissions for creating files. Obtain the correct permissions, if necessary. Try to create

the dataset again.

CRFWW0095E
The nested text editor could not be created. The simplified script editor does not display the Java tab.

Explanation: Eclipse cannot create the Java tab in the simplified script editor.

User response: Close the script and try the operation.

CRFWW0096E
The simplified scripts cannot be exported as HTML or XML files.

Explanation: In some instances the correct permissions might not be set for writing to the target or reading the script

at the source. Correct permissions are required for reading the file to be exported and writing the exported file in the

specified location.

User response: Check file write permissions to the target for the export. Check the read permissions for the simplified

script file. Correct permissions, if necessary, and try to export the simplified script again.

CRFWW0097I
The file from a different workspace cannot be opened.

Explanation: The simplified script that is displayed is not a part of a project that is currently displayed in the HCL

OneTest™ UI workspace.

User response: Connect to the project that the script belongs to and then open the required script again.

CRFWW0098E
The copied action cannot be pasted under the current selection. Make sure the target is not a child of the source or

the source itself.

Explanation: The paste target might be a child of the source or the source itself. The paste target cannot be a child of

the source or the source it self.

System action: The simplified script step is not moved.

User response: Drag the simplified script step to a valid location.

CRFWW0099W
The dataset association cannot be removed.

Explanation: The dataset that is being deleted is used by steps within the group that is associated with the dataset.

dataset associations cannot be removed when data driven steps in the associated group use the dataset.

1417

HCL OneTest™ UI

1418

User response: Remove the data driven steps from the group or associate the group with a different dataset. Try to

remove the dataset association again.

Chapter 11. Reference Guide
This guide describes the additional topics to gain more knowledge about HCL OneTest™ UI.

Reference for the UI Test perspective
In this section, you will learn all the reference or additional information about the Web UI Test perspective.

Mobile test preferences
You can change the Mobile Test preference settings.

Mobile web testing preferences
The Mobile web testing preferences control how the information are displayed in the Mobile test editor and the Mobile

data view.

To access the Mobile web testing preferences, click Window > Preferences, expand Test, and click Mobile Web

testing. After changing settings, click Apply.

The settings apply to the mobile device editor, Mobile applications editor, and the Mobile testing editor. They are used

to distinguish important information from plain text.

List title

Applies to the list of devices and applications of available devices in the Mobile Devices editor and

to the list of available applications in the Mobile applications editor. This is the color of the names of

Mobile devices and applications.

List property

Applies to the list of devices and applications of available devices in the Mobile Devices editor and

to the list of available applications in the Mobile applications editor. This is the color of the main

properties indicated with the title of the devices and applications.

Available property

Applies to the main properties pane in Mobile Devices editor and to the application description pane in

the Mobile applications editor. This is the color of the main properties available for the current device or

application.

Error

Applies to the error detected in the Mobile editors.

Active filter input background

This is the color of the filters when they are active.

The settings apply to the Mobile data view that is associated to the Mobile test editor.

1419

HCL OneTest™ UI

1420

UI Test Application Editor preference
This setting is applicable when the same integrated development environment is used to develop and test an

application. Developers who use the Eclipse integrated environment and the Android Developer Tools (ADT) can use

this setting to quickly modify and re-test an application during the development process itself.

Context: The Keep only the latest version of the build for the currently worked on application version option

is available from the test workbench toolbar (Window > Preferences > Test > UI Test > UI Test Application

editor).

Keep only the last application for a version

When this preference is selected, an application that is modified and then built by using the Run as >

Test with options, is instrumented and the latest build of the application is added to the workbench.

Thus, by using this setting, you replace any previous build of the same version of the application by

the latest builds. The test suites that were created from the previous build of the same version of the

application are automatically associated with the new build.

If the preference is not selected, when you run a build for a modified application by using the Run as >

Test with options, a message is displayed to indicate that test suites referencing other versions of the

same application have been found. You must click Preview to open a refactoring wizard and click Finish

to start refactoring. After they are refactored, the test suites will be used with the new version of the

application.

Mobile test reference
Read some of the reference topics about testing mobile applications.

Values for device selection variables
You can create a variable using one of the following reserved names:RTW_Mobile_Device_Properties or

RTW_Mobile_Selected_Device. The variable will be used to enable the selection of a device in your tests. In your

variable, you must enter strings that include the device’s properties and the associated values, and the strings must

comply with the syntactic rules detailed in this topic.

Name

In the Data elements details area that opens when you create a variable, enter one of the following reserved variable

names: RTW_Mobile_Device_Properties or RTW_Mobile_Selected_Device.

• RTW_Mobile_Device_Properties: This variable must contain a valid selection sentence.

• RTW_Mobile_Selected_Device: This variable contains, by default, the ID property of the previously selected

device for the current virtual user. It can also be set up explicitly by the end-user with the ID property of the

selected device.

Chapter 11. Reference Guide

Initialize to text

To initialize the variable to a specific value, enter one or multiple selection strings in the Text field. The strings

consists of the following items: property’s name followed by operator value followed by property’s value,. The

strings are separated with commas. Example: type = Android.

Device properties

Table 58. Main device properties

list of the main properties for a selected device

Key Content (value)

type Type iOS or Android

description A string containing the device model and its brand

apilevel Starting from 8 for Android and 60000 for iOS (60000 is for 6.0,

60100 is for 6.1)

width Width of the screen in pixels

height Height of the screen in pixels

locale Configured locale (language or country code)

simulator True for an emulator or simulator, false for a real device

landscape True if the device is landscape oriented, otherwise false (example:

portrait oriented)

gps True if GPS is available and active, otherwise false

phone True if phone is available, otherwise false

bluetooth True if Bluetooth is available and active, otherwise false

id This is a unique identifier generated for a device. It is displayed in

the device category of detailed properties of the Mobile Device ed

itor. It must be used in the RTW_Mobile_Selected_Device variable.

Other properties can be used. They are displayed in the Mobile Device editor.

Example: Example of selection string in the variable: type = Android, apilevel >= 15,

description : ABrandName. This selection string will enable selection of the first Android device

with an API level greater than or equal to 15 and whose description contains a brand name.

Syntactic rules

sentence: property-expr { , property-expr }*
 property-expr: property-name operator value

1421

HCL OneTest™ UI

1422

 operator: = | != | < | > | <= | >= | : | =* | !=*
 value: boolean | decimal-number | word | quoted-string
 boolean: true | false
 integer: optional-minus-sign [digit]+
 floating-number: optional-minus-sign [digit]+.[digit]+
 word: [A-Za-z$_][A-Za-z$_0-9]*
 quoted-string: 'any-char-1' | "any-char-2"

Where:

• property-expr must be set to allow a device selection

• property-name corresponds to a property listed above in the table of main properties, or to other

advanced properties (see the detailed properties section in the Mobile Device editor).

• The = and != operators are valid for Boolean properties.

• The =, !=, <, >, <= and >= operators are valid for numeric and lexicographical properties. They are

not case sensitive.

• The: operator is used to check the lexicographical content of the value entered for the device's

property in the selection string. The value is case sensitive

• The =* and !=* operators are used to check whether the value entered for the device's property in

the selection string is interpreted as a regular expression.

• Two kinds of quoted strings depend on their enclosing character ' or ". They are used for a

string value containing more than one word or containing special characters, such as regular

expressions

• ’any-char-1’: you can enter all kinds of characters in single-quoted literals, and the ' character

must be doubled. Example: It"s "John", which results in: It’s ’John’.

• 'any-char-2': you can enter all kind of characters after a double-quoted literals, but it must

be followed by a backslash. Example: "weird\"content\\with-special'chars" which gives:

weird"content\with-special'chars

• Prefer single-quoted literals for regular expressions because they do not require adding other

backslashes.

• The accepted regular expressions are the ones defined in the documentation of Pattern class,

Java 6.

UI Test result reports
By default, the Unified Report is displayed after a mobile test is run from devices, simulators, emulators, or

workbench. A statistical report is generated if the test is generated from only. The mobile web report gives details on

each action recorded and played back including the think time, the response time and warning messages that help

you to identify problems. The statistical report summarizes the health of the run, displays the data that is the most

significant to the run, summarizes the resource monitoring performance and gives an average step response time

graph.

Reference for the Functional Test perspective
In this section, you will learn all the reference or additional information about the Functional Test perspective.

Chapter 11. Reference Guide

Test application domain support
HCL OneTest™ UI is an object-oriented automated testing tool that tests Windows®, .NET, Java™, HTML, Siebel, SAP,

AJAX, PowerBuilder, Flex, Dojo, Visual Basic and GEF applications.

You can also test Adobe® PDF documents, and zSeries®, iSeries®, and pSeries® applications.

HCL OneTest™ UI also supports Oracle Forms through the use of a proxy.

Adobe PDF documents support
HCL OneTest™ UI supports testing of Portable Document Format (PDF) read-only files created for Adobe Reader

versions 7.0, 8.0, 9.0, 10.0, and 11.0. (Adobe Reader 11 is the last supported version of the Reader application.) You

can test PDF files that are displayed in a browser or in the stand-alone Adobe Reader application. A functional test

script that is recorded for files that are displayed in the stand-alone Adobe Reader application can be played back

when the file is displayed in a browser and vice-versa, provided that the script is recorded for document controls only.

Support for Adobe PDF requires Visual C++ 2013 or higher.

HCL OneTest™ UI supports testing of PDF files by either interacting with specific document controls or through

Reader controls.

The level of granularity that HCL OneTest™ UI supports depends on the way the PDF file is designed. For example, if

the entire page of a PDF file is designed to contain one text object only, the verification point highlighter captures only

the page-level contents and does not access the content inside the page.

Cross-compatibility of testing PDF read-only files is possible only for document controls and not Reader controls. For

example:

• Stand-alone Reader and browser: A test script that is recorded on a PDF file that is opened in the stand-alone

Reader can be played back on a PDF file opened in browser, provided that the script is recorded for document

controls only.

• Reader 7.0, 8.0, 9.0, 10.0 and 11.0: A test script that is recorded on a PDF file that is opened in the stand-

alone Adobe Reader 7.0 can be played back on a PDF file opened in Adobe Reader 8.0 and so on, provided

that the script is recorded for document controls only. Additionally, a functional test script that is recorded for

files that are displayed in the stand-alone PDF Reader can be played back when the document is displayed in a

browser and vice-versa, provided that the script is recorded for document controls only, and provided that the

regular expression is used for the top-level window.

Note: PDF 9.0, 10.0 and 11.0 file testing support:

• When you record on the Reader toolbar buttons in Adobe Reader 10.0 and 11.0, the action is recorded

as click(atPoint(x,y)).

• When you record on a PDF file that is opened in an Internet Explorer browser, you must first record

actions in the browser and then begin the recording on the PDF file.

1423

HCL OneTest™ UI

1424

Note: Only the Internet Explorer browser supports the recording of a PDF file.

• Playback fails when only the find() API is used to locate objects. As a workaround, click the captured

object first and then play back.

HCL OneTest™ UI provides support for testing PDF files that contain the following document controls:

• Page

• Table

• Text

• Link

• Outline Tree

• Graphics

• Document

HCL OneTest™ UI provides support for testing PDF files that contain the following Reader controls:

• Button

• Check box

• Toggle button

• Text box

• Combo box

Prerequisites: Before you start testing PDF files, you must set the Adobe Reader preferences and the HCL OneTest™

UI script assure values.

• Setting preferences for Adobe Reader 7.0

1. Open Adobe Reader 7.0.

2. Click Document > Accessibility Setup Assistant.

3. Click Next on the Accessibility Setup Assistant page.

4. Select Fit page as the Default display zoom in Screen 2 of 5, and click Next.

5. Clear Confirm before adding tags to documents in Screen 3 of 5, and click Next.

6. In Screen 4 of 5:

▪ For Page mode setting, select Deliver currently visible pages.

▪ For Document mode setting, select Deliver the entire document at once .

7. Click Next.

8. In Screen 5 of 5, select Display PDF documents in the web browser.

9. Click Done.

10. Click Edit > Preferences in Adobe Reader.

11. Click the Page Display category and select Single Page as the Default Page Layout, and click OK.

• Setting preferences for Adobe Reader 8.0, 9.0, 10.0 and 11.0

Chapter 11. Reference Guide

Note: For version 10.0, ensure that you disable protected mode before you set the preferences. For

instructions, see the procedures Disabling the protected mode for Adobe Reader 10.0 and Disabling

the protected mode for Adobe Reader 11.0. For version 11.0, ensure that you disable Enhanced

Security. Under Edit > Preferences, go to Security(Enhanced), and uncheck Enable Enhanced Security.

1. Open Adobe Reader.

2. Click Document > Accessibility Setup Assistant.

3. Click Next twice.

4. Clear Confirm before tagging documents in Screen 3 of 5 and click Next.

5. In Screen 4 of 5:

▪ For Page mode setting, select Only read the currently visible pages in the Page vs Document

field.

▪ For Document mode setting, select Read the entire document at once in the Page vs

Document field.

6. Click Next.

7. In Screen 5 of 5, select Display PDF documents in the web browser.

8. Click Done.

Note: Verify that Click to show one page at a time button at the top toolbar of the Adobe

Reader is selected for recording and playing back.

• Disabling protected mode for Adobe Reader 10.0

1. Click Edit > Preferences.

2. Click General in the Categories list.

3. Clear the Enable Protected Mode at startup check box.

4. Click OK, and restart the reader.

5. Set the accessibility options as described in the Setting preferences for Adobe Reader 8.0, 9.0, 10.0

and 11.0 procedure.

• Disabling protected mode for Adobe Reader 11.0

1. Click Edit > Preferences.

2. Click Security (Enhanced) in the Categories list.

3. Clear the Enable Protected Mode at startup check box in the Sandbox Protection Area. When

prompted to confirm your choice, click OK.

4. Click OK, and restart the reader.

5. Set the accessibility options as described in the Setting preferences for Adobe Reader 8.0, 9.0, 10.0

and 11.0 procedure.

• Setting the HCL OneTest™ UI script assure values

1. Open HCL OneTest™ UI, and click Window > Preferences.

2. In the Preferences window, expand Functional Test > Playback, and then click Script Assure.

3. Click Advanced.

1425

HCL OneTest™ UI

1426

4. Specify the following values on the Script Assure page:

▪ Maximum acceptable recognition score: 5000

▪ Last chance recognition score: 10000

▪ Ambiguous recognition scores difference threshold: 1000

▪ Warn if accepted score is greater than: 5000

Notes:

• When you open a new file in Adobe Reader, click the PDF file a few times after the recorder starts, till

a meaningful recording statement is seen in the recording monitor. These clicks are required for the

Reader to process the file.

• Only document verification points are supported in the document mode setting. A verification point

can be taken after the mandatory click in the file. Any clicks on the PDF document in document mode

setting while recording are ignored and no code is generated.

• Use the Page mode setting for larger documents.

• To take data verification point on a large document in Document mode, follow these steps:

1. Create the following registry key:

▪ HKEY_LOCAL_MACHINE\SOFTWARE\HCL Technologies\HCL OneTest UI\Options

2. Create a new DWORD variable InvocationTimeout.

3. For documents of 70 pages or more, specify the timeout value of 8*60*1000 milliseconds.

4. Restart HCL OneTest™ UI and restart Adobe Reader.

5. Perform the clicks on the PDF file until this message is generated: "Ignoring the click on PDF

document in document mode setting".

6. Take the data verification point.

• If a particular control in the PDF file spans over two or more lines, the highlight rectangle covers

all the lines in that control location. Other controls might fall in the highlight rectangle. But when a

verification point is taken on the control that spans over two or more lines, any other controls that fall

within the screen rectangle are not considered.

• You might not be able to test the PDF files correctly if the font of the letters in the PDF file is not

available or installed on the computer.

Related reference

Task flow for testing applications on page 43

AJAX support
HCL OneTest™ UI supports testing AJAX-based web applications.

You can test AJAX-based applications in two different ways; by setting the Auto Trace option to true or by setting the

Auto Trace option to false.

Chapter 11. Reference Guide

APIs for testing AJAX-based applications

The following APIs can be used in functional test scripts for testing AJAX-based applications. These APIs must be

invoked on the HTML.Document test objects.

Method Description Example

SetAjaxTrace(boolean) To trace the AJAX requests on the

Document control

document_htmlDocument().setAjax

Trace(true);

GetAjaxPendingRequests () Returns the number of AJAX

pending requests at any given

point of time since the first Ajax

TraceOn.

document_htmlDocument().getAjaxPendin
gRequests();

WaitForAjaxPendingRequests (int) To wait for the specified number

of AJAX requests to be complet

ed. Waits indefinitely till pending

requests becomes zero, if the ar

gument is not specified.

document_htmlDocument().waitForAjaxPend

ingRequests(2);

GetAjaxCompletedRequests () Returns the number of AJAX re

quests completed at any given

point of time since the first Ajax

TraceOn..

document_htmlDocument().getAjaxComplete

dRequests();

WaitForAjaxCompletedRequests

(int)

To wait for the specified number

of Ajax requests to be completed.

document_htmlDocument().waitForAjaxCom

pletedRequests(4);

Note: For more information on these APIs, see the API Reference topics.

Related reference

Task flow for testing HTML applications on page 47

Application Response Measurement support
The Application Response Measurement (ARM) standard helps measure the end-to-end transaction performance of

an application, including service levels and response time. HCL OneTest™ UI uses the response time breakdown to

view the statistics that is captured while running a test.

Response time breakdown
Response time breakdown is a type of application monitoring that shows how much time was spent in each part of

the system under test. The response time breakdown view shows the "insides" of the system under test.

1427

HCL OneTest™ UI

1428

To capture response time breakdown data, you must enable it in HCL OneTest™ UI. The data collection infrastructure

collects response time breakdown data. Each host on which the application runs and from which you want to collect

data must have the data collection infrastructure installed and running.

Note: Ensure that you use a compatible version of the response time breakdown tool such as IBM® Tivoli®

Composite Application Manager (ITCAM) for HCL OneTest™ UI to integrate with ARM. For information about

using the response time break down tool and the versions, refer the respective product information centre.

Related reference

Task flow for testing applications on page 43

Dojo support
HCL OneTest™ UI supports testing HTML applications that contain Dojo controls on versions of all browsers

supported by HCL OneTest™ UI. You can test applications that are developed using Dojo Toolkit versions 1.0, 1.1, 1.2,

1.3.2, 1.4.2, 1.5, 1.6.1, 1.7, 1.8, and 1.9.

HCL OneTest™ UI supports recording and testing HTML applications that are developed using the Dojo Toolkit

versions 1.0, 1.1, 1.2, 1.3.2, 1.4.2, 1.5, 1.6.1, 1.7, 1.8, and 1.9 containing Dojo controls as shown in Table 1:

Note: On Mozilla Firefox browsers, Dojo recordings on the Dojo Grid Control are incorrect for rows beyond 25.

This happens because Dojo restarts its row index from zero every time a row beyond row 25 is clicked. Use

one of the following workarounds to overcome this problem:

• Modify the recorded script and mention the correct row number.

• Record the script in an Internet Explorer browser, and play it back on a Mozilla Firefox browser.

Table 59. Dojo controls supported by FT against Dojo Toolkit versions

Versions 1.0, 1.1,

1.2, 1.3.2 and 1.4.2
Version 1.5 Versions 1.6.1, 1.7, and 1.8 Version 1.9

• Button

• Calendar

• Checkbox

• ColorPalette

• Combobutton

• Currencytextbox

• Datetextbox

• Dialog

• Button

• Calendar

• Checkbox

• ColorPalette

• Combobutton

• Currencytextbox

• Datetextbox

• Dropdown Com

bobox

• Button

• Calendar

• Checkbox

• ColorPalette

• Combobutton

• Currencytextbox

• Datetextbox

• Dropdown Button

• Button

• Calendar

• Checkbox

• ColorPalette

• Combobutton

• Currencytextbox

• Datetextbox

• Dropdown Button

Chapter 11. Reference Guide

Table 59. Dojo controls supported by FT against Dojo Toolkit versions (continued)

Versions 1.0, 1.1,

1.2, 1.3.2 and 1.4.2
Version 1.5 Versions 1.6.1, 1.7, and 1.8 Version 1.9

• Dropdown Com

bobox

• Dropdownbutton

• Editor

• Grid

• InlineEditBox

• Menu

• Numbertextbox

• Slider

• Spinner

• Textarea

• Textbox

• Timetextbox

• Toolbar

• Tooltip

• TooltipDialog

• Tree

• Validationtextbox

• Dojo containers:

◦ Accordian

◦ Content

Pane

◦ Floating

Pane

◦ Layout

◦ Link Pane

◦ Split

◦ Stack

◦ Tab

◦ Title Pane

• Editor

• Grid

• Menu

• Numbertextbox

• Textarea

• Textbox

• Timetextbox

• Toolbar

• Tree

• Dojo containers:

◦ Accordian

◦ Content

Pane

◦ Floating

Pane

◦ Layout

◦ Link Pane

◦ Split

◦ Stack

◦ Tab

◦ Title Pane

• Dropdown Com

bobox

• Editor

• Grid

• InlineEditBox

• Menu

• Numbertextbox

• Slider

• Spinner

• Textarea

• Textbox

• Timetextbox

• Toolbar

• TooltipDialog

• Tree

• Validationtextbox

• Dojo containers:

◦ Accordian

◦ Content

Pane

◦ Floating

Pane

◦ Layout

◦ Link Pane

◦ Split

◦ Stack

◦ Tab

◦ Title Pane

• Dropdown Com

bobox

• Editor

• Grid

• InlineEditBox

• Menu

• Numbertextbox

• RadioMenuItem

• Slider

• Spinner

• Textarea

• Textbox

• Timetextbox

• Toolbar

• TooltipDialog

• Tree

• Validationtextbox

• Dojo containers:

◦ Accordian

◦ Content

Pane

◦ Fieldset

◦ Floating

Pane

◦ Layout

◦ Link Pane

◦ Split

◦ Stack

◦ Tab

◦ Title Pane

Related reference

Task flow for testing HTML applications on page 47

1429

HCL OneTest™ UI

1430

Eclipse support
HCL OneTest™ UI supports testing of applications based on Eclipse 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, 3.5.x, 3.6.2, 4.2,

4.2.2, and 4.4.

You must enable the Eclipse platform for testing before recording scripts to test Eclipse-based applications.

You can test both Eclipse 32-bit and 64-bit Standard Widget Toolkit (SWT) and Rich Client Platform (RCP) applications

using HCL OneTest™ UI.

HCL OneTest™ UI also supports testing of stand-alone SWT applications. To do this, you must enable the JRE

in which the SWT application runs, and also enable the SWT application. For information about enabling SWT

applications, see Enabling stand-alone Standard Widget Toolkit applications on page 602.

Note: For Eclipse versions 4.2 and 4.2.2, only 32-bit applications are supported.

Related reference

Task flow for testing Eclipse applications on page 49

Flex support
HCL OneTest™ UI supports testing functional aspects of Adobe® Flex applications. You can record and playback

scripts against Flex-based user interfaces inside a web browser and verify that the application functions correctly.

You must consider the following points before testing with Adobe Flex applications:

• Testing Flex applications are supported on Microsoft Internet Explorer browsers only.

• While taking a data verification point on multiple selected elements of a Flex list control, not all selected

values are picked up.

• Insert Test Object does not work for Flex and SparkFormControl.

• It is not possible to play back actions that are recorded on the vertical scroll bar of a SparkList.

You can test the following list of controls in the Flex applications:

• FlexAccordion

• AdvancedDataGrid

• Alert

• Application

• Box

• ButtonBar

• Button

• ColorPicker

• Combobox

• CheckBox

Chapter 11. Reference Guide

• Container

• DataGrid

• DateChooser

• DividedBox

• Label

• LinkBar

• List

• MenuBar

• Menu

• NumericStepper

• OLAP Datagrid

• Panel

• PopUpbutton

• Progressbar

• RadioButton

• RichTextEditor

• ScrollBar

• Slider

• TabNavigator

• TextArea

• TitleWindow

• ToggleButtonBar

• Tree

Testing Flex 4.0, 4.1 and 4.5 applications that contain the following Spark controls is supported:

• Application

• BorderContainer

• Button

• ButtonBar

• ButtonBarButton

• CheckBox

• ComboBox

• DataGroup

• DropDownList

• Label

• List

• ListLabel

• MuteButton

• NumericStepper

• Object

• Panel

1431

HCL OneTest™ UI

1432

• RadioButton

• RichEditableText

• RichText

• ScrollBar

• Scroller

• SkinnableContainer

• SkinnableContainerBase

• Slider

• Spinner

• TabBar

• TextArea

• TextBase

• TextInput

• TileGroup

• TitleWindow

• ToggleButton

• VideoPlayer

• VolumeBar

In addition to the controls listed above, the following controls are supported for Flex 4.5:

• SparkDataGrid

• SparkForm

• OSMFVideoPlayer

Playing back Flex scripts in Internet Explorer 11

You must recompile Flex applications (AUT) using the command-line compiler (.swc files) and the appropriate Flex

Builder SDK, if you want to use Internet Explorer 11 in the following scenarios:

• Playing back the already existing Flex application test scripts that you recorded on an older version of Internet

Explorer.

• Recording new test scripts and playing them back.

For details, see Configuring Flex application using tools on page 622.

Related reference

Task flow for testing Flex applications on page 53

Flex custom control support
HCL OneTest™ UI supports testing functional aspects of Adobe® Flex custom controls in a generic and specific way.

About this task

Chapter 11. Reference Guide

HCL OneTest™ UI support Flex custom controls in two different ways:

1. Generic support: HCL OneTest™ UI supports recording and playback of scripts. Recording

is generic and methods performAction(eventname, “arg1”“arg4”);. For example,

flex__randomWalk_RandomWalk1().performAction(“Select”, “Food”);

HCL OneTest™ UI cannot capture data verification point and does not support data-driven testing in generic

support. Data verification point is achieved using the getProperty() method and by verifying the value. For

example:

String selectedItem = (String)list__randomWalk_RandomWalk1().getProperty("selectedItem");
String verificationData = "TestVerify";
if(selectedItem.equalsIgnoreCase(verificationData))
{
//code to do
}

Data-driven testing is supported by using an action and associating the argument value with a dataset. Since

data-driving is control specific, a generic method is not available using drag-hand. For example,

flex__randomWalk_RandomWalk1().performAction(“Select”,dpString(variableName/index));

For HCL OneTest™ UI to support Flex custom control in a generic way:

a. You must write a delegate for the custom control. Delegate is an actionscript class which allows

automation framework to understand the events from the control. References are available in

Flex Builder directory where a delegate exists corresponding to each standard control. For more

information see, Flex Data Visualization Developer's Guide in the Adobe site.

b. Map the custom control with its events and properties in FlexEnv.xml file located in the bin folder of

the HCL OneTest™ UI installation directory.

c. Every new custom control is mapped to the base proxy flexObjectProxy, and base test objects are

mapped to FlexObjectTestObject.

2. Specific support: Proxy and test objects are created. The proxy is mapped to the control in the .rftcust file

that is generated while creating the proxy using the proxy SDK wizard. Data verification point and data drive is

created in the new proxy as required. Role are assigned to the control. Recognition properties are added to the

control.

GEF support
HCL OneTest™ UI allows testing the functionality of GEF objects that are implemented using standard GEF editors and

non-standard GEF editors. GEF editor is based on Eclipse Modelling Framework (EMF) that provides many features

for manipulating models. GEF displays a model graphically, employs MVC (model-view-controller) architecture and

aids user interaction with that model.

You can perform data, image or properties verification point on the GEF objects since HCL OneTest™ UI recognizes

the GEF EditParts and Palettes. You must enable the GEF applications for testing before recording the functional test

scripts. If the GEF application is not enabled for testing, HCL OneTest™ UI recognizes GEF objects as FigureCanvas.

1433

HCL OneTest™ UI

1434

Note: If the object recognition is weak for any of the GEF objects, you can modify the recognition properties

for these objects (org.eclipse.gef.editparts.AbstractEditPart, org.eclipse.gef.palette.PaletteEntry) in the object

library.

Related reference

Task flow for testing Eclipse applications on page 49

HTML and HTML 5 support
HCL OneTest™ UI supports testing traditional HTML applications that are loaded in a browser. Through the UI Test

perspective, HCL OneTest™ UI also supports testing HTML 5-based applications in desktop and mobile browsers.

HCL OneTest™ UI supports testing HTML applications that are loaded in the following browsers:

• Mozilla Firefox: See Software Product Compatibility Reports for information on the supported versions of the

Mozilla Firefox browser.

Learn more about support for Mozilla Firefox browsers:

◦ HCL OneTest™ UI supports changing the browser zoom level during recording in Mozilla

Firefox browsers. In some operating systems, in Mozilla Firefox browsers, zooming during

recording may not work as expected. As a workaround to this problem, in the browser, click

View > Zoom > Zoom Text Only.

Limitations:

◦ Mozilla Firefox on Linux:

▪ Basic HTML testing is supported on Linux.

▪ Testing Java applets on Linux is not supported.

◦ JavaScript alert dialog boxes: HCL OneTest™ UI supports testing of normal dialog boxes. On

JavaScript alert or confirmation dialog boxes in Mozilla Firefox 4.0 or later browsers, you can

record using key strokes, but not using the mouse.

◦ Multiple Firefox versions: When testing applications on computers with multiple Mozilla

Firefox versions, enabling more than one version of Firefox for testing is not supported. Only

the version used for testing must be enabled.

◦ Adobe Flex applications:

▪ Testing Flex applications is supported only on 32-bit browsers

▪ Testing Flex applications is only supported up to Mozilla Firefox version 10.

• Microsoft Internet Explorer: See Software Product Compatibility Reports for information on the supported

versions of the Internet Explorer browser.

Learn more about support for Internet Explorer browsers:

http://www-969.ibm.com/software/reports/compatibility/clarity/index.html
http://www-969.ibm.com/software/reports/compatibility/clarity/index.html

Chapter 11. Reference Guide

◦ HCL OneTest™ UI supports HTML applications loaded in tabs in Internet Explorer 7.0, 8.0, 9.0,

10.0, and 11.0.

◦ HCL OneTest™ UI supports changing the browser zoom level during recording in Internet

Explorer browsers.

Limitations:

◦ For Guest users in Internet Explorer, with the Protected mode ON, recording and playback of

functional test scripts do not work as expected.

◦ Recording on HTML dialog boxes that are embedded in other domains like Java, .NET and

Windows is not supported. To perform actions on such embedded dialog boxes, edit the script

manually using the getScreen().inputKeys() or getScreen.inputChars() API where

required.

◦ On 64-bit operating systems, recording and playback on 64-bit Internet Explorer 9.0 browsers

that are embedded in 64-bit Java, .NET or Windows or other applications are not supported.

◦ While testing applications in Internet Explorer 10.0, if the application display has been set

to use an older compatibility mode, make sure that you test the application in compatibility

mode.

◦ Testing Flex applications is supported only on 32-bit browsers. Testing Flex applications on

64-bit Internet Explorer browsers is not supported.

• Google Chrome: see Preparing for functional testing in the Google Chrome browser on page 592

• Microsoft® Edge: see Running a script from the Microsoft Edge browser on page 1188

Note: For information on the versions of Java™ that you must have to support testing of Java™ that is used in

applets, see the related topic on Java support.

Important: If you enabled Mozilla Firefox or Google Chrome browser for HCL OneTest™ UI, the latest Java

update must be associated with the browser. If not done, security messages prompt up when you open the

browser and Java will be blocked.

The following table lists the browsers that run on Windows® and Linux® operating systems.

Browser Win

dows®

Lin

ux®

Mozilla Firefox Yes Yes

Microsoft® Internet Ex

plorer

Yes No

Google Chrome Yes Yes

Microsoft® Edge Yes No

1435

HCL OneTest™ UI

1436

Note: For specific information on the browser versions and the associated JREs that are supported, see

Software Product Compatibility Reports.

The following table provides information about JRE versions, the next-generation plug-in settings, and supported

domains:

Component types Support details

Supported browser

versions

All versions of Microsoft® Internet Explorer and Mozilla Firefox supported by HCL OneTest™

UI.

• In case of Mozilla Firefox version 18 or higher, or Google Chrome, use JRE 1.7 Update

51. You can either enable or disable NGP; it works as expected in both the cases.

• In case of Microsoft Internet Explorer, you must disable NGP. If you have NGP enabled,

then ensure that you turn on Automatic enablement (To turn on automatic enablement,

click Window > Preferences > Functional Test > Automatic enablement.

Supported domains All domains supported by HCL OneTest™ UI.

Manual settings re

quired for specific

domains, if any

For Adobe Flex and Siebel, enable the environment manually.

HCL OneTest™ UI supports testing of Microsoft® HTML Applications (MSHTA). Before you can test a Microsoft®

HTA application, you must configure it by using the Application Configuration tool to start the mshta.exe file as the

executable file. For more information, see the related topics section.

When you record a script, HCL OneTest™ UI creates a test object map for the application under test. The test object

map contains descriptions of all test objects to which the script refers. The test object maps that HCL OneTest™ UI

creates for HTML applications are often more hierarchical than those created for Java™ applications. The highest

level of the test object map is a browser and the HTML application is inside the browser. For more information, see

the example of a test object map that is created for a HTML application.

Two versions of the deleteCookies method are available. One method deletes all cookies for the current profile or

user; the other method deletes cookies on a specific page or domain for the current profile or user. For information,

see the related link HCL OneTest™ UI API Reference, in the com.rational.test.ft.object.interfaces package, under

IBrowserObject.

Related reference

Task flow for testing HTML applications on page 47

http://www-969.ibm.com/software/reports/compatibility/clarity/index.html

Chapter 11. Reference Guide

Related information

Tips and tricks for functional testing HTML applications on page 1268

Interface IBrowserObject

Java support
This functional testing application supports the following Java™ versions for testing Java™ applications and HTML

applications with applets.

Table 60. Java support

32-bit mode 64-bit mode

• IBM JRE 1.6

• IBM JRE 1.7

• IBM JRE 1.8

• Sun JRE 1.6

• Oracle JRE 1.7

• Oracle JRE 1.8

• OpenJDK 8

• IBM JRE 1.7

• IBM JRE 1.8

• Sun JRE 1.6

• Oracle JRE 1.7

• Oracle JRE 1.8

• Oracle JRE 9

• Oracle JRE 10

• Oracle JDK 11

• OpenJDK 8

Note: HTML applications with applets can be

tested in Java 8 and earlier but this is not sup

ported in Java 9 and later.

For specific information on the recommended versions that are validated and have provided optimal results, refer the

technical document available at Software Product Compatibility Reports

Related reference

Task flow for testing Java applications on page 45

.NET support
HCL OneTest™ UI supports recording and playing back user applications that are built with the Microsoft .NET

Framework 1.0, 1.1, 2.0, 3.0, 3.5, 4.0, 4.5, and 4.5.1. You can also test Microsoft Windows 32-bit applications that

contain .NET controls.

1437

https://www.ibm.com/support/knowledgecenter/SSJMXE_8.6.0/com.rational.test.ft.api.help/ApiReference/com/rational/test/ft/object/interfaces/IBrowserObject.html?lang=pl
http://www-969.ibm.com/software/reports/compatibility/clarity/index.html

HCL OneTest™ UI

1438

Testing .NET 3.0 and 3.5 applications: Supported controls
HCL OneTest™ UI supports testing .NET 3.0 and .NET 3.5 applications that contain these Windows Presentation

Foundation (WPF) controls:

• Layout:

◦ BulletDecorator

◦ Canvas

◦ DockPanel

◦ Expander

◦ Grid

◦ GridSplitter

◦ GroupBox

◦ Panel

◦ ScrollBar

◦ ScrollViewer

◦ StackPanel

◦ Thumb

◦ ViewBox

◦ Window

• Buttons

◦ Button

◦ RepeatButton

• Menus

◦ ContextMenu

◦ Menu

◦ ToolBar

• Selection

◦ CheckBox

◦ ComboBox

◦ ListBox

◦ ListView

◦ TreeView

◦ RadioButton

◦ Slider

• Navigation

◦ NavigationWindow

◦ TabControl

• User Information

◦ Label

◦ PopUp

◦ ProgressBar

Chapter 11. Reference Guide

◦ StatusBar

◦ TextBlock

• Documents

◦ DocumentViewer

◦ FlowDocumentPageViewer

◦ FlowDocumentScrollViewer

• Input

◦ TextBox

◦ RichTextBox

◦ PasswordBox

• Media

◦ Image

• Digital Ink

◦ InkCanvas

Testing .NET 4.0 applications: Supported controls

In addition to the supported controls for .NET 3.0 and 3.5 applications, HCL OneTest™ UI supports testing .NET 4.0

applications that contain these Windows Presentation Foundation (WPF) controls:

• Data display

◦ DataGrid

• Date display and selection

◦ Calendar

◦ DatePicker

Testing .NET 4.5 applications: Supported controls

In addition to the supported controls for .NET 3.0, 3.5 and 4.0 applications, HCL OneTest™ UI supports testing .NET

4.5 applications that contain these Windows Presentation Foundation (WPF) controls:

Note: Recording actions on the drop-down list of a RibbonFilterMenu is not supported.

• Ribbon controls provided by the System.Windows.Controls.Ribbon namespace:

◦ System.Windows.Controls.Ribbon.RibbonApplicationMenu

◦ System.Windows.Controls.Ribbon.RibbonApplicationMenuItem

◦ System.Windows.Controls.RibbonApplicationSplitMenuItem

◦ System.Windows.Controls.RibbonButton

◦ System.Windows.Controls.RibbonCheckBox

◦ System.Windows.Controls.RibbonComboBox

◦ System.Windows.Controls.RibbonContextMenu

◦ System.Windows.Controls.RibbonMenuButton

1439

HCL OneTest™ UI

1440

◦ System.Windows.Controls.RibbonMenuItem

◦ System.Windows.Controls.RibbonQuickAccessToolBar

◦ System.Windows.Controls.RibbonRadioButton

◦ System.Windows.Controls.RibbonSplitButton

◦ System.Windows.Controls.RibbonSplitMenuItem

◦ System.Windows.Controls.RibbonTab

◦ System.Windows.Controls.RibbonTabHeader

◦ System.Windows.Controls.RibbonTextBox

◦ System.Windows.Controls.RibbonToggleButton

◦ System.Windows.Controls.RibbonToolTip

◦ System.Windows.Controls.RibbonWindow

HCL OneTest™ UI supports testing .NET 4.0 and 4.5 applications hosting side by side CLRs.

Testing .NET 4.5.1 applications

The Microsoft .NET 4.5.1 Framework does not offer any new UI controls. However, HCL OneTest™ UI continues to

support all the controls (listed as supported so far) contained in the .NET 4.5.1 applications.

Related reference

Task flow for testing applications on page 43

Windows support
HCL OneTest™ UI supports testing of Windows applications with Win32 controls.

HCL OneTest™ UI supports testing of the following list of Win32 controls:

• Button

• Calendar

• CheckBox

• ComboBox

• ComboListBox

• DateTimePicker

• Edit ListBox

• ListView

• Menubar

• PopUpMenu

• Radio Button

• Rebar

• RichEdit

• ScrollBar

• sysMonthCalendar

Chapter 11. Reference Guide

• TabControl

• ToggleButton

• ToolBar

• ToolTip

• TrackBar

• TreeView

• StatusBar

HCL OneTest™ UI supports testing of the following list of Microsoft® Foundation Class (MFC) controls:

• Animate

• Button

• Menu

• DateTimePicker

• Calender

• Combobox

• Listbox

• Edit

• RichEditBox

• Progressbar

• Tab

• Trackbar (slider)

• Tree

• Header

• Hotkey

• SpinButton

• ListView

• Checkbox

• StaticText

• Scrollbar

Related reference

Task flow for testing applications on page 43

Nested domains support
HCL OneTest™ UI recognizes two different kinds of nesting of objects, a parent-child nesting and an owner-owned

nesting. A parent-child nesting occurs when one object is contained within another, such as a button on a form. An

owner-owned nesting occurs when the owned object has its own top-level window, such as a dialog box that is owned

by a top-level window.

1441

HCL OneTest™ UI

1442

HCL OneTest™ UI supports some instances of nesting of objects from different domains. That means you can test

an object of one domain that is nested inside an object of another domain, and HCL OneTest™ UI will accurately

understand the objects and their domains. If a nesting of one domain within another is not supported, HCL OneTest™

UI will model the objects consistently but may not accurately understand the domain for the nested objects. For

example, HCL OneTest™ UI does not support the nesting of a .Net control within a Windows® application. In this case,

HCL OneTest™ UI is likely to see the .Net controls as if they were Windows® controls (because .Net controls are often

implemented using the underlying mechanisms of Window controls). Another example is a Windows-based dialog

that appears on top of a Java™ application. In this case, the Java™ domain does not understand the windows dialogs,

or even acknowledge that they exist. And since by default HCL OneTest™ UI does not dynamically enable a Java™

application as if it were a Windows® application, there is no Windows® domain in that process. So in this instance,

the dialogs are not testable objects without scripting.

The following list describes the cases of nested domains that are supported.

HTML - ActiveX as child -- This is an HTML page that contains ActiveX controls.

HTML - Windows® Owned -- Some common dialogs displayed by Internet Explorer will appear as Windows® domain

objects.

.Net - ActiveX as child -- This is a .Net Winforms application that utilizes legacy ActiveX controls.

.Net - HTML as child -- This is a .Net WinForms application that utilizes an embedded Internet Explorer browser

control.

.Net - HTML as owned -- This is .Net WinForms application that utilizes an embedded Internet Explorer browser

control that in turn displays a dialog composed of HTML (shown by calling ShowModalDialog in JavaScript™).

.Net - Windows® as owned -- This a .Net WinForms application that displays some form of non-WinForm dialog. For

example, when a .Net application displays a common dialog (File Open, Print, etc.) or messagebox.

Java™ - HTML as child -- This a Java™ SWT application that utilizes an embedded Internet Explorer browser control.

Java™ - HTML as owned -- This a Java™ SWT application that utilizes an embedded Internet Explorer browser control

that in turn displays a dialog composed of HTML (shown by calling ShowModalDialog in JavaScript™).

Windows® - HTML as child -- This is a generic Windows® application (possibly VB 6.0 or MFC) that utilizes an

embedded Internet Explorer browser control.

Windows® - HTML as owned -- This is a generic windows application (possibly VB 6.0 or MFC) that utilizes an

embedded Internet Explorer browser control that in turn displays a dialog composed of HTML (shown by calling

ShowModalDialog in JavaScript™).

Windows -.Net as child – This is a generic Windows® application (possibly VB 6.0 or MFC) that embeds .Net

WinForm controls.

Chapter 11. Reference Guide

Nested domains in the object map

You can see that objects are of different test domains by looking at the object map. In the object map, each object is

listed by its object type and domain type. For example, the following object:

Java™: Button: close-order: javax.swing.JButton

is a Java™ button that is a javax.swing.JButton object type. The "Java™:" prefix shows that the object is in the Java™

test domain. The test domain of every object is always the first thing shown on each object listed in the map, as

shown in the example above. If a child object has a different domain than the parent object, you will see two different

prefixes in their entries in the object map.

Related reference

Task flow for testing applications on page 43

PowerBuilder support
HCL OneTest™ UI supports the testing of Win32 targets and .NET targets that are created by using Sybase

PowerBuilder versions 10.5, 11.0, 11.2, 11.5, 12.0, 12.5, 12.6, and Appeon PowerBuilder 2017.

HCL OneTest™ UI supports testing these controls:

• CheckBox

• CommandButton

• Contemporary menu (For a Win32 target, supports PowerBuilder 11.2 with EBF 8786 and PowerBuilder 11.5.1

with EBF 4526)

• DatePicker

• DataWindow (Presentation styles: Grid, Tabular, and Freeform. For supported freeform controls, see the list

further down this page)

• DropdownListBox

• DropDownPictureListBox

• EditMask

• Groupbox

• HProgressBar

• HScrollBar

• HTrackBar

• ListBox

• ListView

• Menu

• MonthCalendar

• MultiLineEditor

• Picure

• PictureButton

1443

HCL OneTest™ UI

1444

• PictureHyperLink

• PictureListBox

• RadioButton

• SingleLineEdit

• StaticHyperLink

• StaticText

• Tab

• TreeView

• VProgressBar

• VScrollBar

• VTrackBar

• Window

These controls are supported for a freeform DataWindow for Win32 targets:

• Bitmap (for pictures)

• Button

• Column

Note: In a freeform DataWindow, columns are identified with their edit styles. Only these edit styles are

supported:

◦ CheckBox

◦ DropDownListBox (individual item selection is not supported but the coordinates of the group

are recorded)

◦ DropDownDataWindow

◦ RadioButton (individual item selection is not supported but the coordinates of the group are

recorded)

◦ Text

• Compute (for computed field)

• DataWindow

• Graph

• GroupBox

• Label

• OLE objects

• Shapes:

◦ Ellipse

◦ Rectangle

◦ Roundrectangle

Data verification points are supported only for these controls for a freeform DataWindow for Win32 targets:

Chapter 11. Reference Guide

• Button

• Column (only for these edit styles):

◦ DropDownDataWindow

◦ DropDownListBox

◦ Text

• GroupBox

• Label

Related reference

Task flow for testing applications on page 43

SAP support
HCL OneTest™ UI supports extended functional testing of SAP GUI for Windows and SAP GUI for HTML.

HCL OneTest™ UI supports testing of all SAP R/3 versions through the SAPGUI running on Windows®. The supported

versions of SAPGUI are 6.20 with patch level 52 or more, 6.40, 7.1, 7.2, 7.4, and 7.5.

With this support, you can use HCL OneTest™ UI to record and play back scripts against the SAP UI with reliable

recognition against SAP controls, including customized data verification of SAP controls. HCL OneTest™ UI support

is built on top of SAP GUI scripting framework exposing all scripting capabilities provided by SAP as well as adding

significant value through the inherent capabilities of HCL OneTest™ UI.

Siebel support
HCL OneTest™ UI contains extended functional testing support for Siebel applications.

HCL OneTest™ UI supports the following versions of Siebel:

• Siebel 7.7

• Siebel 7.8

• Siebel 8.0

• Siebel 8.1

• Siebel 8.2.2

The Siebel add-on for HCL OneTest™ UI allows you to capture and play back Graphical User Interface level

interactions using Siebel object models and events. You can perform property and data verification points on Siebel

custom components.

Testing high-interactive Siebel applications
Prerequisites: :

1445

HCL OneTest™ UI

1446

• To test high-interactive Siebel applications, you must obtain the Siebel Test Automation Framework from

Oracle.

• Enable the Siebel Test Automation Framework.

Setting the registry key

1. You must set the registry key for HCL OneTest™ UI to record Siebel HI controls using the user interface name.

By default, HCL OneTest™ UI records using the repository name.

2. In the registry, ensure that you create a new dWord named UINameInScript, and set the value to 1 in .

Starting Siebel Test Automation framework (STA)

While invoking the Siebel application add SWECmd=AutoOn to URL http://hostname/callcenter/start.swe?. For

example, http://hostname/callcenter/start.swe?SWECmd=AutoOn. This automatically starts the Siebel Test Automation

framework.

Configuring CAS timeout
Client Automation Server (CAS) provides a mechanism to configure timeout on calls which can result in the system

hanging. By default, this timeout is set to 1 second, but you can configure this using the ivory.properties file by

setting the rational.test.ft.siebel.cas_submit_timeout to the desired value.

Related reference

Task flow for testing applications on page 43

Enabling Siebel support for pre-existing Functional Test projects
To use the Siebel support for a project that was created using the earlier versions of HCL OneTest™ UI you must add

two new templates; one for script headers and one for script helper headers to the Functional Test project.

About this task

To enable Siebel support for pre-existing functional test project:

1. Start HCL OneTest™ UI

2. In the Functional Test Projects view, right-click the project and select the Properties option

3. In the Properties dialog box, select Functional Test Script Templates from the navigation list.

4. Select the template type Script Helper: Header of the file

5. If you have not customized this template, you can upgrade it by clicking the Restore Defaults button.

6. Add the line import com.rational.test.ft.object.interfaces.siebel.*; in the import section of the template

7. After modifying the template, click the Apply button

8. Select the template type Script: Header of the file and add the same line in the import section of the template.

9. Finally, right-click the project again in the Functional Test Projects view and click Reset Java Build Path.

Each member of your team must perform this last step, as the Java Build Path is local to each project on each

machine.

Chapter 11. Reference Guide

Silverlight support
HCL OneTest™ UI supports testing applications that are developed using Microsoft® Silverlight version 4.0 and are

loaded in Microsoft® Internet Explorer 6.0, 7.0, 8.0 and 9.0. You can also test Silverlight applications running on

desktops, as well as embedded Silverlight applications. Testing Silverlight applications is only supported on 32-bit

versions of Internet Explorer.

Note:

• To test the function of applications that are built with Microsoft® Silverlight, you must install

Microsoft® .NET Framework 3.0.

• Testing applications built with Silverlight 4.0 that are loaded in Mozilla Firefox browsers is not

supported.

• Windowless Silverlight applications are not supported.

• The getMethods, invoke, and invokeProxy methods on the Silverlight User Interface Automation test

objects are not supported.

• On User Interface Automation domain test objects, the getProperties method retrieves only the

automation properties that User Interface Automation exposes, not all properties of controls.

• Support for testing Silverlight 4.0 applications is built on Microsoft user Interface (UI) Automation

Framework. Any limitations in the UI Automation Framework will affect how support for Silverlight

inHCL OneTest™ UI works.

HCL OneTest™ UI supports recording and testing applications that contain these Silverlight controls:

• AutoCompleteBox

• Button

• Calendar

• CheckBox

• ComboBox

• DataGrid

• DatePicker

Note: In the Microsoft .NET integrated development environment (IDE) and for Simplified Scripting,

date selection during playback is not possible.

• HyperlinkButton

• Label

• ListBox

• PasswordBox

• ProgressBar

• RadioButton

1447

HCL OneTest™ UI

1448

• Slider

• Tabs

• TextBox

• TreeView

Related reference

Task flow for testing HTML applications on page 47

Visual Basic support
HCL OneTest™ UI supports testing Visual Basic 5.0 and 6.0 applications.

You can test the following controls in Visual Basic applications:

• Form

• MDIForm

• CheckBox

• ComboBox

• CommandButton

• Data

• DirectoryListBox

• DriveListBox

• FileListBox

• Frame

• Image

• Label

• Line

• ListBox

• OLEContainer

• OptionButton

• PictureBox

• Shape

• TextBox

Related reference

Task flow for testing applications on page 43

Chapter 11. Reference Guide

Terminal-based applications support
HCL OneTest™ UI Extension for Terminal-based Applications supports functional testing of Mainframe or zSeries

(TN3270, TN3270E), AS/400 or iSeries (TN5250) and pSeries or Virtual Terminals (VT default, VT100, VT101, VT102,

VT220-7, VT220-8, VT320, VT420-7, VT420-8, VT52, VT UTF-8).

HCL OneTest™ UI Extension for Terminal-based Applications tool helps you create test scripts to automate the host

application test cases.

It provides a rich set of capabilities to test host attributes, host field attributes and screen flow through a host

application. It uses terminal verification points and properties, as well as synchronization code to identify the

readiness of terminal for user input.

You can use this tool to perform the following tasks:

• Store, load, and share common host configurations by using a properties file. The connection configuration

can be loaded automatically through scripts, using these files

• Record or play back scripts against multiple host terminals.

• Start the terminal even when you are not recording or playing back your scripts. With this function, you can

interact with the host without leaving the working Eclipse environment.

• Perform data driven testing.

Command line interface
In this section, you will learn about the actions that can also be performed from the command line.

These actions include:

• Record a script

• Compile a script

• Play back a script and pass command-line arguments to the script

• View and edit verification point and object map files

• Invoke the Java/HTML enabler

• Invoke the Application Configuration Tool

Core command line format

The core command line formats is as follows:

java <standard java options> -classpath hcl_ft.jar com.rational.test.ft.rational_ft <product options> or

java <standard java options> -jar hcl_ft.jar <product options>

The standard java options refer to the Java™ command line options such as -classpath <classpath/> to set the

classpath appropriately.

1449

HCL OneTest™ UI

1450

-classpath

If you use the first command line format, you must explicitly include the hcl_ft.jar in the classpath. It

can be found in the <productInstallationDirectory> directory. If you use the second command-

line format, specify the full path of the rational_ft.jar hcl_ft.jar file after the -jar option. You do

not need to specify a classpath or the class to run (com.rational.test.ft.rational_ft). If you are using the

product with PurifyPlus™, use the first command line format.

Note: If the external jar file or directory that is referenced in a project, does not meet the project

path criteria, then such jar files must be added to the classpath.

See the API Reference for a full list of the command line options.

-projectpath

If you have dependencies on a project, then you must add the project path using the -projectpath

option. If you have added other project dependencies to the functional test project, you can specify

the project name using the -projectpath option. For example, Consider a scenario where you have

a functional test script that uses a class from another project. To resolve this dependency, during a

command line invocation, you must specify the dependent project name using the -projectpath option.

In a scenario where you have added external jar files or projects to a HCL OneTest™ UI project and the

playback for this is run from the command line prompt then add the jar file to the project path provided

the jar file contains a HCL OneTest™ UI project or the project that is added is a HCL OneTest™ UI project.

Commonly used command line options

The following table lists the more commonly used command line options:

Parameter Description

-appconfig Use this option to open the Application Configuration Tool dialog box.

-compile Use this option to compile the test script for the first time before play

back.

-compileall Use this option to compile all test scripts in the project for the first time

before playback. If you use the -datastore option, you can compile all

tests scripts in the datastore directory and subdirectories. (Requires

9.1.1.1 and newer version of HCL OneTest™ UI)

-datastore <datastore directory> Use this option whenever a script is specified. For example, use it with

-record or -playback

-edit <file> or -display <file> Use this option to edit or view a verification point or object map. The

<file> can be a complete file name (with directory path). Use dou

ble-quotes if the name or path includes space characters.

Chapter 11. Reference Guide

Parameter Description

-enable Use this option to open the Enable Environments dialog box to enable a

specific environment.

-exportlog Optional. You can use this parameter to specify the file directory path to

store the exported test log.

For example,

java -jar "C:\Program Files\IBM\SDP\FunctionalTester\bin\rational_

ft.jar" -datastore "C:\Users\user\IBM\rationalsdp\workspace\Func

tionalTesterDemo" -playback "ClassicsJava_FindBasedScript" -export

log "C:\result\temp_rft01"

-exportReport Use this option to export the unified report of Functional tests to the file

formats such as PDF, HTML, and XML.

Note: The exported XML file is a JUnit XML file. You can view this

file in applications that support JUnit reporting formats.

The command syntax is as follows:

exportReport "type=<reporttype>;format=<file type1,file type2,file

type3>;folder<destination folder path>;filename=<name of the exported

file>

For example, to export the report to only the pdf format, you can use

exportReport "type=unified;format=pdf;folder=Exportedreport102;file

name=testreport

If you want to export the report to multiple formats, you can specify the

file formats as comma-separated values. The file type value can be in up

percase or lowercase.

For example, to export the report to all the supported formats, you can

use exportReport "type=unified;format=pdf,xml,html;folder=Exporte

dreport102;filename=testreport

The report in different file formats use the same file name that is speci

fied in the command.

-inspector Use this option to open the Test Object Inspector Tool dialog box.

