
HCL® OneTest™ Embedded
8.3.1 Documentation

May 2021

ii

Special notice

Before using this information and the product it supports, read the information in Notices on page mclxxxviii.

Contents
Chapter 1. Release Notes..5

Description..5
What's new in HCL OneTest™ Embedded 8.3.1........5
Installing the product...6
Known issues... 7
Contacting HCL support..7

Chapter 2. System Requirements................................ 8
Hardware.. 9
Operating systems...9
Prerequisites...10
Development environments.................................... 11
Integration environments 12

Chapter 3. Getting Started Guide14
Overview... 14
Source code instrumentation overview..................16
Target deployment port overview........................... 17

Chapter 4. Administrator Guide................................. 20
Installing... 20

Installation requirements.................................20
Installing the product....................................... 21
Verifying the installation.................................. 36
Starting HCL OneTest™ Embedded................. 36
Managing Licenses.. 37

Configuring ..39
Target Deployment Port Editor overview........ 39
Target Deployment Port Editor overview........ 40
Opening the Target Deployment Port
Editor... 40
Creating a TDP... 41
Using the TDP Editor..42
Editing customization points in a TDP............42
Updating a Target Deployment Port................43
Using a Post-generation Script........................44
Migrating from v2001A Target Deployment
Ports..45
Migrating from previous versions................... 45

Integrating...46
IBM® Rational® Quality Manager
integration... 46
Configuring the Jenkins environment for
running test suites... 49
Integrating HCL OneTest™ Embedded with
other development tools..................................49

Chapter 5. Test Execution Specialist Guide................63
Testing with HCL OneTest™ Embedded for Eclipse
IDE... 63

Getting started with HCL OneTest™ Embedded
for Eclipse IDE.. 63

Importing C projects.. 64
Importing HCL OneTest™ Embedded
examples...65
Analyzing source code.....................................65
Coupling Analysis overview...........................182
Application Profiling.......................................199
Testing software components...................... 209
Application monitoring.................................. 245

Testing with Studio..251
HCL OneTest™ Embedded Studio
overview.. 251
Analyzing static source code........................ 251
Analyzing running applications 335
Testing software components...................... 477
Using the graphical user interface................ 689
Test script languages.................................... 747

Chapter 6. Test Manager Guide............................... 957
Generating test reports... 957
Generating 2D and 3D chart data......................... 957
Publishing HTML reports to the Server................ 958
Opening runtime analysis reports.........................959

About test reports..960
About coverage reports................................. 961
About memory profiling reports....................964
About performance profiling reports............ 968
About metrics results.................................... 969
Viewing 2D and 3D charts.............................971

Chapter 7. Reference Guide.....................................972
UI reference..972

HCL OneTest™ Embedded preferences........ 972
TDP configuration settings............................977
Build configuration settings...........................980
Data pool editor reference.............................990
UML sequence diagram reference................ 991
Memory profiling errors................................. 991
Memory profiling warnings............................993

Command line reference.......................................995
Running a Studio Node from the Command line
interface.. 996
Using Command line Runtime Analysis for C or
C++.. 998
Using Command line Component Testing for C,
Ada and C++...999
Using Command line System Testing for
C.. 999
Command line examples.............................1000
Setting Environment Variables....................1002

iii

Contents | iv

iv

Preparing an Options Header File............... 1004
Preparing a products header file.................1005
Instrumenting and Compiling the Source
Code.. 1005
Compiling the TDP Library...........................1006
Compiling the Test Harness........................1008
Linking the Application................................ 1008
Running the Test Harness or Application... 1009
Troubleshooting Command Line Usage..... 1009
Splitting the trace dump file........................ 1011
Opening Reports from the Command
Line..1012
RTistFdcConv command line...................... 1013
Using commands to generate HTML
reports...1013

Studio Reference... 1016
User interface reference.............................. 1017
Runtime and static analysis reference........1075
Command line interface.............................. 1088

Output window preferences................................1187
Notices... mclxxxviii
Index...1192

Chapter 1. Release Notes
This document contains information about new features and enhancements for HCL OneTest™ Embedded and links

to useful information about the products.

Contents

• Description on page 5

• What's new in HCL OneTest Embedded 8.3.1 on page 5

• Installing the product on page 6

• Known issues on page 7

• Contacting HCL support on page 7

Description
HCL OneTest™ Embedded is a complete test and runtime analysis tool set for systems development created in any

cross-development environment.

HCL OneTest™ Embedded provides tools for automated component testing, code coverage, memory leak detection,

performance profiling, and UML sequence diagram tracing.

What's new in HCL OneTest™ Embedded 8.3.1

You can find information about the features introduced in this release of HCL OneTest™ Embedded.

The following sections list the new features, enhancements or other changes made in this release.

• Monitoring

◦ This feature targets cyclic-executive applications, that is applications that mainly rely on a cycle where

input data are read and output data are set at each cycle. These input/output data are implemented

with global variables.

See Application monitoring on page 245

◦ The complete application is instrumented to be able to access to the global variables in read/write

mode with various means (socket, files…). See Application monitoring on page 245.

◦ A new view in HCL OneTest™ Embedded for Eclipse IDE is available to interactively modify the input

data and display the output data. See Monitoring a cyclic executive application on page 248.

◦ Output data can be displayed as curves on a graphical view.

• Test Case Generation for C (preview):

◦ This is a preview feature of the new test case generation integrated in HCL OneTest™ Embedded for

Eclipse IDE only for now.

◦ When this feature is enabled, the source code is analyzed and the test cases can be generated from:

5

HCL® OneTest™ Embedded

6

▪ The call graph: A coverage objective can be provided to generate test cases.

▪ The coverage viewer: Clicking on a branch displays in a new view the precondition to satisfy

in input of the function under test, and a new test case can be generated to satisfy this

precondition.

Note: No customer support is ensured for this feature for now. If you have any queries or issues about

the Test Case Generation for C (preview) feature, you can request help from OneTest Embedded

forum.

• Import requirements with format ReqIF

In HCL OneTest™ Embedded for Eclipse IDE preferences, the user can now load a requirement file that

supports the format ReqIF. See https://www.omg.org/spec/ReqIF/About-ReqIF/ and Link Tests to

Requirements.

• Support C++17 and C++20 syntaxes

Almost all C+20 syntaxes are supported under Support for C17 and C+20 syntaxes.

• Multiple user-defined MISRA rules

◦ Multiple user-defined rules can be defined in MISRA 2004 and MISRA 2012.

◦ Each rule can have its own severity.

See Configuring code review rules on page 110 and Configuring code review rules on page 322.

• MISRA updater:

◦ When you update from an old version of HCL OneTest™ Embedded and you use MISRA in HCL

OneTest™ Embedded for Eclipse IDE 8.3.1 for the first time, you are requested to update the

configuration rule with the new rules added to the new version. By default, the unselected rules are

disabled, they must be selected to be enabled. See Configuring code review rules on page 110.

◦ In HCL OneTest™ Embedded Studio, the configuration file is automatically updated and the new rules

are disabled. See Running a code review on page 326.

• Support for Eclipse 2020-06 (4.12)

HCL OneTest™ Embedded is still delivered with Eclipse 4.7.2 but it can be also installed on Eclipse 2020-06

(4.12).

• TDP Visual 2019

A new Target Deployment Port dedicated to Microsoft Visual 2019 is delivered.

Installing the product
You can find information about the installation and upgrade instructions for HCL OneTest™ Embedded for Eclipse IDE.

For instructions about installing the software, see Installing on page 20.

https://support.hcltechsw.com/community?id=community_forum&sys_id=3941f1551bb85898c48197d58d4bcb17
https://support.hcltechsw.com/community?id=community_forum&sys_id=3941f1551bb85898c48197d58d4bcb17
https://www.omg.org/spec/ReqIF/About-ReqIF/

Chapter 1. Release Notes

You cannot upgrade HCL OneTest™ Embedded for Eclipse IDE from an earlier version of the product to version 8.3.1.

If you have an earlier version of the product, you must uninstall it before installing HCL OneTest™ Embedded 8.3.1.

Known issues
You can find information about the known issues identified in this release of HCL OneTest™ Embedded for Eclipse IDE

Table 1. Release documents - Fix list and known issues

Product Download document Knowledge Base

HCL OneTest™ Embedded Release document Knowledge articles

The knowledge base is continually updated as problems are discovered and resolved. By searching the knowledge

base, you can quickly find workarounds or solutions to problems.

Contacting HCL support
• For technical assistance, contact HCL Customer Support.

• Before you contact HCL support, you must gather the background information that you might need to describe

your problem. When you describe a problem to the HCL support specialist, be as specific as possible and

include all relevant background information so that the specialist can help you solve the problem efficiently.

To save time, know the answers to these questions:

◦ What software versions were you running when the problem occurred?

◦ Do you have logs, traces, or messages that are related to the problem?

◦ Can you reproduce the problem? If so, what steps do you take to reproduce it?

◦ Is there a workaround for the problem? If so, be prepared to describe the workaround.

7

https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0090846
https://support.hcltechsw.com/csm?id=kb_search
https://support.hcltechsw.com/csm

8

Chapter 2. System Requirements
This document includes information about hardware and software requirements for HCL® OneTest™ Embedded.

Contents

• Hardware on page 9

• Operating systems on page 9

• Prerequisites on page 10

◦ Eclipse Runtime Environment on page 10

◦ Installation on page 10

• Development environments on page 11

• Integration environments on page 12

◦ Compilers and languages on page 12

◦ Development Tools on page 13

◦ Quality_management on page 13

• Disclaimers on page 8

Disclaimers

This report is subject to the Terms of Use and the following disclaimers:

The information contained in this report is provided for informational purposes only. While efforts were made to

verify the completeness and accuracy of the information contained in this publication, it is provided AS IS without

warranty of any kind, express or implied, including but not limited to the implied warranties of merchantability, non-

infringement, and fitness for a particular purpose. In addition, this information is based on HCL's current product

plans and strategy, which are subject to change by HCL without notice. HCL shall not be responsible for any direct,

indirect, incidental, consequential, special or other damages arising out of the use of, or otherwise related to, this

report or any other materials. Nothing contained in this publication is intended to, nor shall have the effect of, creating

any warranties or representations from HCL or its suppliers or licensors, or altering the terms and conditions of the

applicable license agreement governing the use of HCL software.

References in this report to HCL products, programs, or services do not imply that they will be available in all

countries in which HCL operates. Product release dates and/or capabilities referenced in this presentation may

change at any time at HCL's sole discretion based on market opportunities or other factors, and are not intended to

be a commitment to future product or feature availability in any way. Discrepancies found between reports and other

HCL documentation sources may or may not be attributed to different publish and refresh cycles for this tool and

other sources. Nothing contained in this report is intended to, nor shall have the effect of, stating or implying that any

activities undertaken by you will result in any specific sales, revenue growth, savings or other results. You assume

sole responsibility for any results you obtain or decisions you make as a result of this report.

Chapter 2. System Requirements

Notwithstanding the Terms of Use users of this site are permitted to copy and save the reports generated from this

tool for such users own internal business purpose. No other use shall be permitted.

Hardware
You can find information about the hardware requirements for HCL® OneTest™ Embedded 8.3.1.

Hardware Deployment units Requirement

Disk space
Desktop For Windows/Linux: 1.5GB

Memory
Desktop Windows/Unix: 4 GB RAM

Processor
Desktop Windows/Unix: x64

Related information

System Requirements on page 8

Operating systems
You can find details about the supported operating systems.

Operating systems

Operating system Version Hardware

Red Hat Enterprise Linux (RHEL) Client
6.0

x64

Red Hat Enterprise Linux (RHEL) Client 7
x64

Red Hat Enterprise

Linux (RHEL) Client

8.0
x64

SUSE Linux Enterprise Server 12.0
x64

SUSE Linux Enterprise Server 15.0
x64

9

HCL® OneTest™ Embedded

10

Operating system Version Hardware

Ubuntu Desktop 16
x64

Ubuntu Desktop 18 18
x64

Ubuntu Desktop 20.04
x64

Windows 10 x64

Windows Server 2016 x64

Related information

System Requirements on page 8

Prerequisites
You can find the prerequisites that support the operating capabilities for HCL® OneTest™ Embedded 8.3.1.

Contents

Eclipse Runtime Environment on page 10

Installation on page 10

Eclipse Runtime Environment

Prerequisite

Version

Version

Minimum

Eclipse
4.12

4.7.3

Eclipse 2020-06 4.16

Installation

Prerequisite Version
Version

Minimum

IBM Installation Manager 1.8.6

Chapter 2. System Requirements

Related information

System Requirements on page 8

Development environments
HCL® OneTest™ Embedded supports multiple development environments thanks to its Target Deployment Port (TDP)

technology.

The following aspects of the development environments are considered:

• Compiler & linker used to compile the generated tests and link them with the code under test, or to compile

and link the instrumented code.

• Target used to execute the tests. These targets can be a laptop itself (case of TDP with native compilers), a

simulator, an emulator or an electronic board.

The multiple Target Deployment Ports that are provided in HCL® OneTest™ Embedded can be used as they are or

modified to adapt them to a new environment.

Non-exhaustive list of supported compilers/linkers:

• C/C++ languages:

◦ gcc (tested until version 11.2)

◦ Microsoft Visual Studio (tested with versions 2010 to 2019)

◦ Codewarrior

◦ gcc ARM

◦ Mirotec

◦ Keil

◦ DiabData

◦ Texas Instruments

◦ Microsoft eMbedded Visual

◦ HighTec TriCore

◦ GreenHills IAR

• Ada language:

◦ gnat

◦ Rational Apex

• Targets:

◦ winIDEA

◦ Hiwave simulator

◦ OpenODC

◦ jTag

11

HCL® OneTest™ Embedded

12

◦ gdb

◦ MPLAB

◦ Code Composer

◦ QNX

◦ Windows CE simulator

◦ Single Step

◦ IAR C-SPY

◦ Lauterbach Trace32

◦ Tornado (VxWorks)

Note: Some specific versions of compilers can include additional packages that might require a TDP

customization.

HCL® OneTest™ Embedded integrates the EDG parser for C and C++ version 6.1. The EDG parser supports

almost all the C++17 and C++20 features.

List of supported features until EDG 6.1:

• For C++17 features, refer to https://docs.google.com/spreadsheets/d/1cb1bA6OV-

hkSGMykaGweU1HaQbscXGTy-dpLtCMd7W8/pubhtml.

• For C++20 features, refer to: https://docs.google.com/spreadsheets/d/1H-aqjzVI2a-

XQKGtw0xaS0tyjD0FcoQP8ttJI9JZQTc/edit﷓gid=0.

Integration environments
The Prerequisites section specifies the capabilities that HCL® OneTest™ Embedded 8.3.1 requires, and the

prerequisite products that can be used to fulfill those capabilities. You can find details about the additional software

that are supported.

Contents

Compilers and Languages on page 12

Development Tools on page 13

Quality Management on page 13

Compilers and languages

Supported software Version

Microsoft Visual C++ 2005 and future fix packs

2008 and future fix packs

https://docs.google.com/spreadsheets/d/1cb1bA6OV-hkSGMykaGweU1HaQbscXGTy-dpLtCMd7W8/pubhtml
https://docs.google.com/spreadsheets/d/1cb1bA6OV-hkSGMykaGweU1HaQbscXGTy-dpLtCMd7W8/pubhtml
https://docs.google.com/spreadsheets/d/1H-aqjzVI2a-XQKGtw0xaS0tyjD0FcoQP8ttJI9JZQTc/edit#gid=0
https://docs.google.com/spreadsheets/d/1H-aqjzVI2a-XQKGtw0xaS0tyjD0FcoQP8ttJI9JZQTc/edit#gid=0

Chapter 2. System Requirements

Supported software Version

Microsoft Visual C++ .NET 2003 and future fix packs

Development Tools

Supported software Version
Supported software

minimum

Microsoft Visual Studio 2005 and future fix packs

2005 and future fix packs

201x and future versions, releases,

and fix packs

Rational Software architect 8.x

Rational Team Concert 5.0.x 4.x

Quality Management

Table 2.

Supported software Version
Supported software

minimum

Rational Quality Manager 6.0.6.0 6.0.6.0

Related information

System Requirements on page 8

13

14

Chapter 3. Getting Started Guide
This guide provides an overview of HCL® OneTest™ Embedded. You can find the information to get you started with

HCL OneTest™ Embedded. This guide is intended for new users.

Before you can perform the various tasks described in the Getting Started Guide and the other guides, you must install

HCL OneTest™ Embedded. See Installing on page 20.

Overview
HCL® OneTest™ Embedded is a complete test and runtime analysis tool set for systems development created in any

cross-development environment. HCL OneTest™ Embedded provides tools for automated component testing, code

coverage, memory leak detection, performance profiling, and UML sequence diagram tracing.

Systems development includes (but is not limited to) embedded, real-time and/or technical systems development.

And this type of software is often performed in conjunction with the larger scope of a systems engineering activity.

HCL OneTest™ Embedded is a cross-platform solution designed specifically for developers creating software

applications for products of embedded (for example, mobile phone, medical device, handled global positioning

system, and so on), real-time (for example, aerospace, automotive or telecommunications control system), and

other technical systems applications for example, simulated research computation and advanced grid computing

systems).

Implementing a practical, effective and professional testing process within your organization has become essential

because of the increased risk that accompanies software complexity. The time and cost devoted to testing must

be measured and managed accurately. Very often, lack of testing causes schedule and budget overruns with no

guarantee of quality. Critical trends require software organizations to be structured and to automate their test

processes. These trends include:

• Ever increasing quality and time to market constraints.

• Growing complexity, size and number of software-based equipment.

• Lack of skilled resources despite need for productivity gains

• Increasing interconnections of critical and complex embedded systems.

• Proliferation of quality and certification standards throughout critical software markets, including the avionics,

medical, and telecommunications industries.

HCL OneTest™ Embedded provides a full range of answers to these challenges by enabling full automation of system

and software test processes.

HCL OneTest™ Embedded is a complete test and runtime analysis tool set for embedded, real-time and networked

systems created in any cross-development environment. Automated testing, code coverage, memory leak detection,

performance profiling, UML tracing, code review - with HCL OneTest™ Embeddedyou fix your code before it breaks.

HCL OneTest™ Embedded covers runtime analysis and software testing, all in a fully integrated testing environment.

Chapter 3. Getting Started Guide

The latest release of HCL OneTest™ Embedded integrates with Rational Quality Manager to provide a more

collaborative approach to product software development and testing. HCL OneTest™ Embedded is the most complete

automated developer testing solution available on a wide range of host and target platforms. In addition, new

integrations with other popular development tool environments allow developers to work in the environment of their

choice. This enables the powerful testing capabilities of HCL OneTest™ Embedded to be used early in the product

software development lifecycle because it is part of the developers daily work environment.

Target deployment port technology

Target deployment port (TDP) technology is a versatile, low-overhead mechanism that enables target-independent

testing and runtime analysis with limitless target support. As a key component of HCL OneTest™ Embedded, TDP

technology allows your tests be run directly on your target embedded hardware.

Each TDP is customized to accommodate your compiler, linker, debugger, and target architecture. Tests are

independent of the TDP, so that the tests don't change when your environment changes. For example, you can run the

same tests and code on the embedded hardware or on your local computer by switching the TDP and rebuilding the

project.

Target deployment ports are designed to strongly reduce the data communication and runtime overhead that

can affect your embedded systems when tested, while being versatile enough to adapt to any cross-development

environment (RTOS, compiler, debugger, target communication) within a very short time.

DO-178B/C Qualification Kit

All HCL OneTest™ Embedded customers have access to the HCL OneTest™ Embedded DO-178B/C Qualification

Kit, which can be submitted with your other project artifacts to meet DO-178B/C compliance requirements. The

Qualification Kit covers unit testing for C and Ada languages, coverage for C and Ada languages and code review for

C language (MISRA 2004).

For more information about DO-178bB/C support, contact the Products & Platforms Customer Support via this link:

https://www.hcltech.com/products-and-platforms/support.

Related information

Target deployment port overview on page 17

Source code instrumentation overview on page 16

Integrating HCL OneTest Embedded with other development tools on page 49

Analyzing static source code on page 251

Runtime analysis overview on page 336

15

https://www.hcltech.com/products-and-platforms/support

HCL® OneTest™ Embedded

16

Source code instrumentation overview
Source code insertion (SCI) technology uses instrumentation techniques that automatically add specific code to the

source files under analysis. After compilation, execution of the code produces dump data for runtime analysis or

component testing.

HCL® OneTest™ Embedded makes extensive use of source code insertion technology to transparently produce test

and analysis reports on both native and embedded target platforms.

Instrumentation overhead

Instrumentation overhead is the increase in the binary size or the execution time of the instrumented application,

which is due to source code insertion (SCI) generated by the Runtime Analysis features. Source code insertion

technology is designed to reduce both types of overhead to a bare minimum. However, this overhead may still impact

your application. The following table provides a quick estimate of the overhead generated by the product.

• Code Coverage Overhead: Overhead generated by the Code Coverage feature depends largely on the coverage

types selected for analysis.

A 48-byte structure is declared at the beginning of the instrumented file. Depending on the information mode

selected, each covered branch is referenced by an array that uses

◦ 1 byte in Default mode

◦ 1 bit in Compact mode

◦ 4 bytes in Hit Count mode

The actual size of this array may be rounded up by the compiler, especially in Compact mode because of the

8-bit minimum integral type found in C . See Information Modes for more information. Other Specifics:

◦ Loops, switch and case statements: a 1-byte local variable is declared for each instance.

◦ Modified/multiple conditions: one n-byte local array is declared at the beginning of the enclosing

routine, where n is the number of conditions belonging to a decision in the routine I/O is either

performed at the end of the execution or when the end-user decides (please refer to Coverage

Snapshots in the documentation).

In summary, hit count mode and modified/multiple conditions produce the greatest data and execution time

overhead. In most cases you can select each coverage type independently and use pass mode by default in

order to reduce this overhead. The source code can also be partially instrumented.

• Memory and Performance Profiling and Runtime Tracing: Any source file containing an instrumented routine

receives a declaration for a 16 byte structure. Within each instrumented routine, a n byte structure is locally

declared, where n is 16 bytes +4 bytes for Runtime Tracing, +4 bytes for Memory Profiling, and +3*t bytes for

Performance Profiling, where t is the size of the type returned by the clock-retrieving function.

For example, if t is 4 bytes, each instrumented routine is increased of 20 bytes for Memory Profiling only, 20

bytes for Runtime Tracing only, 28 bytes for Performance Profiling only, or 36 bytes for all Runtime Analysis

features together

Chapter 3. Getting Started Guide

• Memory Profiling Overhead: Any call to an allocation function is replaced by a call to the Memory Profiling

Library. These calls aim to track allocated blocks of memory. For each memory block, 16+12*n bytes are

allocated to contain a reference to it, as well as to contain link references and the call stack observed at

allocation time. n depends on the Call Stack Size Setting, which is 6 by default. If ABWL errors are to be

detected, the size of each tracked, allocated block is increased by 2*s bytes where s is the Red Zone Size

Setting (16 by default). If FFM or FMWL errors are to be detected, a Free Queue is created whose size depends

on the Free Queue Length and Free Queue Size Settings. Queue Length is the maximum number of tracked

memory blocks in the queue. Queue Size is the maximum number of bytes, which is the sum of the sizes of all

tracked blocks in the queue.

• Performance Profiling Overhead: For any source file containing at least one observed routine, a 24 byte

structure is declared at the beginning of the file. The size of the global data storing the profiling results of an

instrumented routine is 4+3*t bytes where t is the size of the type returned by the clock retrieving function.

• Runtime Tracing Overhead: Implicit default constructors, implicit copy constructors and implicit destructors

are explicitly declared in any instrumented classes that permits it. Where C++ rules forbid such explicit

declarations, a 4 byte class is declared as an attribute at the end of the class.

Instrumentation technology is designed to reduce both performance and memory overhead to a minimum.

Nevertheless, for certain cross-platform targets, it may need to be reduced still further. There are three ways to do

this.

• Limiting code coverage types: When using the Code Coverage feature, procedure input and simple and implicit

block code coverage are enabled by default. You can reduce instrumentation overhead by limiting the number

of coverage types.

Note: The Code Coverage report can only display coverage types among those selected for

instrumentation.

• Limiting instrumented calls: When calls are instrumented, any instruction that calls a C user function or library

function constitutes a branch and thus generates overhead. You can disable call instrumentation on a set of C

functions using the Selective Code Coverage Instrumentation Settings. For example, you can usually exclude

calls to standard C library functions such as printf or fopen.

• Optimizing the information mode: When using Code Coverage, you can specify the information mode, which

defines how much coverage data is produced and therefore stored in memory.

Target deployment port overview
Target deployment port (TDP) technology is a versatile, low-overhead technology enabling target-independent tests

and run-time analysis despite limitless target support.

As a key component of HCL® OneTest™ Embedded, TDP technology allows your test cases as well as test

execution analysis to be applied directly to your target embedded system. It is constructed to accommodate your

17

HCL® OneTest™ Embedded

18

compiler, linker, debugger, and target architecture. Tests are independent of the TDP, so tests don't change when the

environment does. Test script deployment, execution and reporting remain easy to use.

TDPs are designed to strongly reduce the data communication and runtime overhead that can affect your embedded

systems when tested, while being versatile enough to adapt to any cross-development environment (RTOS, compiler,

debugger, target communication) within a very short time.

TDP technology includes the following capabilities and benefits:

• Compiler dialect-aware and linker-aware, for transparent test building.

• Easy download of the test harness environment onto the target via the user's IDE, debugger, simulator or

emulator.

• Painless test and run-time analysis results download from the target environment using JTAG probes,

emulators or any available communication link, such as serial, Ethernet or file system.

• Powerful test execution monitoring to distribute, start, synchronize and stop test harness components, as well

as to implement communication and exception handling.

• Versatile communication protocol adaptation to send and receive test messages.

• XML-based Target Deployment Port Editor enabling simple, in-house TDP customization

Obtaining target deployment ports

TDP technology was designed to adapt to any embedded or native target platform. This means that you need a

particular TDP to deploy HCL® OneTest™ Embedded to your target. A wide array of TDPs has already been developed

to suit most target platforms. The following platforms are already supported:

• Native development platforms: Windows™ and Linux™, the development platforms that leading companies in

the devices/embedded systems and infrastructure industries are using.

• Cross-development environments: From 8- to 64-bit cross-development environments from WindRiver,

GreenHills, ARM, Sun, Montavista, TI, NEC, Hitachi, Nohau, and more.

If there is no existing TDP for your particular target platform, HCL Customer Support can provide the service of

creating a tailored TDP for you.

To obtain a copy of an existing TDP or to inquire about custom development, follow one of the methods:

• Contact your HCL sales representative.

• If you do not know your sales representative, contact HCL Customer Support or create an HCL Support case.

Creating new target deployment ports

You can choose to create, unassisted, a TDP tailored for your embedded environment. There are several requirements

to consider before choosing this option:

https://support.hcltechsw.com/csm
https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0010164

Chapter 3. Getting Started Guide

• Perl language knowledge: The HCL OneTest™ Embedded compiler interface is written in perl

• Programming language and compiler knowledge: The HCL OneTest™ Embedded runtime library uses the

same language as the code under test (C, C++, Ada)

• Knowledge of HCL OneTest™ Embedded: Improve your experience with the product before considering your

first TDP. You will need to be familiar with the runtime analysis and component testing tools and how the TDP

is used with them.

Before creating a TDP for a new target platform, determine whether the target platform is capable of running

embedded tests. To create a TDP, see the documentation that is embedded in the Target Deployment Port Editor,

which provides an overview and detailed information on setting up a TDP, and using the Target Deployment Port

Editor.

19

20

Chapter 4. Administrator Guide
This guide describes how to install the HCL® OneTest™ Embedded software.

After you install the software, you can perform administration tasks such as license configuration, user management,

security, memory and disk usage management, back up and restore user data, and other tasks that a server

administrator can perform. This guide is intended for administrators.

Installing
This section provides the instructions for installing the product as well as installation verification. To install your

product, follow the procedures and information in these topics. Installing the product involves verifying requirements,

planning, managing licenses.

Installation requirements
This section details hardware, software, and user privilege requirements that must be met in order to successfully

install and run HCL OneTest™ Embedded.

Hardware and Software requirements
Before you install the product, verify that your system meets the hardware and software requirements.

For information about hardware and software compatibility, see System Requirements on page 8.

User privileges requirements
You must have a user ID that meets the following requirements before you can install HCL OneTest™ Embedded.

• Your user ID must not contain double-byte characters.

• You must install Installation Manager as an administrator on Windows if the version of your operating system

requires user privileges to install or update product offerings, or install license keys for your products.

• If you install Installation Manager as an administrator on Windows, all products installed from Installation

Manager must be run with the administrator privilege. In this case, you must run HCL OneTest™ Embedded as

an administrator.

• If you install Installation Manager as a non-administrator on Windows, HCL OneTest™ Embedded can be

installed with the same User account as the one used to install Installation Manager.

• You can enable users who are not the administrator so that they can work with HCL OneTest™ Embedded on

some versions of Windows. If you are in such a case:

◦ Do not install HCL OneTest™ Embedded into a package group (installation location) in the Program

Files directory (C:\Program Files\) and do not choose a shared resources directory in the Program

Files directory.

◦ If you are extending an existing Eclipse installation, then do not install Eclipse in the Program Files

directory (C:\Program Files\).

• On Linux, you must be able to log in as root (with sudo) to install and run HCL OneTest™ Embedded.

Chapter 4. Administrator Guide

• On Ubuntu, you must ensure that the environment variables that are set while installing the products are

retained when you open HCL OneTest™ Embedded and the application-under-test.

• HCL License Server must be installed on Windows™ at the same time or prior to HCL OneTest™ Embedded so

that the license information entered during HCL OneTest™ Embedded installation is valid. If you need to install

HCL License Server on Windows™ with a User account, right-click the launchpad.exe file, and click Run as

Administrator or install the HCL License Server separately with an Administrator account.

Installing software
Installing the product involves verifying requirements, planning, performing pre-installation tasks and managing

licenses.

Installation roadmap
The installation roadmap lists the high-level steps for installing your product.

Roadmap for installing HCL OneTest™ Embedded

Perform these tasks to install HCL OneTest™ Embedded:

1. Review the release notes on page 5.

2. Plan the installation.

a. Review hardware and software requirements on page 8.

b. Review user privilege requirements on page 20.

c. Plan for installation locations on page 30.

d. Plan for product coexistence on page 30.

e. Install with your instance of Eclipse on page 35.

3. Install the product with Installation Manager on page 31 or Installing stand-alone installer on page 25

4. Set up and manage product licenses on page 37.

Pre-installation Tasks
Before you install the product, you need to prepare or configure your computer.

Installing required libraries on Ubuntu
Before you install HCL OneTest™ Embedded on Ubuntu, you must install some libraries.

About this task

You must perform these procedures before installing HCL OneTest™ Embedded Studio or HCL OneTest™ Embedded

for Eclipse IDE.

Follow these procedures to download and install libXp.so.6, libssl.so.6 and libcrypto.so.6 libraries on

Ubuntu:

21

HCL® OneTest™ Embedded

22

1. Run the following commands to download the libraries:

wget -c
 http://archive.ubuntu.com/ubuntu/pool/main/g/glibc/multiarch-support_2.27-3ubuntu1.4_amd64.deb
wget -c http://ftp.debian.org/debian/pool/main/libx/libxp/libxp6_1.0.2-2_amd64.deb

2. Run the following commands to install the libXp.so.6 library:

sudo apt-get install ./multiarch-support_2.27-3ubuntu1.4_amd64.deb ./libxp6_1.0.2-2_amd64.deb

3. Run the following commands to install libssl.so.6 and libcrypto.so.6:

sudo apt-get install libssl-dev
sudo ln -s /lib/x86_64-linux-gnu/libcrypto.so.1.0.0 /lib/x86_64-linux-gnu/libcrypto.so.6
sudo ln -s /lib/x86_64-linux-gnu/libssl.so.1.0.0 /lib/x86_64-linux-gnu/libssl.so.6

Pre-installation tasks for Studio
Before you install your product, review the following information and ensure that all the pre-installation steps are

completed as required.

About this task

To help ensure a smooth installation process, complete these tasks before starting the installation tasks.

1. For HCL OneTest™ Embedded Studio support, you must first install Exuberant Ctags. See Installing Exuberant

Ctags on page 22 for more information.

2. Download and install Cygwin. See Installing Cygwin on page 23.

3. Ensure that your existing compilers and development environments are installed and run properly.

In particular, if you are using Microsoft™ Visual Studio, install and run it at least once before installing HCL

OneTest™ Embedded. See Support for Microsoft Visual Studio on page 23 for more information.

4. For UNIX™: If you want the product to be used by users other than root, then set the umask variable to 0022

before you install the product. To set this variable, log in as root user, start a terminal session, and type umask

0022.

5. Install required libraries on Ubuntu. See Installing required libraries on Ubuntu on page 21.

Installing Exuberant Ctags
Before using HCL OneTest™ Embedded Studio on Windows™, you must ensure that Exuberant Ctags is installed on

your computer and that the directory containing Ctags binary files is set in the PATH environment variable.

To install Exuberant Ctags:

1. Go to the following website and download the latest package labeled Source and binary for Windows™: http://

ctags.sourceforge.net.

If the latest binary package is not available for download, go to the Download section and download the binary

package for the previous version of Ctags.

2. Extract the file to C:\installation_directory\HCL\HCLOneTest\Embedded\ctags.

3. From the Start menu, select Parameters > Control Panel > System.

http://ctags.sourceforge.net
http://ctags.sourceforge.net

Chapter 4. Administrator Guide

4. Select the Advanced tab and click Environment variables.

5. Edit the PATH environment variable to add the C:\installation_directory\HCL\HCLOneTest

\Embedded\ctags directory and click OK.

Installing Cygwin
Before using HCL OneTest™ Embedded Studio on Windows™, you must ensure that Cygwin is installed on your

computer and that the directory containing Cygwin binary files is set in the PATH environment variable.

To install Cygwin:

1. Go to the following website, on the Install Cygwin page and download the latest package for 32 or 64 bits

versions of Windows™: http://www.cygwin.com.

2. Run the setup program. Once the root install directory and local package are selected, select a download site.

3. Check MAKE box.

4. Then, select a packages to install. You must select gcc, gcc-core, gcc: GNU Compiler Collection (C) and (C++)

and GNU version of the make utility.

If you want to use the Cygwin gcc compiler, make sure that the Cygwin installation options include the

development tools category. If not, you can install a different gcc 3.2 compiler.

Update the PATH environment variable:

5. From the Start menu, select Parameters > Control Panel > System.

6. Select the Advanced tab and click Environment variables.

7. Edit the PATH environment variable to add the Cygwin installation directory, for example c:\cygwin\bin;

and click OK.

Support for Microsoft™ Visual Studio
If you plan to use HCL OneTest™ Embedded on Windows™ with Microsoft™ Visual Studio you must install Visual

Studio and execute it at least once before installing HCL OneTest™ Embedded in order to correctly initialize the

Windows™ registry database.

About this task

If you omitted to run Visual Studio before installing HCL OneTest™ Embedded, the installation produces an error

message. In this case, proceed with the installation and then execute the following steps.

To enable support of Microsoft™ Visual Studio after installation:

1. Run and close Visual Studio at least once.

2. Open a Windows™ Explorer and browse to the following directory:

C:\installation_directory\HCL\HCLOneTest\Embedded\targets\xml\

3. Double-click the cvisual6.xdp (for Visual 6.0) or cvisual7.xdp (for Visual .NET), or cvisual8.xdp (for

Visual 2005). This opens the Target Deployment Port (TDP) in the Target Deployment Port Editor.

4. Save the TDP to regenerate the TDP directory.

23

http://www.cygwin.com

HCL® OneTest™ Embedded

24

Increasing the number of file handles on Linux™ workstations
For best product performance, increase the number of file handles above the default of 1024 handles.

About this task

Important: Before you work with your product, increase the number of file handles. Most products use more

than the default limit of 1024 file handles per process. A system administrator might need to make this

change.

Exercise caution when using the following steps to increase your file descriptors on Linux™. If the instructions are not

followed correctly, the computer might not start correctly.

To increase your file descriptors:

1. Log in as root. If you do not have root access, you will need to obtain it before continuing.

2. Change to the /etc directory

Attention: If you decide to increase the number of file handles in the next step, do not leave an empty

initscript file on your computer. If you do so, your computer will not start up the next time that you turn

it on or restart.

3. Use the vi editor to edit the initscript file in the etc directory. If this file does not exist, type vi initscript to

create it.

4. On the first line, type ulimit -n 4096. The point is that 4096 is significantly larger than 1024, the default on

most Linux™ computers.

Important: Do not set the number of handles too high, because doing so can negatively impact

system-wide performance.

5. On the second line, type eval exec "$4".

6. Save and close the file after making sure you have completed steps 4 and 5.

Note: Ensure that you follow the steps correctly. If this procedure is not completed correctly, your

computer will not start.

7. Optional: Restrict the number of handles available to users or groups by modifying the limits.conf file in the

/etc/security directory. Both SUSE Linux™ Enterprise Server (SLES) Version 9 and Red Hat Enterprise

Linux™ Version 4.0 have this file by default. If you do not have this file, consider using a smaller number in step

4 in the previous procedure (for example, 2048). Do this so that most users have a reasonably low limit on

the number of open files that are allowed per process. If you use a relatively low number in step 4, it is less

important to do this. However, if you set a high number in step 4 earlier and you do not establish limits in the

limits.conf file, computer performance can be significantly reduced.

Chapter 4. Administrator Guide

The following sample limits.conf file restricts all users, and then sets different limits for others afterwards.

This sample assumes that you set handles to 8192 in step 4 earlier.

* soft nofile 1024

* hard nofile 2048

root soft nofile 4096

root hard nofile 8192

user1 soft nofile 2048

user1 hard nofile 2048

Note that the * in the preceding example sets the limits for all users first. These limits are lower than the limits

that follow. The root user has a higher number of allowable handles open, while number available to user1 is

between the two. Make sure that you read and understand the documentation contained in the limits.conf file

before making changes.

Installing stand-alone installer

About this task

The following pages explain how to install HCL OneTest Embedded by using InstallAnywhere installer on Windows

Installing the product on Windows
As an alternative to Installation Manager, you can install HCL OneTest™ Embedded on Windows with stand-alone

installer.

Before you begin

You must have performed these tasks:

• Uninstalled any older version of this product.

• Installed JRE from v8.0 to 11.0.

About this task

1. Download the installation file from the HCL License & Delivery portal HCL_OT_EMB_83_Install_IA_Win_64.zip

2. Righ-click the .exe file and select Run as Administrator.

Result

The installer is launched.

3. On the Introduction window, read through the details, and click Next.

4. Read the license agreement carefully, select the I accept check box and then click Next.

5. Browse the location or directory where you want to install the product and click Next.

25

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL® OneTest™ Embedded

26

Note: You must select any other directory if the default directory is not empty.

6. Read through the installation details and click Install.

7. After the installation is complete, click Done.

Then, You must enter the license key when you launch the product.

Uninstalling the product on Windows
When you want to remove the product software on a Windows computer, use the uninstall option.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

About this task

1. Open Windows explorer and go to <installation folder>/HCL/Uninstall.

2. Launch Uninstall-HCL-OneTest-Embedded.exe.

3. In the dialog box, follow the on-screen instructions.

Results

The product software is removed from your system.

Installing the product on Linux
As an alternative to Installation Manager, you can install HCL OneTest™ Embedded on Linux with InstallAnywhere

installer.

About this task

1. Download the product installer from the HCL License & Delivery portal :

HCL OneTest™ Embedded 8.3.1 (InstallAnywhere based) Install for Linux 64 bits:

HCL_OT_EMB_831_Install_IA_LNX_64.zip

2. Log in as a root user and enter the unzip filename command to extract the .zip file.

3. Execute the .bin file.

4. On the Introduction screen, read through the details, and click Next.

5. Read the license agreement carefully, select the 'I accept check' box and then click Next.

6. Browse the location or directory where you want to install the product and click Next.

The default installation directory is /opt/HCL.

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 4. Administrator Guide

7. Read through the installation details and click Install.

8. When the installation is complete, click Done.

Results

You must enter the license key when you launch the product.

Uninstalling the product on Linux
When you want to remove the product software on Linux machine, use the uninstall option.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

About this task

1. Log in as root user.

Note: If you are not a root user, uninstall the product by entering the following commands in the

terminal:

◦ <installation directory>/Uninstall

◦ sudo ./Uninstall-HCL-OneTest-Embedded

2. Click Applications > > Programming > Uninstall.

3. On the Uninstall screen, click Uninstall and follow the on-screen instructions.

Results

The product software is removed from your system.

Installing the product by using IBM® Installation Manager
In this section, you will learn how to install the product by using IBM® Installation Manager.

Planning the installation
After verifying hardware, software, and user privilege requirements, plan the features and software that you want to

install.

Planning features

You can customize your product by selecting which features to install.

27

HCL® OneTest™ Embedded

28

When you install the product package by using IBM® Installation Manager, the installation wizard displays the

features in the available product package. From the features list, you can select which to install. A default set of

features is selected for you (including any required features). Installation Manager automatically enforces any

dependencies between features and prevents you from clearing any required features.

Tip: After you finish installing the package, you can still add or remove features from your software product by

running the Modify Packages wizard in Installation Manager.

Planning compilers

During the installation process, the product scans your system for existing compilers. It is important that all

compilers and development environments that you plan to use with HCL OneTest™ Embedded are installed

beforehand.

Note: If you plan to use HCL OneTest™ Embedded on Windows™ with Microsoft™ Visual Studio, you must

install Visual Studio and run it at least once before installing HCL OneTest™ Embedded to correctly initialize

the Windows™ registry database. See Support for Microsoft Visual Studio on page 23

Installation conventions and terminology
Understanding these terms and conventions can help you take full advantage of the installation information and your

product.

The following conventions are used in this installation information:

The default installation directory is written as C:\installation_directory\HCL\HCLOneTest\Embedded\ in

Windows and installation_directory/HCL/HCLOneTest/Embedded in UNIX.

These terms are used in the installation pages:

Installation directory

The location of product artifacts after the package is installed.

Package

An installable unit of a software product. Software product packages are separately installable units

that can operate independently from other packages of that software product.

Package group

A package group is a directory in which different product packages share resources with other

packages in the same group. When you install a package using Installation Manager, you can create a

new package group or install the packages into an existing package group. (Some packages cannot

share a package group, in which case the option to use an existing package group is unavailable.)

Chapter 4. Administrator Guide

Repository

A storage area where packages are available for download. A repository can be disc media, a folder on a

local hard disk, or a server or Web location.

Shared directory

In some instances, product packages can share resources. These resources are located in a directory

that the packages share.

UNIX™

Unless specified otherwise, in this document, the term UNIX™ refers to all UNIX-based operating

systems.

Installation Manager overview
IBM® Installation Manager is a program for installing, updating, and modifying packages. It helps you manage the

applications, or packages, that it installs on your computer. Installation Manager does more than install packages: It

helps you keep track of what you have installed, determine what is available for you to install, and organize installation

directories.

Installation Manager provides tools that help you keep packages up to date, modify packages, manage the licenses

for your packages, and uninstall packages.

Installation Manager includes six wizards that make it easy to maintain packages:

• The Install wizard walks you through the installation process. You can install a package by simply accepting

the defaults or you can modify the default settings to create a custom installation. Before you install, you get

a complete summary of your selections throughout the wizard. Using the wizard you can install one or more

packages at one time.

• The Update wizard searches for available updates to packages that you have installed. An update might be a

released fix, a new feature, or a new version of the product. Details of the contents of the update are provided

in the wizard. You can choose whether to apply an update.

• The Modify wizard helps you modify certain elements of a package that you have already installed. During

the first installation of the package, you select the features that you want to install. Later, if you require other

features, you can use the modify packages wizard to add them to your package. You can also remove features

and add or remove languages.

• The Roll Back wizard helps you to revert to a previous version of a package.

• The Uninstall wizard removes a package from your computer. You can uninstall more than one package at a

time.

Installation considerations
Part of planning entails making decisions about installation locations, working with other applications, extending

Eclipse, upgrading, migrating, and configuring help content.

29

HCL® OneTest™ Embedded

30

Installation locations
IBM® Installation Manager retrieves product packages from specified repositories and installs the products into

selected locations, referred to as package groups.

Package groups

During installation, you specify a package group into which to install a product.

• A package group represents a directory in which products share resources.

• When you install a product using the Installation Manager, you either create a package group or install the

product into an existing package group. A new package group is assigned a name automatically; however, you

choose the installation directory for the package group.

• After you create a package group you cannot change the installation directory. The installation directory

contains files and resources shared by the products installed into that package group.

• Product resources designed to be shared with other packages are installed in the shared resources directory.

Not all products can share a package group, in which case the option to use an existing package group will be

disabled.

• When you install multiple products at the same time, all products are installed into the same package group.

Note: When installing products from Windows™ operating system, if you create the package groups in the

Program Files directory (C:\Program Files\), only users with Administrator privileges will be able to use

the product. If you do not want to require running your product as Administrator, complete one of these steps:

• For your product and any other programs that sharing the same installation location, select an

installation location that is not in the path C:\Program Files.

• For your product and all Software Delivery Platform product packages (regardless of their installation

location), select a shared resources directory and installation locations that are not in the path C:

\Program Files.

Shared resources directory

The shared resources directory is where product resources are installed so that they can be used by multiple product

package groups. You define the shared resources directory the first time that you install the first product package.

For best results, use your largest disk drive for shared resources directories. You cannot change the directory location

unless you uninstall all product packages.

Coexistence considerations
Some products are designed to coexist and share functions when they are installed in the same package group. A

package group is a location where you can install one or more software product packages.

When you install each product package, you select whether you want to install the product package into an existing

package group or whether you want to create a new package group. Installation Manager blocks products that are not

Chapter 4. Administrator Guide

designed to share or do not meet version compatibility and other requirements. If you want to install more than one

product at a time, the products must be able to share a package group.

Any number of eligible products can be installed to a package group. When a product is installed, the product

functions are shared with all of the other products in the package group. If you install a development product and a

testing product into one package group, when you start either of the products, you have both the development and

testing functions available to you in your user interface. If you add a product with modeling tools, all of the products in

the package group will have the development, testing, and modeling functionality available.

Installing multiple instances of the product
You can install multiple instances of HCL OneTest™ Embedded on a single system. However, you must be aware of

the following limitations:

• On Windows™, Start menu shortcuts will point to the last installed instance of the product. You can manually

create your own shortcuts to previously installed versions.

• The product requires that the environment variable TESTRTDIR is set to the product installation directory. This

will be set to the directory of the last installed instance of the product. Before running a different instance of

the product, you must change it manually to point to the directory of the version that you want to use.

Installing the product with Installation Manager
Use these instructions to install HCL OneTest™ Embedded.

About this task

To learn how to install the product from a command prompt in silent mode, see the Installing Silently section of the

Installation Manager Knowledge Center.

To install the new version of the product, you must first uninstall the previous version of the product and then install

the new one.

1. Review the Installation considerations on page 29, if you have not done so already.

2. Click a product package to highlight it.

Result

The description of the package is displayed in the Details pane at the bottom of the screen.

3. To search for updates to the product packages, click Check for Other Versions, Fixes, and Extensions. If

updates for a product package are found, then they are displayed in the Installation Packages list on the

Install Packages page below their corresponding products. Only recommended updates are displayed by

default.

Choose from:

◦ To view all updates that are found for the available packages, click Show all versions.

◦ To display a package description in the Details pane, click the package name. If additional information

about the package is available, such as a readme file or release notes, a More info link is included at

the end of the description text. Click the link to display the additional information in a browser. To fully

understand the package that you are installing, review all information.

31

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp
http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp

HCL® OneTest™ Embedded

32

4. Select the product package and any updates to the package to install. Updates that have dependencies are

automatically selected and cleared together. Click Next to continue.

Note: If you install multiple packages at the same time, then all the packages are installed into the

same package group.

5. On the Licenses page, read the license agreement for the selected package. If you selected more than one

package to install, there might be a license agreement for each package. On the left side of the License page,

click each package version to display its license agreement. The package versions that you selected to install

(for example, the base package and an update) are listed under the package name.

a. If you agree to the terms of all of the license agreements, click I accept the terms of the license

agreements.

b. Click Next to continue.

6. On the Location page, type the path for the shared resources directory in the Shared Resources Directory field,

or accept the default path. The shared resources directory contains resources that can be shared by one or

more package groups. Click Next to continue.

The default path to use follows:

◦ C:\Program Files\HCL\HCLOneTest\HCLIMShared

◦ /opt/HCL/HCLOneTest/HCLIMShared

Important: You can specify the shared resources directory only the first time that you install a

package. Use your largest disk for this to help ensure adequate space for the shared resources of

future packages. You cannot change the directory location unless you uninstall all packages.

7. On the Location page, create a package group to install the product package into or if this is an update, use

the existing package group. A package group represents a directory in which packages share resources with

other packages in the same group. To create a package group:

a. Click Create a new package group.

b. Type the path for the installation directory for the package group.

The name for the package group is created automatically.

The default path follows:

▪ C:\Program Files\HCL\HCLOneTest

▪ /opt/HCL/HCLOneTest

c. Click Next to continue.

8. On the Summary page, review your choices before installing the product package. To change the choices that

you made on previous pages, click Back, and make your changes. When you are satisfied with your installation

choices, click Install to install the package.

Result

Chapter 4. Administrator Guide

A progress indicator shows the percentage of the installation that is completed.

9. When the installation process is complete, a message confirms the completion of the process.

a. Click View log file to open the installation log file for the current session in a new window. You must

close the Installation Log window to continue.

b. In the Install Package wizard, select whether to start the product when you exit.

c. Click Finish to start installing the selected package.

10. License the product.

See the Setting up licensing on page 37 topic.

Updating software
You can search for product updates and install the updates for your product.

Before you begin

By default, Internet access is required unless your repository preferences points to a local update site.

Each installed package has the location embedded for its default update repository. For Installation Manager to

search the update repository locations for the installed packages, select the preference Search service repositories

during installation and updates on the Repositories preference page. This preference is selected by default. See the

Installation Manager help for more information.

See Migrating from previous versions on page 45 for information about updating your target deployment ports and

projects.

Important:

• Close all programs that were installed using Installation Manager before updating.

• During the update process, Installation Manager might prompt you for the location of the repository

for the base version of the package. If you installed the product from CDs or other media, they must

be available when you use the update feature.

To find and install product package updates:

1. From the Start page of the Installation Manager, click Update.

2. If Installation Manager is not detected on your computer, continue with the installation of the latest release.

Follow the instructions in the wizard to complete the installation.

3. In the Update wizard, select the location of the package group where the product you want to update is

installed or select Update All, and then click Next.

Installation Manager searches for updates in its repositories and the predefined update sites for the product.

A progress indicator shows the search is taking place.

33

HCL® OneTest™ Embedded

34

4. If updates for a package are found, then they are displayed in the Updates list on the Update Packages page

after the corresponding package. Only recommended updates are displayed by default. Click Show all to

display all updates found for the available packages.

a. To learn more about an update, click the update and review its description under Details.

b. If additional information about the update is available, a More info link is included at the end of the

description text. Click the link to display the information in a browser. Review this information before

installing the update.

5. Select the updates that you want to install or click Select Recommended to restore the default selections.

Updates that have a dependency relationship are automatically selected and cleared together.

6. Click Next.

7. On the Licenses page, read the license agreements for the selected updates. On the left side of the License

page, the list of licenses for the updates you select is displayed

8. Click each item to display the corresponding license agreement text.

a. If you agree to the terms of all the license agreements, click I accept the terms of the license

agreements.

b. Click Next to continue.

9. On the Summary page, review your choices before installing the updates.

a. If you want to change the choices you made on previous pages, click Back, and make your changes.

b. When you are satisfied, click Update to download and install the updates. A progress indicator shows

the percentage of the installation completed.

10. Optional: When the update process is completed, a message that confirms the process is displayed near

the top of the page. Click View log file to open the log file for the current session in a new window. Close the

Installation Log window to continue.

11. Click Finish to close the wizard.

12. Optional: Only the features that you already have installed are updated using the Update wizard. If the update

contains new features that you want to install, run the Modify wizard, and select the new features to install

from the feature selection panel.

Uninstalling software
Use Installation Manager to uninstall your product. If no other products are installed, you can uninstall Installation

Manager also.

To uninstall your product from Windows™:

1. Start Installation Manager

2. Select the Uninstall wizard

3. Choose a package group and the package to uninstall, and follow the instructions on the wizard to complete

the uninstall process.

After uninstalling the product, some files are not removed, including any target deployment ports that you

might have modified after the installation. If you intend to reinstall the product later, you must delete the

TestRealTime directory manually before reinstalling.

Chapter 4. Administrator Guide

To uninstall your product from Linux™ or UNIX™:

4. Open a terminal window, change directory to your installation directory (/opt/HCL/

InstallationManager/ by default), and run /opt/HCL/InstallationManager/eclipse/HCLIM.

5. In Installation Manager, select the Uninstall wizard

6. Choose a package group and the package to uninstall, and follow the instructions on the wizard to complete

the uninstall process.

7. When the product is uninstalled, quit Installation Manager, change directory to /opt/HCL/HCLOneTest/

Embedded and run the following command to delete the remaining HCL/HCLOneTest/Embedded directory

cd/opt/HCL/HCLOneTest/Embedded && rm -rf.

Installing in Eclipse instance
The product package that you install using Installation Manager comes with a version of Eclipse, which is the base

platform of this product package. If you already have an Eclipse integrated development environment (IDE) installed

on your workstation, after installing the product, you can add your product package directly to that other Eclipse

installation and extend the functions of your Eclipse IDE by installing HCL OneTest™ Embedded from a local update

site.

Extending an Eclipse IDE adds the functions of the newly installed product, but maintains your IDE preferences and

settings. Previously installed plug-ins are also still available.

In most cases, your current Eclipse IDE must be the same version as the Eclipse that the product you are installing

uses. For more information about installing the product inside an existing Eclipse IDE, see the page 'Installing the

product from an update site'.

Installing the product from an update site
You can expand a third-party Eclipse-based IDE by installing HCL OneTest™ Embedded from an update site.

About this task

To integrate HCL OneTest™ Embedded for Eclipse IDE into a third-party Eclipse-based IDE such as Wind River

Workbench or Texas Instruments Code Composer Studio, you can install the plug-ins from a local Eclipse update site.

The update site is a folder installed with the product.

Note: Compatibility of HCL OneTest™ Embedded with third party workbench environments depends on the

availability of several extensions in those workbenches. Dependencies include Eclipse EMF, Eclipse GEF, and

Eclipse CDT.

To install the product from the local update site:

1. Proceed with a default Installation of the product in its own product group.

Result

A local update site is created alongside the product install.

2. Launch the third-party Eclipse workbench and click Help > Install New Software.

35

HCL® OneTest™ Embedded

36

3. Click Add, type a name for the update site, click Local and select the directory: <installation

directory>\HCL\HCLOneTest\Embedded\HCL One Test Embedded Eclipse IDE update site\

4. Select all the features listed in the update site and click Next.

5. Approve the licensing agreement and click Next.

6. After installing the product, restart the workbench.

Verifying the installation
When the installation process is complete, a message confirms the success of the process. You can open the log file

to verify your installation of the product.

Before you begin

When the installation process is complete, a message confirms the success of the process.

To verify the installation:

1. Click View log file. The installation log file for the current session opens in a new window. To continue, close

the Installation Log window to continue.

2. In the Install Package wizard, select whether you want HCL OneTest™ Embedded to start when you exit.

3. Click Finish to launch the selected package. The Install Package wizard closes and you are returned to the

Start page of Installation Manager.

Starting HCL OneTest™ Embedded
You can start your product from the desktop environment or a command-line interface.

About this task

For Microsoft™ Windows™ operating systems:

• Click Start > Programs > > > to start HCL OneTest™ Embedded for Eclipse IDE.

• Click Start > Programs > > > to start HCL OneTest™ Embedded Studio for testing C, C++, Ada.

• To start HCL OneTest™ Embedded for Eclipse IDE from a command line, type this command:

<installation_directory>\eclipse.exe -product com.ibm.rational.testrealtime.product.ide.

• To start HCL OneTest™ Embedded Studio from a command line, type this command:

<installation_directory>\bin\intel\win32\studio.exe

If the installation location or Shared Resources directory for your product is in a directory in the path C:\Program

Files, you can run the product only as the administrator. To run as administrator, right-click the program shortcut,

and click Run as administrator.

Note: For Windows, the Program Files directory is usually virtualized in order to allow users who are not

running as the administrator to have write access to this protected directory. However, the virtualization

workaround is not compatible with your product. If you selected an installation location or shared resources

Chapter 4. Administrator Guide

directory in the path C:\Program Files\ and you do not want to require running your product as

Administrator, complete one of these steps:

• Reinstall your product and any other programs that sharing the same installation location, and select

an installation location that is not in the path C:\Program Files\.

• Reinstall your product and all Software Delivery Platform product packages (regardless of their

installation location), and select a shared resources directory and installation locations that are not in

the path C:\Program Files\

For UNIX™ operating systems:

• To start HCL OneTest™ Embedded for Eclipse IDE from a sh or bash shell, type this command:

<installation_directory>/start_visualtest.sh

• To start HCL OneTest™ Embedded Studio from a sh or bash shell, type this command:

<installation_directory>/start_testrt.sh

Managing Licenses
Licensing for your HCL software is administered through HCL® License & Delivery portal. This portal is FlexNet-based

web application to manage software entitlements and licenses.

You must have ordered software. When a software order is placed and acknowledged, a software entitlement

is created. You can then create the devices and map the software entitlement with the devices. Every device is

associated to a server ID. This server ID is applied in the product. Multiple software entitlements can be created

based on your requirements. Follow the instructions in Software Order Acknowledgment document that you received

to activate your entitlement, create devices, and download the software from the Portal.

If you do not have access to the Internet, you can install and configure a local license server.

Setting up licensing
To start using a product, you must first set up licensing.

Before you begin

If you use a cloud license server, you must have:

• The ID of the server ID on cloud license server where your entitlements have been mapped.

• If the FlexNet cloud server https://hclsoftware.compliance.flexnetoperations.com is not the default one, you

need the URL of the cloud server you use

If you use a local license server, you need its URL.

About this task

37

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.compliance.flexnetoperations.com

HCL® OneTest™ Embedded

38

You must set up either a cloud license server or a local license server. It is done by setting some environment

variables according to the Operating System.

Set up a cloud license server:

Before starting the product, you must set up the following environment variable:

• HCL_LICENSING_ID: (mandatory): contains the server ID that was provided to you or copy the ID

from the HCL® License & Delivery portal.

• HCL_LICENSING_URL: (optional): contains the cloud server URL. If it is not set, it points to the

HCL cloud license.

When you launch the product, it connects to the HCL® License & Delivery portal to verify this server ID

and if there is a license available, it is checked out so that you can use the product. If the license is not

available, a message is displayed about it, in the console.

Note: If the license is not used for 15 minutes, the license is returned to the server for others to

consume it.

Set up a local license server

Sometimes, you might be working from a lab that does not have access to the Internet. In such cases,

you must install and set up a local license server behind your company's firewall. For more information

about installing and configuring the local license server, see the documentation of the local license

server on the same page from where you downloaded the product bits. As part of configuration, the

local license server must already have mapped your entitlements and therefore can serve your requests.

Before starting the product, you must be set the following environment variable:

• HCL_LICENSING_URL: (mandatory) must be set up to point to your local server.

Example: HCL_LICENSING_URL=http://myServer:portNumber.

HCL_LICENSING_ID environment variable must be undefined. If you enter a value, the local server will be

used as a cloud server, and the licenses do not apply.

Notes:

• HCL OneTest™ Embedded (all versions) supports only the http protocol for local servers.

If you use the default local configuration file to setup a local server, configure your

environment variable with the 7070 port as follows:

Chapter 4. Administrator Guide

HCL_LICENSING_URL=http://myServer:7070

• The HCL® Local License Server is supported on 32 and 64-bit Windows, and Linux

platforms. You must install the server on a physical computer and not on a Virtual

Machine.

Setting environment variables

See “Set up cloud license server" or “Set up local license server" above to find the required variables and

values.

• Procedure on Windows:

◦ Open the System Properties window. Select the Advanced tab then click Environment variables.

◦ Under System variables, click New to add one of these environment variables:

• Procedure on Linux:

On some occasions, your computer might not be connected to the open Internet. For such cases, you can set up a

local proxy server that can be on cloud or local.

What to do next

You can now work with the product.

Configuring
Use these topics to configure the product.

Target Deployment Port Editor overview
The TDP Editor provides a user interface designed to help you customize and create Target Deployment Ports (TDP)

for any platform on which you want to run tests or programs.

The Target Deployment Port Editor user interface is made up of 4 main sections:

• Navigation: Use the navigation explorer view to select customization points.

• Help: This area provides direct reference information for the selected customization point.

• Edit: Use this area to edit the customization point. The form of the Edit window depends on the nature of the

customization point.

• Comment: Use this area to store comments or descriptions for each customization point.

In the Navigation view, you can click on any customization point to obtained detailed reference information for that

parameter in the Help area. Use this information to customize the TDP to suit your requirements.

39

http://myserver:7070/

HCL® OneTest™ Embedded

40

Target Deployment Port Editor overview
The TDP Editor provides a user interface designed to help you customize and create Target Deployment Ports (TDP)

for any platform on which you want to run tests or programs.

The Target Deployment Port Editor user interface is made up of 4 main sections:

• Navigation: Use the navigation explorer view to select customization points.

• Help: This area provides direct reference information for the selected customization point.

• Edit: Use this area to edit the customization point. The form of the Edit window depends on the nature of the

customization point.

• Comment: Use this area to store comments or descriptions for each customization point.

In the Navigation view, you can click on any customization point to obtained detailed reference information for that

parameter in the Help area. Use this information to customize the TDP to suit your requirements.

Opening the Target Deployment Port Editor
Target Deployment Ports (TDP) are stored as XDP files, which can be viewed and edited with the Target Deployment

Port Editor.

To open a TDP in the Target Deployment Port Editor:

1. From the Start menu, click > Target Deployment Port Editor, or from a shell or command window, type the

command: tdpeditor.

2. Click File > Open

3. In the targets directory, select an XDP file and click Open.

4. Save your changes and reload the TDP in HCL OneTest™ Embedded:

Choose from:

◦ In HCL OneTest™ Embedded for Eclipse IDE, right-click the project and click Properties > C/C++ Build >

Settings > TDP Build, select another TDP and select the updated TDP again. Click OK.

◦ In HCL OneTest™ Embedded Studio, restart HCL OneTest™ Embedded Studio, click Project >

Configuration, select the TDP, click Remove. Click New, select the updated TDP again and click OK.

To open a TDP from HCL OneTest™ Embedded:

5. First you must have the Target Deployment Port view displayed in HCL OneTest™ Embedded. To open this

view, in the toolbar associated with the HCL OneTest™ Embedded perspective, click Window, and select Show

View > Other > HCL OneTest™ Embedded Target Deployment Port.

6. The Target Deployment Port view opens and displays the list of all the Target Deployment Ports that are

installed in HCL OneTest™ Embedded. Select a Target Deployment Port and click the button to edit the

selected Target Deployment port.

From this view, you can also open the preferences panel and configure the Target Deployment Port search

path.

Chapter 4. Administrator Guide

Creating a TDP
This topic provides a typical example workflow for creating a new target deployment port (TDP) for a C compiler.

About this task

Creating a new TDP requires advanced familiarity with:

• HCL® OneTest™ Embedded and its underlying TDP technology.

• The target platform hardware and software architecture.

• The target development environment.

1. In the Target Deployment Port Editor, at the top of the Navigation area, right-click the TDP name and type a

new name.

2. Specify all the Basic settings. Create intermediate keys to help with future changes and save the TDP.

3. In HCL OneTest™ Embedded Studio, open the add.rtp project which is located in examples/TDP/

tutorial. This is a simple project that can be used for debugging target deployment ports.

4. Click Edit > Preferences > Project and select Verbose.

5. Click Project > Configuration to create a new configuration, and select the new TDP. Click OK.

6. Select the new configuration based on the new TDP.

7. Click Settings > Build > Build Options > ... and remove all instrumentation. At this point any modifications

of the DEFAULT_xxxx in the Target Deployment Port Editor will be ignored in the project. Therefore, you must

duplicate or copy any changes in the Build > Build > Compiler/Link configuration settings.

8. In the project browser, right click add.c and select Compile. Check that the object file is generated in the

correct directory. If any problems occurred, open the Target Deployment Port Editor and correct the problems

in Build Settings > Compilation function. Repeat this step until add.c is properly generated.

9. In the Build > Build options > ... settings, enable coverage instrumentation only and remove all files located in

the examples/TDP/tutorial/xdp name directory.

10. In the project browser, right click add.c and select Compile. The instrumentation occurs after the

preprocessing and before compilation. Check the .i file is generated properly in the correct directory and that

it contains #line xx "fileName" or # xx "fileName". If any problems occurred, open the Target Deployment

Port Editor and correct the problems in Build Settings > Preprocessing function. Repeat this step until the .i

file is properly generated.

11. Check that add.o or add.obj is generated in the correct directory and not a file named add_aug.o or

add_aug.obj. If any problems occurred, open the Target Deployment Port Editor and correct the problems in

Build Settings > Compilation function. Repeat from step 9 until add.o or add.obj are properly generated.

12. In the project browser, right click TP.c and select Compile. Check that TP.o or TP.obj are generated in the

correct directory. If any problems occurred, open the Target Deployment Port Editor and correct the problems

in Library Settings. Repeat this step until TP.o or TP.obj are properly generated.

41

HCL® OneTest™ Embedded

42

13. Check that Test.exe is generated in the correct directory. If any problems occurred, open the Target

Deployment Port Editor and correct the problems in Build Settings > Link function. Repeat this step until

Test.exe is properly generated.

Note: Any files added in the TDP Editor Build settings are located in $TARGETDIR/cmd by default.

Using the TDP Editor

The TDP Editor provides a user interface designed to help you customize and create unified Target Deployment Ports.

The TDP Editor is made up of 4 main sections:

• A Navigation Tree: Use the navigation tree on the left to select customization points.

• A Help Window: Provides direct reference information for the selected customization point.

• An Edit Window: The format of the Edit Window depends on the nature of the customization point.

• A Comment Window: Lets you to enter a personal comment for each customization point.

In the Navigation Tree, you can click on any customization point to obtained detailed reference information for that

parameter in the Help Window. Use this information to customize the TDP to suit your requirements.

Note The TDP Editor is not included with the trial version of the product.

To learn about See

Making changes to the TDP Editing customization points in a TDP on

page 42

Launching the TDP Editor Opening the Target Deployment Port Editor on

page 40

Creating a new TDP Creating a TDP on page 41

Applying changes made to a TDP Updating a Target Deployment Port on page 43

Changing the way a TDP is generated Using a Post-generation Script on page 44

Importing old TDPs from ATTOL Testware prod­

ucts

Migrating from Pre-v2002 Target Deployment

Ports on page 45

Editing customization points in a TDP
Use the Target Deployment Port Editor to adapt an existing Target Deployment Port (TDP) to a specific target

platform or development environment.

About this task

Chapter 4. Administrator Guide

Target Deployment Ports can be subdivided into four primary sections:

• Basic Settings: This section specifies default file extensions, default compilation and link flags, environment

variables and custom variables required for your target environment. This section allows you to set all the

common settings and variables used by HCL OneTest™ Embedded and the different sections of the TDP. For

example, the name and location of the cross compiler for your target is stored in a Basic Settings variable,

which is used throughout the compilation, preprocessing and link functions. If the compiler changes, you only

need to update this variable in the Basic Settings section.

• Build Settings: This section configures the functions required by the HCL OneTest™ Embedded build process.

It defines compilation, link and execution Perl scripts, plus any user-defined scripts when needed. This section

is the core of the TDP, as it drives all the actions needed to compile and execute a piece of code on the target.

All files related to the Build settings are stored in the cmd subdirectory of the TDP folder.

• Library Settings: This section describes a set of source code files and a dedicated customization file

(custom.h), which adapt the TDP to target platform requirements. This section is the most complex and

usually only requires customization for specialized platforms (unknown RTOS, no RTOS, unknown simulator,

emulator, etc.). These files are stored in the lib subdirectory of the TDP folder.

• Parser Settings: This section modifies the behavior of the parser in order to address non-standard compiler

extensions (for example: non-ANSI extensions). This section allows HCL OneTest™ Embedded to properly

parse your source code, either for instrumentation or code generation purposes. The resulting files are stored

in the ana subdirectory of the TDP folder.

1. In the Navigation view of the Target Deployment Port Editor, select the customization point that you want to

edit.

2. In the Help window, read the reference information pertaining to the selected customization point. Use this

information fill out the Edit window.

3. Type any remarks or comments in the Comments window.

4. Save your changes and reload the TDP in HCL OneTest™ Embedded:

Choose from:

◦ In HCL OneTest™ Embedded for Eclipse IDE, right-click the project and click Properties > C/C++ Build >

Settings > TDP Build, select another TDP and select the updated TDP again. Click OK.

◦ In HCL OneTest™ Embedded Studio, restart HCL OneTest™ Embedded Studio, click Project >

Configuration, select the TDP, click Remove. Click New, select the updated TDP again and click OK.

Updating a Target Deployment Port

Target Deployment Technology

The Target Deployment Port (TDP) settings are read or loaded when a HCL OneTest™ Embedded project is opened, or

when a new Configuration is used.

If you make any changes to the Basic Settings of a TDP with the TDP Editor, any project settings that are read from

the TDP will not be taken into account until the TDP has been reloaded in the project.

To reload the TDP in HCL OneTest™ Embedded:

43

HCL® OneTest™ Embedded

44

1. From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

Related Topics

Editing customization points in a TDP on page 42 | Creating a TDP on page 41

Using a Post-generation Script

Target Deployment Technology

In some cases, it can be necessary to complete the generation of the TDP in the target directory by adding an

additional phase at the end of the generation.