-playback <script name> Use this option to play back a Java™ script. You must specify the play

back option at the end of the command. HCL OneTest™ UI ignores any ar

guments specified after the playback option.

1451

HCL OneTest™ UI

1452

Parameter Description

-record <script name> Use this option to record a new script (or in conjunction with -in

sertafter <line number> to insert recording into an existing script). .

-rt.log_format Optional.

Use this option to specify the format of the report that you want to gener

ate after the playing back of a test. You can specify any of the following

log types as the format of the report:

• none

• text

• html

• TPTP

• xml

• Default

• Json

Restriction: If you use Default as the log type to generate unified

report for Functional test scripts from the command line, the re

port does not open automatically when the play back is complet

ed. You must use a different log type if you want the report to

open automatically when the play back is completed.

Tip: You can use the -exportlog parameter to export the test log

in the Default log type format.

Note: The script name in the above options is not a file name. It is a fully qualified class name using the dot

(.) character to separate package/namespace and script class name. You can use -<option> <script name> to

record a Java™ or VB.NET script, depending on the project type.

For example, you can use -record test.script1 to create the test folder in a project and create the script1

Java™ script in the folder.

Command line usage in Linux®

The command line format is <Install_Directory>/jdk/jre/bin/java <Install_Directory>/FunctionalTester/bin/

rational_ft.jar <product options>. If the product is installed in the default path, then the you can use /opt/HCL/

HCLOneTest/jdk/jre/bin/java /opt/HCL/HCLOneTest/FunctionalTester/bin/rational_ft.jar <product options>.

Chapter 11. Reference Guide

If you use the above command-line format, you must explicitly set the functional test environment variables.

Alternatively, you can use the script ft_cmdline.

Exemple

Examples:

Enable all environments in Linux®

/opt/HCL/HCLOneTest/ft_cmdline -enable ALL

Execute a script with command line arguments on Linux®

/opt/HCL/HCLOneTest/ft_cmdline -datastore /home/user/HCL/hclonetest/workspace/Project1 -log testscript
 -playback Script2 -args arg1 arg2

Command line usage examples
A list of examples for some of the tasks that can be performed using the command line interface.

In these examples, -classpath must point to the hcl_ft.jarfiles.

Note: The <script-name> values use standard Java™ package or .NET namespace naming conventions such

as package.MyScript or Namespace.MyScript.

Table 61.

Command line examples

Task Example

Record a new script: java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> [-map <sharedmap>] [options] -record <script-name>

Record a simplified script java -classpath <classpath> com.rational.test.ft.rational_ft -simplescript true

-datastore <directory> [-map<sharedmapname>] [options] -record <script-

name>

Record into an existing script, in

serting before or after a given line

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <direc

tory> [-insertbefore <line>] [-insertafter <line>] [options] -map <sharedmap>]

[options] -record <script-name>

Compile a script

Note: You must enable the

Java environment before

compiling a script with this

command. You must al

so install Java SDK and

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> [options] -compile <script-name>

1453

HCL OneTest™ UI

1454

Table 61.

Command line examples

(continued)

Task Example

add the bin directory to the

path.

Play back a script by passing com

mand-line arguments <values> to

the script

Note: Ensure that you com

pile the script before you

playback the script from

the command prompt for

the first time.

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <direc

tory> -log <logname> [options] -playback <script-name> [-args <values>]

Note: To enable the dynamic find feature for an individual script from

the command line, pass [-dynamicfind true] as arguments <values>. To

disable, pass [-dynamicfind false].

If you do not enable or disable the dynamic find feature here, the dy

namic find setting on the Dynamic Find Enablement page in the Pref

erences dialog box, which applies globally to all scripts run in the inte

grated development environment (IDE), is used.

Play back a script that uses class

es from other functional test

projects

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <direc

tory> -projectpath <reference-project-path> -playback <script-name>

Play back a script that uses oth

er classes for the functional test

projects

java -projectpath <projectpath> com.rational.test.ft.rational_ft -datastore <di

rectory> -projectpath <reference-project-path> -playback <script-name>

Play back a script that has an as

sociated dataset

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <direc

tory> -iterationCount <iteration value> -playback <script-name>

Play back a script and export re

ports

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <direc

tory> -playback <script-name>-exportlog <directory>/<filename without exten

sion>

Record, compile, and play back a

script

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> [options] -record <script-name> -compile -playback [-args <values>]

Note: To playback your scripts with dynamic VPs, add -rt.interative

true before -playback in the command line.

Construct an empty script java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> -map <shared ma pname> [options] -create <script-name>

Chapter 11. Reference Guide

Table 61.

Command line examples

(continued)

Task Example

Regenerate the helper file for a

script

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> -helper <script-name>

Regenerate all helper files for a

datastore

java -classpath <classpath> com.rational.test.ft.rational_ft -regenHelpers

<script-name>

Display an object-map file java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> -display <object-map filename>

Display a verification-point file java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> -display <verification point filename>

Edit an object-map file java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> -edit <object-map filename>

Edit a verification-point file java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> -edit <verification point filename>

Create and edit a shared-object

map

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> -fromMap <object-map filename1> -createMap <object-map filename2>

Merge a later version of an object

map into a current (modified) ver

sion of the same map

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <direc

tory> -from <object-map filename1> -to <object-map filename2> -original <ob

ject-map filename1> -mergeMap

Compare an actual verification

point result to an expected verifi

cation point result

java -classpath <classpath> com.rational.test.ft.rational_ft -datastore <directo

ry> -baseline <baseline verification point filename> -compare <expected verifi

cation point filename> <actual verification point filename>

Enable a configured browser, Ja

va™ environment, or Eclipse plat

form

java -classpath <classpath> com.rational.test.ft.rational_ft -enableName

<browser/Java environment/Eclipse>

Disable all configured browsers,

Java™ environments and Eclipse

platforms

java -classpath <classpath> com.rational.test.ft.rational_ft -disableall

Run the Application Configuration

Tool

java -classpath <classpath> com.rational.test.ft.rational_ft -appConfig <appli

cation name>

Run the Test Object Inspector java -classpath <classpath> com.rational.test.ft.rational_ft -inspector

Run the Object Properties Config

uration Tool

java -classpath <classpath> com.rational.test.ft.rational_ft -objectlibraryou

1455

HCL OneTest™ UI

1456

UI reference
In this section, you will learn all the UI references and its additional information for the Functional Test perspective.

Add Application dialog box
The Add Application dialog box is opened using the Add button in the Application Configuration Tool. It is used to

add application configurations. When recording tests on your application, it is best to have HCL OneTest™ UI open the

application during recording. This makes playing back the tests more reliable. You use the Application Configuration

Tool to add and configure your own applications for testing and starting with HCL OneTest™ UI.

Select Application Type

In this first tab, select the type of application you are adding, and click Next.

Filename

In this second tab, click Browse to locate the application file.

• If it is a Java™ application, select the .class or .jar file of the Java™ application you want to add.

• For an HTML application, select either Local or URL. If Local, browse to an .htm or .html file. If URL, enter the

URL address.

• For a VB.NET or Windows® application, browse to an executable or batch file.

After selecting any file type, click Finish.

Add dynamic test object
You can add dynamic objects to the object map. To add a dynamic object, select an object in the object map by using

the Add Dynamic Test Object dialog box.

The Add Dynamic Test Object dialog box has the following controls:

Anchor to Selected Parent

Select Anchor to Selected Parent to make a new object a descendant of its parent. Clear the Anchor to

Selected Parent check box to use the object as the root.

Object Recognition Properties grid

View lists of recognition properties, values, and weights of the selected object. The value and weights of

the object property can be edited.

Finish

Save the changes and close the Add Dynamic Test Object dialog box.

Cancel

Cancel all the changes made after the last save operation.

Chapter 11. Reference Guide

Convert dynamic test object
You can convert an existing mapped object to a dynamic test objects by using Convert To Dynamic Test Object.

The Convert To Dynamic Test Object dialog box has the following controls:

Select the parent to anchor in the object hierarchy

Select this check box to anchor an object to its parent. Clear Select the parent to anchor in the object

hierarchy check box if the anchor to the parent does not exist.

Finish

Save the changes and close the Add Dynamic Test Object dialog box.

Cancel

Cancel all the changes made after the last save operation.

Add Variable dialog box
You use the Add Variable dialog box to add a new column of variables in a dataset.

Name

Type the name of the new column of variables.

Note: You cannot use spaces in the name.

Type

Type the full class name for the variable. The system String class is the default.

Add

Use to select where you want to add the new column of variables. Click the Add arrow to select one of

the following options:

Before XXX

(where XXX is the name of an existing column) Click to place the new column of variables

before a particular column.

After XXX

(where XXX is the name of an existing column) Click to place the new column of variables

after a particular column.

To open: Right-click in a dataset, and then click Add Variable.

Application configuration tool
This dialog is opened with the Edit button in the Start Application dialog box, or by clicking Configure > Configure

Applications for Testing from HCL OneTest™ UI. When recording tests on your application, it is best to have HCL

1457

HCL OneTest™ UI

1458

OneTest™ UI start the application during recording. This makes playing back the tests more reliable. Use the

Application Configuration Tool to add and configure your own applications for testing and starting with HCL OneTest™

UI.

How to use this dialog box?

This tool is used to add and edit application configurations. To edit the information on an existing application, click

the name of the application in the Applications list. To add a new application, click the Add button. Whether editing or

adding, make your changes, then click OK or Apply for the changes to be saved.

Applications list

Select the application that you want to edit or view. Its information will then appear to the right of the list. The

information fields are described below. If your application is not in the list yet, click Add to find and enter it.

Detailed information for Application

Contains the following fields:

Name -- This is the logical name of your application. In a Java™ application, this will default to the main class name.

Kind -- The type of application. It will be either "Java™", "HTML," or "executable."

Path -- This is the full path to the application class file. The file path should not contain any spaces. Note that if you

type an incorrect path here, the text of the path will turn red in this field to indicate the error. The path should not

contain any spaces.

.class/.jar file -- The name of the application file. A .jar file should only be used if the .jar contains a proper manifest

specifying the class to be run.

JRE -- This is normally left blank, because it will automatically use the default JRE you have set in the Java™ enabler.

(The default is the one listed as "(default)" there.) To use a different JRE for this specific application only, type the

name of it in this field, and it will override the default JRE when this application is run. Use the logical name of the

JRE, which can also be found in the Java environments list in the Java enabler on page 1506.

Classpath -- This is normally the same as the Path that is supplied above, or it may be blank. If you need additional

classes to run this application, you can enter their paths here and they will get appended to the Path listed above.

Args -- This is blank by default. If your application requires command-line arguments, use this field to enter them.

They will be passed when the application is started by HCL OneTest™ UI.

Working Dir -- By default, this is the same as Path above -- the full path to the application class file. You only change

this if you use a different working directory for this application. Sometimes a single period will appear by default to

indicate the default working directory.

Note: When you browse to a new Java™ application using the Add button, the Name, Kind, Path, .class/.jar

file, Classpath, and Working Dir fields will automatically be filled in for you. The JRE and Args fields are

Chapter 11. Reference Guide

optional, and could be filled in by you as described above. When you add a new HTML application, the Name,

Kind, and Path fields will be automatically filled in for you.

Add button

Click Add to add and configure a new Java™, HTML, or executable/batch file application. For more information on

adding applications, see Configuring Applications for Testing on page 603.

Remove button

To remove an application from the Applications list, select the application, then click Remove.

Run button

Use to run the selected application. This is useful if you want to test the application you are adding or configuring to

make sure it runs correctly as you have configured it.

Apply button

If you want to save edits you make in this dialog box before making additional changes, click Apply . If you click

Cancel, any changes you made before you clicked Apply will be saved, and changes made after will be canceled.

Font button

Click to change the default font, font style, and font size used throughout the functional test UI.

OK button

You must click OK when you are finished to save the additions or edits you made.

Associated Scripts dialog box
You use the Associated Scripts dialog box to view a list of scripts associated with a test object map and to select

multiple scripts you want to add test objects to. By default, HCL OneTest™ UI only selects the active script to add test

objects to.

The Associated Scripts dialog box has the following controls:

Select active script(s)

Displays all scripts associated with the current test object map. To select multiple scripts to add test

objects to, press and hold Ctrl while you click the names of the scripts.

OK

Closes the display. If you selected one or more scripts, HCL OneTest™ UI places the selected object in

the Script Explorer for each script. If you use Source control, HCL OneTest™ UI automatically checks out

the scripts unreserved and leaves them checked out when you add test objects to them.

1459

HCL OneTest™ UI

1460

HCL OneTest™ UI changes the Test Object > Add to Script menu item to Test Object > Add to Multiple Scripts or the

tooltip for the Test Object: Add to Script button to Add to Multiple Scripts to indicate that multiple scripts have

been selected and will be affected by the command.

To open: On the Test Object Map toolbar, click the Test Object: Associated Scripts button or in the Test Object

Map menu, click Test Object > Associated Scripts.

Bookmarks view
The Bookmarks View displays a list of markers that point to a specific place in the Workbench.

The Bookmarks View has the following tools:

 Delete Bookmark

Deletes the selected bookmark.

 Go to file

Opens an editor containing the file associated with the bookmark.

Refer to the online Workbench User Guide for more information.

To open: In the product menu, click Window > Show View > Bookmarks.

Browser enablement diagnostic tool
The Browser Enablement Diagnostic Tool is used to diagnose problems you might have with enabling your browser

for HTML testing. The tool will diagnose the enablement problem and report how to solve the problem.

About this task

Use the diagnostic tool if you suspect that HTML is not being tested properly. If you are trying to record against an

HTML application, and nothing shows up in the Recording Monitor, the browser is probably not enabled properly. It

might mean that the Java™ plug-in of your browser is not enabled. If that is the case, the diagnostic tool will tell you

how to enable the browser. The tool offers quick and simple directions to solve any problem it finds.

To run the tool:

1. Open the HCL OneTest™ UI Enabler by clicking Configure > Enable Environments for Testing.

2. Click the Web Browsers tab.

3. Click the Test button. The Browser Enablement Diagnostic Tool opens.

4. Click the Run Diagnostic Tests button.

Results

About this task

The Results page tells you whether the test passed or failed. If the test failed, this page will also list the problem.

Chapter 11. Reference Guide

Problem and solution

About this task

The Problem and Solution page will list the problem and explain how to solve it. Follow the instructions listed there

and close the tool. If you were in the process of recording a script when you ran the tool, stop recording the script and

start over. The recording should then work against an HTML application.

Details (Advanced)

About this task

The Details page list additional information about your environments. The Java Enabled field indicates whether Java™

is enabled in your browser. The JVM Information field lists information about your JVM. The General Enablement

Information field lists Java™ and HTML domain information.

Call Script tab: Script Support Functions dialog box
You use the Call Script tab to insert a callScript command into your Functional Test script.

The Call Script tab has the following controls:

Script Name

Lists all the scripts in the current project.

Insert Code

Inserts the callScript(" scriptname") code in the current script at the cursor location, where

scriptname is the name you selected in the Script Name field.

dataset Iterator Count

Determines how many times a test script runs when you play back the test script. Specify the count

according to the number of records you have in the dataset. Type or select the number of records in the

dataset, or select Iterate Until Done to access all records in the dataset. For a call script, you can select

Use Current Record to use the same record across the call script.

Note: You can also insert a callScript command from the Functional Test Projects view or script it manually.

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and click

the Call Script tab. If editing, click the Insert Recording into Active Functional Test Script button on the product

toolbar, click the Insert Script Support Commands button on the Recording Monitor toolbar, and click the Call

Script tab.

Edit Variable dialog box
You can use the Edit Variable dialog box to change the name of a column of variables, the type of variable, or the

position of the variable in a dataset.

1461

HCL OneTest™ UI

1462

Name

Type a new name for the column of variables.

Note: You cannot use spaces in the name.

Type

Use to change the default class of the variable. Type the full class name for the variable. The systems

String class is the default, if not explicitly specified.

Move

Use to move a column of variables in a dataset. Click the Move arrow to select one of the following

options:

Before XXX

(where XXX is the name of an existing column) Click to move a column of variables before

a particular column.

After XXX

(where XXX is the name of an existing column) Click to move a column of variables after a

particular column.

To open: Right-click in a dataset, and then click Edit Variable.

Choose Test Object to Update page of the Update Recognition Properties wizard
You use the Choose Test Object to Update page of the Update Recognition Properties wizard to select the test object

for which you want to update recognition properties.

The Choose Test Object to Update page has the following controls:

<>

Displays an icon to indicate how well the object property in the test object map matches the property of

the object in the application-under-test. It is a graphic representation of the Score column and uses the

following icons:

 Match indicates that the properties were an exact match with a recognition score of 100.

 Partial indicates that the properties were an acceptable match based on the Recognition Level on

the Standard ScriptAssure(TM) page on page 1182 or the Maximum acceptable recognition score and

the Last chance recognition score on the Advanced ScriptAssure(TM) page on page 650.

 No Match indicates that the properties did not match with a score of 0.

 Okay indicates that the test objects were an acceptable match.

Chapter 11. Reference Guide

 Very Bad indicates that the test objects were not an acceptable match.

Mapped Test Object

Displays the test object you selected and the parent hierarchy of the test object. Expand the test object

name to display the properties for the test object and the parent.

Score

Indicates how well the object property in the test object map matches the property of the object in the

application under test:

Match

Indicates that the properties were an exact match with a recognition score of 100.

Partial n

Indicates that the properties were an acceptable match based on the Recognition

Level on the Standard ScriptAssure(TM) page on page 1182 or the Maximum

acceptable recognition score and the Last chance recognition score on the Advanced

ScriptAssure(TM) page on page 650. n is the recognition score.

No Match

Indicates that the properties did not match with a score of 0.

Okay

Indicates that the test objects were an acceptable match.

Very Bad

Indicates that the test objects were not an acceptable match.

Back

Displays the Select an Object page of the Update Recognition Properties page, which enables you to

choose another test object.

Next

Displays the Update Test Object Recognition Properties page on page 1564, which enables you to

confirm the updated recognition property.

To open: Select an object in the test object map, start the application, and click Test Object > Update Recognition

Properties.

Clipboard tab: Script Support Functions dialog box
Use this tab to insert a system clipboard command into a functional test script.

The Clipboard tab has the following tabs:

1463

HCL OneTest™ UI

1464

• Verification Point: Use to insert a verification point test command against the active content in the system

clipboard into a functional test script.

• Assign Text: Use to insert the text from the system clipboard to a variable in a functional test script.

• Set Text: Use to update the contents of the system clipboard to a required value.

Verification Point tab

The Verification Point tab has the following controls:

• Convert Value to Regular Expression: Use to convert the system clipboard text to a regular expression

pattern to be matched at run time against the system clipboard contents.

• Undo Regular Expression: Use to revert the regular expression pattern back to the active system

clipboard contents at the time the Script Support Functions dialog box was requested.

• Evaluate Regular Expression: Use to evaluate the current pattern against the active system clipboard

contents at the time the Script Support Functions dialog box was requested.

• VP Name: Name used for the clipboard verification point in the script. This name must be unique relative to

the associated script.

• Insert Code: Inserts the clipboard verification point command into the active functional test script.

The text displayed initially represents the active system clipboard content at the time the Script Support Functions

dialog box was requested. If regular expression pattern matching support is requested, this value becomes the

pattern matched against the active system clipboard contents during playback.

Assign Text tab

The Assign Text tab has the following controls:

• Variable Name: Defines the variable name used in the functional test script.

Note: This name must be a valid variable name for the target script language. Spaces and special

characters are not allowed.

• Precede variable assignment with type declaration: Use to precede the variable name with a String type

declaration.

• Insert Code: Inserts the command to assign the system clipboard content into a local variable in a functional

test script.

Set Text tab

The Set Text tab has the following controls:

• Set clipboard text to the following value: Sets the content for the system clipboard with a specific value.

• Insert Code: Inserts the command to set the content of the system clipboard to the supplied value into a

functional test script

Chapter 11. Reference Guide

Comment tab: Script Support Functions dialog box
You use the Comment tab to insert a comment into a Functional Test script.

The Comment tab has the following controls:

Comment to add to the script

Enter text for the comment.

Note: HCL OneTest™ UI does not automatically wrap the text. Put returns after each line.

Insert Code

Inserts the text with the appropriate comment delimiter (//) preceding each line.

To open: When recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and

click the Comment tab.

Configure Handling of Unexpected Windows dialog box
Use the Configure Handling of Unexpected Windows dialog box to configure actions to be performed when

unexpected windows open during script playback. Configuring these actions helps to ensure that scripts play back

smoothly without interruptions.

The Configure Handling of Unexpected Windows dialog box contains the following controls:

Select the Test Domain

Lists the domains for which you can configure unexpected windows.

Perform close action for 'non-configured' windows

If selected, all unexpected windows in the selected domain that have not been configured are closed

automatically.

Unexpected Window Title

Lists all unexpected windows that can be configured for the selected domain.

Add Window

Adds a window, if the required window is not listed for the selected domain.

Remove Window

Removes a window from the list of unexpected windows for the selected domain.

Select Action

Lists the actions that can be configured for an unexpected window. An unexpected window can be

configured either to be closed automatically, or have a specific action performed on it, depending on by

additional recognition properties that you can define.

1465

HCL OneTest™ UI

1466

Configure action objects properties to perform selected action

To add object recognition properties that will help identify the action to be performed on a specific

control on the unexpected window. This field is unavailable if the Close action was selected in the

Select Action list. You can specify a Property Name and Property Value for the control.

Add Property

Adds an object recognition property for the control on the unexpected window. You can also use the

Test Object Inspector to get properties for the control. Open the unexpected window and the Test Object

Inspector. Move the cursor over the window to get the title. Move the cursor over the specific control, to

get its property name and value. Refer to Displaying test object information on page 681 for instructions

to use the Test Object Inspector.

Remove Property

Removes an object recognition property for the control on the unexpected window.

Finish

Saves the changes and closes the Configure Handling of Unexpected Windows dialog box.

Cancel

Cancels all the changes made in the Configure Handling of Unexpected Windows dialog box after you

last saved.

Apply

Saves the changes without closing the Configure Handling of Unexpected Windows dialog box.

Connect to a Functional Test project dialog box
You can use the Connect to a Functional Test Project dialog box to connect to an existing Functional Test project.

Functional Test Project location path

Type the path for the new Functional Test project or click Browse to select a path of an existing

Functional Test project. HCL OneTest™ UI automatically enters the folder name in the Project name

field.

Project name

Type a name to represent the project or an alias for the project. This name must be unique.

To open: Click File > Connect to a Functional Test project.

Console view
The Console View displays output from the script or application, for example, System.out.print statements or

unhandled exceptions.

To erase all text from the Console View, click the Clear Output button.

Chapter 11. Reference Guide

To open: In the Functional Test Perspective, click the Console tab.

Copy Test Objects to New Test Object Map wizard page
You use the Copy Test Objects to New Test Object Map wizard page to create a new test object map without any

objects or to base the map on another object map.

The Copy Test Objects to New Test Object Map wizard page has the following controls:

Don't copy any Test Objects

Creates a new, empty object map.

Select Test Object Maps and scripts to copy Test Objects from

Creates a new object map, using one or more maps you select in the list as a template. Selecting this

option displays a list of all the test assets in the project.

Connect selected scripts with new Test Object Map

Associates the new map to the selected scripts immediately. This option is available only if a script is

selected in the list.

Select this Test Object Map as default choice for new scripts (HCL OneTest UI, Microsoft Visual Studio .NET

Integration only)

Automatically highlights the script name and indicates the test object map as the default in the Solution

Explorer.

Back

Returns to the first page of the Create New Test Object Map wizard on page 1469.

Finish

Creates and displays the new object map based on the criteria you specified. HCL OneTest™ UI updates

any scripts you selected to reference the new test object map. If you added the script to Source Control,

HCL OneTest™ UI checks the script out unreserved and leaves it checked out.

Cancel

Closes the Copy Test Objects to New Object Map wizard page without creating a new object map.

To open: In HCL OneTest™ UI, Eclipse Integration, when creating a new test object map, click Next in the Create New

Test Object Map wizard. In HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, click Open in the Add New

Item dialog box for creating a new test object map.

Create a New Functional Test Folder dialog box
You use the Create a New Functional Test Folder dialog box to add a new Functional Test folder to the Projects view.

The Create a New Functional Test Folder dialog box has the following controls:

1467

HCL OneTest™ UI

1468

Enter or select the folder

Either enter the appropriate path to the folder you want to create or use the navigation tools (Home ,

Back , and Go Into) to select the path in the selected project.

Test folder name

Enter the name for the new folder.

Finish

Creates the new folder in the project you selected.

Cancel

Closes the Create a New Functional Test Folder dialog box without creating the new folder.

To open: In the product menu, select File > New > Test Folder. In the product toolbar, select the Create a Test Folder

button . In the Projects view, select a file, right-click and select New Test Folder.

Create a New Project or Connect to an Existing Project dialog box
You can use the Create a New Project or Connect to an Existing Project dialog box to create a new project or connect

to an existing project to record a new script. This dialog box opens when no projects are available and you attempt to

record a script.

The Create a New Project or Connect to an Existing Project dialog box has the following controls:

Create a new Functional Test project

Opens the Create New Functional Test Project dialog box.

Connect to an existing Functional Test project

Opens the Connect to a Functional Test Project dialog box.

To open: With no projects in Functional Test, click the Record a Functional Test Script button on the product

toolbar.

Create a test dataset dialog box
You can use the Create a Test dataset dialog box to create a new empty test dataset.

Enter or select the folder

Either type the appropriate path to the folder you want to use or use the navigation tools (Home ,

Back , and Go Into) to select the path.

dataset name

Type the name you want to use for a new dataset.

Chapter 11. Reference Guide

To open: Click File > New > Test dataset from the product menu or click Create a Test dataset (), on the product

toolbar.

Create a New Test Object Map wizard
You use the Create a New Test Object Map wizard to create a customized, shared test object map that you can

associate with scripts. Shared test object maps have the extension .rftmap.

The first page of the Create a New Test Object Map wizard has the following controls:

Enter or select the folder

Use the navigation tools (Home , Back , and Go Into) to select the appropriate path to the

project you want to use.

Map Name

Enter the name you want to use for the new test object map. HCL OneTest™ UI appends the .rftmap

extension to the name.

Set this Test Object Map as default choice for new scripts

Automatically highlights the script name and indicates the test object map as the default in the Projects

view.

Next

Displays the Copy Test Objects to New Test Object Map page on page 1467, which enables you to

create a new empty test object map or to base the map on one or more other object maps for an

existing script.

Finish

Creates a default test object map.

Cancel

Closes the Create a New Map wizard without creating a new test object map.

To open: In the product menu, click File > New> Test Object Map. In the product toolbar, click the Create a Test Object

Map button .

Create an empty Functional Test script dialog box
You use the Create an empty Functional Test script dialog box to write an empty Functional Test script without

recording. As an alternative to recording, you can then enter the Java™ code manually.

The Create an empty Functional Test script dialog box has the following controls:

Enter or select the folder

Either enter the appropriate path to the folder you want to use or use the navigation tools (Home ,

Back , and Go Into) to select the path.

1469

HCL OneTest™ UI

1470

Script name

Enter the name you want to use for the new Functional Test script. Tip: Use Java™ file naming

conventions.

Next

Displays the Select Test Object Map wizard page on page 1555, which enables you to choose a private

or a shared object map to use with the new Functional Test script.

Finish

Creates a new Functional Test script, using the default test object map.

Cancel

Closes the Create a New Functional Test Script dialog box without creating the new script.

To open: Click the Create an Empty Functional Test Script button on the product toolbar or click File> New>

Empty Functional Test Script on the product menu.

Create a Functional Test Project dialog box
You can use the Create a Functional Test Project dialog box to create a new functional test project.

Note: If you clicked the New button on the product toolbar to create a new Functional Test project, the New

dialog box appears. The Select a Wizard page displays a list of project wizards.

Project name

The name of the new Functional Test project. Project names cannot contain the following characters:

\ / : * ? " <> | () or a space. If your project is on a UNIX® computer, do not embed spaces in the project

name.

Project location

The path of the new project. You can type this path or click Browse to select a path.

Add the project to Source Control

Select to add a project to source control. Clear if you do not want to add a project to source control.

Note:

• If this check box is unavailable, you may not have the appropriate privileges set up.

To open: Click the Create a Functional Test Project button on the product toolbar and on the Functional Test

menu, click File> New> Functional Test Project.

Chapter 11. Reference Guide

Create Script Helper Superclass dialog box
If you are an advanced user, use the Create Script Helper Superclass dialog box to create your own helper superclass

in a new script, which extends RationalTestScript and adds additional methods or overrides the methods from

RationalTestScript.

The Create Script Helper Superclass dialog box has the following controls:

Enter or select the folder -- Either enter the appropriate path to the folder you want to create or use the navigation

tools (Home , Back , and Go Into) to select the path in the selected project.

Project name -- Displays the project names in the current folder.

Script name -- Enter the name for the class.

Finish -- Creates a new script in the Java™ Editor that you can use to manually enter Java™ code for the helper

superclass.

Cancel-- Closes the Create Script Helper Superclass dialog box without creating the new script.

To open: In the product menu, click File > New > Helper Superclass or click the View Menu button next to the New

button on the product toolbar and click Helper Superclass.

dataset Literal Substitution dialog box
You can use the dataset Literal Substitution dialog box to find or replace literal values in a test script with a dataset

reference (an associated dataset). You can set the options in this dialog box to find and replace all, number, string, or

boolean literals in a script with a dataset reference.

You can also add a literal from a script to a dataset. If you do not use an existing dataset variable, HCL OneTest™ UI

uses the same literal values (the values that HCL OneTest™ UI captured when you recorded the test script) each time

you run the script.

Literal

Displays the name of a selected literal in a script.

dataset Variable

Type the name of the dataset variable with which you want to replace a literal or click the dataset

Variable arrow to select the existing dataset variable that you want the script to reference. The default

type for a new dataset column is string. You can change the variable type on page 1461 later.

Direction

Select the direction that you want to move through a script. This setting works with theLiteral Type

setting. Click Find or Replace to move either forward or backward through a script starting from the

insertion point of your cursor.

1471

HCL OneTest™ UI

1472

Forward

Click to move forward to the next literal in the script from the insertion point.

Backward

Click to move backward to the next literal in the script from the insertion point.

Literal Type

Click to set the type of literal that you want to find; either all, number, string, or boolean literals in a

script. A literal is a letter or symbol that stands for itself as opposed to a feature, function, or entity

associated with the literal in a programming language: $ can be a symbol that refers to the end of a line,

but as a literal, it is a dollar sign. The Literal Type setting works with the Direction setting. Click Find

or Replace to move to the next type of literal through a script starting from the insertion point of your

cursor.

All

Click to find all literals in a script.

Numbers

Click to find number literals in a script. A number includes integers (a whole number, not a

fractional number, that can be positive, negative, or zero) or floating numbers (positive and

negative decimal numbers).

Strings

Click to find string literals in a script. A string stores alphanumeric values such as name,

city, or state.

Booleans

Click to find boolean literals in a script. Any use of the boolean literals true or false are

flagged for substitution.

Add Literal to dataset

Click to add a selected literal to a dataset variable when you click Replace. The selected literal is added

to the dataset in the variable that you specify in dataset Variable. A dataset reference replaces the

selected literal when you click Replace.

Find

Click to find the next literal in a script. The Find setting works with the Direction and Literal Type

settings.

Replace

Click to replace the selected literal with a dataset reference. The dataset reference is made to the

dataset variable you specify in dataset Variable. When you click Add literal to dataset, HCL OneTest™

UI adds a selected literal to the dataset variable you specify in dataset Variable. Automatically moves

to the next literal in the test script after replacing a literal. The Replace setting works with the Direction

and Literal Type settings.

Chapter 11. Reference Guide

Close

Click to close the dialog box without finding a literal or replacing a literal with a dataset reference.

To open: Click Script> Find Literals and Replace with dataset Reference.

dataset Reference Converter dialog box
You can use the dataset Reference Converter dialog box to convert a literal in a verification point into a dataset

variable.

dataset Variable

Click the dataset Variable arrow to select the variable you want the verification point to reference in the

dataset or type a new name for the new dataset variable reference.

Add value to new record in dataset

Select this check box to add the value of the verification point to a new record (row) in the dataset table.

Clear this check box to add the verification point value to all records in the dataset.

To open: Create a verification point. From the Verification Point and Action Wizard, for a data verification point, click

Convert Value to dataset Reference (). For a properties verification point, click a property for which you want a

dataset reference, and right-click the property you want, and click Convert Value to dataset Reference.

Define Find Filter Name dialog box
The Define Find Filter Name dialog box is the third step in creating and editing find criteria, which enables you to use

filters to find objects in a test object map. You use the dialog box to name the set of find criteria.

The Define Find Filter Name dialog box has the following controls:

Filter Name

Enter the name you want to use for this set of find criteria. This is the name Functional Test displays in

the Find Filter Names field of the Set Active Find Criteria dialog box.

Tip: When editing, changing the Filter Name copies the set of criteria, creating a new set of

criteria and leaving the old set intact.

Back

Returns to the Define Find Filter Relationships dialog box on page 1475.

Next

Re-displays the Set Active Find Criteria dialog box on page 1556, which enables you to run the filter you

just created, define a new filter, or edit an existing filter.

1473

HCL OneTest™ UI

1474

Finish

Saves any changes, closes the Define Find Filter Name dialog box, and redisplays the Set Active Find

Criteria dialog box, which enables you to run the filter you just created or edited, define a new filter, or

edit an existing filter.

Cancel

Closes the Define Find Filter Name dialog box without saving any changes.

To open: When defining or editing find criteria, click Next in the Define Find Filter Relationships dialog box.

Define Find Filter Properties dialog box
The Define Find Filter Properties dialog box is the first step in creating and editing find criteria, which enables you to

use filters to find objects in a test object map. You use this dialog box to specify properties for the new search criteria

or to edit properties for an existing one.

The Define Find Filter Properties dialog box has the following controls:

Properties

Lists all the available properties for all the objects in the current test object map.

Filter

Lists the properties you selected and their relationships.

Note: If you add more than one property to the Filter field, HCL OneTest™ UI groups the objects

under an AND folder (the default). You can right-click the AND folder to change it to OR. Right-

clicking objects in the Filter field enables you to cut, copy, paste, or delete them. To group

objects, press Ctrl and click the objects you want to include, right-click, and select Group. To

ungroup objects, right-click the group folder and select Ungroup.

>>>

Adds the selected property to the Filter field.

<<<

Removes the selected property from the Filter field.

Back

Returns to the Set Active Find Criteria dialog box on page 1556.

Next

Continues the procedure by displaying the Define Find Filter Relationships dialog box on page 1475.

Chapter 11. Reference Guide

Finish

Available when editing existing find criteria, saves any changes, closes the Define Find Filter Properties

dialog box, and redisplays the Set Active Find Criteria dialog box, which enables you to run the filter you

just created, define a new filter, or edit an existing filter.

Cancel

Closes the Define Find Filter Properties dialog box without saving any changes.

To open: When defining or editing find criteria, click Create in the Set Active Find Criteria dialog box.

Define Find Filter Relationships dialog box
The Define Find Filter Relationships dialog box is the second step in creating and editing find criteria, which enables

you to use filters to find objects in a test object map. You use this dialog box to define the relationship between the

properties you added to the find filter.

The Define Find Filter Relationships dialog box has the following controls:

Filter

Lists all the groups of filter properties you specified in the Define Find Filter Properties dialog box. If

necessary, click <Back to make any additions or edits to the list.

Note: You can right-click a group folder to change it to AND or OR. To group objects, press Ctrl

and click the objects you want to include, right-click, and select Group. To ungroup objects, right-

click the group folder and select Ungroup. Right-clicking objects in the Filter field enables you to

cut, copy, paste, or delete them.

Relationship

The controls in this section change based on whether you click a group or a property in the Filter box.

AND

When selected, changes the highlighted group to an AND; all the property relationships in the group

must resolve to true in order for HCL OneTest™ UI to find the object in the test object map.

OR

When selected, changes the highlighted group to an OR; at least one property relationship in the group

must resolve to true in order for HCL OneTest™ UI to find the object in the test object map.

Operator

Enables you to indicate whether the Value: Exists (the default), IsNull, or is Equal.

NOT Relationship

When selected, HCL OneTest™ UI searches for objects that do not contain the specified relationship and

value.

1475

HCL OneTest™ UI

1476

Value

For the specified property, enter a value you want HCL OneTest™ UI to search for.

 Convert Value to Regular Expression

Available when Operator is Equal, enables you to specify a regular expression in the Value field. For

information, see Replacing an Exact-Match Property with a Pattern.

 Convert Value to Numeric Range

Available when Operator is Equal, enables you to specify a numeric range in the Value field. For

information, see Replacing an Exact-Match Property with a Pattern. Clicking the NR notation in the

Value field displays fields that enable you to specify the numeric range parameters. This button is only

enabled if the value is of a numeric type.

Back

Returns to the Define Find Filter Properties on page 1474 dialog box.

Next

Advances to the Define Find Filter Name on page 1473 dialog box.

Finish

Available when editing existing find criteria, saves any changes and closes the Define Find Filter

Relationships dialog box.

Cancel

Closes the Define Find Filter Relationships dialog box without saving any changes you have made.

To open: When defining or editing find criteria, click Next in the Define Find Filter Properties dialog box.

Delete All Not Used Test Objects dialog box
You use the Delete All Not Used Test Objects dialog box to find all the test objects that do not have references in the

scripts associated with the shared test object map and selectively delete them.

The Delete All Not Used Test Objects dialog box has the following controls:

 Find: First

Moves to the first test object in the list.

 Find: Previous

Moves to the previous test object in the list.

 Find: Next

Moves to the next test object in the list.

 Find: Last

Moves to the last test object in the list.

Chapter 11. Reference Guide

Test objects highlighted in red are not used in the scripts associated with the test object map. The check boxes fir

these objects are selected and the objects are deleted when you click OK. Clear the check box of any test object that

you do not want to delete.

Children of parents marked for deletion are marked for deletion. When parents are deleted, all children are deleted

also. To keep one or more children, clear the parent check box and clear the check boxes of the children you do not

want to delete.

The lower pane contains property sets, which provide information about the selected object. There are two property

set tabs:

• Recognition

• Administrative

The Recognition tab displays recognition data used by HCL OneTest™ UI. The Administrative tab displays internal

administrative data of the object. These properties are used to manage and describe the test object.

Delete Test Object dialog box
This is the first page of the Delete Test Object wizard, which enables you to confirm that you want to delete the

selected object from the test object map.

The Delete Test Object dialog box has the following controls and information:

The Delete Test Object dialog box lists the Administrative and Recognition properties for the object you are about to

delete.

Total number of test objects deleted

Displays the number of test objects associated with the selected object that will also be deleted.

Next

Displays the second page of the wizard on page 1477, which lists all the scripts that reference the

object and that will be affected by the deletion.

Finish

Deletes the object from the test object map and deletes all references to the object.

Cancel

Closes the Delete Test Object dialog box without deleting the object.

To open: Select a test object and click Edit > Delete or click the Delete button on the Object Map toolbar. You can

also right-click a test object and click Delete.

Delete Test Object dialog box -- page 2
This is the second page of the Delete Test Object wizard, which enables you to confirm that you want to delete the

selected test object.

1477

HCL OneTest™ UI

1478

It has the following controls and information:

The Delete Test Object dialog box lists all the scripts that reference the object and that will be affected by the

deletion.

Back

Returns to the first page of the Delete Test Object wizard on page 1477, which displays the number of

test objects associated with the selected object that will also be deleted and lists the Administrative and

Recognition properties for the object you are about to delete.

Finish

Deletes the object from the object map and deletes all references to the object.

Cancel

Closes the Delete Test Object dialog box without deleting the object.

To open: Click the Next button on the first page of the Delete Test Object wizard.

Eclipse Platforms tab of the Enable Environments dialog box
You must enable the Eclipse platform for testing before recording scripts for testing Eclipse-based applications.

Eclipse Platform tab

This tab has the following fields:

Eclipse Platforms

Displays the list of Eclipse platforms that the enabler locates on your hard disk drive(s). This list is

populated when you click the Search button. After the name, the enabler indicates in parentheses

whether that platform is currently enabled.

Select All

To select all the platforms that are listed in the Eclipse Platforms list. This is useful if you want to

enable or disable all the platforms. To clear them all, click any of the individual platform

Search

Click Search to specify the search options for HCL OneTest™ UI to search the location in the computer

for Eclipse platforms.

Add

Click Add to locate platforms individually. The selected platform is added to the Eclipse Platforms

list. The main use of Add would be if you only want to browse to one specific platform instead of

searching. You can also use the Search In option in the Search for Eclipse Platform dialog box to locate

an individual platform.

Remove

If you want to remove a platform from the list, select it and click Remove.

Chapter 11. Reference Guide

Enable

Use this option to enable the selected platforms for testing with HCL OneTest™ UI. Select the platform

from the list and click Enable.

Disable

Use this option to disable selected platforms for testing with HCL OneTest™ UI.

Detailed Information for Platform

Contains the following fields:

Name

This is the name of the directory that contains the Eclipse directory. You can edit this

name.

Path

This is the full path to the platform installation.

Gef Support

Select the Gef Support check box to use HCL OneTest™ UI to test the functionality of GEF objects that

are implemented using standard and non-standard GEF editors.

Edit Test Object Appearance dialog box
You use the Edit Test Object Appearance dialog box to customize the text for test objects displayed in the hierarchy

tree of the test object map.

You can add or delete any of the properties of the test object using the following format for each property you want to

add:

%map: property%:

where property is the name of the property as it appears in the property sheet for the object.

For example, you can add the descriptive name to the display.

%map:#name%:

Use a pair of carets (^) to indicate properties that are not common to all objects or those that return a null value. This

ensures that gaps or punctuation marks do not appear in the descriptions of objects that do not have the property.

For example, the following ensures that no gaps or punctuation marks appear in the test object map text for objects

that do not have a descriptive name:

^%map:#name%:^

To open: From the object map menu, click Preferences > Test Object Appearance on Tree.

1479

HCL OneTest™ UI

1480

Edit Variable dialog box
You can use the Edit Variable dialog box to change the name of a column of variables, the type of variable, or the

position of the variable in a dataset.

Name

Type a new name for the column of variables.

Note: You cannot use spaces in the name.

Type

Use to change the default class of the variable. Type the full class name for the variable. The systems

String class is the default, if not explicitly specified.

Move

Use to move a column of variables in a dataset. Click the Move arrow to select one of the following

options:

Before XXX

(where XXX is the name of an existing column) Click to move a column of variables before

a particular column.

After XXX

(where XXX is the name of an existing column) Click to move a column of variables after a

particular column.

To open: Right-click in a dataset, and then click Edit Variable.

Browser enablement diagnostic tool
The Browser Enablement Diagnostic Tool is used to diagnose problems you might have with enabling your browser

for HTML testing. The tool will diagnose the enablement problem and report how to solve the problem.

About this task

Use the diagnostic tool if you suspect that HTML is not being tested properly. If you are trying to record against an

HTML application, and nothing shows up in the Recording Monitor, the browser is probably not enabled properly. It

might mean that the Java™ plug-in of your browser is not enabled. If that is the case, the diagnostic tool will tell you

how to enable the browser. The tool offers quick and simple directions to solve any problem it finds.

To run the tool:

1. Open the HCL OneTest™ UI Enabler by clicking Configure > Enable Environments for Testing.

2. Click the Web Browsers tab.

3. Click the Test button. The Browser Enablement Diagnostic Tool opens.

4. Click the Run Diagnostic Tests button.

Chapter 11. Reference Guide

Results

About this task

The Results page tells you whether the test passed or failed. If the test failed, this page will also list the problem.

Problem and solution

About this task

The Problem and Solution page will list the problem and explain how to solve it. Follow the instructions listed there

and close the tool. If you were in the process of recording a script when you ran the tool, stop recording the script and

start over. The recording should then work against an HTML application.

Details (Advanced)

About this task

The Details page list additional information about your environments. The Java Enabled field indicates whether Java™

is enabled in your browser. The JVM Information field lists information about your JVM. The General Enablement

Information field lists Java™ and HTML domain information.

Export dialog box
You can use the Export dialog box to export a private or public dataset to a .csv file.

You can export a dataset to:

• Add data to a dataset using a spreadsheet application. For example, you can export a dataset to a .csv file

and then use a spreadsheet application to add more data. After you finish adding data, you can then import

the .csv file into a Functional Test dataset.

• Use a dataset in a different project. For example, you can export a dataset to a .csv file and then import the

data into a new dataset in a different Functional Test project.

For HCL OneTest™ UI, Eclipse Integration:

Select a public dataset to export

If you select a public dataset to export from the Functional Test Projects view, use the navigation tools

(Home , Back , and Go Into) to select a public dataset to export.

File

Type the path and file name of the location of the .csv file into which you are exporting the dataset.

Browse

Click to specify a destination directory for the .csv file.

1481

HCL OneTest™ UI

1482

Field Separator

Type the field separator character that you want to use in the .csv file.

To open:

ForHCL OneTest™ UI, Eclipse Integration -- For a public dataset, in the Functional Test Projects window, right-click any

public dataset, and then click Export. Click Functional Test dataset to CSV File. Click Next.

For HCL OneTest™ UI, Microsoft Visual Studio .NET Integration -- For a public dataset, in the Solution Explorer, select

the public dataset you want to export, and then right-click Export.

For a private dataset, open the test script associated with the private dataset that you want to export, in the Script

Explorer select the dataset you want to export, and then right-click Export.

Find and modify dialog box
You use the Find and Modify dialog box to search for test objects in a test object map based on a property, a value, or

either. After the object is found, you can make several types of modifications to its properties and values.

The Find and Modify dialog box has the following controls:

Find criteria:

Quick Find

Select to search a test object map for an object based on the property or value you enter.

Find

Enter the string you want to search for.

Match Case

Select to find only the text that matches the case of the string you entered in the Find field.

property

Select to search only properties for the text you entered.

value

Select to search only values for the text you entered.

either

Select to search properties or values for the text you entered.

Find By Filter

Select a filter to use for searching the test object map, to create or edit a filter, and to delete an existing

filter.

Filter

Lists the names of all the active find criteria available. The default is Test Object is New, which searches

the test object map for all New objects.

Chapter 11. Reference Guide

Create

Opens the Define Find Filter Properties on page 1474 dialog box, which enables you to specify

properties for a new set of find criteria.

Edit

Opens the Define Find Filter Properties on page 1474 dialog box, which enables you to change

properties for the selected find criteria.

Delete

Deletes the selected find filter from the list.

Modify actions:

Action

Select the modification to make to the test object: Add Property, Remove Property, Change Value,

Change Weight, or Change Value and Weight.

Property

Select the property you want to add, delete, or modify.

Value

Add the value of a new property or edit the value of an existing property.

Weight

Enter a number from 0 to 100 to indicate the importance of the property when searching for it in an

application-under-test. For more information about test object weight, see Using ScriptAssure(TM) on

page 1182. Read-only properties do not have a weight.

Next

Finds the next test object in the map that meets the find criterion.

Modify

Makes the changes you specified in the Modify actions section and moves to the next test object that

matches the find criterion.

Modify All

Applies the changes in the Modify actions section to all the test objects in the object map that match

the criterion.

HCL OneTest™ UI menus
This topic describes all the options and commands on the HCL OneTest™ UI menu.

HCL OneTest™ UI has the following menus:

File on page 1484

1483

HCL OneTest™ UI

1484

Edit on page 1485

Source on page 1487

Refactor on page 1487

Navigate on page 1487

Search on page 1487

Project on page 1487

Script on page 1487

Configure on page 1488

Run on page 1488

Window on page 1488

Help on page 1489

File menu

The File menu has the following commands:

New -- Displays the appropriate dialog box that enables you to create a new project, Functional Test project on

page 659, record a Functional Test script on page 676, Functional Test empty script on page 678, test folder on

page 662, test dataset on page 736, test object map, helper superclass on page 684, or to use all wizards other than

project wizards.

Connect to a Functional Test project -- Displays the Connect to a Functional Test project dialog box, which enables

you to specify the project you want to use and its location. You must first connect to an existing Functional Test

project on page 659 before you can use it.

Open File -- Displays the Open File dialog box, which enables you to open a file that is not part of a Functional Test

project.

Close -- Closes the script currently displayed in the Java™ Editor.

Close All -- Closes all the scripts that are open in the Java™ Editor.

Save script -- Saves any changes you made to the script currently displayed in the Java™ Editor.

Save Script " script " As -- Displays the Save Script As dialog box, which enables you to save the current Functional

Test script under another name on page 693.

Save As -- Displays the Save As dialog box, which enables you to save the current file under another name and

location on page 693.

Chapter 11. Reference Guide

Note: Do not use this option to save scripts.

Save All -- Saves all the scripts and files currently open.

Revert -- Reverts the contents of the script back to the previous saved version.

Move -- Enables you to move the selected editor or tab group.

Rename -- Displays the Rename dialog box, which enables you to save the script with a different name.

Refresh -- Refreshes the contents of the currently active script to reflect changes.

Convert Line Delimiters To -- Enables you to see the line delimiters in default view (Windows), or convert to either

Unix or MacOS 9.

Print -- Displays the Print dialog box, which enables you to print the currently active script.

Switch Workspace -- Displays the Select a workspace dialog box, which enables you to store projects in a different

directory only for the current session.

Restart

Import -- Displays the Import wizard, which enables you to copy files from an external source into projects. For

information, see the online Workbench User Guide.

Note: Functional Test supports two import types: Functional Test project items and Functional Test datasets.

Export -- Displays the Export Wizard, which enables you to export resources from projects to an external source. For

information, see the online Workbench User Guide. Note: Functional Test supports two export types: Functional Test

project items and Functional Test datasets.

Properties -- Displays the HCL OneTest UI Project Properties page on page 1491 page if you have selected a

Functional Test project, or the HCL OneTest UI Script Properties page on page 1494, if you have selected a script.

Project filenames -- Displays the names of projects you have most recently used.

Exit -- Closes HCL OneTest™ UI.

Edit menu

The Edit menu has the following options:

Undo -- Cancels the last edit you made, if possible. Some edits cannot be undone.

Redo -- Does the action of the last Undo action again.

Cut -- Deletes the highlighted characters and puts them on the Clipboard.

1485

HCL OneTest™ UI

1486

Copy -- Copies the highlighted characters to the Clipboard.

Copy Qualified Name -- Copies the fully qualified class name of the custom helper superclass, if any, in the selected

script, to the Clipboard.

Paste -- Inserts at the cursor any characters that were previously cut or copied to the Clipboard.

Delete -- Removes the highlighted characters.

Select All -- Highlights all the characters in the currently displayed script or file.

Expand Selection To -- Enables you to quickly select Java™ code in a syntax-aware way. For information, see the

online Java™ Development User Guide.

Find/Replace -- Displays the Find/Replace dialog box, which enables you to search for a string of text in a script and

substitute an alternate string.

Find Next -- Finds the next occurrence of the text selected in the Java™ Editor.

Find Previous -- Finds the previous occurrence of the text selected in the Java™ Editor.

Incremental Find Next -- Finds the next occurrence of the text you type. For information, see the online Java™

Development User Guide.

Incremental Find Previous -- Finds the previous occurrence of the text you type. For information, see the online Java™

Development User Guide.

Add Bookmark -- Displays the Add Bookmark dialog box, which enables you to insert a marker that points to a

specific place in a script or file.

Add Task -- Displays the New Task dialog box, which enables you to associate a task with a specific location in a

resource. For information, see the online Java™ Development User Guide.

Smart Insert Mode -- Toggles Smart Insert Mode on and off.

Expand Selection To -- Enables you to quickly select Java™ code in a syntax-aware way. For information, see the

online Java™ Development User Guide.

Show Tooltip Description -- Displays the value of a hover that would appear at the current cursor location. For

information, see the online Java™ Development User Guide.

Content Assist -- Assists you when writing Java™ code or Javadoc comments. For information, see the online Java™

Development User Guide.

Quick Fix -- Displays solutions for certain problems underlined with a problem highlight line. For information, see the

online Java™ Development User Guide.

Word Completion -- Enables you to auto-complete names of elements in your script syntax. For information, see the

online Java™ Development User Guide.

Chapter 11. Reference Guide

Parameter Hints -- Displays parameter type information. For information, see the online Java™ Development User

Guide.

Set Encoding -- Changes the encoding of the currently shown text content to Default (inherited from container:

CP1252), CP1252, ASCII, Latin 1, UTF-8, UTF-16 (big-endian), UTF-16 (little-endian), UTF-16, or Others. For information,

see the online Java™ Development User Guide.

Source menu

The Source menu contains Eclipse commands that are not applicable to HCL OneTest™ UI.

Refactor menu

The Refactor menu contains Eclipse commands that are not applicable to HCL OneTest™ UI.

Navigate menu

The Navigate menu contains Eclipse commands that are not applicable to HCL OneTest™ UI.

Search menu

The Search menu contains Eclipse commands that are not applicable to HCL OneTest™ UI.

Project menu

The Project menu contains Eclipse commands that are not applicable to HCL OneTest™ UI.

Script menu

The Script menu has the following options:

Run -- Plays back the Functional Test script currently displayed in the Java™ Editor. For information see Running a

Script from Functional Test on page 1185.

Debug -- Launches the current script and displays the Test Debug Perspective, which provides information as the

script debugs. For information, see Debugging Scripts on page 1189.

Add Script Using Recorder -- Record a Functional Test script on page 676.

Insert Recording -- Starts recording at the cursor location in the current script on page 679, which enables you to start

applications, insert verification points, and add script support functions.

Open Test Object Map -- Displays the test object map associated with the script currently displayed in the Java™

Editor.

Update Script Helper -- Updates the script's helper file (*ScriptHelper.java) to reflect changes made to the template for

the selected test asset.

1487

HCL OneTest™ UI

1488

Insert Verification Point -- Displays the Select an Object page of the Verification Point and Action Wizard, which

enables you to select an object in your application you want to perform a test on.

Insert Test Object -- Displays the Select an Object dialog box, which enables you to select test objects to add to the

test object map and a script.

Insert Data Driven Commands -- Displays the Data Drive Actions page of the dataset Population wizard, which

enables you to select the objects in an application-under-test to data-drive an application on page 732.

Find Literals and Replace with dataset Reference -- Replaces literal values with a dataset reference in a test script to

add realistic data to an existing test script on page 742.

Configure menu

The Configure menu has the following options:

Configure Applications for Testing -- Displays the Application Configuration Tool on page 1457, which enables you to

add and edit configuration information on page 603 -- such as name, path, and other information that HCL OneTest™

UI uses to start and run the application -- for the Java™ and HTML applications you want to test.

Enable Environments for Testing -- Displays the Enable Java™ Environments (JRE) / Web Browsers / Eclipse

Platforms for Testing dialog box, which you use to enable Java environments on page 586 and browsers on page 588

and to configure your JRE on page 604s and browsers on page 605.

Configure Object Recognition Properties -- Displays the Object Properties Configuration Tool, which enables you to

Object Properties Configuration Tool on page 1604.

Configure Unexpected Windows -- Displays the Configuring how to handle unexpected windows during playback

on page 1179, which enables you to configure how unexpected windows that open during script playback can be

handled, to ensure smooth playback.