To do this, the TDP editor runs a post-generation Perl script called postGen.pl, which can be launched automatically

at the end of the TDP directory generation process.

To use the postGen script:

1. In the TDP editor, right click on the Build Settings node and select Add child and Ascii File.

2. Name the new node postGen.pl.

3. Write a perl function performing the actions that you want to perform after the TDP directory is written by the

TDP Editor.

Example

Here is a possible template for the postGen.pl script file:

sub postGen

{

$d=shift;

﷓ the only parameter passed to this function is the path to the target directory

﷓ here any action to be taken can be added

}

1;

The parameter $d contains <tdp_dir>/<tdp_name>, where <tdp_dir> is a chosen location for the TDP directory (by

default, the targets subdirectory of the product installation directory), and <tdp_name> is the name of the current TDP

directory

Related Topics

Chapter 4. Administrator Guide

Creating a TDP on page 41

Migrating from v2001A Target Deployment Ports

Target Deployment Technology

This section describes the conversion of TDPs built for older versions (before v2002) of HCL OneTest™ Embedded to

the current, unified format.

This section applies to TDPs and ATTOL Target Packages created for:

• ATTOL Coverage, UniTest and SystemTest

• HCL OneTest™ Embedded v2001A

TDPs created for later versions of HCL OneTest™ Embedded or HCL OneTest™ Embedded are compatible with the

current version.

To migrate your old TDP to the current format:

1. In the TDP Editor, create a new Target Deployment Port based on the appropriate new template:

◦ use templatec.xdp for C and C++ TDPs

◦ use templatea.xdp for Ada TDPs

2. Item by item, recode or copy-paste information from your old TDP to the corresponding customization points

in the TDP Editor, using the information in this section of the Target Deployment Guide to direct you.

Related Topics

Updating a Target Deployment Port on page 43 | Migrating from previous versions on page 45

Migrating from previous versions
Test scripts and projects from previous versions of HCL OneTest™ Embedded continue to work with the HCL

OneTest™ Embedded Studio user interface and the command line tools. The current version of HCL OneTest™

Embedded Studio can open and run all assets that you created with previous versions of the product.

There is currently no direct migration path from HCL OneTest™ Embedded Studio projects and test scripts to the HCL

OneTest™ Embedded for Eclipse IDE.

See HCL OneTest™ Embedded Studio overview on page 251 for information about HCL OneTest™ Embedded.

Upgrading from a previous version

HCL OneTest™ Embedded uses Installation Manager for installing, updating, and uninstalling the product. If you are

upgrading from a version of the product prior to V8.3.1, you must first remove any previous version of the product.

See the uninstall instructions provided with the previous version.

45

HCL® OneTest™ Embedded

46

Target Deployment Ports

Target deployment ports must be updated to the latest version of the product. To do this, simply load them in the

Target Deployment Port Editor and save them again.

See Target Deployment Port Editor overview on page 39.

Integrating
Read these topics to learn how the product works when integrated with other products.

IBM® Rational® Quality Manager integration
IBM® Rational® Quality Manager is a business-driven software quality environment for people seeking a collaborative

and customizable solution for test planning, workflow control, tracking and metrics reporting capable of quantifying

how project decisions and deliverables impact and align with business objectives.

Rational® Quality Manager allows you to:

• Create Rational® Quality Manager test environments that are linked to HCL OneTest™ Embedded target

deployment ports

• Create Rational® Quality Manager test scripts that are linked to HCL OneTest™ Embedded test assets.

• Deploy and run HCL OneTest™ Embedded tests for the Rational® Quality Manager interface.

• View HTML reports in the Rational® Quality Manager interface.

Rational® Quality Manager uses the term test script to describe it's basic test assets. Rational® Quality Manager

test scripts are mapped to HCL OneTest™ Embedded test suites. A test suite contains multiple test harnesses that

are run sequentially to provide global results for a project.

To use Rational® Quality Manager with a computer that uses HCL OneTest™ Embedded for Eclipse IDE, the HCL

OneTest™ Embedded adapter service must be running on the computer.

With the adapter running, you can import test suites as Rational® Quality Manager test scripts, construct a new

Rational® Quality Manager test case based on those test suites, and run the tests from Rational® Quality Manager.

You can also view the results of the tests in Rational® Quality Manager as HTML reports.

Related information

Initializing the Rational Quality Manager adapter on page 46

Importing test suites into Rational Quality Manager on page 48

Initializing the Rational® Quality Manager adapter
To use Rational® Quality Manager with a computer that uses HCL OneTest™ Embedded for Eclipse IDE, the HCL

OneTest™ Embedded adapter service must be properly running and configured on the computer.

Chapter 4. Administrator Guide

Before you begin

You need administrator privilege to run Rational® Quality Manager adapter service on Windows and Linux.

As an RQM user, you must have write access to a valid RQM Public URL and project and the appropriate RQM CALs.

From HCL OneTest™ Embedded for Eclipse IDE V8.2.0, Rational® Quality Manager V6.0.5 is required.

To start the HCL OneTest™ Embedded for Eclipse IDE and Rational® Quality Manager adapter, follow these steps:

1. Run command prompt as an administrator user on Windows. On Linux open the command shell and enter

sudo to have root rights.

2. Start the Rational® Quality Manager adapter service with the following command, located in the

\RQMAdapter\TestRTadapter folder of the product installation directory:

Choose from:

◦ On Windows™, enter the following command: startTestRTAdapter.bat

C:\Program Files\HCL\HCLOneTest\Embedded\RQMAdapter\TestRTAdapter\"startTestRTAdapter.bat"

◦ On UNIX™, enter startTestRTAdapter.sh

sudo startTestRTadapter.sh

Note: The adapter requires access to a writable temporary directory. The %TEMP% variable is

used to access to the default directory. If the adapter encounters permission problems with

the default settings, add the following option to the command to specify a writable directory:

-tempDir=temp_directory. For example: startTestRTAdapter.bat -tempDir=C:\temp.

3. If this is the first time you run the adapter, you must configure the adapter by typing the following information,

when prompted, in the command window:

a. Type the base URL of the Rational® Quality Manager server.

Example

For example: https://hostname:9443/jazz

b. Type your login and password for the Rational® Quality Manager account.

c. Type the Rational® Quality Manager project area name.

d. Type a name for the adapter, or press Return to use the default name.

Note: This step is not mandatory. If you don't enter any name, the default adapter name is

taken into account.

The adapter only asks these questions the first time it is run. If you need to change the server URL or login

information, run the adapter with the -reconfigure option as follows:

47

HCL® OneTest™ Embedded

48

◦ On Windows, enter:

C:\Program Files\HCL\HCLOneTest\Embedded\RQMAdapter\TestRTAdapter\"startTestRTAdapter.bat"
 -reconfigure

◦ On Linux, enter:

sudo startTestRTadapter.sh -reconfigure

Results

The Rational® Quality Manager adapter service starts.

Related information

IBM Rational Quality Manager integration on page 46

Importing test suites into Rational Quality Manager on page 48

Importing test suites into Rational® Quality Manager
The Rational® Quality Manager adapter for HCL OneTest™ Embedded enables you to import HCL OneTest™

Embedded test suites as Rational® Quality Manager test scripts.

To import a HCL OneTest™ Embeddedtest suite into Rational® Quality Manager:

1. Log in to Rational® Quality Manager and click Construction > Import test scripts.

2. In Script type, select .

3. Select Use test resources that are local to a test machine and click Select Adapter.

4. Select the HCL OneTest™ Embedded adapter that you want to use and click Next.

5. In Project Path, specify the path to the workspace project where the HCL OneTest™ Embedded test suite is

located, and select Go.

The adapter parses all the subdirectories under the selected directory, therefore, if you specify a workspace

path, it will find all the test suites in that workspace.

6. Select one or several test suites to import, click Finish and Import.

What to do next

Once the test scripts are imported, construct a new test case in Rational® Quality Manager with the HCL OneTest™

Embedded test suites. After running the Rational® Quality Manager test case, click Close and Show results. You can

click the links in the Result Details section of Rational® Quality Manager to view the HTML reports.

Related information

IBM Rational Quality Manager integration on page 46

Initializing the Rational Quality Manager adapter on page 46

Chapter 4. Administrator Guide

Configuring the Jenkins environment for running test suites
HCL OneTest™ Embedded for Eclipse IDE has command line interface that facilitates the integration of Jenkins in

HCL OneTest™ Embedded.

About this task

First create a test suite in your project and add all the test harness that you want to execute.

To configure Jenkins:

1. On the Jenkins dashboard, click Configure.

2. Under Build, click Add build step where you want to insert your test execution.

3. Select Execute Windows batch command for Windows, or Execute shell for UNIX.

4. Setup your command as described here to execute your test suite: rtrteclipse -WORKSPACE= <your

workspace> <your test suite>.

For more details, see Running test suites from the command line on page 234.

Integrating HCL OneTest™ Embedded with other development tools

HCL OneTest™ Embedded Studio is a versatile tool that is designed to integrate with your existing development

environment.

To learn about See

Rational ClearCase integration Working with Rational ClearCase on

page 50

Rational ClearQuest integration Working with Rational ClearQuest on

page 51

Microsoft Visual Studio integration Configuring Microsoft Visual Studio on

page 55

Using third party configuration management soft­

ware

Working with Configuration Manage­

ment on page 49

Integrating Studio with configuration management

The GUI provides an interface that allows you to control your project files through a configuration management (CM)

system such as Rational® ClearCase® and submit software defect report to a Rational® ClearCase® system.

Note Before using any configuration management tool, you must first configure the CMS Preferences dialog box. See

Customizing Configuration Management.

You can also set up the GUI to use a CM system of your choice.

49

HCL® OneTest™ Embedded

50

To learn about See

Configuration management with Rational ClearCase Working with Rational ClearCase

on page 50

Reporting defects with Rational ClearQuest Working with Rational Clear­

Quest on page 51

Setting up the GUI to use a third-party configuration management

tool.

Customizing source control tools

on page 52

Related Topics

CMS Preferences on page 1046 | ClearQuest Preferences on page 1047 | Working with Other Development Tools on

page 49

Integrating Studio with IBM Rational ClearCase

Rational® ClearCase® is a configuration management system (CMS) tool providing version control, workspace

management, configuration process, and build management. With Rational® ClearCase®, your development team

gets a scalable, best-practices-based development process that simplifies change management – shortening your

development cycles, ensuring the accuracy of your releases, and delivering reliable builds and patches for your

previously shipped products.

By default, HCL OneTest™ Embedded offers configuration management support for Rational® ClearCase®. You can

however customize the product to support different configuration management software. When using Rational®

ClearCase®, you can instantly control your files from the product Tools menu.

Note: Before using ClearCase commands, select Rational® ClearCase® as your CMS tool in the CMS

Preferences. on page 1046

Source Control Commands.

For any file in the HCL OneTest™ Embedded project, Rational® ClearCase®, or any other CMS tool, can be accessed

through a set of source control commands.

Source control can be applied to all files and nodes in the Project Browser or Asset Browser. When a source control

command is applied to a project, group, application, test or results node, it affects all the files contained in that node.

The following source control commands are included to be used with Rational® ClearCase®:

• Add to Source Control

• Check Out

• Check In

Chapter 4. Administrator Guide

• Undo Check Out

• Compare to Previous Version

• Show History

• Show Properties

Refer to the documentation provided with Rational® ClearCase® for more information about these commands.

Source control commands are fully configurable from the Tools menu.

To control files from the Tools menu:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational® ClearCase® and the source control command that you want to apply.

To control files from the Source Control popup menu:

1. Right-click one or several files in the Project Explorer window.

2. From the popup menu, select Source Control and the source control command that you want to apply.

Related Topics

Working with Rational ClearQuest on page 51 | CMS Preferences on page 1046 | About the Tools Menu on

page 744 | Customizing source control tools on page 52

Integrating Studio with IBM Rational ClearQuest

IBM® Rational® ClearQuest® is a defect and change tracking tool designed to operate in a client/server environment.

It allows you to easily track defects and change requests, target your most important problems or enhancements to

your product. Rational® ClearQuest® helps you determine the quality of your application or component during each

phase of the development cycle and helps you track the release in which a feature, enhancement or bug fix appears.

By default, the product offers defect tracking support for Rational® ClearQuest®. When using ClearQuest with HCL

OneTest™ Embedded Studio you can directly submit a report from a test or runtime analysis report.

To submit a ClearQuest report from HCL OneTest™ Embedded Studio:

1. In the Report Explorer, right-click a test.

2. From the pop-up menu, select Submit ClearQuest Report.

3. This opens the ClearQuest Submit Defect window, with information about the Failed test.

4. Enter any other necessary useful information, and click OK.

For more information, see the Rational® ClearQuest® documentation.

Related Topics

51

HCL® OneTest™ Embedded

52

ClearQuest Preferences on page 1047

Customizing source control tools

Out of the box, the product offers configuration management support for Rational ClearCase on page 50, but the

product can be configured to use most other Configuration Management Software (CMS) that uses a vault and local

repository architecture and that offers a command line interface.

To configure the product to work with your version control software:

1. Add a new CMS tool to the Toolbox with the command lines for checking files into and out of the configuration

management software. This activates the Check In and Check Out commands in the Project Explorer on

page 1056 and the ClearCase Toolbar.

2. Set up version control repository in CMS Preferences.

Related Topics

Working with Rational ClearCase on page 50 | CMS Preferences on page 1046 | About the Tools Menu on

page 744

Working with IBM Rational Quality Manager

Integrating Studio with IBM Rational Quality Manager

Rational® Quality Manager is a business-driven software quality environment for people seeking a collaborative and

customizable solution for test planning, workflow control, tracking and metrics reporting capable of quantifying how

project decisions and deliverable impact and align with business objectives.

HCL OneTest™ Embedded Studio integration with Rational Quality Manager enables you to:

• Create Rational Quality Manager test environments that are linked to HCL OneTest™ Embedded target

deployment ports

• Create Rational Quality Manager test scripts that are linked to HCL OneTest™ Embedded Studio projects and

tests or application nodes

• Deploy and run HCL OneTest™ Embedded Studio tests for the Rational Quality Manager interface

• View HTML reports in the Rational Quality Manager interface

To learn about See

Enabling a computer with HCL OneTest™ Embedded to be used by

Rational Quality Manager for running tests

Running the Rational Quality Manager

adapter on page 53

Chapter 4. Administrator Guide

Creating Rational Quelity Manager test scripts with HCL OneTest™

Embedded projects

Importing a HCL OneTest™ Embedded

project on page 54

Running tests with different Target Deployment Ports. Using Target Deployment Ports with Rational

Quality Manager on page 54

Running the Rational Quality Manager adapter

To use Rational Quality Manager with a computer that uses HCL OneTest™ Embedded Studio, the HCL OneTest™

Embedded adapter must be running on the computer.

Before running the adapter, ensure that both the PATH and JAVA_HOME environment variables are properly set to the

correct location of a Java Runtime Environment (JRE) version 1.5 or later.

When you run the adapter for the first time, you are asked to type configuration information in the console window.

To run the HCL OneTest™ Embedded adapter for Rational Quality Manager:

1. Open a command line window and navigate to the run the adapter command line:

<installation directory>\RQMAdapter\TestRTadapter\

2. Run the adapter command:

◦ On Windows, type startTestRTAdapter.bat, or from the Start menu, select > Tools > Start > Adapter

for Rational Quality Manager.

◦ On UNIX, enter the following command:

startTestRTAdapter.sh

3. If you run the adapter for the first time, enter the following information in the command window:

◦ Server URL: Enter the URL of the Rational® Quality Manager server.

◦ Login: Enter the login used to connect to Rational® Quality Manager.

◦ Password: Enter your password.

◦ Project Area (Optional): Enter the name of project area, if necessary.

◦ Enter adapter name: Enter the name of the HCL OneTest™ Embedded adapter on the current computer

as it will appear in Rational® Quality Manager. By default the name is TestRT on <hostname> .

The adapter only asks these questions the first time it is run. If you need to change this server URL and login

information, run the adapter with the -reconfigure option.

 startTestRTAdapter.bat -reconfigure

53

HCL® OneTest™ Embedded

54

Related Topics

Importing a HCL OneTest™ Embedded project on page 54 | Associating Target Deployment Ports with test

environments on page 54

Importing a HCL OneTest™ Embedded project into Rational Quality Manager

IBM Rational Quality Manager integration

Rational Quality Manager uses the term test script to describe it's basic test assets. TheHCL OneTest™ Embedded

adapter for Rational Quality Manager enables you to import HCL OneTest™ Embedded projects as Rational Quality

Manager test scripts.

When you select the HCL OneTest™ Embedded adapter, theHCL OneTest™ Embedded project will be run with the

default Target Deployment Port selected in the project.

To import a HCL OneTest™ Embedded project into Rational Quality Manager:

1. Log in to Rational Quality Manager, clickConstruction > Import test script.

2. InScript type, select HCL OneTest™ Embedded.

3. Select Use test resources that are local to a test machine and click click Select Adapter.

4. Select the HCL OneTest™ Embedded adapter that you want to use.

5. In Project Path, specify the directory where the HCL OneTest™ Embedded .rtp project file is located, and select

Go. The adapter will parse all the sub-directories under the selected directory.

6. Select one or several .rtp project files, click OK, and then click Import.

Once the test scripts are imported, construct a new test case with the HCL OneTest™ Embedded test scripts. After

execution, click Close and show results. You can click the links in the Result Details section to view the HTML reports.

Related Topics

Running the Rational Quality Manager adapter on page 53 | Associating Target Deployment Ports with test

environments on page 54

Associating Target Deployment Ports with test environments

IBM Rational Quality Manager integration

When you select the HCL OneTest™ Embedded adapter in Rational Quality Manager, by default, the HCL OneTest™

Embedded project will be run with the Target Deployment Port (TDP) that is selected in the project. To run the same

project with different TDPs, you can create different test environments in Rational Quality Manager.

To create a test execution record with a specific TDP:

Chapter 4. Administrator Guide

1. Log in to Rational Quality Manager, clickLab Management > Create Test Environment.

2. Type a name for the test environment that applies to the name of the HCL OneTest™ Embedded configuration.

The name must be exactly the same as the Configuration name in HCL OneTest™ Embedded, for example: C

Win32 - GNU.

3. Click Save.

4. Click Construction > Create Test Execution Record and enter a name for the new test execution record.

5. Select the Test Case and the Default Test Script.

6. In Available Test Environments, select the test environment with the name of the TDP that you want to use.

7. ClickSave.

Related Topics

Running the Rational Quality Manager adapter on page 53 | Associating Target Deployment Ports with test

environments on page 54

Integrating Studio with Microsoft Visual Studio

HCL OneTest™ Embedded provides a special setup tool to configure runtime analysis tools with Microsoft Visual

Studio 6.0.

Note Integration with Microsoft Visual Studio is only available with the Windows version of HCL OneTest™ Embedded

Studio.

Installation

Both HCL OneTest™ Embedded and Microsoft Visual Studio must be installed on the same machine.

To install the Microsoft Visual Studio 6.0 plug-in:

1. From the Windows Start menu, select Programs HCL® Software > HCL OneTest™ Embedded Software HCL

OneTest™ Embedded, Tools and HCL OneTest™ EmbeddedPlug-in for Microsoft Visual Studio Install to add the

new menu items to Microsoft Visual Studio

To uninstall the plug-in:

1. From the Windows Start menu, select Programs > HCL OneTest™ Embedded Software > HCL OneTest™

Embedded Software, HCL OneTest™ Embedded, Tools andHCL OneTest™ Embedded Plug-in for Microsoft

Visual Studio Uninstall to remove the plug-in from Microsoft Visual Studio.

To install the Microsoft Visual Studio .NET plug-in:

1. From the Windows Start menu, select All Programs > HCL OneTest™ Embedded Software > HCL OneTest™

Embedded > Tools > TDP Editor.

2. In the TDP Editor, select File > Open and open cvisual7.xdp located in the <install_directory>/ targets/xml

directory.

55

HCL® OneTest™ Embedded

56

3. Under Basic Settings > For All, set the INSTALL_PLUGIN key to TRUE.

4. Save cvisual7.xdp and close the TDP Editor.

To uninstall the plug-in:

1. From the Windows Start menu, select All Programs > HCL OneTest™ Embedded Software > HCL OneTest™

Embedded > Tools > TDP Editor.

2. In the TDP Editor, select File > Open and open cvisual7.xdp located in the <install_directory>/ targets/xml

directory.

3. Under Basic Settings > For All, set the INSTALL_PLUGIN key to FALSE.

4. Save cvisual7.xdp and close the TDP Editor.

Configuration

The HCL OneTest™ Embedded setup for Microsoft Visual Studio tool allows you to set up and activate coverage types

and instrumentation options for HCL OneTest™ Embedded Studio runtime analysis features, without leaving Microsoft

Visual Studio.

To run the product Setup for Microsoft Visual Studio:

In Microsoft Visual Studio, two new items are added to the Tools menu:

• HCL OneTest™ Embedded Viewer:this launches the Studio user interface, providing access to reports

generated by HCL OneTest™ Embedded runtime analysis and test features.

• HCL OneTest™ Embedded Options:this launches the Setup for Microsoft Visual Studio tool.

The following commands are available:

• Apply:Applies the changes made

• OK:Apply the choices made and leave the window

• Enable or Disable: Enable or Disable the runtime analysis tools

• Cancel:Cancels modifications

Code Coverage Instrumentation Options

See About Code Coverage on page 72 and the sections about coverage types.

Chapter 4. Administrator Guide

• Function instrumentation:

• ◦ SelectNoneto disable instrumentation of function inputs, outputs and termination instructions.

◦ SelectFunctionsto instrument function inputs only.

◦ SelectExitsto instrument function inputs, outputs and termination instructions.

• Function calls instrumentation (C only):

• ◦ SelectNoneto disable function call instrumentation.

◦ SelectCallsto enable function call instrumentation.

• Block instrumentation

• ◦ SelectNoneto disable block instrumentation.

◦ SelectStatement Blocksto instrument simple blocks only.

◦ SelectImplicit Blocksto instrument simple and implicit blocks.

◦ SelectLoopsto instrument implicit blocks and loops.

• Condition instrumentation (C only)

• ◦ SelectNoneto disable condition instrumentation

◦ SelectBasicto instrument basic conditions

◦ SelectModified/Multipleto instrument multiple

◦ SelectForcedto instrument forced multiple conditions

• No Ternaries Code Coverage:when this option is selected, simple blocks corresponding for the ternary

expression true and false branches are not instrumented

• Instrumentation Mode:see Information Modes on page 339 for more information.

• ◦ Pass mode:allows you to distinguish covered branches from those not covered.

◦ Count mode:The number of times each branch is executed is displayed in addition to the pass mode

information in the coverage report.

◦ Compact mode:The compact mode is similar to the Pass mode. But each branch is stored in one bit

instead of one byte to reduce overhead.

57

HCL® OneTest™ Embedded

58

Other Options

• Dump:this specifies the dump mode:

• ◦ SelectNoneto dump on exit of the application

◦ SelectCallingto dump on call of the specified function

◦ SelectIncomingto dump when entering the specified function

◦ SelectReturningto dump when exiting from the specified function

• Static Files Directory:allows you to specify where the.fdcand.tsffiles are to be generated

• Runtime Tracing:this option activates the Runtime Tracing runtime analysis feature

• Memory Profiling:this option activates the Memory Profiling runtime analysis feature

• Performance Profiling:this option activates the Performance Profiling runtime analysis feature

• Other:allows you to specify additional command-line options that are not available using the buttons. See the

Reference help for a complete list of Instrumentor options.

Related Topics

Using Runtime Analysis Features on page 336 | Importing Files from a Microsoft Visual Studio Project file on

page 721 | |Working with Rational ClearQuest on page 51 | Working with Rational ClearCase on page 50

Integrating HCL OneTest™ Embedded Studio with Microsoft Visual Studio

Integration with Microsoft Visual Studio is only available for the Windows versions of HCL OneTest™ Embedded

Studio.

HCL OneTest™ Embedded Studio and Microsoft Visual Studio 6.0 must be installed on the same machine.

• To enable the integration with Visual Studio, from the Windows Start menu, select Programs > HCL OneTest™

Embedded, Tools > HCL OneTest™ Embedded Plug-in for Microsoft Visual Studio 6.0 Install to add the new

menu items to Microsoft Visual Studio.

• To disable the integration with Visual Studio, from the Windows Start menu, select Programs >HCL OneTest™

Embedded, Tools > HCL OneTest™ Embedded Plug-in for Microsoft Visual Studio 6.0 Uninstall to add the

new menu items to Microsoft Visual Studio.

Related Topics

Configuring Microsoft Visual Studio Integration on page 55 | Importing Files from a Microsoft Visual Studio Project

file on page 721

Chapter 4. Administrator Guide

Integrating Studio with Microsoft Visual Studio

HCL OneTest™ Embedded provides a special setup tool to configure runtime analysis tools with Microsoft Visual

Studio 6.0.

Note Integration with Microsoft Visual Studio is only available with the Windows version of HCL OneTest™ Embedded

Studio.

Installation

Both HCL OneTest™ Embedded and Microsoft Visual Studio must be installed on the same machine.

To install the Microsoft Visual Studio 6.0 plug-in:

1. From the Windows Start menu, select Programs HCL® Software > HCL OneTest™ Embedded Software HCL

OneTest™ Embedded, Tools and HCL OneTest™ EmbeddedPlug-in for Microsoft Visual Studio Install to add the

new menu items to Microsoft Visual Studio

To uninstall the plug-in:

1. From the Windows Start menu, select Programs > HCL OneTest™ Embedded Software > HCL OneTest™

Embedded Software, HCL OneTest™ Embedded, Tools andHCL OneTest™ Embedded Plug-in for Microsoft

Visual Studio Uninstall to remove the plug-in from Microsoft Visual Studio.

To install the Microsoft Visual Studio .NET plug-in:

1. From the Windows Start menu, select All Programs > HCL OneTest™ Embedded Software > HCL OneTest™

Embedded > Tools > TDP Editor.

2. In the TDP Editor, select File > Open and open cvisual7.xdp located in the <install_directory>/ targets/xml

directory.

3. Under Basic Settings > For All, set the INSTALL_PLUGIN key to TRUE.

4. Save cvisual7.xdp and close the TDP Editor.

To uninstall the plug-in:

1. From the Windows Start menu, select All Programs > HCL OneTest™ Embedded Software > HCL OneTest™

Embedded > Tools > TDP Editor.

2. In the TDP Editor, select File > Open and open cvisual7.xdp located in the <install_directory>/ targets/xml

directory.

3. Under Basic Settings > For All, set the INSTALL_PLUGIN key to FALSE.

4. Save cvisual7.xdp and close the TDP Editor.

59

HCL® OneTest™ Embedded

60

Configuration

The HCL OneTest™ Embedded setup for Microsoft Visual Studio tool allows you to set up and activate coverage types

and instrumentation options for HCL OneTest™ Embedded Studio runtime analysis features, without leaving Microsoft

Visual Studio.

To run the product Setup for Microsoft Visual Studio:

In Microsoft Visual Studio, two new items are added to the Tools menu:

• HCL OneTest™ Embedded Viewer:this launches the Studio user interface, providing access to reports

generated by HCL OneTest™ Embedded runtime analysis and test features.

• HCL OneTest™ Embedded Options:this launches the Setup for Microsoft Visual Studio tool.

The following commands are available:

• Apply:Applies the changes made

• OK:Apply the choices made and leave the window

• Enable or Disable: Enable or Disable the runtime analysis tools

• Cancel:Cancels modifications

Code Coverage Instrumentation Options

See About Code Coverage on page 72 and the sections about coverage types.

• Function instrumentation:

• ◦ SelectNoneto disable instrumentation of function inputs, outputs and termination instructions.

◦ SelectFunctionsto instrument function inputs only.

◦ SelectExitsto instrument function inputs, outputs and termination instructions.

• Function calls instrumentation (C only):

• ◦ SelectNoneto disable function call instrumentation.

◦ SelectCallsto enable function call instrumentation.

• Block instrumentation

• ◦ SelectNoneto disable block instrumentation.

◦ SelectStatement Blocksto instrument simple blocks only.

Chapter 4. Administrator Guide

◦ SelectImplicit Blocksto instrument simple and implicit blocks.

◦ SelectLoopsto instrument implicit blocks and loops.

• Condition instrumentation (C only)

• ◦ SelectNoneto disable condition instrumentation

◦ SelectBasicto instrument basic conditions

◦ SelectModified/Multipleto instrument multiple

◦ SelectForcedto instrument forced multiple conditions

• No Ternaries Code Coverage:when this option is selected, simple blocks corresponding for the ternary

expression true and false branches are not instrumented

• Instrumentation Mode:see Information Modes on page 339 for more information.

• ◦ Pass mode:allows you to distinguish covered branches from those not covered.

◦ Count mode:The number of times each branch is executed is displayed in addition to the pass mode

information in the coverage report.

◦ Compact mode:The compact mode is similar to the Pass mode. But each branch is stored in one bit

instead of one byte to reduce overhead.

Other Options

• Dump:this specifies the dump mode:

• ◦ SelectNoneto dump on exit of the application

◦ SelectCallingto dump on call of the specified function

◦ SelectIncomingto dump when entering the specified function

◦ SelectReturningto dump when exiting from the specified function

• Static Files Directory:allows you to specify where the.fdcand.tsffiles are to be generated

• Runtime Tracing:this option activates the Runtime Tracing runtime analysis feature

• Memory Profiling:this option activates the Memory Profiling runtime analysis feature

• Performance Profiling:this option activates the Performance Profiling runtime analysis feature

• Other:allows you to specify additional command-line options that are not available using the buttons. See the

Reference help for a complete list of Instrumentor options.

61

HCL® OneTest™ Embedded

62

Related Topics

Using Runtime Analysis Features on page 336 | Importing Files from a Microsoft Visual Studio Project file on

page 721 | |Working with Rational ClearQuest on page 51 | Working with Rational ClearCase on page 50

Chapter 5. Test Execution Specialist Guide
This guide describes tasks that you can perform to test application code in HCL OneTest™ Embedded for Eclipse IDE.

This guide is intended for testers or test execution specialists.

Testing with HCL OneTest™ Embedded for Eclipse IDE
Read these topics to learn how to use the product.

Getting started with HCL OneTest™ Embedded for Eclipse IDE
HCL OneTest™ Embedded for Eclipse IDE is designed to integrate into your existing Eclipse-based tool chain. Use this

section as a guide to a typical workflow for testing and evaluating your C source code in the Eclipse CDT environment.

Before you begin

These guidelines assume that you have some familiarity with the following concepts and tools:

• The Eclipse CDT development environment.

• The features and tools provided by HCL OneTest™ Embedded.

• The target platform on which you plan to run the tests.

About this task

It is important to understand the concepts and assets used by the product.

To start using HCL OneTest™ Embedded:

1. Familiarize yourself with the features and tools provided by the product. See Overview on page 14 and Test

assets overview on page 210.

2. Choose whether you are going to create a new project or import an existing CDT project.

Choose from:

◦ If you already have an Eclipse CDT project, import the project into HCL OneTest™ Embedded for

Eclipse IDE and convert it into a HCL OneTest™ Embedded project. See Importing C projects on

page 64.

◦ If you are starting a new C project or if want to import an unmanaged C project into Eclipse, create

a new HCL OneTest™ Embedded project and import the source files. See Creating test projects on

page 212.

Note: There is currently no migration path from HCL OneTest™ Embedded Studio test scripts and

command line tools into the HCL OneTest™ Embedded for Eclipse IDE environment.

3. Verify that the C source files build and run correctly.

Resolve any compilation errors if necessary.

4. Open the call graph to view the structure of your source code and create a new test harness. See Creating test

harnesses from the call graph on page 226.

63

HCL® OneTest™ Embedded

64

The generated test harness contains a test case, and optionally a stub behavior.

5. Open the test case and edit the initial and expected expressions for the each variable check. See Editing test

cases on page 216.

6. Run the test harness and compare the obtained values with the expected values for each variable in the test

case editor. See Running a test harness on page 232.

If necessary, repeat from step 4 to ensure that you obtain a passed test result.

7. Generate a test report from the results. See Generating test reports on page 957.

8. Deploy and run your test on the target platform by changing the test configuration and running the test again.

See Switching test configurations on page 231.

What to do next

Once your test harness is running correctly, you can use more of the features of the product:

• Measure code coverage, memory profiling, performance profiling, and static metrics with the runtime analysis

tools. See Runtime analysis overview on page 65.

• Include test data sets from data pools and create data dictionary to reuse data sets. See Creating data pools

on page 223 and Data dictionary overview on page 222.

• Create more test harnesses or add test cases and stubs to existing test harnesses.

• Create test suites to run multiple test harnesses and compare their results. See Creating test suites on

page 228.

• Integrate test suites into IBM® Rational® Quality Manager. See IBM Rational Quality Manager integration on

page 46.

Importing C projects
You can either create a new C project with the Eclipse CDT tools or you can import your existing C source files or

Eclipse projects into your HCL OneTest™ Embedded workspace.

About this task

HCL OneTest™ Embedded can only work with its own CDT managed build toolchain. Therefore, imported projects

must be converted to HCL OneTest™ Embedded projects.

To import an existing C project:

1. Click File > Import > General > Existing projects into workspace.

2. Follow the wizard to import the project into the workspace.

3. After importing, right-click the project and select Convert to HCL OneTest™ Embedded Project.

4. Select the default target deployment port (TDP) for the project and click Finish.

5. If you have not already enabled CDT indexing, click Window > Preferences > C/C++ > Indexer, select Index

unused headers and click OK.

Results

After conversion, the toolchain of the project is configured to use HCL OneTest™ Embedded instead of the default

toolchain. If necessary, you can temporarily switch to the original toolchain in the project properties. However, you

Chapter 5. Test Execution Specialist Guide

must switch back to the HCL OneTest™ Embedded toolchain to use HCL OneTest™ Embedded runtime analysis and

component testing tools.

Tip: You can edit the CDT managed build toolchain to use environment variables with the UNIX notation $$.

This can be useful when you are sharing projects with other users.

Related information

Importing HCL OneTest Embedded examples on page 65

Creating test projects on page 212

Target deployment port overview on page 17

Importing HCL OneTest™ Embedded examples
HCL OneTest™ Embedded is provided with several sample projects to help you get started.

To import the sample projects:

1. In the C/C++ perspective, click File > Import > General > Existing projects into workspace and click Next.

2. Click Select root directory, Browse, and choose a project folder in the following directory: <product

installation directory>/examplesEclipse/.

3. Click Select All and select Copy projects into workspace.

4. Click Finish.

Related information

Importing C projects on page 64

Creating test projects on page 212

Target deployment port overview on page 17

Analyzing source code

Runtime analysis overview
The runtime analysis tools are designed to closely monitor the behavior of your application for debugging and

validation purposes. These features use source code insertion to instrument the source code providing dynamic

analysis of the application while it is running, either on a native or embedded target platform.

The following tools are available:

• Code coverage performs code coverage analysis.

• Memory profiling analyzes memory usage and detects memory leaks.

65

HCL® OneTest™ Embedded

66

• Performance profiling provides metrics on execution time for each procedure/function/method of the

application. For C language, it also provides an estimation of WCET.