Run menu

The Run menu contains Eclipse menu items that are not applicable to HCL OneTest™ UI except for the Test Object

Inspector menu item.

Test Object Inspector -- Displays test object information, such as parent hierarchy, inheritance hierarchy, test object

properties, nonvalue properties, and method information.

Window menu

The Window menu contains Eclipse menu items that are not applicable to HCL OneTest™ UI except for the Open

Perspective and Preferences menu items.

Open Perspective -- Open a another perspective in the HCL OneTest™ UI Debug window. For information, see the

online Workbench User Guide.

Chapter 11. Reference Guide

Preferences -- Displays the HCL OneTest™ UI Preferences page, which enables you to customize Functional Test by

setting preferences on page 633 for HCL OneTest™ UI on page 639, Highlight on page 641, Logging on page 644,

Operating System on page 646, Playback on page 646, Playback Delays on page 649, Playback Monitor on page 650,

ScriptAssure(TM)-Standard on page 651, Script Assure(TM)- Advanced on page 650, Recorder Preferences on

page 653, Recorder Monitor Preferences on page 654, Workbench Preferences for HCL OneTest™ UI, on page 657 and

Workbench Advanced Preferences for HCL OneTest™ UI on page 658.

Help menu

The Help menu has the following options:

Welcome -- Displays the Welcome to HCL Products page, which contains information that will help familiarize you

with HCL OneTest™ UI.

Help Contents -- Displays the online HCL OneTest™ UI table of contents and information, which you can use to

navigate to various topics.

Search -- Displays the Search page, which enables you to search the Product help.

Dynamic Help -- Displays Java specific text editing support information.

Index -- Displays the HCL OneTest™ UI index.

Key Assist -- Display a list of keyboard shortcuts that you can use while working with HCL OneTest™ UI.

Tips and Tricks -- Display tips and tricks for Eclipse Java™ Development tools, Eclipse platform, and Eclipse plug-in

development environment.

Functional Test Help -- Displays the online HCL OneTest™ UI table of contents and information.

Functional Test Proxy SDK -- Displays the HCL OneTest™ UI proxy software development kit (SDK) help.

Functional Test API Reference -- Displays an overview of the online Functional Test API Reference Guide, which you

can use to navigate to various topics.

Web Resources -- Displays troubleshooting and support information that will enable you to fix problems and find

additional resources.

Cheat Sheets -- Displays the cheat sheets for using HCL OneTest™ UI.

Process Advisor -- Displays best practices and guidance that will help you learn how to create projects and test

scripts using HCL OneTest™ UI.

Process Browser -- Displays best practices topics and tasks from the Process Advisor.

Manage Licenses -- Displays the Manage Licenses dialog box which will help you to apply licenses, or update your

license status.

1489

HCL OneTest™ UI

1490

Check for Updates and Install New Software-- Enable you to update products and to download and install new

features. Manage the configuration of HCL OneTest™ UI. Scan for updates for all installed features, add an extension

location, view installation history, and show activities that caused the creation of the configuration. For information,

see the online Workbench User Guide.

IBM Installation Manager -- Displays IBM Installation Manager, which you can use to install, update, modify, roll back

or uninstall software.

HCL OneTest UI -- Displays information about the current version of the HCL OneTest™ UI you are running.

HCL OneTest™ UI General page
You use the HCL OneTest™ UI General page to set all product time options. These options are useful to accommodate

different computer speeds.

The General page has the following controls:

Limit Record/Playback to StartApp applications only: Select this option to limit the recording and playing back to

StartApp application only.

Automatic enablement: Automatic enablement is activated by default. Deselect the checkbox if you want to statically

enable each test environment. This is useful for improving the performance of tests.

Multiply all time options by: Enter any real number by which you want to multiply all HCL OneTest™ UI preferences or

options that take an amount of time as an argument. For example, enter .5 to make all HCL OneTest™ UI time options

twice as fast. This option affects all the following controls:

General Playback

Maximum time to attempt to find Test Object

Pause between attempts to find Test Object

Timeout used in waitForExistence() method

Retry timeout used in waitForExistence() loop

Delays

Delay before mouse up

Delay before mouse move

Delay before mouse down

Delay before key up

Delay when hover

Delay after top level window activates

Chapter 11. Reference Guide

Delay before key down

Delay before performing Test Object action

General Recorder

Delay before recording a mouse action

Delay before recording a keystroke

Use Default

Clear this check box to edit the value in the Multiply all time options by field. Select this check box to

restore the default value.

Restore Defaults

Restore the default values on this page.

Apply

Save your changes without closing the dialog box.

To open: Click Window > Preferences. In the left pane, click Functional Test.

Related information

Restricting the actions during recording and playback

HCL OneTest™ UI Project Properties page
Use this page to change your default script helper superclass.

HCL OneTest™ UI uses the helper superclass for all the scripts you create in this project. You can change the

superclass for an individual script by specifying it in the Script Properties page on page 1494.

By default, all HCL OneTest™ UI scripts extend the RationalTestScript class and inherit a number of methods

(such as callScript). You can create your own helper superclass to add methods or override the methods from

RationalTestScript. Use this properties page to change the default helper superclass for a project.

Default Script Helper superclass -- Enter the fully qualified class name of your custom helper superclass in this field.

Note that your helper superclass must extend RationalTestScript.

If you change your superclass and want to reset it to RationalTestScript, you can either type RationalTestScript in the

superclass field or clear the field. Leaving this field blank resets the script to use RationalTestScript.

To open: In the HCL OneTest™ UI Projects view, select a project, right-click, and click Properties. Click HCL OneTest UI

Project.

1491

HCL OneTest™ UI

1492

HCL OneTest™ UI Projects view
The Functional Test Projects view, which is the left pane of the Functional Test Perspective, lists test assets for each

project.

The following icons appear in the Projects view pane:

 Folders

 Simplified test scripts

 Java test scripts

 Shared test object maps

 Log folders

 Logs

 Java™ file

The Functional Test Projects view banner has the following buttons:

The Connect to a Functional Test Project button allows you to connect to an existing Functional Test project.

The Refresh Projects button enables you to repaint the display to reflect changes.

The Synchronize with Editor button scrolls in the tree hierarchy to the name of the script currently displayed in the

Java™ Editor.

Double-clicking a script in the Projects view opens the script in the Java™ Editor.

Note: If there are no projects in the Projects view, instructions display informing you how to create a new

Functional Test project or connect to an existing Functional Test project. If you do not select any item in

the Projects view, and right-click in the Projects view, a menu is displayed, from which you can create a new

Functional Test project, connect to an existing Functional Test project, or refresh the project(s).

Right-clicking on a project or test asset listed in the Projects view displays various menu options, which are listed here

in alphabetical order:

Add Empty Script -- Displays the Create an empty Functional Test script dialog box, which enables you to create a

script on page 678 you can use to manually add Java™ code.

Add Script Using Recorder -- Displays the Record a Functional Test script dialog box, which enables you to enter

information about the new script and start recording on page 676.

Chapter 11. Reference Guide

Add Test Folder -- Displays the Create a Test Folder dialog box, which enables you to create a new Functional Test

folder on page 662 for the project or under an existing folder.

Add Test Object Map -- Displays the Create a Test Object Map dialog box, which enables you to add a new test object

map to a project.

Add Test dataset -- Displays the Create a Test dataset dialog box, which enables you to create a new test dataset. on

page 736

Clear As Project Default -- Removes the default designation from the selected test object map. To set the default

designation, right-click the test object map in the HCL OneTest™ UI Projects view and select Set As Project Default .

Debug -- Launches the current script and displays the Test Debug Perspective, which provides information as the

script debugs.

Delete -- Enables you to delete the selected test asset..

Disconnect Project -- Disconnects a Functional Test project on page 659, which removes it from the Functional Test

Projects view.

Export -- Enables you to export project items for the selected log, project, or script.

Failed Verification Points -- Opens the selected verification point actual results file in the Verification Point

Comparator on page 717, where you can compare and edit the data. See About Logs on page 1224.

Final Screen Snapshot -- Available when the log of a script that failed on its last run is selected. Opens the screen

snapshot image taken at playback failure. See Screen snapshot on playback failure on page 1190.

Import -- Enables you to import project items for the selected log, project, or script.

Insert as "callScript" -- Available when a script is selected, inserts the callScript ("scriptname") code in the current

script at the cursor location. See Calling a Script from a Functional Test Script on page 687.

Insert contained scripts as "callScript" -- Available when a project is selected, displays a message that enables you to

choose Yes or No . Yes inserts a callScript command for all scripts in the project, including the selected folder(s) and

all subfolders. No inserts a callScript command only for scripts in the selected folder(s). See Calling a Script from a

Functional Test Script on page 687.

Merge Objects into -- Displays the Merge Test Objects into the Test Object Map page, which enables you to merge

multiple test object maps.

Open -- Opens the selected script or Java™ class in the Java™ Editor or opens the selected test object map.

Open Log -- Opens the selected log. See About Logs on page 1224.

Open Test Object Map -- Enables you to display the selected test object map.

Properties -- Displays information about the selected Functional Test project, test object map, test folder, script, or

log.

1493

HCL OneTest™ UI

1494

Rename -- Displays the Rename dialog box.

Reset Java Build Path -- Synchronizes the .JAR files in the Customization folder (C:\ProgramData\HCL\UI

\Customization) with the Java™ build path for Functional Test projects. The Java™ build path appears on the Java™

Build Path page of the Properties dialog box. For information, see the online Java™ Development User Guide.

Run -- Plays back a selected Functional Test script on page 1185.

Set as Project Default -- Indicates the selected test object map as the default in a variety of wizards and dialog boxes,

such as the Select Script Assets on page 1555 page of the Record New Functional Test Script and the Create Empty

Functional Test Script wizards, and the Copy Test Objects to New Test Object Map on page 1467 page of the Create

new Test Object Map wizard. To remove the designation, right-click the test object map in the Projects view and

select Clear As Project Default .

Show in Navigator -- Reveals the currently selected element's underlying resource (or the current editor's underlying

resource) in the Navigator view. For information, see the online Java™ Development User Guide.

Team -- Enables you to add test elements to source control, check out elements, check in elements, undo a checkout,

get latest version, show checkouts, display the history of an element, share a project, or compare versions or

elements.

To open: HCL OneTest™ UI automatically displays the Projects view (by default) in the Functional Test Perspective.

HCL OneTest™ UI Script Properties page
Use this page to change your script helper superclass, test dataset, or dataset iteration for an individual script.

HCL OneTest™ UI uses a default helper superclass for all the scripts you create in a project. This superclass is listed

in the Functional Test Project Properties Page on page 1491. You can use a different superclass for an individual

script by changing it in this Script Properties page.

By default, all Functional Test scripts extend the RationalTestScript class and inherit a number of methods

(such as callScript). You can create your own helper superclass to add methods or override the methods from

RationalTestScript. Use this properties page to change the default helper superclass for the selected script.

Test Object Map -- Displays either Private to indicate that the script test object map is private or the name of the

shared test object map.

Helper Superclass -- Enter the fully qualified class name of your custom helper superclass in this field. Note that your

helper superclass must extend RationalTestScript.

If you change your superclass and want to reset it to RationalTestScript, you can either type RationalTestScript in the

superclass field or clear the field. Leaving this field blank resets the script so that it uses RationalTestScript.

Test dataset -- Click Browse to change the dataset associated with a script.

dataset Record Selection Order -- Specifies how a test script accesses records in its associated dataset when you

play back the test script. Click the dataset Record Selection Order arrow to change the test dataset iterator.

Chapter 11. Reference Guide

Types of dataset iterators:

• Sequential -- Makes a test script access records in the dataset in the order that they appear in the dataset.

This is the default dataset iterator.

• Random -- Makes a test script access records in the dataset randomly. A random iterator accesses every

record in the dataset once.

To open: In the Projects View, select a script, right-click, and click Properties. Click Functional Test Script.

HCL OneTest™ UI Script Templates Properties page
You can use the Functional Test Script Templates Properties Page to edit a Functional Test script template.

Select template type

Lists all the types of templates that you can edit.

Script: Header of the file

Use to customize the layout of new script files.

Script: Comment for Test Object

Use to customize a test object comment line inserted into a script by the recorder.

Script: Comment for top level Test Object

Use to customize a top-level test object comment line inserted into a script by the

recorder.

Script: HTML Test Object Name

Use to customize the names of HTML test objects in a script.

Script: Java Test Object Name

Use to customize the names of Java™ test objects in a script.

Script: .Net Test Object Name

In HCL OneTest™ UI, Eclipse Integration, use to customize the names of .NET test objects

in a script.

Script: Windows Test Object Name

In HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, use to customize the names

of Windows® test objects in a script.

VP: Verification Point Default Name

Use to customize the names of verification points HCL OneTest™ UI generates by default

in the Verification Point and Action Wizard.

Script Helper: Header of the file

Use to customize the layout of a helper class when auto-generated.

1495

HCL OneTest™ UI

1496

Script Helper: Test Object Method

Use to customize the layout of test object methods in the helper class.

Script Helper: Verification Point Method

Use to customize the layout of verification point methods in the helper clas

Script Helper Superclass (HCL OneTest™ UI, Java™ Scripting)

Use to customize the layout of the script helper superclass.

Script Helper Base Class (HCL OneTest™ UI, VB.NET Scripting)

Use to customize the layout of the script helper base class.

Open current template in Editor

Click to use the appropriate editor to customize the script template.

Restore Defaults

Restores all script templates to the original defaults of the database when you created it. All your edits

are lost.

Apply

Applies your edits to the template on which you are working. If you are making extensive edits, it is

a good idea to apply your changes to save your edits as you make them or to each template as you

complete changes.

To open in HCL OneTest™ UI, Eclipse Integration: From the Projects view, right-click a Functional Test project, click

Properties, and click Functional Test Script Templates.

To open inHCL OneTest™ UI, Microsoft Visual Studio .NET Integration: From the Solution Explorer, right-click a

Functional Test project, click Properties, and click Functional Test Script Templates.

HCL OneTest™ UI Show Checkouts View
You can use the Functional Test Show Checkouts View to list checked-out elements in one or more projects.

By default, the Functional Test Show Checkouts view lists the elements you have checked out in the current directory

and in the current view.

Note: The status bar in the HCL OneTest™ UI Perspective displays the project or projects you selected to

search for checked-out elements.

Type

Displays the file type of each checked-out element. The icons for the file types are:

Icon Description

Java™ class files

Chapter 11. Reference Guide

Icon Description

Object map

Test script

Functional Test script template files

Element Name

Displays the name of the checked-out element. If an element is in a folder, the folder appears as

<foldername>.<filename>. For example, Myfolder.myfile.

HCL OneTest UI Project

Displays the name of the project that contains a checked-out element. Click X to close the Show

Checkouts View.

To open: In the Projects view, right-click one or more projects, and then click Team > Show Checkouts.

HCL OneTest™ UI Show History View
You can use the HCL OneTest™ UI Show History View to display the history of an element under source control.

Type

Displays the file type of the element. The icons for the file types are:

Icon Description

Java™ class files

Object map

Test script

Functional Test script template

files

Name

Displays the name of the object.

Date

Displays the date and time of the revision.

Comment

Displays the first few characters of the comment. To see the entire comment, right-click an entry and

click Show Comment.

User Name

Displays the name of the user who made the change.

1497

HCL OneTest™ UI

1498

Event

Displays the nature of the change.

To open: In the Projects view, right-click the test asset, and then click Team> Show History.

The HCL OneTest™ UI toolbar
This topic describes all the buttons on the HCL OneTest™ UI toolbar.

The HCL OneTest™ UI toolbar has the following buttons:

 New -- Displays the appropriate dialog box that enables you to create a new project, Functional Test project on

page 659, to record a Functional Test script on page 676, Functional Test empty script on page 678, to create a test

folder on page 662, test dataset on page 736, test object map, or helper superclass on page 684. Click to display the

New dialog box or click to display the list of items to create.

 Save -- Saves any changes you made to the script currently displayed in the Java™ Editor. For information, see

Saving Functional Test Scripts and Files. on page 693

 Print -- Displays the Print dialog box, which enables you to print the current script.

 Create a Functional Test Project -- Displays the Create a Functional Test project dialog box, which enables you to

generate a new project on page 659.

 Connect to an existing Functional Test Project -- Displays the Connect to a Functional Test project dialog box,

which enables you to specify the project you want to use and its location. You must first connect to an existing

Functional Test project on page 659 before you can use it.

 Create an Empty Functional Test Script -- Displays the Create an empty Functional Test script dialog box, which

enables you to create a script on page 678 you can use to add Java™ code.

 Create a Test Object Map -- Displays the Create a Test Object Map dialog box, which enables you to Creating a

new test object map to a project.

 Create a Test dataset -- Displays the Create New Test dataset dialog box, which enables you to create a new test

dataset on page 736.

 Create a Test Folder -- Displays the Create a New Functional Test Test Folder dialog box, which enables you to

create a new folder on page 1467 either for the project or for an existing folder.

 Record a Functional Test Script -- Displays the Record a Functional Test script dialog box, which enables you to

enter information about the new script and start recording on page 676.

 Insert Recording into Active Functional Test Script -- Starts recording at the cursor location in the current script

on page 679, which enables you to start applications, insert verification points, and add script support functions.

Chapter 11. Reference Guide

 Run Functional Test Script -- Plays back the Functional Test script currently displayed in the Java™ Editor. Click

to begin program execution at method Main in the current script or click to display the list of scripts to run. Note:

Since method Main is not in Functional Test user scripts, you will receive an error if you select Run > Java Application.

For information, see Running Scripts on page 1185.

 Debug Functional Test Script -- Launches the current script and displays the Debug Perspective, which provides

information as the script debugs. Click to begin debugging at method Main in the current script or click to display

the list of scripts to debug. Note: Since method Main is not in Functional Test user scripts, you will receive an error if

you select Debug > Java Application. For information, see Debugging Scripts on page 1189.

 Configure Applications for Testing -- Displays the Application Configuration Tool on page 1457, which enables

you to add and edit configuration information -- such as name, path, and other information that the product uses to

start and run the application -- for the Java™ and HTML applications you want to test.

 Enable Environments for Testing -- Displays the Enable Java™ Environments (JRE)/Web Browsers/Eclipse

Platforms for Testing dialog box, which you use to on page 603 enable Java environments on page 586 and on

page 603 browsers on page 588 and on page 603 to configure your JRE on page 604s and browsers on page 605.

 Open Test Object Inspector -- Displays the Test Object Inspector tool, which enables you to display test object

information on page 681, such as parent hierarchy, inheritance hierarchy, test object properties, nonvalue properties,

and method information.

 Insert Verification Point into Active Functional Test Script -- Displays the Select an Object page of the Verification

Point and Action wizard, which enables you to select an object in your application you want to perform a test on.

 Insert Test Object into Active Functional Test Script -- Displays the Select an Object dialog box, which enables

you to select test objects to Adding a test object to an object map and a script.

 Insert Data Driven Commands into Active Functional Test Script -- Displays the Data Drive Actions page of

the dataset Population Wizard, which enables you to select the objects in an application-under-test to data-drive an

application on page 732.

 Find Literals and Replace with dataset Reference -- Replaces literal values with a dataset reference on page 742

in a test script, which enables you to add realistic data to an existing test script.

 External Tools -- Enables you to run or configure an external tool that is not part of Workbench. Click to create,

manage, and run configurations or click to display the list of external tools to run or configure. For information, see

the online Workbench User Guide.

 Search -- Displays the Search dialog box, which enables you to search for text or Java™ code.

 Last Edit Location -- Navigates to the previous location where you edited the script.

1499

HCL OneTest™ UI

1500

 Back -- Navigates to the previous file you viewed. Click to navigate to the previous file you viewed or click to

display the list of files to navigate backward.

 Forward -- Navigates to the next file you viewed. Click to navigate to the next file you viewed or click to display

the list of files to navigate forward.

Highlight page
You use the Highlight page to specify how you want HCL OneTest™ UI to emphasize test objects in applications-

under-test when you select them in a test object map or in the Script Explorer. These settings also control how HCL

OneTest™ UI highlights objects you select with the Verification Point and Action Wizard and the Insert a GUI Object

into the Object Map dialog box.

You can also change these settings in the test object map by clicking Preferences > Highlight on the test object map

menu.

The Highlight page has the following controls:

Color

Click to display a color selection palette from which you can select a color to use to indicate selected

test objects. The button displays the color currently in use.

Border Width (in pixels)

Move the slider from Thin to Wide to set the width of the border around the selected object.

Flash Speed

Move the slider from Slow to Fast to set the rate at which the border around a selected object flashes

when selected.

Display Time

Move the slider from Short to Long to set the length of time to highlight the border.

Restore Defaults

Restores the default values on this page.

Apply

Saves your changes without closing the dialog box.

To open: Click Window > Preferences. In the left pane, expand Functional Test and click Highlight.

Import dataset dialog box
Use the Import dataset dialog box to create a dataset from an existing HCL OneTest™ UI dataset or a .csv file.

Import From

Type the path and file name of an existing HCL OneTest™ UI dataset, or a .csv file, or click the Import

From arrow to display a list of ten recently imported files, and then click an item from the list.

Chapter 11. Reference Guide

Browse

Click to select the path and filename of an existing HCL OneTest™ UI dataset to import. When you

browse for a dataset, click the Files of type arrow and select either a .csv file type, a .rftdp file type for a

public dataset, or a /rftxdp file type for a private dataset.

.CSV Format options

Use these options to import a .csv file.

Field Separator

Type the field separator character to use in the file you want to import. The field separator

character that appears must be the same as the one used in the .csv file you are importing

as a dataset. If you are not sure which field separator character to specify, use a text editor

such as Notepad to open the .csv file and see the field separator character that is used.

First Record is Variable Information

Select to make the first row of the imported data, the column heading of a new dataset. If

First Record is Variable Information is unchecked, the first row in the .csv file is imported

as data and the headers use the default headers, such as data0, data1. The First Record is

Variable Information setting is unavailable if the file you select to import is not a valid .csv

file.

Note: When you import a .csv file that was initially a dataset, you must select First

Record is Variable Information to ensure that the data imports correctly.

To open: Click Create a Test dataset (). For HCL OneTest™ UI, Eclipse Integration, click Next. For HCL OneTest™ UI,

Microsoft Visual Studio .NET Integration, click Open.

Note: The Drag Hand Selection method is not available on Linux environments such as Ubuntu and Red Hat

Enterprise Linux (RHEL). You must use the Test Object Browser method on Linux environments.

Import Project Items page
You use the Import Project Items page to import project items such as scripts, test object maps, Java™ files or Visual

Basic files, and datasets into a Functional Test project.

The Import Project Items page has the following controls:

Transfer file

Enter or navigate to the data transfer file name .rftjdtr that was used to export the project items. To

view and work with items in the data transfer file, you can use any file compression program that

supports the .zip format. You do not have to extract files in the .rftjdtr file before importing.

1501

HCL OneTest™ UI

1502

Select the import location

Lists all Functional Test projects. Use the navigation buttons (Home , Back , and Go Into) to

select the appropriate path to the project into which you want to import project items.

Back

Returns to the Import wizard.

Finish

Adds all the project items from the data transfer file into the project you specified. If the project already

contains any of the assets you are importing, HCL OneTest™ UI displays the Select items to overwrite

page. Select the items to overwrite in the project or clear the items that you do not want to overwrite.

To open: Right-click the project in the Projects view, and click Import. In the Import wizard, select Functional Test

Project Items and click Next.

Insert Data Drive Actions dialog box
You can use the Insert Data Drive Actions dialog box to select the test objects and actions you want to data drive.

 Object Finder Tool

Use to select an object and all the descendents of the selected object. Using the Object Finder tool is

the most common and direct method of selecting an object.

 Selection Wizard

Click to use the Object Finder Tool method and its options, or the Object Browser method.

Data Driven Commands

Displays information about the test object or objects that you selected to data drive the testing of your

application-under-test. You can place your pointer over a row in this table to view the line of code that

Functional Test inserts into the test script to data drive the application-under-test.

Role

Displays an icon that represents the type of test object you select to data drive an

application-under-test.

Test Object

Displays the name of a test object.

Command

Displays the command that you can perform on a particular test object.

Variable

Displays the name of the heading for the variable as the name appears in a dataset. Type

a descriptive name for the variable or select an existing variable name by clicking the drop-

down arrow. Descriptive headings make it easier to add data to the dataset.

Chapter 11. Reference Guide

Initial Value

Displays the initial value of a test object. Double-click to change the initial value of a test

object to test your application with different values.

The following icons appear to the right of the Data Driven Commands table:

 Click to move the selected row earlier in the order of execution in the Data Driven Commands table.

 Click to move the selected row later in the order of execution in the Data Driven Commands table.

 Click to delete a selected row from the Data Driven Commands table.

 Click to highlight a test object in the application-under-test. Select a test object in the Data Driven

Commands table, and then click this icon.

 Click to display or hide the recognition and administrative properties for a selected test object.

Selected Command Description

Displays recognition and administrative properties about the test object selected in the Data Driven

Commands area of the Insert Data Drive Actions dialog box. Appears when you click .

Recognition

Lists the property, value, and weight of a selected test object. You can use this information

to confirm that you have selected the correct test object to data drive.

Administrative

Displays internal administrative data of a selected object. You cannot edit this data. Use

this data to locate and manage the test object in the context of the associated script.

You can use the administrative information to determine what test object this is in the

associated application-under-test.

To open: Click Insert Data Drive Commands () on the Recording toolbar.

Insert getProperty Command page
Use to get a single property value for the selected object. Functional Test puts a getProperty command into your

script and returns the value during playback. This information is useful when you need to make a decision based on

the property. For example, you might want to query whether a button was enabled.

When you select an object, the property list is built and displayed in the Property Name and Value fields. Select the

property that you want to get. Click the Next button to proceed. The getProperty command is written into your script

at the point you inserted it.

1503

HCL OneTest™ UI

1504

Note: If your object has no properties, this page is disabled.

Insert Properties Verification Point Command page
Use to create a Properties verification point for the selected object. The Properties verification point tests the

properties in your object when you play back your script. The object name is listed on the page. This verification point

tests all properties of the object. You can edit the properties list later if you want to test only some of the properties.

Use the Include Children field to specify whether to include the properties of any child objects. None tests the object

only (no children), Immediate tests the object and any immediate children (one level down), and All tests the object

plus all of its children down the entire hierarchy.

Under Verification Point Name, accept the suggested default, or type a new name in the box.

Use the Use standard properties option to specify whether to use standard property types. If you are testing Java™, all

properties are standard. Clear the option only if you are testing HTML and want to test browser-specific properties.

Use the Include Retry Parameters to set a retry time for a verification point during playback to check for its existence.

The retry option is useful when playback does not find the verification point in your application. To set a retry time,

either use the default or set your own time. Maximum Retry Time is the maximum number of seconds HCL OneTest™

UI tries again for the verification point to be shown in your application during playback. Retry Interval is the number of

seconds between times that HCL OneTest™ UI will check for the verification point during the wait period.

When you select Include Retry Parameters, HCL OneTest™ UI checks for the existence of the verification point in your

application every 2 seconds, for up to 20 seconds. To set your own time, clear the default fields and provide your own

values for Maximum Retry Time and Retry Interval. When you click Finish, the retry for verification point is written

into your script and occurs on future playbacks.

Note: When you insert a Properties verification point without recording, the Include Retry Parameters option

does not appear on the Insert Properties Verification Point Command page.

To proceed with the verification point, click Next. For more information, see Creating a Properties Verification Point on

page 698.

Note: If your object has no properties, this page is disabled.

Insert Verification Point Data Command page
Use to create a Data verification point for the selected object. The Data verification point tests the data in your object

when you play back your script. The object name is listed at the top of the page. The list of tests shown in the Data

Value field depends on information provided by the object proxy. Select the data value that you want to test.

Under Verification Point Name, accept the suggested default, or type a new name in the box.

Chapter 11. Reference Guide

Use the Include Retry Parameters to set a retry time for a verification point during playback to check for its existence.

The retry option is useful when playback does not find the verification point in your application. To set a retry time,

either use the default or set your own time. Maximum Retry Time is the maximum number of seconds HCL OneTest™

UI tries again for the verification point to be visible in your application during playback. Retry Interval is the number of

seconds that HCL OneTest™ UI checks for the verification point during the wait period.

When you select Include Retry Parameters, HCL OneTest™ UI checks for the existence of the verification point in your

application every 2 seconds, for up to 20 seconds. To set your own time, clear the default fields and type in your own

values for Maximum Retry Time and Retry Interval. When you click Finish, the retry for verification point is written

into your script, and occurs on future playbacks.

Note: When you insert a Data verification point without recording, the Include Retry Parameters option does

not appear on the Insert Verification Point Data Command page.

To proceed with the verification point, click Next. For more information, see Creating a Data Verification Point on

page 701.

Note: If your object has no data, this page is disabled.

Insert waitForExistence Command page
Use to set a wait state for an object during playback to check for its existence. The waitForExistence command is

useful when waiting for an object right after your application starts, or after other actions that may take a long time.

The selected object is listed at the top of the page. To set a wait state for it, either use the default or set your own

time. Maximum Wait Time is the maximum number of seconds HCL OneTest™ UI waits for the object to appear in

your application during playback. Check Interval is the number of seconds between times that HCL OneTest™ UI

checks for the object during the wait period.

When Use the Defaults is selected, HCL OneTest™ UI checks for the existence of the object in your application every

2 seconds, for up to 120 seconds. To set your own time, clear the default field and provide your own values for

Maximum Wait Time and Check Interval. When you click Finish, the wait-for object is written into your script, and will

occur on future playbacks. For more information, see Setting a Wait State for an Object on page 682.

Java editor
You use the Java™ Editor (the script window) to edit Java™ code.

The name of the script or class you are currently editing appears in a tab on the Java™ editor frame. An asterisk on

the left side of the tab indicates that there are unsaved changes.

You can open several files in the Java™ editor and move between them by clicking on the appropriate tab.

If there is a problem with the code, a problem marker is displayed near the affected line.

1505

HCL OneTest™ UI

1506

Right-clicking in the Java™ Editor displays various menu options for working with scripts.

Refer to the online Java™ Development Guide for more information.

The Java™ Editor is automatically displayed (by default) in the Functional Test Perspective.

Java Environments tab of the Enable Environments dialog box
This dialog is opened by clicking Configure > Enable Environments for Testing from HCL OneTest™ UI. The Java

Environments tab is used to enable Java™ environments and to add and configure Java™ environments. Information

about enabling JRE's is presented first. Information about adding and configuring JRE's is presented below that.

For enabling Java environments:

The Java™ enabler is the Java Environments tab of the Enable Environments dialog box. The Java™ enabler must be

run before you can use HCL OneTest™ UI to test Java™ applications. It modifies your Java™ environments to allow

Java™ programs run under them to be tested by HCL OneTest™ UI. The enabler scans your hard disk drive(s) looking

for Java™ environments. It allows HCL OneTest™ UI to "see" your Java™ environments by adding files into the directory

where your Java™ Runtime Environments (JREs) are located.

The first time you run HCL OneTest™ UI, it automatically enables your Java™ environments. If you install a new

Java™ environment, such as a new release of a browser or a JDK, you must rerun the enabler after you complete the

installation of the Java™ environment. You can run the enabler any time from HCL OneTest™ UI by clicking Configure

> Enable Environments for Testing. Note that the first time you run HCL OneTest™ UI it automatically enables the JVM

of your browser's Java™ plug-in so that HTML recording works properly. If you install a different JVM, you must rerun

the enabler to enable it.

Java Environments List

HCL OneTest™ UI is shipped with a JRE that is automatically enabled during your installation. It is called "Default

JRE," and will appear in this list. Other than the Default JRE, this list is populated by the Search or Add buttons. It

displays the list of Java™ environments that the enabler locates on your hard disk drive(s). After the name, the enabler

indicates in parentheses whether that environment is currently enabled.

Select All Button

Use this to select all the JREs that are listed in the Java Environments list. This is useful if you want to enable or

disable all the environments. To clear them all, click any of the individual environments.

Search Button

Click this button to have HCL OneTest™ UI search your hard disk drive(s) for Java™ environments. This opens the

Search for Java™ Environments dialog box. Choose one of the search options in that dialog and click the Search

button. Note: You should not use the Search All Drives option to find JREs on Linux® or UNIX® systems. Instead use

the Search In option and browse for the JRE. See Enabling Java Environments topic for information on the search

options. When the search is complete, the Java Environments list is populated with all found environments. At least

Chapter 11. Reference Guide

the first time that you use HCL OneTest™ UI, use the Search button to locate all JREs on your system. After the initial

search, it will list any JREs that were already enabled, plus any new ones it finds.

Add Button

Click this button to locate Java™ environments individually by browsing. It brings up the Add Java™ Environment

dialog box to locate a JRE on your system. To select a JRE, you can point to the JRE's root directory or any file under

the root directory. The JRE you select will be added to the Java Environments list. You can also use the Search In

option in the Search for Java Environments dialog box to browse for a JRE.

Remove Button

To remove an environment from the JREs list, select it, then click Remove.

Set as Default Button

Use this to choose which JRE you want to be your default environment used in playback. Select the JRE in the list, and

click the button. That JRE will then become the default, and will be indicated in parentheses after the name. You can

change the default any time by coming back to this tab.

Enable Button

Use this button to enable selected Java™ environments for testing with HCL OneTest™ UI. Select the JRE(s) to

enable in the list, then click Enable. The modifications to the JRE(s) are done at this time. This includes adding

HCL OneTest™ UI classes to the JRE and modifying the accessibility.properties file, which tells Java™ to load HCL

OneTest™ UI classes when it runs a Java™ application. Once a JRE is enabled, that will be indicated in parentheses

after its name in the list.

Disable Button

Use this button to disable selected Java™ environments for testing with HCL OneTest™ UI. Select the JRE(s) to

disable in the list, then click Disable. This undoes all the modifications made by Enable. Once disabled, that will be

indicated in parentheses after each JRE name in the list.

Test Button

You can test that your JRE is enabled properly by clicking the Test button in the enabler. This opens the JRE Tester. It

will report the JRE version, JRE vendor, and whether it is enabled successfully.

1507

HCL OneTest™ UI

1508

Note: If your JRE is not enabled, you will be able to tell because the Record Monitor is blank when you try

to record against a Java™ application. You should leave the Record Monitor in view while recording for this

reason. If you see this symptom, you need to run the enabler.

Note: To enable browsers for HTML testing, click the Web Browsers tab of the enabler and click the Help

button, or see Enabling Web Browsers topic.

For adding and configuring Java environments:

The Java Environments tab is also used to add and edit JRE configurations. To edit the information on an existing

JRE, click the name of the JRE in the Java Environments list. To add a new JRE, click the Search or Add button.

Use the Set as Default button to set one of the JREs as your default to be used during playback. Whether editing or

adding, make your changes, then click OK for the changes to be saved.

Java Environments List

Select the JRE that you want to edit or view. Its information will then appear to the right of the list. The information

fields are described below. If your JRE is not in the list yet, click Search or Add to find and enter it.

The JRE that has default listed after it in parentheses in the list is the default JRE. It will be used in all Java™ testing

unless you change this setting in the properties of a specific application.

Detailed Information for Java Environment

Contains the following fields:

Name -- This is the logical name of your JRE. For example, "Java2" may be used to represent JDK 1.2.2. This will

default to the name at the end of your class path. You can edit this name.

Path -- This is the full path to the root of the JRE installation. If the path is incorrect, you will get an error message.

Run Command -- The command line that runs your Java™ applications with this JRE. The default is "java" for most

JRE's. The JRE that comes with HCL OneTest™ UI is "javaw."

Run Options -- This is blank by default. If you need to use any special flags for this JRE, enter them here.

Search Button

Click Search to add all your JREs into the Java environments list. This opens the Search for Java™ Environments

dialog box. Choose one of the search options in that dialog and click the Search button. Note: You should not use the

Search All Drives option to find JREs on Linux® or UNIX® systems. Instead use the Search In option and browse for

the JRE. HCL OneTest™ UI will enter all the detailed information on each JRE, except for the Run Options field.

Add Button

Chapter 11. Reference Guide

Click Add to browse for a new JRE to add to the list. The Add Java™ Environment dialog appears. Browse to the JRE

you want to add. You can select any file under the root of the JRE, or the root directory itself. With the file selected,

click the Add button. The JRE will then show up in the Java Environments list and you can edit its configuration

information if necessary. Note: it is quicker to use the Search button and let HCL OneTest™ UI find and enter your

environments if you are entering multiple JREs.

Set as Default Button

Use this to choose which JRE you want to be your default environment used in playback. Select the JRE in the list, and

click the button. That JRE will then become the default, and will be indicated in parentheses after the name. You can

change the default any time by coming back to this tab. You can also override the default environment for a specific

application, by indicating it in the JRE field in the Application Configuration Tool.

Remove Button

To remove an environment from the JREs list, select it, then click Remove.

OK Button

You must click OK when you are finished to save the additions or edits you made on this tab.

For more information, see Configuring Java Environments for Testing topic.

Apply Button

If you want to apply edits you make in this dialog box before you exit the dialog, click Apply . If you click Cancel, any

changes you made before you clicked Apply will be saved, and changes made after will be canceled.

Log Entry tab: Script Support Functions dialog box
You use the Log Entry tab to insert a log message into a Functional Test scripts and indicate whether it is a message,

warning, or an error. During playback, HCL OneTest™ UI inserts this information into the log.

The Log Entry tab has the following controls:

Message to write to the log

Enter the text you want to include in the log.

Result

Select the type of message you want to add to the log. The result type will be displayed in the log.

Information

Indicates that the text will be entered as a message.

Warning

Indicates that the text will be entered as a warning. The warning state is also reflected in

the endScript message result type.

1509

HCL OneTest™ UI

1510

Error

Indicates that the text will be entered as an error. The error state is also reflected in the

endScript message result type.

Insert Code

Inserts code into the script based on the option you selected in the Result section, where message is the

text you entered:

 logInfo("message")
 logWarning("message")
 logError("message")

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and

click the Log Entry tab. If editing, click the Insert Recording into Active Functional Test scripts button on the HCL

OneTest™ UI toolbar, click the Insert Script Support Commands button on the Recording Monitor toolbar, and click

the Log Entry tab.

Logging page
You use the Logging page to set log and comparator options, such as preventing the script launch wizard from

displaying on playback, displaying the log viewer after playback, and displaying a message before overwriting an

existing log. You also use this page to indicate the type of log generated.

To access the logging page, click Window > Preferences. In the left pane, expand Functional Test > Playback and

click Logging.

Note: For Microsoft Visual Studio, click Tools > Options. In the left pane, expand Functional Test > Playback

and click Logging.

The Logging page contains the following options:

Don't show script launch wizard: When selected, prevents the script launch wizard from displaying each time you play

back a script.

Display log viewer after script playback: When selected, this option displays the log after you play back a script. If the

log type is HTML, the log opens in your default browser. If the log type is Text, the log opens in the Script Window of

HCL OneTest™ UI. If the log type is XML, the log opens in your default browser.

Generally, the log file opens in the default browser that is associated with the html file extension in your computer. To

view the html files in your desired browser, you can associate the html file extension with the specific browser. The file

extension for different browsers are as follows:

• For Google Chrome, you must associate .html=ChromeHTML

• For Internet Explorer, you must associate .html=htmlfile

• For Firefox, you must associate .html=FirefoxHTML-308046B0AF4A39CB

Chapter 11. Reference Guide

Log screen snapshot for each action on the application: When selected, this option records a screen snapshot in the

playback log against every action performed on the application.

Prompt before overwriting an existing log: When selected, this option prompts you before you overwrite a log.

Log the count of test objects created/unregistered at particular script line: When selected, this option logs these

details:

• Number of objects created and unregistered at a specific script line

• Total number of objects created and unregistered per call script

• A cumulative number of test objects created and unregistered for the whole script during playback if HCL

OneTest™ UI scripting methods have been used to return test objects.

Warning messages are also logged at the call script level and the main script level, if the number of test objects

created exceeds the number of test objects unregistered, which would suggest the possibility of memory leaks during

playback.

Log a screen snapshot when playback fails: When you select this option, it captures a screen snapshot at the time of

the failure and stores it in the log. You must clear the check box to save storage space (172 KB per snapshot).

Log GUI actions on the application: When you select this option, it adds a detailed record of any GUI-related actions

performed on the application (without a screen snapshot) to the playback log.

Log type: This option Indicates the type of log HCL OneTest™ UI generates to write results of script playback. The log

types are as follows:

• None: Generates no log, if selected.

• Text: Displays the log in ASCII format in the Functional Test script window.

• HTML: Displays the log in HTML format in your default browser. The left pane in the HTML log contains three

boxes: Failures, Warnings, and Verification Points. The list of items in each box help you navigate to a specific

location in the log. You can select an item to quickly find important errors, warnings, and verification point

results in the log. To do so, double-click an item in a list, and HCL OneTest™ UI scrolls to and displays the item

in the log.

• TPTP: Displays a log using TPTP in the Functional Test script window.

• XML: Displays a log of XML data rendered in HTML format [using transformation and Cascaded Style Sheets]

in your default browser.

• Default: Displays the unified report for the test scripts in the browser window. This is also the default option to

generate result for Functional test scripts.

1511

HCL OneTest™ UI

1512

• JSON: Displays a log in JSON format in the Functional Test Script window. Each event in this log type is a

separate JSON.

Note: The JSON log type is not supported in the integration of HCL OneTest™ UI with Visual Studio.

Use Default: Clear the check box to change the value in the Log type field. Select the check box to restore the default

value.

Restore Defaults: Restores the default values on this page.

Apply: Saves your changes without closing the dialog box.

Merge test object into the test object map page
You use the Merge Test Objects into the Test Object Map page to merge multiple private or shared test object maps

into a single shared test object map.

The Merge Test Object into the Test Object Map page lists all the scripts and test object maps in the current project.

To select multiple scripts and test object maps in the list, press and hold Ctrl.

The Merge Test Object into the Test Object Map page has the following controls:

Connect selected scripts with selected Test Object Map

Associates the new test object map with the scripts you chose. This control is only available if you

select one or more scripts in the list. With this option, HCL OneTest™ UI updates the scripts you selected

to point to the newly merged test object map. If you use Source control, HCL OneTest™ UI checks out

the scripts and test object maps unreserved and leaves them checked out after the merge is complete.

Finish

Merges test objects from the maps and scripts you selected into the test object map.

To open: In the Projects view, right-click the test object map into which you want to merge test objects from other

scripts and maps and click Merge Objects into.

Message Text Color tab
You use the Message Text Color tab of the Monitor Options dialog box to select the text color for the different types

of messages displayed in the Recording Monitor. The colors you select stay in effect until you change them again.

Note:

Chapter 11. Reference Guide

• You can also set preferences for the Recording Monitor in the Recorder: Monitor page of the

Preferences dialog box on page 654.

• Changes in the Monitor Options dialog box affect your user profile only.

The Message Text Color tab has the following controls:

Select Message Level -- Select the type of message you want to set color for: Error, Warning, or Information.

Apply -- Makes the changes you have indicated without closing the Message Options dialog box.

Choose Text Color for Message Level -- Use any of the three tabs to select the color you want to use for the message:

• Swatches enables you to click the color you want to use. Recent displays the colors you selected while the

dialog box was open.

• HSB enables you to select a color through its Hue, Saturation, and Brightness levels. The slider affects the

hue. The resultant RGB values are also displayed.

• RGB enables you to enter a value or use a slider to select the levels of red, green, and blue. Values you select

in this tab are also displayed in the R, G, and B fields in the HSB tab.

Preview -- Provides examples of the color you selected.

To open: When recording, click the Monitor Message Preferences button on the Recording Monitor toolbar and

click the Message Text Color tab.

Record Monitor Preferences dialog box
The Record Monitor Preferences dialog box enables you to modify Recording Monitor message options while in

the Recording Monitor. You can add a timestamp to messages in the Record Monitor and select the text color for

different types of messages.

Notes:

• You can also set preferences for the Record Monitor in the Recorder: Monitor tab on page 654 of the

Preferences dialog box.

• Changes in this dialog box affect your user profile only.

The Record Monitor Preferences dialog box has the following tabs. Click the tab name below for information about

how to use that tab.

Filter/Timestamp on page 1514

Use to add a timestamp to messages in the Record Monitor and to indicate the types of messages you

want displayed there.

1513

HCL OneTest™ UI

1514

Text Color on page 1512

Use to select the text color for the different types of messages displayed in the Record Monitor. The

colors you select stay in effect until you change them again.

To open: When recording, click the Message Preferences button on the Record Monitor toolbar.

Message Text Color tab
You use the Message Text Color tab of the Monitor Options dialog box to select the text color for the different types

of messages displayed in the Recording Monitor. The colors you select stay in effect until you change them again.

Note:

• You can also set preferences for the Recording Monitor in the Recorder: Monitor page of the

Preferences dialog box on page 654.

• Changes in the Monitor Options dialog box affect your user profile only.

The Message Text Color tab has the following controls:

Select Message Level -- Select the type of message you want to set color for: Error, Warning, or Information.

Apply -- Makes the changes you have indicated without closing the Message Options dialog box.

Choose Text Color for Message Level -- Use any of the three tabs to select the color you want to use for the message:

• Swatches enables you to click the color you want to use. Recent displays the colors you selected while the

dialog box was open.

• HSB enables you to select a color through its Hue, Saturation, and Brightness levels. The slider affects the

hue. The resultant RGB values are also displayed.

• RGB enables you to enter a value or use a slider to select the levels of red, green, and blue. Values you select

in this tab are also displayed in the R, G, and B fields in the HSB tab.

Preview -- Provides examples of the color you selected.

To open: When recording, click the Monitor Message Preferences button on the Recording Monitor toolbar and

click the Message Text Color tab.

Monitor Options tab
You use the Monitor Options tab of the Monitor Options dialog box to add a time stamp to messages in the Recording

Monitor and to indicate the types of messages you want displayed there. You can also turn off the recording

instructions automatically displayed at the top of the monitor window.

Chapter 11. Reference Guide

Notes:

• You can also set preferences for the Record Monitor in the Recorder: Monitor tab on page 654 of the

Preferences dialog box.

• Changes in the Monitor Options dialog box affect your user profile only.

The Monitor Options tab has the following controls:

Show Getting Started Help

When selected, displays instructions on how to record a script using the buttons on the Recording

toolbar at the top of the monitor window. The default is to display the Getting Started Help. If

unchecked, the Getting Started Help does not display.

Include time stamp in the message

When selected, includes a time stamp, with the format hh:mm:ss, for each entry in the Recording

Monitor. This option is off by default. When on, each message begins with the time stamp of when that

action took place. The message goes out to seconds.

Select message types to be displayed

Select the messages you want to display in the Recording Monitor:

• Error

• Error, Warning

• Error, Warning, Information (default)

To open: When recording, click the Monitor Message Preferences button on the Recording Monitor toolbar and

click the Monitor Options tab.

Monitor Options tab
You use the Monitor Options tab of the Monitor Options dialog box to add a time stamp to messages in the Recording

Monitor and to indicate the types of messages you want displayed there. You can also turn off the recording

instructions automatically displayed at the top of the monitor window.

Notes:

• You can also set preferences for the Record Monitor in the Recorder: Monitor tab on page 654 of the

Preferences dialog box.

• Changes in the Monitor Options dialog box affect your user profile only.

The Monitor Options tab has the following controls:

1515

HCL OneTest™ UI

1516

Show Getting Started Help

When selected, displays instructions on how to record a script using the buttons on the Recording

toolbar at the top of the monitor window. The default is to display the Getting Started Help. If

unchecked, the Getting Started Help does not display.

Include time stamp in the message

When selected, includes a time stamp, with the format hh:mm:ss, for each entry in the Recording

Monitor. This option is off by default. When on, each message begins with the time stamp of when that

action took place. The message goes out to seconds.

Select message types to be displayed

Select the messages you want to display in the Recording Monitor:

• Error

• Error, Warning

• Error, Warning, Information (default)

To open: When recording, click the Monitor Message Preferences button on the Recording Monitor toolbar and

click the Monitor Options tab.

Operating System page
You use the Operating System page to indicate the Foreground Lock Timeout setting for Windows® 98/Me and

Windows® 2000 systems.

This page contains the following controls:

Foreground Lock Timeout

An important option for Windows 98/Me, Windows 2000, or later that sets the amount of time (in

milliseconds) after user input, during which the operating system does not allow applications to force

themselves into the foreground. To play back scripts, you must change this setting to 0. However, this is

a persistent setting and affects desktop behavior.

Restore Defaults

Restores the default values on this page.

Apply

Saves your changes without closing the dialog box.

To open: Click Windows > Preferences. In the left pane expand Functional Test and click Operating System.

Delays page
You use the Delays page to set delays during Functional Test script playback. These settings are useful to control the

rate at which script commands are sent to the operating system.

Chapter 11. Reference Guide

The Delays page has the following controls:

Note: In the Use Default field for each control, clear the check box to edit the value in the field or select the

check box to restore the default value.

Delay before mouse up

Indicates, in seconds, the interval before sending a mouse-release event during playback.

Delay before mouse move

Indicates, in seconds, the interval before sending a mouse-move event during playback.

Delay before mouse down

Indicates, in seconds, the interval before sending a mouse-press event during playback.

Delay before performing Flex Test Object action

Indicates, in seconds, the wait before performing a Flex test object action during playback.

Delay before key up

Indicates, in seconds, the wait before sending a key-release event during playback.

Delay when hover

Indicates, in seconds, the duration of the wait for a Hover command, which takes no options.

Delay after top level window activates

Indicates, in seconds, the wait after making a new window active. This provides the application time to

repaint the screen.

Delay before key down

Indicates, in seconds, the interval before sending a key-press event during playback.

Delay before performing Test Object action

Indicates, in seconds, the time the object waits before each UI action.

Restore Defaults

Restores the values on this page to customization file settings (if they exist) or to

RATIONAL._FT.RFTCUST settings.

Apply

Saves your changes without closing the dialog box.

To open: Click Window > Preferences. In the left pane, expand Functional Test, expand Playback, and click Delays.

Playback Monitor page
You use the Playback Monitor page to specify whether to display the playback monitor during playback.

The Playback Monitor page has the following controls:

1517

HCL OneTest™ UI

1518

Show monitor during playback

Displays the Playback Monitor during playback.

Restore Defaults

Restores the default values on this page.

Apply

Saves your changes without closing the dialog box.

To open, click Window > Preferences. In the left pane, expand Functional Test, expand Playback, and click Monitor.

General Playback page
You use the General Playback page to set script playback options, such as the amount of time HCL OneTest™ UI looks

for an object and waits before trying to find an object again. You can also elect to skip all verification points in the

script.

The General Playback page has the following controls:

Note: In the Use Default field for each control, clear the check box to edit the value in the field or select the

check box to restore the default value.

Show exception dialog

The exception dialog box is displayed if an exception occurs during playback.

Perform playback in interactive mode

To resolve common runtime situations dynamically.

Maximum time to attempt to find Test Object

The maximum amount of time, in seconds, that HCL OneTest™ UI attempts to find an object. See

example on page 648.

Pause between attempts to find Test Object

Indicates, in seconds, how long HCL OneTest™ UI waits before trying to find an object again. See

example on page 648.

Skip Verification Points

When selected, skips all verification points in the script.

Timeout used in waitForExistence() method

Indicates, in seconds, the maximum amount of additional time that HCL OneTest™ UI waits (after time

specified in Maximum time to attempt to find test object) for an object. For example, this setting is

useful when waiting for an application to open. The waitForExistence() method must be explicitly

stated in the script.

Chapter 11. Reference Guide

Retry time used in waitForExistence() loop

Indicates, in seconds, the interval between attempts to find an object. If HCL OneTest™ UI does not find

an object, it continues to try until the time specified in Timeout used in waitForExistence() method has

expired.

Restore Defaults

Restores the default values on this page.

Apply

Saves the edits you made without closing the dialog box.

To open: Click Window > Preferences. In the left pane, expand Functional Test and click Playback.

Related reference

Setting general playback preferences in test scripts on page 647

ScriptAssure page--Advanced
You use the ScriptAssure(TM) Advanced page to set thresholds for recognition scores, which HCL OneTest™ UI uses

when searching for objects during script playback.

Note: In the Use Default field for each control, clear the check box to edit the value in the field or select the check box

to restore the default value.

The ScriptAssure™ Advanced page has the following controls:

Maximum acceptable recognition score -- Indicates the maximum score an object can have to be recognized as a

candidate. Objects with higher recognition scores are not considered as matches until the time specified in Maximum

time to attempt to find Test Object has elapsed.

Last chance recognition score -- If HCL OneTest™ UI does not find a suitable match after the time specified in

Maximum time to attempt to find Test Object has elapsed, indicates the maximum acceptable score an object must

have to be recognized as a candidate. Objects with higher recognition scores are not considered.

Ambiguous recognition scores difference threshold -- Writes an AmbiguousRecognitionException to the log if the

scores of top candidates differ by less than the value specified in this field. If HCL OneTest™ UI sees two objects as

the same, the difference between their scores must be at least this value to prefer one object. You can override the

exception by using an event handler in the script.

Warn if accepted score is greater than -- Writes a warning to the log if HCL OneTest™ UI accepts a candidate whose

score is greater than or equal to the value in this field.

Standard -- Displays the Standard ScriptAssure(TM) preferences page, which enables you to use a slider to set the

tolerance level from Tolerant to Strict for recognition levels and from None to High for warning levels.

1519

HCL OneTest™ UI

1520

Restore Defaults -- Restores the default values on this page.

Apply -- Saves the edits you made without closing the dialog box.

Changes you make in this page are reflected in the ScriptAssure(TM) Page-Standard.

To open: Click Window > Preferences. In the left pane, expand Functional Test, expand Playback, and click

ScriptAssure. Click Advanced.

ScriptAssure page-standard
During playback, HCL OneTest™ UI compares objects in the application-under-test with recognition properties in the

test object map. You use the ScriptAssure(TM) Standard page to control object-matching sensitivity during playback.

This feature enables you to successfully play back scripts when the application-under-test has been updated.

The ScriptAssure(TM) Standard page has the following controls:

Recognition Level -- Controls the level of recognition when identifying objects during script playback. To decrease

tolerance for differences between the object in the application-under-test and the recognition properties, move the

slider toward Strict. To increase the tolerance for differences, move the slider toward Tolerant.

• The maximum Strict setting indicates that objects must be an almost exact match. If only one important

recognition property is wrong, HCL OneTest™ UI recognizes the object as a match after exhausting all other

possibilities. An object with more than one wrong recognition property is not a match.

• The maximum Tolerant setting indicates that HCL OneTest™ UI selects an object with somewhat similar

properties immediately.

• The default setting allows two important recognition properties to be wrong but still is a match if all other

possibilities are exhausted. An object with more than two wrong recognition properties is not a match.

Warning Level -- Specifies when to be warned about differences between the object and the recognition properties. To

increase the number of warnings, move the slider toward High. To decrease the number of warnings, move the slider

toward None.

• The maximum High setting writes a warning to the test log of almost any difference. (Functional Test does

not issue a warning when the difference is the browser.)

• The maximum None setting omits warnings to the test log of differences.

• With the default setting, HCL OneTest™ UI writes a warning to the test log whenever it finds a test object after

the maximum time has elapsed during playback.

Advanced -- Displays the Advanced ScriptAssure Preferences page, which enables advanced users to set thresholds

for recognition scores.