• Control Coupling provides coverage information on Control Coupling that represent the interactions between

modules (C language only).

• Data Coupling provides coverage information on def/use pairs identified in the application (C language only).

• Worst Stack Size computes an estimation of the maximum of the application stack size (C language only).

• Runtime tracing draws a real-time UML sequence diagram of your application.

Each of these runtime analysis tools can be used alone or together with the component testing features. When the

source code is run with any of the runtime analysis tools engaged, either alone or in a component test, the source

code is instrumented. The resulting instrumented code is then executed and the result is dynamically displayed in the

corresponding reports.

Note: Instrumentation of the source code generates a certain amount of overhead, which can impact

application size and performance.

Runtime analysis tools can analyze source code that complies with ANSI 89, ANSI 99, C99, and K&R C specifications.

Code coverage

Source code coverage consists of identifying which portions of a program are executed or not during a given test

case. Source code coverage is recognized as one of the most effective ways of assessing the efficiency of the test

cases applied to a software application.

The code coverage tool can provide the coverage information for the following source code elements:

• Statement blocks, decisions, and loops.

• Function or procedure calls.

• Basic conditions, modified conditions/decisions (MC/DC), multiple condition, and forced condition.

• Procedure entries and exits.

• Terminal or potentially terminal statements

• Statements that can't be covered in C.

For more information, see Code review overview on page 109.

Memory profiling

Runtime memory errors and leaks are among the most difficult errors to locate and the most important to correct.

The symptoms of incorrect memory use are unpredictable and typically appear far from the cause of the error. The

errors often remain undetected until triggered by a random event, so that a program can seem to work correctly when

in fact it's only working by accident. Memory profiling helps you detect HEAP memory allocation problems and leaks.

Chapter 5. Test Execution Specialist Guide

After execution of an instrumented application, the Memory Profiling report provides a summary diagram and a

detailed report for both byte and HEAP memory block usage. The summary diagrams give you a quick overview of

HEAP memory usage in blocks and bytes, including:

• The total HEAP memory allocated during the execution of the application.

• The HEAP memory that remains allocated after the application was terminated.

• The maximum HEAP memory usage encountered during execution

The detailed section of the report lists memory usage events identified as errors or warnings.

For more information, see Memory profiling overview on page 87.

Restriction: With HCL OneTest™ Embedded for Eclipse IDE, static and stack memory are not checked, only

dynamically allocated memory is checked.

Performance profiling

The performance profiling tool provides performance data for each software component so that you can locate the

performance bottlenecks. With this information, you can concentrate your optimization efforts on those portions of

code, which can lead to significant improvements in performance.

The Performance Profiling report provides function profiling data for your program and its components so that you

can see exactly where your program spends most of its time. A Top Functions graph provides a high level view of the

largest time consuming functions in your application. The Performance Summary section of the report indicates, for

each instrumented function, procedure, or method (collectively referred to as functions), the number of calls and the

time spent in the function and in its descendants. And for C language, it provides the Worst Case Estimation Time.

For more information, see Performance Profiling Results on page 96.

Runtime tracing

Runtime Tracing is a tool for monitoring real-time dynamic interaction analysis of your source code by generating

trace data, which is dynamically turned into a UML sequence diagram. The diagram displays a lifeline of the

interactions of the source code components. For more information, see Runtime tracing overview on page 102.

Control Coupling

HCL OneTest™ Embedded introduces a new coverage level called “Control Coupling" for C language that consists in

verifying that all the interactions between modules have been covered by at least one test. This new coverage level is

implemented in HCL OneTest™ Embedded as follows:

• Modules on C language and compilation units (example: C files that are independently compiled).

• Interactions are calls between 2 functions that are in 2 different compilation units.

• Control Coupling is not a simple interaction. It is a control flow in the calling module that ends with an

interaction with another module.

67

HCL® OneTest™ Embedded

68

For more information, see Control Coupling overview on page 182.

Data Coupling

HCL OneTest™ Embedded introduces a new coverage level called “Data Coupling" for C language that consists to

verify that all the global variables of the application under test has been consumed in read (also called use) and write

(also called def) during the tests, as following:

• For each global variable, HCL OneTest™ Embedded identifies the def and use. Then it considers all the

possible def/use pair as a data coupling.

• To cover a Data Coupling, i.e. a def/use pair, it should exist at least one test that has executed this def and this

use.

For more information, see Data Coupling on page 192.

Worst Stack Size

Static analysis and Dynamic analysis are used to provide an estimation of the worst stack size.

For more information, see Worst Stack Size overview on page 199.

Enable runtime analysis tools
When the source code is run with any of the runtime analysis tools enabled, either alone or in a component test, the

source code is instrumented and the results are displayed in a report.

Before you begin

Before running a test with any of the runtime analysis tools enabled, ensure that the correct Target Deployment Port

(TDP) is selected.

To enable runtime analysis tools on your source code:

1. In the project explorer, right-click the project on which you want to enable the runtime analysis tools and click

Properties.

2. Click C/C++ Build > Settings and select the Build TDP page to check that the correct TDP is selected.

If necessary, click the Target Deployment Port value to change the TDP.

3. Select the Build Instrument page and select Settings > General > Selective instrumentation.

4. Select the Build Options line and click Edit.

5. In the Build Options window, select the runtime analysis tools that you want to enable.

◦ Memory Profiling detects memory leaks and allocation problems.

◦ Performance Profiling locates performance issues and bottlenecks.

◦ Code Coverage provides coverage information of the source code as it is run.

◦ Runtime Tracing displays a dynamic UML sequence diagram of the run.

◦ Static Metrics evaluates the complexity of the source code.

◦ Code Review assesses compliance to coding rules.

◦ Debug enables the workbench debug mode.

Chapter 5. Test Execution Specialist Guide

6. Click OK, Apply the changes and close the Properties window.

7. Click Project > Clean > Clean all projects.

Result

If the project is successfully built, in the project explorer, the Binaries folder contains the compiled binary

executable for the project. If the project did not build successfully, see the Troubleshooting section for help on

resolving compilation issues.

Related information

Runtime analysis overview on page 65

Running instrumented applications
To run a program with runtime analysis tools enabled, you must run it as an instrumented application.

About this task

If you run the program with a standard C/C++ run configuration, the program is not instrumented and the runtime

analysis tools are not used.

To run an instrumented application:

1. Click Project > Clean > Clean all projects.

Result

If the project is successfully built, in the project explorer, the Binaries folder contains the compiled

instrumented program for the project.

2. Right-click the instrumented program and click Run As > Run Instrumented Application.

Results

After running the instrumented application, in the Project Explorer, the Application Result folder contains the

compiled binary executable for the project. To view the results of the run, see Opening runtime analysis reports on

page 959.

Estimating Instrumentation Overhead

Instrumentation overhead is the increase in the binary size or the execution time of the instrumented application,

which is due to source code insertion (SCI) generated by the Runtime Analysis features.

Source code insertion technology is designed to reduce both types of overhead to a bare minimum. However, this

overhead may still impact your application.

The following table provides a quick estimate of the overhead generated by the product.

69

HCL® OneTest™ Embedded

70

Code Coverage Overhead

Overhead generated by the Code Coverage feature depends largely on the coverage types on page 340 selected for

analysis.

A 48-byte structure is declared at the beginning of the instrumented file.

Depending on the information mode selected, each covered branch is referenced by an array that uses

• 1 byte in Default mode

• 1 bit in Compact mode

• 4 bytes in Hit Count mode

The actual size of this array may be rounded up by the compiler, especially in Compact mode because of the 8-bit

minimum integral type found in C and C++.

See Information Modes on page 339 for more information.

Other Specifics:

• Loops, switch and case statements: a 1-byte local variable is declared for each instance

• Modified/multiple conditions: one n-byte local array is declared at the beginning of the enclosing routine,

where n is the number of conditions belonging to a decision in the routine

I/O is either performed at the end of the execution or when the end-user decides (please refer to Coverage Snapshots

in the documentation).

As a summary, Hit Count mode and modified/multiple conditions produce the greatest data and execution time

overhead. In most cases you can select each coverage type independently and use Pass mode by default in order to

reduce this overhead. The source code can also be partially instrumented.

Memory and Performance Profiling and Runtime Tracing

Any source file containing an instrumented routine receives a declaration for a 16 byte structure.

Within each instrumented routine, a n byte structure is locally declared, where n is:

• 16 bytes

• +4 bytes for Runtime Tracing

• +4 bytes for Memory Profiling

• +3*t bytes for Performance Profiling, where t is the size of the type returned by the clock-retrieving function

For example, if t is 4 bytes, each instrumented routine is increased of:

Chapter 5. Test Execution Specialist Guide

• 20 bytes for Memory Profiling only

• 20 bytes for Runtime Tracing only

• 28 bytes for Performance Profiling only

• 36 bytes for all Runtime Analysis features together

Memory Profiling Overhead

This applies to Memory Profiling for C and C++. Memory Profiling for Java does not use source code insertion.

Any call to an allocation function is replaced by a call to the Memory Profiling Library. See the Target Deployment

Guide for more information.

These calls aim to track allocated blocks of memory. For each memory block, 16+12*n bytes are allocated to contain

a reference to it, as well as to contain link references and the call stack observed at allocation time. n depends on the

Call Stack Size Setting, which is 6 by default.

If ABWL on page 397 errors are to be detected, the size of each tracked, allocated block is increased by 2*s bytes

where s is the Red Zone Size Setting (16 by default).

If FFM on page 396 or FMWL on page 398 errors are to be detected, a Free Queue is created whose size depends

on the Free Queue Length and Free Queue Size Settings. Queue Length is the maximum number of tracked memory

blocks in the queue. Queue Size is the maximum number of bytes, which is the sum of the sizes of all tracked blocks

in the queue.

Performance Profiling Overhead

For any source file containing at least one observed routine, a 24 byte structure is declared at the beginning of the file.

The size of the global data storing the profiling results of an instrumented routine is 4+3*t bytes where t is the size of

the type returned by the clock retrieving function. See the Target Deployment Guide for more information.

Runtime Tracing Overhead

Implicit default constructors, implicit copy constructors and implicit destructors are explicitly declared in any

instrumented classes that permits it. Where C++ rules forbid such explicit declarations, a 4 byte class is declared as

an attribute at the end of the class.

Related Topics

Reducing Instrumentation Overhead on page 72 | Source code instrumentation overview on page 16

71

HCL® OneTest™ Embedded

72

Reducing Instrumentation Overhead

HCL OneTest™ Embedded Source Code Insertion (SCI) technology is designed to reduce both performance and

memory overhead to a minimum. Nevertheless, for certain cross-platform targets, it may need to be reduced still

further. There are three ways to do this.

Limiting Code Coverage Types

When using the Code Coverage feature, procedure input and simple and implicit block code coverage are enabled by

default. You can reduce instrumentation overhead by limiting the number of coverage types.

Note The Code Coverage report can only display coverage types among those selected for instrumentation.

Instrumenting Calls (C Language)

When calls are instrumented, any instruction that calls a C user function or library function constitutes a branch

and thus generates overhead. You can disable call instrumentation on a set of C functions using the Selective Code

Coverage Instrumentation Settings.

For example, you can usually exclude calls to standard C library functions such as printf or fopen.

Optimizing the Information Mode

When using Code Coverage, you can specify the Information Mode which defines how much coverage data is

produced, and therefore stored in memory.

Related Topics

Estimating Instrumentation Overhead on page 69 | Selecting Coverage Types on page 340 | Information Modes

on page 339

Code coverage

Code coverage overview
Source code coverage consists of identifying which portions of a program are executed or not during a given test

case. Source code coverage is recognized as one of the most effective ways of assessing the efficiency of the test

cases applied to a software application.

The code coverage tool can provide the coverage information for the following source code elements:

• Statement blocks, decisions, and loops.

• Function or procedure calls.

• Basic conditions, modified conditions/decisions (MC/DC), multiple condition, and forced condition.

• Procedure entries and exits.

• Terminal or potentially terminal statements

• Statements that are considered non-coverable in C.

Chapter 5. Test Execution Specialist Guide

See Coverage levels on page 73 for more details about each coverage level.

Information modes

The information mode is the method used to code the trace output. This has a direct impact of the size of the trace

file as well as on CPU overhead. You can change the information mode in the coverage type settings. See Changing

code coverage settings on page 81.

There are three information modes:

• Default mode: Each branch generates one byte of memory. This offers the best compromise between code

size and speed overhead.

• Compact mode: This is functionally equivalent to Pass mode, except that each branch needs only one bit of

storage instead of one byte. This implies a smaller requirement for data storage in memory, but produces a

noticeable increase in code size (shift/bits masks) and execution time.

• Hit Count mode: In this mode, instead of storing a Boolean value indicating coverage of the branch, a specific

count is maintained of the number of times each branch is executed. This information is displayed in the code

coverage report.

Count totals are given for each branch, for all trace files transferred to the report generator as parameters. In the code

coverage report, branches that have never been executed are highlighted with an asterisk '*'. The maximum count in

the report generator depends on the amount of memory available on the computer running the tests. If this maximum

count is reached, the report signals it with a Maximum reached message.

Note: The last bracket (}) in a function after a return statement is always displayed in red in the coverage

report, even if the function reports 100% coverage.

On-the-fly display
By default, code coverage generates a report when the execution ends. The on-the-fly mode generates code coverage

results dynamically during the execution. This is useful for applications that never exit or to interact with the

execution during the analysis, for example if you want to stop the code coverage when you reach a specified coverage

rate threshold.

Coverage levels
The product provides coverage information for various levels of statements, decisions, loops, calls, conditions.

Block coverage

When running the code coverage feature on C source code, the following coverage types are analyzed.

• Statement blocks (simple blocks): Simple blocks are the main blocks of the C function, introduced by decision

statements:

◦ THEN and ELSE FOR IF statements

◦ FOR, WHILE and DO ... WHILE blocks

73

HCL® OneTest™ Embedded

74

◦ Non-empty blocks introduced by switch case or default statements.

◦ True and false outcomes of ternary expressions (<expression> ? <expression> : <expression>).

◦ Blocks following a potentially terminal statement.

Each simple block is a branch. Every C function contains at least one simple block corresponding to its main

body.

• Decisions (implicit blocks): Implicit blocks are introduced by an IF statement without an ELSE or a SWITCH

statement without a DEFAULT. Each simple block is a branch. Every C function contains at least one simple

block corresponding to its main body.

• Loops (logical blocks): Logical blocks are defined by loop statements FOR, WHILE, and DO ... WHILE.

A typical FOR or WHILE loop can reach three different conditions:

◦ The statement block contained within the loop is executed zero times. The output condition is True

from the start

◦ The statement block is executed exactly once. The output condition is False, then True the next time

◦ The statement block is executed at least twice. The output condition is False at least twice, and

becomes True at the end.

In a DO...WHILE loop, because the output condition is tested after the block has been executed, two further

branches are created:

◦ The statement block is executed exactly once. The output is condition True the first time.

◦ The statement block is executed at least twice. The output condition is False at least once, then True

at the end.

Call coverage

Code coverage provides coverage of function or procedure calls by counting as many branches as it encounters

function calls while running the program. This type of coverage ensures that all the call interfaces can be shown to

have been exercised for each C function, which may be a pass or failure criterion in software integration test phases.

You can exclude specific C functions whose calls you do not want to measure coverage in the configuration settings

of the project. This can be useful for C library functions for example.

Condition coverage

For conditions, the following coverage types are analyzed:

• Basic condition coverage: Conditions are operands of either || or && operators wherever they appear in

the body of a C function, IF statements and ternary expressions, and tests for FOR, WHILE, and DO ... WHILE

statements even if these expressions do not contain || or && operators.

Two branches are involved in each condition, causing the sub-condition to be true or false. In a switch

statement, one basic condition is associated with every CASE and DEFAULT, whether implicit or not.

Chapter 5. Test Execution Specialist Guide

Two branches are enumerated for each condition, and one per CASE or DEFAULT.

• Modified condition/decision coverage (MC/DC): A modified condition (MC) is defined for each basic condition

enclosed in a composition of || or && operators, proving that the condition affects the result of the enclosing

composition. For example, in a subset of values affected by the other conditions, if the value of this condition

changes, the result of the entire expression changes. Because compound conditions list all possible cases,

you must find the two cases that can result in changes to the entire expression. The modified condition is

covered only if the two compound conditions are covered.

You can associate a modified condition with more than one case. Code Coverage calculates matching cases

for each modified condition. The number of modified conditions matches the number of Boolean basic

conditions in a composition of || and && operators.

• Multiple condition coverage: A multiple (or compound) condition is one of all the available cases for the ||

and && logical operator compositions, whenever it appears in a C function. It is defined by the simultaneous

values of the enclosed Boolean basic conditions. Remember that the right operand of a || or && operator is

not evaluated if the evaluation of the left operand determines the result of the entire expression.

Code Coverage calculates every available case for each composition. The number of enumerated branches is

the number of distinct available cases for each composition of the || or && operators.

• Forced condition coverage: Forced conditions are multiple conditions in which the instrumentation replaces

any occurrence of the || or && logical operators in the code, with | and & binary operators. You can use this

coverage type, after evaluating all modified conditions, to make sure that every basic condition has been

evaluated. With this forced condition coverage, you can ensure that only the basic condition has changed

between two tests.

Function coverage

When analyzing C source code, HCL® OneTest™ Embedded can provide the following function coverage:

• Procedure entries: Inputs identify the C functions that are executed. One branch is defined per C function.

• Procedure exits: These include the standard output (if coverable), and all return instructions, exits, and other

terminal instructions that are instrumented, as well as the input. At least two branches are defined per C

function.

The input is always enumerated, as is the output if it can be covered. If it cannot, it is preceded by a terminal

instruction involving returns or an exit. In addition to the terminal instructions provided in the standard definition file,

you can define other terminal instructions using the pragma attol exit_instr.

Additional statements

Some statements are identified as terminal, potentially terminal, or non-coverable.

75

HCL® OneTest™ Embedded

76

A C statement is terminal if it transfers program control out of sequence (RETURN, GOTO, BREAK, CONTINUE), or if it stops

the execution (EXIT). By extension, a decision statement (IF or SWITCH) is terminal if all branches are terminal; that is

if the non-empty THEN ... ELSE, CASE, and DEFAULT blocks all contain terminal statements. An IF statement without an

ELSE and a SWITCH statement without a DEFAULT are never terminal, because their empty blocks necessarily continue

the program sequence.

The following decision statements are potentially terminal if they contain at least one statement that transfers

program control out of their sequence (RETURN, GOTO, BREAK, CONTINUE), or that stops the execution (EXIT):

• IF without an ELSE

• SWITCH

• FOR

• WHILE or DO ... WHILE

Some C statements are considered non-coverable if they follow either a terminal instruction, a CONTINUE, or a BREAK,

and are not a GOTO label. Code coverage detects non-coverable statements during instrumentation and produces a

warning message that specifies the source file and line location of each non-coverable statement.

Note: User functions whose purpose is to terminate execution unconditionally are not evaluated. Furthermore,

code coverage does not statically analyze exit conditions for loops to check whether they are infinite. As a

result, FOR ... WHILE and DO ... WHILE loops are always assumed to be non-terminal, able to resume program

control in sequence.

Justification of non-covered lines of code

You can enter justification statements in uncovered branches of a program so that they are considered as exceptions

to the coverage rules. Thus, you identify in the source code the branches that are not covered and explain why they

are not covered. The justification text must be declared in the attol cov_justify pragma line of the uncovered branch

with one or multiple attributes.

Note: This feature applies to C and C++ programming languages only.

SYNTAX:

The justification pragma syntax is the following one:

#pragma attol cov_justify (<lineOffset>, <type>, <what>, <justification text>) [(….) [(….) …..]]

#pragma attol cov_justify is the pragma, and <lineOffset>, <type>, <what>, and <justification text> are the attributes.

Multiple statements can be specified in the same pragma line, with four attributes for each.

Each justification statement in a pragma line can cover only one branch of the code starting from a specified line of

the source code.

Chapter 5. Test Execution Specialist Guide

Double-quotes can be added if the attribute includes commas.

The attributes are the following ones:

• <type> attribute:

This attribute is mandatory. It is used to determine what kind of code must be covered and how it must be

covered.

You can use the following <type>values:

◦ proc: to justify that a function or a method is not covered.

◦ return: to justify that a return statement is not covered.

◦ branch or block: to justify that a block of code is not covered.

◦ implicit: to justify that an implicit else statement is not covered.

◦ logical, or for, or while: to justify that a loop is not covered (the loop number is given in the <what>

attribute).

◦ case: to justify that a case statement in a switch is not covered.

◦ call: to justify that a function call or method call is not covered.

◦ cond: to justify that a simple condition is not covered (the value true or false of the condition is given

in the <what> attribute).

◦ mcdc: to justify that a MC/DC is not covered (the description of the MD/DC is given in the <what>

attribute).

• <lineOffset> attribute:

This attribute is optional.

<lineOffset> attribute represents the number of lines between the pragma and the branch that must be

justified. The value can be '+' if the branch is located after the pragma, or '-' if the branch is located before the

pragma.

If the <lineOffset> attribute is omitted <lineOffset> is considered as "0". It means that the justification applies

to the closest type of branch (attribute <type>) from the pragma. If there are multiple branches at a same

distance of the pragma, <lineOffset> helps distinguish between branches which branch should be justified.

The <lineOffset> attribute specifies the line where the branch or condition to justify starts, it is relative to the

pragma line (+/-), allowing to write this pragma line anywhere in the source file.

Note: For the <block> value, the target block of lines is the block where the pragma is declared.

• <what> attribute:

The <what> values are used to help specify some of the branches to be justified. It depends on the attribute

<type> values being used:

77

HCL® OneTest™ Embedded

78

◦ For block or branch <type>: The value is a string that describes the logical position of the block in the

function, like ‘/then/else/seq’.

◦ For logical, for and while <type>: The value is a list of ‘0’ (the loop is not executed), ‘1’ (the loop is

executed only once) or ‘2+’ (the loop is executed more that once) separated by ‘ ;’, each of them could

be prefixed with the block description string.

◦ For cond <type>: The value is <expression>:<value>, <value> is true or false and <expression>.

◦ For mcdc <type>: The value is a list of impossible combinations of the conditions separated by ‘;’,

each value of the conditions are set with ‘T’ for true, ‘F’ for false, or ‘X’ if the condition is not evaluated.

For example, if the MC/DC consists of 3 conditions, the <what> value could be the following one:

“TFX;FXX”.

• <justification text> is the reason why this part of code can't be covered by a test.

<justification> is mandatory. It is presented as a free text in the coverage report that justifies a uncovered

branch. It explains why it is not covered.

Example:

#pragma attol cov_justify (call, ”my justification”) (block, ”myjustification”) (cond, ”:true”,
 ”my justification”) (for, ”0;1” ,”my justification”)

The following table lists the parameters that can be entered in the “<lineOffset>” and <what> attributes depending on

the parameters indicated in the <type> attribute.

<type> attribute <lineOffset> attribute <what> attribute

proc For the <type>=proc, the pragma line

declared above or inside the body, or

just after the end of the body justifies

the function/procedure entry.

return For <type>=return, the pragma line,

must be just before or just after the

return line.

branch/block For <type>=branch or block. It starts

on the first { of that block or on the

line of the unique statement.

The “branch to cover" attribute is

used for a branch=<type> The branch

string format is a list of :

/then/else/seq or /

It is used to indicate which branch

to cover when there are multiple

branches on the same line.

Chapter 5. Test Execution Specialist Guide

<type> attribute <lineOffset> attribute <what> attribute

It can be empty is there are no ambi­

guity with the line number.

implicit For <type>=implicit, the pragma line

must be just before the decision, or

at the else place.

The “branch to cover" attribute is

used for <type>= <branch>.

The branch string format is a list of: /

then/else/seq or /

It is used to indicate which branch

to cover when there are multiple

branches on the same line.

It can be empty is there are no ambi­

guity with the line number.

logical/for/do/while For <type>=logical/for/while, the

pragma line must be just before the

‘for' or ‘while’, or ‘do’ keyword.

This attribute is used for <type>=log­

ical, the branch string format looks

like ‘branch depth/instruction type/

value’ with :

instruction type is:

/for or /while or /do

The value is /0 or /1 or /2+ to specify

which part must be covered and jus­

tified. It is mandatory and can speci­

fy multiple parts if separated by ; e.g.

“/0 ; /1”

Branch depth is a suite of strings like

/then /else /for /while etc. clari­

fying the code depth of the branch

where the loop has been found.

e.g. “/else/then/for/while/1” or

“/while/1” or “/1”

case For <type>=case, the pragma line

must be just before or just after the

case line.

Used for <type>=case, the string de­

tails the case expression (between

‘case’ and the ‘:’) to cover into the

switch block.

79

HCL® OneTest™ Embedded

80

<type> attribute <lineOffset> attribute <what> attribute

A case is both a block and a condi­

tion. If you enter a justification for a

case <type>, it is the condition that is

justified. You need to declare another

pragma to justify the corresponding

block.

It can be empty is there are no ambi­

guity with the line number.

call For <type>=call, the pragma line

must be just before or just after the

call line,

Used for type=call, the string details

the called method name to cover.

It can be empty is there are no ambi­

guity with the line number.

cond For <type>=cond, the pragma line

must be just before or just after the

condition line.

“condition expression:value" is used

for “<type>”=cond.The string indi­

cates the condition expression to

cover into the decision with the value

to cover, true or false. The “condition

expression” can be empty if there is

no ambiguity with the line number

but the value must always be spec­

ified after a colon at the end of the

string.

Example: “var>5:false” or “:true”.

Multiple values can be justified, sepa­

rated by ‘;’ such as “:true ; :false”

mcdc For <type>=mcdc, the pragma line

must be just before or after the first

condition line, or just before or after

the last condition line.

“combinations" is used for type=

mcdc. It is a series of patterns sepa­

rated by a semi-colon ";". It cannot be

empty.

Once the source code is built, you can see the results of the non-coverage justification statements in the Code

Coverage report, on the Source page.

For more information about the code coverage reports, see About coverage reports on page 961.

Chapter 5. Test Execution Specialist Guide

Changing code coverage settings
You can edit the configuration settings for code coverage to explicitly include or exclude files, change the information

mode, coverage level, and other settings.

To change the code coverage settings:

1. In the project explorer, right-click the project on which you want to change the settings and click Properties.

2. Click C/C++ Build > Settings and select Build Settings.

3. Expand Code coverage to access the settings and set the required coverage level for functions, calls, blocks

and conditions, as well as any other required settings.

Instrumentation control

You can use the coverage type settings to declare various types of coverage. See Coverage

levels on page 73 for more information about these settings.

Coverage level functions

Select between function Entries, With exits, or None.

Coverage level calls

Select Yes or No to toggle call code coverage.

Coverage level blocks

Select the desired block code coverage type. You can combine, enable, or disable

any of these coverage types before running the application node. All coverage

types selected for instrumentation can be filtered out in the coverage viewer.

Exclude for loops

Select Yes to exclude for loops from instrumentation. Only while and do loops are

instrumented.

Coverage level conditions

Selects the condition level of code coverage to be included in the report:

◦ None: The coverage report ignores conditions.

◦ Basic: Only basic conditions are included in the coverage report.

◦ Modified (MC/DC): Only modified conditions are included in the coverage

section of the test report.

◦ Modified and Multiple: Both modified and multiple conditions are included

in the coverage report.

◦ Forced Modified (MC/DC): The report includes modified conditions where

all operators are replaced with bitwise operators.

◦ Forced Modified and Multiple: The report includes modified and multiple

conditions where all operators are replaced with bitwise operators.

81

HCL® OneTest™ Embedded

82

Condition in expressions

Select Yes to consider relational operators in an expression (for example: y =

(a>0)) as conditions.

Bitwise as logical

Select Yes to instrument bitwise operators as logical when both operands are

booleans.

Ternary coverage

When this option is selected, code coverage reports ternary expressions as

statement blocks.

Information mode

This setting specifies the information modes to be used by code coverage.

◦ Default (Optimized for Code Size and Speed): This setting uses one byte

per branch to indicate branch coverage.

◦ Compact (Optimized for Memory): This setting uses one bit per branch.

This method saves target memory but uses more CPU time.

◦ Report Hit Count: This adds information about the number of times each

branch was executed. This method uses one integer per branch.

Excluded function calls

Specifies a list of functions to be excluded from the call coverage instrumentation

type, such as printf or fopen. Use the Add, Remove buttons specify the functions to

be excluded.

Not returning functions

Type the identifiers (not signatures) of the functions that do not return (functions

that execute a longjmp or exit).

Advanced options

Trace file name (.tio)

this allows you to specify a path and filename for the .tio dynamic coverage

trace file.

Key ignore source file path

Identifies source files based only on the filename instead of the complete path.

Use this option to consolidate test results when a same file can be located in

different paths. This can be useful in some multi-user environments that use

source control. If you use this option, make sure that the source file names used by

your application are unique.

Chapter 5. Test Execution Specialist Guide

User comment

This adds a comment to the code coverage report. This can be useful for

identifying reports produced under different configurations. To view the comment,

click the a magnifying glass symbol that is displayed at the top of your source

code in the coverage viewer.

Report summary

Select Yes to add the coverage summary to the summary text file of the selected

node.

On-the-fly frequency dump

Specify the function call number after which the coverage results are updated

dynamically during execution. 0 means no update during execution.

4. Click OK, Apply the changes and close the Properties window.

Related information

Coverage levels on page 73

Engaging runtime analysis tools on page 68

Code coverage for assembler source files
With HCL OneTest™ Embedded for Eclipse IDE, you can collect coverage metrics for assembler source files. Coverage

information is displayed in the coverage report.

Note:

This feature supports only ARM in 32 bits mode. It is an extension of the C language mode.

You must have configured HCL OneTest™ Embedded for Eclipse IDE to recognize the .asm file extension used

for assembler files.

Coverage Assembler language for ARM processor is fully compatible with C/C++ and Ada code coverage.

Assembler source files are taken into account in the build as C/C++ source files. Optionally, C/C++ source

files could be instrumented at the assembler level instead of at the C/C++ level.

The supported coverage levels are:

• Functions

• Functions and exits

83

HCL® OneTest™ Embedded

84

• Statement blocks

• Calls

CONFIGURATION

Code coverage for assembler source files requires the use of an appropriate TDP. You can use the

clinCrossRaspiRemote.xdp and cwinCrossRaspiRemote.xdp that are delivered, for example.

There two use case scenarios:

• For a project that uses both C and assembler source files, you only have to add the assembler .asm source

files to the list of sources to be compiled. The .asm files are then instrumented, built, and linked with the other

C sources to produce an executable file.

• For C code source files that are instrumented in assembler mode, the C source files are converted into

assembler files by using the gcc -S command. Then, they are instrumented in assembler mode, they are

converted into assembly language, and linked.

To implement this use case scenario, you must set the INSTR_C_AS_ASM=1 environment variable.

To add this environment variable in Studio, proceed as follows:

◦ Right-click on your project in the Project Explorer, and select Properties.

◦ Select C/C++ Build > Environment.

◦ Click Add, give a name to the variable, and enter INSTR_C_AS_ASM=1 in Value.

◦ Apply and close the window.

Chapter 5. Test Execution Specialist Guide

See the following example:

Note: In some case, when the assembler code increased due to the code coverage level, it might be

necessary to re-organize the assembler code (Example: you can move data pools), or to decrease the level of

code coverage (Example: you can delete code coverage for some functions calls in libraries).

Using the Code Coverage Viewer to view reports

Code Coverage for Ada, C and C++

The Code Coverage Viewer allows you to view code coverage reports generated by the Code Coverage feature. Select

a tab at the top of the Code Coverage Viewer window to select the type of report:

• A Source report that displays the source code under analysis, highlighted with the actual coverage

information.

• A rates report that provides detailed coverage rates for each activated coverage type.

You can use the Report Explorer to navigate through the report. Click a source code component in the Report Explorer

to go to the corresponding line in the Report Viewer.

You can jump directly to the next or previous Failed test in the report by using the Next Failed Test or Previous Failed

Test buttons from the Code Coverage toolbar.

85

HCL® OneTest™ Embedded

86

You can jump directly to the next or previous Uncovered line in the Source report by using the Next Uncovered Line or

Previous Uncovered Line buttons in the Code Coverage feature bar.

When viewing a Source coverage report, the Code Coverage Viewer provides several additional viewing features for

refined code coverage analysis.

To open a Code Coverage report:

1. Right-click a previously executed test or application node.

2. If a Code Coverage report was generated during execution of the node, select View Report and then Code

Coverage.

Coverage types

Depending on the language selected, the Code Coverage feature offers the following choices:

• Function or Method code coverage: select between function Entries, Entries and exits, or None.

• Call code coverage: select Yes or No to toggle call coverage for Ada and C.

• Block code coverage: select the block coverage method you need.

• Condition code coverage: select condition coverage for Ada and C.

Any of the Code Coverage types selected for instrumentation can be filtered out in the Code Coverage report stage if

necessary.

To filter coverage types from the report, proceed as follows:

1. From the Code Coverage menu, select Code Coverage Type.

2. Toggle each coverage type in the menu.

For example, to filter out multiple conditions (MC) from the report, select Code Coverage > > Code Coverage

Type, and clear Multiple conditions.

3. Alternatively, you can filter out coverage types from the Code Coverage toolbar by toggling the Code Coverage

type filter buttons.

Test by test analysis mode

The test by test analysis mode allows you to refine the coverage analysis by individually selecting the various tests

that were generated during executions of the test or application node. In Test-by-Test mode, a Tests node is available

in the Report Explorer.

When test by test analysis is disabled, the Code Coverage Viewer displays all traces as one global test.

To toggle test by test mode, proceed as follows:

Chapter 5. Test Execution Specialist Guide

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu, select Test-by-Test.

To select the Tests to display in Test-by-Test mode, follow these steps:

1. Expand the Tests node at the top of the Report Explorer.

2. Select one or several tests. The Coverage Viewer provides code coverage information for the selected tests.

Opening the HTML report

You can open the code coverage report in an HTML format if it is available.

To open the HTML report, select Open HTML report in the Coverage Viewer menu.

The HTML coverage report has been generated in the build folder with the extension .cov.html. The root name of the

report is the name of the application, or the name of the test harness, or the name of the test suite result.

Note: The HTML report is created from a template file: covreport.template located in the folder

<installation folder>/lib/report. You can modify this template. This is the default template that

can be used as a string point for a new template.

To select a new template file, select Code coverage > Advanced options in the build settings. Then, click Coverage

Report Template to select the new template file.

Memory profiling

Memory profiling overview
Memory profiling helps you detect memory allocation problems and leaks.

Runtime memory errors and leaks are among the most difficult errors to locate and the most important to correct.

The symptoms of incorrect memory use are unpredictable and typically appear far from the cause of the error. The

errors often remain undetected until triggered by a random event, so that a program can seem to work correctly when

in fact it's only working by accident.

After execution of an instrumented application, the memory profiling report provides a summary diagram and a

detailed report for both byte and memory block usage. The summary diagrams give you a quick overview of memory

usage in blocks and bytes, including:

• The total memory allocated during the execution of the application.

• The memory that remains allocated after the application was terminated.

• The maximum memory usage encountered during execution

The detailed section of the report lists memory usage events identified as errors or warnings.

87

HCL® OneTest™ Embedded

88

Related reference

Memory profiling warnings on page 993

Memory profiling errors on page 991

Checking for ABWL and FMWL errors
You can insert pragma macros into your source code to check for Late Detect Array Bounds Write (ABWL) and Late

Detect Free Memory Write (FMWL)

About this task

By default, memory profiling checks for ABWL and FMWL errors whenever the routines are called or whenever the free

queue is actually flushed. In some cases, you might want to manually specify when to check for ABWL and FMWL

errors, and on which functions. You can use the ABWL and FMWL check frequency setting to perform a check at the

following times:

• Each time the memory is dumped (by default).

• Each time a manual check macro is encountered in the code.

• Each function return.

The checks can be performed either on all memory blocks or only a selection of memory blocks.

1. To indicate where you want an ABWL or FMWL check to occur in your source code, insert an _ATP_CHECK()

macro at the corresponding location.

Use the following syntax for the pragma macro:

#pragma attol insert _ATP_CHECK(@RELFLINE)

Each time this macro is encountered during execution, memory profiling checks for ABWL and FMWL errors

on the specified blocks. The @RELFLINE parameter allows navigation from the memory profiling viewer to the

corresponding line in the source code.

2. To create a selection of blocks that you explicitly want to verify, create a list in your source code using the

_ATP_TRACK() macro variable. The syntax for this macro is:

Use the following syntax for the pragma macro:

#pragma attol insert _ATP_TRACK(<pointer>)

Related reference

Memory profiling warnings on page 993

Memory profiling errors on page 991

Chapter 5. Test Execution Specialist Guide

Related information

Memory profiling overview on page 87

Engaging runtime analysis tools on page 68

Memory profiling user heap
Memory profiling can use heap management routines on target hardware platforms where there are no or only partial

provisions for memory management instructions.

When using Memory profiling on some embedded or real-time target platforms, you might encounter one of the

following situations:

• Situation 1: There are no provisions for malloc, calloc, realloc or free functions on the target platform. The

program uses custom heap management routines that may use a user API. Such routines could, for example,

be based on a static buffer that performs memory allocation and free functions. In this case, you need to

customize the memory heap parameters RTRT_DO_MALLOC and RTRT_DO_FREE in the target deployment port

(TDP) to use the custom malloc and free functions. In this case, you can access the custom API functions.

• Situation 2: There are partial implementations of malloc, calloc, realloc or free functions on the target platform,

but other functions provide methods of allocating or freeing heap memory. In this case, you do not have

access to any custom API. This requires customization of the TDP. Refer to the documentation provided in the

target deployment port editor for customization options.

In both of the above situations, memory profiling can use the heap management routines to detect memory leaks,

array bounds and other memory-related defects.

Note: Application pointers and block sizes can be modified by memory profiling in order to detect Late

Detect Array Bounds Write (ABWL) errors. Actual-pointer and actual size refer to the memory data handled by

memory profiling, whereas user pointer and user size refer to the memory handled natively by the application-

under-analysis. This distinction is important for the memory profiling ABWL and red zone settings.

Target deployment port API

The TDP library provides the following API for memory profiling:

void * _PurifyLTHeapAction (_PurifyLT_API_ACTION, void *, RTRT_U_INT32, RTRT_U_INT8);

In the function _PurifyLTHeapAction, the first parameter is the type of action that will be or has been performed on the

memory block pointed by the second parameter. The following actions can be used:

typedef enum {
 _PurifyLT_API_ALLOC,
 _PurifyLT_API_BEFORE_REALLOC,
 _PurifyLT_API_FREE
} _PurifyLT_API_ACTION;

The third parameter is the size of the block. The fourth parameter is either of the following constants:

89

HCL® OneTest™ Embedded

90

#define _PurifyLT_NO_DELAYED_FREE 0
#define _PurifyLT_DELAYED_FREE 1

If an allocation or free instruction has a size of 0, this fourth parameter indicates a delayed free in order to detect Late

Detect Free Memory Write (FWML) and Freeing Freed Memory (FFM) errors. See the Build configuration settings on

page 980 section for the memory profiling settings.

A freed delay can only be performed if the block can be freed with RTRT_DO_FREE (for the situation 1 described

previously) or ANSI C free (for situation 2). For example, if a function requires more parameters than the pointer

to deallocate, then the FMWL and FFM error detection cannot be supported and FFM errors will be indicated by a

Freeing Unallocated Memory (FUM) error instead.

The following function returns the size of an allocated block, or 0 if the block was not declared to Memory Profiling.

This allows you to implement a library function similar to the msize from Microsoft™ Visual 6.0.

RTRT_SIZE_T _PurifyLTHeapPtrSize (void *);

The following function returns the actual-size of a memory block, depending on the size requested. Call this function

before the actual allocation to find out the quantity of memory that is available for the block and the contiguous red

zones that are to be monitored by memory profiling.

RTRT_SIZE_T _PurifyLTHeapActualSize (RTRT_SIZE_T);

Exemple

Example

In the following examples, my_malloc, my_realloc, my_free and my_msize demonstrate the four supported memory heap

behaviors. The following routine declares an allocation:

void *my_malloc (int partId, size_t size)
{
 void *ret;
 size_t actual_size = _PurifyLTHeapActualSize(size);
 /* Here is any user code making ret a pointer to a heap or
 simulated heap memory block of actual_size bytes */
 ...
 /* Then comes the memory profiling action */
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0);
 /* The user-pointer is returned */
}

In situation 2, where you have access to a custom memory heap API, replace the "..." with the actual malloc API

function.

For a my_calloc(size_t nelem, size_t elsize), pass on nelem*elsize as the third parameter of the _PurifyLTHeapAction

function. In this case, you might need to replace this operation with a function that takes into account the alignments

of elements.

To declare a reallocation, two operations are required:

void *my_realloc (int partId, void * ptr, size_t size)
{

Chapter 5. Test Execution Specialist Guide

 void *ret;
 size_t actual_size = _PurifyLTHeapActualSize(size);
 /* Before comes first Memory Profiling action */
 ret = _PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC, ptr, size, 0);
 /* ret now contains the actual-pointer */
 /* Here is any user code making ret a reallocated pointer to a heap or
 simulated heap memory block of actual_size bytes */
 ...
 /* After comes second Memory Profiling action */
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0);
 /* The user-pointer is returned */
}

To free memory without using the delay:

void my_free (int partId, void * ptr)
{
 /* Memory Profiling action comes first */
 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, 0);
 /* Any code insuring actual deallocation of ret */
}

To free memory using a delay:

void my_free (int partId, void * ptr)
{
 /* Memory Profiling action comes first */
 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, 1);
 /* Nothing to do here */
}

To obtain the user size of a block:

size_t my_msize (int partId, void * ptr)
{
 return _PurifyLTHeapPtrSize (ptr);
}

Use the following macros to save customization time when dealing with functions that have the same prototypes as

the standard ANSI functions:

#define _PurifyLT_MALLOC_LIKE(func) \
void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T size) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapActualSize (size)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0); \
}
#define _PurifyLT_CALLOC_LIKE(func) \
void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T nelem, RTRT_SIZE_T elsize) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapActualSize (nelem * elsize)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, nelem * elsize, 0); \
}
#define _PurifyLT_REALLOC_LIKE(func,delayed_free) \
void *RTRT_CONCAT_MACRO(usr_,func) (void *ptr, RTRT_SIZE_T size) \
{ \

91

HCL® OneTest™ Embedded

92

 void *ret; \
 ret = func (_PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC, \
 ptr, size, delayed_free), \
 _PurifyLTHeapActualSize (size)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0); \
}
#define _PurifyLT_FREE_LIKE(func,delayed_free) \
void RTRT_CONCAT_MACRO(usr_,func) (void *ptr) \
{ \
 if (delayed_free) \
 { \
 _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, delayed_free); \
 } \
 else \
 { \
 func (_PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, delayed_free)); \
 } \
}

Changing memory profiling settings
You can edit the configuration settings for memory profiling to specify the errors and warnings that you want to

detect and to set other advanced options.

To change the memory profiling settings:

1. In the project explorer, right-click the project on which you want to change the settings and click Properties.

2. Click C/C++ Build > Settings and select Build Settings.

3. Expand Memory profiling to access the settings and set the error and warning detection options as well as

any other required options.

The following settings are available:

Instrumentation control

You can specify the type of memory errors and warnings that you want to detect. See Memory

profiling errors on page 991 and Memory profiling warnings on page 993 for more

information about these settings.

Detect File in Use (FIU)

When the application exits, this option reports any files left open.

Detect Memory in use (MIU)

When the application exits, this option reports allocated memory that is still

referenced.

Free Invalid Memory (FIM)

This option activates the detection of invalid free memory instructions.

Detect Signal (SIG)

This option indicates the signal number received by the application forcing it to

exit.

Chapter 5. Test Execution Specialist Guide

Detect Freeing Freed Memory (FFM) and Detect Free Memory Write (FMWL)

Select Yes to activate detection of these errors.

Free queue length (blocks)

Specifies the number of memory blocks that are kept free.

Free queue size (bytes)

Specifies the total buffer size for free queue blocks.

Largest free queue block size (bytes)

Specifies the size of the largest block to be kept in the free queue.

Detect Array Bounds Write (ABWL)

Select Yes to activate detection of ABWL errors.

Red zone length (bytes)

Specifies the number of bytes added by Memory Profiling around the memory

range for bounds detection.

Number of functions in call stack

Specifies the maximum number of functions reported from the end of the CPU call

stack. The default value is 6.

Only show memory leaks with call stack

Select this option to only record memory leaks that are associated with a call

stack. Memory allocations that occurred before the application started do not have

a call stack and are not included in the Memory Profiling report.

Line number link

Select Statement to link the line number in the report to the corresponding

allocation or free statement in the function. Select Function to link only to the

function entry and to improve performance.

Only show new memory leaks in each dump

In multi-dump report, Memory leaks (MLK) and potential leaks (MPK) are only

reported once.

Advanced options

Trace File Name (.tpf)

This setting allows you to specify a filename for the generated .tpf trace file.

Exclude block tracking before init

Disables memory profiling for any memory blocks allocated before the first

execution of instrumented code. Use this option to prevent crashes when the

system uses memory allocations that cannot be tracked.

93

HCL® OneTest™ Embedded

94

Excluded global variables

Specifies a list of global variables that are not to be inspected for memory leaks.

This option can be useful to save time and instrumentation overhead on trusted

code. Use the Add and Remove buttons to add and remove global variables.

Exclude variables from directories

Specifies a list of directories from which any variables found in files are not to be

inspected for memory leaks.

Break on error

Use this option to break the execution when an error is encountered. The break

point must be set to priv_check_failed in debug mode.

ABWL and FMWL check frequency

Use this to check for ABWL and FMWL errors:

◦ Each time the memory is dumped (by default).

◦ Each time a manual check macro is encountered in the code.

◦ Each function return.

These checks can be performed either on all memory blocks or only a selection of

memory blocks. See Checking for ABWL and FMWL errors on page 88 for more

information.

Preserve block content

Set this setting to Yes to preserve the content of memory blocks freed by the

application. Use this setting to avoid application crashes when memory profiling

is engaged. When this setting is enable, reads to freed blocks of memory are no

longer detected.

4. Click OK, Apply the changes and close the Properties window.

Related reference

Memory profiling errors on page 991

Memory profiling warnings on page 993

Related information

Memory profiling overview on page 87

Memory profiling user heap on page 89

Enable runtime analysis tools on page 68

Chapter 5. Test Execution Specialist Guide

Performance profiling

Performance profiling overview
The performance profiling tool provides performance data for each software component so that you can locate the

performance bottlenecks.

With performance profiling, you can concentrate your optimization efforts on those portions of code, which can lead

to significant improvements in performance.

The performance profiling report provides function profiling data for your program and its components so that you

can see exactly where your program spends most of its time. A Top Functions graph provides a high level view of the

largest time consuming functions in your application. The Performance Summary section of the report indicates, for

each instrumented function, procedure, or method (collectively referred to as functions), the number of calls and the

time spent in the function and in its descendants. For C language, it also provide an estimation of WCET. Optionally, it

includes the WCET calculation (Worst Case Execution Time) results.

Related information

About performance profiling reports on page 968

Performance profiling settings
You can configure the performance profiling settings before running your application in HCL OneTest™ Embedded for

Eclipse IDE.

Build settings

All the following options must be set from the Build settings tab in the Properties window. To open this tab:

• In the Project Explorer, right-click on the project and click Properties.

• In the Properties window, click C C++ Build > Settings.

Enable the Performance Profiling

• In the Build Settings tab, click Settings > General > Selective instrumentation.

• In the right pane, click the Value field in Build options and click ... to open the Build options

window.

• In the Build options list, click Performance Profiling to enable the feature.

Generate a trace file

• In the Build Settings tab, click Settings > Performance profiling.

• In Trace file name (.tqf), click ... to open the editor window and specify a filename for the

generated .tqf trace file for performance profiling.

95

HCL® OneTest™ Embedded

96

To get an evaluation of the Worst Case Execution Time in the report, you must set the WCET option.

Select the Worst Case Execution Time and/or the maximum execution time for each function and descendants:

• In the Build Settings tab, click Settings > Performance profiling.

• In the right pane, click Compute F max and F+D max time and select a value depending on the

execution time that you want to be calculated for your project:

◦ No: Does not calculate the maximum execution time for each function and descendants.

◦ Yes: Calculate the maximum execution time for each function and its descendants.

◦ Yes + WCET: Calculate the maximum execution time for each function and descendants,

and the Worst Case Execution Time. With this option selected, the report indicates the

number of time a function is called.

To get the performance profiling per entry point, you must enter the list of entry point threads of your application.

Entry points

To get the performance profiling per entry point, you must enter the list of entry points for each thread of

your application.

• In the Build Settings tab, click General > Multi-thread options.

• Click ... to open the editor and enter the list of entry points for each thread of your application .

Use commas to separate the thread names.

Then, run the application and see the Performance report.

Performance Profiling Results
The Performance Profiling report provides function profiling data for your program and its components so that you

can see exactly where your program spends most of its time. When the configuration settings are set and the test

application is run, you can see the Performance Profiling report.

The default Performance report is in HTML format. It is generated from a template named wcetreport.template

provided as text file that you can modify to customize the report. It uses four online JavaScript libraries:

• Bootstrap,

• JQuery,

• Font Awesome,

• VisJS.

These libraries are not provided. You need an internet connectivity when you open the report. If not, download the

libraries (.css and .js files), copy them in the same folder than your report, and modify the template file as follows:

Replace the following lines:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">

Chapter 5. Test Execution Specialist Guide

<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>

With the following ones:

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script

The Performance profiling report is made of Summary, Functions and the Call Graph parts.

SUMMARY

Summary table

The Summary table displays the total number of functions and the number of functions that have

never been executed and for which we have no data. If the instrumentation has been done with the

WCET option (Worst Case Execution Time), then the table contains the list of the entry points with an

evaluation of the WCET for each of them. This information can be empty (and the cell is red) if the

WCET could not be computed. This can occur when one of the called functions in the call graph starting

with this entry point has never been executed.

The WCET is given for each entry point if you have entered the list of entry point of your application in

the Settings. For more details, see Performance profiling settings on page 95.

97

HCL® OneTest™ Embedded

98

Function time graphs

The Summary is followed by two graphs that provide a high level view of the largest time consumers

detected by Performance Profiling in your application.

• % Function Time: It gives the five top functions with the greatest percentage of Function Time.

• Average Function Time: It gives the five top functions with the greatest Average Function Time.

FUNCTIONS

The Functions section of the report displays a table with the instrumented functions, procedures or methods

(collectively referred to as functions) found in the application with the following information:

• Functions: Name of the function (in red if the function has never been executed).

If you have selected the WCET option, the chevron in front of the name allows the user to see how many times

this function calls other functions. This can help to understand how the WCET is calculated.

• EP: Indicate if this function is an entry point or not. You can provide the list of the entry points, or, if not, they

are deduced from the call graph (all the functions that are never called).

• # Calls: Number of times the function is called. If this value is 0, there is no more information for this function

in the table because it has never been executed.

• Function Time: Total time spent for executing the function, excluding its descendants.

• Function + Descendants Time: Total time spent for executing the function, including its descendants.

• % Function Time: Percentage of time spent in this function against the total execution time.

• % Function + Descendants Time: Percentage of time spent for executing the function and its descendants

against the total execution time.

• Average Function Time: Average time spent for executing this function, excluding its descendants.

• Max Function Time: Only if you set the option Compute F max and F + D max. Indicates the maximum time

spent in a call while executing this function, excluding its descendants.

Chapter 5. Test Execution Specialist Guide

• Max Function + Descendants Time: Only if you set the option Compute F max and F + D max time, see

Performance profiling settings on page 95. This is the maximum time spent in a call while executing this

function, including its descendants.

• WCET: Only if you set the option WCET, see Performance profiling settings on page 95. It gives an

evaluation of the Worst Case Execution Time. This information can be empty if the WCET could not be

calculated during the execution. It is the case when one of the function and its descendants has never been

executed. Click the chevron icon to deploy the list of functions that are not called.

Call Graph

The Call Graph part displays all the functions in an interactive call graph that can be moved from left to right or from

top to bottom. If the option WCET has been set, a tooltip on each function (node of the graph) gives the WCET. For

more information, see Performance profiling settings on page 95.

Customize the Performance Report
You can customize a Performance report.

The Performance report is based on a template called wcetreport.template that you can find in the following folder:

• In Windows:

<installation_directory>\HCL\HCLOneTest\Embedded\lib\reports

• In Unix:

<installation_directory>/HCL/HCLOneTest/Embedded/lib/reports

Raw data

This template is made of three sections:

• The HTML section that is the common part of all reports,

• A JavaScript section that sets the tables and call graph depending of 2 variables dynamically initialized while

the report is creating:

var data = {{json}}; // the raw data

var d = new Date({{date}}) // the date of the generation

99

HCL® OneTest™ Embedded

100

Raw data is composed of three sections at the top level:

• The list of the modules, each of them has the following information:

◦ Name is the short name of the C file,

◦ Fullname is the name and path of the C file,

◦ uuid is a unique identifier of the module,

◦ unknown is set to true is the module is not part of the information you provided (there is only one

unknown module that gathers all the function calls that are not in the known modules),

◦ functions is the list of the unique identifiers of functions of the module.

Modules are listed as hashmap with the uuid, as follows:

• The list of functions including following information:

◦ name is the name of the C function,

◦ line is the first line of the function in the module,

◦ id is the number used in .tsf file to identify this function,

◦ stacksize is the stack size computed during the execution if this option has been set (otherwise -1),

◦ uuid is a unique identifier of the function,

◦ module is a unique identifier of the module in which the function is declared,

◦ calls is the list of the calls in this function. Each of them have the following information:

▪ calling_uuid is the unique identifier of the calling function,

▪ called_uuid is the unique identifier of the called function,

▪ line is the line number of the call in the module,

▪ col is the column number of the call in the module,

▪ same_module is set to true id the called function is in the same module that the calling

function.

◦ level is a number that represent the level of the function in the call graph, starting to 0.

◦ calledby is the list of unique identifiers of functions that call this one.

◦ maxLocal is the maximum time spent in the function, excluding its descendants.

◦ maxTotal is the maximum time spent in the function, including its descendants.

◦ sumLocal is the time spent in the function, excluding its descendants.

◦ sumTotal is the time spent in the function, excluding its descendants.

◦ wcet is the Worst Case Execution Time of the function (this value is negative if it has not been

calculated).

Chapter 5. Test Execution Specialist Guide

• Functions are listed as hashmap with the uuid, as following:

• The final section contains the following information:

◦ entrypoints is the list of entry points of the application; each of them contains:

▪ name is the name of the entry points.

▪ module is the uuid of the module where is the entry point.

▪ wcet is the Worst Case Execution Time of the entry points (this value is negative if it has not

been calculated).

◦ timeunit is the unit of time used in the report (us is for micro-second, ms for millisecond, s for

second).

◦ level is the setting for performance (0 when there is no "compute F max + D max time", 1 when this

option is not set to yes, 2 when it is set to yes + WCET).

An example of this section:

101

HCL® OneTest™ Embedded

102

Runtime tracing

Runtime tracing overview
Runtime Tracing is a feature for monitoring realtime interaction of your code in a dynamic UML sequence diagram.

Runtime tracing uses source code instrumentation to generate trace data, which produces a UML sequence diagram.

UML sequence diagrams

The lifeline of an object is represented in the trace viewer as shown below. The instance creation box displays

the name of the instance. For more information about UML sequence diagrams, see the UML sequence diagram

reference on page 991.

Step-by-step mode

When tracing large applications, it may be useful to slow down the display of the UML sequence diagram. You can do

this by enabling the step-by-step mode in the trace viewer.

Triggers

Sequence diagram triggers allow you to predefine automatic start and stop parameters for the trace viewer. The

trigger capability is useful if you only want to trace a specific portion of an instrumented application. Triggers can be

inactive, time-dependent, or event-dependent.

Notes®

You can manually add your own notes inside your source code to make them display in the UML sequence diagram

when runtime tracing is enabled. To do this, you must insert the following instrumentation pragma macro, into the C

source code of the program:

#pragma attol att_insert_ATT_USER_NOTE("Text")

Advanced runtime tracing
On some platforms or for some specific applications, these settings might be useful.

Multithreaded programs

Runtime tracing can be configured for use in a multithreaded environment such as Posix, Solaris and Windows™.

Multithread mode protects target deployment port global variables against concurrent access. This causes a

significant increase in target deployment port size as well as an impact on performance.

To enable multithreaded mode, change the Maximum number of threads and Record and display thread info

configuration settings. See Changing runtime tracing settings on page 104 for more information about these

settings.

Chapter 5. Test Execution Specialist Guide

Partial trace flush

When using this mode, the target deployment port only sends messages related to instance creation and destruction,

or user notes. All other events are ignored. This can be useful to reduce the volume of the trace dump file. When

partial trace flush mode is enabled, message dump can be toggled on and off during trace execution. The partial

trace flush settings are located in the runtime tracing settings.

To do this manually, use the runtime tracing pragma user directives:

• _ATT_START_DUMP

• _ATT_STOP_DUMP

• _ATT_TOGGLE_DUMP

• _ATT_DUMP_STACK

For example, add the following line to the source code to toggle the trace dump on or off:

#pragma attol insert _ATT_TOGGLE_DUMP

Trace item buffer

Buffering allows you to reduce formatting and processing at time-critical steps by instructing the target deployment

port to only output trace information when its buffer is full or at explicitly specified points in the program. This can

prove useful when using runtime tracing on embedded platforms with limited resources.

A smaller buffer optimizes memory usage on the target platform, whereas a larger buffer improves performance of

the real-time trace. The default value is 64.

It can be useful to flush the buffer before entering a time-critical part of the application-under-trace. You can do this

by adding the _ATT_FLUSH_ITEMS user directive to the source-under-trace. For example:

#pragma attol insert _ATT_FLUSH_ITEMS

Splitting trace files

During execution, runtime tracing generates a dynamic trace file (.tdf). When a large application is instrumented, the

size of the trace file can impact the display of the sequence diagram.

Splitting trace files allows you to produce multiple smaller files, resulting in better performance of the sequence

diagram viewer and lower memory usage. However, split trace files cannot be used simultaneously with the on-the-fly

tracing mode.

When displaying split trace files, synchronization elements are added to the UML sequence diagram to ensure that all

instance lifelines are synchronized.

103

HCL® OneTest™ Embedded

104

Note: The total size of split trace files is slightly larger than the size of a single trace file because each file

contains additional context information.

Related reference

UML sequence diagram reference on page 991

Related information

Runtime tracing overview on page 102

Changing runtime tracing settings
You can edit the configuration settings for runtime tracing to specify how the trace dumps are performed and how the

UML sequence diagram is drawn during or after the execution of the program.

To change the runtime tracing settings:

1. In the project explorer, right-click the project on which you want to change the settings and click Properties.

2. Click C/C++ Build > Settings and select Build Settings.

3. Expand Runtime tracing to access the runtime tracing settings and set the required options for dumping trace

data and drawing UML sequence diagrams.

Instrumentation control

Runtime Tracing file name (.tdf)

This allows you to force a filename and path for the dynamic .tdf file. By default,

the .tdf carries the name of the application node.

Show data classes

When this option is disabled, structures or classes that do not contain methods

are excluded from instrumentation. Disable this option to reduce instrumentation

overhead.

Trace control

Split trace file

When you use several runtime analysis tools together, the executable produces a

multiplexed trace file, containing the output data for each tool. Use this option to

split the generated atlout.spt output trace file into multiple files.

Maximum size (Kbytes)

This specifies the maximum size for a split .tdf file. When this size is reached, a

new split .tdf file is created.

Chapter 5. Test Execution Specialist Guide

File name prefix:

By default, split files are named as att_<number>.tdf, where <number> is a 4-

digit sequence number. This setting allows you to replace the att_ prefix with the

prefix of your choice.

Automatic loop detection

Loop detection simplifies UML sequence diagrams by summarizing repeating

traces into a loop symbol. Loops are an extension to the UML sequence diagram

standard and are not supported by UML.

Additional options

This setting allows you to add command line options. Normally, this line should be

left blank.

Display maximum call level

When selected, the target deployment port records the highest level attained by

the call stack during the trace. This information is displayed at the end of the

UML sequence diagram in the runtime tracing viewer as Maximum calling level

reached.

Runtime options

Disable on-the-fly mode

When selected, this setting stops on-the-fly updating of the dynamic .tdf file. This

option is primarily for target deployment ports that use printf output.

Runtime tracing buffer and Partial Runtime Tracing flush

See Advanced runtime tracing on page 102 for more information about these

settings.

Maximum buffer size (events)

The maximum number of events recorded in the buffer before it is flushed.

User signal action

Specify an action to be performed when a user signal is detected:

◦ No action: nothing.

◦ Flush call stack: the call stack is flushed to the trace file.

◦ Runtime tracing on/off: toggles the runtime tracing feature on or off.

Record and display time stamp

This setting adds timestamp information to each element in the UML sequence

diagram generated by runtime tracing.

105

HCL® OneTest™ Embedded

106

Record and display heap size

This setting enables the heap size bar in the UML sequence diagram generated by

runtime tracing.

Record and display thread info

This setting enables the Thread Bar in the UML sequence diagram generated by

runtime tracing.

4. Click OK, Apply the changes and close the Properties window.

Related reference

Build configuration settings on page 980

Related information

Runtime tracing overview on page 102

Advanced runtime tracing on page 102

Installing the Recommended GNU Compiler on Windows

Since the Tutorial requires access to both a C and C++ compiler, if you are working on a Windows operating system

and you do not have Windows Visual C++ 6.0 installed, you are advised to install the following, recommended GNU C

and C++ compiler. It is free to use and simple to install.

Name: MinGW

Home Page: MinGW - Minimalist GNU for Windows

1. Locate and download the latest distribution archive to your machine.

2. Install the distribution as described in the MinGW documentation.

3. To verify a successful installation, open a DOS window, type gcc -v, then press the Enter key. You should see

output close to the following:

Reading specs from c:/mingw/bin/../lib/gcc-lib/mingw32/2.95.3-5/specs

Note that your base installation directory may differ.

The Target Deployment Port for the MinGW compiler needs to properly reference the location of certain MinGW

folders. To do this, you will open the TDP template for the MinGW compiler, make the proper path modifications,

and then create the actual TDP for use on your machine. For more information about the Target Deployment Port

technology, see Host-based Testing vs Target-based Testing.

1. Using the Start menu on your computer, select:

https://osdn.net/projects/mingw/
Host-based_Testing_vs_Target-based_Testing.htm

Chapter 5. Test Execution Specialist Guide

Programs > OneTest Enbedded > Target Deployment Port Editor

2. Maximize the TDP Editor window.

3. Select the menu item File-> Open.

4. Open the TDP template gccmingw_template.xdp

5. The fields you need to modify - in order to reflect the MinGW installation location on your machine - are

highlighted in a large text box in the lower-right of the Editor, entitled Comment for the root node. If you can

not see this edit box, left-click any node in the tree browser to the left other than the topmost node - named

Gnu 2.95.3-5 (mingw) - and then click the topmost node. (This topmost tree node contains the name you will

see in the Test RealTime interface.)

6. Make the corrections specified in the edit box entitled Comment for the root node. Every use of the text C:

\Gcc must be replaced by the path to the top level folder of your machine's MinGW installation.

7. Select the menu item File-> Save As...

8. In the File Name edit box, type the name cwinmingw, and then click the Save button.

You just created a Target Deployment Port customized for your machine's MinGW installation - the files for this TDP

were saved in the targets folder (which contains the TDP templates folder) in a folder named cwinmingw. Proceed

with the tutorial.

Static metrics

Static metrics overview
Statistical measurement of source code properties is an extremely important matter when you are planning your test

work for a software project. HCL® OneTest™ Embedded provides a static metrics report, which displays complexity

data and statistics for your source code.

Halstead metrics

Halstead complexity measurement was developed to measure a program module's complexity directly from source

code, with emphasis on computational complexity. The measures were developed by the late Maurice Halstead as a

means of determining a quantitative measure of complexity directly from the operators and operands in the module.

Halstead provides various indicators of the module's complexity

Halstead metrics allow you to evaluate the testing time of any C/C++ source code. These only make sense at the

source file level and vary with the following parameters:

Table 3.

Para­

meter Meaning

n1 Number of distinct operators

n2 Number of distinct operands

107

HCL® OneTest™ Embedded

108

Table 3. (continued)

Para­

meter Meaning

N1 Number of operator in­

stances

N2 Number of operand instances

When a source file is selected in the metrics report, the following results are displayed:

Table 4.

Metric Meaning Formula

n Vocabulary n1 + n2

N Size N1 + N2

V Volume N * log2 n

D Difficulty n1/2 * N2/n2

E Effort V * D

B Errors V / 3000

T Testing

time

E / k

In the above formulae, k is the stroud number, which has an arbitrary default value of 18. With experience, you can

adjust the stroud number to adapt the calculation of the estimated testing time (T) to your own testing conditions:

team background, criticity level, and so on.

When the project is selected, the metrics viewer displays the total testing time for the entire project.

V(g) or cyclomatic number

The V(g) or cyclomatic number is a measure of the complexity of a source code function that is correlated with

difficulty in testing. The standard value is between 1 and 10. A value of 1 means the code has no branching. A

function's cyclomatic complexity should not exceed 10.

The static metrics report displays the V(g) of a function in the Metrics tab when a source file or function is selected.

When the type of the selected node is a source file, the sum of the V(g) of the contained function, the mean, the

maximum and the standard deviation are calculated.

At the project level, the same statistical treatment is provided for every function in any source file.

Changing static metric settings
You can edit the configuration settings for static metrics to specify how the source code statistics are generated.

Chapter 5. Test Execution Specialist Guide

To change the static metric settings:

1. In the project explorer, right-click the project on which you want to change the settings and click Properties.

2. Click C/C++ Build > Settings and select Build Settings.

3. Expand Static metrics to access the runtime tracing settings and set the required options for dumping trace

data and drawing UML sequence diagrams.

One level metrics

By default, .met static metric files are produced for source files as well as all dependency files

that are found when parsing the source code. Set to Yes to restrict the calculation of static

metrics only to the source files displayed in the navigator.

Analyzed directories

This setting allows you to restrict the generation of .met metric files only to files which are

located in the specified directories.

Generate metrics in source directories

By default, all .met files are generated in the project directory, and use the same name as the

source file. Select Yes on this setting to compute metrics for source files that have the same

name but are located in different directories. In this case, each .met is generated in the source

directory of each file.

Additional options

Use this setting to specify extra command line options. In most cases, this should be empty.

4. Click OK, Apply the changes and close the Properties window.

Related information

Static metrics overview on page 107

Code review

Code review overview
Automated source code review is a method of analyzing code against a set of predefined rules to ensure that the

source adheres to guidelines and standards that are part of any efficient quality control strategy. HCL® OneTest™

Embedded provides an automated code review tool, which reports adherence to guidelines for your C source code.

HCL® OneTest™ Embedded code review tool implements rules from the MISRA-C: 2004 and MISRA C-: 2012

standards, which are guidelines for the use of the C language in critical systems.

Code review is part of the runtime analysis tools and can be enabled during a test run or in the project configuration

settings.

109

HCL® OneTest™ Embedded

110

When an application or test node is built, the source code is analyzed by the code review tool. Code review can be

performed each time a node is built, but can also be calculated without executing the application. The tool checks the

source file against the predefined rules and produces an HTML report and a .crc report.

Report

When the build is complete, the code review report lists the following elements:

• The Outline window displays a list of rules that were not compliant for each source file and function. You can

use the elements in this view to navigate through the report.

• A summary provides information about the general configuration, the date and the number of analyzed files. It

also lists the number of errors and warnings that were encountered.

• The code review report lists the rules for which errors or warnings were detected. It also provides information

about the location of the error. You can click the title to go directly to the corresponding line in the source

code.

Related reference

Code review MISRA 2004 rules on page 114

Related information

Enable runtime analysis tools on page 68

Configuring code review rules
The code review tool uses a set of predefined rules. You can select the default rule configuration file for the code

review tool. MISRA 2004 and MISRA 2012 from HCL OneTest™ Embedded V8.2.0 are the default installed rule

configuration files. You can disable or set the severity level to Warning. You can also configure the entry-point option if

your application is multi-threaded.

About this task

By default all rules are enabled and produce either an error or a warning in the code review report. You can

save multiple customized rule policies. The default rule policy files MISRA 2004 and MISRA 2012 are located

in: <installation directory>/plugins/Common/lib/confrule.xml. Do not modify the default rule

configuration files. The only change that can be done in the default rule configuration files is to change or disable the

severity level of the rule.

Note: For all new projects, you must select the configuration file that must be used. When you make any

changes to the rule policy file, you can save the new policy file in the project.

To select the configuration file and disable or set the severity level of code review rules:

1. In the project explorer, right-click the project on which you want to change the settings and click Properties.

2. Expand C/C++ Build in the left panel, select Settings.

Chapter 5. Test Execution Specialist Guide

3. In the right panel, in the Build tab, expand Settings and select Code Review.

4. Expand Code review to access the code review settings.

5. Click in the value on the Rule configuration row and click ... to select a rule configuration file.

Note: If your configuration file is an out-of-date version, you are prompted to update it. Click ok to

select the rules that are missing in your configuration file. The selected rules are added with their

default severity levels to your configuration file. Unselected rules are added to your configuration file

as disabled rules.

6. Select the default MISRA 2004 or MISRA 2012 rule configuration file that are installed with the product.

Alternatively, click + to select a new rule configuration in your browser.

7. Click OK.

Result

The path to the selected rule configuration is displayed in the value column on the Rule Configuration line.

8. On the Rule configuration row, click the to open the Rule Configuration window.

111

HCL® OneTest™ Embedded

112

9. In the Rule configuration window, select the rule that you want to configure.

Rules are grouped into categories. You can filter the rules by labels from the Find field. Search is not case

sensitive.