Restore Defaults -- Restores the default values on this page.

Apply -- Saves your changes without closing the dialog box.

Chapter 11. Reference Guide

Changes you make on this page are reflected in the ScriptAssure(TM) Page-Advanced.

To open: Click Window > Preferences . In the left pane, expand Functional Test, expand Playback, and click

ScriptAssure.

Preferences dialog box
The Preferences dialog box contains pages that enable you to customize HCL OneTest™ UI in a number of different

areas, such as settings for time options; colors for the Verification Point Editor, the Verification Point Comparator,

and the Object Map Editor; highlight color for test objects; operating system; playback; delays; log; playback monitor;

ScriptAssure(TM); recorder; recording monitor; and the workbench.

The Preferences dialog box has the following tabs. Click the tab name below for information about how to use that

tab.

Functional Test on page 639

Use to easily increase or decrease all HCL OneTest™ UI time options.

Highlight on page 641

Use to specify how you want HCL OneTest™ UI to emphasize test objects when you select them in

applications-under-test. You can specify color, width, speed, and time.

Operating System on page 646

Use to indicate values that are operating system-dependent.

Playback on page 646

Use to indicate settings for Functional Test script playback.

Delays on page 649

Use to indicate settings for delays during Functional Test script playback. These settings are useful to

slow down the rate at which script commands are sent to the operating system.

Logging on page 644

Use to indicate log viewing and Comparator options.

Monitor on page 650

Use to indicate Playback Monitor settings.

ScriptAssure(TM) on page 650

Use the Standard Preferences page to control HCL OneTest™ UI's object-matching sensitivity during play

back. Advanced users can use the Advanced Preferences page to set thresholds for recognition scores,

which HCL OneTest™ UI uses when searching for objects during script playback.

Recorder on page 653

Use to indicate options for recording Functional Test scripts.

1521

HCL OneTest™ UI

1522

Monitor on page 654

Use to change colors without going to the Recording Monitor. Preference page buttons reflect the

current settings in the Recording Monitor.

UI Color on page 640

Use to specify color settings for the Verification Point Editor, Verification Point Comparator, and the

Object Map Editor.

Workbench on page 657

Use to indicate how you want the Workbench to behave while playing back, recording, and debugging

Functional Test scripts.

To open: Click Window > > Preferences and in the left pane expand Functional Test.

Quick Find dialog box
You use the Quick Find dialog box to search a test object map for an object based on the property or value you enter.

The Quick Find dialog box has the following controls:

Find

Enter the string you want to search for or select one from the list. The list contains up to 10 of the most

recently used search strings.

Match Case

Select to find only the text that matches the case of the string you entered in the Find field.

property

Select to search only properties for the text you entered.

value

Select to search only values for the text you entered.

either

Select to search properties or values for the text you entered.

When you click OK, Functional Test searches through the test object map for objects that meet the search criteria and

highlights the first occurrence. Use the Find: First , Find: Previous , Find: Next , or the Find: Last buttons

on the test object map toolbar to navigate between objects that meet the search criterion.

To open: From the test object map menu, select Find > Quick Find or from the test object map toolbar, click the Find:

Quick button .

Record a New Functional Test Script dialog box
You use the Record a New Functional Test Script dialog box to record a new test script. HCL OneTest™ UI includes in

the new script import statements for files needed to compile and comments containing archiving information.

Chapter 11. Reference Guide

HCL OneTest™ UI uses the script name as the class name and sets up testMain, where you can add the commands

you want to include in the script.

The Record a New Functional Test Script dialog box has the following controls:

Enter or select the folder

Either enter the appropriate path to the folder you want to use or use the navigation tools (Home ,

Back , and Go Into) to select the path.

Script name

Enter the name you want to use for the new test script. Use Java™ file naming conventions.

Select Mode

Select the scripting mode in which you want to record the current script, either Simplified Scripting or

Java Scripting.

Default

Makes the scripting mode you selected from the Select Mode list the default scripting mode.

Next >

Displays the Select Test Object Map wizard page on page 1555, which enables you to choose a private

or a shared object map to use with the new test script.

Finish

Creates a new test script, using the default test object map.

Cancel

Closes the Record a New Functional Test Script dialog box without creating the new script.

To open: Click the Record New Functional Test Script button on the product toolbar, or select File > New >

Functional Test Script Using Recorder.

Related Topics for HCL OneTest™ UI, Eclipse Integration:

Recording a Script on page 676

Creating a New Functional Test Script without Recording on page 678

Recording interface
Every time you begin recording, the HCL OneTest™ UI window will automatically minimize when the Recording Monitor

comes up. The monitor is always displayed while you are recording. You can minimize it if you don't want it to be

visible on the screen, and you can resize it.

1523

HCL OneTest™ UI

1524

The monitor displays messages for every action performed during your recording session, such as starting and

pausing the recording, starting an application or browser, clicks and all other actions upon an application, inserting

verification points, inserting other items into the script, etc. For more information, see HCL OneTest™ UI Recording

Monitor on page 1529.

The Record toolbar is nestled within the HCL OneTest™ UI Monitor toolbar when you bring it up. You can click Display

Toolbar Only , which hides the monitor and shows only the toolbar. Click Display Monitor to bring it back.

You use the Record toolbar to pause and stop recording, start applications, create verification points, and insert items

into your script. For more information, see Recording Toolbar on page 1524.

The following dialog boxes make up the HCL OneTest™ UI recording interface:

Verification Point and Action Wizard on page 1566

Start Application dialog box on page 1558

Script Support Functions dialog box on page 686

Recorder Monitor Preferences Page on page 654

Recording toolbar
When you begin recording, the Recording toolbar comes up. You can use the Recording toolbar to pause and stop

recording, start applications, create verification points, and insert items into your script. The Recording toolbar is

nestled within the Monitor toolbar when you open the monitor.

You can display just the toolbar, by clicking the Display Toolbar Only button . To re-dock it, click the Display

Monitor button .

For information on the Monitor and Monitor toolbar, see the Recording Monitor on page 1529.

The Recording toolbar contains the following buttons:

 Stop Recording

Use to stop the recording. When recording stops, the Monitor is closed. Your script and object map are then written

into your project directory. Also, the product window is restored and the script is displayed.

 Pause Recording

Use to suspend recording. The Monitor remains in view.

 Resume Recording

Use to continue recording.

 Start Application

Chapter 11. Reference Guide

Use to start the application you want to test. It opens the Start Application dialog box, which is used to choose an

application to start. For more information on starting applications, see Starting Your Test Applications on page 692 or

the Start Application Dialog Box on page 1558.

 Insert Verification Point or Action Command

Use to select an object and action. It opens the Select an Object tab of the Verification Point and Action Wizard, which

contains the object selector tool. You select an object from there to start a verification point. For more information on

selecting objects to create a verification point, see the Select an Object tab of the Verification Point and Action Wizard

on page 1548.

Note: You can also use the Insert Verification Point or Action Command toolbar button itself to select

an object. If you click the button and drag it off of the toolbar, the button will become the object selector tool

from the Select an Object tab of the Verification Point or Action Wizard.

 Insert Data Driven Commands

Use to select the test objects and actions that you want to data drive a test script on page 732.

 Insert Script Support Commands

Opens the Script Support Functions dialog box. Use to call another script, insert a log entry, insert a timer, insert

a sleep command (a delay), or insert a comment into your script. For more information see the Script Support

Functions Dialog Box on page 686.

 Display Help

Pauses your recording and displays the product Help in the Help Perspective. The Help contains all of the product

user documentation. When the Help displays, the Pause Recording button becomes the Resume Recording

button . Click the Resume Recording button to dismiss the Help window.

 Display Toolbar Only

Displays just the Recording toolbar. Click the Display Monitor button to display the monitor and re-dock the

Recording toolbar.

Manual test recording monitor
When you record a manual test script from Rational® Quality Manager, the manual test recording monitor is

displayed.

HCL OneTest™ UI, version 8.2.2 supports the manual test script recorder feature in Rational® Quality Manager. When

Rational® Quality Manager is integrated with HCL OneTest™ UI, you can record a manual test script in Rational®

Quality Manager to test applications by using the HCL OneTest™ UI recorder. The recorded test script is displayed in

the Rational® Quality Manager editor and can be modified.

1525

HCL OneTest™ UI

1526

For more information about the manual test script recorder feature, see the Rational® Quality Manager Information

Center.

Using the manual test recording monitor

When you initiate the recording of the manual test script from the Rational® Quality Manager computer, the

Rational® Quality Manager interface minimizes and the manual test recording monitor is displayed on the HCL

OneTest™ UI computer. You can open the application-under-test (AUT) and record your actions.

The monitor is displayed while you are recording, and is always the top window. The monitor displays messages

for every action performed during the recording session, such as starting and pausing the recording, starting an

application or browser, clicks and all other actions recorded against an application, inserting manual steps and

inserting verification points into the script. The monitor also displays errors. You can minimize or resize the monitor,

and you can also choose to see only the Recording toolbar by clicking the Display Toolbar Only button.

Note: You can insert data verification points or image verification points, but you cannot insert properties

verification points, or get specific values for an object. For more information about verification points, see the

related links at the bottom of this page.

When you stop recording, the monitor closes. In the Rational® Quality Manager browser, the Manual Steps list

displays the recorded script actions.

The text in the recording monitor is similar to the sequence of commands that are recorded in the script. The text

might contain additional information about errors that occurred during recording. The text is available while you have

the monitor open. When you stop recording, the text is discarded and is not sent to Rational® Quality Manager. The

text is not shown in the steps displayed in the Manual Steps list in Rational® Quality Manager. If you want to save the

text, use the Copy Selected Text or Save Monitor Text As commands before you stop recording.

Manual test recording monitor toolbars

The recording monitor contains the Recording toolbar, which is the leftmost set of icons, and the Monitor toolbar,

which is the rightmost set. The Recording toolbar is nested within the Monitor toolbar when you bring up the monitor.

You can use the Recording toolbar to pause and stop recording, start applications, create a verification point, and

insert items into your script. You can undock the Recording toolbar by clicking the Display Toolbar Only button .

The monitor will float so that it only displays the Recording toolbar. To dock the Recording toolbar again and show the

monitor, click the Display Monitor button . The display setting persists between recordings: if you only display the

Recording toolbar, it is displayed this way the next time that you record.

Recording toolbar options

Table 1 lists the buttons available on the Recording toolbar and describes how to use them:

http://pic.dhe.ibm.com/infocenter/clmhelp/v4r0/index.jsp
http://pic.dhe.ibm.com/infocenter/clmhelp/v4r0/index.jsp
http://pic.dhe.ibm.com/infocenter/clmhelp/v4r0/index.jsp
http://pic.dhe.ibm.com/infocenter/clmhelp/v4r0/index.jsp
http://pic.dhe.ibm.com/infocenter/clmhelp/v4r0/index.jsp

Chapter 11. Reference Guide

Table 62. Recording toolbar options for recording manual test scripts

Button Action

Stop

Record

ing

Stop the recording. When recording stops, the monitor closes. In the Rational® Quality Manager browser,

the Manual Steps list displays the recorded script actions.

Pause

Record

ing

Suspend recording. The monitor remains in view.

 Re

sume

Record

ing

Continue recording.

Start

Appli

cation

Start the application that you want to test. The Start Application dialog box opens, in which you choose an

application. For more information about starting applications, see the Starting Your Test Applications or

Start Application Dialog Box links at the bottom of this page.

Insert

Verifi

cation

Point

Select an object and action. The Select an Object tab of the Verification Point Wizard is opens and displays

the object selector tool from which you can select an object to start a verification point.

You can insert data verification points or image verification points, but you cannot insert properties verifi

cation points, or get specific values for an object. For more information about selecting objects to create

a verification point, see the Select an Object tab of the Verification Point Wizard link at the bottom of this

page. For more information about verification points, see the related links at the bottom of this page.

Note: You can also use the Insert Verification Point toolbar button itself to select an object. If

you click the button and drag it off the toolbar, the button becomes the object selector tool from the

Select an Object tab of the Verification Point wizard.

Insert

Manu

al Step

Insert a manual step into the script. The Insert Manual Step dialog box opens, in which you can provide the

name of the step.

1527

HCL OneTest™ UI

1528

Table 62. Recording toolbar options for recording manual test scripts

(continued)

Button Action

En

able

Image

Cap

ture

Enable the capturing of images during recording. When you enable this option, images are captured for the

steps in the recording. If you do not want images to be captured, disable this option.

Monitor toolbar options

The Monitor toolbar is always embedded in the monitor. Table 2 lists the buttons on the Monitor toolbar, and how to

use them:

Table 63. Monitor toolbar options

Button Action

 Clear

All Monitor

Text

Clear all text from the monitor. To save the text before you clear it, use the Copy Selected Text button

 or the Save Monitor Text As button on the Monitor toolbar. Clearing the monitor text does not

affect your recorded script.

 Save

Monitor

Text As

Save all the text in the monitor to a file. The Save As dialog box opens, in which you can specify a file

name and location. The Save Monitor Text As command selects and saves all the text into a .txt file.

 Mon

itor Mes

sage Pref

erences

The Monitor Options dialog box opens, in which you can set preferences for the Recording Monitor

Getting Started Help, message time stamp, the message filter level, and the message color.

When you click this button, the Monitor options and the Message Text Color tabs open. These options

are available on these tabs:

• Show Getting Started Help: Displays instructions at the top of the monitor window for how to

record a script by using the buttons on the Recording toolbar. The default is to display the Get

ting Started Help. If you clear this option, the Getting Started Help is not displayed.

• Include time stamp in this message: Designates whether each line in the monitor has a time

stamp. This option is off by default. When on, each message begins with the time stamp of

when that action took place. The time is specified including seconds.

• Select message types to display: Specifies the message filter level to display in the record

monitor. You can choose whether to display errors, warnings, or informational messages. The

default is to display the most detailed level: all three types of messages.

Chapter 11. Reference Guide

Table 63. Monitor toolbar options

(continued)

Button Action

The Message Text Color tab specifies the text color of the different types of messages displayed in

the recording monitor. The default colors are as follows: errors in red, warnings in yellow, and informa

tion in black. You can use this tab to change the display colors.

Related reference

Select an Object page of the Verification Point and Action Wizard on page 1548

Start application dialog box on page 1558

Record Monitor Preferences dialog box on page 1513

Related information

Working with verification points on page 698

Creating properties verification point on page 698

Creating a data verification point on page 701

Creating an image verification point on page 708

Verification Point Editor on page 711

Verification point comparator on page 717

Starting your test applications on page 692

Recording Monitor
When you begin recording, the Recording Monitor appears. The monitor is displayed while you are recording, and is

always the top window. You can minimize it or resize it. You can also choose to see only the Recording toolbar by

clicking the Display Toolbar Only button.

The monitor displays messages for every action performed during your recording session, such as starting and

pausing the recording, starting an application or browser, clicks and all other actions recorded against an application,

and inserting verification points and script support features into the script. It also displays errors. When the monitor

displays actions recorded, some of it may look like code, but this text is for informational purposes only and is not

meant to be pasted into a script.

When you stop recording, the monitor is closed. Your script and object map are then written into your project

directory. Also, the Functional Test window is restored, and the script is displayed.

The text in the record monitor is similar to the sequence of commands that will be recorded in the script. It may

contain additional information about errors that occurred during recording. The text is available while you have the

monitor open. When you end recording, the text is discarded and is not written to a file. If you want to save the text,

use the Copy Selected Text or Save Monitor Text As commands listed below, before you stop recording.

1529

HCL OneTest™ UI

1530

Toolbars

The recording monitor contains the Recording toolbar, which is the left-most set of icons, and the Monitor toolbar,

which is the right-most set. The Recording toolbar is nested within the Monitor toolbar when you open the monitor.

You can use the Recording toolbar to pause and stop recording, start applications, create a verification point, and

insert items into your script. You can undock the Recording toolbar by clicking the Display Toolbar Only button .

The monitor will float such that it only displays the Recording toolbar. To re-dock the Recording toolbar and show the

monitor, click the Display Monitor button . The display setting is a sticky setting -- if you only display the Recording

toolbar, it is displayed this way the next time you record.

For information on the Recording toolbar buttons, see Recording toolbar on page 1524.

The Monitor toolbar is always embedded in the monitor, and contains the following buttons:

 Copy Selected Text -- Copies text from the monitor. When you select text, the Copy Selected Text button

becomes enabled. You can select some or all of the text within the monitor and click the Copy Selected Text button.

The selected text is copied to your system clipboard. You can then paste the text into a new or existing file.

 Clear All Monitor Text -- Clears all text from the monitor. To save the text before you clear it, use the Copy

Selected Text button or the Save Monitor Text As button on the Monitor toolbar. Clearing the monitor text

does not affect your recorded script.

 Save Monitor Text As -- Saves all the text within the monitor to a file. It opens the Save As dialog box, which you

can use to designate the name and location of the file. The Save Monitor Text As command selects and saves all the

text into a .txt file.

 Monitor Message Preferences -- Opens the Monitor Options on page 1513 dialog box, which you can use to set

preferences for the Recording Monitor Getting Started Help, message time stamp, the message filter level, and the

message color.

When you click the Monitor Message Preferences button on the Monitor toolbar, two tabs appears: the Monitor

options tab and the Message Text Color tab.

The Monitor options tab contains the following options:

Show Getting Started Help -- Displays instructions at the top of the monitor window on how to record a script using

the buttons on the Recording toolbar. The default is to display the Getting Started Help. If unchecked, the Getting

Started Help does not display.

Include time stamp in this message -- Designates whether you want each line in the monitor to have a time stamp.

This option is off by default. When on, each message begins with the time stamp of when that action took place. The

message goes out to seconds.

Chapter 11. Reference Guide

Select message types to display -- Specifies the message filter level you want to display in the Record Monitor.

You can choose whether to display errors, warnings, or informational messages. The default is to display the most

detailed level -- all three types of messages.

The Message Text Color tab specifies the text color of the different types of messages displayed in the Recording

Monitor. The defaults are: errors in red, warnings in mustard yellow, and information in black. You can use this tab to

change to different display colors.

Recorder Monitor page
You use the Recorder Monitor page to change settings in the Recording monitor, such as displaying the recorder

toolbar or the Recorder Monitor, including a timestamp for messages, and selecting the types of messages you want

to display and their colors.

The Monitor page has the following controls:

Display recorder toolbar only -- Displays the recorder toolbar or the full Recorder Monitor window.

Include time stamp in the message -- Includes a timestamp, of the format hh:mm:ss, for each entry in the Recorder

Monitor.

Error message color -- Indicates the color of errors in the Monitor. Double-click the color to change it.

Warning message color -- Indicates the color of warnings in the Monitor. Double-click the color to change it.

Information message color -- Indicates the color of information messages in the Monitor. Double-click the color to

change it.

Select message types to display -- Enables you to include or omit any three message types that appear in the

Monitor:

• Error

• Error, Warning

• Error, Warning, Information

You can add a time to messages in the Record Monitor, and indicate the types of and colors used for the messages.

To do so, click the Message Preferences button on the Record Monitor toolbar while recording.

Restore Defaults -- Restores the default values on this page.

Apply -- Saves your changes without closing the dialog box.

1531

HCL OneTest™ UI

1532

General Recorder page
You use the General Recorder page to indicate options for recording Functional Test scripts, such as excluding an

executable from being recorded and setting the delay before recording a mouse action or a keystroke. You can also

select or clear the option to open the test object map if there is a new test object in the application.

This page has the following controls:

Note: In the Use Default field for each control, clear the check box to edit the value in the field or select the

check box to restore the default value.

Record Test Object relative Verification Point -- When selected, the test object details are not recorded while inserting

the verification points.

Maximum identifier length-- Option to control the maximum number of characters used in a Test Object identifier in

the script.

Processes excluded from testing -- Enter the executable name of the process that you do not want to record.

Separate multiple processes with commas.

Note: Only processes that are dynamically enabled must be added in this field.

Delay before recording a mouse action -- Sets the delay from the end of a mouse action to the command that

appears in the recording monitor. A shorter delay may limit the quality of recording of actions that cause state

changes. A value of 0.0 causes a delay until the beginning of the next action. If the value is lower than the double-click

interval, HCL OneTest™ UI uses the double-click interval.

Delay before recording a keystroke -- Sets the delay from the last keystroke to the inputKeys command that appears

in the recording monitor. A value of 0.0 causes a delay until the beginning of the next action.

Restore Defaults -- Restores the default values on this page.

Apply -- Saves your changes without closing the dialog box.

Bring up object map if there is new test object -- When selected, opens the test object map if a test object in the

application is not currently in the map.

To open: Click Window > Preferences. In the left pane, expand Functional Test and click Recorder.

Regular Expression Evaluator
The Regular Expression Evaluator is available from the test object map, Script Support Functions dialog box or the

Verification Point Editor. You can use it to test a regular expression while editing an object property.

Chapter 11. Reference Guide

To use the Evaluator

From the test object map or Verification Point Editor, right-click a property value and convert it to a regular expression.

When it is a regular expression, right-click again and click Evaluate Regular Expression to open the Evaluator.

The Pattern and Match Against Value fields contain the current value. To try an expression, edit the value in the

Pattern field, and click Evaluate. The Result indicates whether the expression matched.

The Evaluator has the following controls:

Pattern - This field contains the current value when you convert to a regular expression. Use this field to edit the

expression.

Perform Case Sensitive Match - This check box controls case sensitivity. It is set to "on" by default, and matching is

case-sensitive. If you want matching to ignore case, clear this check box.

Match Against Value - This field contains the current value when you convert to a regular expression. The pattern you

edit must match this expression because it reflects the property value in your application.

Result - When you click Evaluate, this field contains the result. If the patterns matches, you see MATCH in green

letters. If the pattern does not match, you see NOT A MATCH in red letters. If you use an illegal character in your

pattern, this field indicates an exception.

Matching String - If the pattern matches, you see the matching string. If you use an illegal character in your pattern,

this field gives you the error. For example, "Missing close paren" indicates that you have an open parentheses but not

a closing parentheses in the regular expression.

Evaluation Button - Edit the value in the Pattern field, and click this button to test it. Click OK to save the expression

when you are satisfied with it.

Examples Button - For examples of regular expression syntax and use cases, see Regular Expression Examples.

For more information about using regular expressions and numeric ranges, see Replacing an Exact-Match Property

with a Pattern.

Rename dialog box
You can use the Rename dialog box to rename a Functional Test script, test object map, test folder, log, or other

Java™ files in a project, verification point or test object in the Script Explorer.

When you rename a script, HCL OneTest™ UI renames the script and all its related files, such as the helper script files,

the private object map, and any verification point files. When you rename a test object map, HCL OneTest™ UI updates

associated scripts with the new map name.

Note:

1533

HCL OneTest™ UI

1534

• You need to change any callScript commands in scripts that reference the old script name; otherwise,

HCL OneTest™ UI logs an error when you run those scripts.

• For HCL OneTest™ UI, Eclipse Integration, a Rename command is available in the Navigator view that

is part of the Eclipse Workbench. This Rename command only renames an individual file, not the

collection of files that makes up a Functional Test script. Therefore, do not use the Rename command

in the Navigator view to modify any Functional Test project assets.

Current name

The name of the test asset in the project that you selected.

New name

The new name of the test asset in the project (40 characters maximum). By convention, Java™ test

script names usually start with an uppercase letter. Test asset names cannot contain the following

characters: \ / : * ? " <> | () or a space.

To open: In the Projects view, right-click the project item you want to rename and click Rename.

Renew all names in associated script (s)
You use the Renew All Names in Associated Script(s) dialog box to change all script test object names to more

meaningful and precise names. Functional Test updates the names in associated scripts from the test object map.

The Renew All Names in Associated Script(s) dialog box has the following controls:

Associated Scripts -- Select the associated scripts that contains the names you want to update.

To open: From the Test Object Map menu, click File > Renew All Names in Associated Script(s).

Renew Name in Associated Script(s) dialog box
You use the Renew Name in Associated Script(s) dialog box to change a script test object name to a more

meaningful and precise name. HCL OneTest™ UI updates the name in associated script(s) in associated script(s)

from the test object map.

The Renew Name in Associated Script(s) dialog box has the following controls:

Renew the name of map node name with -- Enter the script test object name used in the associated scripts.

Associated Scripts -- Select the associated scripts that contains the name you want to update.

To open: From the Test Object Map menu, click Test Object > Renew Name in Associated Script(s) or from the Test

Object Map toolbar, click Test Object: Renew Name in Associated Script(s).

Save File As dialog box
You use the Save File As dialog box to save a file under another name and location.

Chapter 11. Reference Guide

The Save File As dialog box has the following controls:

Enter or select the folder -- Use the navigation buttons (Home , Back , and Go Into) to select the appropriate

path to the folder you want to use.

File name -- Enter the name you want to use for the new file.

OK -- Saves the file using the new name.

Unlike the Save Script As dialog box, the Save File As dialog box saves the current file and not any related files. Use

the appropriate dialog box to get the results you want.

To open: Click File> Save As in the product menu.

Save Script As dialog box
You use the Save Script As dialog box to save a script under another name.

The Save Script As dialog box has the following controls:

Select a folder

Use the navigation buttons (Home , Back , and Go Into) to select the appropriate path to the

folder you want to use.

Script name

Enter the name you want to use for the new script. Use Java™ file naming conventions.

Finish

Saves the script and its related files, such as the helper script files, the private object map, and any

verification point files using the new name.

To open: click File> Save Script scriptname As.

HCL OneTest™ UI Script Explorer
The HCL OneTest™ UI Script Explorer lists the script helper, helper superclass or helper base class, test dataset,

verification points, and test objects for the current script.

In HCL OneTest™ UI, Eclipse Integration, the Script Explorer is the right pane of the Functional Test perspective. In HCL

OneTest™ UI, Microsoft Visual Studio .NET Integration, the Script Explorer is the left pane of the VB.NET window.

Note: If you want to simplify the Visual Studio .NET user interface, you can click the My Profile tab on the

Start page, select Student Window Layout in the Window Layout list, and select (no filter) in the Help Filter

list. The Solution Explorer and Dynamic Help display on the left side and the Script Explorer displays on the

right side of the Visual Studio .NET window.

The Verification Points folder contains all the verification points recorded for the script.

1535

HCL OneTest™ UI

1536

Double-clicking a verification point opens the Verification Point Editor on page 711.

The Test Objects folder contains a list of the test objects available for the script. Each test object in the list is

preceded by an icon that indicates its role.

Double-clicking the test object map icon opens the test object map on page 1559.

Right-clicking a verification point, test object map, or test asset listed in the Script Explorer displays various menu

options, listed here in alphabetical order.

Associate with dataset -- Associates a script with one or more datasets on page 746.

Change Superclass/Base Class -- For HCL OneTest™ UI, Eclipse Integration, displays the Select helper superclass

dialog box, which enables you to change the helper superclass for a script. For HCL OneTest™ UI, Microsoft Visual

Studio .NET Integration, displays the Select a Script Helper Base Class dialog box, which enables you to change the

helper base class for a script.

Delete -- Removes the selected verification point, test object, or test dataset from the Script Explorer and inserts a

problem marker in the Code Editor to indicate if the deleted verification point, test object, or test dataset is used.

Highlight -- Highlights the selected object in the application-under-test if it is running. For information, see Locating a

Test Object in the Application.

Insert at Cursor -- Inserts the selected verification point or test object into the script at the cursor location.

Insert Test Object -- Opens the Select an Object dialog box, which enables you to select a test object to add to the test

object map and the script.

Insert Verification Point -- Opens the Select an Object page of the Verification Point and Action Wizard, which enables

you to select an object in your application to test.

Interface Summary -- Opens a Help topic that describes the selected test object, including the supported test data

types and the default recognition properties.

Open -- If a verification point is selected, opens the Verification Point Editor. If a test object is selected, opens the test

object map and highlights the selected object. If a test dataset is selected, displays the dataset editor.

Remove dataset Association -- Removes a private or public dataset association on page 746 with a test script.

Rename -- In HCL OneTest™ UI, Eclipse Integration, opens the Rename on page 1533 dialog box. In HCL OneTest™ UI,

Microsoft Visual Studio .NET Integration, highlights the name, which enables you to type the new name.

To open: In HCL OneTest™ UI, Eclipse Integration, the Script Explorer opens (by default) in the Functional Test

Perspective. In HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, the Script Explorer opens (by default) in

the Visual Studio .NET window.

Related Topics:

Chapter 11. Reference Guide

HCL OneTest™ UI, Eclipse Integration -- About the Functional Test Perspective on page 42

Using script services
The Script Support Functions dialog box contains tabs that enable you to insert code into the current Functional

Test script to perform a variety of tasks, such as inserting a callScript command, a log message. a timer, a sleep

command, or a comment into a Functional Test script.

The Script Support Functions dialog box has the following tabs:

• Call Script -- Use to insert a statement to call another test script.

• Log Entry -- Use to insert a log message into the test script. During playback, this information is displayed in

the log.

• Timer -- Use to insert a timer into the current script and to stop the timer. Timers remain running until you stop

them explicitly or exit HCL OneTest™ UI.

• Sleep -- Use to insert a sleep command into your Functional Test script to delay the script.

• Comment -- Use to insert a comment into a Functional Test script.

• Clipboard -- Use to insert a system clipboard commands into a Functional Test script.

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar. If

editing, click the Insert Recording into Active Functional Test Script button on the Functional Test toolbar and

click the Insert Script Support Commands button on the Recording Monitor toolbar.

Call Script tab: Script Support Functions dialog box
You use the Call Script tab to insert a callScript command into your Functional Test script.

The Call Script tab has the following controls:

Script Name

Lists all the scripts in the current project.

Insert Code

Inserts the callScript(" scriptname") code in the current script at the cursor location, where

scriptname is the name you selected in the Script Name field.

dataset Iterator Count

Determines how many times a test script runs when you play back the test script. Specify the count

according to the number of records you have in the dataset. Type or select the number of records in the

dataset, or select Iterate Until Done to access all records in the dataset. For a call script, you can select

Use Current Record to use the same record across the call script.

1537

HCL OneTest™ UI

1538

Note: You can also insert a callScript command from the Functional Test Projects view or script it manually.

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and click

the Call Script tab. If editing, click the Insert Recording into Active Functional Test Script button on the product

toolbar, click the Insert Script Support Commands button on the Recording Monitor toolbar, and click the Call

Script tab.

Comment tab: Script Support Functions dialog box
You use the Comment tab to insert a comment into a Functional Test script.

The Comment tab has the following controls:

Comment to add to the script

Enter text for the comment.

Note: HCL OneTest™ UI does not automatically wrap the text. Put returns after each line.

Insert Code

Inserts the text with the appropriate comment delimiter (//) preceding each line.

To open: When recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and

click the Comment tab.

Log Entry tab: Script Support Functions dialog box
You use the Log Entry tab to insert a log message into a Functional Test scripts and indicate whether it is a message,

warning, or an error. During playback, HCL OneTest™ UI inserts this information into the log.

The Log Entry tab has the following controls:

Message to write to the log

Enter the text you want to include in the log.

Result

Select the type of message you want to add to the log. The result type will be displayed in the log.

Information

Indicates that the text will be entered as a message.

Warning

Indicates that the text will be entered as a warning. The warning state is also reflected in

the endScript message result type.

Chapter 11. Reference Guide

Error

Indicates that the text will be entered as an error. The error state is also reflected in the

endScript message result type.

Insert Code

Inserts code into the script based on the option you selected in the Result section, where message is the

text you entered:

 logInfo("message")
 logWarning("message")
 logError("message")

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and

click the Log Entry tab. If editing, click the Insert Recording into Active Functional Test scripts button on the HCL

OneTest™ UI toolbar, click the Insert Script Support Commands button on the Recording Monitor toolbar, and click

the Log Entry tab.

Sleep tab: Script Support Functions dialog box
You use the Sleep tab to insert a sleep command into your Functional Test script to delay the script the length of time

you specify.

The Sleep tab has the following controls:

(seconds) -- Enter the amount of time you want to delay Functional Test script execution in seconds. Seconds

argument is floating point. For example, Sleep (0.5) sleeps for 1/2 second.

Insert Code -- Inserts the sleep(seconds) code at the cursor location in the script where seconds is the time you

entered in the (seconds) field.

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and

click the Sleep tab. If editing, click the Insert Recording into Active Functional Test Script button on the product

toolbar, click the Insert Script Support Commands button on the Recording toolbar, and click the Sleep tab.

Timer tab: Script Support Functions dialog box
You use the Timer tab to insert a timer into the current script and to stop the timer. Timers remain running until you

stop them explicitly or exit Functional Test.

The Timer tab has the following controls:

Start Timer: Name -- Enter the name you want to use for the timer.

Insert Code -- Inserts the timerStart("name") code at the cursor location in the script, where name is the name you

entered in Start Timer: Name field.

1539

HCL OneTest™ UI

1540

Stop Timer: Timers -- Select from the list the timer that you want to stop or enter the name of a timer that was used in

another recording session. The list contains all the timers that have been started in the recording session.

Note: Do not insert a timerStop statement before the corresponding timerStart statement.

Insert Code -- Inserts the timerStop("name")code at the cursor location in the script where name is the name you

selected in Stop Timer: Timers field.

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and

click the Timer tab. If editing, click the Insert Recording into Active Functional Test Script button on the product

toolbar, click the Insert Script Support Commands button on the Recording toolbar, and click the Timer tab.

Search for Java Environments dialog box
The Search for Java™ Environments dialog box is opened using the Search button in the Java™ Environments tab of

the Enable Environments dialog box (the enabler). It is used to search your hard disk drive(s) for JREs to configure

and/or enable them.

For information about the enabler, see the Java Environments tab on page 1506.

The Search for Java™ Environments dialog has the following options:

Quick Search can only be used on Windows® systems. It searches the registry for the Java™ environments, and is

quicker than searching your hard disk drive(s).

Search All Drives scans all of your hard disk drives or partitions to locate all the Java™ environments on your system.

Note: You should not use the Search All Drives option to find JREs on Linux® or UNIX® systems. Instead use

the Search In option and browse for the JRE.

Select Search In to browse to a specific disk drive or root directory to search.

After choosing one of the search mechanisms, click the Search button. This returns you to the enabler and fills in the

Java Environments list.

Search for Web Browsers dialog box
The Search for Web Browsers dialog box is opened using the Search button in the Web Browsers tab of the Enable

Environments dialog box (the enabler). It is used to search your hard disk drive(s) for web browsers to configure and/

or enable them.

For information on the enabler, see the Web Browsers tab on page 1593.

The Search for Web Browsers dialog has the following options:

Chapter 11. Reference Guide

Select Search All to let the enabler locate all the browsers on your system. It will scan all of your hard disk drives or

partitions, and list the browsers in the Web Browsers list of the Enable Environments dialog box. The list includes the

full path name of each browser.

Note: You should not use the Search All option to find browsers on Linux® or UNIX® systems. Instead use

the Search In option and browse for it.

Select Search In to browse to a specific drive or root directory to search.

After choosing one of the search mechanisms, click the Search button. This returns you to the enabler and fills in the

Web Browsers list.

Select an Action page of the Verification Point and Action wizard
You open the Verification Point and Action Wizard with the Insert Verification Point or Action Command button on

the Recording toolbar. Use the wizard to select objects to test in your application, and to select the types of tests to

perform on them. This is how you record a verification point.

The Select an Object page on page 1548 is the first step. After you select an object, the Select an Action page

appears.

Note: By default, the After selecting an object advance to next page check box is checked. If you clear the option, you

must click Next to advance to the next page after you select an object.

On the Select an Action page, you choose an action to perform on the test object. The Select an Action page has the

following four actions:

Perform Data Verification Point -- Insert a verification point Data command on page 1504 for the selected object to

test the data in your object when you play back your script.

Perform Properties Verification Point -- Insert a Properties verification point command on page 1504 for the

selected object to test the properties in your object when you play back your script.

Perform Image Verification Point -- Insert an Image verification point command on page 1571 for the selected object

to test the image in your object when you play back your script.

Get a Specific Property Value -- Insert a getProperty command on page 1503 for the selected object to put a

getProperty into your script and return the value during playback.

Wait for Selected Test Object -- Insert a waitForExistence command on page 1505 to set a wait state for an object

during playback to check for its existence.

Select an Action page of the Verification Point and Action wizard (from Insert)
When you open the Verification Point and Action Wizard while inserting a verification point from the Script Explorer,

the Select an Object page appears.

1541

HCL OneTest™ UI

1542

Use the wizard to select objects to test in your application, and to select the types of tests to perform on them.

Here is how you create a verification point. The Select an Object page on page 1548 is the first step. After you select

an object, the Select an Action page appears.

Note: By default, the After selecting an object advance to next page check box is checked. If you clear the check box,

you must click Next to advance to the next page after you select an object.

When inserting a verification point while not recording, the Select an Action page is where you choose which

verification point to perform on the test object. The Select an Action page has the following verification points:

Perform Data Verification Point -- Insert a verification point Data command on page 1504 for the selected object to

test the data in your object when you play back your script.

Perform Properties Verification Point -- Insert a Properties verification point command on page 1504 for the

selected object to test the properties in your object when you play back your script.

Perform Image Verification Point -- Insert Image verification point command on page 1571 for the selected object to

compare the image when you play back your script.

Select an Object dialog box
You use the Select an Object dialog box to select the object in your application you want to add to the test object map

and a script.

About this task

When you select an object, HCL OneTest™ UI lists its recognition properties in the grid at the bottom of the Select an

Object page.

If you select the wrong object, or decide to add a different one, use any of the methods to select a different object.

Once you click the Finish button, the object that is listed in the grid is the one that you will be adding.

The following three selection methods are available:

 Object Finder Tool on page 1542

 Object Browser on page 1543

 Delay Method on page 1543

 Object Finder Tool

About this task

Chapter 11. Reference Guide

This is the most common and direct method of selecting an object:

1. Select the Object Finder tool icon and drag it over the object in your application that you want to select.

HCL OneTest™ UI outlines the object with a highlight border.

2. Release the mouse button.

The object is selected and HCL OneTest™ UI lists its recognition properties in the grid at the bottom of the

Select an Object page.

 Object Browser

About this task

Use the Object Browser method to browse for the object you want to add to the test object map. The browser displays

a hierarchical tree of objects in your application. The top level shows any applications you have running. Under each

top level, HCL OneTest™ UI displays the object hierarchy within that application.

1. Browse the object tree to find the object you want to add to the test object map.

2. Click the object to select it.

HCL OneTest™ UI lists the object's recognition properties in the grid at the bottom of the Select an Object

page.

 Delay Method

About this task

Use the Delay method to select pop-up objects, such as menus. This method uses the Object Finder tool, but enables

you to set a delay, which gives you time to get to an object that requires clicking on other objects first.

1. In the Seconds before selection field, enter the number of seconds you want to delay before HCL OneTest™ UI

attempts to find the object (the default is 10 seconds).

2. Click the Object Finder tool icon .

3. Go to the application and find the object you want to select.

Anything you do during the delay period is not recorded, which enables you to dig for objects if necessary.

1543

HCL OneTest™ UI

1544

When the timer runs out, HCL OneTest™ UI selects the object under the cursor, outlines the object with a

highlight border, and displays its Recognition properties in the grid at the bottom of the Select an Object page.

Note: In order for delayed location of the objects to play back correctly, the object must be exposed

by actions in the script. If the object is not exposed, an Object Not Found exception is thrown during

playback.

Results

Object Recognition Properties Grid

When you select an object using any of the above methods, its Recognition properties are listed in the grid at the

bottom of the tab. The Recognition properties are determined by the object's proxy. For example, a button object has

three recognition properties: label, .class, and .classIndex. The grid lists the name and value of your specific object's

recognition properties. You can use that information to confirm that you selected the correct object.

To open: From the product toolbar, click the Insert Test Object into Active Functional Test script button . You can

also right-click the Test Objects folder in the Script Explorer and select Insert Test Object.

Select an Object page of the Insert a GUI Object into the Object Map wizard
You use the Select an Object page of the Insert a GUI Object into the Object Map dialog box to select the object in

your application you want to add to the test object map.

About this task

When you select an object, HCL OneTest™ UI lists its recognition properties in the grid at the bottom of the Select an

Object page.

If you select the wrong object, or decide to add a different one, use any of the methods to select a different object.

Once you click the Finish button, the object that is listed in the grid is the one that you will be adding.

The following three selection methods are available:

 Object Finder Tool on page 1544

 Object Browser on page 1545

 Delay Method on page 1545

 Object Finder Tool

About this task

Chapter 11. Reference Guide

Using the Object Finder tool is the most common and direct method of selecting an object:

1.

Select the Object Finder tool icon and drag it over the object in your application that you want to select.

HCL OneTest™ UI outlines the object with a highlight border.

2.

Release the mouse button.

The object is selected and HCL OneTest™ UI lists its recognition properties in the grid at the bottom of the

Select an Object page.

Results

Select the After selecting an object advance to next page option to go directly to the next page after you select the

object. Clear the advance to next page option to remain on the Select an Object page to see the object recognition

properties after you select the object.

 Object Browser

About this task

Use the Object Browser method to browse for the object you want to add to the test object map. The browser displays

a hierarchical tree of objects in your application. The top level shows any applications you have running. Under each

top level, HCL OneTest™ UI displays the object hierarchy within that application.

1. Browse the object tree to find the object you want to add to the test object map.

2.

Click the object to select it.

HCL OneTest™ UI lists the object's recognition properties in the grid of the Select an Object page.

 Delay Method

About this task

Use the Delay method to select pop-up objects, such as menus. The Delay method uses the Object Finder tool, but

enables you to set a delay, which gives you time to get to an object that requires clicking on other objects first.

1. In the Seconds before selection field, enter the number of seconds you want to delay before HCL OneTest™ UI

attempts to find the object (the default is 10 seconds).

2. Click the Object Finder tool icon .

3. Go to the application and find the object you want to select.

1545

HCL OneTest™ UI

1546

Anything you do during the delay period is not recorded, which enables you to "dig" for objects if necessary.

When the timer runs out, HCL OneTest™ UI selects the object under the cursor, outlines the object with a

highlight border, and displays its recognition properties in the grid at the bottom of the Select an Object page.

Note: In order for delayed location of the objects to play back correctly, the object must be exposed

by actions in the script. If the object is not exposed, an Object Not Found exception is thrown during

playback.

Results

Select the After selecting an object advance to next page option to go directly to the next page after you select the

object. Clear the advance to next page option to remain on the Select an Object page to see the object recognition

properties after you select the object.

Object Recognition Properties Grid

When you select an object using any of the above methods, its recognition properties are listed in the grid at the

bottom of the Select an Object page. The Recognition properties are determined by the object's proxy. For example,

a "button" object has three Recognition properties: label, .class, and .classIndex. The grid lists the name and value of

your specific object's Recognition properties. You can use the Recognition Properties information to confirm that you

selected the correct object.

To open: From the Test Object Map menu, click Test Object > Insert Object(s). From the Test Object Map toolbar,

click the Test Object: Insert Object(s) button . You can also right-click in the test object map and click Insert Test

Object(s).

Select an Object page of the Update Recognition Properties wizard
You use this page of the Update Recognition Properties wizard to select the object in your application for which you

want to update recognition properties.

About this task

When you select an object, HCL OneTest™ UI lists its recognition properties in the grid at the bottom of the Select an

Object page.

If you select the wrong object, or decide to add a different one, use any of the methods to select a different object.

The following three selection methods are available:

 Object Finder Tool on page 1547

 Object Browser on page 1547

Chapter 11. Reference Guide

 Delay Method on page 1547

 Object Finder Tool

Before you begin

About this task

The Object Finder tool is the most common and direct method of selecting an object:

1. Select the Object Finder tool icon and drag it over the object in your application that you want to update.

HCL OneTest™ UI outlines the object with a highlight border.

2. Release the mouse button.

The object is selected and HCL OneTest™ UI lists its recognition properties in the grid at the bottom of the

Select an Object page.

Results

Select After selecting an object advance to next page option to go directly to the next page after you select the

object. Clear the advance to next page option to remain on the Select an Object page to see the object recognition

properties after you select the object.

 Object Browser

About this task

Use the Object Browser method to browse for the object you want to update. The browser displays a hierarchical

tree of objects in your application. The top level shows any applications you have running. Under each top level, HCL

OneTest™ UI displays the object hierarchy within that application.

1. Browse the object tree to find the object you want to update.

2. Click the object to select it.

HCL OneTest™ UI lists the object's recognition properties in the grid at the bottom of the Select an Object

page.

 Delay Method

About this task

Use the Delay method to select pop-up objects, such as menus. The Delay method uses the Object Finder tool, but

enables you to set a delay, which gives you time to get to an object that requires clicking on other objects first.

1547

HCL OneTest™ UI

1548

1. In the Seconds before selection field, enter the number of seconds you want to delay before HCL OneTest™ UI

attempts to find the object (the default is 10 seconds).

2. Click the Object Finder tool icon .

3. Go to the application and find the object you want to select.

Anything you do during the delay period is not recorded, which enables you to dig for objects if necessary.

When the timer runs out, HCL OneTest™ UI selects the object under the cursor, outlines the object with a

highlight border, and displays its recognition properties in the grid at the bottom of the Select an Object page.

Results

Select After selecting an object advance to next page option to go directly to the next page after you select the

object. Clear the advance to next page option to remain on the Select an Object page to see the object recognition

properties after you select the object.

Object Recognition Properties Grid

When you select an object using any of the above methods, its recognition properties are listed in the grid at the

bottom of the Select an Object page. The recognition properties are determined by the object's proxy. For example, a

button object has three recognition properties: label, .class, and .classIndex. This grid lists the name and value of your

specific object's recognition properties. You can use that information to confirm that you selected the correct object.

To open: From the test object map menu, select Test Object > Update Recognition Properties. From the Test Object

Map toolbar, click the Test Object: Update Recognition Properties button . You can also right-click in the test

object map and select Update Recognition Properties.

Select an Object page of the Verification Point and Action Wizard

The Verification Point and Action Wizard is opened with the Insert Verification Point or Action Command button

on the Recording toolbar or the product toolbar. It is used to select objects or images to test in your application, and

to select the types of tests to perform on them.

The Select an Object page is the first step. You use one of the selection methods on this page to select the object in

your application you want to perform a test on. When the object is selected, its recognition properties are listed in the

grid at the bottom of the page.

To perform an image verification test, use the Capture Screen Image tool to select the image or use the Object Finder

tool to select the object and create an image verification point.

If you select the wrong object, or decide to test a different one, use any of the methods and select a different object.

It will then be shown in the grid. Once you advance past this first page by clicking the Next button, the object that is

listed in the grid is the one that you will be testing. After you select a test object, you'll select an action in the next

page of the wizard. Once you have moved on, you can always click the Back button to select a different object.

Chapter 11. Reference Guide

The following three selection methods are available:

Object Finder Tool

Use this tool to select an object and all descendents of the object, select one object, or select an object and the

immediate children of an object.

This is the most common and direct method of selecting an object. Grab the Object Finder tool icon with your mouse

and the cursor turns into the tool. Drag it over the object in your application that you want to select. You'll see that the

object is highlighted and the object name is displayed. When you release the mouse button, the object is selected,

and its recognition properties are listed in the grid.

Note that you can also use the Insert Verification Point or Action Command button on the Recording toolbar

directly to select an object. If you click it and drag it off of the toolbar, it will become the object selector tool from this

page of the wizard.

If the After selecting an object advance to next page option is selected, you'll go directly to the next page of the

wizard after you select the object. Clear this option if you want to remain on this page to see the object recognition

properties after selecting the object.

Object Browser

Use this method to browse for the object that you want to select. The browser displays a hierarchical tree of objects

in your application. The top level shows any applications you have running. Under each top level,HCL OneTest™ UI

displays the object hierarchy within that application. It is a dynamic view of the currently available objects.

Using this method, you browse for your object. The browser displays a hierarchical tree of objects in your system that

are testable. The top level shows any applications you have running, and under each one is the object hierarchy within

that application. It is a dynamic view of the currently available objects. Browse the object tree till you find the object,

then click it. That will select it, and its recognition properties will be listed in the grid.

Delay Method

Use this method to select pop-up objects, such as menus. This method uses the Object Finder tool, but enables you to

set a delay, which gives you time to get to an object that requires clicking on other objects first.

This uses the Object Finder tool, but with a delay that you set. The delay gives you time to get to an object that

requires clicking on other objects first, such as a menu command. Set the number of seconds (the default is 10),

then click the tool icon. Move your mouse to hover over your application until you get to the object you want to

select. Anything you do during that delay period is not recorded. This allows you to "dig" for objects if necessary. For

example, you might click with your mouse to cause a menu to open. The timer counts down, and when it runs out the

object under the cursor is selected, and its recognition properties will be listed in the grid.

1549

HCL OneTest™ UI

1550

Note: In order for the delayed location of objects to play back correctly, the object must be exposed by

actions in the script. If the object is not exposed, an Object Not Found Exception is thrown during playback.

If the After selecting an object advance to next page option is selected, you'll go directly to the next page of the

wizard after you select the object. Clear this option if you want to remain on this page to see the object recognition

properties after selecting the object.

Object recognition properties grid

When the object is selected by any of the above methods, its recognition properties are listed in the grid at the bottom

of the page. The recognition properties are determined by the object's proxy. For example, a "button" object has three

recognition properties: label, .class, and .classIndex. This grid will list the name and value of your specific object's

recognition properties. You can use that information to confirm that you selected the correct object. If no information

is listed, the object is not testable or the environment may not be enabled.

Capture Screen Image

To perform image verification test, use the Capture Screen Image tool to capture the screen. This tool captures

the full image of the screen.

Your next step

After you select an object using one of the methods listed above, click the Next button to choose an action to perform

on the object. These include creating a data verification point, creating a properties verification point, creating an

image verification point, getting a single property value, or setting a wait state on an object. For more information on

the actions, see the Select an Action Page on page 1541.

Select Helper Superclass/Select a Script Helper Base Class dialog box
In HCL OneTest™ UI, Eclipse Integration, use the Select Helper Superclass dialog box to select a helper superclass to

add to the script. In HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, use the Select a Script Helper Base

Class dialog box to select a helper base class to add to the script.

The Select Helper Superclass/Select a Script Helper Base Class dialog box has the following controls:

Select default helper superclass for the script (HCL OneTest™ UI Eclipse Integration only) -- Enter a partial or

complete fully qualified class name of your custom helper superclass in this field, which enables you to display

the class names in the Matching Types list. Note that your helper superclass must extend RationalTestScript. The

asterisk (*) indicates that all the classes that are not scripts appear in the Matching Types list.

Matching types -- Displays a list of classes. The default class is RationalTestScript. You can change the default

helper superclass on page 683 for a project on the Functional Test Project Properties Page on page 1491 or for an

individual script on the Functional Test Script Properties Page on page 1494.

Qualifier -- Displays the location of the selected class.

Chapter 11. Reference Guide

To open: Click the Record a Functional Test Script button on the product toolbar, and click Next. On the Select Script

Assets page, click Browse for Helper Superclass.

Select Items to Export page
You use the Select Items to Export page of the Export wizard to choose the project items such as scripts, test object

maps, Java™ files or Visual Basic files, and datasets that you want to export to another Functional Test project.

Select items to export -- Lists all scripts and associated files, test object maps, datasets, and Java™ files or Visual

Basic files. Select the check boxes of the items you want to export and clear those you do not want to export.

When you export a script, HCL OneTest™ UI includes any necessary files, such as shared test object maps, even

though they are not checked in the Select items to export field.

Specify the export destination -- Enter the name or navigate to the data transfer file, which is the file you want to use

to export the project items you have selected. If the file does not exist, HCL OneTest™ UI creates it using the name

you enter and appends a .rftjdtr extension.

Finish -- Compresses a copy of the files into a data transfer file with the name you specified and appends .rftjdtr

extension.

To open: Select the project in the Project view, click File > Export, select Functional Test Project Items and click Next.

Select Items to Overwrite page
HCL OneTest™ UI displays the Select Items to Overwrite page if the project already contains any of the items you are

importing. You use the page to select the check boxes of the items that you want to overwrite in the project or clear

the items that you do not want overwritten.

Select All -- Overwrite all items in the project with items listed on the page.

Deselect All -- Clear all items in the list so that none of them are overwritten.

Finish -- Add all project items from the data transfer file to the project, overwriting only those you specified.

• When you overwrite a script, HCL OneTest™ UI overwrites all the necessary files associated with the script,

such as the test object map and the dataset. Other files in the project associated with the overwritten script,

such as verification points, are deleted.

To open: In the Import Project Items page, click Next. HCL OneTest™ UI displays the Select items to overwrite page if

the project already contains any of the assets you are importing.

Select object options page
You can use the Select Object Options page to select whether you want to add a selected object, a selected object

and its immediate children, or all descendents of the selected object in a dataset table.

1551

HCL OneTest™ UI

1552

Selected object

Displays the name of the object that you selected.

Just the selected object

Click to include only the selected object in a dataset table.

Include the immediate children of the selected object

Click to include only the immediate children of the selected object in a dataset table.

Include all descendents of the selected object

Click to include all descendents of the selected object, whether displayed or not in a

dataset table.

To open: Start recording a test script on page 676, click Insert Data Driven Commands (), on the Recording

toolbar. Click Use selection wizard to select test object. Select an object using the Test Object Browser or Drag Hand

Selection method. Click Next.

Note: The Drag Hand Selection method is not available on Linux environments such as Ubuntu and Red Hat

Enterprise Linux (RHEL). You must use the Test Object Browser method on Linux environments.

Select Log page
Use the Select Log page to select a log and specify whether to have the Script Launch wizard open when you run a

script.

The Select Log page has these controls:

Log Name for script name: Click to list all the log names for the current project. Enter or select a log name to create a

log that displays your playback results.

Don't show this wizard again: Select to prevent the Script Launch wizard from starting each time you run a test script.

By default, the Script Launch wizard starts. To prevent the Script Launch wizard from starting when you run a test

script:

1. Click Windows > Preferences

2. Click Functional Test > Playback > Logging.

3. On the Logging options page, select the Don't show script launch wizard check box.

Enable handling of unexpected windows: If the unexpected window handling feature has been enabled for all scripts

in the Preferences dialog box, this check box is selected. Clear the check box if you do not want to enable the feature

for the script you are running.

If the unexpected window handling feature has not been enabled for all scripts in the Preferences dialog box, this

check box is not selected. Select the check box if you want to enable the feature for the script you are running.

Chapter 11. Reference Guide

Actions that have been configured for specific controls on unexpected windows in the Configure Handling of

Unexpected Windows dialog box are performed.

Enable script find if scoring find fails: If the dynamic find feature has been enabled for all scripts in the Preferences

dialog box, this check box is selected. Clear the check box if you do not want to enable the feature for the script you

are running. The dynamic find feature enables HCL OneTest™ UI to locate test objects in the application-under-test

whose hierarchical position may have been altered from the position in the test object map, ensuring that playback

does not fail.

If the dynamic find feature has not been enabled for all scripts in the Preferences dialog box, this check box is not

selected. Select the check box if you want to enable the feature for the script you are running.

To open the Select Log page:

• Click a script and click the Run Functional Test Script button in the product toolbar.

• In the Projects view, right-click a script, and click Run.

• In the Projects view, click a script, and from the product menu click Script > Run.

Select Object Options page of the Insert GUI Object into the Object Map wizard
You use the Select Object Options page of the Insert a GUI Object into the Object Map dialog box to indicate that you

want to add just one object, just the one object and its siblings, or all objects on the window.

The Select Object Options page has the following controls:

Just the selected object -- Includes in the test object map only the object you selected from the Select an Object page

in the Insert a GUI Object into the Object Map dialog box.

Include the siblings of the selected object -- Includes the children of the immediate parent.

Include all available objects on this window -- Includes in the test object map the object you selected on the Select an

Object page in the Insert a GUI Object into the Object Map dialog box and all the other objects on the window, whether

displayed or not.

Back -- Returns to the Select an Object page in the Insert a GUI Object into the Object Map dialog box.

Finish -- Creates and displays the new test object map with the objects you selected.

Cancel -- Closes the Insert a GUI Object into the Object Map dialog box without adding the objects you selected.

Help -- Displays information about the Insert a GUI Object into the Object Map dialog box.

To open: When adding test objects to an object map, click Next on the Select an Object page in the Insert a GUI Object

into the Object map dialog box.

1553

HCL OneTest™ UI

1554

Select object to data drive page
You can use the Select Object to Data Drive page to select an object that you want to data drive in your application-

under-test. After you select an object, the objects recognition properties appear in the Object Recognition Properties

grid at the bottom of the page.

Selection method

Click one of the selection methods from the list to select an object to data drive.

Drag Hand Selection

This is the most common and direct method of selecting an object. Click and drag the

Object Finder tool over an object that you want to data drive, and then release the mouse

button.

 Object Finder icon

Click and drag over an object that you want to data drive.

After selecting an object advance to next page

Clear or select to go to the next page automatically after you select an

object.

Note: The Drag Hand Selection method is not available on Linux environments

such as Ubuntu and Red Hat Enterprise Linux (RHEL). You must use the Test

Object Browser method on Linux environments.

Test Object Browser

Use this selection method to browse for the object you want to data drive. The browser

displays a hierarchical tree of objects in your application. The top level shows any

applications you have running. Under each top level, HCL OneTest™ UI displays the object

hierarchy within that application. The object hierarchy is a dynamic view of the currently

available objects. Browse the object tree until you find the object you want, and then click

it. The object recognition properties appear in the grid.

Object Recognition Properties Grid

When you select an object using any of the selection methods, the object recognition properties are

listed in the grid at the bottom of the tab. The recognition properties are determined by the object's

proxy. For example, a "button" object has three recognition properties: label, .class, and .classIndex.

This grid lists the name and value of your specific object's recognition properties. You can use that

information to confirm that you selected the correct object.

To open: Click Insert Data Drive Commands () on the Recording toolbar. Click Use selection wizard to select test

objects.

Chapter 11. Reference Guide

Select Script Assets page
You use the Select Script Assets page to select the type of object map, helper superclass or helper base class, test

dataset, and dataset iterator class you want to use with the Functional Test script you are creating.

The Select Script Assets page has the following controls:

Test Object Map -- Opens Private Test Object Map to indicate that the script test object map is private or displays the

name of the shared test object map.

Helper Superclass -- Enter the fully qualified class name of your custom helper superclass in this field. Note that your

helper superclass must extend RationalTestScript.

If you change your superclass or base class and reset it to RationalTestScript, you can either type RationalTestScript

in the superclass or base class field or clear the field. Leaving this field blank resets the script so that it uses

RationalTestScript.

Test dataset -- Click Browse to change the dataset associated with a script.

dataset Record Selection Order -- Determines how a test script accesses records in its associated dataset when you

play back the test script. Click the dataset Record Selection Order arrow to change the dataset record selection order.

Types of dataset record selection orders:

Sequential -- Makes a test script access records in the dataset in the order that they appear in the dataset. This is the

default dataset record selection order.

Random -- Makes a test script access records in the dataset randomly. A random dataset record selection order

accesses every record in the dataset once.

Set as test asset default for new scripts in this project -- Sets the test object map or the helper superclass as the

default. Functional Test uses this default when you create a Functional Test script in the current project.

• Test Object Map -- Sets the map named in the Test Object Map field as the default. To change the default test

object map in the Projects view, right-click a test object map and select Set Test Object Map as Default. To

remove the default designation, right-click and click Clear As Project Default.

• Helper Superclass -- Sets the fully qualified class name of your custom helper superclass as the default.

Back -- Returns to the previous page.

Finish -- Creates the script, using the test object map you selected, and adds it to the Functional Test Projects view.

To open: When recording, click Next in the Record a Functional Test Script dialog box. When creating a new script

without recording, click Next in the Create a New Functional Test Script dialog box.

s

1555

HCL OneTest™ UI

1556

Select Script to Play Back/Select Script to Debug dialog box
You can use the Select Script to Play Back or Select Script to Debug dialog box to select the Functional Test script

that you want to play back or debug.

You can only play back or debug one script at a time.

Script Name

Type the name of the script that you want to play back or debug, or select a script from the list.

Finish

Click to play back or debug the script.

Set Active Find Criteria dialog box
You use the Set Active Find Criteria dialog box to select the filter you want to use for searching the test object map, to

create a new filter, and to edit or delete an existing filter.

The Set Active Find Criteria dialog has the following controls:

Find Filter Names -- Lists the names of all the active find criteria available. The default is Test Object is New, which

searches the test object map for all New objects.

Find Filter -- Lists all the find criteria, their properties, and relationships.

Create -- Displays the Define Find Filter Properties on page 1474 dialog box, which enables you to specify properties

for a new set of find criteria.

Edit -- Displays the Define Find Filter Properties on page 1474 dialog box, which enables you to change properties for

the selected find criteria.

Delete -- Deletes the selected find filter from the list.

OK -- Runs the selected filter.

Cancel -- Closes the dialog box without making any changes.

To open: From the test object map menu, select Find > Find by Filters; from the test object map toolbar, click the Find:

Filters button .

Set Description Property for Selected Test Object dialog box
You use the Set Description Property for Selected Test Object dialog box to add descriptive text to the Administrative

property set tab for the object. HCL OneTest™ UI displays the description when you place the cursor over the object

name in a script.

Note: HCL OneTest™ UI places the description in the helper class. The description is not inserted until the

helper class file is regenerated, which occurs automatically when you record, playback, or update recognition

Chapter 11. Reference Guide

properties. To manually regenerate the helper class file, in the HCL OneTest™ UI menu, click Script > Update

Script Helper.

Test Object Description for object, enter the text you want to use for the description property for the object named.

If a description property already exists for the test object, Functional Test displays it in the text box, which you can

edit as necessary.

To open: Select an object in the test object map and either from the test object map menu, click Test Object >

Description Property or from the test object map toolbar click the Test Object: Description button . You can also

right-click a test object and click Description Property.

Set Highlight Window Preferences dialog box
You use the Set Highlight Window Preferences dialog box to specify how you wantHCL OneTest™ UI to emphasize

test objects in applications-under-test when you select them in a test object map or in the Script Explorer. These

settings also control howHCL OneTest™ UI highlights objects you select with various other wizards and dialog boxes,

such as Verification Point and Action Wizard and the Insert a GUI Object into the Object Map dialog box.

Notes:

• You can also set these highlight preferences in the Highlight on page 641 page.

• Changes in this dialog box affect your user profile only.

The Set Highlight Window Preferences dialog box has the following controls:

Color -- Click to display a color selection palette from which you can click the color you want to use to indicate

selected test objects. The field displays the RGB values of the color currently in use. Red (RGB=255,0,0) is the default.

Border Width (in pixels) -- Move the slider from Thin to Wide to designate the width of the border around the selected

object.

Flash Speed -- Move the slider from Slow to Fast to designate the rate at which you want the border around a selected

object to flash when selected.

Display Time -- Move the slider from Short to Long to designate the length of time you want the border highlighted.

To open: In the test object map menu, click Preferences > Highlight.

Sleep tab: Script Support Functions dialog box
You use the Sleep tab to insert a sleep command into your Functional Test script to delay the script the length of time

you specify.

The Sleep tab has the following controls:

1557

HCL OneTest™ UI

1558

(seconds) -- Enter the amount of time you want to delay Functional Test script execution in seconds. Seconds

argument is floating point. For example, Sleep (0.5) sleeps for 1/2 second.

Insert Code -- Inserts the sleep(seconds) code at the cursor location in the script where seconds is the time you

entered in the (seconds) field.

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and

click the Sleep tab. If editing, click the Insert Recording into Active Functional Test Script button on the product

toolbar, click the Insert Script Support Commands button on the Recording toolbar, and click the Sleep tab.

Start application dialog box
You can open the Start Application dialog box with the Start Application button on the Recording toolbar to start your

test application while you are recording.HCL OneTest™ UI inserts a startApp command into your script.

Application Name

Click the arrow to see the list of applications you can test. Java™ applications will be indicated as "Application name -

java", HTML applications will be indicated as "Application name - htm", and executables or batch files as "Application

name - executable". Select the application you want to open and click OK.

HCL OneTest™ UI is shipped with several sample applications that will appear in the Start Application dialog box. For

example, "ClassicsJavaA - java" is used in theHCL OneTest™ UI Tutorial. To run the tutorial, see theHCL OneTest™ UI

tutorials.

You can configure your own applications so that they will appear in this list and you can start them using this dialog

box. You add your applications by clicking the Edit Applications List button.

Edit Applications List Button

When you click the Edit Applications List button, the Application Configuration Tool opens, which you can use to

add and configure your applications for testing. If the application information has already been entered, you can edit

the information. You also use the Application Configuration Tool dialog box to add applications. For information on

editing or adding application information, see the Application Configuration Tool on page 1457.

Tasks view
The Tasks View displays errors, warnings, or other information automatically generated by the compiler.

By default, this view lists all tasks for all files in the project. You can apply a filter here by clicking the Filter button

 in the Tasks View banner. You may want to restrict the Tasks View to showing tasks associated with the current

script.

Refer to the online Workbench User Guide for more information.

To open: In the Functional Test Perspective, click the Tasks tab.

Chapter 11. Reference Guide

Test object maps
The HCL OneTest™ UI test object map lists the test objects in the application-under-test. It is a static view that

describes test objects known to HCL OneTest™ UI in the application-under-test.

A test object map can include objects from multiple applications. The test object map provides a quick way to add

test objects to a script. Because the test object map contains recognition properties for each object, you can update

the information in one location. Any scripts that reference that test object map share the updated information.

When you record a script, HCL OneTest™ UI creates a test object map (or uses an existing shared map) for the

application-under-test. Each script is associated with a test object map file. The map file can be private, associated

with only the script (*.rftxmap), or shared between scripts (*.rftmap).

You can merge multiple private or shared test object maps into a single shared test object map.

You can create a new test object map to customize the information associated with a script. You can edit an existing

test object map, add objects to the map, delete objects, update the recognition properties or unify two objects in the

map. Additionally, you can delete a test object map.

You can insert dynamic objects. A test objects in the object map are in a hierarchy. The hierarchy of the objects may

change if new objects are introduced in the test application. This results in a playback failure. Using dynamic test

objects you can anchor a test object as a descendant to its parent making the playback resilient to hierarchy changes.

Anchoring a test object to its parent will ensure that only direct descendants of the test objects are searched.

You can display a list of scripts associated with a test object map. You can use this list to add test objects to multiple

scripts.

Test object inspector
You use the Test Object Inspector to view properties of selected test objects visible in the running application and

display information about those objects, such as parent hierarchy, inheritance hierarchy, test object properties,

nonvalue properties, and method information.

The Test Object Inspector displays information for the test object under the cursor.

Test object inspector menu

The test object map menu has the following options:

File Menu Options:

Exit -- Closes the Test Object Inspector window.

Option Menu Options:

Hide not mappable -- Parent test object nodes that do not appear in the object map are not included.

Hexadecimal -- Displays in hexadecimal Long, Integer, Short, and Byte number properties in the properties page.

1559

HCL OneTest™ UI

1560

Show rectangles -- In the Parent Hierarchy view, displays screen coordinates for the test object. This option is not

enabled as a default, because it may slightly slow display time.

Show domains -- List the domain name for each test object.

Show Standard Properties Only -- Displays only standard properties, which provide a common way to access

properties and their values across platforms.

Always On Top -- When selected, the Test Object Inspector window is always the topmost window on the screen.

Show Interfaces -- Display interfaces implemented by the classes in the Inheritance hierarchy.

Show Full Names -- Show full class names. For example, show "java.awt.Button" rather than "Button".

Show Menu Options:

Show Parent Hierarchy -- Displays the directed list of parents as in the test object map. Parent test object nodes that

will not appear in the object map are labeled Not Mapped.

Inheritance Hierarchy -- Displays the class inheritance hierarchy for the selected test object, including any interfaces

supported at each level of the hierarchy.

Show Properties -- Displays the object properties that appear in an object properties verification point associated with

the selected test object.

Show Nonvalue Properties -- Displays a set of complex properties such as buttons and check boxes, which are not

treated as values in the script. You can access these properties indirectly.

Show Method Information -- Displays the visible methods for the selected test object. These are the methods and

necessary information to use the methods using the method available for every test object.

Applications Menu Options:

Run -- Opens the Start Application dialog box on page 1558, which enables you to start a specific application and add

test objects to the test object map.

The Applications Menu also lists all the applications that have been configured.

Help Menu Options:

Help -- Displays online Help for the Test Object Inspector.

Test Object Inspector Toolbar

The Test Object Inspector toolbar has the following buttons:

 Show Parent Hierarchy -- Displays the directed list of parents as in the test object map. Parent test object nodes

that do not appear in the object map are labeled Not Mapped.

Chapter 11. Reference Guide

 Show Inheritance Hierarchy -- Displays the class inheritance hierarchy for the selected test object, including any

interfaces supported at each level of the hierarchy.

 Show Test Object Value Properties -- Displays the object properties that appear in an object properties verification

point associated with the selected test object.

 Show Test Object Nonvalue Properties -- Displays a set of complex properties such as buttons and check boxes,

which are not treated as values in the script. You can access these properties indirectly.

 Show Method Information -- Displays the visible methods for the selected test object. These are the methods and

necessary information to use the methods using the method available for every test object.

 Pause -- Temporarily suspends the tool.

 Resume -- Enables you select another object in the application.

To open: For HCL OneTest™ UI, Eclipse Integration, from the product menu, click Run > Test Object Inspector. For

HCL OneTest™ UI, Microsoft Visual Studio .NET Integration, from the Functional Test menu, click Tools > Test Object

Inspector. From the toolbar, click the Open Test Object Inspector button .

• For an enabled Java™ or already-infested application, Test Object Inspector tracks the cursor and performs

live updates immediately after you open the application.

• If the application is not active, Test Object Inspector does not capture objects in the application. You must

pause on the application to force the infestation before Test Object Inspector can track the cursor and

perform live updates against that application. To pause on the application, hover the mouse over the object in

the application, and press Shift. Test Object Inspector captures the object.

• When you press Shift to select the test object, Test Object Inspector copies the information displayed in the

Test Object Inspector window to the system Clipboard.

Message Text Color tab
You use the Message Text Color tab of the Monitor Options dialog box to select the text color for the different types

of messages displayed in the Recording Monitor. The colors you select stay in effect until you change them again.

Note:

• You can also set preferences for the Recording Monitor in the Recorder: Monitor page of the

Preferences dialog box on page 654.

• Changes in the Monitor Options dialog box affect your user profile only.

The Message Text Color tab has the following controls:

1561

HCL OneTest™ UI

1562

Select Message Level -- Select the type of message you want to set color for: Error, Warning, or Information.

Apply -- Makes the changes you have indicated without closing the Message Options dialog box.

Choose Text Color for Message Level -- Use any of the three tabs to select the color you want to use for the message:

• Swatches enables you to click the color you want to use. Recent displays the colors you selected while the

dialog box was open.

• HSB enables you to select a color through its Hue, Saturation, and Brightness levels. The slider affects the

hue. The resultant RGB values are also displayed.

• RGB enables you to enter a value or use a slider to select the levels of red, green, and blue. Values you select

in this tab are also displayed in the R, G, and B fields in the HSB tab.

Preview -- Provides examples of the color you selected.

To open: When recording, click the Monitor Message Preferences button on the Recording Monitor toolbar and

click the Message Text Color tab.

Timer tab: Script Support Functions dialog box
You use the Timer tab to insert a timer into the current script and to stop the timer. Timers remain running until you

stop them explicitly or exit Functional Test.

The Timer tab has the following controls:

Start Timer: Name -- Enter the name you want to use for the timer.

Insert Code -- Inserts the timerStart("name") code at the cursor location in the script, where name is the name you

entered in Start Timer: Name field.

Stop Timer: Timers -- Select from the list the timer that you want to stop or enter the name of a timer that was used in

another recording session. The list contains all the timers that have been started in the recording session.

Note: Do not insert a timerStop statement before the corresponding timerStart statement.

Insert Code -- Inserts the timerStop("name")code at the cursor location in the script where name is the name you

selected in Stop Timer: Timers field.

To open: If recording, click the Insert Script Support Commands button on the Recording Monitor toolbar and

click the Timer tab. If editing, click the Insert Recording into Active Functional Test Script button on the product

toolbar, click the Insert Script Support Commands button on the Recording toolbar, and click the Timer tab.

Chapter 11. Reference Guide

Unify Test Objects dialog box
You use the first page of the Object Map: Unify Test Objects wizard to combine two objects within an object map,

unify their properties, and automatically fix scripts to refer to the combined object.

The Unify Test Objects dialog box has the following controls:

Total number of source test objects affected -- Displays the number of test objects associated with the selected

source object that will also be unified.

Total number of target test objects affected -- Displays the number of test objects associated with the selected target

object that will also be affected.

Unified Test Object Properties -- Lists the Administrative and Recognition properties the unified object will have.

Source: object -- Lists the Administrative and Recognition properties of the source test object. To include any of the

source test object properties in the unified test object properties, double-click the source property or copy/paste into

the Unified Test Object Properties.

Target: object -- Lists the Administrative and Recognition properties of the target test object. To include any of the

target test object properties in the unified test object properties, double-click the target property or copy/paste into

the Unified Test Object Properties.

Right-clicking a property in any of the three grids displays these various options:

Open -- Displays the value in a separate window, which enables you to see long lines of text.

 Case Sensitive Regular Expression -- Toggles case-sensitive comparison on and off.

 Evaluate Regular Expression -- Displays the Regular Expression Evaluator on page 1532, which enables you to

test the regular expression before you use it.

 Convert Value to Regular Expression -- Converts the recognition property value to a regular expression. See

Replacing an Exact-Match Property with a Pattern for more information.

 Undo/Redo Regular Expression -- Converts the regular expression back to the original value.

 Convert Value to Numeric Range -- Converts the recognition property value in the grid to a numeric range. See

Replacing an Exact-Match Property with a Pattern for more information.

 Undo Numeric Range -- Converts the numeric range back to the original value.

Cut -- Removes the selected line from the grid and puts it on the Clipboard.

Copy -- Places a copy of the selected item on the Clipboard.

Paste -- Inserts the contents of the Clipboard into the grid.

1563

HCL OneTest™ UI

1564

Delete -- Removes the selected line from the grid.

Next -- Displays the second page of the Unify Test Objects wizard on page 1564, which lists all the scripts that

reference the test object and that will be affected.

Finish -- Deletes the source object(s) from the object map and automatically updates all scripts that reference the

unified test object(s).

Cancel -- Closes the Unify Test Objects dialog box without replacing the object.

To open: In the test object map, select a source object and drag it over the target object.

Unify Test Objects dialog box -- page 2
You use the second page of the Unify Test Objects wizard to confirm that you want to replace one test object with

another.

The second page of the Unify Test Objects wizard has the following controls:

Affected Script References -- Lists all the scripts that reference the source and target objects that will be affected by

the replacement.

Back -- Returns to the first page of the Unify Test Objects wizard on page 1563, which lists the Administrative and

Recognition properties for the source object on the left and for the target object on the right.

Finish -- Deletes the source object(s) from the object map and automatically updates all scripts that reference the

unified test object(s).

Cancel -- Closes the Unify Test Objects dialog box without replacing the object.

To open: When replacing one object with another, click Next in the Unify Test Objects dialog box.

Update Test Object Recognition Properties wizard
You use the Update Test Object Recognition Properties wizard to update recognition properties for a test object in the

software under test.

The Update Test Object Recognition Properties wizard has the following controls and information:

Updated Test Object Properties for object -- Lists the updated Administrative and Recognition properties the object

will have. You can double-click properties in the Original Recognition Properties and the All Active Properties

sections to include them in this grid. Icons indicate the origin of the property:

 Indicates that the property was added from the All Active Properties list.

 Indicates that the property was added from the original recognition properties.

 Indicates that the property was added from the original recognition properties and the All Active Properties list.

Chapter 11. Reference Guide

 Indicates that the property was manually edited.

Apply -- Enables you to edit the property and apply the edit without closing the page

Reset -- Enables you to restore the original list of updated test object properties. Reset removes all edits and

additions you have made to the Updated Test Object Properties list.

Original Recognition Properties -- Lists the Administrative and Recognition properties the object had prior to the

update. You cannot edit these properties. You can double-click a property or right-click and copy and paste a property

into the Updated Test Object Properties grid.

All Active Properties -- Lists all the Administrative properties and all properties actively available for the object. You

cannot edit these properties. You can double-click a property or right-click and copy and paste a property into the

Updated Test Object Properties grid.

Right-clicking in any of the three grids displays a menu with the following options:

• Add to Unified Test Object Properties -- Copies the selected line in either the Original Recognition Properties

or the All Active Properties grid to the Updated Test Object Properties grid.

• Open -- Displays the value in a separate window, which enables you to see long lines of text.

• Case Sensitive Regular Expression -- Toggles case-sensitive comparison on and off.

• Evaluate Regular Expression -- Displays the Regular Expression Evaluator on page 1532, which enables

you to test the regular expression before you try it in a verification point.

• Convert Value to Regular Expression -- Converts the recognition property value in the Updated Test Object

Properties grid to a regular expression. See Replacing an Exact-Match Property with a Pattern for more

information.

• Undo Regular Expression -- Converts the regular expression back to the original value.

• Convert Value to Numeric Range -- Converts the recognition property value in the Updated Test

Object Properties grid to a numeric range. See Replacing an Exact-Match Property with a Pattern for more

information.

• Undo Numeric Range -- Converts the numeric range back to the original value.

• Cut -- Removes the selected line from the Updated Test Object Properties grid and puts it on the Clipboard.

• Copy -- Places a copy of the selected item on the Clipboard.

• Paste -- Inserts the contents of the Clipboard into the Updated Test Object Properties grid.

• Delete -- Removes the selected line from the Updated Test Object Properties grid.

Back -- Redisplays the Choose Test Object to Update page.

Finish -- Completes updating recognition properties.

Cancel -- Closes the page without updating any recognition properties.

To open: Select an object in the test object map, start the application, and on the Test Object Map toolbar click the

Test Object: Update Recognition Properties button .

1565

HCL OneTest™ UI

1566

Variable Name page of the Verification Point and Action wizard
The Variable Name page is the fourth page of the Verification Point and Action Wizard when you choose Get a

Specific Property Value as your action. On the Variable Name page, you can name the variable that holds the property

value, and choose whether to declare the variable in your script.

You can open the Verification Point and Action Wizard with the Insert Verification Point or Action Command button

 on the Recording toolbar. You can use the wizard to select objects to test in your application, and to select the

types of tests to perform on them. The Select an Object page on page 1548 is the first step. After you select an

object and click Next, the Select an Action page on page 1541 appears. On the Select an Action page, you choose

an action to perform on the test object. Two of the actions are verification points (Properties or Data) and two of the

actions, get a specific property value and wait for an object, are scripted actions against the object. If you choose

Get a Specific Property Value, HCL OneTest™ UI displays the Insert getProperty Command page. The Variable Name

page will be the fourth page when you click Next.

This page contains the following fields:

Object - Displays the name of the object for which you are getting a property.

Property - Displays the single property you chose to get.

Data Type - Displays the data type you are testing. This depends on the specific property you chose.

Variable Name - Accept the default suggestion listed in this box, or type a new name. The default name is based on

the name of the object and the property you chose to test. After you accept or edit the name, click Finish.

Declare the variable in the script - This is selected by default. You need to declare a variable the first time you use the

variable name. If you use the same variable name again in the same script, clear this option after the initial instance.

For more information, see Getting a Property Value on page 681.

Verification Point and Action wizard
You open the Verification Point and Action wizard dialog box with the Insert Verification Point or Action Command

button on the Recording toolbar. You use the wizard to select objects to test in your application, and to select the

types of tests to perform on them. You record a verification point by using this wizard.

The Verification Point and Action Wizard has the following pages. Click the page name below for information about

how to use that page.

Select an Object on page 1548 -- where you select the object you want to perform a test on. There are three selection

methods.

Select an Action on page 1541 -- where you select the test to perform on that object. You can create a Data

verification point, create a Properties verification point, get a specific property value, or set a wait state for an object.

Chapter 11. Reference Guide

Variable Name on page 1566 -- this is the third page when you choose a single property value as your action, which

you can use to name the variable, and to choose whether to declare the variable in your script.

Verification Point Data on page 1574 -- this is the last page when you choose a Data or Properties verification point

as your action. In both cases, you can select the verification point data you want to include in the test.

Note: While recording, you can drag the Insert Verification Point or Action Command button off of the

Recording toolbar to immediately start selecting an object in your application. This is a shortcut for selecting

it from the Select an Object page of the Verification Point and Action Wizard. You will then be in the wizard

after you select the object.

Select an Object page of the Verification Point and Action Wizard

The Verification Point and Action Wizard is opened with the Insert Verification Point or Action Command button

on the Recording toolbar or the product toolbar. It is used to select objects or images to test in your application, and

to select the types of tests to perform on them.

The Select an Object page is the first step. You use one of the selection methods on this page to select the object in

your application you want to perform a test on. When the object is selected, its recognition properties are listed in the

grid at the bottom of the page.

To perform an image verification test, use the Capture Screen Image tool to select the image or use the Object Finder

tool to select the object and create an image verification point.

If you select the wrong object, or decide to test a different one, use any of the methods and select a different object.

It will then be shown in the grid. Once you advance past this first page by clicking the Next button, the object that is

listed in the grid is the one that you will be testing. After you select a test object, you'll select an action in the next

page of the wizard. Once you have moved on, you can always click the Back button to select a different object.

The following three selection methods are available:

Object Finder Tool

Use this tool to select an object and all descendents of the object, select one object, or select an object and the

immediate children of an object.

This is the most common and direct method of selecting an object. Grab the Object Finder tool icon with your mouse

and the cursor turns into the tool. Drag it over the object in your application that you want to select. You'll see that the

object is highlighted and the object name is displayed. When you release the mouse button, the object is selected,

and its recognition properties are listed in the grid.

Note that you can also use the Insert Verification Point or Action Command button on the Recording toolbar

directly to select an object. If you click it and drag it off of the toolbar, it will become the object selector tool from this

page of the wizard.

1567

HCL OneTest™ UI

1568

If the After selecting an object advance to next page option is selected, you'll go directly to the next page of the

wizard after you select the object. Clear this option if you want to remain on this page to see the object recognition

properties after selecting the object.

Object Browser

Use this method to browse for the object that you want to select. The browser displays a hierarchical tree of objects

in your application. The top level shows any applications you have running. Under each top level,HCL OneTest™ UI

displays the object hierarchy within that application. It is a dynamic view of the currently available objects.

Using this method, you browse for your object. The browser displays a hierarchical tree of objects in your system that

are testable. The top level shows any applications you have running, and under each one is the object hierarchy within

that application. It is a dynamic view of the currently available objects. Browse the object tree till you find the object,

then click it. That will select it, and its recognition properties will be listed in the grid.

Delay Method

Use this method to select pop-up objects, such as menus. This method uses the Object Finder tool, but enables you to

set a delay, which gives you time to get to an object that requires clicking on other objects first.

This uses the Object Finder tool, but with a delay that you set. The delay gives you time to get to an object that

requires clicking on other objects first, such as a menu command. Set the number of seconds (the default is 10),

then click the tool icon. Move your mouse to hover over your application until you get to the object you want to

select. Anything you do during that delay period is not recorded. This allows you to "dig" for objects if necessary. For

example, you might click with your mouse to cause a menu to open. The timer counts down, and when it runs out the

object under the cursor is selected, and its recognition properties will be listed in the grid.

Note: In order for the delayed location of objects to play back correctly, the object must be exposed by

actions in the script. If the object is not exposed, an Object Not Found Exception is thrown during playback.

If the After selecting an object advance to next page option is selected, you'll go directly to the next page of the

wizard after you select the object. Clear this option if you want to remain on this page to see the object recognition

properties after selecting the object.

Object recognition properties grid

When the object is selected by any of the above methods, its recognition properties are listed in the grid at the bottom

of the page. The recognition properties are determined by the object's proxy. For example, a "button" object has three

recognition properties: label, .class, and .classIndex. This grid will list the name and value of your specific object's

recognition properties. You can use that information to confirm that you selected the correct object. If no information

is listed, the object is not testable or the environment may not be enabled.

Chapter 11. Reference Guide

Capture Screen Image

To perform image verification test, use the Capture Screen Image tool to capture the screen. This tool captures

the full image of the screen.

Your next step

After you select an object using one of the methods listed above, click the Next button to choose an action to perform

on the object. These include creating a data verification point, creating a properties verification point, creating an

image verification point, getting a single property value, or setting a wait state on an object. For more information on

the actions, see the Select an Action Page on page 1541.

Select an Action page of the Verification Point and Action wizard
You open the Verification Point and Action Wizard with the Insert Verification Point or Action Command button on

the Recording toolbar. Use the wizard to select objects to test in your application, and to select the types of tests to

perform on them. This is how you record a verification point.

The Select an Object page on page 1548 is the first step. After you select an object, the Select an Action page

appears.

Note: By default, the After selecting an object advance to next page check box is checked. If you clear the option, you

must click Next to advance to the next page after you select an object.

On the Select an Action page, you choose an action to perform on the test object. The Select an Action page has the

following four actions:

Perform Data Verification Point -- Insert a verification point Data command on page 1504 for the selected object to

test the data in your object when you play back your script.

Perform Properties Verification Point -- Insert a Properties verification point command on page 1504 for the

selected object to test the properties in your object when you play back your script.

Perform Image Verification Point -- Insert an Image verification point command on page 1571 for the selected object

to test the image in your object when you play back your script.

Get a Specific Property Value -- Insert a getProperty command on page 1503 for the selected object to put a

getProperty into your script and return the value during playback.

Wait for Selected Test Object -- Insert a waitForExistence command on page 1505 to set a wait state for an object

during playback to check for its existence.

Select an Action page of the Verification Point and Action wizard (from Insert)
When you open the Verification Point and Action Wizard while inserting a verification point from the Script Explorer,

the Select an Object page appears.

Use the wizard to select objects to test in your application, and to select the types of tests to perform on them.

1569

HCL OneTest™ UI

1570

Here is how you create a verification point. The Select an Object page on page 1548 is the first step. After you select

an object, the Select an Action page appears.

Note: By default, the After selecting an object advance to next page check box is checked. If you clear the check box,

you must click Next to advance to the next page after you select an object.

When inserting a verification point while not recording, the Select an Action page is where you choose which

verification point to perform on the test object. The Select an Action page has the following verification points:

Perform Data Verification Point -- Insert a verification point Data command on page 1504 for the selected object to

test the data in your object when you play back your script.

Perform Properties Verification Point -- Insert a Properties verification point command on page 1504 for the

selected object to test the properties in your object when you play back your script.

Perform Image Verification Point -- Insert Image verification point command on page 1571 for the selected object to

compare the image when you play back your script.

Insert Verification Point Data Command page
Use to create a Data verification point for the selected object. The Data verification point tests the data in your object

when you play back your script. The object name is listed at the top of the page. The list of tests shown in the Data

Value field depends on information provided by the object proxy. Select the data value that you want to test.

Under Verification Point Name, accept the suggested default, or type a new name in the box.

Use the Include Retry Parameters to set a retry time for a verification point during playback to check for its existence.

The retry option is useful when playback does not find the verification point in your application. To set a retry time,

either use the default or set your own time. Maximum Retry Time is the maximum number of seconds HCL OneTest™

UI tries again for the verification point to be visible in your application during playback. Retry Interval is the number of

seconds that HCL OneTest™ UI checks for the verification point during the wait period.

When you select Include Retry Parameters, HCL OneTest™ UI checks for the existence of the verification point in your

application every 2 seconds, for up to 20 seconds. To set your own time, clear the default fields and type in your own

values for Maximum Retry Time and Retry Interval. When you click Finish, the retry for verification point is written

into your script, and occurs on future playbacks.

Note: When you insert a Data verification point without recording, the Include Retry Parameters option does

not appear on the Insert Verification Point Data Command page.

To proceed with the verification point, click Next. For more information, see Creating a Data Verification Point on

page 701.

Chapter 11. Reference Guide

Note: If your object has no data, this page is disabled.

Insert Image Verification Point Command page
Use this page to create an image verification point for the selected object or the image. The image verification point

compares the image of the selected object or the specified image region with the object in the application under test

when you play back the script.

The Insert Image Verification Point Command page has the following controls:

Verification Point Name

Accept the suggested default name or type a new name.

Select full image

To create an image verification point for the selected object or the full screen captured using Capture

Screen Image tool.

Select a region of the image

To capture a region of the selected object or the screen to perform image verification test. Use the

Region Tool icon to select the region.

Select region button

This option is enabled if you want to select a region of the image. Select the Region Tool icon and

drag it over the image to position the mouse pointer at the starting point of the region. Without releasing

the left mouse button, right-click and drag it to highlight the region of the image.

Selected region's dimension

This option is enabled if you choose to select a region of the image. The X and Y co-ordinates from the

upper-left corner of the screen for the selected region are displayed. The total Width and Height of the

selected region are also displayed. If required, you can edit the values instead of recapturing the region

of the image.

Include Retry Parameters

Select this check box to set a retry time for a verification point during playback. Retry time provides time

for the object to be displayed before the test checks for its existence. The retry option is useful when

playback does not find the verification point immediately in your application. Use the default values or

set your own time. The following controls are enabled:

• Maximum Retry Time: Accept the default or type the maximum number of seconds. HCL

OneTest™ UI retries up to the specified time for the verification point to appear in your

application during playback.

• Retry Interval: Accept the default or type the number of seconds. HCL OneTest™ UI checks the

application every specified interval for the verification point to be displayed.

1571

HCL OneTest™ UI

1572

Note: When you insert an image verification point without recording, the Include Retry

Parameters option is not displayed on the Insert Image Verification Point Command page

Insert Properties Verification Point Command page
Use to create a Properties verification point for the selected object. The Properties verification point tests the

properties in your object when you play back your script. The object name is listed on the page. This verification point

tests all properties of the object. You can edit the properties list later if you want to test only some of the properties.

Use the Include Children field to specify whether to include the properties of any child objects. None tests the object

only (no children), Immediate tests the object and any immediate children (one level down), and All tests the object

plus all of its children down the entire hierarchy.

Under Verification Point Name, accept the suggested default, or type a new name in the box.

Use the Use standard properties option to specify whether to use standard property types. If you are testing Java™, all

properties are standard. Clear the option only if you are testing HTML and want to test browser-specific properties.

Use the Include Retry Parameters to set a retry time for a verification point during playback to check for its existence.

The retry option is useful when playback does not find the verification point in your application. To set a retry time,

either use the default or set your own time. Maximum Retry Time is the maximum number of seconds HCL OneTest™

UI tries again for the verification point to be shown in your application during playback. Retry Interval is the number of

seconds between times that HCL OneTest™ UI will check for the verification point during the wait period.

When you select Include Retry Parameters, HCL OneTest™ UI checks for the existence of the verification point in your

application every 2 seconds, for up to 20 seconds. To set your own time, clear the default fields and provide your own

values for Maximum Retry Time and Retry Interval. When you click Finish, the retry for verification point is written

into your script and occurs on future playbacks.

Note: When you insert a Properties verification point without recording, the Include Retry Parameters option

does not appear on the Insert Properties Verification Point Command page.

To proceed with the verification point, click Next. For more information, see Creating a Properties Verification Point on

page 698.

Note: If your object has no properties, this page is disabled.

Insert getProperty Command page
Use to get a single property value for the selected object. Functional Test puts a getProperty command into your

script and returns the value during playback. This information is useful when you need to make a decision based on

the property. For example, you might want to query whether a button was enabled.

Chapter 11. Reference Guide

When you select an object, the property list is built and displayed in the Property Name and Value fields. Select the

property that you want to get. Click the Next button to proceed. The getProperty command is written into your script

at the point you inserted it.

Note: If your object has no properties, this page is disabled.

Insert waitForExistence Command page
Use to set a wait state for an object during playback to check for its existence. The waitForExistence command is

useful when waiting for an object right after your application starts, or after other actions that may take a long time.

The selected object is listed at the top of the page. To set a wait state for it, either use the default or set your own

time. Maximum Wait Time is the maximum number of seconds HCL OneTest™ UI waits for the object to appear in

your application during playback. Check Interval is the number of seconds between times that HCL OneTest™ UI

checks for the object during the wait period.

When Use the Defaults is selected, HCL OneTest™ UI checks for the existence of the object in your application every

2 seconds, for up to 120 seconds. To set your own time, clear the default field and provide your own values for

Maximum Wait Time and Check Interval. When you click Finish, the wait-for object is written into your script, and will

occur on future playbacks. For more information, see Setting a Wait State for an Object on page 682.

Variable Name page of the Verification Point and Action wizard
The Variable Name page is the fourth page of the Verification Point and Action Wizard when you choose Get a

Specific Property Value as your action. On the Variable Name page, you can name the variable that holds the property

value, and choose whether to declare the variable in your script.

You can open the Verification Point and Action Wizard with the Insert Verification Point or Action Command button

 on the Recording toolbar. You can use the wizard to select objects to test in your application, and to select the

types of tests to perform on them. The Select an Object page on page 1548 is the first step. After you select an

object and click Next, the Select an Action page on page 1541 appears. On the Select an Action page, you choose

an action to perform on the test object. Two of the actions are verification points (Properties or Data) and two of the

actions, get a specific property value and wait for an object, are scripted actions against the object. If you choose

Get a Specific Property Value, HCL OneTest™ UI displays the Insert getProperty Command page. The Variable Name

page will be the fourth page when you click Next.

This page contains the following fields:

Object - Displays the name of the object for which you are getting a property.

Property - Displays the single property you chose to get.

Data Type - Displays the data type you are testing. This depends on the specific property you chose.

Variable Name - Accept the default suggestion listed in this box, or type a new name. The default name is based on

the name of the object and the property you chose to test. After you accept or edit the name, click Finish.

1573

HCL OneTest™ UI

1574

Declare the variable in the script - This is selected by default. You need to declare a variable the first time you use the

variable name. If you use the same variable name again in the same script, clear this option after the initial instance.

For more information, see Getting a Property Value on page 681.

Verification Point Data page of the Verification Point and Action wizard
The Verification Point Data page is the last page when you choose a Data, Properties or Image verification point as

your action. In the Verification Point Data page, you can select the verification point data you want to include in the

test.

You can open the Verification Point and Action Wizard with the Insert Verification Point or Action Command button

 on the Recording toolbar. In the wizard, you select objects or the screen to test in your application, and select

the types of tests to perform on them. The Select an Object page on page 1548 is the first step. After you select

an object and click Next, the Select an Action page on page 1541 appears. This is where you choose an action to

perform on the test object. If you choose Perform Properties Verification Point, Perform Data Verification Point or

Perform Image Verification Point, the Verification Point Data page will be the final page.

After you view or edit the data in this page, click Finish to finish recording the verification point.

Metadata

The metadata is displayed in the left pane of the window. It displays a set of properties that define how specific

data is managed. This grid can be edited. For example, you could edit the 'ignore case' or 'white space rule' in a text

verification point in this metadata grid. To edit, double-click the value in the Value column.

Properties grid display -- for a properties verification point

The object properties display in a grid format in the right pane. The properties in the grid belong to the object that

is highlighted in the Test Objects tree. The properties appear in the left column and their values appear in the right

column. You can edit which properties get tested in the Property column, and you can edit the property values

themselves in the Value column.

By default, all properties will appear with no check mark, which means they will not be tested. Choose which

properties you want to test by checking each of them. Checked properties will be tested each time you play back

a script with this verification point. You can check all properties in the list by clicking the Check All toolbar button

above the grid. Use the Uncheck All button to clear all properties. Depending on how many properties you want to

test, it is often easiest to either select or clear all of them using one of those buttons, and then individually select or

clear exceptions. It's a good idea to only test the specific properties you are interested in when you use a Properties

verification point.

The grid uses a nested tree hierarchy. If a folder shows up on the list, you can expand it by double-clicking on it or

selecting the expand (+) icon. If you select or clear the folder icon itself, all the properties underneath it will be tested

or not tested.

Chapter 11. Reference Guide

To edit a value, double-click the grid cell. That cell becomes editable. Click outside the cell to make the edit take

effect. In most cases, double-clicking a value makes the cell an editable field, and you can change only the value. In

some special cases, another dialog box comes up containing the information. For example, if the property is color,

when you double-click the color value, the standard Color dialog box opens. Make your edit there and close the Color

box. In other cases, a drop-down list may appear in the Value column when you double-click a value. For example,

values that are either true or false will appear in a drop-down list.

The grid has the following toolbar buttons for the Properties verification point display. These buttons act only on the

currently displayed data.

Cut -- Cuts the selected property. It is placed on the Editor clipboard and can be pasted.

Copy -- Copies the selected property to the Editor clipboard.

Paste -- Pastes the cut or copied property from the Editor clipboard.

Delete -- Deletes the selected property. It will not be retained on the Editor clipboard.

 Case Sensitive Regular Expression -- Toggles case-sensitive regular expression comparison on and off.

 Convert Value to Regular Expression -- Converts the property value to a regular expression. See Replacing an

Exact-Match Property with a Pattern for more information.

 Convert Value to Numeric Range -- Converts the property value to a numeric range. See Replacing an Exact-

Match Property with a Pattern for more information.

 Evaluate Regular Expression -- Displays the Regular Expression Evaluator on page 1532, which enables you to

test the regular expression before you try it in a verification point.

 Convert Value to dataset Reference/ Undo dataset Reference -- Uses a dataset reference on page 743 to

use a dataset instead of a literal value in a verification point. Cancels the dataset reference in the verification point on

page 743.

 Check All -- Puts a checkmark in front of every property in the list. Checked properties will be tested each time you

play back the script with this verification point.

 Uncheck All -- Clears the checkmark in front of every property in the list. Cleared properties will not be tested

when you play back the script with this verification point.

 Hide the Unchecked Properties//Show All Properties -- Click Hide the Unchecked Properties to hide the cleared

properties. Then you will only see the properties that will be tested. Click Show All Properties to display all properties,

including any cleared ones.

1575

HCL OneTest™ UI

1576

Data display -- for a data verification point

You can display Data verification points in five ways, depending on which test you do on the data. The interface that

appears in this dialog box is the same as what appears in the Verification Point Editor after you record the verification

point.

For information on each of the five possible data displays, see the Verification Point Editor on page 711, and go to one

of the following sections in that topic:

Data Verification Point--Menu Hierarchy Display

When you create a Data verification point and choose the Menu Hierarchy or Menu Hierarchy with Properties test, the

menus display in a tree format. Menu Hierarchy and Menu Hierarchy with Properties are examples. The list of tests in

the Data Values field is dependent on information provided by the object's proxy. Values other than these two might

appear in the list.

Data Verification Point--Text Display

When you create a Data verification point and choose the Visible Text test, the text displays in a text box format.

Visible Text is one example. The list of tests in the Data Values field is dependent on information provided by the

object's proxy. Values other than this one might appear in the list.

Data Verification Point--Table Display

When you create a Data verification point and choose the Table Contents or Selected Table Cells test, the table data

displays in a table format. Table Contents and Selected Table Cells are examples. The list of tests in the Data Values

field is dependent on information provided by the object's proxy. Values other than these might appear in the list.

Data Verification Point--Tree Hierarchy Display

When you create a Data verification point and choose the Tree Hierarchy test, the data displays in a tree format.

Tree Hierarchy is one example. The list of tests in the Data Values field is dependent on information provided by the

object's proxy. Values other than this one might appear in the list.

Data Verification Point--List Display

When you create a Data verification point and choose the List Elements test, the data displays in a list format. List

Elements is one example. The list of tests in the Data Values field is dependent on information provided by the

object's proxy. Values other than this one might appear in the list.

Image display -- for an image and OCR verification point
The captured image is taken as the image verification point and is displayed in the right pane. Scroll bars are visible

if the image size does not fit in the right pane of the page. For OCR, verification point, the characters of the selected

image is also displayed below the displayed image pane.

Chapter 11. Reference Guide

Test object data in the Verification Point Data page

While inserting the verification points, if you have not checked the Record Test Object relative Verification Points

option available in the General Recorder page on page 653 of the Windows > Preferences window, you can view the

following test object data in the Verification Point Data page:

• Test objects

• Recognition and Administrative data

Test objects

The Test Objects pane is the upper left pane of the Verification Point Data page. The Test Objects tree is a partial

version of the script's object map. This hierarchical display includes only the objects in your verification point. You

cannot edit the Test Objects tree. You can choose an object within it and edit its properties in the properties list in the

right pane.

You can double-click folders in the tree to expand and collapse the objects beneath them. Click an individual object in

the tree to see its properties in the properties list.

Recognition and Administrative data

The recognition data is in the lower left pane. The Recognition tab displays recognition data used by HCL OneTest™

UI and is not editable. The Administrative tab displays internal administrative data of the object. The Recognition

and Administrative properties manage and describe the test object. Recognition and administrative data are the

properties from the script's object map that locate and manage the test object in the context of the associated script.

You can use this information to figure out what test object this is in the associated application under test.

The MetaData tab displays a set of properties that define how specific data is managed. You can edit the Metadata

grid . For example, you could edit the 'ignore case' or 'white space rule' in a text verification point in the Metadata grid.

To edit, double-click the value in the Value column.

The Recognition and Administrative properties that display in the pane will become a snapshot of the object

map properties for the test object at the time the verification point is created. The properties become historical

information as the application evolves.

Verification point comparator
You can use comparators to compare verification point data after you play back a script with a verification point and

to update the baseline file. If the verification point fails, the comparator shows both expected and actual values so

that you can analyze the differences. You can then load the baseline file and edit or update it with the values from the

actual file.

Opening the verification point comparator

Click View Results in the HCL OneTest™ UI HTML log to open the comparator.

1577

HCL OneTest™ UI

1578

Notes:

• If you encounter an error regarding the Java™ plugin when trying to launch the comparator from View

Results in the HTML log, you must configure your plugin properly.

• You must use Microsoft Internet Explorer to open View Results as browsers such as Mozilla Firefox

and Google Chrome are not supported.

• With automatically enabled test environments, you cannot open the verification point comparator by

clicking View Results in the functional test HTML log. In such cases, open the corresponding project

log file from the functional test project log in the Functional Test Projects view.

Using verification point comparator for functional test scripts played back from Rational® Quality
Manager

If you play back the script from Rational® Quality Manager, and click View Results in the detailed log to open the

comparator, you are prompted to log in to Rational® Quality Manager. This occurs when you use the Load baseline to

edit or the Replace baseline with actual value functions.

Note: To open the comparator from the Rational® Quality Manager detailed playback log, ensure that HCL

OneTest™ UI is installed on the workstation where you are opening the log. Additionally, ensure that the Next-

Gen plugin is disabled on the workstation.

When you open the comparator, the Log In to Rational Quality Manager dialog box is displayed and the Rational®

Quality Manager server name and project area are displayed. You must specify a valid user name and password to log

in to Rational® Quality Manager.

The Log In to Rational Quality Manager dialog box is displayed only the first time you use Load baseline to edit or

the Replace baseline with actual value functions during an active Windows session. You are not prompted to log in a

second time unless you have started a new Windows session and logged on to Windows as a different user.

Comparing verification points after playback

If you have one failed verification point, and you are using a log, select the log in the Functional Test Projects view.

Right-click the log, and click Failed Verification Points. The verification point comparator is displayed.

If you have multiple failed verification points, and you are using a log, the Results for Verification Points wizard is

displayed. Click a failed verification point in the list and click View Results or Finish. The comparator banner displays

the name of your verification point.

You can specify color settings for several elements in the verification point comparator.

To edit verification point data, you must load the baseline by clicking the Load Baseline to Edit toolbar button .

Chapter 11. Reference Guide

The verification point comparator window

The following sections describe the various components of the verification point comparator window and the

toolbars.

Metadata

Metadata is displayed in the left pane of the verification point comparator window. It displays a set of properties that

define how specific data is managed. You can edit this grid. For example, you could edit the “ignore case ”or “white

space rule” in a text verification point in this metadata grid. To edit, double-click the value in the Value column.

Main toolbar

The toolbar at the top of the verification point comparator has six buttons.

 File: Save: Saves any changes you have made.

 File: Revert: Reverts to the state of the data at the last save you made. If you have not saved any changes since

opening the comparator, it reverts to the state when it was opened. If you have edited and saved the changes, it

reverts to the state at your last Save.

 Load Baseline to Edit: Loads the baseline file so you can edit it. The baseline values are displayed instead of the

expected values. These values can be edited individually or replaced with actual values.

 Replace Baseline with actual value: Replaces the baseline values with all the values in the actual file. Then those

values will become the baseline for future playbacks. If you want to replace only some of the values, edit them

individually. This command replaces the entire file.

 Hide/Show TestObject Info: Toggles the display of the Test Objects and Recognition Data panes of the

comparator window. When this information is hidden, the entire comparator window is used for the main data area.

This is a sticky setting and is displayed as you last set it when you open the comparator later.

Note: If your test objects tree has multiple nodes, the verification point comparator displays these panes

again the next time you open it, regardless of the Hide/Show TestObject Info setting.

 Help: Displays the help documentation for the verification point comparator. You can open the HCL OneTest™ UI

help any time from the Help menu in HCL OneTest™ UI.

Menu bar

The menu bar contains the same commands that are represented with the toolbar buttons described in this topic.

File: Displays the commands Save, Revert, Baseline, and Replace.

Edit: Displays the commands Check All, Uncheck All, and Hide. This menu is grayed out until you load the baseline for

editing (using the Load Baseline to edit toolbar button).

1579

HCL OneTest™ UI

1580

Difference: Displays the commands First, Previous, Next, and Last.

Test Object > Highlight: You can use this menu item if you need to verify an object in the application. If your test

application is open, you can select an object in the test objects tree and then click this command to see the object

highlighted in the application.

Preferences : Toolbars: You can use this menu item to control the display of the toolbars.

• Test Object Appearance on the Tree: Displays the Edit Test Object Description dialog box, which allows you to

customize the text displayed for each object in the Test Object Hierarchy.

• Hide TestObject Info: You can use this command to toggle the display of the Test Objects and Recognition

Data panes of the comparator window.

Help: Displays help documentation for verification point comparator.

Main data area

The right pane of the verification point comparator displays the verification point data. For example, in the case of a

properties verification point, the Property and Value columns are displayed here. You can compare the verification

point data here. If the verification point fails when you play back the script, the expected and actual values are

displayed, irrespective of the type data display being used. In certain cases, the expected values are shown on the

left pane and the actual values are shown on the right pane of the verification comparator window. In other cases, the

values are displayed contiguously (such as nodes in a tree view), and the expected and actual values are shown in

different colors if they are different. The expected value is red and the actual value is green in color. The actual values

those that were recorded when you playback the script.

You can get seven types of displays from recording verification points, as described in the following sections, after

the next section, Navigation Toolbar Buttons.

Navigation toolbar buttons

These four navigation buttons jump to the differences between the expected and actual files or the baseline and

actual files. Differences are shown in red. The currently selected difference is highlighted.

 Jump to First Difference: Goes to the first difference in the expected/baseline and actual files.

 Backward to Previous Difference: Goes backward to the previous difference in the expected/baseline and actual

files.

 Forward to Next Difference: Goes forward to the next difference in the expected/baseline and actual files.

 Jump to Last Difference: Goes to the last difference in the expected/baseline and actual files.

You can get the following types of displays after recording a verification point.

Chapter 11. Reference Guide

Properties verification point : grid display

When you create a properties verification point, the object properties are displayed in a grid format. The properties

displayed on the grid belong to the object that is highlighted in the Test Objects tree. The properties appear are

displayed in the left column and their values appear are displayed in the right column of the object properties grid..

You can edit which properties get tested in the Property column, and can edit the property values themselves in the

Value column.

Properties with no check mark are not tested. You can select which properties you want to test by checking each of

them. The checked properties are tested each time you play back a script with this verification point. You can check

all properties in the list by clicking the Check All toolbar button . You can use the Uncheck All button to clear

all properties. Depending on how many properties you want to test, it is often easiest to either select or clear all of

them using one of those buttons, and then individually select or clear exceptions.

The grid uses a nested tree hierarchy. If a folder shows up on the list, you can expand it by double-clicking it or

selecting the expand icon. If you check or clear the folder icon itself, all the properties underneath are either tested or

not tested.

To edit a value, you must double-click the grid cell. Click outside the cell to make the edit take effect. In most cases,

double-clicking a value makes the cell an editable field, and you can just change the value. In some special cases,

another dialog box is displayed which contains the information. For example, if the property is color, when you double-

click the color value, the standard color dialog box is displayed. You must your edit there and close the color box. In

other cases, a drop-down list might be displayed in the Value column when you double-click a value. For example,

values that are either true or false are displayed in a drop-down list.

The grid has the following toolbar buttons for the properties verification point display. In the comparator, these

buttons are displayed only when you are editing the baseline.

 Check All: Includes a check mark in front of every property in the list. Checked properties are tested each time you

play back the script with this verification point. Only checked properties are compared in the Comparator.

 Uncheck All: Clears the check mark in front of every property in the list. Do not test the cleared properties when

you play back the script with this verification point.

 Hide the Unchecked Properties/Show All Properties: Click Hide the Unchecked Properties to hide the cleared

properties. Then you only view the properties that are tested. Click Show All Properties to display all properties,

including any cleared ones.

The grid has the following pop-up menu commands for the properties verification point display. To access them, right-

click a value in the Value column.

Open: Displays the value in a separate window if the value is a string or a complex value type which enables you to

see long lines of text and makes it easier to edit.

 Case Sensitive Regular Expression: Toggles case-sensitive regular expression comparison on and off.

1581

HCL OneTest™ UI

1582

 Evaluate Regular Expression: Displays the regular expression evaluator, which enables you to test the regular

expression before you use it in a verification point.

 Convert Value to Regular Expression: Converts the property value to a regular expression.

 Undo/Redo Regular Expression: Cancels or redoes the regular expression conversion.

 Convert Value to Numeric Range: Converts the property value to a numeric range.

 Undo Numeric Range: Cancels the numeric range.

 Convert Value to dataset Reference: Uses a dataset reference to use a dataset instead of a literal value in a

verification point.

 Undo dataset Reference: Cancels the dataset reference in the verification point.

 Replace Baseline On Current Selection: Replaces the baseline value with the actual value for just the selected

property. This is a per-property version of the Replace Baseline With Actual Value toolbar button .

Compare object properties

To compare object properties, look at the expected or baseline values and actual values columns. The actual values

are those that were captured when you played back the script. You can use the navigation buttons to navigate to all

the differences, which are displayed in red. You can edit the baseline values or replace the baseline with the actual

file.