When a rule is selected, its description is displayed on the right panel with the parameter description and value

if any parameter is available for the selected rule.

10. On the right panel, select the severity level:

a. Disabled: The selected rule is ignored and is not displayed in the code review report.

b. Warning: When the rule condition is found, a warning is displayed in the code review report.

Chapter 5. Test Execution Specialist Guide

c. Error: When the rule condition is found, an error is displayed in the code review report.

Note: Multiple user-custom rules (from Rule U99.1 to Rule U99.10) can be defined for MISRA

2004 and MISRA 2012 with their own severity level.

11. Select Show only the first occurrence to only show the first occurrence of a rule condition in a file. Any

subsequent occurrences of the condition are not reported.

Note: If your application is multi-threaded, you can provide the list of entry points to avoid that the

rules about 'non-used functions' are raised.

To configure the Multi_thread option, follow these steps:

12. In the Project Explorer, right-click the project on which you want to change the settings and click Properties.

13. Click C/C++ Build > Settings and select Build Settings.

14. In the right panel, click SettingsGeneral > Multi-Thread option.

15. Click ... in the value field of the Entry points option to open the editor.

16. In the editor, enter the list of entry points for each thread and click OK.

17. Click OK, Apply the changes and close the Properties window.

Note: The Entry point option applies to rule E16.50 (MISRA_2004) and M2.2.2 (MISRA 2012).

Related reference

Code review MISRA 2004 rules on page 114

Related information

Code review overview on page 109

Using a customized Naming script file
In HCL OneTest™ Embedded for Eclipse IDE, you can edit and customize a Perl Naming script file to check your own

naming rules (code custom naming rules U99.1). You must set the path to this customized naming script file in the

code review settings to check your naming rules.

To set the path to a customized Naming script file:

1. From the Project Explorer view, select the project node.

2. Right-click and select Properties.

3. In the window that opens, select Settings in the left panel.

4. In the right panel, click Settings > Code Review.

5. Click in Value cell of the Naming script file option and click

113

HCL® OneTest™ Embedded

114

6. Select the sample file that you installed: Example “NamingRules1.pl".

7. Click Apply.

Code review deviations
In some cases, it can be useful to temporarily ignore a rule non-compliance on a short portion of source code, while

documenting the reason why you are allowing this deviation.

About this task

You can justify why you are allowing the deviation in a text. The text is added to the non-compliance in the

source code. You can declare a deviation in the source code, for a specified number of lines and for the first or all

occurrences of the error, by adding pragma lines to your source code.

1. Open the source file in the Text editor and find the lines of code that you want the rule to ignore.

2. Before the section of code for which compliance to the rule should be ignored, add one of the following lines:

◦ To justify non-compliance of a rule to the following pragma statement in the first occurrence:

#pragma attol crc_justify (<rule>[,<lines>],"<text>")

◦ To justify non-compliance of a rule to the following pragma statement in all occurrences:

#pragma attol crc_justify_all (<rule>,<lines>,"<text>")

◦ To justify the first occurrence of non-compliance of a rule in all the files of the current project,

including in traps located before the pragma statement:

#pragma attol crc_justify_everywhere (<rule>,"<text>")

For all the pragma statements: <rule>

◦ <rule> is the name of the code review rule (for example: 'Rule M8.5').

◦ <lines> is the number of lines.

◦ <text> is the reason why the rule is ignored.

The recommended usage for crc_justify_everywhere is to create a specific source file containing only the list

of pragma statements and add this file to the project.

Code review MISRA 2004 rules
The code review tool covers rules from the lists the rules that produced and error or a warning. Each rule can be

individually disabled or assigned a Warning or Error severity by using the Rule configuration window. Some rules also

have parameters that can be changed. Among other guidelines, the code review tool implements most rules from the

MISRA-C:2004 standard, "Guidelines for the use of the C language in critical systems". These rules are referenced

with an M prefix. In addition to the industry standard rules, HCL OneTest™ Embedded provides some additional coding

guidelines, which are referenced with an E prefix.

Chapter 5. Test Execution Specialist Guide

Code Review for C - MISRA 2004 rules

Table 5. MISRA 2004 rules

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Code compli­

ance

M1.1 Rule 1.1 ANSI C error: <error> All code shall conform to ISO 9899:1990

Required

M1.1w Rule 1.1 ANSI C warning: <warning>
Required

Language exten­

sions
Required

M2.2 Rule 2.2 Source code shall only use /* ...

*/ style comments

Source code shall only use /* ... */ style

comments

Required

M2.3 Rule 2.3 The character sequence /* shall

not be used within a comment

The character sequence /* shall not be

used within a comment

Required

E2.3.1 The character sequence // should not be

used within a 'C-style' comment

Advisory

E2.3.2 Line-splicing shall not be used in // com­

ments

Advisory

E2.6 A function should not contain unused label

declarations

Advisory

E2.7 There should be no unused para­

meters in functions

Advisory

115

HCL® OneTest™ Embedded

116

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E2.8 Macro %name% is never used
Advisory

E2.9 Type %name% is never used
Advisory

E2.10 Tag %name% is never used
Advisory

E2.50 Functions should have less than

'100' lines. Note The number of

lines can be specified.

Advisory

E2.51 Functions should have less than

'15' V(g) complexity. Note: The

complexity limit of lines can be

specified.

Advisory

E2.52 Functions should have less than

'%param%' lines, outside empty

lines (current value: %name%).

E2.53 Functions should have less than

'%param%' lines, outside empty

lines or comment lines (current

value : %name%).

E2.54 Functions should have less than

'%param%' lines, outside empty

lines, comment lines or bracket

lines (current value : %name%).

Lines are not counted in the following cas­

es:

• If they contain spaces (including \t,

\r, \n),

• If they contain only brackets (there

might be several brackets on same

line),

• If they contain comments only, or

if they contain brackets and com­

ments only.

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E2.55 Compilation units should define

have less than '%param%' func­

tions (current value : %name%).

Optional

Compilation unit max number of functions.

Default parameter value: 10.

E2.56
Compilation units should have

less than '%param%' functions

(current value: %name%).

Optional

Compilation unit max number of variables.

Default parameter value: 10.

E2.57 Compilation unit should have

less than '%param%' lines (cur­

rent value: %name%).

Optional

Compilation unit max number of lines.

Default parameter value : 200.

E2.58 Compilation unit should have

less than '%param%' lines, not

counting empty lines (current val­

ue : %name%).

Optional

Compilation unit max number of lines.

Default parameter value : 200.

E2.59 Compilation unit should have

less than '%param%' lines, not

counting empty lines or com­

ments (current value: %name%).

Optional

Compilation unit max number of lines.

Empty lines or comments (current value:

%name%) are not counted.

Default parameter value : 200.

E2.60 Compilation units should have

less than '%param%' lines, not

counting empty lines, com­

ments or brackets (current value:

%name%) are not counted.

Optional

Compilation unit max number of lines.

Empty lines, comments or brackets (current

value : %name%) are not counted.

Default parameter value : 200.

117

HCL® OneTest™ Embedded

118

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E2.61 Functions should have less than

'%param%' parameters (current

value: %name%).

Documentation

M3.4 Rule 3.4 All uses of the ﷓pragma direc­

tive shall be documented and ex­

plained.

Required

Character sets

M4.1.1 Rule 4.1 Only escape sequences that are

defined in the ISO C standard

shall be used

Only escape sequences that are defined in

the ISO C standard shall be used

Required

M4.1.2 Rule 4.1 Only ISO C escape sequences are

allowed(\v)

Only ISO C escape sequences are al­

lowed(\v)

Required

M4.2 Rule 4.2 Trigraphs shall not be used Trigraphs shall not be used

Required

Identifiers

M5.1 Rule 5.1 Identifiers %name% and %name

% are identical in the first <value>

characters. The number of char­

acters can be specified.

Identifiers (internal and external) shall not

rely on the significance of more than 31

characters

Required

E5.1.1 Identifiers %name% and %name%

are ambiguous because of pos­

sible character confusion. Note

that you can change parameters

for ambiguous characters.

Advisory

E5.1.2 Possible typing mistakes be­

tween the variables %name% or
Advisory

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

%name% because of repeating

character.

E5.1.3 Identifiers %name% and %name%

are identical in the first %param%

characters ignoring case

Advisory

E5.1.4 Macros %name% and %name%

are identical in the first %param%

characters

Advisory

E5.1.5 Macro %name% and identifier

%name% are identical in the first

%param% characters

Advisory

E5.1.6 Macros %name% and %name%

are identical in the first %param%

characters ignoring case

Advisory

E5.1.7 Macro %name% and identifier

%name% are identical in the first

%param% characters ignoring

case

Advisory

M5.2 Rule 5.2 Identifier %name% in an inner

scope hides the same identifier

in an outer scope : %location%

Identifiers in an inner scope shall not use

the same name as an identifier in an outer

scope, and therefore hide that identifier

Required

E5.3 The tag name %name% should

not be reused. Name already

found in %location%

Advisory

M5.3.1 Rule 5.3 The typedef name %name% should not be

reused except for its tag. Name already

found in %location%

Required

119

HCL® OneTest™ Embedded

120

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M5.3.2 Rule 5.3 The typedef name '%name%' should not be

reused even for its tag. Name already found

in %location%

Required

M5.4 Rule 5.4 A struct and union cannot use

the same tag name

A tag name shall be a unique identifier

Required

M5.5 Rule 5.5 The static object or function

%name% should not be reused.

Static object or function already

found in %location%.

No object or function identifier with static

storage duration should be reused

Advisory

M5.6 Rule 5.6
Avoid using the same identifier

%name% in two different name

spaces. Identifier already found

in %location%

No identifier in one name space should

have the same spelling as an identifier in

another name space, with the exception of

structure and union member names

Advisory

M5.7 Rule 5.7 The identifier %name% should

not be reused. Identifier already

found in %location%.

Advisory

Types

M6.1.1 Rule 6.1 The C language plain char type

should only be used for character

values.

The C language plain char type should only

be used for character values.

Required

M6.1.2 Rule 6.1 Case char value is applicable on­

ly if the switch statement value is

plain character variable

Required

M6.1.3 Rule 6.1 Avoid using comparison opera­

tors on plain char.

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M6.2 Rule 6.2 The C language signed char or

unsigned char types should only

be used for numeric values.

The C language signed char or unsigned

char types should only be used for numeric

values.

Required

M6.3 Rule 6.3 The C language numeric type

%name% should not be used di­

rectly but instead used to define

typedef.

typedefs that indicate size and signedness

should be used in place of the basic types

Advisory

E6.3 The implicit 'int' type should not

be used.

Required

M6.4.1 Rule 6.4 Bit fields should only be of type

'unsigned int' or 'signed int'.

Required

M6.4.2 Rule 6.4 Bit fields should not be of type

'enum'

Required

M6.4.3 Rule 6.4 Bit fields should only be of explic­

itly signed or unsigned type

Required

M6.4.4 Rule 6.4 Bit fields should not be of type

'bool' under c99

Required

M6.4.5 Rule 6.4 Bit fields should not be of type

'boolean' outside c99

Required

M6.5 Rule 6.5 Bit fields of type 'signed int' must

be at least 2 bits long.

Required

Constants

M7.1 Rule 7.1 Octal constants and escape se­

quences should not be used.

Octal constants (other than zero) and octal

escape sequences shall not be used

Required

E7.1 Octal and hexadecimal escape

sequences shall be terminated
Required

E7.2 The lowercase character 'l' shall

not be used in a literal suffix
Required

121

HCL® OneTest™ Embedded

122

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E7.3 A string literal shall not be as­

signed to an object unless the

object's type is pointer to a con­

st-qualified char

Required

Declarations

and definitions

M8.1.1 Rule 8.1 A prototype for the function

%name% should be declared be­

fore defining the function.

Functions shall have prototype declarations

and the prototype shall be visible at both

the function definition and call

Required

E8.1.1 A prototype for the global object

%name% should be declared be­

fore defining the object

Required

M8.1.2 Rule 8.1 A prototype for the function

%name% should be declared be­

fore calling the function.

Functions shall have prototype declarations

and the prototype shall be visible at both

the function definition and call

Required

M8.1.3 Rule 8.1 A prototype for the function

%name% should be declared be­

fore calling the function

Required

M8.2.1 Rule 8.2 The type of %name% should be

explicitly stated.

Whenever an object or function is declared

or defined, its type shall be explicitly stated

Required

M8.2.2 Rule 8.2 The type of parameter %name%

should be explicitly stated
Required

M8.3 Rule 8.3 Parameters and return types

should use the same type names

in the declaration and in the defi­

nition, even if basic types are the

same.

For each function parameter the type giv­

en in the declaration and definition shall be

identical, and the return types shall also be

identical

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E8.3 Parameters and return types

should use compatible type in

the declaration and in the defini­

tion

Required

M8.4 Rule 8.4 If objects or functions are de­

clared multiple times their types

should be compatible.

Required

M8.5.1 Rule 8.5 The body of function %name%

should not be located in a header

file.

Required

E.8.50 Use the const qualification for

variable %name% which is point­

er and which is not used to

change the pointed object

Required

E.8.51 The object %name% is never ref­

erenced

Required

M8.5.2 Rule 8.5 The memory storage (definition)

for the variable %name% should

not be in a header file.

Objects shall be defined at block scope if

they are only accessed from within a single

function.

Required

M8.6 Rule 8.6 Functions should not be declared

at block scope.
Required

M8.7 Rule 8.7 Global objects should not be de­

clared if they are only used from

within a single function.

Objects shall be defined at block scope if

they are only accessed from within a single

function

Required

M8.8.2 Rule 8.8 Static function %name% should

only be declared in a single file.

Redundant declaration found at:

%location%

Required

123

HCL® OneTest™ Embedded

124

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M8.8.3 Rule 8.8 Static object %name% should on­

ly be declared in a single file. Re­

dundant declaration found at:

%location%

Required

M8.8.4 Rule 8.8 Identifiers %name% that declare

objects or functions with external

linkage shall be declared once in

one and only one file

Required

M8.8.5 Rule 8.8 Identifiers %name% that declare

objects or functions with external

linkage shall be unique

Required

M8.9.1 Rule 8.9 The global object or function

%name% should have exactly one

external definition. Redundant

definition found in %location%

An identifier with external linkage shall

have exactly one external definition

M8.9.2 Rule 8.9 The global object or function

%name% should have exactly one

external definition. No definition

found.

Required

M8.10.1 Rule 8.10 Global object %name% that are

only used within the same file

should be declared using the sta­

tic storage-class specifier.

All declarations and definitions of objects

or functions at file scope shall have internal

linkage unless external linkage is required.

Required

M8.10.2 Rule 8.10 Global function %name% that are

only used within the same file

should be declared using the sta­

tic storage-class specifier.

All declarations and definitions of objects

or functions at file scope shall have internal

linkage unless external linkage is required

Required

M8.11 Rule 8.11 Global objects or functions that

are only used within the same file

should be declared with using

the static storage-class specifier.

The static storage class specifier shall be

used in definitions and declarations of ob­

jects and functions that have internal link­

age

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

M8.12 Rule 8.12 When a global array variable can

be used from multiple files, its

size should be defined at initial­

ization time.

Required

E.8.14 Inline function %name% should

be static

Required

Initialization The restrict type qualifier shall

not be used

Required

M9.1 Rule 9.1 Variables with automatic storage

duration should be initialized be­

fore being used.

Required

M9.2 Rule 9.2 Nested braces should be used to

initialize nested multi-dimension

arrays and nested structures.

Required

E9.2 Arrays shall not be partially ini­

tialized

Required

M9.3 Rule 9.3 Either all members or only the

first member of an enumerator

list should be initialized.

In an enumerator list, the “=" construct shall

not be used to explicitly initialize members

other than the first, unless all items are ex­

plicitly initialized

Required

M9.3 Rule 9.3 Either all members or only the

first member of an enumerator

list should be initialized

Required

E9.3 Rule E9.3 Enumeration member %name%

have a not unique implicitly spec­

ified value

Required

E9.4 The global variable %name% is

not initialized

Required

125

HCL® OneTest™ Embedded

126

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Arithmetic type

conversions

E10.1 Constraint violation : can't use

floating type as operand of '[], %,

<<, >>, ~, &, |, ^'

Required

M10.1.1 Rule 10.1 Implicit conversion of a complex

integer expression to a smaller

sized integer is not allowed.

The value of an expression of integer type

shall not be implicitly converted to a differ­

ent underlying type if:

• a) it is not a conversion to a wider

integer type of the same signed­

ness, or

• b) the expression is complex, or

• c) the expression is not constant

and is a function argument, or

• d) the expression is not constant

and is a return expression.

Required

M10.1.2 Rule 10.1 Implicit conversion of an integer

expression to a different signed­

ness is not allowed.

Required

M10.2 Rule 10.2 Conversion of a complex floating

expression is not allowed. Only

constant expressions can be im­

plicitly converted and only to a

wider floating type of the same

signedness.

The value of an expression of floating type

shall not be implicitly converted to a differ­

ent type if:

• a) it is not a conversion to a wider

floating type, or

• b) the expression is complex, or

• c) the expression is a function argu­

ment, or

• d) the expression is a return expres­

sion.

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E10.2 Operand should be boolean. Required

M10.3 Rule 10.3 Type cast of complex integer

expressions is only allowed in­

to a narrower type of the same

signedness.

The value of a complex expression of inte­

ger type may only be cast to a type that is

narrower and of the same signedness as

the underlying type of the expression

Required

E10.3 Can't use a boolean as a numeric

value

Required

M10.4 Rule 10.4 Type cast of complex floating

expressions is only allowed in­

to a narrower type of the same

signedness.

The value of a complex expression of float­

ing type may only be cast to a narrower

floating type

Required

E10.4 Can't use a char as a numeric val­

ue

Required

M10.5 Rule 10.5 When using operator '~' or '<<' on

'unsigned char' or 'unsigned int',

you should always cast returned

value

Required

E10.5 Rule E10.5 Can't use a not anonymous enum

as a numeric value

Required

M10.6 Rule 10.6 Definitions of unsigned type con­

stants should use the 'U' suffix.

A “U" suffix shall be applied to all constants

of unsigned type

Required

E10.6 Shift and bitwise operations

should be performed on un­

signed value

Required

E10.7 Right hand operand of shift oper­

ation should be an unsigned val­

ue

Required

127

HCL® OneTest™ Embedded

128

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E10.8 Unary minus operation should

not be performed on unsigned

value

Required

E10.9 Expressions of essentially char­

acter type shall not be used inap­

propriately in addition and sub­

traction operations

Required

E10.10 The value of an expression shall

not be assigned to an object with

a narrower essential type

Required

E10.11 The value of an expression shall

not be assigned to an object with

a different essential type catego­

ry

Required

E10.12 Both operands of an operator in

which the usual arithmetic con­

versions are performed shall

have the same essential type cat­

egory

Required

E10.13 The value of an expression

should not be cast to an inappro­

priate essential type

Required

E10.14 The value of a composite expres­

sion shall not be assigned to an

object with wider essential type

Required

E10.15 If a composite expression is

used as one operand of an opera­

tion in which the usual arithmetic

conversions are performed then

the other operand shall not have

wider essential type

Required

E10.16 The value of a composite expres­

sion shall not be cast to a differ­

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

ent essential type category or a

wider essential type

Pointer type

conversions

M11.1 Rule 11.1 A function pointer should not

be converted to another type of

pointer.

Conversions shall not be performed be­

tween a pointer to a function and any type

other than an integral type

Required

E11.1 Conversions shall not be per­

formed between a pointer to an

incomplete type and any other

type

Required

M11.2 Rule 11.2 An object pointer should not be

converted to another type of

pointer.

Conversions shall not be performed be­

tween a pointer to object and any type oth­

er than an integral type, another pointer to

object type or a pointer to void

Required

E11.2 A conversion should not be per­

formed from pointer to void into

pointer to object

Required

M11.3 Rule 11.3 Casting a pointer type to an inte­

ger type should not occur.

A cast should not be performed between a

pointer type and an integral type

Advisory

E11.3 E11.3 A cast shall not be performed

between pointer to void and an

arithmetic type

Required

E11.4 A cast shall not be performed

between pointer to object and a

non-integer arithmetic type

Required

129

HCL® OneTest™ Embedded

130

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M11.4.1 Rule 11.4 Casting an object pointer type

to a different object pointer type

should not occur.

A cast should not be performed between a

pointer to object type and a different point­

er to object type

Advisory

M11.4.2 Rule 11.4 Casting an object pointer type

to a different object pointer type

should not occur, especially

when object sizes are not the

same.

Advisory

M11.5 Rule 11.5 Casting of pointers to a type that

removes any const or volatile

qualification on the pointed ob­

ject should not occur.

A cast shall not be performed that removes

any const or volatile qualification from the

type addressed by a pointer.

Required

Expressions

M12.1 Rule 12.1 Implicit operator precedence

may cause ambiguity. Use paren­

thesis to clarify this expression.

Limited dependence should be placed on

C’s operator precedence rules in expres­

sions

Advisory

E12.11 Implicit bitwise operator prece­

dence may cause ambiguity. Use

parenthesis to clarify this expres­

sion.

Advisory

M12.3 Rule 12.3 The sizeof operator should not

be used on expressions that con­

tain side effects.

Required

M12.4.1 Rule 12.4 An expression that contains a

side effect should not be used in

the right-hand operand of a logi­

cal && or || operator.

The right-hand operand of a logical && or ||

operator shall not contain side effects

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M12.4.2 Rule 12.4 The function in the right-hand

operand of a logical && or || oper­

ator might cause side effects.

M12.5 Rule 12.5 Parenthesis should be used

around expressions that are

operands of a logical && or ||.

Required

E12.51 Ternary expression ?: should not

be used.

Advisory

E12.54 Expressions should not cause a

side effect assignment.

Advisory

M12.6 Rule 12.6 Only Boolean operands should be

used with logical operators (&&,

|| and !).

The operands of logical operators (&&, ||

and !) should be effectively Boolean. Ex­

pressions that are effectively Boolean

should not be used as operands to opera­

tors other than (&&, || and !)

Advisory

E12.61 The operator on a Boolean ex­

pression should be a logical op­

erator (&&, || or !).

Advisory

M12.7 Rule 12.7 Bitwise operators should only

use unsigned operands.

Bitwise operators shall not be applied to

operands whose underlying type is signed

Required

M12.8 Rule 12.8 The right-hand operand of a shift

operator should not be too big or

negative.

The right-hand operand of a shift operator

shall lie between zero and one less than the

width in bits of the underlying type of the

left-hand operand

Required

M12.9 Rule 12.9 Only use unary minus operators

with signed expressions.

The unary minus operator shall not be ap­

plied to an expression whose underlying

type is unsigned

131

HCL® OneTest™ Embedded

132

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

M12.10 Rule 12.10 Do not use the comma operator Required

M12.12 Rule12.12
Advisory

Parenthesis should be used around expres­

sion that is operand of 'sizeof' operator.

M12.13 Rule 12.13 The increment (++) or the decre­

ment (--) operators should not be

used with other operators in an

expression.

Advisory

Control state­

ment expres­

sions

E13.1 The result of an assignment op­

erator should not be used in an

expression

Required

M13.1.1 Rule 13.1 Boolean expressions should not

contain assignment operators.

Assignment operators shall not be used in

expressions that yield a Boolean value

Required

M13.1.2 Rule 13.1 Boolean expressions should not

contain side effect operators.

Required

M 13.2 Rule 13.2 Non-Boolean values that are test­

ed against zero should have an

explicit test

Tests of a value against zero should be

made explicit, unless the operand is effec­

tively Boolean

Advisory

M13.3 Rule 13.3 The equal or not equal opera­

tor should not be used in float­

ing-point expressions.

Floating-point expressions shall not be test­

ed for equality or inequality

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M13.4 Rule 13.4 Floating-point variables should

not be used to control a for state­

ment.

Required

M13.5.1 Rule 13.5 Only loop counter should be ini­

tialized in a loop initialization

part.

The three expressions of a statement shall

be concerned with loop control only.

Required

M13.5.2 Rule 13.5
In the 'update part' of a 'for state­

ment', only 'loop counter' should

be updated

Required

M13.5.3 Rule 13.5 There should be one and only

one loop counter for loop state­

ment.

Required

M13.6 Rule 13.6 Loop counter of a 'for statement'

should not be modified within the

body of the loop.

Required

M13.7 Rule 13.7 Invariant Boolean expressions

should not be used.

Boolean operations whose results are in­

variant shall not be permitted

Required

Control flow

M14.1 Rule 14.1 Unreachable code. Required

M14.2 Rule 14.2 A non-null statement should ei­

ther have a side effect or change

the control flow.

Required

M14.3 Rule 14.3 A null statement in original

source code should be on a sep­

arate line and the semicolon

should be followed by at least

one white space and then a com­

ment.

Before preprocessing, a null statement

shall only occur on a line by itself; it may be

followed by a comment provided that the

first character following the null statement

is a white-space character

Required

133

HCL® OneTest™ Embedded

134

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M14.4 Rule 14.4 Do not use the goto statement. Required

E14.4.1 The goto statement shall jump to

a label declared later in the same

function

Required

E14.4.2 Any label referenced by a goto

statement shall be declared in

the same block, or in any block

enclosing the goto statement

Required

E14.4.3 There should be no more than

one break or goto statement

used to terminate any iteration

statement

Required

M14.5 Rule 14.5 Do not use the continue state­

ment.

Required

M14.6 Rule 14.6 Only one break statement should

be used within a loop.

For any iteration statement there shall be

at most one break statement used for loop

termination

Required

M14.7.1 Rule 14.7 Only one exit point should be de­

fined in a function.

A function shall have a single point of exit

at the end of the function

Required

M14.7.2 Rule 14.7 The return keyword should not be

used in a conditional block.

Required

M14.8.1 Rule 14.8 The switch statement should be

followed by a compound state­

ment {}.

M14.8.2 Rule 14.8 The while statement should be

followed by a compound state­

ment {}.

The statement forming the body of a

switch, while, do ... while or for statement

shall be a compound statement

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M14.8.3 Rule 14.8 The do..while statement should

contain a compound statement

{}.

M14.8.4 Rule 14.8 The for statement should be fol­

lowed by a compound statement

{}.

M14.9.1 Rule 14.9 The if (expression) construct

should be followed by a com­

pound statement {}.

M14.9.2 Rule 14.9 The else keyword should be fol­

lowed by either a compound

statement or another if state­

ment.

M14.9.3 Rule 14.9 The else keyword should be fol­

lowed by a compound statement

An if (expression) construct shall be fol­

lowed by a compound statement. The else

keyword shall be followed by either a com­

pound statement, or another if statement

Required

M14.10 Rule 14.10 All if ... else if sequences should

have an else block.

All if ... else if constructs shall be terminat­

ed with an else clause

Required

Switch state­

ments

M15.0 Rule 15.0 A switch block should start with

a case.

The MISRA C switch syntax shall be used

Required

M15.1 Rule 15.1 A case or default statements

should only be used directly

within the compound block of a

switch statement.

A switch label shall only be used when the

most closely-enclosing compound state­

ment is the body of a switch statement

Required

E15.10 The switch expression should

not have side effects.

Required

135

HCL® OneTest™ Embedded

136

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M15.2 Rule 15.2 The break statement should only

be used to terminate every non-

empty switch block.

An unconditional break statement shall ter­

minate every non-empty switch clause

Required

M15.3.1 Rule 15.3 The switch statement should

have a default clause.

Required

M15.3.2 Rule 15.3 The default clause should be the

last clause of the switch state­

ment.

M15.4.1 Rule 15.4 A Boolean should not be used as

a switch expression.

A switch expression shall not represent a

value that is effectively Boolean

Required

M15.4.2 Rule 15.4 A constant should not be used as

a switch expression.

Required

M15.5 Rule 15.5 At least one case should be de­

fined in the switch.

Every switch statement shall have at least

one case clause

Required

Functions

M16.1 Rule 16.1 The function %name% should not

have a variable number of argu­

ments.

Functions shall not be defined with a vari­

able number of arguments

Required

Rule M16.1.2 Rule 16.1 The library functions 'va_list, va_­

arg, va_start, va_end, va_copy'

should not be used

Required

M16.2.1 Rule 16.2 Recursive functions are not al­

lowed. The function %name% is

directly recursive.

M16.2.2 Rule 16.2 Recursive functions are not al­

lowed. The function %name% is

recursive when calling %name% .

Functions shall not call themselves, either

directly or indirectly Functions shall not call

themselves, either directly or indirectly

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M16.3 Rule 16.3 The function prototype should

name all its parameters.

Identifiers shall be given for all of the para­

meters in a function prototype declaration

Required

M16.4 Rule 16.4 The identifiers used in the proto­

type and definition should be the

same.

Required

M16.5 Rule 16.5 Functions with no parameters

should use the void type.

Required

E16.50 The function %name% is never

referenced.

Required

M16.6 Rule 16.6 The number of arguments used

in the call does not match the

number declared in the proto­

type.

Required

M16.7 Rule 16.7 Use the const qualification for

parameter %name% which is

pointer and which is not used to

change the pointed object.

A pointer parameter in a function prototype

should be declared as pointer to const if

the pointer is not used to modify the ad­

dressed object

Required

M16.8 Rule 16.8 The return should always be de­

fined with an expression for non-

void functions.

All exit paths from a function with non-

void return type shall have an explicit return

statement with an expression

Required

M16.9 Rule 16.9 Function identifiers should al­

ways use a parenthesis or a pre­

ceding &.

A function identifier shall only be used with

either a preceding &, or with a parenthe­

sized parameter list, which may be empty

Required

M16.10 Rule 16.10 When a function returns a value,

this value should be used.

If a function returns error information, then

that error information shall be tested

137

HCL® OneTest™ Embedded

138

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

Pointers and ar­

rays

M17.4 Rule 17.4 Pointer arithmetic except array

indexing should not be used.

Array indexing shall be the only allowed

form of pointer arithmetic

Required

M17.5 Rule 17.5 A declaration should not use

more than two levels of pointer

indirection.

Advisory

Structures and

unions

M18.1 Rule 18.1 Structure or union types should

be finalized before the end of the

compilation units.

Required

E18.1 Flexible arrays members shall

not be declared

Required

18.2 Variable-length array types shall

not be used

Required

E18.3 The declaration of an array para­

meter shall not contain the static

keyword between the []

Required

M18.4 Rule 18.4 Do not use unions. Required

Preprocessing

directives

M19.1 Rule 19.1 Only preprocessor directives or

comments may occur before the

﷓include statements.

﷓include statements in a file should only be

preceded by other preprocessor directives

or comments

Advisory

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M19.2 Rule 19.2 Do not use non-standard charac­

ters in included file names.

Advisory

M19.3 Rule 19.3 Filenames with the ﷓include di­

rective should always use the

<filename> or "filename" syntax.

Required

M19.4 Rule 19.4 A C macro should only be ex­

panded to a constant, a braced

initializer, a parenthesised ex­

pression, a storage class key­

word, a type qualifier, or a do-

while-zero block.

Required

M19.5 Rule 19.5 Macro definitions or ﷓undef

should not be located within a

block.

Required

M19.6 Rule 19.6 Do not use the ﷓undef directive. Required

M19.7 Rule 19.7 Function should be used instead

of macros when possible.

Advisory

M19.8 Rule 19.8 Missing argument when calling

the macro.

A function-like macro shall not be invoked

without all of its arguments.

Required

M19.9 Rule 19.9 The preprocessing directive

%name% should not be used as

argument to the macro.

Arguments to a function-like macro shall

not contain tokens that look like prepro­

cessing directives

Required

M19.10 Rule 19.10 The parameter %name% in the

macro should be enclosed in

parentheses except when it is

used as the operand of ﷓ or ﷓﷓.

In the definition of a function-like macro

each instance of a parameter shall be en­

closed in parentheses unless it is used as

the operand of ﷓ or ﷓﷓

Required

139

HCL® OneTest™ Embedded

140

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M19.11 Rule 19.11 Undefined macro identifier in the

preprocessor directive.

All macro identifiers in preprocessor direc­

tives shall be defined before use, except in

﷓ifdef and ﷓ifndef preprocessor directives

and the defined() operator

Required

M19.12 Rule 19.12 The ﷓ or ﷓﷓ preprocessor opera­

tor should not be used more than

once.

There shall be at most one occurrence of

the ﷓ or ﷓ preprocessor operators in a sin­

gle macro definition

Required

M19.13 Rule 19.13 The ﷓ and ﷓﷓ preprocessor oper­

ator should be avoided.

Advisory

M19.14 Rule 19.14 Only use the 'defined' preproces­

sor operator with a single identifi­

er.

The defined preprocessor operator shall

only be used in one of the two standard

forms

Required

M19.15 Rule 19.15 Header file contents should be

protected against multiple inclu­

sions

Precautions shall be taken in order to pre­

vent the contents of a header file being in­

cluded twice

Required

M19.16 Rule 19.16 Possible bad syntax in prepro­

cessing directive.

Preprocessing directives shall be syntac­

tically meaningful even when excluded by

the preprocessor

Required

M19.17 Rule 19.17 A ﷓if, ﷓ifdef, ﷓else, ﷓elif or ﷓endif

preprocessor directive has been

found without its matching direc­

tive in the same file.

All ﷓else, ﷓elif and ﷓endif preprocessor di­

rectives shall reside in the same file as the

﷓if or ﷓ifdef directive to which they are re­

lated

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E19.18 The controlling expression of a

﷓if or ﷓elif preprocessing direc­

tive shall evaluate to 0 or 1

Required

E19.19 A macro parameter immediately

following a ﷓ operator shall not

immediately be followed by a ﷓﷓

operator

Required

E19.20 Macro parameter %name% used

as an operand to the ﷓ and ﷓﷓

operators shall not be used else­

where in this macro

Required

Standard li­

braries

M20.1 Rule 20.1 %name% should not be defined,

redefined or undefined.

Reserved identifiers, macros and functions

in the standard library, shall not be defined,

redefined or undefined

Required

E20.1 A macro shall not be defined with

the same name as a keyword:

%name%

Required

M20.2.1 ﷓define and ﷓undef shall not be

used on a reserved identifier or

reserved macro name: Identifier

%name% already found in %name

%

Required

M20.2.2 Rule 20.2 ﷓define and ﷓undef shall not be

used on identifier beginning with

an underscore or on 'defined' key­

word: %name%

Required

M20.2.3 Rule 20.2 Declared identifier should not be

a reserved identifier or reserved

Required

141

HCL® OneTest™ Embedded

142

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

macro name: Identifier %name%

already found in %name%

M20.2.4 Rule 20.2 Declared identifier should not be­

gin with an underscore or be 'de­

fined' keyword: %name%

Required

M20.4 Rule 20.4
Dynamic heap memory allocation

shall not be used.

This precludes the use of the functions cal­

loc, malloc, realloc free and strdup. There

is a whole range of unspecified, undefined

and implementation-defined behaviour as­

sociated with dynamic memory allocation,

as well as a number of other potential pit­

falls. Dynamic heap memory allocation may

lead to memory leaks, data inconsistency,

memory exhaustion, non-deterministic.

Note that some implementations may use

dynamic heap memory allocation to imple­

ment other functions (for example func­

tions in the library string.h). If this is the

case then these functions shall also be

avoided.

Required

M20.5 Rule 20.5
The error indicator errno shall not

be used.

errno is a facility of C, which in theory

should be useful, but which in practice is

poorly defined by the standard. A non zero

value may or may not indicate that a prob­

lem has occurred; as a result it shall not be

used. Even for those functions for which

the behaviour of errno is well defined, it is

preferable to check the values of inputs be­

fore calling the function rather than rely on

using errno to trap errors (see Rule 16.10).

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M20.6 Rule 20.6 The macro offsetof, in library

<stddef.h>, shall not be used.
Use of this macro can lead to undefined be­

haviour when the types of the operands are

incompatible or when bit fields are used.

Required

M20.7 Rule 20.7 The setjmp macro and the

longjmp function shall not be

used.

etjmp and longjmp allow the normal func­

tion call mechanisms to be bypassed, and

shall not be used.

Remark : sigsetjmp and siglongjmp (Gnu Li­

brary) are also detected

Required

E20.7 The standard header file <setjm­

p.h> shall not be used

Required

M20.8 Rule 20.8
The signal handling facilities of

<signal.h> shall not be used.

Signal handling contains implementa­

tion-defined and undefined behavior.

Required

M20.9 Rule 20.9
The input/output library <stdio.h>

shall not be used in production

code.

This includes file and I/O functions fgetpos,

fopen, ftell, gets, perror, remove, rename,

and ungetc.

Streams and file I/O have a large number

of unspecified, undefined and implemen­

tation-defined behaviours associated with

them. It is assumed within this document

that they will not normally be needed in pro­

duction code in embedded systems.

If any of the features of stdio.h need to be

used in production code, then the issues

associated with the feature need to be un­

derstood.

143

HCL® OneTest™ Embedded

144

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

M20.10 Rule 20.10
The library functions atof, atoi

and atol from library <stdlib.h>

shall not be used.

These functions have undefined behavior

associated with them when the string can­

not be converted.

Required

M20.11 Rule 20.11
The library functions abort, exit,

getenv and system from library

<stdlib.h> shall not be used.

These functions will not normally be re­

quired in an embedded system, which does

not normally need to communicate with an

environment

Then, it is essential to check on the imple­

mentation-defined behavior of the function

in the environment.

Required

E20.11 The library macro or function

'bsearch, qsort' should not be

used

Required

M20.12 Rule 20.12
The time handling functions of li­

brary <time.h> shall not be used.

Includes time, strftime. This library is asso­

ciated with clock times. Various aspects

are implementation dependent or unspeci­

fied, such as the format of times. If any of

the facilities of time.h are used, then the ex­

act implementation for the compiler being

used must be determined, and a deviation

being raised.

Required

E20.12 The input/output library

<wchar.h> shall not be used in

production code

Required

Chapter 5. Test Execution Specialist Guide

Table 5. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E20.13 The standard header file <tg­

math.h> shall not be used

Required

E20.14 The library macro or function

'feclearexcept, fegetexceptflag,

feraiseexcept, fesetexceptflag,

fetestexcept, FE_INEXACT, FE_­

DIVBYZERO, FE_UNDERFLOW,

FE_OVERFLOW, FE_INVALID, FE_­

ALL_EXCEPT' should not be used

Required

Rule U99.1 Warning

Rule U99.2 Error

Rule U99.3 Warning

Rule U99.4 Error

Rule U99.5 Warning

Rule U99.6 Error

Rule U99.7 Warning

Rule U99.8 Error

Rule U99.9 Warning

Rule U99.10 Error

You can customize this rule in the confrule

file

Note: Applies to HCL OneTest™ Embedded Studio only:

The code review references in bold in this table are disabled when they are run from the code review link

checker in test mode. To verify these rules, you must run the code review from the application node in HCL

OneTest™ Embedded Studio. For more information, see Running complete verification of MISRA rules from an

application node on page 328.

Code review MISRA 2012 rules
The code review tool covers rules from the lists the rules that produced and error or a warning. Each rule can be

individually disabled or assigned a Warning or Error severity by using the Rule configuration window. Some rules also

have parameters that can be changed. Among other guidelines, the code review tool implements most rules from the

145

HCL® OneTest™ Embedded

146

MISRA-C:2012 standard, "Guidelines for the use of the C language in critical systems". These rules are referenced

with an M prefix. In addition to the industry standard rules, HCL OneTest™ Embedded provides some additional coding

guidelines, which are referenced with an E prefix.

Code Review - MISRA 2012 rules

D is set for Decidable, U for Undecidable.

Code review

reference
Type D/U Description Level

M1.1 Error D ANSI C error: %name

%

Required

M1.1W Error D ANSI C warning:

%name%

Required

M1.2 Error U Use of ﷓pragma

%name% should al­

ways be encapsulat­

ed and documented

Advisory

E1.1 Error D Function max number

of line

Required

E.1.2 Error D Function max V(g) Required

E1.3 Functions should

have less than

'%param%' lines, out­

side empty lines (cur­

rent value: %name%).

E1.4 Functions should

have less than

'%param%' lines, out­

side empty lines or

comment lines (cur­

rent value : %name%).

E1.5 Functions should

have less than

'%param%' lines, out­

side empty lines,

comment lines or

bracket lines (current

value : %name%).

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

Lines are not counted

in the following cas­

es:

• If they contain

spaces (in­

cluding \t, \r,

\n),

• If they contain

only brackets

(there might

be several

brackets on

same line),

• If they contain

comments on­

ly, or if they

contain brack­

ets and com­

ments only.

E1.6
Optional

Compilation units

should define less

than '%param%' func­

tions (current value:

%name%).

Default parameter

value: 10.

E1.7 Optional

Compilation units

should define less

than '%param%' vari­

ables (current value:

%name%).

147

HCL® OneTest™ Embedded

148

Code review

reference
Type D/U Description Level

Default parameter

value: 10.

E1.8
Optional

Compilation units

should have less than

'%param%' lines (cur­

rent value: %name%).

Default parameter

value : 200.

E1.9
Optional

Compilation unit

should have less

than '%param%' lines,

not counting empty

lines (current value :

%name%).

Empty lines (current

value : %name%) are

not counted.

Default parameter

value : 200.

E1.10
Optional

Compilation unit

should have less than

'%param%' lines not

counting empty lines

or comments (current

value : %name%).

Empty lines or com­

ments (current val­

ue : %name%) are not

counted.

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

Default parameter

value : 200.

E1.11
Optional

Compilation unit

should have less than

'%param%' lines not

counting empty lines,

comments or brack­

ets (current value:

%name%).

Empty lines, com­

ments or brack­

ets (current value :

%name%) are not

counted.

Default parameter

value : 200.

E1.12 Functions should

have less than

'%param%' parame­

ters (current value :

%name%).

M2.1 Error U a project shall not

contain unreachable

code

Required

M2.2.1 Error U A non-null statement

should either have a

side effect or change

the control flow

Required

M2.2.2 Error U The function %name

% is never referenced

Required

M2.2.3 Error D The object %name%

is never referenced

Required

149

HCL® OneTest™ Embedded

150

Code review

reference
Type D/U Description Level

M2.3 Warning D Type %name% is nev­

er used

Advisory

M2.4 Warning D Tag %name% is never

used

Advisory

M2.5 Warning D Macro %name% is

never used

Advisory

M2.6 Warning D A function should not

contain unused label

declarations

Advisory

M2.7 Warning D There should be no

unused parameters in

functions

Advisory

M3.1.1 Error D The character se­

quence /* should not

be used within a com­

ment

Required

M3.1.2 Error D The character se­

quence // should not

be used within a 'C-

style' comment

Required

M3.2 Error D Line-splicing shall not

be used in // com­

ments

Required

E3.1 Error D A null statement in

original source code

should be on a sep­

arate line and the

semicolon should be

followed by at least

one white space and

then a comment

Required

M4.1 Error D Octal and hexadec­

imal escape se­

quences shall be ter­

minated

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M4.2 Warning D Trigraphs should not

be used

Advisory

E4.1 Error D Only ISO C escape se­

quences are allowed

Advisory

E.4.2 Error D Only ISO C escape

sequences are al­

lowed(\v)

Advisory

M5.1.1 Error D External identifiers

shall be distinct in the

first 31 characters

Required

M5.1.2 Error D External identifiers

shall be distinct in the

first 6 characters ig­

noring case

Required

M5.2 Error D Identifiers %name

% declared in the

same scope and

name space shall

be distinct. Identifier

identical in the first

%param% characters

already found in %lo­

cation%

Required

M5.3 Error D Identifier %name%

declared in an inner

scope shall not hide

an identifier declared

in an outer scope.

Identifier identical

in the first %param

% characters already

found in %location%

Required

M5.4.1 Error D Macros %name% and

%name% are identical

in the first %param%

characters

Required

151

HCL® OneTest™ Embedded

152

Code review

reference
Type D/U Description Level

M5.4.2 Error D Macros %name% and

%name% are identical

in the first %param%

characters ignoring

case.

Required

M5.5.1 Error D Macro %name% and

identifier %name%

are identical in the

first %param% char­

acters.

Required

M5.5.2 Error D Macro %name% and

identifier %name%

are identical in the

first %param% char­

acters ignoring case.

Required

M5.6 Error D Macro %name% and

identifier %name%

are identical in the

first %name% %param

% characters ignor­

ing case. The type­

def name %name%

should not be reused

except for its tag.

Name already found

in %location%

Required

M5.7.1 Error D The tag name %name

% should not be

reused

Required

M5.7.2 Error D A struct and union

cannot use the same

tag name

Required

M5.8 Error D Identifiers that define

objects or functions

with external linkage

shall be unique

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M5.9 Error D Identifiers that define

objects or functions

with internal linkage

should be unique

Advisory

E5.1 Error D External identifiers

shall not be ambigu­

ous because of pos­

sible character confu­

sion.

Advisory

E5.2 Error D External identifiers

shall not be ambigu­

ous because of char­

acter repetition

Advisory

E5.3 Warning D The identifier<name>

should not be reused.

Identifier already

found in %location%

Advisory

E5.4 Error D Identifier %name% in

an inner scope hides

the same identifier in

an outer scope : %lo­

cation%

Advisory

E5.5 Error D The typedef name

%name% should not

be reused even for

its tag. Name already

found in %location%

Advisory

M6.1.1 Error D Bit fields should only

be of type 'unsigned

int' or 'signed int'

Required

M6.1.2 Error D Bit fields should not

be of type 'enum'

Required

M6.1.3 Error D Bit fields should only

be of explicitly signed

or unsigned type

Required

153

HCL® OneTest™ Embedded

154

Code review

reference
Type D/U Description Level

M6.1.4 Error D Bit fields should not

be of type 'bool' under

c99

Required

M6.1.5 Error D Bit fields should not

be of type 'boolean'

outside c99

Required

M6.2 Error D Single-bit fields shall

not be of a signed

type

Required

E6.1 Warning D The C language nu­

meric type %name%

should not be used

directly but instead

used to define type­

def

Required

E6.2 Warning D The implicit 'int' type

should not be used

Required

M7.1 Error D Octal constans shall

not be used

Required

M7.2 Error D A "u" or "U" suffix

shall be applied to all

integer constants that

are represented in an

unsigned type"

Required

M7.3 Error D The lowercase char­

acted l" shall not be

used in a literal suffix"

Required

M7.4 Error D A string litteral shall

not be assigned to an

object unless the ob­

ject's type is pointer

to a const-qualified

char

Required

M8.1 Error D Types shall be explic­

itly specified

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M8.2.1 Error D The function proto­

type should name all

its parameters

Required

M8.2.2 Error D Functions with no pa­

rameters should use

the void type

Required

M8.2.3 Error D The type of parame­

ter %name% should

be explicitly stated

Required

M8.3.1 Error D Parameters and re­

turn types should use

compatible type in

the declaration and in

the definition

Required

M8.3.2 Error D The identifiers used

in the prototype and

definition should be

the same

Required

M8.4.1 Error D A prototype for

the global function

%name% should be

declared before defin­

ing the function

Required

M8.4.2 Error D A prototype for the

global object %name

% should be declared

before defining the

object

Required

M8.4.3 Error D If objects or functions

are declared multi­

ple times their types

should be compatible

Required

M8.5 Error D Identifiers %name%

that declare objects

or functions with ex­

ternal linkage shall be

Required

155

HCL® OneTest™ Embedded

156

Code review

reference
Type D/U Description Level

declared once in one

and only one file

M8.6 Error D Identifiers %name%

that declare objects

or functions with ex­

ternal linkage shall be

unique

Required

M8.7.1 Warning D Global object %name

% that are only used

within the same file

should be declared

using the static stor­

age-class specifier.

Advisory

M8.7.12 Warning D Global function

%name% that are on­

ly used within the

same file should be

declared using the

static storage-class

specifier.

Advisory

M8.8 Error D The static storage

class specifier shall

be used in all declara­

tions of objects and

functions that have

internal linkage

Required

M8.9 Warning D An object should

be defined at block

scope if its identifier

only appears in a sin­

gle function

Advisory

M8.10 Error D Inline function

%name% should be

static

Required

M8.11 Warning D When an array with

external linkage is de­

Advisory

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

clared, its size should

be explicitly specified

M8.14 Error D The restrict type qual­

ifier shall not be used

Required

E.8.1 Error D Parameters and re­

turn types should use

exactly the same type

names in the declara­

tion and in the defini­

tion

Required

E.8.2 Error D A prototype for

the static function

%name% should be

declared before defin­

ing the function

Required

E.8.3 Error D Static function

%name% should only

be declared in a sin­

gle file. Redundant

declaration found at:

%name%

Required

E.8.4 Error D Static object %name

% should only be de­

clared in a single file.

Redundant declara­

tion found at: %loca­

tion%

Required

E.8.5 Error D Either all members or

only the first member

of an enumerator list

should be initialized

Required

E.8.6 Error D The body of function

%name% should not

be located in a header

file

Required

157

HCL® OneTest™ Embedded

158

Code review

reference
Type D/U Description Level

E.8.7 Error D The memory stor­

age (definition) for

the variable %name

% should not be in a

header file

Required

E.8.8 Error D Functions should not

be declared at block

scope

Required

E.8.9 Error D The global object or

function '%name%'

should have exactly

one external defini­

tion. Redundant defi­

nition found in %loca­

tion%

Required

E.8.10 Error D The global object or

function %name%

%name% should have

exactly one external

definition. No defini­

tion found

Required

E.8.11 Error D Use the const quali­

fication for variable

%name% which is

pointer and which is

not used to change

the pointed object

Required

M9.2 Error D The initializer for an

aggregate or union

shall be enclosed in

braces

Required

Exception not cov­

ered

M9.3 w D Arrays shall not be

partially initialized

Required

Exception not cov­

ered

E9.1 Error D Variables with au­

tomatic storage du­

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

ration should be ini­

tialized before being

used

E9.2 Error D The global variable

%name% is not initial­

ized

Required

M10.1.1 Error D Constraint violation :

can't use floating type

as operand of "[], %,

<<, >>, ~, &, |,

^"

Required

M10.1.2 Error D Operand should be

boolean

Required

M10.1.3 Error D Can't use a boolean

as a numeric value

Required

M10.1.4 Error D Can't use a char as a

numeric value

Required

M10.1.5 Error D Can't use a not anony­

mous enum as a nu­

meric value

Required

M10.1.6 Error D Shift and bitwise op­

erations should be

performed on un­

signed value

Required

M10.1.7 Error D Right hand operand

of shift operation

should be performed

on unsigned value

Required

M10.1.8 Error D Unary minus oper­

ation should not be

performed on un­

signed value

Required

M10.2 Error D Expressions of essen­

tially character type

shall not be used in­

appropriately in addi­

Required

159

HCL® OneTest™ Embedded

160

Code review

reference
Type D/U Description Level

tion and subtraction

operations

M10.3.1 Error D The value of an ex­

pression shall not be

assigned to an object

with a narrower es­

sential type

Required

M10.3.2 Error D The value of an ex­

pression shall not be

assigned to an object

with a different es­

sential type category

Required

M10.4 Error D Both operands of an

operator in which

the usual arithmetic

conversions are per­

formed shall have the

same essential type

category

Required

M10.5 Warning D The value of an ex­

pression should not

be cast to an inappro­

priate essential type

Advisory

M10.6 Error D The value of a com­

posite expression

shall not be assigned

to an object with

wider essential type

Required

M10.7 Error D If a composite ex­

pression is used as

one operand of an

operation in which

the usual arithmetic

conversions are per­

formed then the oth­

er operand shall not

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

have wider essential

type

M10.8 Error D The value of a com­

posite expression

shall not be cast to

a different essential

type category or a

wider essential type

Required

E10.1 Error D When using operator

'~' or '&lt;&am­

p;lt;' on 'unsigned

char' or 'unsigned int',

you should always

cast returned value

Required

M11.1 Error D A function pointer

should not be con­

verted to another type

of pointer

Required

M11.2 Error Conversions shall

not be performed be­

tween a pointer to an

incomplete type and

any other type

Required

M11.3.1 Error Casting an object

pointer type to a dif­

ferent object pointer

type should not occur

Required

M11.3.2 Error Casting an object

pointer type to a dif­

ferent object pointer

type should not oc­

cur, especially when

object sizes are not

the same

Required

M11.3.3 Error An object pointer

should not be con­

Required

161

HCL® OneTest™ Embedded

162

Code review

reference
Type D/U Description Level

verted to another type

of pointer

M11.4 Warning Casting a pointer type

to an integer type

should not occur

Advisory

M11.5 Warning A conversion should

not be performed

from pointer to void

into pointer to object

Advisory

M11.6 Error A cast shall not be

performed between

pointer to void and

and an arithmetic

type

Required

M11.7 Error A cast shall not be

performed between

pointer to object and

a non-integer arith­

metic type

Required

M11.8 Error Casting of pointers to

a type that removes

any const or volatile

qualification on the

pointed object should

not occur

Required

M12.1.1 warning Implicit operator

precedence may

cause ambiguity. Use

parenthesis to clarify

this expression

Advisory

M12.1.2 warning Implicit bitwise oper­

ator precedence may

cause ambiguity. Use

parenthesis to clarify

this expression

Advisory

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M12.1.3 warning Parenthesis should

be used around ex­

pressions that are

operands of a logi­

cal &amp;&am­

p;amp; or ||

Advisory

M12.1.4 warning Parenthesis should

be used around

expression that is

operand of 'sizeof' op­

erator.

Advisory

M12.3 warning The comma operator

should not be used.

Advisory

E12.1 warning The operator on a

Boolean expression

should be a logical

operator (&&am­

p;, || or !)

Advisory

E12.2 warning Ternary expression '?:'

should not be used

Advisory

E12.3 error Expressions should

not cause a side ef­

fect assignment

Advisory

E12.4 error The equal or not

equal operator should

not be used in float­

ing-point expressions

Advisory

M13.3 Warning a full expression con­

taining an increment

(++) or decrement

(--) operator should

have no other poten­

tial side effects oth­

er than that caused

by the increment or

decrement operator

Advisory

163

HCL® OneTest™ Embedded

164

Code review

reference
Type D/U Description Level

M13.4.1 Warning Boolean expressions

should not contain

assignment opera­

tors.

Advisory

M13.4.2 Warning The result of an as­

signment operator

should not be used in

an expression

Advisory

M13.6 Error The operand of the

sizeof operator shall

not contain any ex­

pression which has

potential side effects

Required

E13.1 Error Boolean expressions

should not contain

side effect operators

Required

E13.2 Error An expression that

contains a side ef­

fect should not be

used in the right-hand

operand of a logical

&& or || op­

erator

Required

E13.3 Error The function in the

right-hand operand of

a logical && or || oper­

ator might cause side

effects

Required

M14.1.1 Error Floating-point vari­

ables should not be

used to control a for

statement

Required

M14.2.1 Error Only loop counter

should be initialized

in a for loop initializa­

tion part

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M14.2.2 Error In the 'update part' of

a 'for statement', only

'loop counter' should

be updated

Required

M14.2.3 Error There should be one

and only one loop

counter for loop

statement

Required

M14.2.4 Error Loop counter of a 'for

statement' should not

be modified within

the body of the loop

Required

M14.3.1 Error Invariant Boolean ex­

pressions should not

be used

Required

M14.4 Error Non-Boolean val­

ues that are tested

against zero should

have an explicit test

Required

M15.1 Warning The goto statement

should not be used

Advisory

M15.2 Error The goto statement

shall jump to a label

declared later in the

same function

Required

M15.3 Error Any label referenced

by a goto statement

shall be declared in

the same block, or in

any block enclosing

the goto statement

Required

M15.4 Warning There should be no

more than one break

or goto statement

used to terminate any

iteration statement

Advisory

165

HCL® OneTest™ Embedded

166

Code review

reference
Type D/U Description Level

M15.5 Warning A function should

have a single point of

exit at the end

Advisory

M15.6.1 Error The switch statement

should be followed

by a compound state­

ment

Required

M15.6.1 Error The switch statement

should be followed

by a compound state­

ment

Required

M15.6.2 Error The while statement

should be followed

by a compound state­

ment

Required

M15.6.3 Error The do..while state­

ment should contain

a compound state­

ment

Required

M15.6.4 Error The for statement

should be followed

by a compound state­

ment

Required

M15.6.5 Error The if (expression)

construct should be

followed by a com­

pound statement

Required

M15.6.6 Error The else keyword

should be followed

by either a compound

statement or another

'if' statement.

Required

M15.7 Error All if ... else con­

structs shall be ter­

minated with an else

statement

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

E15.1 Error Do not use the contin­

ue statement

Required

E15.2 Error Only one break state­

ment should be used

within a loop

Required

E15.3 Error The return keyword

should not be used in

a conditional block

Required

E15.4 Error The else keyword

should be followed

by a compound state­

ment.

Required

M16.1 Error All switch state­

ment should be well

formed

Required

M16.2 Error A switch label shall

only be used when

the most closely-en­

closing copound

statement is the body

of a switch statement

Required

M16.3 Error An unconditional

break statement

shall terminate every

switch-clause

Required

M16.4 Error Every switch state­

ment shall have a de­

fault label

Required

M16.5 Error A default label appear

as either the first or

the last switch label

of a switch statement

Required

M16.6 Error Every switch state­

ment shall have at

least two switch-

clauses

Required

167

HCL® OneTest™ Embedded

168

Code review

reference
Type D/U Description Level

M16.7 Error A switch expression

shall not have essen­

tially Boolean type

Required

E16.1 Error Case char value is

applicable only if the

switch statement val­

ue is plain character

variable

Required

E16.2 Error A constant should not

be used as a switch

expression

Required

E16.3 Error The switch expres­

sion should not have

side effects

Required

M17.1.1 Error The function '%name

%' should not have a

variable number of ar­

guments

Required

M17.1.2 Error The va_list, va_arg,

va_start, va_end and

va_copy functions of

<stdarg.h> shall not

be used

Required

M17.2.1 Error Recursive functions

are not allowed. The

function '%name%' is

directly recursive

Required

M17.2.2 Error Recursive functions

are not allowed. The

function '%name%' is

recursive when call­

ing '%name%'

Required

M17.3 Error A function shall not

be declared implicitly

Required

M17.4 Error All exit paths from

a function with non-

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

void return type shall

have an explicit return

statement with an ex­

pression

M17.6 Error The declaration of an

array parameter shall

not contain the static

keyword between the

[]

Advisory

M17.7 Error The value returned by

function having non-

void return type shall

be used

Required

E17.1 Error The number of argu­

ments used in the call

does not match the

number declared in

the prototype

Advisory

E17.2 Error Use the const quali­

fication for parame­

ter '%name%' which

is pointer and which

is not used to change

the pointed object

Advisory

E17.3 Error Function identifiers

should always use a

parenthesis or a pre­

ceding &

Advisory

M18.4 Error The +, -, += and -= op­

erators should not be

applied to an expres­

sion of pointer type

Advisory

M18.5 Error Declarations should

contain no more than

two levels of pointer

nesting

Advisory

169

HCL® OneTest™ Embedded

170

Code review

reference
Type D/U Description Level

M18.7 Error Flexible arrays mem­

bers shall not be de­

clared

Required

M18.8 Error Variable-length ar­

ray types shall not be

used

Required

M19.2 Warning The union keyword

should not be used

Advisory

E19.1 Error Structure or union

types '%name%'

should be finalized

before the end of the

compilation units

Advisory

M20.1 Warning ﷓include directive

should only preceded

by preprocessor di­

rectives or comments

Advisory

M20.2 Error The ', or \ character

and the /* or // char­

acter sequences shall

not occur in a header

file name"

Required

M20.3 Error The ﷓include direc­

tive shall be followed

by either a <file­

name> or a filename"

sequence"

Required

M20.4 Error A macro shall not

be defined with the

same name as a key­

word %name%

Required

M20.5 Warning ﷓undef should not be

used

Advisory

M20.6 Error Token that look like a

preprocessing direc­

tive should not occur

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

withing a macro argu­

ment

M20.7 Error Expressions resulting

from the expansion

of macro parameters

shall be enclosed in

parenthesis

Required

M20.8 Error The controlling ex­

pression of a ﷓if or

﷓elif preprocessing

directive shall evalu­

ate to 0 or 1

Required

M20.9 Error All identifiers used

in the controlling ex­

pression of ﷓if or

﷓elif preprocessing

directives shall be

﷓define'd before eval­

uation

Required

M20.10 Warning The ﷓ and ﷓﷓ pre­

processor operators

should not be used

Advisory

M20.11 Error A macro parameter

immediately following

a ﷓ operator shall not

immediately be fol­

lowed by a ﷓﷓ opera­

tor

Required

M20.12 Error A macro parameter

used as an operand

to the ﷓ and ﷓﷓ op­

erators shall only be

used as an operand

to these operators

Required

M20.13 Error A line whose first to­

ken is ﷓ shall be a

Required

171

HCL® OneTest™ Embedded

172

Code review

reference
Type D/U Description Level

valid preprocessing

directive

M20.14 Error Error All ﷓else, ﷓elif and

﷓endif preprocessor

directives shall reside

in the same file as

the ﷓if, ﷓ifdef or ﷓ifn­

def directive to which

they are related

Required

E20.1 Error Header file contents

should be protected

against multiple inclu­

sions

Required

E20.2 Error The ﷓ or ﷓﷓ pre­

processor operator

should not be used

more than once

Required

E20.3 Error Missing argument

when calling the

macro

Required

E20.4 Error Only use the 'defined'

preprocessor opera­

tor with a single iden­

tifier

Required

E20.5 Error Macro definitions or

'﷓undef' should not

be located within a

block

Required

E20.6 Error A C macro should on­

ly be expanded to a

constant, a braced

initialiser, a paren­

thesised expression,

a storage class key­

word, a type qualifi­

er, or a do-while-zero

block

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M21.1.1 Error ﷓define and ﷓undef

shall not be used

on a reserved iden­

tifier or reserved

macro name: Iden­

tifier %name% al­

ready found in <

%libname%>

Required

M21.1.2 Error ﷓define and ﷓undef

shall not be used on

identifier beginning

with an underscore or

on 'defined' keyword

%name%

Required

M21.2.1 Error Declared identifier

should not be a re­

served identifier or re­

served macro name:

Identifier %name% al­

ready found in <%lib­

name%>

Required

M21.2.2 Error Declared identifier

should not begin with

an underscore or be

'defined' keyword

%name%

Required

M21.3 Error The memory allo­

cation and deallo­

cation functions of

<stdlib.h> shall not

be used

Required

M21.4 Error The standard header

file <setjmp.h> shall

not be used

Required

M21.5 Error The standard header

file <signal.h> shall

not be used

Required

173

HCL® OneTest™ Embedded

174

Code review

reference
Type D/U Description Level

M21.6.1 Error The input/output li­

brary <stdio.h>

shall not be used in

production code

Required

M21.6.2 Error The input/output li­

brary <wchar.h>

shall not be used in

production code

Required

M21.7 Error The library macro

or functions atof,

atoi, atol and atoll of

<stdlib.h> shall not

be used

Required

M21.8 Error The library macro or

functions abort, exit,

getenv and system of

<stdlib.h> shall not

be used

Required

M21.9 Error The library macro or

functions bsearch

and qsort of

<stdlib.h> shall not

be used

Required

M21.10 Error The standard library

time and date func­

tions shall not be

used

Required

M21.11 Error The standard head­

er file <tgmath.h>

shall not be used

Required

M21.12 Warning The library macro or

function 'feclearex­

cept, fegetexceptflag,

feraiseexcept, fese­

texceptflag, fetestex­

cept, FE_INEXACT,

FE_DIVBYZERO, FE_­

Advisory

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

UNDERFLOW, FE_­

OVERFLOW, FE_IN­

VALID or FE_ALL_EX­

CEPT' should not be

used.

E21.1 Error The variable 'errno'

should not be used

Required

E21.2 Error The macro 'offsetof'

should not be used

Required

E21.3 Error The library macro

or function 'setjm­

p,longjmp,sigsetjm­

p,siglongjmp' should

not be used

Required

Rule U99.1 Warning

Rule U99.2 Error

Rule U99.3 Warning

Rule U99.4 Error

Rule U99.5 Warning

Rule U99.6 Error

Rule U99.7 Warning

Rule U99.8 Error

Rule U99.9 Warning

Rule U99.10 Error

You can customize

this rule in the con­

frule file

Executing the code review
You can use the code review tool on any test, application node, or a single source file. The code review tool is run on

the source code whenever you build the file.

Before you begin

For all new projects, you must have selected the rule configuration file. You can configure the code review rules if

necessary. See Configuring code review rules on page 110.

About this task

175

HCL® OneTest™ Embedded

176

To perform a code review without compiling and executing the application:

1. In the Project Explorer, select the node that you want to check.

2. Click the Code Review icon to enable code review in the build and click the Launch icon .

3. If your rule configuration file is an out-of-date version, you are prompted to update it. Click ok and select the

rules that are missing.

Note: The selected rules are added with their default severity levels to your configuration file.

Unselected rules are added as disabled rules.

4. In the Project Explorer view, right-click on the result file under the Test Result node, select Open with > HTML

Reports > Code Review to see the report.

Customizing the code review report
The default code review report is generated in an HTML format from a template named misrareport.template as that

you can modify to customize the code review reports.

The code review HTML reports are generated from a template named misrareport.template that you can find in the

following folder as a text file:

• On Windows: <installation_directory>\lib\reports

• On Unix: <installation_directory>/lib/reports

The template file uses the following JavaScript libraries:

• Bootstrap

• JQuery

• Font Awesome

• VisJS

• Chart

These libraries are not provided. An internet connection is required to open the report. If you don't have any internet

connection, download the libraries (.css and .js files), copy them in the folder in which the report is saved, and modify

the template file as follows:

Replace the following block of lines:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.8.0/Chart.min.css">
…

Chapter 5. Test Execution Specialist Guide

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.8.0/Chart.min.js"></script>

With the following one:

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
<link rel="stylesheet" href="./Chart.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script>
<script src="./Chart.min.js"></script>

The following sections give the list of elements that you can use in the raw data and the JavaScript functions to

customize your report file.

Data format

The misrareport.template template consists of two sections:

• The HTML section that is common to all reports,

• A JavaScript section that sets tables depending on two variables that are initialized dynamically when the

report is created:

var data = {{json}}; // the raw data, in json format
var d = new Date({{date}}) // the generation date

Raw data contains the following information at the top level:

• output is the name of the json file that contains the raw data

• title is the nternal title of the report (displayed in the “crc” file format)

• configurationTitle is the title of the used configuration file

• systemLevel is the C level norm used. The possible values are "C90", "C90 and Normative Addentum 1", "C99

or "C11"

• configuration is the configuration file used to generate this report

• date is the generation date of raw data

• nbAnalyzedFiles is the number of analyzed files

• nbFilesKO is the number of files containing errors

• nbFilesOK is the number of files without errors

177

HCL® OneTest™ Embedded

178

• nbError is the total number of all errors in all analyzed files

• nbWarning is the total number of all warnings in all analyzed files

• files is the array of file element (each one represents a physical file) or array of deactivated element

• statistics is the array of rule statistics element

Example:

{
"output": "../build/fullreport_1.crc.json",
"title": "HCL OneTest (TM) Embedded MISRA C:2012 Report using C90",
"configurationTitle": "MISRA C:2012",
"systemLevel": "C90",
"configuration": "C:\\Program
 Files\\HCL\\HCLOneTest\\Embedded/plugins/Common/lib/confrule_2012.xml",
"date": "Mon Oct 19 15:52:07 2020",
"nbAnalyzedFiles": 5,
"nbFilesKO": 4,
"nbFilesOK": 1,
"nbError": 49,
"nbWarning": 68,
"files": [
],
"statistics": [
]
}

Each file elementfile element represents an analyzed source file. It contains the following information at the top level:

• source is the physical location of source file

• fileDate is the date of last editing of this source

• nbErrorOrWarning is the total of error or warning in this file

• content is an array of rule element (if the rule is directly raised at file level) or function element. It is always

available but it can be empty (file with no function and with no error or warning)

Each function element represents a function. It contains the following information at the top level:

◦ function is the name of the function

◦ kind is the analysis result of this function. The possible values are 'Failed' or 'Passed'

◦ content is an array of rule element (rules that are raised inside this function). It is always available

but it can be empty (function with no error or no warning)

Examples:

file element

{
"source": "C:\\workspace\\project\\src\\core.h",
"fileDate": "Mon Sep 07 10:31:50 2020",
"nbErrorOrWarning": 25,
"content": [

Chapter 5. Test Execution Specialist Guide

]
}

function element:

{
"function": "win",
"kind": "Failed",
"content": [
]
}

Each rule element represents a triggered rule, justified or not. It contains the following information at the top level:

• rule is the name of the rule, corresponding to its label defined in the configuration file

• group is the family of this rule, it corresponds to the label of the rule’s group that is defined in the configuration

file

• kind is the severity of the rule. The possible values are 'error', 'warning' or 'info', depending on the error level in

the configuration file and on the possible justification (the justified rules have an 'info' type value)

• line is the line of the current file where the rule was triggered

• column is the column of the current file where the rule was triggered

• text is the rule description. It is related to the rule text in configuration file

• justification is the justification text for the rule. This field is optional, and is present only if the rule is justified

Example:

{
"rule": "M21.6.1",
"group": "21- Standard libraries",
"kind": "info",
"line": 21,
"column": 10,
"text": "The input/output library <stdio.h> shall not be used in production code.",
"justification": "This rule does not apply to the following line"
}

Each deactivated element represents a group of rules that is deactivated for a specific reason. It contains the

following information at the top level:

• deactivated_rules_by_user is used for all the rules that are deactivated when it is used in the configuration file

with the error set to level 0. This field is optional, it can be empty, or you can enter an array of deactivated rule

element

Example:

{
"deactivated_rules_by_user": [

179

HCL® OneTest™ Embedded

180

]
}

• deactivated_rules_by_test_option is used for all the rules that are deactivated by using the “-test” option. This

field is optional, it can be empty, or you can enter an array of deactivated rule element

Example:

{
"deactivated_rules_test_option": [
]
}

Each deactivated rule element represents a deactivated rule for any reason. It contains the following information at

the top level:

• rule is the name of the rule, it corresponds to the rule label that is defined in the configuration file

• text is the rule description, it corresponds to the rule text in configuration file

Example:

{
"rule": "E15.3",
"text": "The return keyword should not be used in a conditional block."
}

Each rule statistics element represents global statistics for the rule raised during test. It contains the following

information at the top level:

• ruleStatistics is the array of the statistic rule element

Example:

{
"rulesStatistics": [
]
}

Each statistic rule element contains a rule that was raised one or several times. It contains the following information

at the top level:

• rule is the name of the rule. It corresponds to the rule label that is defined in the configuration file

• kind is the severity of the rule. The possible values are 'error' or 'warning' that correspond to the error level in

the configuration file

• occurences is the number of times that the rule was raised

Chapter 5. Test Execution Specialist Guide

Example:

{
"rule": "M17.7",
"kind": "error",
"text": "When a function returns a value, this value should be used.",
"occurences": 4
}

Javascript functions

You can find in the misrareport.template template a set of JavaScript functions.