Data verification point : menu hierarchy display

When you create a data verification point and choose the menu hierarchy or menu hierarchy with the properties test,

the menus are displayed in a tree format in the main data area. Menu hierarchy and menu hierarchy with properties

are two examples. The list of tests shown in the Data Value field is dependent on information provided by the object's

proxy. Values other than these two may be displayed.

The tree displays the entire menu hierarchy of your application, or one top-level menu and its subitems, depending on

how you recorded the verification point. If you chose the whole menu bar, each top-level menu is displayed in the tree,

in the same order they are displayed in the menu bar. Each individual menu item is displayed under its top-level menu.

You can use the plus and minus signs to open and close the list for each top level menu.

To edit a menu, double-click it in the tree. You must load the baseline first before doing this. The menu properties

displayed in a grid, which you can then edit. You can edit the actual values by double-clicking a value in the Value

column. You can also edit the list of properties that are tested during playback by using the check box beside each

property. The checked items are tested. The toolbar buttons above the grid are the same ones that are found in the

object properties grid, except for Hide/Show. The buttons work the same, except they apply to the selected menu

property or value.

Chapter 11. Reference Guide

Compare menu hierarchy data

To compare menu hierarchy data, look at any differences shown in red and green. The expected values are displayed

in red, and the actual values are shown underneath them in green. The actual values are what were captured when

you played back the script. If the descriptions for the expected and baseline values are the same, but if there are

some differences in their properties, the node is displayed as blue in color. You can use the navigation buttons to

navigate to all the differences. You can edit the baseline values or replace the baseline with the actual file.

Data verification point : text display

When you create a data verification point and choose the Visible Text test, the text is displayed in a text box format

in the main data area. For example, visible text. The list of tests shown in the Data Value field is dependent on

information provided by the object's proxy. Values other than this one may be displayed.

The text is displayed in a text box area. You cannot edit directly in this area. To edit the verification point data, click

Edit Text above the data display. You must load the baseline file before doing this. A small text editor containing

the text is displayed. You can edit the text in this editor, and when you close it, the edited text is displayed in the

baseline column of the comparator.

Compare text data

To compare text data, look at the expected and actual values columns. The actual values are those that were

captured when you play back the script. You can use the navigation buttons to navigate to all the differences, which is

displayed in red. You can edit the baseline values or replace the baseline with the actual file.

Data verification point : table display

When you create a data verification point and choose the table contents or selected table cells test, the table data

is displayed in a table in the main data area. Table Contents and selected table cells are two examples. The list of

tests is displayed in the Data Value field is dependent on information provided by the object's proxy. Values other than

these may also appear.

The table displays the same information as the table in your application. To edit the verification point data, double-

click any cell in the table to edit that cell. You must load the baseline file before doing this.

You can also edit which cells in the table get tested. Table cells that are within the comparison regions are shown

with a grey background. If you are testing the entire table, all cells will be grey. You can use the drop-down list in the

toolbar above the data region as a selection mechanism. (This doesn't show up until you load the baseline.) Choose

Column, Row, or Cell Selection in the list, then make your selections in the table. For example, if you select Row

Selection, when you click a cell in the second row, the whole second row will be selected. If you had chosen Cell

Selection, only that cell would have been selected. After you select the data you want to compare, click the Update

Comparison Region button to have your changes take effect.

The Cut, Copy, Paste, and Delete toolbar buttons above the table area apply to the selected row(s), and are only

applicable within the Verification Point Comparator. (It does not use the system clipboard.)

1583

HCL OneTest™ UI

1584

You can right-click a table item to access a pop-up menu. The commands are the same as those listed above in the

Properties Verification Point--Grid Display section.

There are features in the Metadata tab that you can also use to edit the table data. For example, you can edit the

table's column headers or row headers by accessing them in the MetaData tab. To edit column headers, double-

click the Value column of the columnHeaders property. A small editor opens that lets you edit the headers. The row

headers work the same way if your table has them. Double-click the rowHeaders Value to edit them. In order for the

column headers to be compared, you must change the compareColumnHeaders property to true in the MetaData tab.

The compareRowHeaders value works the same way to indicate whether row headers will be compared.

If you double-click the Value of the compareRegions property in the Metadata tab, an editor will open showing the

selected regions of your table. For selected sells, it shows the row index or key value pairs and the column header

or index of each selected cell. For selected rows, it shows the row index or key value pairs. For selected columns, it

shows the column header or index. Using this compare regions editor is another way you can select which regions get

compared. If you click the Compare All Cells button in this editor, all of the table cells will be tested.

If your table supports row keys or column keys, you can edit those and insert keys by double-clicking on the

columnKeys and rowKeys values in the Metadata tab.

Compare table data

To compare table data, look at the expected and actual values columns. The actual values are those that were

captured when you played back the script. You can use the navigation buttons to navigate to all the differences, which

appear in red. You can edit the baseline values or replace the baseline with the actual file.

Data verification point -- tree hierarchy display

When you create a Data verification point and choose the Tree Hierarchy test, the data is displayed in a tree format

in the main data area. For example, Tree Hierarchy. The list of tests shown in the Data Value field is dependent on

information provided by the object's proxy. Values other than this might be displayed.

The tree displays the entire tree hierarchy in your application or the part of the tree selected when you create the

verification point. Each item in the tree is displayed in the same order it is displayed in your application. Each

individual item is displayed under its top-level item. You can use the plus and minus signs to open and close the list

for each top-level item.

To edit an item in the hierarchy, double-click it in the tree. A small text box is displayed, which you can use to edit the

item.

Compare tree hierarchy data

To compare tree hierarchy data, look at any differences displayed in red and green. The expected values are displayed

in red, and the actual values are displayed in green. The actual values are those that were captured when you played

back the script. You can use the navigation buttons to navigate to all the differences.

Chapter 11. Reference Guide

Data verification point : list display

When you create a data verification point and choose the List Elements test, the data is displayed in a list format in

the main data area. List Elements is one example. The list of tests shown in the Data Value field is dependent on

information provided by the object's proxy. Values other than this might be also displayed.

The list displays the same information as the list in your application, and in the same order. To edit a list item, double-

click it in the list display. (If you have not done so, you must load the baseline first.) You can also edit the list of which

items get tested during playback by using the check box beside each item. The checked items are tested.

The toolbar buttons preceding the list are the same ones that are found in the object properties grid described above

in the Properties Verification Point : Grid Display section. The buttons work the same as described there, except they

apply to the selected list item(s).

You can right-click a table item to access a pop-up menu. The commands are the same as those listed preceding the

Properties Verification Point : Grid Display section.

Compare list data

To compare list data, look at the expected and actual values columns. The actual values are those that were captured

when you played back the script. You can use the navigation buttons to navigate to all the differences, which are

shown in red. You can edit the baseline values or replace the baseline with the actual file.

Data verification point : state display

When you create a data verification point and choose the Check Box Button State or Toggle Button State test, the data

is displayed in a list format in the main data area. Check Box Button State or Toggle Button State are two examples.

The list of tests displayed in the Data Value field is dependent on information provided by the object's proxy. Values

other than this may be also displayed.

Compare state data

To compare state data, look at the expected and actual values columns. The actual values are those that were

captured when you played back the script. You can edit the baseline values or replace the baseline with the actual file.

Test object data in the Verification point comparator window

While inserting the verification points, if you have not checked the Record Test Object relative Verification Points

option available in the General Recorder page of the Windows > Preferences window, you can view the following test

object data in the Verification Point comparator:

• Test objects

• Recognition and Administrative data

1585

HCL OneTest™ UI

1586

Test objects

This is the upper left pane of the Verification Point Comparator window. It is a partial version of the script's object

map. This hierarchical display includes only the objects in your verification point. You cannot edit the Test Objects

tree. You can choose an object within it and edit its properties or data in the right pane of the Verification Point

Comparator window.

You can double-click folders in the tree to expand and collapse the objects beneath them. You must an individual

object in the tree to see its properties or data in the right pane.

The check boxes to the left of each node Verification Point Comparator window indicate whether that node is tested

or not. Checked items get tested. After you load the baseline to edit, you can select or clear items.

Note: If your test application is open, you can select an object in the Test Objects tree and then click

Test Object > Highlight from the Verification Point Comparator menu to see the object highlighted in the

application. You must use this feature if you need to verify an object in the application.

Recognition and Administrative data

This is the lower left pane of the Verification Comparator window. The Recognition tab displays recognition data

used by HCL OneTest™ UI and is not editable. Some of these properties are the recognition properties that were listed

in the Select an Object tab of the Verification Point and Action Wizard when you created the verification point. The

Administrative tab displays internal administrative data of the object and is not editable. These properties are used to

manage and describe the test object. Recognition and administrative data are the properties from the script's object

map used to locate and manage this test object in the context of the associated script. You can use this information

to determine what test object this is in the associated application under test.

The MetaData tab displays a set of properties that define how specific data is managed. This grid can be edited if you

load the baseline. For example, you could edit the “ignore case” or “white space rule” in a text verification point in this

metadata grid. To edit, double-click the value in the Value column.

The Recognition and Administrative properties are a snapshot of the object map properties for the test object at the

time the verification point was created. They become historical information as the application evolves.

Related reference

Edit Test Object Appearance dialog box on page 1479

Related information

Comparing and updating verification point data using the Comparator on page 726

Enabling the Java plug-in of a browser on page 607

Viewing logs in the Projects view on page 1228

Chapter 11. Reference Guide

Editing test object descriptions

Replacing an exact-match property with a pattern

Verification Point Editor
The Verification Point Editor lets you view and edit verification point data. You can open the Editor by double-clicking a

verification point in the Script Explorer window. The Editor banner displays the name of your verification point.

You can specify color settings for several elements in the Verification Point Editor.

The following sections explain the parts of the Verification Point Editor window, and the toolbars.

Metadata

The metadata is displayed in the left pane of the window. It displays a set of properties that define how specific

data is managed. This grid can be edited. For example, you can edit the 'ignore case' or 'white space rule' in a text

verification point in this metadata grid. To edit, double-click the value in the Value column.

Main toolbar

The toolbar at the top of the Verification Point Editor has five buttons.

 File: Save -- Saves any edits you have made.

 File: Revert -- Reverts to the state of the data at the last save you made. If you have not saved edits since

opening the verification point, it will revert to the state it was in when opened. If you have done editing and made

saves, it will revert to the state at your last Save.

 Hide/Show TestObject Info -- Toggles the display of the Test Objects and Recognition Data panes of the Editor

window. When this information is hidden, the entire Editor window is used for the main data area. This is a sticky

setting--the next time you open the Editor it will appear as you last set it. However, note that if your Test Objects tree

has multiple nodes, the Verification Point Editor will show these panes again the next time you open it, regardless of

this setting.

 Replace Baseline -- Replaces the baseline image with a new image. The new image will become the baseline for

future playbacks. The Verification Point and Action Wizard is invoked for recapturing the image verification point.

 Help -- Brings up the Help for the Verification Point Editor. You can open the HCL OneTest™ UI help at any time

from the Help menu in HCL OneTest™ UI.

Menu bar

The menu bar contains the same commands that are represented with the toolbar buttons described in this topic.

File -- These are the same Save, Revert, Check Out, and Exit commands as the buttons listed above in the Main

Toolbar section.

1587

HCL OneTest™ UI

1588

Edit -- These are the same commands as the buttons listed below in the Properties Verification Point section.

Test Object > Highlight -- If your test application is open, you can select an object in the Test Objects tree and then

click this command to see the object highlighted in the application. Use this feature if you need to verify an object in

the application.

Preferences > Toolbars -- Toolbars controls the display of the toolbars. Hides/Displays the File, Metadata and Help

toolbars. Test Object Appearance on the Tree displays the Edit Test Object Description dialog box on page 1479,

which enables you to customize the text displayed for each object in the Test Object Hierarchy. Hide TestObject Info

toggles the display of the Test Objects and Recognition Data panes of the Editor window.

Help -- Displays the Help for the Verification Point Editor. You can open the HCL OneTest™ UI Help any time from the

Help menu in HCL OneTest™ UI.

Main data area

The right pane of the Verification Point Editor is where the verification point data is displayed. For example, in the

case of a Properties verification point, the Property and Value columns are displayed here. This is where you edit the

verification point data.

There are seven different types of displays you can get from recording verification points, as described in the

following sections.

Properties Verification Point -- Grid Display

When you create a Properties verification point, the object properties are displayed in a grid format. See Creating a

Properties Verification Point on page 698 for information on recording it. The properties that are shown in the grid

belong to the object that is highlighted in the Test Objects tree. The properties appear in the left column and their

values appear in the right column. You can edit which properties get tested in the Property column by checking a

check box for a property, and can edit the property values themselves in the Value column.

By default, all properties will appear with no checkmark, which means they will not be tested. Choose which

properties you want to test by checking each of them. Checked properties will be tested each time you play back

a script with this verification point. You can check all properties in the list by clicking the Check All toolbar button

 above the grid. Use the Uncheck All button above the grid to clear all properties. Depending on how many

properties you want to test, it is often easiest to either select or clear all of them using one of those buttons, and then

individually select or clear exceptions. It's a good idea to just test the specific properties you are interested in when

you use a Properties verification point.

The grid uses a nested tree hierarchy. If a folder shows up on the list, you can expand it by double-clicking on it or

selecting the expand icon. If you select or clear the folder icon itself, all the properties underneath it will be tested or

not tested.

To edit a value, double-click the grid cell. That cell will then be editable. Click outside the cell to make the edit take

effect. In most cases double-clicking a value makes the cell an editable field, and you can just change the value. In

some special cases, another dialog box comes up containing the information. For example, if the property is color,

Chapter 11. Reference Guide

when you double-click the color value, the standard Color dialog box opens. Make your edit there and close the Color

box. In other cases, a drop-down list may appear in the Value column when you double-click a value. For example,

values that are either true or false will appear in a drop-down list. If the value is a string or a complex value type, you

can right-click the value and select Open to display the value in a separate window, which enables you to see long

lines of text and makes it easier to edit.

Note: You can change a property value to a regular expression or numeric range using the Verification Point

Editor. For information, see Replacing an Exact-Match Property with a Pattern.

The grid has the following toolbar buttons for the Properties verification point display. These buttons act only on the

currently displayed data.

Cut -- Cuts the selected property. It is placed on the Editor clipboard and can be pasted.

Copy -- Copies the selected property to the Editor clipboard.

Paste -- Pastes the cut or copied property. It will be inserted into the display in alphabetical order.

Delete -- Deletes the selected property. It will not be retained on the clipboard.

 Case Sensitive Regular Expression -- Toggles case-sensitive comparison on and off.

 Convert Value to Regular Expression -- Converts the recognition property value in the Updated Test Object

Properties grid to a regular expression. See Replacing an Exact-Match Property with a Pattern for more information.

 Convert Value to Numeric Range -- Converts the recognition property value in the Updated Test Object

Properties grid to a numeric range. See Replacing an Exact-Match Property with a Pattern for more information.

 Evaluate Regular Expression -- Displays the Regular Expression Evaluator on page 1532, which enables you to

test the regular expression before you try it in a verification point.

 Convert Value to dataset Reference/ Undo dataset Reference -- Uses a dataset reference to use a dataset

instead of a literal value in a verification point. Cancels the dataset reference in the verification point. See About

dataset References and Verification Points on page 743.

 Check All -- Puts a checkmark in front of every property in the list. Checked properties will be tested each time you

play back the script with this verification point.

 Uncheck All -- Clears the checkmark in front of every property in the list. Cleared properties will not be tested

when you play back the script with this verification point.

 Hide the Unchecked Properties/Show All Properties -- Click Hide the Unchecked Properties to hide the cleared

properties. Then you will only see the properties that will be tested. Click Show All Properties to display all properties,

including any cleared ones.

1589

HCL OneTest™ UI

1590

The grid has the following pop-up menu commands for the Properties verification point display. To access them,

right-click a value in the Value column.

Open -- If the value is a string or a complex value type, this will display the value in a separate window, which enables

you to see long lines of text and makes it easier to edit.

 Case Sensitive Regular Expression -- Toggles case-sensitive regular expression comparison on and off.

 Evaluate Regular Expression -- Displays the Regular Expression Evaluator on page 1532, which enables you to

test the regular expression before you try it in a verification point.

 Convert Value to Regular Expression -- Converts the property value to a regular expression. See Replacing an

Exact-Match Property with a Pattern for more information.

 Redo/Undo Regular Expression -- Redoes or cancels the regular expression conversion.

 Convert Value to Numeric Range -- Converts the property value to a numeric range. See Replacing an Exact-

Match Property with a Pattern for more information.

 Undo Numeric Range -- Redoes or cancels the numeric range.

 Convert Value to dataset Reference - - Uses a dataset reference on page 743 to use a dataset instead of a literal

value in a verification point.

 Undo dataset Reference -- Cancels the dataset reference in the verification point on page 743.

Data Verification Point--Menu Hierarchy Display

When you create a Data verification point and choose the Menu Hierarchy or Menu Hierarchy with Properties test,

the menus are displayed in a tree format in the main data area (right pane). Menu Hierarchy and Menu Hierarchy with

Properties are two examples. The list of tests shown in the Data Value field is dependent on information provided by

the object's proxy. Values other than these two may be shown.

The tree will display the entire menu hierarchy of your application, or one top-level menu and its sub-items, depending

on how you recorded the verification point. If you chose the whole menu bar, each top-level menu will be shown from

top to bottom in the tree in the order they appear from left to right in the menu bar. Each individual menu item is

shown under its top-level menu. Use the plus and minus signs to open and close the list for each top-level menu.

By default, all menu items will appear with a check mark, which means they will be tested. Checked items will be

tested each time you play back a script with this verification point, and cleared items will not be tested. You can check

all menu items by clicking the Check All toolbar button above the tree. Use the Uncheck All button to clear all items.

The Cut, Copy, Paste, Delete , Check All, and Uncheck All toolbar buttons above the tree apply to the selected menu

item in the tree hierarchy, and are only applicable within the Verification Point Editor. (It does not use the system

clipboard.)

Chapter 11. Reference Guide

Data Verification Point--Text Display

When you create a Data verification point and choose the Visible Text test, the text is displayed in a text box format

in the main data area (right pane). Visible Text is one example. The list of tests shown in the Data Value field is

dependent on information provided by the object's proxy. Values other than this one may be shown.

The text is displayed in a text box that can be used like a very basic text editor. You can type and edit directly in this

text box. To edit the verification point data, make your edits to the text in this area.

Data Verification Point--Table Display

When you create a Data verification point and choose the Table Contents or Selected Table Cells test, the table data is

displayed in a table in the main data area (right pane). Table Contents and Selected Table Cells are two examples. The

list of tests shown in the Data Value field is dependent on information provided by the object's proxy. Values other

than these may be shown.

The table displays the same information as the table in your application. To edit the verification point data, double-

click any cell in the table to edit that cell.

The Cut, Copy, Paste, and Delete toolbar buttons above the table area apply to the selected row(s), and are only

applicable within the Verification Point Editor. (It does not use the system clipboard.)

You can right-click a table item to access a pop-up menu. The commands are the same as those listed above in the

Properties Verification Point--Grid Display section.

Data Verification Point--Tree Hierarchy Display

When you do a Data verification point and choose the Tree Hierarchy or Selected Tree Hierarchy test, the data is

displayed in a tree format in the main data area (right pane). Tree Hierarchy and Selected Tree Hierarchy are two

examples. The list of tests shown in the Data Value field is dependent on information provided by the object's proxy.

Values other than these two may be shown.

The Cut, Copy, Paste, Delete , Check All, and Uncheck All toolbar buttons above the tree apply to the selected item in

the tree hierarchy, and are only applicable within the Verification Point Editor. (It does not use the system clipboard.)

Data Verification Point--List Display

When you create a Data verification point and choose the List Elements test, the data is displayed in a list format

in the main data area (right pane). List Elements is one example. The list of tests shown in the Data Value field is

dependent on information provided by the object's proxy. Values other than this one may be shown.

The toolbar buttons above the list are the same ones that are found in the object properties grid described above

in the Properties Verification Point--Grid Display section. The buttons work the same as described there, except

they apply to the selected list item(s). The Cut, Copy, Paste, and Delete, Check All, and Uncheck All toolbar buttons

are only applicable within the Verification Point Editor. (It does not use the system clipboard.) The Insert button is

described above.

1591

HCL OneTest™ UI

1592

Data Verification Point--State Display

When you create a Data verification point and choose the CheckBox Button State or Toggle Button State test, the data

is displayed in a list format in the main data area (right pane). CheckBox Button State or Toggle Button State are two

examples. The list of tests shown in the Data Value field is dependent on information provided by the object's proxy.

Values other than this one may be shown.

Test object data in the Verification point editor window

While inserting the verification points, if you have not checked the Record Test Object relative Verification Points

option available in the General Recorder page on page 653 of the Windows > Preferences window, you can view the

following test object data in the Verification Point editor:

• Test objects

• Recognition and Administrative data

Test objects

This is the upper left pane of the Verification Point Editor window. It's a partial version of the script's object map. This

hierarchical display includes only the objects in your verification point. You cannot edit the Test Objects tree. For a

Properties verification point, you can choose an object within it and edit its properties in the properties list in the right

pane.

You can double-click folders in the tree to expand and collapse the objects beneath them. Click an individual object in

the tree to see its properties in the properties list.

The check boxes to the left of each node indicate whether that node will be tested or not. Checked items get tested.

Note: If your test application is open, you can select an object in the Test Objects tree and then click Test

Object > Highlight or right-click an object and click Highlight from the Verification Point Editor menu to see

the object highlighted in the application. Use this feature if you need to verify an object in the application.

Recognition and Administrative data

This is the lower left pane of the Editor window. The Recognition tab displays recognition data used by HCL OneTest™

UI and is not editable. The Administrative tab displays internal administrative data of the object and is not editable.

These properties are used to manage and describe the test object. Recognition and administrative data are the

properties from the script's object map used to locate and manage this test object in the context of the associated

script. You can use this information to figure out what test object this is in the associated application under test.

The MetaData tab displays a set of properties that define how specific data is managed. This grid can be edited. For

example, you could edit the 'ignore case' or 'white space rule' in a text verification point in this metadata grid. To edit,

double-click the value in the Value column.

Chapter 11. Reference Guide

The Recognition and Administrative properties are a snapshot of the object map properties for the test object at the

time the verification point was created. They become historical information as the application evolves.

Web browsers tab of the Enable Environments dialog box
This dialog is opened by clicking Configure > Enable Environments for Testing from HCL OneTest™ UI. The Web

Browsers tab is used to enable your browsers and to add and configure browsers. Information about enabling

browsers is presented first. Information about adding and configuring browsers is presented below that.

For enabling web browsers:

The HCL OneTest™ UI HTML enabler is the Web Browsers tab of the Enable Environments dialog box. The HTML

enabler must be run before you can use HCL OneTest™ UI to test HTML applications. It enables HTML applications

running in that browser to be tested by HCL OneTest™ UI. On Windows® systems, the enabler looks in the registry

to discover any installed browsers. On UNIX®, the enabler scans your hard disk drive(s) looking for any installed

browsers.

The first time you run HCL OneTest™ UI, it automatically enables Internet Explorer. If you have Mozilla Firefox, you

must enable them using the Enable button. If you install a new browser and want to use that browser for testing,

you must rerun the HTML enabler after you complete the installation of the browser. You can run the enabler any

time from HCL OneTest™ UI by clicking Configure> Enable Environments for Testing. See Enabling Web Browsers on

page 588.

Note that the first time you run HCL OneTest™ UI it automatically enables the JVM of your browser's Java™ plug-in so

that HTML recording works properly. If you install a different JVM, you must rerun the enabler to enable it.

Web browsers list

Displays the list of browsers that the enabler locates on your hard disk drive(s). This list is populated when the

enabler starts up. On Microsoft® Windows® platforms, the enabler uses the registry to locate browsers. Browsers

are identified by the full path name to their installation directory. After the name, the enabler indicates in parentheses

whether that browser is currently enabled.

Select All button

Use this to select all the browsers that are listed in the Web Browsers list. This is useful if you want to enable or

disable all the browsers. To clear them all, click any of the individual browsers.

Search button

Click this button to have HCL OneTest™ UI search your hard disk drive(s) for web browsers. This opens the Search

for Web Browsers dialog box. Choose one of the search options in that dialog and click the Search button. Note:

You should not use the Search All option to find browsers on Linux® or UNIX® systems. Instead use the Search In

option to locate the browser. See Enabling Web Browsers on page 588 for information on the search options. When

the search is complete, the Web Browsers list is populated with all found browsers. At least the first time you use

1593

HCL OneTest™ UI

1594

HCL OneTest™ UI, use the Search button to locate all browsers on your system. After the initial search, it will list any

browsers that were already enabled, plus any new ones it finds.

Add button

Click this button to locate browsers individually. It brings up the Add Browser dialog box to locate the browser. To

select a browser, point to its installation directory. The browser you select will be added to the Web Browsers list.

The main use of Add would be if the enabler failed to locate a browser automatically at start-up. You can also use the

Search In option in the Search for Web Browsers on page 1540 dialog box to locate a browser.

Remove button

If you want to remove a browser from the Web Browsers list, select it and click Remove.

Set as Default button

Use this to choose which browser you want to be your default browser. Select the browser in the list, and click the

button. That browser will then become the default, and will be indicated in parentheses after the name. You can

change the default any time by coming back to this tab.

Enable button

Use this button to enable selected browser(s) for testing with HCL OneTest™ UI. Select the browser(s) to enable in the

list, then click Enable. The modifications to the browser to enable it are done at this time. Once enabled, that will be

indicated in parentheses after each browser's name in the list.

Disable button

Use this button to disable selected browser(s) for testing with HCL OneTest™ UI. Select the browser(s) to disable in

the list, then click Disable. This undoes all the modifications made by Enable, and the enabled indicator will disappear

after the name.

Test button

You can test that your browser is enabled properly by clicking the Test button. This opens the Browser Enablement

Diagnostic Tool on page 606. If you suspect your browser is not enabled properly, run this tool and follow the

instructions it gives to solve the problem.

Note:

• To enable JREs for Java™ testing, click the Java™ Environments tab of the enabler and click the Help button,

or see Enabling Java Environments on page 586.

• If your browser is not enabled, you will be able to tell because the Record Monitor on page 1529 will be blank

when you try to record against an HTML application. For this reason, leave the record monitor in view while

recording. If you see this symptom, you need to run the enabler.

Chapter 11. Reference Guide

For adding and configuring web browsers:

The Web Browsers tab is also used to add and edit browser configurations. To edit the information on an existing

browser, click the name of the browser in the Web Browsers list. To add a new browser, click the Search or Add

button. Use the Set as Default button to set one of the browsers as your default browser. Whether editing or adding,

make your changes, then click OK for the changes to be saved.

Web browsers list

Select the browser that you want to edit or view. Its information will then appear to the right of the list. The

information fields are described below. If your browser is not in the list yet, click Search or Add to find and enter it.

The browser that has default listed after it in parentheses is the default browser. It will be used in all HTML testing

unless you change this setting in the properties of a specific application.

Detailed Information for Browser

Contains the following fields:

Name -- This is the logical name of your browser. It may be used in a script by a startBrowser command or by an

HTML application in the Application Configuration Tool on page 1457. HCL OneTest™ UI defaults this from the end of

your path. You can edit this name.

Kind -- This is a read-only field. HCL OneTest™ UI will fill it in based on which browser you select.

Path -- This is the full path to the root of the browser installation.

Command -- This is the browser's executable name. For example: "mozilla" or "iexplore."

Search button

Click Search to add all your browsers into the Web Browsers list. This opens the Search for Web Browsers dialog box.

Choose one of the search options in that dialog and click the Search button. Note: You should not use the Search

All option to find browsers on Linux® or UNIX® systems. Instead use the Search In option to locate the browser.

See Enabling Web Browsers on page 588 for information on the search options. HCL OneTest™ UI will enter all the

detailed information on each browser.

Add button

Click Add to manually locate a new browser to add to the list. The Add Browser dialog appears. Browse to the

executable file of the browser you want to add. With the file selected, click the Add button. The browser will then show

up in the list and you can edit its configuration information if necessary. Note: it may be quicker to use the Search

button and let HCL OneTest™ UI find and enter your browsers.

Set as Default button

1595

HCL OneTest™ UI

1596

Use this to choose which browser you want to be your default browser when HCL OneTest™ UI starts up HTML

applications. Select the browser in the list, and click the button. That browser will then become the default, and will be

indicated in parentheses after the name. You can change the default any time by coming back to this tab.

Remove button

To remove a browser from the Web Browsers list, select it, then click Remove.

OK button

You must click OK when you are finished to save the additions or edits you made on this tab.

For more information, see Configuring Browsers for Testing on page 605.

Apply button

If you want to apply edits you make in this dialog box before you exit the dialog, click Apply . If you click Cancel, any

changes you made before you clicked Apply will be saved, and changes made after will be canceled.

Workbench Preferences page
The Workbench Preferences page enables you to indicate how you want the Workbench to behave while playing back,

recording, and debugging Functional Test scripts.

The Workbench page has the following controls:

Workbench state during run -- Enables you to indicate how you want the Workbench to display while playing back

scripts.

• Minimized -- Reduces the Workbench to a button on the taskbar during playback.

• Minimized and restored on playback termination (Default) -- Reduces the Workbench to a button on the

taskbar during playback and restores it when playback finishes.

• Hidden -- Hides the Workbench during playback and restores it when playback finishes.

• Leave in current state -- Does not change the Workbench during playback.

Workbench state during recording -- Enables you to indicate how you want the Workbench to display while recording

scripts.

• Minimized -- Reduces the Workbench to a button on the taskbar during recording.

• Minimized and restored when recording finished (Default) -- Reduces the Workbench to a button on the

taskbar during recording and restores it after recording stops.

• Hidden -- Hides the Workbench during recording and restores it after recording stops.

• Leave in current state -- Does not change the Workbench during recording.

Chapter 11. Reference Guide

Workbench state during debug -- Enables you to indicate how you want the Workbench to display while debugging

scripts.

• Minimized -- Reduces the Workbench to a button on the taskbar during debugging.

• Minimized and restored on playback termination -- Reduces the Workbench to a button on the taskbar during

debugging and restores it after debugging stops.

• Hidden -- Hides the Workbench during debugging and restores it after debugging stops.

• Leave in current state (Default) -- Does not change the Workbench during debugging.

Restore Defaults -- Restores all the default values on this page.

Apply -- Saves the edits you made without closing the dialog box.

To open: Click Window > Preferences. In the left pane expand Functional Test and click Workbench.

Workbench Advanced Preferences
This Advanced page enables you to set advanced Workbench preferences for HCL OneTest™ UI, such as switching to

the Test Debug perspective rather than the Functional Test perspective when debugging or turning on or off.

The Advanced page has the following controls:

Switch to Test Debug Perspective when debugging -- When selected, HCL OneTest™ UI switches to the Test Debug

perspective when you select Script > Debug. When cleared, HCL OneTest™ UI continues to display the Functional Test

perspective while the script runs in debug mode.

Restore Defaults -- Restores all the default values on this page.

Apply -- Saves the edits you made without closing the Preferences dialog box.

To open: Click Window > Preferences. In the left pane expand Product Name > Workbench, and click Advanced.

Test Object Map menu
This topic describes each of the options on the test object map menu.

File menu on page 1598

Edit menu on page 1598

Find menu on page 1598

Test Object menu on page 1599

Preferences menu on page 1599

Applications on page 1600

1597

HCL OneTest™ UI

1598

Display on page 1600

Help on page 1600

File menu options

The File menu has the following commands:

Save -- Saves your changes to the test object map.

Revert -- Restores the map to the version last saved.

Renew All Names in Associated Script(s) -- Renews all the names of script test objects in associated script(s).

Exit -- Closes the test object map.

Edit menu options

Cut -- Removes properties selected on a property set tab to a local Clipboard.

Copy -- Copies properties selected on a property set tab to a local Clipboard.

Paste -- Inserts properties previously saved to a local Clipboard at the cursor location property set.

Delete -- Depending on which pane has focus, deletes the selected test object from the test object map or deletes

properties from the property set.

Find menu options

Quick Find -- Opens the Quick Find dialog box, which enables you to search for a test object based on a string you

specify.

Find by Filters -- Opens the Set Active Find Criteria dialog box on page 1556, which enables you to select the filter to

use for searching the test object map or to create a new filter.

Find & Modify -- Opens the Find & Modify dialog box, which enables you to do either a Quick Find or a Find by filters

and make modifications to the results.

Find Used -- Finds all the test objects that have references in the scripts associated with a shared test object map.

Find Not Used -- Finds test objects that have no references in scripts associated with the test object map.

Delete All Not Used -- Opens the Delete All Not Used Test Objects dialog box, which enables you to selectively delete

test objects that do not have references in the script associated with the test object map.

First -- Moves to the first test object in the hierarchy that matches the search criterion. The default criterion is State

Not Clean, which searches the test object map for all objects that have a New state. For information, see Searching

for Objects in a Test Object Map.

Chapter 11. Reference Guide

Previous -- Moves to the previous test object in the hierarchy that matches the search criterion. The default criterion

is State Not Clean, which searches the test object map for all objects that have a New state. For information, see

Searching for Objects in a Test Object Map.

Next -- Moves to the next test object in the hierarchy that matches the search criterion. The default criterion is State

Not Clean, which searches the test object map for all objects that have a New state. For information, see Searching

for Objects in a Test Object Map.

Last -- Moves to the last test object in the hierarchy that matches the search criterion. The default criterion is State

Not Clean, which searches the test object map for all objects that have a New state. For information, see Searching

for Objects in a Test Object Map.

Test Object menu options

Insert Object(s) -- Opens the Insert a GUI Object into the Object Map dialog box, which enables you to select test

objects to Adding objects to a test object map and make them available for scripts.

Update Recognition Properties -- Enables you to update the recognition properties of a test object frame in the

application-under-test.

Description Property -- Opens the Set Description Property dialog box, which enables you to Adding test object

descriptions. HCL OneTest™ UI adds the description to the Administrative property set tab for the object and displays

the description when you place the cursor over the object name in a script.

Add to Script script -- Adding test objects to a script, which enables you to add it to the script and select a method.

HCL OneTest™ UI changes this menu item to Add to Multiple Scripts to indicate that multiple scripts have been

selected and are affected by the command.

Associated Scripts -- Displays a list of scripts that are associated with the test object map.

Accept Node -- Changes the state of the selected test object from New to "Clean."

Accept All -- Changes the state of all test objects from New to "Clean."

Highlight -- Locates the test object in the application-under-test, if visible. If HCL OneTest™ UI finds more than one

instance of the test object, you can display neither or the top two candidates.

Renew Name in Associated Script(s) -- Renews the name of an individual script test object in associated script(s).

Preferences menu options

Toolbars -- Enables you to display or hide the File, Edit, Find, TestObject, Applications, Display, and Help toolbars.

Test Object Description -- Opens the Edit Test Object Description dialog box on page 1479, which enables you to

customize the text displayed for each object in the Test Object Hierarchy.

Clear State on Close -- Accepts all test objects in the test object map by changing their state from New to "Clean"

when you close the map.

1599

HCL OneTest™ UI

1600

Highlight -- Opens the Set Highlight Window Preferences dialog box on page 1557, which enables you to specify how

to emphasize objects in the application-under-test when you select them.

Applications menu options

Run -- Opens the Start Application dialog box on page 1558, which enables you to start a specific application and add

test objects to the test object map.

The Applications menu also lists up to nine of the most recently used applications. A number appears next to each

application on the menu, which enables you to select an application by typing the number that corresponds to the

application. You can also click the application name at the bottom of the Applications menu.

Display menu options

Expand All -- Displays all test objects in the hierarchy.

Collapse to Selected -- Closes all test objects in the hierarchy except in the selected tree.

Toggle Orientation -- Switches between displaying the property sets under or next to the Test Object Hierarchy.

Help menu options :

Test Object Map Help -- Displays Help for the test object map.

Insert Test Object Help -- Displays Help for adding objects to a test object map.

New Test Object Help -- Displays Help that describes how to set the option to display the test object map for a new

object.

Test Object Map toolbar
This topic describes each button on the test object map toolbar

The Test Object Map toolbar has the following buttons:

 File: Save -- Saves changes you make to the test object map.

 File: Revert -- Restores the map to the version last saved.

 Edit: Cut -- Removes text selected in the property set tab to a local Clipboard.

 Edit: Copy -- Copies text selected in the property set tab to a local Clipboard.

 Edit: Paste -- Inserts text previously saved to a local Clipboard at the cursor location in the property set.

 Edit: Delete -- Deletes the selected test object from the test object map.

Chapter 11. Reference Guide

 Find: Quick -- Opens the Quick Find dialog box, which enables you to search for a test object based on a string you

specify.

 Find: Filters -- Opens the Set Active Find Criteria dialog box, which enables you to select the filter you want to use

for searching the test object map or to create a new filter.

 Find: Find & Modify -- Opens the Find & Modify dialog box, which enables you to use Quick Find or Find by filters

and make modifications to the results.

 Find: Used -- Finds all the test objects that have references in the scripts associated with a shared test object

map.

 Find: Not Used -- Finds test objects that do not have references in scripts associated with the test object map.

 Delete All Not Used -- Opens the Delete All Not Used Test Objects dialog box , which enables you to selectively

delete test objects that do not have references in the script associated with the test object map.

 Find: First -- Moves to the first test object in the hierarchy that matches the search criterion. The default criterion is

State Not Clean, which searches the test object map for all objects that have a New state.

 Find: Previous -- Moves to the previous test object in the hierarchy that matches the search criterion. The default

criterion is State Not Clean, which searches the test object map for all objects that have a New state.

 Find: Next -- Moves to the next test object in the hierarchy that matches the search criterion. The default criterion

is State Not Clean, which searches the test object map for all objects that have a New state.

 Find: Last -- Moves to the last test object in the hierarchy that matches the search criterion. The default criterion is

State Not Clean, which searches the test object map for all objects that have a New state.

 Test Object: Insert Object(s) -- Opens the Insert a GUI Object into the Object Map dialog box, which enables you to

select test objects to add to the test object map and make them available for scripts.

 Test Object: Insert Dynamic Test Object -- Opens the Add Dynamic Test Object in the Object Map dialog box. You

can anchor a test object as a descendant to its parent.

 Test Object: Source Object to Unify -- Selects the source object. The source object is the old object that will be

replaced by the new objects properties.

 Test Object: Target Object to Unify -- Unifies the source object with the target object. The older object is now

replaced with the new object properties

 Test Object: Update Recognition Properties -- Enables you to update the recognition properties of a test object in

the application-under-test.

1601

HCL OneTest™ UI

1602

 Test Object: Description -- Opens the Set Description Property dialog box, which enables you to enter descriptive

text about the object. HCL OneTest™ UI adds the description to the Administrative Property Set tab for the object and

displays the description when you place the cursor over the object name in a script.

 Test Object: Add to Script: script -- Adds the selected object to the Script Explorer, which enables you to add it

to the script and select a method. HCL OneTest™ UI changes the text in the tooltip for this button to Add to Multiple

Scripts to indicate that multiple scripts have been selected and will be affected by the command.

 Test Object: Associated Scripts -- Opens the Associated Scripts dialog box, which lists scripts associated with a

test object map.

 Test Object: Accept Node -- Changes the state of the selected test object from New to "Clean."

 Test Object: Accept All -- Changes the state of all test objects from New to "Clean."

 Test Object: Highlight -- Locates the test object in the application-under-test, if visible. If HCL OneTest™ UI finds

more than one instance of the test object, you can display neither or the top two candidates.

 Test Object: Renew Name in Associated Script(s) -- Renews the name of an individual script test object in

associated script(s).

 Application: Run -- Opens the Start Application dialog box , which enables you to start an application and add test

objects to the test object map.

 Expand All -- Displays all the test objects in the hierarchy.

 Collapse to Selected -- Closes all the test objects in the hierarchy except in the selected tree.

 Display: Toggle Splitter Orientation -- Changes the property sets display from under the Test Object Hierarchy to

beside it.

 Help: Help -- Displays online Help for the test object map.

Test object hierarchy
The Test Object Hierarchy lists all test objects in the application-under-test and provides information for each, such as

color, owner relationship, state, test domain, role, name, and .class.

• Color -- Newly added test objects are marked New and displayed in blue. All the test objects that are not used

in the scripts associated with the test object map are displayed in red.

• Owned -- An owner/owned relationship is not a container relationship. For example, a frame and a dialog box.

A parent/child relationship is a frame and a toolbar

You can change the color of the Owned test object on page 640 in the test object map.

Chapter 11. Reference Guide

• State

◦ New -- Added to the test object map from the Insert a GUI Object into the Object Map dialog box.

◦ "Clean" -- The object has been accepted and any previous state has been cleared. A "clean" object is

not labeled, and the state is removed from the hierarchy.

• Test domain

◦ HTML

◦ Java

◦ Net

◦ Win

• Role -- The generic type of an object, such as Frame or Button.

• Name -- The descriptive name administrative property.

• .class

◦ Java class name, such as java.awt.Button

◦ Html canonical class name, such as Html.HtmlDocument or Html.A

Each test object in the list is preceded by an icon that indicates its role.

Property sets
The lower (or right) pane of the Test Object Map window contains property sets, which provide information about the

selected object.

There are two property set tabs:

• Recognition

• Administrative

The Recognition tab contains the recognition data used by HCL OneTest™ UI. The Administrative tab contains the

internal administrative data of the object. These properties are used to manage and describe the test object. Updating

the properties on this tab affects the future code generation of scripts that use this test object. For example, updating

the Descriptive Name causes the new name to be used the next time this test object is added to a script, depending

on the template used.

Recognition and administrative data are the properties from the object map that are used to locate and manage this

test object in the context of the associated script. For information, see Using ScriptAssure (TM) on page 1182.

To edit a value in either of the tabs, double-click the value.

If you select a recognition property value and right-click, you can use any of these various options:

Open -- Displays the value in a separate window, which enables you to see long lines of text.

 Case Sensitive Regular Expression -- Sets case-sensitive comparison in regular expressions on and off.

1603

HCL OneTest™ UI

1604

 Evaluate Regular Expression -- Starts the Regular Expression Evaluator on page 1532, which enables you to test

the regular expression before you try it in a test object find.

 Convert Value to Regular Expression -- Converts the recognition property value in the Updated Test Object

Properties grid to a regular expression. For more information, see Replacing an Exact-Match Property with a Pattern.

 Undo Regular Expression -- Restores the original value of the regular expression.

 Convert Value to Numeric Range -- Converts the recognition property value in the Updated Test Object Properties

grid to a numeric range. For more information, see Replacing an Exact-Match Property with a Pattern.

 Undo Numeric Range -- Converts the numeric range back to the original value.

You can change a property value to a regular expression or numeric range by using the test object map editor. For

information, see Replacing an Exact-Match Property with a Pattern.

When a test object changes, you can update its recognition properties in the application-under-test.

You can Adding test object descriptions as a property on the Administrative tab for an object.

You can also specify color settings for several elements in a test object map.

Specify Playback Options page
Use the Specify Playback Options page to specify run arguments and a dataset iteration count.

The Specify Playback Options page has the following controls:

Run arguments -- Select to pass command-line arguments on page 1449 to the script. The most recently used run

arguments appear in the list.

dataset Iteration Count -- Determines how many times a test script runs when you play back the test script. Specify

the count according to the number of records in the dataset. Type or select the number of records in the dataset, or

select Iterate Until Done to access all records in the dataset. For a call script, you can select Use Current Record to

use the same record across the call script.

To open:

In the Projects view, select a script and from theHCL OneTest™ UI menu click Script > Run. Click Next.

Object Properties Configuration Tool
Use the object properties configuration tool to configure the object recognition properties in the customized object

library. While recording scripts, the customized object library file is used as a reference for setting object recognition

properties and the property weights in the object map.

The object properties configuration tool has the following controls:

Chapter 11. Reference Guide

Select the Test Domain

Lists the test domains for which you can configure the object recognition properties.

Select the Object Class

Lists all the default objects and the customized objects for the selected test domain.

Show only customized object classes

When selected, the Test Object Class field lists only the customized objects for the selected domain.

Add Object

To add an object if the required test object is not listed for the specific domain. You can also add the

recognition property if you do not know the exact property name to an existing test object in the Add

Test Object dialog box.

Remove Object

To remove a test object from the object library if it is not a default test object used by HCL OneTest™ UI.

This button is disabled if you select a default test object.

Object Recognition Properties grid

Lists the recognition properties, actual weights and default weights of the selected object. The property

weights are not displayed if multiple objects are selected in the Test Object Class field. The actual

weights of the object property can be edited.

Import

To import objects along with its recognition properties and weights from an object properties file into

the object library. The existing object in the object library will be overwritten if the existing object class

name is same as the object that you are importing.

Export

To export objects along with its recognition properties and weights of the object library into an object

recognition property file. The file is saved with .rftop extension.

Restore

To restore the actual property weights of the selected objects to the default weights.

Add

To add a recognition property for the selected object. An empty row is added in the Object Recognition

Properties grid.

Remove

To remove a recognition property for the selected object.

Apply to selected objects

To apply a recognition property for multiple objects. Right-click the recognition property row that you

want to apply to the selected objects and click Apply to selected objects.

1605

HCL OneTest™ UI

1606

Property Weight dialog box

This dialog box is displayed while applying a recognition property to multiple objects. Type the property

weight in the dialog box and click Ok.

Remove from selected objects

To remove the recognition property from the selected objects. Right-click the recognition property row

that you want to remove from the selected objects and click Remove from selected objects.

Finish

Saves the changes and closes the object properties configuration tool.

Cancel

Cancels all the changes made in the object properties configuration tool after the last save operation.

Apply

Saves the changes without closing the object recognition editor.

To open the object properties configuration tool, click Configure > Configure Object Recognition Properties

Add Object dialog box
Use this option to add new objects to the object library and specify properties that needs to be added as recognition

properties to the test object.

The Add Object dialog box has the following controls:

Class name

Type the class name of the object to add it to the object library if you know the correct test object name.

Select properties from

Lists all the objects that are used in the object library. Select the object from the list to use the

recognition properties and its weights in the new object.

Object Finder

Select the Object Finder tool icon and drag it over the object in the application that you want to select.

HCL OneTest™ UI outlines the object with a highlight border.

Start Application

To start the test application for selecting the objects that you want to add to the object library.

Object Recognition Properties grid

Lists the object recognition properties and weights of the selected object. Select the check box

corresponding to the property row to add the recognition property for the test object

OK

Saves the changes and closes the Add Object dialog box.

Chapter 11. Reference Guide

Cancel

Cancels all the changes made in the Add Object dialog box.

To open the Add Object dialog box, click Configure > Configure Object Recognition Properties. In the object

properties configuration tool, click Add Object to open the Add Object dialog box.

Import Object Recognition Properties dialog box
Use this option to import objects along with its recognition properties and weights from an object properties file into

the object library.

The Import Object Recognition Properties dialog box has the following controls:

Object Properties file

Displays the path of the selected object recognition properties file.

Browse

To browse and select the object recognition properties file from which you want to import the objects.

Select the objects to import

Lists the object details along with the domain names listed in the selected object recognition properties

file. Select the check box corresponding to the objects that you want to import from the list.

Select all

To select all the check boxes corresponding to objects in the list.

Deselect all

To clear all the check boxes that is selected in the objects list.

Ok

Saves the changes and closes the Import Object Recognition Properties dialog box.

Cancel

Cancels all the changes made in the Import Object Recognition Properties dialog box.

To open the Import Object Recognition Properties dialog box, click Configure > Configure Object Recognition

Properties. In the Object Properties Configuration Tool, click Import to open the Import Object Recognition Properties

dialog box.

Export Object Recognition Properties dialog box
Use this option to export the customized objects along with its recognition properties and weights of the object

library into an object recognition property file.

The Export Object Recognition Properties dialog box has the following controls:

1607

HCL OneTest™ UI

1608

Select the objects to export

Lists the customized object details along with the domain names of the object library. Select the check

box corresponding to the objects that you want to export from the list.

Select all

To select all the objects displayed in the list.

Deselect all

To clear all the check boxes that is selected in the objects list.

Object properties file

Displays the path of the specified object recognition properties file.

Browse

To browse and specify the object recognition properties file to which you want to save the object details.

The object recognition properties file is saved with .rftop extension.

Ok

Saves the changes and closes the Export Object Recognition Properties dialog box.

Cancel

Cancels all the changes made in the Export Object Recognition Properties dialog box.

To open the Export Object Recognition Properties dialog box, click Configure > Configure Object Recognition

Properties. In the Object Properties Configuration Tool, click Export to open the Export Object Recognition Properties

dialog box.

Example of a test object map
This is an example of a test object map created for an HTML application:

Chapter 11. Reference Guide

Exception dialog box
This dialog box is displayed if an exception occurs during playback of a functional test script.

The Exception dialog box has the following controls:

Description

Displays the reason for the exception.

Try fixing the problem

Select this check box to fix the problem. After you fix the problem, try the operation again. The following

controls are enabled:

1609

HCL OneTest™ UI

1610

Start the application

Opens the Start the application dialog box to select and open the application-under-test.

Enable the environment

Opens the Enable Environments dialog box to enable the required environment for testing.

Find the object

Opens the Find the object wizard to select the required object in the application under test.

The selected object is used to perform the action when you try the operation again.

Open the object map editor

Opens the object map editor to view and edit the object recognition properties. The

updated object recognition properties are used when you try the operation again.

Configure this application

Opens the Application Configuration Tool to edit the application configuration. This option

is available if the application is not configured.

Switch to manual mode

This option is displayed for the keyword-enabled functional test scripts that are executed

from Manual Tester in hybrid mode. Using this option you can switch the execution from

automated to the manual mode.

Retry the operation

Tries the execution of the script a second time.

Skip the operation

Continue to execute the next line of code. The playback log does not display the exception.

Stop execution

Stops the script playback.

Do not show this dialog again

Select this check box to disable the appearance of the exception dialog box while executing the script.

Application View
The Application View displays the application visuals (snapshots) that are captured while recording scripts. The

visuals of the test application are captured only if both the simplified scripting and the application visuals feature

preferences are enabled.

HCL OneTest™ UI captures the application controls and their data and property details during recording if the

application visuals, data verification point and data driven commands features are enabled in the HCL OneTest™ UI

preferences window. With these features enabled, you can create or edit verification points in the script and insert

data-driven commands from the application visuals that are displayed in the Application View without opening the

test application.

Chapter 11. Reference Guide

When you click a simplified script test line, the application visual that contains the application control is highlighted in

blue and is displayed in the Application View. The Thumbnails pane in the Application View displays the application

visuals of all the test scripts in the project that are captured while creating the scripts.

You can modify the test script to test additional application controls, create or edit verification points, or insert data-

driven commands by selecting the application controls in the Application View without opening the application under

test.

The following controls are available in the Application View toolbar:

• Hide/Show Comment: The comments that are inserted for an application control in an application visual

are displayed in the application view when you point the control.

• Hide/Show all the visuals: The thumbnails view displays all the application visuals in the project if you

select Show all the visuals option. By default, the application visuals of the active script are displayed in the

thumbnails view.

• Control Highlight Color and Hover Highlight Color. From the View menu, select the color from the

palette for changing the control highlight color and the hover highlight color. By default, the control that is

referred in the selected test line is highlighted in blue and hover highlight color is red.

Select any control in an application visual. The following right-click menu options for a control is available in the

application view:

• Insert control_name control: To insert the control to the test script from the application visual. The action

that can be performed on the selected control is also listed based on the type of the control in the application

visual. A statement that specifies the control and the action is added as a test line into the test script.

• Insert comment: To add a comment for the control. The comment is displayed below the application visual.

• Insert Verification Point: Use this option to insert a test line to perform a data or an image verification for

the control in the application under test during the script playback. This option is available only if the Enable

capturing of verification on test data option is selected on the Functional Test Preferences window.

• Insert Data Driven Commands: To perform a data-driven test for the control by retrieving the input values for

the control from the dataset during playback.

• Update Visual: Update the visual in the application view by selecting the visual from the application under test.

Script editor
The simplified script editor displays the test script as English statements that are easy to understand and edit.

All the recorded actions on the test application are displayed as test lines in the simplified script editor.

You can perform the following operations in the simplified script editor:

• Edit the test line: You can modify the input values of a test line. Click the test line and modify the input values.

• Enable/Disable action: Use this option to enable or disable the action on the application under test during

playback.

1611

HCL OneTest™ UI

1612

• Delete action (): Use this option to delete the test line from the script editor.

• Create Group (): The test lines in the script editor are grouped based on the parent window that the test line

control refers to. Use this option to create more logical groups to manage the test lines for easy identification.

• Insert Java Code Snippet () or Insert Java Method (): Use these controls to switch to Java test script.

• Insert comments (): Use this option to insert comments in the script editor.

• Repeat Actions(): Use this option to repeat the actions statements. The selected test lines are grouped into

the Repeat group and are executed based on the repeat count during playback.

• Insert Condition (If Clause) (): Use this option to insert conditional statements to verify the values of the

variables in the script and perform actions in the application. The test lines in the If Then group are executed

if the conditions of the variables are met during playback.

• Insert Else Clause (): Use this option insert the Else group and add the test lines that must be executed if

the variable conditions are not met during script playback.

• Undo: Use this option to undo the action that you performed in the simplified script editor.

• Redo: Use this option to redo the action that you performed in the simplified script editor.

The Java code for the simplified script is displayed in the Java script editor. The simplified script test line is displayed

as a comment in the corresponding Java code.

The properties of each test line can be viewed and modified in the Properties View.

Properties view - General page
The General page of the Properties view displays the details of the test line that is selected in the script editor. You

can change the test line description and the action on the control that the test line refers to. If a group is selected in

the simplified script editor, this page shows the dataset details.

The Generalpage of the Properties view contains these controls when a test line is selected in the script editor:

Control name

Displays the name of the control that the test line refers to. You can change the control name in this

field.

Action

Lists the actions that can be performed on the control. Select an alternative action from the list to

change the recorded action on the control, if required.

Action parameter

Displays the input values or the action details such as the screen coordinates or the path. You can

change the values in this field.

Control type

Indicates the generic type of the control, such as a frame or button.

Chapter 11. Reference Guide

Application domain

Lists the domain to which the control belongs, such as the Java or Win domain.

Control state

Indicates the state of the control in the application such as the browser-ready state.

The Generalpage of the Properties view contains the following dataset details when a group is selected in the script

editor:

dataset name

Specify the dataset name to associate it with the group.

dataset iteration count

Specify how many times the statements in the group must be run during the script playback.

Remove dataset associated with the selected group

Select this check box to remove the dataset association with the selected group.

The Generalpage of the Properties view contains the following conditional controls when an If or Then statement is

selected in the script editor:

Left Side

Lists the variables that are declared during the script recording. This field is displayed if you select the If

statement in the script editor.

Compares To

Lists the operator parameters. The following parameters are available:

• EQUALS

• CONTAINS

• STARTS_WITH

• ENDS_WITH

• LESS_THAN

• LESS_OR_EQUAL

• GREATER_THAN

• GREATER_OR_EQUAL

Right Side

Specify the variable value that must be verified. For string values, you must specify the value in

quotation marks, for example, "Visa". You can also select another variable from the list, if the Left Side

value must be verified against another variable.

1613

HCL OneTest™ UI

1614

Properties View- Playback page
Use the Playback page of the Properties View to specify the playback settings for the test line to be run during the

script playback.

The Playbackpage of the Properties View contains these controls:

Wait for the control to be displayed

Type the time in seconds to wait for the control to be displayed in the application under test before

running the test line during script playback. Use this option when the application under test might take

time to refresh the required screen or controls during playback.

Pause execution for

Type the time in seconds to delay running the test line during script playback.

Exception handlers

Specify the type of action that must be performed if an exception occurs while running the test line

during script playback. You can select any action such as Stop, Skip and Continue , or Retry from the list

for any of these exceptions:

• Object not found: This exception occurs if the control is not found in the test application during

playback.

• Ambiguous control: This occurs if HCL OneTest™ UI cannot uniquely identify the control in the

application under test. This typically happens when the application window is not closed before

playback and also when an identical control is displayed in the same window.

• Weak recognition: This exception occurs if the control properties such as the control name or

the properties of the parent control is changed in the application during playback.

• Control item not found: This exception occurs if the subitem control is not found in the

application during playback.

• Unexpected error: Any other type of exception that is not listed earlier.

Properties View - Log page
Use the Log page of the Properties View to specify the information that must be displayed in the playback log when

the selected test line is executed.

The Log page of the Properties View contains these controls:

Snapshot options

• Control snapshot

• Screen snapshot

• None

Select either the control snapshot or the screen snapshot option to specify the type of snapshot to be

captured while running the test line during script playback.

Chapter 11. Reference Guide

Type

• Information

• Warning

• Error

• None

Indicate the type of message with the details that must be displayed in the log after the test line runs

during the script playback.

1615

mdcxvi

Security Considerations
You can take certain actions to ensure that your installation is secure, customize your security settings, and set up

user access controls.

Security Considerations for HCL OneTest™ UI
This document describes the actions that you can take to ensure that your installation is secure, customize your

security settings, and set up user access controls.

Ports, protocols, and services

HCL OneTest™ UI uses port number 9100, by default, to launch a local web server to provide browser support. This

port accepts non-secure communication and is an open port. The port is configurable. The enablement process for

Java and browsers must run with administrator or super user credentials.

Customizing your security settings

datasets can be encrypted and access controlled by passwords that are difficult, but not impossible, to break.

Logging in to IBM® Rational® Quality Manager server either through the adapter or the Keyword View requires

a username and password and this information is encrypted by using 128-bit encryption and is stored locally in

encrypted form.

Privacy policy considerations

This software offering does not use cookies or other technologies to collect personally identifiable information.

Security limitations

Passwords that are entered as a part of a test script recording are stored in the test script as plain text.

mdcxvii

Notices
This document provides information about copyright, trademarks, terms and conditions for the product

documentation.

© Copyright IBM Corporation 2001, 2016 / © Copyright HCL Technologies Limited 2016, 2022

This information was developed for products and services offered in the US.

HCL® may not offer the products, services, or features discussed in this document in other countries. Consult your

local HCL® representative for information on the products and services currently available in your area. Any reference

to an HCL® product, program, or service is not intended to state or imply that only that HCL® product, program,

or service may be used. Any functionally equivalent product, program, or service that does not infringe any HCL®

intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the

operation of any non-HCL® product, program, or service.

HCL® may have patents or pending patent applications covering subject matter described in this document. The

furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing,

to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

For license inquiries regarding double-byte character set (DBCS) information, contact the HCL® Intellectual Property

Department in your country or send inquiries, in writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the publication. HCL® may make

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time

without notice.

mdcxviii

Any references in this information to non-HCL® websites are provided for convenience only and do not in any manner

serve as an endorsement of those websites. The materials at those websites are not part of the materials for this

HCL® product and use of those websites is at your own risk.

HCL® may use or distribute any of the information you provide in any way it believes appropriate without incurring

any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this document and all licensed material available for it are provided by HCL®

under terms of the HCL® Customer Agreement, HCL® International Program License Agreement or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.

Information concerning non-HCL® products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL® has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL® products. Questions on the

capabilities of non-HCL® products should be addressed to the suppliers of those products.

Statements regarding HCL®'s future direction or intent are subject to change or withdrawal without notice, and

represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample programs in any form without

payment to HCL®, for the purposes of developing, using, marketing or distributing application programs conforming

to the application programming interface for the operating platform for which the sample programs are written. These

examples have not been thoroughly tested under all conditions. HCL®, therefore, cannot guarantee or imply reliability,

mdcxix

serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind.

HCL® shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as

follows:

© (your company name) (year).

Portions of this code are derived from HCL Ltd. Sample Programs.

© Copyright HCL Ltd. 2016, 2020.

Trademarks
HCL®, the HCL® logo, and hcl.com® are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of HCL® or other companies.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the HCL® website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices

are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof,

without the express consent of HCL®.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary

notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display

these publications or any portion thereof outside your enterprise, without the express consent of HCL®.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or

implied, to the publications or any information, data, software or other intellectual property contained therein.

HCL® reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the

publications is detrimental to its interest or, as determined by HCL®, the preceding instructions are not being properly

followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and

regulations, including all United States export laws and regulations.

mdcxx

HCL® MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT

LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR

PURPOSE.

Index
Special Characters

.Net 1441

.Net 2003 scripting 154

.Net 2005 scripting 154

A
accessibility

mapping keyboard shortcut keys 654
actions

data driven tests 1502
actions on objects

verification points during
recording 1541, 1569
verification points without
recording 1541, 1569

active windows
unexpected

handling 972
ActiveX 1441
adapters

Rational Quality Manager 283, 286, 289
add control 672
add object 1606
Add user action for this element 450
adding 609
administrator 151
adobe pdf 1423
AJAX

support
AJAX support 610
AJAX Support 1426
autotrace 610
existing scripts 611

ambiguous control 670
API 997
Appium

importing Appium Java projects 550
managing Appium tests 549

applets
testing in HTML pages 1272

application
objects

adding to test object maps 1544
application view

snapshots 1610
application visual 671, 672, 672, 727, 728

verification points 727
application visuals

snapshots 1610
applications

configurations
adding 1456
testing 603, 1457

object hightlighting 1557
object selections 1542
starting 692, 1558

ARM
Application Response Measurement

response 1427
time 1427

assets
testing shared assets 290

assign trust 618
AUT

interaction 872

B
base class

overview 684
XDE Tester properties 1491

bookmarks
view 1460

breakdown 1427
browsers

configuring 605
configuring for testing 1593
enabling 588, 606, 1460, 1480
functional test support 1434
hard disk searches 1540
Java plug-in enablement 607

C
callScript command 1461, 1537

code insertions 686, 1537
CallScript method

parameters 984
change management 747
checkouts

views in functional testing 1496
Chinese systems

double byte characters 683
ClearCookies class 847
clipboard

assign text 691, 1463
set text 691, 1463
verification points 691, 1463

clock skew
correcting 1214

code
samples 974
script insertions 686, 1537

colors
changes 640

combination boxes
data extraction in functional tests 986

command line
create config file 1145
example 1453
functional testing 1449
schedule runs 1130

commands
callScript 1461, 1537
getProperty 681, 1503, 1572
startApp 1558
syntax 637
waitForExistence 1505, 1573

comments
functional testing

scripts 690
Comparator

color changes 640
functional testing

usage 717, 726, 1577
compile-time 621
compound tests

adding tests 556
adding to Test Workbench projects 559
modifying 557
overview 553
running 557
viewing 555

ComputerSpecific class 849
configuration management

software 747
configurations

applications 1456

dynamic find 1181
Java Runtime Environments 1540
SAP 541
test applications 603, 1457
unexpected windows 652, 1179, 1465
web browsers 1540

Configure applications
creating 417

Configure Flex 121
configure object recognition properties 126
consoles

views
functional testing 1466

control
adding more data types 888
adding more properties 887
changing the mappability 898
changing the role 896
modify recognition property and
weight 897

controls
object actions 1612

cookies
setting and clearing for virtual users 847

CountAllIterations class 846
counter

manage counters 1213
CountUserIterations class 846
CSV files

datasets
data exportation 1481

exporting to datasets 1500
CSV format

exporting results 1216
cursor location

recording 679, 679
Custom code

debug 860
custom counters

test execution services 855
custom Java code

code execution counts 846
controlling loops 840
creating 834
custom counters 855
determining where a test is running 849
interfaces and classes 836
migrating 864
performance 839
printing input arguments to a file 845
retrieving the maximum JVM heap
size 852
retrieving virtual user IP address 844
running a program with a test 853
setting and clearing cookies for virtual
users 847
statistics 857
transactions 857
using strings 850
verification points 859

customization file 900
Customizing screen size 755

D
data

recognition
verification points 717, 1577

tests using realistic data 736

1621

verification points
actions 1574

data driven 737
data verification

programmatic screen scrapping 799
data verification point 727

creating 701
data verification points

creating 94, 115, 1504, 1570
data-driving tests

data driving a test script 732
datasets 736
overview 730
test objects 1554

DataAreaLockException (test execution
services) 836
dataset 737
datasets 110

adding data 114, 117
associations removal 746
changing passwords 739
column changes 1461, 1480
column insertions 1457
creating in test 489
creating in workspace 492
data-driving scripts and 732
deleting 746
digital certificates 512
editing 505
encrypting 511, 738
encryption 510
exporting 1481
functional testing

empty 1468
importing from existing datasets 1500
literal value conversions 1473
literal value substitutions 1471
modifications 740
navigating to tests 512
new 113, 736
object options 1551
options 499
overview 488
record order in functional tests 1185
record selection order 745

playback options 1604
select script assets 1555

references 115
literals 738, 742

removing encryption 511
script associations 745
segmented

row assignment 499
test references 500
test value associations 502
types 736
typical 499
verification point values 743
viewing in tests 504

DataWindow
PowerBuild 999

Debug custom code 860
default reports

changing 1212
delays

settings 690
timers 1539, 1562
timers in tests 689

delete test line 671
Deploying extended log file 1230
deploying proxy 904

describe function 999
describe() function 999
development environment 119, 120, 124
digital certificates

using with datasets 512
dll 609
dojo 1428
double byte characters

input method editors 683
dynamic test object

insert 1180

E
Eclipse applications

enabling 600, 1267
p2-based 600, 1267

Eclipse platforms
enabling for functional testing 1478

eclipse.org 156, 156
edit parts

testing GEF applications 125
edit simplified scripts

test lines 666
EditPart 997
empty scripts

coding 678
Enable Flex application 119, 120
enabled Flex application 122, 123, 124
error message color

recorder monitor preferences 654, 1531
errors 515, 1234

displaying views 1558
viewing 1221

exception 670, 1609
exception dialog 646, 647, 1518
exceptions 1614
ExecTest class 853
Export

Event Console Output 1223
export objects 1607
export simplified scripts 676
exporting

item selections 1551
reports

to .view file 1218
to HTML format 1216

results
to CSV format 1216

extend
data driving 895

extend an existing eclipse IDE 156, 156
extracting electronic images

electronic images 159

F
FAQ 513, 515, 1234, 1284
features flex custom control
 906
Figure 997
files

printing input arguments to 845
filters

searches of test objects 1474
find product packages 234
Flex

assign trust 618
command-line 622
compile application 622, 625, 627, 628
configure runtime loader 631
deploy 628
enable application 618, 622, 625, 627,
628

enable applications 620
enable compile-time 620
enable run-time 629
HTML wrapper 627
locally 628
overview 616, 1430
prerequisite 616
set up environment 618, 618
test 616
test application 618, 628, 628
test enabled applications 620
test non-enabled application 631
test non-enabled applications 629
web server 628

Flex application 120
Flex automation 120
Flex Builder 625
Flex custom control support 907, 1432
Flex support 616, 1430
Flex user interface 121
folders

creating new 1467
functional testing

new 662
fonts

changing 638
FTE 1449
functional test projects

creating 659
functional testing 120

datasets
empty 1468

importing from existing projects 1551
keyword

view 392
menus 1483
overview 30
perspectives 42
preference settings 633, 634
preferences 639, 1490, 1521

recording monitor 1513
previous version updates

integrations 236
project connections 1466
projects

connections 659
deleting 660, 694
disconnecting 659
exporting 663
functional testing 112
importing items 663
new 1470
overview 658
Rational project associations 659

recording monitor 1523, 1529
script recording 1522
script templates

placeholders 954
scripts

comments 1465, 1538
customizing 952
empty 1468, 1469
helper superclass placeholders 963
object map placeholders 958
properties 1494
starting 966
template customization 951
template placeholders 960
template properties 1495
verification point placeholders 962

selecting logs 1552

1622

verification points
comparisons 717, 1577

views
show checkouts 1496
show history 1497

functional tests
Java version support 1437
Linux 55
playback options 646, 647, 1518
playing back 97, 118

G
GEF 126, 997, 1433
GEF applications

enabling 125
generic support 907, 1432
getProperty command

description 1503, 1572
functional test scripts 681

getTestData method 979, 982
Google Chrome 592

browser support 592
enable 594
enable from Functional Test 594
enable logging 656
extension 597

add extension 596, 596
IBM Rational
HCL
OneTest
UI
for Google Chrome
 596, 596
web store 596, 596

port number 597, 656
prerequisites 592
web server 597, 656

graphs
customizing 1211

grid controls
getting test data (example) 982

group verification point 729, 730

H
helper Superclasses

new 1471
hierarchy 1180
HTML

application test scripts 679
application tests 1268
cross-browser test scripts 680
enabling browsers 588
functional test logs 1224
functional test support 1434
standard properties 1274

HTML files
Java applet testing 1272

HTML format
exporting reports 1216

HTML wrapper 627
HTTP or HTTPs web server 157

I
IARM (test execution services) 836
icons

test nplayback monitor 1184
ICustomCode2 (test execution
services) 836
IDataArea (test execution services) 836
IEngineInfo (test execution services) 836
ILoopControl (test execution services) 836
image

verification points
actions 1574

image verification point 728
image verification points

creating 94
import objects 1607
importing

reports
to .view file 1218

InputKeys 435
insert dynamic test objects 1559
Inspector tool

test object properties 1559
install method 152
install product packages 234
installation

response files 167, 168
silent 166
terminology 152

installation location 154
installation manager 154, 156, 156, 157,
157, 234
Installation Manager

overview 153
installation package 156, 156
installing

post-installation tasks 170
installing packages

Installation Manager 153
integration

Rational Quality Manager
keywords 579

Internet Explorer
configuring for testing 1593

IP addresses
retrieving from virtual user 844

IPDLogManager (test execution
services) 836
IScalar (test execution services) 836
IStat (test execution services) 836
IStatistics (test execution services) 836
IStatisticsManager (test execution
services) 836
IStatTree (test execution services) 836
iteration count

functional tests 1185
playback options 1604

ITestExecutionServices (test execution
services) 836
ITestInfo (test execution services) 836
ITestLogManager (test execution
services) 836
IText (test execution services) 836
ITime (test execution services) 836
ITransaction (test execution services) 836
IVirtualUserInfo (test execution
services) 836
ivory.properties 1283

J
jar 609
java 674
Java

browser plug-in enablement 607
functional tests 1437
test enablement 586
test environment configurations 604
test execution services 834

Java applets
testing in HTML pages 1272

java code snippet 674

Java editor
test scripts 1505

java method 674
java module 675
Java Runtime Environment

enabling for testing 1506
seaches 1540
test configurations 604
test enablement 586

Java scripting 154
java scripts 676

simplified statements 664
Jazz

project
sharing 407

JVM heap size
retrieving maximum 852

JVM_Info class 852

K
keyboard actions in tests

playbacks 988
keyboard shortcuts

mapping 654
keyword view 392, 579
keywords 389, 389, 390

associate scripts 391
associating with manual tests 579
viewing 579

L
launchpad 157
launchpad program 157
Linux

functional tests 55
lists

data extraction in functional tests 986
local application 621
local test computer 123, 124
log 671, 1614
Log extension 1229
Logon 390
logs 1219, 1283

Dojo 1229
exporting test events 1222
functional test formats 1224
functional test scripts 688
functional test selection 1552
levels

SAP performance tests 541
managing test logs 1228
messages in functional test
scripts 1509, 1538
overview 1220
playback options for tests 646, 647,
1518
preferences for functional tests 644,
1225, 1510
renaming 1229
test run messages 964
viewing test events 1221

loops
controlling 840

M
manage counters 1213
message 671
messages

test logs 964
types

recorder monitor preferences 654,
1531

1623

methods
CallScript

parameters 984
MFC controls 1440
Microsoft HTML applications

testing 1268
migration

custom Java code 864
mobile and web ui data 450
mobile data 451
modify installations

change features 173
change language 173
modify package wizard 173

modify packages 234
modify step target 451
modifying packages

installation manager 153
monitor

recording 1523
recording toolbar 1529

mouse actions in tests
playbacks 988

Mozilla
configuring for testing 1593

N
navigation actions 435
nested domain 1441

O
object actions

application controls 1612
object library 1604

add object 1606
export objects 1607
import objects 1607

object maps
updating 103
viewing 98

object not found 670
object property configuration tool 1604
objects

combining 1563
displaying information 681
options for adding to datasets 1551
properties

accessing 966
updates 1546, 1564

selecting 1548, 1567
substitutions 1564
wait state settings 682

operating systems
preferences 646, 1516

options 641, 1500
Delays 649, 1516
functional testing

object additions to maps 1553
preferences 639, 1490

monitor
playback preferences 650, 1517

operating system
preferences 646, 1516

playback options for tests 646, 1518
Recorder

recorder preferences 653, 1532
recorder monitor 654, 1531
ScriptAssure

recognition score preferences 650,
1519

ScriptAssure(TM)-standard 651, 1520
setting playback options in scripts 647

OutOfScopeException (test execution
services) 836

P
pages

viewing test data 504, 512
viewing test request data 512

palettes 126
parameters

passing to the CallScript Method 984
pause 669
pdf 1423
pdf form 1423
performance testing

guidelines (SAP) 541
play back 389
playback 669, 1180, 1614

environment
restoring 1178

options 1604
script 1177
test monitor icons 1184

playback interactive 646, 647, 1518
playbacks

delays in scripts 690
post-installation tasks

checklist 170
powerbuilder 1443
PowerBuilder 999
preferences

changing fonts 638
functional testing 1521

recording monitor 1513
workbench 658, 1597

log options for functional tests 644,
1225, 1510
playback monitor 650, 1517
recorder monitor 654, 1531
test debug 1189
test generation

changing SAP preferences 548
test logs 1227

preinstallation
install 158

prerequisites
recording 582, 585

PressKey 435
PrintArgs class 845
problems 515
process

high level interaction 867
model 867

product package 157
programmatic screen scrapping

data verification 799
projects

adding folders to 1467
connections

functional testing 1466
functional testing

connections 659
creating 659
importing an .rftjdtr file 663
new 1470
overview 658

items
exporting 663
importing 663, 1501

overwriting items 1551
properties 1614

objects

querying values 966
test objects 1559
values

get property command 681
standard 1274

verification points
actions 1574

properties verification points
creating 94, 698, 1504, 1572

Properties view
editing simplified scripts 666
General page 1612

proxies
exporting items 910
importing packages 910

proxy 877
.Net domain 929
architecture 866
best practices 948
creating 882
current support level 879
debug 904
debug log 905
development 875

environment 877
enhancing recording behavior 890
enhancing recording behavior with
SubItems 892
exceptions 946
extending proxies 882
hierarchy 919
Java domain 923
model 869
sdk 865
setting up projects 878
TestData type 941

proxy classes
creating 911

proxy development
wizard driven development 908

proxy items
exporting 913
importing 913

proxy packages
importing 910

Proxy SDK wizard 908

R
rational agent controller 154
Rational Quality Manager 378, 389

adapter 289
configuring the adapter 283
passing arguments 386
starting the adapter 286
testing shared assets 290

recognition
test object 1183, 1267
test objects 969
verification point data 711, 1587

recognition properties
objects

updates 1564
updates 1546

recognition scores
ScriptAssure preferences 650, 1519
ScriptAssure(TM) page-standard 651,
1520
warning thresholds 1182

record 391, 665
record selection order

datasets 745

1624

datasets in functional tests 1185
playback options 1604

Record Toolbar
The Recording User Actions
Toolbar 1524

recorder monitor
preferences 654, 654, 1531, 1531

Recorder page
recorder preferences 653, 1532

recording
SAP tests

batch input tests 546
inserting new recordings 546
overview 541
procedures 543

script 697
troubleshooting tips 694

recording monitor
functoinal testing 1523
toolbar 1529

Recording Monitor
messages

time stamping 1514, 1515
selecting text color

TextColorHelp 1512, 1514, 1561
toolbar 1524

references
test datasets 512

registry entries
reading in a functional test 977

regression testing
automating 1178

regression tests
performing 100

regular expressions
evaluation 1532
using regular expressions 107

reports
.view format exports 1218
changing default 1212
customizing graphs 1211
filtering results 1209
HTML format exports 1216

repository
repository preferences 157

repository preferences 157
required privileges 158
response files 168

creating 167
silent installation 166

Response time breakdown
Response

breakdown 615
time 615

results
CSV format exports 1216
filtering 1209

rftjdtr file
generating 663
importing 663

roadmap 33, 43, 45, 49, 53
Runtime Loader 629

S
samples

code 974
SAP

configuration 541
recording tests

batch input 546
inserting sequences 546

performance tests 543
support

mySAP 613
SAP GUI HTML 1445
SAP Support 613, 1445

test generation preferences 548
SAP client 611
SAP Support

enable SAP GUI 612
enable SAP server 612

schedules
command-line starts 1130

screen captures
playback failures 1190, 1268

screen shot 671
script 665
script arguments

passing from Rational Quality
Manager 386

script editor 665
simplified script 1611

script execution
modifying options for 965

Script Explorer 1535
script helper classes

adding to scripts 1550
overview 684
properties 1494

XDE Tester 1491
superclasses

creating 684
SuperClasses

changing 683, 685
script templates

customization 951
customizing 951, 952
functional testing properties 1495
object map placeholders 958
placeholders 954
script helper super class
placeholders 963
template placeholders 960
verification point placeholders 962

ScriptAssure
options 650, 1519
recognition properties 106
warning thresholds 1182

scripting 154
scripting framework 963
scripting SDK 963
scripts

assets 1555
coding manually 678
combined objects 1563
comments 1465, 1538
data-driving 732
dataset associations 746
debugging 1189
delays 1539, 1557
deleting 694
functional testing

code insertion 686, 1537
comments 690
empty 1468, 1469
recording 1522

functional testing calls 687, 1461, 1537
helper classes 1550
importing 1501
modifying 963
name renewal 1534
object substitutions 1564

recording 92, 112, 676
renaming 692, 1533
running in a functional test 1177
saving 693
starting 966
stopping playback 1185
test development phases 1178
test object map associations 1459
timers 1539, 1562
versioning 747

sdk 865
searches

filters 1556
test object maps

Quick Find 1522
security

overview mdcxvi
security settings 123
Selenium

adding to compound tests 550, 551
Appium 550
importing Appium Java projects 550
importing Selenium Java projects 550,
550
importing tests 550, 550
managing tests 549
modifying tests 552
running tests 552
viewing tests 552

server 611
SetCookieFixedValue class 847
setup tasks 582, 585
shared assets

testing 290
Siebel

support
Siebel Support 1445

silent installation 166
response files 168

simplified script 665, 737
preference 656
verification points 727

simplified scripts 665
datasets 738
functional testing 664

simplify scripts
enabling 655

simulating non html actions 435
source control

element histories 1497
special keys 435
specific support 907, 1432
split points

inserting during recording 432
startApp command 1558
statistics

CSV format exports 1216
statistics sample interval

long performance test settings
(SAP) 541

StatType (test execution services) 836
strings

managing 850
superclass

overview 684
support

eclipse 1430
supported Siebel versions

Siebel Support 1445
switch to java 674, 675
syntax

1625

changes 637

T
table cells

getting test data (example) 982
values 976

templates
customizing 952
customizing for scripts 951
functional tester script properties 1495
object map placeholders 958
placeholders 954
script helper super class
placeholders 963
script placeholders 960
verification placeholders 962

terminal-based applications 1449
terminology

package 152
product installation 152

test application domain support 1423
test applications

starting 692
test assets

importing into Rational Quality
Manager 289

test editor 665
test enablement

Eclipse platforms for functional
testing 1478

test execution services
code execution counts 846
custom counters 855
determining where a test is running 849
interfaces and classes 836
migrating Java code 864
overview 834
printing input arguments to a file 845
retrieving the maximum JVM heap
size 852
retrieving virtual user IP address 844
running a program with a test 853
setting and clearing cookies for virtual
users 847
statistics 857
transactions 857
using strings 850
verification points 859

Test Flex application 119, 122, 123, 124
test flow 33, 43
test lines

properties 1612
test mySAP 613
test objects

add dynamic test objects 1456
combining 1563
converting dynamic test objects 1457
data driven tests

actions 1502
data-driving 1554
deletions 1477, 1477
description customization 1479
descriptions 1556
displaying information 681
dynamic test objects

converting mapped objects 1457
filter searches 1473
getProperty command 1503, 1572
highlighting 1557
maps

adding objects 1544

color changes 637, 640
description customization 1479
importing 1501
new 1467, 1469
object additions 1553
object merges 1512
overview 1559
renaming 1533
script associations 1459
script renaming 692
search filters 1556
searches with Quick Find 1522

name renewal 1534, 1534
properties 1559
recognition 1574

ambiguous 969, 1183, 1267
renaming 1533
search filters 1474, 1475
searching for SAP TestObjects 993
searching for TestObjects 990
selecing 1548, 1567
selecting for tests 1566
selections 1542
substitutions 1564
unregistering references to 968
unused 1476
updating recognition properties for 1462

test scripts
functional test script runs 1185

testing
application 33, 43
Eclipse application 49
Flex application 53
HTML application 47
Java application 45
SAP application 51

testing environment 119, 124
TestManager

exporting to datasets 1500
functional test logs 1224

TestObject 913
adding new TestObjects 914
class diagram 931
role 914

tests
adding custom Java code 834
annotating during recording 431
annotations

adding during recording 431
customizing 836
data driven

objects 1554
data-driven

overview 730
data-driving actions 1502
dataset column associations 502
dataset references 500
datasets 510, 511, 511, 738, 739
development phases 1178
editing

Web UI
 433

elements
source control 1497

extending
controlling loops 840

folders
renaming 1533

generating
preferences (SAP) 548

log preferences 644, 1225, 1510

logs
exporting 1222
functional test formats 1224
long performance test settings
(SAP) 541
managing 1228
messages 964
overview 1220
viewing 1221

migrating custom Java code 864
playback environments 1178
recording in SAP 543
recording SAP batch input 546
SAP

inserting new recordings 546
scripts

functional test messages 688
literal value substitutions 1471
log messages in functional
tests 1509, 1538

splitting during recording 432
test execution services

code execution counts 846
custom counters 855
determining where a test is
running 849
printing input arguments to a file 845
retrieving the maximum JVM heap
size 852
retrieving virtual user IP address 844
running a program with a test 853
setting and clearing cookies for
virtual users 847
statistics 857
transactions 857
using strings 850

types performed 1548, 1567
types to perform 1566
viewing errors 1221

text
functional test logs 1224

time offset
correcting 1214

time stamps
recording monitor messages 1514, 1515

timers
adding to scripts 1539, 1562
test scripts 689

TN3270 host 755
TN3270E 755
toolbars

Functional Test 1498
Object Map 1559
recording 1524

TransactionException
test execution services 836

tree controls
getting data from 979

troubleshoot 515, 1234, 1283
troubleshooting

recording tips 694
trust designations 122

U
UI controls

data extraction in functional tests 986
unexpected active windows

handling 972
UNIX computers

running scripts 1177
update application visual 673

1626

update packages 234
updating packages

Installation Manager 153
UrbanCode Deploy 409
UrbanCode Deploy plug-in 409
user interface

font changes 638
user privileges 151

V
value class 937
value manager 937
values

table cells 976
variable columns

datasets
insertions 1457

variables
names

verification points 1566, 1573
verification point 730

data 705
data type 705
object selection 705

verification points
adding

while recording 1541, 1569
without recording 1541, 1569

adding manual and dynamic 970
color changes 637, 640
comparator 101
creating 94, 115
data 656, 701
data selections 1574
data verification points 1504, 1570
dataset references 743
editing 711, 1587
functional testing

comparisons 717, 726, 1577
image 1571

creating 708
literal value conversions 1473
properties 698
properties verification points 1504, 1572
property 656
recording 1548, 1567
recording for tests 1566
renaming 1533
syntax changes 637
variable names 1566, 1573
viewing 98

view 390
view file

exporting reports 1218
importing reports 1218

views
bookmarks 1460
compiler messages 1558
functional testing

console 1466
virtual users

counting code runs 846
datasets 500
retrieving IP addresses 844
setting and clearing cookies 847

visual basic 1448
visual object maps 656
visual objects

simplified scripts 664
Visual Studio .NET

support 1437

W
wait for a control 669
wait state

object settings 682
waitForExistence command 1505, 1573
warnings

displaying views 1558
web application 621
web browsers

enabling 588, 606, 1460, 1480
hard disk searches 1540

Web browsers
configuring 605

Web UI
test editor overview 433

Windows
support 1437, 1440

Windows registry
reading in a functional test 977

WinForm 1441
wizard driven development

proxies 910
wizards

creating proxies 908
workbench

functional testing
preferences 658, 1597

Workbench Preferences 657, 1596

1627

	HCL OneTest™ UI
	Contents
	Chapter 1. Release Notes
	Contents
	Product description
	What's New
	Deprecated capabilities
	Removed capabilities
	Installing the product
	Known issues
	Contacting HCL support

	Chapter 2. System Requirements
	Contents
	Disclaimers
	Hardware
	Linux
	Mac
	Windows

	Operating systems
	Linux
	Mac
	Windows
	Mobile

	Host prerequisites
	Development tools
	Licensing
	Web browsers
	Virtualization management

	Recording and playback support
	Eclipse runtime environment
	Java SDK
	Product Specific or Mixed Content
	Terminal emulation
	Web browsers

	Supported software
	Development tools
	Device clouds
	Integration Middleware

	Chapter 3. Getting Started Guide
	HCL OneTest™ UI overview
	Two perspectives: Functional Test and UI Test
	The Functional Test perspective
	The UI Test perspective
	HCL OneTest™ UI technology and features in the Functional Test perspective
	HCL OneTest™ UI Proxy SDK for the Functional Test perspective
	HCL OneTest™ UI integrations
	HCL OneTest™ UI Extension for Terminal-based Applications in the Functional Test perspective
	Accelerating the test effort with distributed testing in the UI Test perspective
	Test mobile web applications in the UI Test perspective

	Task flow for Setting up HCL OneTest™ UI
	Creating a project
	Getting started in the UI Test perspective
	Task flow for testing web applications
	Task flow for standard Web UI test
	Task flow for standard Web UI test

	Task flow for standard accelerated functional testing
	Task flow for advanced accelerated functional testing
	Task flows for testing mobile applications
	Task flow for testing Android mobile applications
	Task flow for testing iOS mobile applications

	Task flows for testing Windows desktop applications

	Getting started in the Functional Test perspective
	The Functional Test perspective
	Importing a sample functional test project
	Task flow for testing applications
	Task flow for testing Java applications
	Task flow for testing HTML applications
	Task flow for testing Eclipse applications
	Task flow for testing SAP applications
	Task flow for testing Flex applications
	Using the Functional Test perspective of HCL OneTest™ UI on Linux
	Testing applications on Linux
	Functionality not supported on Linux

	Task flow for integrating HCL OneTest™ UI and HCL OneTest™ API

	Chapter 4. Tutorials
	Tutorials for testing in the UI Test perspective
	Prerequisites
	Testing in the UI Test perspective
	Lesson 1: Recording a test scenario
	Lesson 2: Adding a verification point
	Lesson 3: Running the test
	Lesson 4: Viewing test results
	Lesson 5: Modularize the test script
	Lesson 6: Abstracting data by using a dataset
	Lesson 7: Associating the dataset with the test
	Lesson 8: Running multiple test scripts in a sequence
	Lesson 9: Adding a loop

	Tutorials for testing in the Functional Test perspective
	Prerequisites
	Testing in the Functional Test perspective
	Get started with functional testing using simplified scripts
	Learning objectives
	Time required
	Introduction: Get started with functional testing using simplified scripts
	Learning objectives
	Time required
	Skill level

	Lesson 1: Set up HCL OneTest™ UI
	Set logging options
	Create a functional test project
	Enable simplified scripting and application visuals feature

	Lesson 2: Record a simplified test script
	Begin recording
	Start the application and record the actions
	Lesson checkpoint

	Lesson 3: Perform a data-driven test
	Add descriptive headings to the data
	Lesson checkpoint

	Lesson 4: Create a verification point with a dataset reference
	Place the order and close the ClassicsCD application
	Stop recording
	Lesson checkpoint

	Lesson 5: Add data to the dataset
	Lesson 6: Play back the test script
	View the simplified script and the application visuals
	Lesson checkpoint

	Lesson 7: Edit the simplified script by using the application visuals
	Insert a verification point by using the application visual
	Add an additional control to the test
	Modify the test line in the script editor and the properties

	Lesson 8: Insert Java custom code
	Play back the script
	Lesson checkpoint

	Summary: Get started with functional testing using simplified scripts
	Lessons learned

	Create a functional test using Java scripts
	Learning objectives
	Time required
	Introduction: Create a functional test using Java scripting
	Learning objectives
	Time required
	Prerequisites

	Lesson 1: Set up HCL OneTest™ UI
	Set logging options
	Disable simplified scripting and application visuals feature
	Create a functional test project

	Lesson 2: Record a script
	Begin recording
	Start the application
	Record actions

	Lesson 3: Create verification points
	Create a data verification point
	Create an image verification point
	Create a properties verification point
	Test the password fields

	Lesson 4: Play back the script
	Lesson 5: View verification points and object maps
	View verification points
	View object maps

	Lesson 6: Perform regression tests
	Lesson 7: Use the Comparator to update a verification point
	Lesson 8: Update the object map
	View the object recognition properties in the object map
	Add the new object to the map
	Unify the objects
	Play back the script again

	Lesson 9: Change the Recognition Preferences
	Lesson 10: Use regular expressions
	Open the object map and unify the objects
	Convert a property value to a regular expression

	Summary: Create functional tests
	Lessons learned
	Additional resources

	Perform a data-driven functional test using Java scripts
	Learning objectives
	Time required
	Introduction: Perform a data-driven functional test using Java scripts
	Learning objectives
	Time required

	Lesson 1: Create a project and record a test script
	Disable simplified scripting and application visuals feature
	Create a project
	Start recording
	Start the ClassicsCD application

	Lesson 2: Data-drive a test
	Lesson 3: Add descriptive headings to the data
	Lesson 4: Create a verification point with a dataset reference
	Create a verification point with a dataset reference
	Place the order and close the ClassicsCD application
	Stop recording

	Lesson 5: Add data to the dataset
	Lesson 6: Play back the test
	Summary: Create a data-driven test
	Lessons learned
	Additional resources

	Test Adobe Flex application
	Learning objectives
	Time required
	Introduction: Test Adobe Flex application
	Learning objectives
	Time required

	Module 1: Enable the Flex application for testing
	Learning objectives
	Time required
	Prerequisites
	Lesson 1: Set up the development environment
	Lesson 2: Configure the Flex application

	Module 2: Test the Flex application
	Learning objectives
	Time required
	Prerequisites
	Lesson 1: Assign trust designations
	Lesson 2: Security settings for Flex 4.0 applications
	Lesson 3: Test enabled Flex application from a local test computer

	Summary: Test Adobe Flex application
	Lessons learned
	Additional resources

	Test GEF applications
	Learning objectives
	Time required
	Introduction: Test GEF applications
	Learning objectives
	Time required
	Skill level
	Audience

	Module 1: Test GEF applications
	Learning objectives
	Time required
	Lesson 1: Overview of GEF objects in the application under test
	Lesson 2: Enabling a GEF application
	Lesson 3: Recording a functional test script

	Module 2: Applying HCL OneTest™ UI capabilities to GEF objects
	Learning objectives
	Time required
	Lesson 1: Identifying GEF test objects using the scroll logic
	Lesson 2: Identifying GEF palette objects
	Lesson 3: Configure object recognition properties

	Summary: Test GEF applications
	Lessons learned

	Extend HCL OneTest™ UI capabilities using Proxy SDK
	Learning objectives
	Time required
	Module 1: Extend HCL OneTest™ UI capabilities using Proxy SDK
	Learning objectives
	Time required
	Introduction: Extend HCL OneTest™ UI capabilities using Proxy SDK
	Learning objectives
	Time required

	Lesson 1: Record a functional test script
	Lesson 2: Create and build a proxy project
	Lesson 3: Create a customization file to map the proxy to an AUT control
	Lesson 4: Deploy the proxy
	Lesson 5: Verify the new proxy by recording a functional test script

	Module 2: Develop proxies using Proxy SDK wizards
	Learning objectives
	Time required
	Introduction: Develop proxies with Proxy SDK wizards
	Learning objectives
	Time required
	Skill level
	Audience

	Lesson 1: Record a functional test script
	Lesson 2: Create a proxy project
	Lesson 3: Create a proxy class
	Lesson 4: Export the proxy package
	Lesson 5: Import the proxy package
	Lesson 6: Verify the custom proxy

	Summary: Extend Functional Tester capabilities using Proxy SDK
	Lessons learned
	Additional resources

	Chapter 5. Samples
	Sample project to test a Java application
	Functional testing of a Java application sample project

	A HCL OneTest™ UI project to test an HTML application
	Testing the sample

	Functional testing proxy SDK technology samples
	ButtonProxy
	Testing the button proxy sample
	Test the button application sample to view the default value of the button control
	Deploy the binary files
	Verify the proxy deployment

	JFormattedTextFieldProxy
	Testing the sample
	Test the application sample to view the default value of the text control
	Extended capabilities in the proxy code
	Deploy the binary files
	Verify the proxy deployment

	CheckBoxProxy
	Testing the CheckBoxProxy sample
	Test the check box application sample to view the default value of the control
	Extended Capabilities: Creating a new TestObject
	Deploy the binary files
	Deploy the binary files
	Verify the proxy and TestObject deployment

	Button OverrideProxy
	Examples you can use
	Extended Capabilities : Adding more properties
	Deploy the binary files
	Verify the added property and value class
	Verify the recording behavior

	JSpinnerProxy
	Examples you can use
	Extended Capabilities: Recording controls with SubItems
	Deploy the binaries
	Verify the recording behavior
	Verify the playback behavior

	TreeProxy
	Testing tree proxy sample
	Test the tree application sample to view the default value of the tree control
	Deploy the binary files
	Verify the proxy deployment

	Flex control proxy
	Testing the flex proxy sample
	Deploy the binary files
	Verify the proxy deployment

	Chapter 6. Administrator Guide
	Installation
	Installation requirements
	Hardware and Software requirements
	User privileges requirements

	Installing the product using Installation Manager
	Installation terminology
	Planning the installation
	Installation roadmap
	Roadmap for installing HCL OneTest™ UI

	Installation Manager overview
	Installation considerations
	Planning what features to install
	HCL OneTest™ UI installation features

	Extending an existing Eclipse IDE
	Extending an existing Eclipse IDE

	Installation repositories
	Setting repository preferences in Installation Manager

	Preinstallation tasks
	Increasing the number of file handles on Linux workstations
	Verifying and extracting electronic images
	Extracting the downloaded files

	Installing software
	Installing HCL OneTest™ UI
	Installing HCL OneTest™ UI in silent mode
	Creating a response file manually
	Sample response file
	Sample response file for installing HCL OneTest™ UI
	Sample response file for upgrading HCL OneTest™ UI
	Required parameters to modify

	Post-installation tasks
	Post-installation checklist
	Deploying the help content of Functional Tester in Visual Studio IDE

	Installation in the shell sharing mode
	Prerequisites
	Shell sharing with IBM® Engineering Workflow Management
	Shell sharing with HCL OneTest™ Performance
	Shell sharing with IBM® Rational® Team Concert™

	Modifying installations
	Uninstalling HCL OneTest™ UI

	Installation of the product by using the stand-alone installer
	Installation of the product on Windows systems
	Installing the product in the GUI mode on Windows systems
	Creating a properties file on Windows systems
	Installing the product in the silent mode on Windows systems
	Installing the product in Visual Studio IDE
	Deploying the help content of Functional Tester in Visual Studio IDE

	Changing the language of the product on Windows systems

	Installation of the product software on Linux
	Installing the product in the GUI mode on Linux
	Installing the product in the console mode on Linux
	Creating a properties file on Linux
	Installing the product in the silent mode on Linux
	Increasing the number of file handles on Linux™ workstations
	Changing the language of the product on Linux

	Installation of HCL OneTest™ Performance Agent by using the stand-alone installer
	Installation of the Agent on Windows systems
	Installing Agent in the GUI mode on Windows systems
	Creating the properties file on Windows systems for HCL OneTest™ Performance Agent
	Installing Agent in the silent mode on Windows systems

	Installation of the Agent on Linux
	Installing Agent in the GUI mode on Linux
	Installing Agent in the console mode on Linux
	Creating the properties file on Linux for HCL OneTest™ Performance Agent
	Installing Agent in the silent mode on Linux

	Installation of the Agent on macOS
	Installing Agent in the GUI mode on macOS
	Creating the properties file on macOS for HCL OneTest™ Performance Agent
	Installing Agent in the silent mode on macOS

	Installation of the product software on macOS
	Installing the product in the GUI mode on macOS
	Creating a properties file on macOS
	Installing the product in the silent mode on macOS
	Changing the language of the product on macOS

	Uninstallation of the product by using the stand-alone installer
	Uninstalling the product on Windows systems
	Uninstalling the product in the GUI mode on Windows systems
	Uninstalling the product in the silent mode on Windows systems
	Uninstalling Agent in the GUI mode on Windows systems
	Uninstalling Agent in the silent mode on Windows systems

	Uninstalling the product on Linux
	Uninstalling the product in the GUI mode on Linux
	Uninstalling the product in the console mode on Linux
	Uninstalling the product in the silent mode on Linux
	Uninstalling Agent in the GUI mode on Linux
	Uninstalling Agent in the console mode on Linux
	Uninstalling Agent in the silent mode on Linux

	Uninstalling the product on macOS
	Uninstalling the product in the GUI mode on macOS
	Uninstalling the product in the silent mode on macOS
	Uninstalling Agent in the GUI mode on macOS

	Uninstalling Agent in the silent mode on macOS

	Upgrading and migrating
	Updating HCL OneTest™ UI
	Migrating test assets from earlier versions of Functional Tester
	Enabling
	Migrating test assets from earlier versions of HCL OneTest™ UI

	License management
	License descriptions
	License configuration
	Configuring licenses by using a cloud-based License Server
	Configuring licenses by using a Local License Server
	Configuring licenses by using a Proxy Server

	Collecting usage metrics data

	Starting HCL OneTest™ UI from the command line
	Integrations in UI Test perspective
	Integration plugin compatibility matrix
	Testing with Ant
	Integration with Azure DevOps for UI tests
	Prerequisites
	Overview
	Prerequisites for Azure DevOps Integration
	Task flow for integrating Azure DevOps with HCL OneTest™ UI
	Installing the HCL OneTest Studio extension
	Running UI tests in an Azure DevOps Pipeline

	EGit integration
	Importing test assets from the remote Git repository
	Pulling the changes from the remote Git repository
	Publishing test assets to the remote Git repository
	Techniques for troubleshooting issues in EGit
	Error: Missing library files in the project
	Git merge conflicts
	Best practices to minimize the merge conflicts

	Conflict management: errors in assets.xml
	Conflict management: errors in test assets

	Integration with IBM® Engineering Workflow Management
	Introduction
	Installing Engineering Workflow Management client
	Tracking defects with IBM® Engineering Workflow Management

	Integration with Engineering Test Management
	Engineering Test Management reports
	Known limitations
	Configuring the ETM adapter
	Configuring the workspace directory of the adapter
	Connecting and disconnecting the ETM adapter from the GUI mode
	Starting and stopping the ETM adapter from the command line
	Importing test assets in to ETM
	Testing shared assets

	Integration with Jenkins
	Environment variables
	Task flows for running test assets from Jenkins
	Installing the plugin on the Jenkins primary server
	Configuring the Freestyle project
	Creating a pipeline script from Jenkins
	Configuring the Pipeline project by using the sample script
	Configuring the Pipeline project by using the script from SCM
	Running tests from Jenkins

	Testing with Maven
	Before you begin
	Introduction
	Method 1
	Method 2
	Supported options in Maven

	Integration with Micro Focus ALM
	Creating a test script in Micro Focus ALM
	Configuring test scripts in Micro Focus ALM
	Running tests from Micro Focus ALM

	Integration with HCL OneTest™ API
	Before you begin
	Setting environment variable
	Connecting to an existing API project
	Setting HCL OneTest™ API preferences
	Opening HCL OneTest™ API resources from the Test Navigator
	Importing HCL OneTest™ API project
	Modifying HCL OneTest™ API environments in UI Test perspective
	Running HCL OneTest™ API tests
	Running the compound test

	Testing with UrbanCode Deploy
	Properties of Steps
	Input properties for the test run step

	Integrations in Functional Test perspective
	Integration plugin compatibility matrix
	Testing with Ant
	Integration with Azure DevOps for functional tests
	Prerequisites
	Overview
	Prerequisites for Azure DevOps Integration
	Task flow for integrating Azure DevOps with HCL OneTest™ UI
	Installing the HCL OneTest Studio extension
	Running functional tests in an Azure DevOps Pipeline

	Testing with Cucumber
	About Cucumber
	Requirements
	Cucumber feature file
	Cucumber Runner file
	Cucumber Step Definitions
	Reports
	Running a feature file with default options
	Required annotations for making a functional test script integrate with Cucumber
	Providing a folder for the feature files
	Providing more than one feature file
	Providing two glue (step definition) options
	Command-line options for running functional test scripts with Cucumber

	Integrating and running Functional Test scripts in Micro Focus Application Life Cycle Management
	Testing with IBM® Engineering Test Management
	Configuring and running HCL OneTest™ UI adapter for IBM® Engineering Test Management
	Configuring and running the adapter using the command-line interface
	Using the adapter to connect to IBM® Engineering Test Management through a proxy server
	Handling inputs from IBM® Engineering Test Management in HCL OneTest™ UI scripts
	IBM® Engineering Test Management script arguments
	IBM® Engineering Test Management execution variables
	Reading variables
	Creating variables
	Modifying variables
	Test cases in a test suite
	HCL OneTest™ UI in stand-alone mode

	Working with keywords
	Working with keywords in HCL OneTest™ UI
	Viewing keywords created in Engineering Test Management
	Associating functional test scripts with the keywords
	Recording a new functional test script for a keyword
	Associating an existing functional test script with a keyword
	Running functional test scripts from Rational Quality Manager

	Keyword View

	Integration with Jenkins
	Environment variables
	Task flows for running test assets from Jenkins
	Installing the plugin on the Jenkins primary server
	Configuring the Freestyle project
	Creating a pipeline script from Jenkins
	Configuring the Pipeline project by using the sample script
	Configuring the Pipeline project by using the script from SCM
	Running tests from Jenkins

	Testing with Maven
	Introduction
	Before you begin
	Downloading FT-Maven plug-in
	Configuring the sample POM file
	Running the tests
	Use cases

	Integration with IBM® Engineering Workflow Management
	Introduction
	Installing Engineering Workflow Management client
	IBM® Engineering Workflow Management
	Switching to Jazz source control
	Sharing a project
	Merging object maps

	Testing with Tivoli Composite Application Manager
	Testing with IBM® UrbanCode™ Deploy
	Compatibility
	Installing plug-ins in IBM® UrbanCode™ Deploy
	Input properties for running a functional test step
	Running functional tests

	Chapter 7. Test Author Guide
	Testing in the UI Test perspective
	Testing web applications
	Creating Web UI tests
	Web UI recording
	Recording a Web UI test that captures both functional and HTTP traffic in the same recording
	Recording a Web UI test using a running browser instance
	Recording Web UI steps to add to an existing test
	Recording a Web UI test in the private mode of a browser
	Variable for storing the name of the browser used to record the test

	Prerequisites for creating tests
	Prerequisites for using the Google Chrome browser
	Prerequisites for using the Microsoft Edge browser
	Prerequisites for using the Internet Explorer browser
	Prerequisites for using the Mozilla Firefox browser
	Prerequisites for using the Safari browser
	Configuring applications for tests
	Synchronizing changes of the configured applications

	Enabling the Apple Safari browser to perform Web UI tests on macOS
	Enabling Google Chrome for Web UI testing
	Enabling Microsoft Edge for Web UI testing
	Enabling Mozilla Firefox for Web UI testing

	Recording a Web UI test
	Recording a Web UI test by using a running browser instance
	Recording Web UI steps for an existing test
	Recording a test with Google Chrome Device Mode
	Annotating a test during recording
	Splitting a test during recording

	Editing Web UI tests
	Inserting browser navigation actions in a Web UI test
	Using the Go To URL action to launch another web application
	Simulating keyboards and special keys actions on Web and native application windows

	Defining a variable to run a test with a selected browser
	Creating verification points in a test
	Creating verification points for alert, confirm, or prompt dialog box
	Assigning a test variable to an objects property
	Creating verification points from the SmartShot View
	Adding a loop
	Adding conditional logic to tests
	Splitting UI actions
	Optimizing the playback time of a test
	Optimizing Web UI load testing for scalability
	Actions from the SmartShot View
	Adding user actions in a test from the SmartShot View
	Modifying a step in a test from the SmartShot View

	Improving test script robustness
	OBJECT PROPERTIES
	OBJECT PROPERTIES
	OBJECT LOCATION IN A TEST
	IMAGE RECOGNITION IN A TEST
	RESPONSIVE DESIGN CONDITION
	ACTIONS PERFORMED ASYNCHRONOUSLY
	Modifying the property used to identify an object in a test script
	Specifying the properties used for UI controls
	Setting object location conditions in a test script

	Putting test assets under source control
	Overview of guided healing and self-healing
	Guided healing and self-healing through the UI Test perspective
	Self-healing through the command line
	Updating tests by using the guided healing feature
	Updating tests with the self-healing feature

	Substituting the URL of an application by using Datasets
	Extension of application URL in Web UI tests
	Extending the application URL from the Application Details pane
	Extending the application URL from the UI Test applications view

	Validating images and user interface elements by using the image property
	Defining the Image property as object identifier for Web UI tests
	Applying guided healing feature for tests identified by the image property
	Extending Web UI tests
	Adding custom JavaScript code as a test step in a Web UI test
	Replacing a JavaScript file in a test script
	Creating a custom JavaScript code in a Web UI test

	Providing tests with variable data (datasets)
	Dataset overview
	Creating a dataset associated with a test
	Creating a dataset in a workspace
	Converting an existing datapool to a dataset
	Creating datasets with multiple substitutions
	Adding Dataset Mapper
	How dataset options affect values that a virtual user retrieves
	Enabling a test to use a dataset
	Associating a test value with a dataset column
	Viewing dataset candidates when you open a test
	Editing datasets
	Encrypted datasets overview
	Encrypting a dataset column
	Decrypting a dataset column

	Using a digital certificate store with a dataset
	Navigating between a dataset and a test

	Frequently asked questions
	FAQ: Web UI Testing
	Why should the documents be loaded in Microsoft Internet Explorer 9 Standard mode?
	Why do I see the phrase WebDriver Text displayed in the bottom right corner of the Mozilla Firefox browser while playing back a Web UI test script?
	Why am I unable to record a Web UI test using Microsoft Internet Explorer?
	Why does it take so long to start recording a Web UI test using Firefox?
	What can I do if the browser does not start during recording?
	Why do I see variations in the recording and playback of a Web UI test on different browsers?
	Why does the recorder stop abruptly while recording in Microsoft Internet Explorer on a Windows computer?

	Troubleshooting Web UI tests
	Troubleshooting Web UI testing

	Testing mobile applications
	Testing Android applications
	Testing Android applications
	Prerequisite tasks for recording Android mobile applications
	Recording tests for Android mobile applications
	Prerequisites for running tests for Android mobile applications
	Running tests recorded for Android mobile applications
	Viewing test results and reports
	Troubleshooting issues when testing Android applications
	Configuring Android applications for mobile tests
	Recording mobile tests for Android applications
	Troubleshooting issues when testing Android applications

	Testing iOS applications
	Prerequisite tasks for recording iOS tests
	Prerequisite tasks for recording iOS mobile applications on a simulator
	Prerequisite tasks for recording iOS mobile applications on an iOS device

	Configuring the iOS applications
	Recording mobile tests for iOS applications
	Troubleshooting issues when testing iOS applications

	Editing a mobile test

	Testing Windows desktop applications
	Prerequisites for testing Windows desktop applications
	Configuring a Windows application
	Recording a Windows test
	Supported Windows UI controls
	Supported keyboard and mouse actions

	Editing a Windows test

	Recording SAP tests
	SAP testing guidelines
	SAP configuration
	Limitations
	Batch input tests
	Long duration test runs
	Cleaning the SAP work directory

	Recording an SAP test
	Inserting a new recording into a SAP test
	Recording a SAP batch input test
	Changing SAP test generation preferences

	Working with Selenium or Appium tests
	Importing Selenium or Appium Java tests
	Importing a Selenium or Appium Java project into the UI Test perspective
	Importing a Selenium or Appium test into a Test Workbench project
	Adding a Selenium or Appium test to a compound test

	Viewing and modifying Selenium or Appium tests
	Running Selenium or Appium tests

	Compound tests
	Creating a compound test
	Viewing compound tests
	Adding tests into a compound test
	Modifying a compound test
	Running compound tests
	Generating compound test result reports
	Exporting the Test Log
	Generating a functional test report
	Creating an executive summary

	Adding a compound test to a Test Workbench project
	Creating a compound test in a test workbench project
	Importing a compound test into a Test Workbench project

	Accelerated Functional Tests
	Creating an Accelerated Functional Test asset
	Creating an AFT suite for mobile tests
	Creating an AFT Suite for mobile tests to run the tests on BitBar cloud
	Creating an AFT Suite for mobile tests to run the tests on pCloudy cloud
	Creating an AFT Suite for mobile tests to run the tests on Perfecto cloud
	Creating an AFT Suite to run the tests on multiple mobile clouds

	Working with keywords
	Viewing keywords
	Associating tests with keywords
	Recording a test for a keyword
	Associating an existing test with a keyword
	Running manual tests that contain keywords from Rational® Quality Manager

	The Keyword view

	Testing in the Functional Test perspective
	Preparing the functional test environment
	Automatically enabled environment for functional testing
	Limitations and workarounds in automatically enabled environments

	Before you record
	Enabling Java environments
	Enabling web browsers
	Enabling Microsoft Edge to test HTML applications
	Setting a specific browser profile for the playback of functional HTML tests

	Enabling multi-window support to test Functional HTML tests
	Preparing for functional testing in the Google Chrome browser
	Google Chrome browser support
	The HCL OneTest™ UI Google Chrome™ extension
	Prerequisites for functional testing in the Google Chrome browser
	Points to remember while testing in the Google Chrome browser
	Troubleshooting functional tests in the Google Chrome browser

	Enabling the Google Chrome browser
	Adding the Google Chrome extension from the Chrome Web store
	Adding the Google Chrome extension bundled with the product

	Changing the web server port for communication with Google Chrome
	Troubleshooting functional tests in the Google Chrome browser
	The Google Chrome browser is not properly enabled
	It is not possible to record on a Google Chrome browser
	Actions are recorded on the Windows domain and not in the application domain
	Problems with playing back certain actions

	Enabling the Eclipse non-p2 based applications for functional testing
	Enabling the Eclipse p2- based applications for functional testing
	Before you begin
	Enabling applications based on Eclipse version 3.4 and later
	Enabling applications based on versions prior to Eclipse version 3.4

	Enabling stand-alone Standard Widget Toolkit applications
	Configuring applications for testing
	Configuring the Java environment for testing
	Configuring browsers for testing
	Browser enablement diagnostic tool
	Results
	Problem and solution
	Details (Advanced)

	Enabling the Java plug-in of a browser
	Adding references to external resources
	Adding references to functional test Java project

	Proxy settings for freeform DataWindow PowerBuilder controls
	Setting up the environment for testing AJAX-based web applications
	Setting the Auto Trace option to true
	Setting the Auto Trace option to false

	Enabling AJAX support for a pre-existing script
	Enabling SAP client and server
	Enabling SAP GUI scripting for Windows
	Enabling the SAP server

	Enabling SAP GUI for HTML applications for functional testing
	Enabling applications with WebDynPro controls for functional testing
	Enabling SAP support for pre-existing HCL OneTest™ UI projects
	Enabling the GEF application
	Enabling response time breakdown
	Enabling Response time breakdown during playback

	Flex applications testing process
	Prerequisites
	Assumptions
	Testing Flex applications
	Setting up the development environment for Flex applications
	Setting up the test environment for testing Flex applications
	Security Settings for Adobe Flex 4.0, 4.1 and 4.5

	Testing HCL OneTest™ UI enabled Flex applications
	Configuring Flex applications
	Configuring Flex application using the user interface
	Configuring a Web application at compile time
	Configuring a local application at compile time
	Configuring Flex application using tools
	Using the command-line compiler to enable Flex applications
	Using Flex Builder to enable Flex applications

	Creating an HTML wrapper
	Providing enabled Flex applications for testing
	Testing an enabled Flex application that is deployed on a web server
	Testing enabled Flex applications on a local test computer

	Test Flex applications that are not enabled using HCL OneTest™ UI
	Configuring the non-enabled Flex application
	Deploying the Runtime loader components
	Testing nonenabled Flex applications

	Importing and exporting configuration and customization files
	Exporting the configuration and customization files
	Importing the configuration and customization files

	Setting preferences
	HCL OneTest™ UI Preferences
	Restricting actions during the recording and playing back of tests with start application
	Using a keyboard shortcut to record an application instance

	Changing the verification point and object map colors
	Changing the syntax of Verification Point commands
	Changing user interface fonts
	General page
	Colors page
	Verification point editor
	Verification point comparator
	Object map editor

	Highlight page
	Logging and Tracing page
	General page
	Log Components and Trace Components
	Memory trace components

	Logging page
	Operating System page
	General Playback page
	Setting general playback preferences in test scripts
	Playback preferences example
	Dynamic Find Enablement page
	Delays page
	Playback Monitor page
	ScriptAssure page--Advanced
	ScriptAssure page-standard
	Enabling the unexpected window handling feature
	General Recorder page
	Recorder Monitor page
	Mapping keyboard shortcut keys
	Simplified Scripting preference page
	Application Visuals preference page
	Simplified Script Editor preference page
	Webserver Configuration page
	Workbench Preferences page
	Workbench Advanced Preferences

	Managing functional test projects
	Creating a test project
	Connecting to a Functional Test project
	Disconnecting a Functional Test project
	Deleting a Functional Test project
	Projects view
	Creating a new functional test folder
	Exporting functional test project items
	Importing functional test project items

	Working with functional test scripts (Windows-only)
	Simplified scripting
	Enabling simplified scripting
	Creating a simplified test script
	Editing a simplified script
	Modifying the control name and the action
	Disabling a test line
	Grouping test lines
	Inserting comments in the script
	Repeating actions

	Inserting conditional statements
	Specifying the playback options for a simplified script
	Pausing an execution of a test line

	Handling exceptions during script playback
	Specifying the log details for a test script
	Deleting a test line
	Working with application visuals
	Enabling application visuals
	Inserting an application control into the script by using an application visual
	Updating the application visuals in the Application view

	Switching to Java scripting
	Inserting a Java code snippet
	Inserting a Java method

	Exporting a simplified script
	Java scripting
	Recording a Java™ test script
	Creating a new test script without recording
	Recording in an existing script
	Recording scripts to test HTML applications
	Recording cross-browser and cross-platform scripts
	Displaying test object information
	Getting a property value
	Example

	Setting a wait state for an object
	Recording and playing back double byte characters on Chinese systems
	Changing the default script helper superclass
	To change the default script helper superclass for a project:
	To change the script helper superclass for an individual script:
	Script helper superclass/base class
	Creating a script helper superclass
	Changing the default script helper superclass
	To change the default script helper superclass for a project:
	To change the script helper superclass for an individual script:

	Using script services
	Calling a script from a functional test script
	Inserting a log message into a functional test script
	Using timers with functional test scripts
	Setting delays and sleep states for functional test script playback
	Inserting comments into a functional test script
	Inserting clipboard commands into a functional test script

	Starting your test applications
	Renaming a test asset
	Saving test scripts and files
	Saving a test script with another name
	Saving a file with another name
	Deleting a functional test script
	Tips for recording functional tests
	Recording a script

	Working with verification points
	Creating properties verification point
	Creating a data verification point
	Editing verification point data
	Editing data verification points for listing elements
	Editing data verification points for menu hierarchy tests
	Editing data verification point for a table
	Editing a data verification point for a tree hierarchy

	Selecting objects and data value options for data verification points
	Creating an image verification point
	Using OCR to test application text

	Verification Point Editor
	Metadata
	Main toolbar
	Menu bar
	Main data area
	Test object data in the Verification point editor window
	Test objects
	Recognition and Administrative data

	Verification point comparator
	Opening the verification point comparator
	Using verification point comparator for functional test scripts played back from Rational® Quality Manager
	Comparing verification points after playback
	The verification point comparator window
	Metadata
	Main toolbar
	Main data area
	Navigation toolbar buttons
	Properties verification point : grid display
	Data verification point : menu hierarchy display
	Data verification point : text display
	Data verification point : table display
	Data verification point -- tree hierarchy display
	Data verification point : list display
	Data verification point : state display
	Test object data in the Verification point comparator window
	Test objects
	Recognition and Administrative data

	Comparing and updating verification point data using the Comparator
	Inserting verification points into the script using the application visuals
	Inserting a data verification point into a script by using an application visual
	Inserting an image verification point into a script by using an application visual
	Creating group verification points
	Group verification points

	Driving functional tests with external data
	Data-driving tests overview
	Data-driven functional tests
	Working with datasets
	Private and shared datasets

	Creating a dataset
	Importing to datasets
	Inserting data-driven commands into a script by using an application visual
	Associating a dataset with a group in a simplified script
	Encrypting datasets
	Changing passwords on encrypted datasets

	Decrypting Datasets
	Editing datasets
	Selecting a record
	Adding a record
	Removing a record
	Moving a record
	Editing dataset values
	Adding variables
	Removing variables
	Changing names, types, or move variables
	Cutting, copying or pasting cells, records, or variables

	Replacing literals with dataset references
	Dataset references and verification points
	Changing the dataset record selection order
	Associating a dataset with a test script
	Associating a test script with a dataset
	Removing a dataset association
	Deleting a dataset

	Managing functional test assets
	Software configuration management
	What is software configuration management?
	Benefits of software configuration management
	Software configuration management products
	Functional test assets

	Testing terminal-based applications
	Importing certificates from the server for secured connections
	Creating a host connection script
	Creating a new connection configuration file
	Saving connection properties
	Modifying invalid preferences

	Creating scripts using multiple terminals
	Customizing screen size when connecting to a TN3270 or TN3270E host

	Recording a host connection script
	Verification points
	Creating verification points
	Creating data verification points
	Creating properties verification points
	Properties for verification points
	Character property verification points
	Row property verification points
	Properties of field property verification points
	Properties of screen property verification points
	Properties of display property verification points
	Properties of operator information area (OIA) property verification points
	Properties of operator information area (OIA) data verification points

	Creating character verification points
	Creating row verification points

	Logging window content
	Extension for Terminal-based Applications states
	Synchronization algorithms
	Default synchronization algorithm
	3270 enhanced synchronization algorithm
	5250 synchronization algorithm

	Playing back host connection script
	Adding manual sleep timers
	Correcting object states
	Using host aid keys
	Using manual synchronization
	LOADED, not READY
	Printing a host session window

	Programmatic screen scraping for Terminal-based applications

	Extension for Terminal-based Applications window
	Configuring basic connection properties
	Screen size options
	Code page options
	3270 and 5250 code page options
	Virtual Terminal (VT) sessions code page options

	Remapping keyboard
	Remapping a key to a character
	Remapping a key to a host function
	Loading keyboard remapping from a file
	Turning off key repetition

	Remapping session screen colors
	Sending files from workstation to a host system (3270 host sessions only)
	Retrieving files from a host system to the workstation (3270 host sessions only)

	Connecting to a virtual terminal (UNIX) session
	Extension for Terminal-based Applications preferences
	Advanced Connection Settings window
	Advanced connection properties
	SSH overview
	SSL overview
	Using SSL to connect to host machines
	Importing certificates from the server for secured connections
	Recognition properties

	Troubleshooting issues

	Extending the UI Test perspective with custom code
	Creating custom Java™ code
	Test execution services interfaces and classes
	Reducing the performance impact of custom code
	Custom code examples
	Controlling loops
	Retrieving the IP address of a virtual user
	Printing input arguments to a file
	Counting the number of times that code is executed
	Setting and clearing cookies for a virtual user
	Determining where a test is running
	Storing and retrieving variable values
	Extracting a string or token from its input argument
	Retrieving the maximum JVM heap size
	Running an external program from a test
	Adding custom counters to reports
	Using transactions and statistics
	Reporting custom verification point failures
	Debugging custom code
	Reading and writing data from a dataset
	Migrating custom code from previous versions

	Extending the Functional Test perspective
	HCL OneTest™ UI proxy SDK
	Introduction to proxy SDK
	Before you begin

	HCL OneTest™ UI architecture
	Process Model
	High level interactions
	Proxy model
	Interaction through proxy objects
	Interaction through TestObject

	Application under test interactions
	Recording interactions
	Playback interactions

	Proxy development
	Understanding proxies
	Proxy development environment
	Software requirements

	Setting up proxy projects
	Setting up a proxy project in Eclipse
	Setting up a proxy project in Visual Studio .Net

	Current level of proxy support that HCL OneTest™ UI provides
	Verifying that a control already has a specified ProxyObject
	Verifying which ProxyObject is currently being used for testing a control
	Additional information

	Extending proxies
	Creating a proxy class
	Examples: Creating a simple ProxyObject

	Adding more control properties
	Adding more data types for a control
	Enhancing the recording behavior
	Proxy recording APIs

	Enhancing the recording behavior with SubItems
	Recording methods with SubItems
	Playing back methods with SubItems

	Extending data driving
	Changing the role of a control
	Modifying the recognition properties and weight of a control
	Changing the mappability of a control
	Mapping proxies to controls
	Customization file
	Customization file syntax
	Complete syntax of the main customization

	Deploying a proxy
	Debugging the proxy code
	Preparing the debug environment
	Setting invocation timeout
	Debugging record
	Debugging playback
	Implementing logs for proxy code debug

	Extending proxies for Flex custom controls
	Main features of specific support for Flex custom control
	Example
	Flex custom control support for Proxy SDK wizard
	Main features of specific support for Flex custom control:

	Developing proxies using the Proxy SDK wizard
	Creating a proxy project
	Creating a proxy class
	Exporting proxy packages
	Importing proxy packages
	Proxy project creation wizard
	Proxy class creation wizard
	Exporting proxy items
	Importing proxy items

	TestObjects
	Role of a TestObject
	Adding a new TestObject
	Examples: Adding a new TestObject

	Mapping proxies to TestObjects

	ProxyObject hierarchy
	Identifying the control under test
	Defining
	Recording
	Playback
	Verification points
	Data driving
	Reflection Support
	Java domain proxy hierarchy
	Proxy hierarchy for AWT controls
	Proxy hierarchy for Swing or JFC controls
	Proxy hierarchy for SWT controls

	.Net domain proxy hierarchy
	Proxy hierarchy for .Net controls

	TestObject class diagram and canonical names
	Canonical names

	SubItems
	Class diagram
	List of SubItems
	SubItem values

	Value classes and value managers
	Value classes
	Value Managers

	TestData types
	Class diagram

	Proxy exceptions
	Proxy development best practices

	Customizing a script template
	Customizing script templates
	Default placeholders
	system placeholder
	date placeholder
	time placeholder
	env placeholder
	option placeholder
	static placeholder

	Object map property placeholders
	map placeholder

	Script placeholders
	script placeholder
	helper placeholder
	testobject and map placeholders

	VP placeholders
	vp placeholder
	testobject placeholders

	Script helper superclass placeholders
	helpersuperclass placeholder

	Using the API to edit functional test scripts
	Writing messages to the log
	Modifying options for script execution
	Starting a test script from within a script
	Querying values of object properties
	Unregistering references to test objects
	Handling ambiguous recognition
	Adding manual and dynamic verification points
	Manual verification points
	Dynamic verification points

	Handling unexpected active Windows
	HCL OneTest™ UI examples
	HCL OneTest™ UI sample project
	Examples
	Using the examples

	Determining the values of cells in a table
	Reading the Windows registry
	Iterating through items in a tree control using the getTestData method
	Iterating through table cells using the getTestData method
	Passing parameters to the callScript method
	Extracting data from a combobox/list control (JComboBox)
	Playing back low level mouse and keyboard actions
	Searching for test objects
	Searching for SAP TestObjects
	Tracing AJAX requests
	Searching for GEF objects
	Passing parameters by using the describe function in PowerBuilder
	Finding the state of the browser
	Finding objects in a Dojo tree
	Reading multiple datasets from a functional test script
	Selecting an item from a Java drop-down list
	Verifying the status of a radio button or check box
	Closing active browsers before playback
	Closing unexpected HTML dialog boxes during playback

	Experimental Features

	Chapter 8. Test Execution Specialist Guide
	Configuration of test runs from the UI Test perspective
	Configuration of Web UI test runs
	Prerequisites to running Web UI tests
	Setting a specific browser profile for the playback
	Clearing cache, cookies, and history of browsers
	Setting or changing the ANDROID_HOME path in Linux operating systems
	Setting or changing the ANDROID_HOME path in Mac operating systems
	Setting or changing the ANDROID_HOME path in Windows operating systems

	Running a Web UI test
	Running Web UI tests on BitBar Cloud
	Running Web UI tests on Perfecto mobile cloud
	Running Web UI tests on the pCloudy cloud
	Running a test using industry-standard mobile browsers
	Running a test recorded in Google Chrome Device Mode
	Running tests in the headless mode
	Running tests in the private or incognito mode
	Testing with Docker images
	Configuring Docker containers
	Running tests with containerized agents
	Running tests in a containerized workbench
	Running an AFT suite in a containerized workbench and agents by using Docker Compose

	Starting a new recording immediately after playback
	Adding custom JavaScript code as a test step in a Web UI test

	Configuration of mobile test runs
	Running mobile tests for Android mobile applications
	Running mobile tests for iOS mobile applications
	Running mobile tests for Android mobile applications
	Running mobile tests on an Android device or emulator connected to a computer that runs HCL OneTest™ UI
	Running mobile tests on an Android device or emulator connected to a remote agent computer
	Running mobile tests on Android devices on BitBar Cloud
	Running mobile tests on Android devices on Perfecto Cloud
	Playing back mobile tests on Android devices on pCloudy Cloud

	Running compound tests for Android mobile applications
	Running compound tests on Android devices or emulators connected to a computer that runs HCL OneTest™ UI
	Running compound tests on Android devices or emulators connected to a remote agent computer
	Running compound tests on Android devices on BitBar Cloud
	Running compound tests on Android devices on pCloudy Cloud
	Running compound tests on Android devices on Perfecto Cloud

	Running mobile tests for iOS mobile applications
	Running mobile tests on an iOS device or simulator connected to a computer that runs HCL OneTest™ UI
	Running mobile tests on an iOS device or simulator connected to a remote computer
	Running mobile tests on iOS devices on BitBar Cloud
	Running mobile tests on iOS devices on Perfecto Cloud
	Running mobile tests on iOS devices on pCloudy Cloud

	Running compound tests for iOS mobile applications
	Running compound tests on iOS devices or simulators connected to a computer that runs HCL OneTest™ UI
	Running compound tests on iOS devices or simulators connected to a remote agent computer
	Running compound tests on iOS devices on BitBar Cloud
	Running compound tests on iOS devices on pCloudy Cloud
	Running compound tests on iOS devices on Perfecto Cloud

	Configuration of AFT Suite runs for mobile tests
	Running mobile tests as an AFT suite
	Running mobile tests as an AFT Suite on BitBar Cloud
	Running mobile tests as an AFT Suite on pCloudy Cloud
	Running mobile tests as an AFT Suite on Perfecto Cloud
	Running mobile tests as an AFT Suite on multiple mobile clouds

	Configuration of Windows test runs
	Running a Windows test

	Configuration of AFT Suite runs
	Accelerating the test effort with distributed testing
	Running a Web UI test on multiple browsers simultaneously
	Running multiple Web UI tests on multiple browsers simultaneously
	Running multiple Web UI tests on multiple browsers and platforms simultaneously

	Playing back an Accelerated Functional Test asset
	Running multiple tests simultaneously
	Running a test using Rational Quality Manager
	Running tests from a schedule
	Running mobile tests as an AFT suite
	Running mobile tests as an AFT Suite on BitBar Cloud
	Running mobile tests as an AFT Suite on pCloudy Cloud
	Running mobile tests as an AFT Suite on Perfecto Cloud
	Running mobile tests as an AFT Suite on multiple mobile clouds

	Running a test on multiple browsers and devices simultaneously
	Configuration of test runs from the command line
	Overview
	Using a configuration file
	Using a variable file
	Command line options
	Running a test from the command line
	Creating a command-line config file
	Running Web UI tests from the command-line
	Running the command
	Creating a variable file
	Variable file for a computer on which you have installed HCL OneTest™ UI
	Variable file for UI Test Agent
	Variable file for BitBar Cloud
	Variable file for Perfecto Mobile cloud
	Variable file for pCloudy cloud

	Running a Web UI test or compound test in the headless mode from the command line
	Running Web UI tests in the private mode from the command line
	Running a test from the command line on multiple browsers
	Running multiple tests simultaneously from the command line
	Running mobile tests for Android applications from the command-line
	Running the command
	Creating a variable file
	Variable file for a computer on which you have installed HCL OneTest™ UI
	Variable file for UI Test Agent
	Variable file for BitBar Cloud
	Variable file for Perfecto Mobile cloud
	Variable file for pCloudy cloud
	Variable file to run mobile tests on multiple mobile clouds

	Running mobile tests for iOS applications from the command-line
	Running the command
	Creating a variable file
	Variable file for a computer on which you have installed HCL OneTest™ UI
	Variable file for UI Test Agent
	Variable file for BitBar Cloud
	Variable file for Perfecto Mobile cloud
	Variable file for pCloudy cloud
	Variable file to run mobile tests on multiple mobile clouds

	Running Windows tests from the command-line interface
	Running the command
	Creating a variable file
	Variable file for the local computer on which you want to run Windows test
	Variable file for the remote computer on which you want to run Windows test

	Configuration of test runs from the Functional Test perspective
	Prerequisites for functional test runs
	Monitoring functional test runs
	Running functional tests
	Analyzing test runs
	Running scripts
	Test development phase
	Regression testing phase

	Restoring the test environment before playback
	Configuring how to handle unexpected windows during playback
	Inserting dynamic test objects
	Enabling the dynamic find feature
	Using ScriptAssure
	Tips for using ScriptAssure

	Ambiguous object recognition in functional testing
	Preventing ambiguous recognition
	Dealing with ambiguous recognition

	Playback Monitor
	Playback Monitor icons
	Turning off the Playback Monitor

	Pausing or stopping script playback
	Pausing and resuming playback
	Stopping script playback

	Running a script from HCL OneTest™ UI
	Running functional tests for HTML applications by using the Web UI engine
	Running a script from the Microsoft™ Edge browser
	Debugging scripts
	Setting the Debug Perspective preference
	Debugging a script

	Screen snapshot on playback failure of functional tests
	Accessing the screen snapshot in an HTML log type
	Taking a screen snapshot with scripting

	Chapter 9. Test Manager Guide
	Publishing test result to HCL OneTest™ Server
	Publishing specific results to the server
	Unified reports
	Exporting unified reports
	Exporting unified reports
	Languages supported for PDF export

	Results for tests in UI Test perspective
	UI Test Statistical report
	Evaluating desktop Web UI results
	Customizing reports
	Exporting reports
	UI Test live report
	Generating Functional Test Report
	Low Intensity Performance Testing
	Adding a transaction
	Defining performance requirements in transactions

	Viewing On App and Off App response time

	Customizing reports
	Creating custom reports
	Viewing trending reports
	Filtering data in test results
	Customizing the appearance of graphs in a report
	Changing the report displayed during a run
	Modifying counters in a graph
	Correcting time offset

	Export test results
	Creating an executive summary from the workbench
	Creating an executive summary from the Web Analytics report
	Exporting reports to HTML format
	Exporting results to a CSV file
	Sharing URL of test run
	Exporting report metadata

	Evaluating mobile test run results
	Evaluating results in the web browser
	Customizing reports
	Exporting reports

	Logs overview
	Test logs
	Problem determination logs
	Agent logs
	Test log overview
	Viewing test logs
	Viewing errors while running tests
	Exporting test logs
	Exporting event log
	Exporting event console output
	Setting problem determination level for tests

	Results for tests in Functional Test perspective
	Functional test logs
	Types of logs
	Location of logs
	Managing logs

	Logging page
	Setting log preferences
	Disabling enhanced log results
	Viewing logs in the Projects view
	Viewing Dojo logs
	Renaming and deleting logs
	Log Extension
	Extending a log
	Deploying the extended log file
	Example: Creating a text log

	Chapter 10. Troubleshooting
	Troubleshooting in the UI Test perspective
	Support information for HCL OneTest™ Studio
	Frequently Asked Questions
	Questions
	Answers

	Unable to play back Web UI tests when certain web applications are redirected to a different URL
	Cause
	Resolution

	HCL OneTest™ UI error messages
	CRRTWF0001E
	CRRTWF0002E
	CRRTWF0003E
	CRRTWF0004I
	CRRTWF0005I
	CRRTWF0006E
	CRRTWF0007I
	CRRTWF0008I
	CRRTWF0009I
	CRRTWF0010I
	CRRTWF0011E
	CRRTWF0012I
	CRRTWF0013I
	CRRTWF0014E
	CRRTWF0015E
	CRRTWF0016E
	CRRTWF0017E
	CRRTWF0018E
	CRRTWF0019E
	CRRTWF0020E
	CRRTWF0101E
	CRRTWF0102E
	CRRTWF0103E
	CRRTWF0104E
	CRRTWF0105E
	CRRTWF0201I
	CRRTWF0202I
	CRRTWF0203E
	CRRTWF0204E
	CRRTWF0205E
	CRRTWF0206E
	CRRTWF0301E
	CRRTWF0302E
	CRRTWF0303E
	CRRTWF0304E
	CRRTWF0305E
	CRRTWM0001E
	CRRTWM0002E
	CRRTWM0003E
	CRRTWM0004E
	CRRTWM0008W
	CRRTWM0009W
	CRRTWM0010E
	CRRTWM0011W
	CRRTWM0012W
	CRRTWM1001E
	CRRTWM1002E
	CRRTWM1003E
	CRRTWM1004E
	CRRTWM1005E
	CRRTWM1006E
	CRRTWM1007E
	CRRTWM1008E
	CRRTWM1009E
	CRRTWM1010I
	CRRTWM1011E
	CRRTWM1012E
	CRRTWM1013E
	CRRTWM1014E
	CRRTWM1015E
	CRRTWW0031E
	CRRTWM1101E
	CRRTWM1102E
	CRRTWM1201E
	CRRTWM1202E
	CRRTWM1203I
	CRRTWM1206E
	CRRTWM1210E
	CRRTWM1211E
	CRRTWM1301E
	CRRTWM1302I
	CRRTWM2001E
	CRRTWM2002E
	CRRTWM2003E
	CRRTWM3001E
	CRRTWM3002E
	CRRTWM4001E
	CRRTWM4002E
	CRRTWM5001E
	CRRTWM6001E
	CRRTWM6002E
	CRRTWM6003E
	CRRTWM6004E
	CRRTWM6005E
	CRRTWM6011E
	CRRTWM6012E
	CRRTWM6013I
	CRRTWM6020W
	CRRTWM6021E
	CRRTWM6030W
	CRRTWM7001E
	CRRTWM8001E
	CRRTWM8010W
	CRRTWM9010E
	CRRTWS0001E
	CRRTWS0002I
	CRRTWS0101W
	CRRTWS0201W
	CRRTWS0202W
	CRRTWW0001I
	CRRTWW0002I
	CRRTWW0003I
	CRRTWW0004I
	CRRTWW0005I
	CRRTWW0006I
	CRRTWW0007E
	CRRTWW0008E
	CRRTWW0009I
	CRRTWW0010I
	CRRTWW0011E
	CRRTWW0012E
	CRRTWW0013I
	CRRTWW0014I
	CRRTWW0015I
	CRRTWW0016I
	CRRTWW0017E
	CRRTWW0018E
	CRRTWW0019E
	CRRTWW0019I
	CRRTWW0020I
	CRRTWW0021E
	CRRTWW0022E
	CRRTWW0023E
	CRRTWW0024E
	CRRTWW0025E
	CRRTWW0026E
	CRRTWW0027E
	CRRTWW0028E
	CRRTWW0029E
	CRRTWW0101I
	CRRTWW0102I
	CRRTWW0103W
	CRRTWW0104W
	CRRTWW0105E
	CRRTWW0106E
	CRRTWW0107E
	CRRTWW0109E
	CRRTWW0110E
	CRRTWW0140I
	CRRTWW0150I
	CRRTWW0151I
	CRRTWW0152I
	CRRTWW0153I
	CRRTWW0154I
	CRRTWW0155I
	CRRTWW0156I
	CRRTWW0157I
	CRRTWW0158I
	CRRTWW0159I
	CRRTWW0160I
	CRRTWW0161I
	CRRTWW0162I
	CRRTWW0163I
	CRRTWW0200E
	CRRTWW0201E
	CRRTWW0202E
	CRRTWW0203W
	CRRTWW0300W
	HOTC0009E
	RMSE0003W
	RMSE0004W
	RMSE0005W

	Troubleshooting in the Functional Test perspective
	Troubleshooting functional tests in Mozilla Firefox browsers
	It is not possible to record on a Firefox browser
	While recording on Mozilla Firefox browsers, some dialog boxes are recordable while others are not
	Unable to test Adobe™ Flex applications with HCL OneTest™ UI on Mozilla Firefox browsers
	Unable to test applications in Linux® with HCL OneTest™ UI on Mozilla Firefox browsers
	Unable to use Ajax related APIs on an Ajax application that is running on Mozilla Firefox browsers
	Unable to test embedded PDF files in Firefox browsers
	Unable to launch the Verification Point Comparator from execution logs generated through Rational® Quality Manager
	Unable to launch the Verification Point Comparator from playback logs on Linux® installations
	Unable to play a script that was recorded on a stand-alone PDF document in Firefox on an embedded PDF document
	Unable to playback scripts on listbox controls when Firefox is maximized

	Unable to test eclipse-based applications
	Ambiguous object recognition in functional testing
	Preventing ambiguous recognition
	Dealing with ambiguous recognition

	Screen snapshot on playback failure of functional tests
	Accessing the screen snapshot in an HTML log type
	Taking a screen snapshot with scripting

	Tips and tricks for functional testing HTML applications
	Start recording first and then start the application
	Recording a hover on HTML menus
	Use deleteCookies method in your scripts
	Avoid including menu items in scripts
	Make sure Java applets are in full view during playback
	Use the loadURL() method to change URLs
	Using .size property for INPUT elements
	Use toolbar buttons common to both browsers
	Use the close button to exit a browser
	Check the .readystate of the browser object
	Use waitForExistence method to compensate for browser startup speed
	Avoid these click and key combinations in cross-platform scripts
	Run a utility to fix badly formed HTML
	Handling pop-up message boxes
	Testing URLs without configuring the application
	Testing HTAs
	Handling Java plug-in errors

	Java applets in HTML pages
	Requirements for testing applets within a browser

	Standard properties available for functional testing HTML objects
	Uninstalling HCL OneTest™ UI cleanly
	Problems with object recognition
	Objects and controls are not recognized
	Previously recorded scripts do not work
	Siebel controls are not recognized as Siebel objects

	Troubleshooting issues in SAP tests
	Problems with environment enablement
	Handling exceptions
	Ambiguous recognition exception
	Mutex timeout exception during playback

	Collecting HCL OneTest™ UI error logs
	Viewing trace files within HCL OneTest™ UI
	AutoPD Collection artifacts in IBM® Support Assistant
	Frequently asked questions
	FAQs: Using HCL OneTest™ UI
	Does HCL OneTest™ UI support the testing of my application?
	Can HCL OneTest™ UI be used to test Eclipse-based applications?
	Is the Eclipse integrated development environment (IDE) provided with HCL OneTest™ UI?
	How do I enable debugging in HCL OneTest™ UI?
	How do I transfer the information specified in the HCL OneTest™ UI Application Configuration Tool to playback agent machines?
	How do I run HCL OneTest™ UI under a different Java™ Runtime Environment (JRE)?
	How do I cleanly uninstall HCL OneTest™ UI versions 7.x, 8.0 and 8.1.x on Microsoft® Windows®?
	How do I enable the browser environments for testing applications on Microsoft® Windows® systems compliant with Federal Desktop Core Configuration (FDCC)?
	Can HCL OneTest™ UI be used with a project enabled for Unified Configuration Management (UCM)?
	Does configuring the application under test (AUT) modify the AUT?
	What happens when Internet Explorer is enabled?
	What are the language limitations for HCL OneTest™ UI scripts?

	FAQs: Recording scripts
	Which controls does HCL OneTest™ UI support for functional testing?
	Is there only one dataset for a script?
	How do I test a popup window with HCL OneTest™ UI?
	Is it required to start an application with HCL OneTest™ UI to make it testable?
	Can scripts recorded under a JRE be played back on a different JRE?
	Does HCL OneTest™ UI support recording against the menu in browsers?

	FAQs: Object recognition and object maps
	What is an object map and why is it needed?
	What happens if two different objects have the same name?
	What is the difference between a private and public object map?
	What do the weights on the recognition properties mean and how are they used?
	Can the default weights that are assigned to each property be modified?
	Can a property weight or value be modified for all objects in a project or all objects of a specific type?
	Can scripts that were created with private maps be merged to a public map?
	Can a private map be made public?
	Do changes to the object map hierarchy need new sections in the object map for all child objects?
	Can properties that are used for object recognition be modified?
	Can a script reference more than one object map?
	Can individual objects be copied from one map to another?
	What are the performance metrics of an object map as it grows in size?

	FAQs: HCL OneTest™ UI integrations
	Does HCL OneTest™ UI integrate with test management systems?
	What are the benefits of connecting a functional test project to a test management solution?
	How does keyword testing work ?
	When working with keywords, when are licenses for Rational® Quality Manager and HCL OneTest™ UI required?
	Can HCL OneTest™ UI be installed with Rational® Application Developer or Rational® Software Architect?
	Which source control management tools does HCL OneTest™ UI integrate with?
	Why should I use source control management systems with HCL OneTest™ UI?
	Can HCL OneTest™ UI be used without a source control system?

	HCL OneTest™ UI error messages
	CRFCC0006E
	CRFCC0007E
	CRFCC0008E
	CRFCC0009E
	CRFCC0010E
	CRFCC0011E
	CRFCC0012E
	CRFCC0013E
	CRFCC0014E
	CRFCC0015E
	CRFCC0018E
	CRFCC0020E
	CRFCC0021E
	CRFCC0022E
	CRFCC0023E
	CRFCC0024E
	CRFCC0030W
	CRFCC0031E
	CRFCC0032E
	CRFCC0033E
	CRFCC0034E
	CRFCC0035E
	CRFCC0037E
	CRFCN0001E
	CRFCN0002E
	CRFCN0003E
	CRFCN0004E
	CRFCN0005E
	CRFCN0006E
	CRFCN0007E
	CRFCN0008E
	CRFCN0009E
	CRFCN0012E
	CRFCN0013E
	CRFCN0014E
	CRFCN0015E
	CRFCN0016E
	CRFCN0017E
	CRFCN0018E
	CRFCN0019E
	CRFCN0020W
	CRFCN0021E
	CRFCN0022E
	CRFCN0023E
	CRFCN0024E
	CRFCN0025E
	CRFCN0026W
	CRFCN0010E
	CRFCN0011E
	CRFCN0029E
	CRFCN0036E
	CRFCN0037E
	CRFCN0038E
	CRFCN0039E
	CRFCN0042E
	CRFCN0043E
	CRFCN0045E
	CRFCN0047E
	CRFCN0048E
	CRFCN0056E
	CRFCN0064E
	CRFCN0073E
	CRFCN0074E
	CRFCN0081E
	CRFCN0082E
	CRFCN0094E
	CRFCN0096E
	CRFCN0104E
	CRFCN0105E
	CRFCN107E
	CRFCN0110E
	CRFCN0113E
	CRFCN0114E
	CRFCN0115E
	CRFCN0116E
	CRFCN0117E
	CRFCN0118E
	CRFCN0120E
	CRFCN0121E
	CRFCN0122E
	CRFCN0140E
	CRFCN0141E
	CRFCN0142E
	CRFCN0144E
	CRFCN0145E
	CRFCN0151E
	CRFCN0152E
	CRFCN0153E
	CRFCN0160E
	CRFCN0161E
	CRFCN0162E
	CRFCN0163E
	CRFCN0164E
	CRFCN0165E
	CRFCN0166E
	CRFCN0168E
	CRFCN0169E
	CRFCN0170E
	CRFCN0182E
	CRFCN0185W
	CRFCN0192E
	CRFCN0193E
	CRFCN0194E
	CRFCN0195E
	CRFCN0200E
	CRFCN0203E
	CRFCN0209E
	CRFCN0210W
	CRFCN0211W
	CRFCN0213W
	CRFCN0215W
	CRFCN0216W
	CRFCN0219W
	CRFCN0225W
	CRFCN0226W
	CRFCN0227E
	CRFCN0228E
	CRFCN0232W
	CRFCN0234E
	CRFCN0238W
	CRFCN0239W
	CRFCN0240E
	CRFCN0245E
	CRFCN0246E
	CRFCN0247E
	CRFCN0248W
	CRFCN0249E
	CRFCN0251W
	CRFCN0252E
	CRFCN0253E
	CRFCN0254E
	CRFCN0255E
	CRFCN0256W
	CRFCN0257W
	CRFCN0258W
	CRFCN0259W
	CRFCN0260W
	CRFCN0261W
	CRFCN0262W
	CRFCN0264E
	CRFCN0265E
	CRFCN0266E
	CRFCN0267E
	CRFCN0268E
	CRFCN0269E
	CRFCN0270E
	CRFCN0271E
	CRFCN0273W
	CRFCN0274W
	CRFCN0275W
	CRFCN0276E
	CRFCN0279E
	CRFCN0280E
	CRFCN0281E
	CRFCN0282E
	CRFCN0283E
	CRFCN0284W
	CRFCN0285E
	CRFCN0286W
	CRFCN0288E
	CRFCN0289E
	CRFCN0291E
	CRFCN0292E
	CRFCN0294E
	CRFCN0296E
	CRFCN0299E
	CRFCN0300E
	CRFCN0302E
	CRFCN0303E
	CRFCN0304E
	CRFCN0305E
	CRFCN0306E
	CRFCN0307E
	CRFCN0308E
	CRFCN0309E
	CRFCN0310E
	CRFCN0317E
	CRFCN0321E
	CRFCN0325E
	CRFCN0326E
	CRFCN0327E
	CRFCN0328E
	CRFCN0329E
	CRFCN0330E
	CRFCN0331E
	CRFCN0337E
	CRFCN0342E
	CRFCN0343E
	CRFCN0345W
	CRFCN0346W
	CRFCN0347W
	CRFCN0348W
	CRFCN0349W
	CRFCN0351E
	CRFCN0352E
	CRFCN0353E
	CRFCN0354W
	CRFCN0355W
	CRFCN0356W
	CRFCN0357W
	CRFCN0358E
	CRFCN0359E
	CRFCN0360W
	CRFCN0361W
	CRFCN0362W
	CRFCN0363E
	CRFCN0364W
	CRFCN0365W
	CRFCN0366W
	CRFCN0367W
	CRFCN0368W
	CRFCN0369W
	CRFCN0370W
	CRFCN0371E
	CRFCN0372E
	CRFCN0373E
	CRFCN0374E
	CRFCN0375E
	CRFCN0376E
	CRFCN0377E
	CRFCN0379E
	CRFCN0380E
	CRFCN0381E
	CRFCN0382E
	CRFCN0383E
	CRFCN0384E
	CRFCN0385E
	CRFCN0386E
	CRFCN0387E
	CRFCN0388E
	CRFCN0389E
	CRFCN0390E
	CRFCN0391E
	CRFCN0392E
	CRFCN0393E
	CRFCN0394E
	CRFCN0395E
	CRFCN0396E
	CRFCN0397E
	CRFCN0398E
	CRFCN0399E
	CRFCN0400E
	CRFCN0401E
	CRFCN0402E
	CRFCN0403E
	CRFCN0404E
	CRFCN0405E
	CRFCN0406E
	CRFCN0407E
	CRFCN0408E
	CRFCN0409E
	CRFCN0410E
	CRFCN0411E
	CRFCN0412E
	CRFCN0413E
	CRFCN0414E
	CRFCN0415E
	CRFCN0418E
	CRFCN0419E
	CRFCN0420E
	CRFCN0421E
	CRFCN0422E
	CRFCN0423EE
	CRFCN0424E
	CRFCN0426EE
	CRFCN0427E
	CRFCN0428E
	CRFCN0429E
	CRFCN0430E
	CRFCN0431E
	CRFCN0432E
	CRFCN0433E
	CRFCN0434E
	CRFCN0435E
	CRFCN0437E
	CRFCN0438E
	CRFCN0439E
	CRFCN0440E
	CRFCN0441E
	CRFCN0442E
	CRFCN0443E
	CRFCN0444E
	CRFCN0445E
	CRFCN0446E
	CRFCN0447E
	CRFCN0448E
	CRFCN0449E
	CRFCN0450E
	CRFCN0451E
	CRFCN0452E
	CRFCN0454E
	CRFCN0455E
	CRFCN0456E
	CRFCN0457E
	CRFCN0458E
	CRFCN0461E
	CRFCN0462E
	CRFCN0463E
	CRFCN0465E
	CRFCN0466E
	CRFCN0468W
	CRFCN0469W
	CRFCN0470W
	CRFCN0471E
	CRFCN0472E
	CRFCN0473E
	CRFCN0476E
	CRFCN0477E
	CRFCN0478E
	CRFCN0476E
	CRFCN0480E
	CRFCN0481E
	CRFCN0482E
	CRFCN0483E
	CRFCN0484E
	CRFCN0485E
	CRFCN0486E
	CRFCN0487E
	CRFCN0488E
	CRFCN0489E
	CRFCN0490E
	CRFCN0491E
	CRFCN0492E
	CRFCN0494E
	CRFCN0495E
	CRFCN0496E
	CRFCN0497E
	CRFCN0498E
	CRFCN0499E
	CRFCN0500E
	CRFCN0501E
	CRFCN0504E
	CRFCN0505E
	CRFCN0506E
	CRFCN0507E
	CRFCN0508E
	CRFCN0509E
	CRFCN0510E
	CRFCN 0511E
	CRFCN0512E
	CRFCN0513E
	CRFCN0514E
	CRFCN0515E
	CRFCN0516E
	CRFCN0517E
	CRFCN0518E
	CRFCN0519E
	CRFCN0520E
	CRFCN0521E
	CRFCN0524E
	CRFCN0527E
	CRFCN0531E
	CRFCN0532E
	CRFCN0534E
	CRFCN0535E
	CRFCN0540E
	CRFCN0541E
	CRFCN0542E
	CRFCN0546E
	CRFCN0547E
	CRFCN0549E
	CRFCN0551E
	CRFCN0552E
	CRFCN0553E
	CRFCN0555E
	CRFCN0556E
	CRFCN0557E
	CRFCN0558E
	CRFCN0561E
	CRFCN0562E
	CRFCN0563E
	CRFCN0564E
	CRFCN0565E
	CRFCN0567E
	CRFCN0570E
	CRFCN0574E
	CRFCN0578E
	CRFCN0580E
	CRFCN0582E
	CRFCN0589E
	CRFCN0590E
	CRFCN0594E
	CRFCN0596E
	CRFCN0597E
	CRFCN0602E
	CRFCN0604E
	CRFCN0606E
	CRFCN0607E
	CRFCN0608E
	CRFCN0611E
	CRFCN0613E
	CRFCN0617E
	CRFCN0621E
	CRFCN0622E
	CRFCN0623E
	CRFCN0624E
	CRFCN0625E
	CRFCN0626E
	CRFCN0628E
	CRFCN0639E
	CRFCN0647E
	CRFCN0648E
	CRFCN0649W
	CRFCN0653I
	CRFCN0660E
	CRFCN0661W
	CRFCN0663E
	CRFCN0672E
	CRFCN0673E
	CRFCN0682E
	CRFCN0698E
	CRFCN0699E
	CRFCN0707E
	CRFCN0710E
	CRFCN0712E
	CRFCN0715E
	CRFCN0720E
	CRFCN0722E
	CRFCN0723E
	CRFCN0724E
	CRFCN0726E
	CRFCN0726E
	CRFCN0733E
	CRFN0752E
	CRFCN0754E
	CRFCN0759E
	CRFCN0763E
	CRFCN0768E
	CRFCN0770E
	CRFCN0771E
	CRFCN0775E
	CRFCN0778E
	CRFCN0779E
	CRFNC0783E
	CRFCN0784E
	CRFCN0785E
	CRFCN0786E
	CRFCN0787W
	CRFCN0788W
	CRFCN0791E
	CRFCN0792E
	CRFCN0793E
	CRFCN0794E
	CRFCP0001E
	CRFCP0002E
	CRFCP0003E
	CRFCP0004E
	CRFCP0005E
	CRFCP0006E
	CRFCP0007E
	CRFCP0008E
	CRFCP0009E
	CRFCP0010E
	CRFCP0011E
	CRFCP0012E
	CRFCP0013E
	CRFCP0014E
	CRFCP0015E
	CRFCP0016E
	CRFCP0017E
	CRFCP0018E
	CRFCP0019E
	CRFCP0020E
	CRFCP0021E
	CRFCP0022E
	CRFCP0023E
	CRFCP0024E
	CRFCP0025E
	CRFCP0026E
	CRFCP0027E
	CRFCP0028E
	CRFCP0029E
	CRFCP0030E
	CRFCP0031E
	CRFCP0032E
	CRFCP0033E
	CRFCP0034E
	CRFCP0035E
	CRFCP0036E
	CRFCP0037E
	CRFCP0038E
	CRFCP0039E
	CRFCP0040E
	CRFCP0041E
	CRFCP0042E
	CRFCP0043E
	CRFCP0044E
	CRFCP0045E
	CRFCP0046E
	CRFCP0047E
	CRFCP0048E
	CRFCP0049E
	CRFCP0050E
	CRFCP0051E
	CRFCP0052E
	CRFCP0053E
	CRFCP0054E
	CRFCP0055E
	CRFCP0056E
	CRFCP0057E
	CRFCP0058E
	CRFCP0059E
	CRFCP0065E
	CRFCP0067E
	CRFCP0068E
	CRFQM0001E
	CRFQM0002E
	CRFQM0003E
	CRFQM0004E
	CRFQM0005E
	CRFQM0006E
	CRFQM0007E
	CRFQM0008W
	CRFQM0009E
	CRFWW0001E
	CRFWW0002W
	CRFWW0003E
	CRFWW0004E
	CRFWW0006E
	CRFWW0010E
	CRFWW0011E
	CRFWW0013E
	CRFWW0017E
	CRFWW0018E
	CRFWW0019E
	CRFWW0020E
	CRFWW0021E
	CRFWW0023E
	CRFWW0024E
	CRFWW0025E
	CRFWW0026E
	CRFWW0028E
	CRFWW0030W
	CRFWW0031E
	CRFWW0032E
	CRFWW0033W
	CRFWW0034E
	CRFWW0035E
	CRFWW0036E
	CRFWW0037E
	CRFWW0038E
	CRFWW0039E
	CRFWW0040E
	CRFWW0041E
	CRFWW0042E
	CRFWW0043W
	CRFWW0044W
	CRFWW0045E
	CRFWW0046E
	CRFWW0047E
	CRFWW0048E
	CRFWW0049E
	CRFWW0050E
	CRFWW0051E
	CRFWW0052W
	CRFWW0053E
	CRFWW0054W
	CRFWW0055E
	CRFWW0056E
	CRFWW0057W
	CRFWW0059E
	CRFWW0060E
	CRFWW0061E
	CRFWW0062E
	CRFWW0063E
	CRFWW0064E
	CRFWW0065E
	CRFWW0066E
	CRFWW0068E
	CRFWW0069W
	CRFWW0070E
	CRFWW0071E
	CRFWW0073E
	CRFWW0074E
	CRFWW0075W
	CRFWW0078E
	CRFWW0079E
	CRFWW0080E
	CRFWW0081E
	CRFWW0082E
	CRFWW0083E
	CRFWW0084E
	CRFWW0085E
	CRFWW0094E
	CRFWW0095E
	CRFWW0096E
	CRFWW0097I
	CRFWW0098E
	CRFWW0099W

	Chapter 11. Reference Guide
	Reference for the UI Test perspective
	Mobile test preferences
	Mobile web testing preferences
	UI Test Application Editor preference

	Mobile test reference
	Values for device selection variables
	Name
	Initialize to text

	UI Test result reports

	Reference for the Functional Test perspective
	Test application domain support
	Adobe PDF documents support
	AJAX support
	APIs for testing AJAX-based applications

	Application Response Measurement support
	Response time breakdown

	Dojo support
	Eclipse support
	Flex support
	Flex custom control support

	GEF support
	HTML and HTML 5 support
	Java support
	.NET support
	Testing .NET 3.0 and 3.5 applications: Supported controls
	Testing .NET 4.0 applications: Supported controls
	Testing .NET 4.5 applications: Supported controls
	Testing .NET 4.5.1 applications

	Windows support
	Nested domains support
	Nested domains in the object map

	PowerBuilder support
	SAP support
	Siebel support
	Testing high-interactive Siebel applications
	Setting the registry key
	Starting Siebel Test Automation framework (STA)
	Configuring CAS timeout
	Enabling Siebel support for pre-existing Functional Test projects

	Silverlight support
	Visual Basic support
	Terminal-based applications support

	Command line interface
	Core command line format
	Commonly used command line options
	Command line usage in Linux®
	Examples:
	Command line usage examples

	UI reference
	Add Application dialog box
	Add dynamic test object
	Convert dynamic test object
	Add Variable dialog box
	Application configuration tool
	How to use this dialog box?
	Applications list
	Detailed information for Application
	Add button
	Remove button
	Run button
	Apply button
	Font button
	OK button

	Associated Scripts dialog box
	Bookmarks view
	Browser enablement diagnostic tool
	Results
	Problem and solution
	Details (Advanced)

	Call Script tab: Script Support Functions dialog box
	Edit Variable dialog box
	Choose Test Object to Update page of the Update Recognition Properties wizard
	Clipboard tab: Script Support Functions dialog box
	Verification Point tab
	Assign Text tab
	Set Text tab

	Comment tab: Script Support Functions dialog box
	Configure Handling of Unexpected Windows dialog box
	Connect to a Functional Test project dialog box
	Console view
	Copy Test Objects to New Test Object Map wizard page
	Create a New Functional Test Folder dialog box
	Create a New Project or Connect to an Existing Project dialog box
	Create a test dataset dialog box
	Create a New Test Object Map wizard
	Create an empty Functional Test script dialog box
	Create a Functional Test Project dialog box
	Create Script Helper Superclass dialog box
	dataset Literal Substitution dialog box
	dataset Reference Converter dialog box
	Define Find Filter Name dialog box
	Define Find Filter Properties dialog box
	Define Find Filter Relationships dialog box
	Delete All Not Used Test Objects dialog box
	Delete Test Object dialog box
	Delete Test Object dialog box -- page 2
	Eclipse Platforms tab of the Enable Environments dialog box
	Eclipse Platform tab

	Edit Test Object Appearance dialog box
	Edit Variable dialog box
	Browser enablement diagnostic tool
	Results
	Problem and solution
	Details (Advanced)

	Export dialog box
	Find and modify dialog box
	Find criteria:
	Modify actions:

	Menus
	File menu
	Edit menu
	Source menu
	Refactor menu
	Navigate menu
	Search menu
	Project menu
	Script menu
	Configure menu
	Run menu
	Window menu
	Help menu

	General page
	Project Properties page
	Projects view
	Script Properties page
	Script Templates Properties page
	Show Checkouts View
	Show History View
	Toolbar
	Highlight page
	Import dataset dialog box
	Import Project Items page
	Insert Data Drive Actions dialog box
	Insert getProperty Command page
	Insert Properties Verification Point Command page
	Insert Verification Point Data Command page
	Insert waitForExistence Command page
	Java editor
	Java Environments tab of the Enable Environments dialog box
	For enabling Java environments:
	For adding and configuring Java environments:

	Log Entry tab: Script Support Functions dialog box
	Logging page
	Merge test object into the test object map page
	Message Text Color tab
	Record Monitor Preferences dialog box
	Message Text Color tab
	Monitor Options tab

	Monitor Options tab
	Operating System page
	Delays page
	Playback Monitor page
	General Playback page
	ScriptAssure page--Advanced
	ScriptAssure page-standard
	Preferences dialog box
	Quick Find dialog box
	Record a New Functional Test Script dialog box
	Recording interface
	Recording toolbar
	Manual test recording monitor
	Using the manual test recording monitor
	Recording toolbar options
	Monitor toolbar options

	Recording Monitor
	Toolbars

	Recorder Monitor page
	General Recorder page
	Regular Expression Evaluator
	To use the Evaluator

	Rename dialog box
	Renew all names in associated script (s)
	Renew Name in Associated Script(s) dialog box
	Save File As dialog box
	Save Script As dialog box
	HCL OneTest™ UI Script Explorer
	Using script services
	Call Script tab: Script Support Functions dialog box
	Comment tab: Script Support Functions dialog box
	Log Entry tab: Script Support Functions dialog box
	Sleep tab: Script Support Functions dialog box
	Timer tab: Script Support Functions dialog box

	Search for Java Environments dialog box
	Search for Web Browsers dialog box
	Select an Action page of the Verification Point and Action wizard
	Select an Action page of the Verification Point and Action wizard (from Insert)
	Select an Object dialog box
	Object Finder Tool
	Object Browser
	Delay Method

	Select an Object page of the Insert a GUI Object into the Object Map wizard
	Object Finder Tool
	Object Browser
	Delay Method

	Select an Object page of the Update Recognition Properties wizard
	Object Finder Tool
	Object Browser
	Delay Method

	Select an Object page of the Verification Point and Action Wizard
	The following three selection methods are available:
	Object recognition properties grid
	Capture Screen Image
	Your next step

	Select Helper Superclass/Select a Script Helper Base Class dialog box
	Select Items to Export page
	Select Items to Overwrite page
	Select object options page
	Select Log page
	Select Object Options page of the Insert GUI Object into the Object Map wizard
	Select object to data drive page
	Select Script Assets page
	Select Script to Play Back/Select Script to Debug dialog box
	Set Active Find Criteria dialog box
	Set Description Property for Selected Test Object dialog box
	Set Highlight Window Preferences dialog box
	Sleep tab: Script Support Functions dialog box
	Start application dialog box
	Tasks view
	Test object maps
	Test object inspector
	Test object inspector menu

	Message Text Color tab
	Timer tab: Script Support Functions dialog box
	Unify Test Objects dialog box
	Unify Test Objects dialog box -- page 2
	Update Test Object Recognition Properties wizard
	Variable Name page of the Verification Point and Action wizard
	Verification Point and Action wizard
	Select an Object page of the Verification Point and Action Wizard
	The following three selection methods are available:
	Object recognition properties grid
	Capture Screen Image
	Your next step

	Select an Action page of the Verification Point and Action wizard
	Select an Action page of the Verification Point and Action wizard (from Insert)
	Insert Verification Point Data Command page
	Insert Image Verification Point Command page
	Insert Properties Verification Point Command page
	Insert getProperty Command page
	Insert waitForExistence Command page
	Variable Name page of the Verification Point and Action wizard
	Verification Point Data page of the Verification Point and Action wizard
	Metadata
	Properties grid display -- for a properties verification point
	Data display -- for a data verification point
	Image display -- for an image and OCR verification point
	Test object data in the Verification Point Data page
	Test objects
	Recognition and Administrative data

	Verification point comparator
	Opening the verification point comparator
	Using verification point comparator for functional test scripts played back from Rational® Quality Manager
	Comparing verification points after playback
	The verification point comparator window
	Metadata
	Main toolbar
	Main data area
	Navigation toolbar buttons
	Properties verification point : grid display
	Data verification point : menu hierarchy display
	Data verification point : text display
	Data verification point : table display
	Data verification point -- tree hierarchy display
	Data verification point : list display
	Data verification point : state display
	Test object data in the Verification point comparator window
	Test objects
	Recognition and Administrative data

	Verification Point Editor
	Metadata
	Main toolbar
	Menu bar
	Main data area
	Test object data in the Verification point editor window
	Test objects
	Recognition and Administrative data

	Web browsers tab of the Enable Environments dialog box
	For enabling web browsers:
	For adding and configuring web browsers:

	Workbench Preferences page
	Workbench Advanced Preferences
	Test Object Map menu
	File menu options
	Edit menu options
	Find menu options
	Test Object menu options
	Preferences menu options
	Applications menu options
	Display menu options
	Help menu options :

	Test Object Map toolbar
	Test object hierarchy
	Property sets
	Specify Playback Options page
	Object Properties Configuration Tool
	Add Object dialog box
	Import Object Recognition Properties dialog box
	Export Object Recognition Properties dialog box
	Example of a test object map
	Exception dialog box
	Application View
	Script editor
	Properties view - General page
	Properties View- Playback page
	Properties View - Log page

	Security Considerations
	Security Considerations for HCL OneTest™ UI
	Ports, protocols, and services
	Customizing your security settings
	Privacy policy considerations
	Security limitations

	Notices
	
	Trademarks
	Terms and conditions for product documentation
	Applicability
	Personal use
	Commercial use
	Rights

	Index