Some of the helper functions simplify access to “raw data”:

• isFct(element) checks whether an element is a function or not

• isFile(element) checks whether an element is a file or not

• isFileInError(element) checks whether an element is a file that contains an error or a warning

• isFctPassed(element) checks whether an element is a passed function or not

• isFctFailed(element) checks whether an element is a failed function or not

• isRuleError(element) checks whether a rule level is error or not

• isRuleWarning(element) checks whether a rule level is warning or not

• isRuleInfo(element) checks whether a rule level is an information or not

• isRuleJustified(element) checks whether a rule is justified or not

Other functions are used to display each section of the report:

• emptyLine() displays an empty line (helper function)

• startFile(element) is called at start of a file element.

• endFile() is called at end of a file element.

• startFileRules() is called at the beginning of a group of rules that is relative to a file. Used to display array

headers

• endFileRules() is called at end of a group of rules relative to a file.

• startFileFunctions() is called at the beginning of a function

• rule(element) is called to display details of a raised rule.

The last section is a set of functions that is used to display summaries:

• displayDeactivatedbytest(elem) displays all deactivated rules by using the '-test' option

• displayDeactivatedbyuser(elem) displays all deactivated rules that are used in the configuration file

• displayrulesstatistics(elem) displays statistics for all rules that are raised during the test

The main algorithm dispatches the function calls by parsing the raw data.

181

HCL® OneTest™ Embedded

182

Coupling Analysis
Coupling Analysis consists of Control Coupling and Data Coupling.

Control Coupling
Control Coupling is defined as “the manner or degree by which one software component influences the execution

of another software component" in the Clarification of Structural Coverage Analyzes of Data Coupling and Control

Coupling document edited by the Certification Authorities Software Team (CAST). The purpose is 'to provide a

measurement and assurance of the correctness of these modules/components’ interactions and dependencies'.

Control Coupling is used to verify that all the interactions between modules have been covered by at least one test.

HCL OneTest™ Embedded introduces a new coverage level called “Control Coupling" for C language that consists in

verifying that all the interactions between modules have been covered by at least one test. This new coverage level is

implemented in HCL OneTest™ Embedded in two ways:

• Modules are compilation units, in this case:

◦ Control Couplings are calls between two functions that are in two different compilation units.

◦ Control Coupling is not a simple interaction. It is a control flow in the calling module that ends with an

interaction with another module.

◦ Groups of compilation units can be defined as a single module. This will increase the number of calls

between modules but also increase the number of control flows in the calling modules.

◦ The report contains a button to display:

▪ All the Control Couplings (default option).

▪ Only the shortest Control Couplings (only the last calls between modules are taken into

account)

▪ Only the longest Control Couplings (the sub-control flows are ignored)

• Modules are Functions, in this case:

◦ Control Couplings are considered as all the calls between two functions, in the same compilation unit

or not.

◦ Each Control Coupling is only a call, and not a control flow as previously defined.

So, to identify the Control Couplings, HCL OneTest™ Embedded analyzes all the external calls between modules

(definition of the modules could be different depending on the option) and statically identifies all the possible paths in

the calling module that end with each external call, excluding the one that starts with a static function (ex: a function

that can't be called from another module). This constitutes the set of Control Coupling of the application.

For each of them, HCL OneTest™ Embedded provides the following information:

• The calling modules.

• The complete control flow (example: the set of successive calls, the last one is the external call). If the option

"module as function" is set, each control flow has two functions only.

• In case of option module as "compilation unit":

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-19.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-19.pdf

Chapter 5. Test Execution Specialist Guide

◦ Is it the longest one that leads to this external call (it is not the longest when there is another Control

Coupling that includes the current one).

◦ Is it the shortest one that leads to this external call (it is not the shortest when there is another Control

Coupling that is included by the current one).

• It is covered or not.

• The list of test cases that each Control Coupling covered.

• The list of requirements that are related to the test cases.

How Control Coupling Works

When an application node or a test is executed, the source code is instrumented by the Instrumentor (attolcc4 for

C language) that produces a static file with the extension .tsf containing information on the Control Couplings. The

resulting source code is then compiled, linked and executed and the Control Coupling feature outputs a dynamic file

with the extension .tgf.

These 2 types of files are the input of the report generator that produces a report in HTML format (and optionally

the raw data can be generated in a Json file). A template is provided for this generator. You can provide your own

template to modify the report.

If the Control Coupling feature is used with unit testing feature, the report generator can take the .tdc files as input

files. This allows to have also in the report the test cases that covered each Control Coupling and the associated

requirements declared in the .ptu file. If not, the test cases are identified by their execution date, and there is no

requirement.

Note:

To visualize your report in HCL OneTest™ Embedded for Eclipse IDE, if you are using the default browser

option, be sure that JavaScript is enabled. Otherwise, you can choose another browser that is compatible with

your version of JavaScript by changing it in Window > Preferences > General > Web Browser .

Set Control Coupling options
You can set options for Control Coupling to build your project in HCL OneTest™ Embedded for Eclipse IDE. Control

Coupling feature must be enabled to be selected in the build settings before running the build.

Enable Control Coupling

• In the Project Explorer, right-click on the project and click Properties.

• In the Properties window, click C C++ Build > Settings.

• In the Build Settings tab, click Settings > General > Selective instrumentation.

• In the right pane, click the Value field in Build options and click ... to open the Build options

window.

• In the Build options list, click Performance Profiling to enable the feature.

183

HCL® OneTest™ Embedded

184

Control Coupling

In the Project Explorer, right-click on the project and click Properties, then click C C++ Build > Settings. In the Build

Settings tab, under the Coupling menu, select Control Coupling.

From this setting page, you can change the following choices:

• Trace file name (.tgf): Sets the name of the trace file dedicated to control coupling, click the edit button to

change the name. By default, this name is the base name of the test with the extension .tgf.

• Exclude libraries: Include (No) or exclude (Yes) the control couplings must be included or excluded. that end

with a call to a function that is not part of the application .

• Report Template: changes the template of the report generator. By default, this template is ccreport.template.

• Module as: Select the choice that corresponds the best to your definition of a module. A module can be

defined as a function or a compilation unit. HCL OneTest™ Embedded offers two ways to interpret Control

Coupling, depending on how the "module" in CAST-19 is interpreted:

◦ Module as function: Each call between each function is considered as Control Coupling.

◦ Module as compilation unit: Only the calls between two functions in two different compilation units

are considered as Control Coupling. Moreover, the different called stacks in the calling module are

also considered as different Control Couplings. With the previous option set, the user can group two

or more compilation units in a single module (called component) in order to ignore the calls between

these compilation units.

• Components List: Select a file that contains a list of components. This option is used only when the option

"module as compilation unit" is selected. This file is in a JSON format and contains a list of components with

their associated compilation units as follows:

{
 "component_name" : [“file1", “file2",…],
 …
}

Set Control Coupling Options
You can set the options for Control Coupling to build your project in HCL OneTest™ Embedded Studio.

Execute a build with Control Coupling

• In HCL OneTest™ Embedded Studio, open the Settings of the project and click the Configuration Properties >

Build > Build options menu.

• In the right panel, click on the Build options and edit the options by clicking on the … button.

• In the dialog window that shows up on the right, you can select the different tools that can be used for the

build. Select Ctrl Coupling analysis to enable the control coupling feature.

Control Coupling options

Options for Control Coupling can be updated in the following menu of the settings: Configuration Properties >

Runtime analysis > Control coupling

Chapter 5. Test Execution Specialist Guide

From this setting page, you can change the following choices:

• Trace file name (.tgf): sets the name of the trace file dedicated to control coupling. By default, this name is

the base name of the test with the extension .tgf.

• Exclude libraries: Include or exclude the control couplings that end with a call to a function that is not part of

the application (sets the -noccext option of the report generator if it is set to yes).

• Report Template: changes the template of the report generator. By default, this template is ccreport.template.

• Module as: Select the choice that corresponds the best to your definition of a module. A module can be

defined as a function or a compilation unit. HCL OneTest™ Embedded offers two ways to interpret Control

Coupling, depending on how the "module" in CAST-19 is interpreted:

◦ Module as function: Each call between each function is considered as Control Coupling.

◦ Module as compilation unit: Only the calls between two functions in two different compilation units

are considered as Control Coupling. Moreover, the different called stacks in the calling module are

also considered as different Control Couplings. With the previous option set, the user can group two

or more compilation units in a single module (called component) in order to ignore the calls between

these compilation units.

Control Coupling Report
After you build a project with HCL OneTest™ Embedded, you can get a Control Coupling report with compilation unit

module or a Control Coupling report with function module, depending on the build settings.

The default Control Coupling report is in HTML format. It is generated from a template named ccreport.template (for

the module as compilation unit option), or ccfreport.template (for the module as function option). The templates are

provided as text files that you can modify to customize the report. It uses four online JavaScript libraries:

• Bootstrap,

• JQuery,

• Font Awesome,

• VisJS.

These libraries are not provided. You must have an internet connection when you open the report. If not, download the

libraries (.css and .js files), copy them in the same folder than your report, and modify the template file as follows:

Replace the following lines with the lines from the second text block:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>

185

HCL® OneTest™ Embedded

186

<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>

Replacement lines:

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script

If you set a module as a compilation unit in the control coupling properties, you get a control coupling report with

compilation units in output of your project build. If you set a module as a function, you get a control coupling report

with function in output. For more details about the control coupling settings, see Set Control Coupling options on

page 183 for HCL OneTest™ Embedded for Eclipse IDE. In a report with function as module, the report shows all the

function calls (internal and external).

The Control Coupling report includes three parts.

Summary

In the Summary section, you find the number of Control Couplings for your application that are covered, given the

information that you provided and the percentage of Control Couplings that are covered.

A graph displays the total percentage of covered and non covered control couplings for the entire application.

The Summary table displays the following information:

• The percentage of Control Couplings of your application by module pairs that have not been covered,

depending on the information that you provided.

• The percentage of Control Couplings that are covered by module pairs.

Chapter 5. Test Execution Specialist Guide

Details

The Details table lists all the Control Couplings and displays the following information for each of them:

• The calling compilation unit.

• The control flow, for example: the successive calls in the module that end with the external call in the called

module. Note that the called module is mentioned in the last function of the control flow. In case of option

"module as function", this control flow contains only two functions.

• A check mark if it is a longest Control Flow but only if the "module as compilation unit" option is set.

• A check mark if it is a shortest Control Flow but only if the "module as compilation unit" option is set.

• The list of test cases that covered this control flow. If the Control Coupling feature is set with the unit testing

feature, the test cases are the one in the .ptu files named as <service>/<test>.

• The associated requirements. If the Control Coupling feature has been set with the unit testing feature, the

requirements are those that have been described in the .ptu files with the keyword REQUIREMENT for each

test cases that covered this Control Coupling.

• A check mark if the control coupling has been covered.

Call Graph

For each compilation unit, a partial call graph displays all the functions in an interactive call graph from left to right or

from top to bottom, depending on the selector button position on the top of the call graph.

You can select a control coupling in the table to highlight it in the call graph.

187

HCL® OneTest™ Embedded

188

At the end of the report, a complete call graph displays all the functions calls.

Filters

You can apply filters in the report by selecting different options at the top:

• If the option “module as compilation unit" option is set, you can choose first to display all Control Couplings,

the longest (only the Control Couplings that have the longest control flow in the calling module) or the

shortest (only the Control Couplings that have the shortest control flow in the calling module). The summary

tables and the details table are updated accordingly to your selection. This option applies to reports with

compilation unit as module only.

• You can select the calling modules and the called modules. It filters the Control Couplings depending on

their calling and called modules. The summary tables and the details table are updated accordingly to your

selection.

• You can choose to display all graphs or hide them in the report.

• You can show or hide the Requirements.

Customize Control Coupling Report

The Control Coupling report is created from a template called ccreport.template (if option “module as compilation

unit" is set), or ccfreport.template (if option “module as function" is set) that you can find in the folder <install>/lib/

reports.

This template is made of 2 parts:

• The HTML part that is the common part of all reports,

• A JavaScript part that sets the tables and call graph depending of 2 variables initialized dynamically when the

report is creating:

var data = {{json}}; // the raw data

var d = new Date({{date}}) // the date of the generation

Chapter 5. Test Execution Specialist Guide

Raw data

Raw data is composed of 4 sections at the top level:

• A summary of the Control Coupling metrics:

◦ nbcc is the number of Control Coupling found in the application,

◦ nbcovered is the number of Control Coupling found in the application that have been covered by at

least one test,

◦ nbccShortest and nbcoveredShortest are the same for the shortest Control Coupling,

◦ nbccLongest and nbcoveredLongest are the same for the longest Control Coupling,

◦ filtered is set to true if the report has been generated with a filter (shortest or longest),

◦ filtered_longest is set to true if the report has been generated with a filter longest (set only if filter is

true).

• The list of the modules, each of them has the following information:

◦ Name is the short name of the C file,

◦ Fullname is the name and path of the C file,

◦ uuid is a unique identifier of the module,

◦ unknown is set to true is the module is not part of the information you provided (there is only one

unknown module that gathers all the call to functions that are not in the known modules),

◦ functions is the list of the unique identifiers of functions of the module.

189

HCL® OneTest™ Embedded

190

Modules are listed as hashmap with the uuid, as follows:

• The list of functions including following information:

◦ name is the name of the C function,

◦ line is the first line of the function in the module,

◦ id is the number used in .tsf file to identify this function,

◦ stacksize is the stack size computed during the execution if this option has been set (otherwise -1),

◦ uuid is a unique identifier of the function,

◦ module is a unique identifier of the module in which the function is declared,

◦ calls is the list of the calls in this function. Each of them have the following information:

▪ calling_uuid is the unique identifier of the calling function,

▪ called_uuid is the unique identifier of the called function,

▪ line is the line number of the call in the module,

▪ col is the column number of the call in the module,

▪ same_module is set to true id the called function is in the same module that the calling

function.

◦ level is a number that represent the level of the function in the call graph, starting to 0.

◦ calledby is the list of unique identifiers of functions that call this one.

Chapter 5. Test Execution Specialist Guide

• Functions are listed as hashmap with the uuid, as following:

• The list of the Control Couplings, each of them have the following information:

◦ calls is the list of successive calls that composed this control coupling, each of them have the

following information:

▪ calling_uuid is the unique identifier of the calling function.

▪ called_uuid is the unique identifier of the called function.

▪ isShortest is set to true if the control coupling is a shortest one.

▪ isLongest is set to true if the control coupling is a longest one.

▪ line is the line number of the call in the module.

▪ col is the column number of the call in the module.

▪ same_module is set to true if the called function is in the same module that the calling

function.

◦ testcases is the list of test cases that covered the control coupling, each of them have the following

information:

▪ name is the name of the test case.

▪ requirements is the list of requirements that is covered by this test case.

191

HCL® OneTest™ Embedded

192

Control couplings are listed as an array, as follows:

Data Coupling
Data Coupling is defined as “the manner or degree by which one software component influences the execution of

another software component" in the Clarification of Structural Coverage Analyzes of Data Coupling and Control

Coupling document edited by the Certification Authorities Software Team (CAST). The purpose is 'to provide a

measurement and assurance of the correctness of these modules/components’ interactions and dependencies'. Data

Coupling is used to verify that all the global variables of the application under test have been consumed in read (also

called use) and write (also called def) during the tests.

HCL OneTest™ Embedded introduces a new coverage level call “data coupling" for C language that consists to verify

that all the global variables of the application under test has been consumed in read (also called use) and write (also

called def) during the tests, as following:

• For each global variable, HCL OneTest™ Embedded identifies the def and use. Then it considers all the

possible def/use pair as a data coupling.

• To cover a Data Coupling, i.e. a def/use pair, this def and this use must be executed from at least one test.

HCL OneTest™ Embedded provides a new interactive HTML-based report for Data Coupling.

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-19.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-19.pdf

Chapter 5. Test Execution Specialist Guide

To identify Data Coupling instances, HCL OneTest™ Embedded analyzes all the global variables of the application,

where they are read and written. For one global variable, each pair of write and read constitutes an instance of Data

Coupling.

For each data coupling, HCL OneTest™ Embedded provides the following information:

• The name of the global variable.

• The def position (file name, line, and column).

• The use position (file name, line, and column).

• The list of test cases that covered the Data Coupling.

• The list of requirements that are relative to these test cases.

How Data Coupling works

HCL OneTest™ Embedded identifies the position if the def/use using coverage information. When you select the Data

Coupling option, some coverage options are set automatically: blocks, calls and conditions.

Coverage files (.fdc and .tio) are the input of the report generator that produces a report in HTML format (and

optionally the raw data can be generated in a Json file). A template is provided for this generator. You can provide

your own template to modify the report.

If the Data Coupling feature is used with unit testing feature, the report generator could take as input the .tdc

files. This allows to have also in the report the test cases that covered each Control Coupling and the associated

requirements declared in the .ptu file. If not, the test cases are identified by its execution date, and there is no

requirement.

Set Data Coupling Options
You can set the options for Data Coupling to build your project in HCL OneTest™ Embedded for Eclipse IDE.

In the Project Explorer, right-click on the project and click Properties, then click C C++ Build > Settings. In the Build

Settings tab, under the Coupling menu, select Data Coupling.

From this setting page, you can change the following choice:

• Report Template: You can change the template of the report generator. By default, this template is

ccreport.template.

Data Coupling report
From HCL OneTest™ Embedded V8.2.0, you can get a HTML interactive Data Coupling report as a result to your

project build.

The default Data Coupling report is in HTML format. It is generated from a template named dcreport.template

provided as a text file that you can modify to customize the report. It uses four online JavaScript libraries:

193

HCL® OneTest™ Embedded

194

• Bootstrap,

• JQuery,

• Font Awesome,

• VisJS.

These libraries are not provided. You need an Internet connection when you open the report. Otherwise, download the

libraries (.css and .js files), copy them in the same folder as your report's, and modify the template file as follows:

Replace:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>

with

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script

The Report is made of three parts.

Summary

In the summary section, a table displays the following information:

• The number of global variables in your application.

• The number of Data Couplings in your application.

• The number and the list of global variables without Data Coupling. If you get this information,

it means that HCL OneTest™ Embedded has identified global variables that are read but never

written, or written but never read. This could be due to the fact that only a part of the application

is analyzed.

Chapter 5. Test Execution Specialist Guide

Two charts display the following information:

• The percentage of Data Coupling in a pie graph.

• A two-colored horizontal graph that provides a number of covered and uncovered Data

Couplings for each global variable.

Details

A table lists all the Data Couplings and displays the following information for each of them:

• Variable: The name of the global variable.

• Def: The Def position of the column: file name [line] and (column).

• Use: The Use position of the column: file name [line] and (column).

• Test Cases: The list of cases that covered the Data Coupling.

• Requirements: The list of requirements relative to these test cases.

• Covered: This option is checked if the Data Coupling has been covered.

They are grouped by global variables.

195

HCL® OneTest™ Embedded

196

Call graph

The call graph displays all the global variables with their interactions with one or more functions of the

application that read or/and write them.

• Incoming arrows are 'Def' (write).

• Outcoming arrows are 'Use' (read).

The arrows between them represent a 'Def' or a 'Use' (depending of the sense of the arrow). It is green

if the corresponding 'Def' or 'Use' has been covered. These arrows are not representing Data Coupling.

A Data Coupling instance is a couple of incoming and outcoming arrows that reach the same global

variables.

Filters

Buttons can be used to filter different sections of the report.

• Show/Hide Graph: It is used to show or hide the call graph at the end of the report.

• Show/Hide Requirements: It is used to show or hide the Requirements column in the Details

section of the report.

Customize Data Coupling Report

The Data Coupling report is based on a template called ccreport.template that you can find in the following folder:

Raw data

This template is made of 2 parts:

• The HTML part that is the common part of all reports,

• A JavaScript part that sets the tables and call graph depending of 2 variables initialized dynamically when the

report is creating:

var data = {{json}}; // the raw data

var d = new Date({{date}}) // the date of the generation

Raw data is composed of 4 sections at the top level:

• A summary of the Data Coupling metrics:

◦ nbGlobalVariables is the number of global variables found in the application.

◦ nbDefUses is the number of Def/Use pairs found in the application.

◦ nbDefUsesCovered Def/Use pairs found in the application that have been covered by at least one test.

Chapter 5. Test Execution Specialist Guide

◦ nbVariablesWithoutDefUse is the number of global variables that have no Def/Use pairs in the

application.

◦ variablesWithoutDefUse is the list of global variables that have no Def/Use pairs in the application.

• The list of the modules, each of them has the following information:

◦ Name is the short name of the C file,

◦ Fullname is the name and path of the C file,

◦ uuid is a unique identifier of the module,

◦ unknown is set to true is the module is not part of the information you provided (there is only one

unknown module that gathers all the call to functions that are not in the known modules),

◦ functions is the list of the unique identifiers of functions of the module.

Modules are listed as hashmap with the uuid, as follows:

• The list of functions including following information:

◦ name is the name of the C function,

◦ line is the first line of the function in the module,

◦ id is the number used in .tsf file to identify this function,

◦ stacksize is the stack size computed during the execution if this option has been set (otherwise -1),

◦ uuid is a unique identifier of the function,

◦ module is a unique identifier of the module in which the function is declared,

◦ calls is the list of the calls in this function. Each of them have the following information:

▪ calling_uuid is the unique identifier of the calling function,

▪ called_uuid is the unique identifier of the called function,

▪ line is the line number of the call in the module,

197

HCL® OneTest™ Embedded

198

▪ col is the column number of the call in the module,

▪ same_module is set to true id the called function is in the same module that the calling

function.

◦ level is a number that represent the level of the function in the call graph, starting to 0.

◦ calledby is the list of unique identifiers of functions that call this one.

• Functions are listed as hashmap with the uuid, as following:

• The list of the control flows, each of them have the following information:

◦ stacksize is the size computed for this control flow. This value is -1 if the tool was unable to compute.

◦ calls is the list of successive calls that composed this Control Flow, each of them have the following

information:

▪ calling_uuid is the unique identifier of the calling function.

▪ called_uuid is the unique identifier of the called function.

▪ line is the line number of the call in the module.

▪ col is the column number of the call in the module.

▪ same_module is set to true if the called function is in the same module that the calling

function.

▪ alternates is a list of line and column if the function is called several times in this function

◦ isRecursive is set to true if a recursive call has been found in this control flow.

▪ name is the name of the test case.

▪ missingFunctions is the list of functions (name and unique identifier) in the control flow for

which there is no stack size.

Chapter 5. Test Execution Specialist Guide

Control couplings are listed as an array, as follows:

Application Profiling
Application Profiling is gathering the main features that provide profiling information at the application level: the

Worst Stack Size feature and the Worst performance (coming soon) feature.

Worst Stack Size
HCL OneTest™ Embedded introduces the Worst Stack Size feature to compute an estimation of the maximum stack

size of the application under test.

Overview

199

HCL® OneTest™ Embedded

200

To implement this feature, HCL OneTest™ Embedded uses two mixed technologies:

• Static analysis that computes the call graph of the application (Example: all the calls between functions are

analyzed and computed as a graph),

• Dynamic analysis that provides the stack size of each functions when executing them.

This information is used to provide an estimation of the worst stack size. This estimation is accurate under the

following conditions:

• All the functions of the application should have been executed at least once in order to have the stack size for

each of them.

• Your application should not have recursive calls, because the number of loops in the recursive calls being

unpredictable, it is impossible to compute the stack size.

• If your application used libraries (Example: call functions for which we have not the source code), you should

provide an additional file that gives an estimation of the stack size for each of them. These estimations do not

need to be precise, but should be an upper bound of the exact stack size.

• If your compiler optimizes the Stack Size, you might have different Stack Sizes for the same function. In this

case, the Worst Stack Size is computed with the maximum value found in the different runs.

• If your application is multi-threaded, you can provide the list of entry points so that HCL OneTest™ Embedded

can calculate the worst total stack size and compare it to the maximum memory stack available on your

target to produce a pass/failed verdict.

For the Worst Stack, HCL OneTest™ Embedded provides a brand-new interactive HTML-based report. This report

identifies if one or more of these conditions are not met.

How Worst Stack Size Works

When an application node is executed, the source code is instrumented by the Instrumentor (attolcc4

for C language) that produces a static file with the .tsf extension that contains information on the

functions (this file is common with Control Coupling feature). The resulting source code is then

compiled, linked and executed and the Control Coupling feature outputs a dynamic file with the

extension .tzf.

These 2 types of files are used in input of the report generator that produces a report in HTML format

(and optionally the raw data can be generated in a Json file). A template is provided for this generator.

You can provide your own template to modify the report. An addition file could be provided to this report

generator in order to specify the stack size of the external functions.

Note:

To visualize your report in Eclipse, if you are using the default browser option, be sure that JavaScript is enabled.

Otherwise, you can choose another browser that is compatible with your version of JavaScript by changing it in

Window> Preferences> General > Web Browser.

Chapter 5. Test Execution Specialist Guide

Set Worst Stack Size Options

Enable Worst Stack Size

• In HCL OneTest™ Embedded Studio, open the settings of the project and click Configuration Properties >

Build > Build options.

• Then, in the right panel, click on the value field of the Build options line and click the … button to open the

Build options editor.

• Then, a dialog window shows you on the right the different tools that you can select during the build. Select

Application profiling to enable the Worst Stack Size feature.

Multi-thread option

The Multi-thread option for the Worst Stack Size feature can be configured in the following menu of the settings:

• Click Configuration Properties > Runtime analysis > Multi-Threads.

• In the right pane, click the ... in the value field of the Entry points option to open the Entry points editor.

• In the Entry points editor, enter the list of entry points for each thread and click OK.

Stack Size options

Options for the Worst Stack Size feature can be updated in the following menu of the settings: Configuration

Properties > Runtime analysis > Application Profiling > Stack size.

In the setting page, you can change the following options:

• Trace file name (.tzf): set the name of the trace file dedicated to worst stack size. By default this name is the

base name of the test with the extension .tzf.

• Report Template: change the template of the report generator. By default this template is wssreport.template.

• External functions stack size: this is a file that contains the stack size of the external functions (generally

functions that are in libraries and used by your application). The format of this file should be in Json, with the

extension .tzfe, as follows:

[
 {"name":"printf", "stacksize":4},
 {"name":"sin", "stacksize":4},
 {"name":"cos", "stacksize":4},
 {"name":"tan", "stacksize":4}
]

• Maximum Size: Enter the maximum stack size in bytes that the application should not exceed.

• Security: Enter a percentage of available Stack Size for security.

If you provide the maximum Stack Size allowed and a percentage of available Stack Size for security, the

report displays the total Stack Size and verify if this size does not go over the available Stack Size.

Set Worst Stack Size Options

201

HCL® OneTest™ Embedded

202

Enable Worst Stack Size

• In the Project Explorer, right-click on the project and click Properties.

• In the Properties window, click C C++ Build > Settings.

• In the Build Settings tab, click Settings > General > Selective instrumentation.

• In the right pane, click the Value field in Build options and click ... to open the Build options

window.

• In the Build options list, click Application Profiling to enable the Worst Stack Size feature.

Multi-thread option

• In the Project Explorer, right-click on the project and click Properties.

• In the Properties window, click C C++ Build > Settings.

• In the Build Settings tab, click Settings > General > Multi-thread options.

• In the right pane, click the ... in the value field of the Entry points option to open the Entry points editor.

• In the Entry points editor, enter the list of entry points for each thread and click OK.

Worst Stack Size options

In the Project Explorer, right-click on the project and click Properties, then click C C++ Build > Settings. In the Build

Settings tab, under the Application Profiling menu, select Stack Size.

In the setting page, you can change the following options:

• Trace file name (.tzf): set the name of the trace file dedicated to worst stack size. By default this name is the

base name of the test with the extension .tzf.

• Report Template: change the template of the report generator. By default this template is wssreport.template.

• External functions stack size: this is a file that contains the stack size of the external functions (generally

functions that are in libraries and used by your application). The format of this file should be in Json, with the

extension .tzfe, as follows:

[
 {"name":"printf", "stacksize":4},
 {"name":"sin", "stacksize":4},
 {"name":"cos", "stacksize":4},
 {"name":"tan", "stacksize":4}
]

• Maximum Stack Size (byte): Enter the maximum stack size in bytes that the application should not exceed.

• Percentage of available Stack Size for security: Enter a percentage of available Stack Size for security.

If you provide the maximum Stack Size allowed and a percentage of available Stack Size for security, the

report displays the total Stack Size and verify if this size does not go over the available Stack Size.

Worst Stack Size Report

Chapter 5. Test Execution Specialist Guide

The default Worst Stack Size report is in HTML format. It is generated from a template named wssreport.template

provided as a text file that you can modify to customize the report. It uses four online JavaScript libraries:

• Bootstrap,

• JQuery,

• Font Awesome,

• VisJS.

These libraries are not provided. You need an Internet connection when you open the report. Otherwise, you need to

download the libraries (.css and .js files), copy them in the same folder as your report's, and modify the template file

as follows:

Replace:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>

with

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script

The Worst Stack Size report is made of three parts.

203

HCL® OneTest™ Embedded

204

Summary

Worst Stack Size per Entry Point table

The Summary section displays a table with the Worst Stack Size calculated by the tools, given the

information you provided in the build settings. This number is provided in bytes.

The Worst Stack Size is given per entry point and per thread if you have entered the list of entry point

threads of your application in the Build Settings. You can set the list of entry point threads of your

application in the Build Settings.

The table displays the following information:

• The number of control flows found in your application. A control flow is a set of successive calls

starting from an entry point (each function that is never called by another one is considered as

an entry point) to a function with no call or to an external function.

• The number of control flows for which we have no estimation of the stack size. This happens

when one of the functions in this control flow has not been executed or if it is an external

function for which no estimation of the stack size is provided.

If this number if greater than 0, it is highlighted in red because there is no way to be sure that the

worst stack size is really the worst regarding the missing information.

• The number of recursive control flows found in the application. If this number if greater than 0,

it is highlighted in red because there is no way to be sure that the worst stack size is really the

worst.

• The number of functions in your application.

• The number of functions without stack size estimation. These are the functions that have not

been executed or the external functions for which we have not provided an estimation of the

stack size. If this number if greater than 0, it is highlighted in red because we can't be sure that

the worst stack size is really the worst.

The information is given for each entry thread.

If you don’t provide the list of entry points in the build settings, the information is displayed only

for the control flow and gives the Worst Stack Size.

Chapter 5. Test Execution Specialist Guide

Total Stack Size vs. Maximum Stack Size graph

If you provide in the Settings the list of entry points, optionally you can provide the maximum Stack Size

allowed and a percentage of available Stack Size for security. In such case, the report displays the total

Stack Size and verifies if this size does not go over the available Stack Size.

The Maximum Stack Size and Percentage of available Stack Size for security options can be set in the

Build Settings.

In the report, you can compare the Stack Size or the sum of Stack Size with the maximum of Stack

Size allowed and the percentage of available Stack Size for security if both options are provided in the

settings.

In the toolbar that is under the graph, you can select the information to display or hide (all entry points, or for only one

thread) and the number of control flows in the table. You can also show or hide the graph in the report from a button.

Details

The Details table lists by default the 10 first control flows with the biggest Stack Size and displays for each of them

the following information:

• The control flow, for example, the successive functions starting from an entry point (any function that is never

called by another one is considered as an entry point) to a function with no call, or to an external function.

Each function is identified by its name, its module (example: C file) between brackets, and by the line and

column where this call to the next function calls appear in the code in parenthesis.

• The estimation of the Stack Size. The information is blank if the tool has not been able to calculate the Stack

Size for this control flow. In this case, the functions in the control flow that prevent us from computing the

Stack Size are highlighted in red.

A drop down menu at the top of the table allows you to choose 10, 20, 30, 50, 100 or all the control flows to display.

Functions

The Functions table lists all the functions of your application, including external functions. The following information

is provided for each function:

205

HCL® OneTest™ Embedded

206

• The module name (i.e. the C file) where the function is saved.,

• The function name. This name is in red if there is no stack information for this function,

• The number of functions called in the current one.

• The Stack Size of the function in bytes.

Call Graph

The Call Graph part displays all the functions as an interactive call graph from left to right or from the top to the

bottom, depending on the selector button position on the top of the call graph.

You can select a control flow in the table to highlight it in the call graph.

Customize the Worst Stack Size Report

The Worst Stack Size report is based on a template called wssreport.template that you can find in the folder

<install>/lib/reports.

This template is made of 2 parts:

• The HTML part that is the common to all reports,

• A JavaScript part that sets the tables and call graph depending on 2 variables dynamically initialized when the

report is created:

o var data = {{json}}; // the raw data

o var d = new Date({{date}}); // the date of the generation

Raw data

Raw data is made of four sections at the top level:

• A summary of the Worst Stack Size metrics:

◦ worstStackSize is the worst stack size computed by the tools, depending on the information you

provided. This number is provided in bytes.

◦ nbFlows is the number of control flows found in your application. A control flow is a set of successive

calls starting from an entry point (each function that is never called by another one is considered as an

entry point) to a function without calls or to an external function.

◦ nbFlowsWithoutStack is the number of control flows for which there is no estimation of the stack

size. This happens when one of the functions in this control flow has not been executed, or if it is an

external function for which we have not provided an estimation of the stack size.

◦ nbRecursiveFlows is the number of recursive control flows found in the application.

Chapter 5. Test Execution Specialist Guide

◦ nbFunctions is the number of functions in your application.

◦ nbFunctionsNoValue is the number of functions without stack size estimation. These are the

functions that have not been executed, or the external functions for which there is no estimation of the

stack size provided.

The list of the modules, each of them has the following information:

• name is the short name of the C file,

• fullname is the name and path of the C file,

• uuid is a unique identifier of the module,

• unknown is set to true if the module is not part of the information you provided (there is only one unknown

module that gathers all the function calls that are not in the known modules),

• functions is the list of the unique identifiers of functions of the module.

Modules are listed as Hashmap with the uuid, as following:

The list of functions, each of them have the following information:

• name is the name of the C function.

• line is the first line of the function in the module.

• id is the number used in .tsf file to identify this function.

• stacksize is the stack size computed during the execution if this option has been set (otherwise -1).

• uuid is a unique identifier of the function.

• module is a unique identifier of the module in which the function is declared.

• calls is the list of the calls in this function. Each of them have the following information:

207

HCL® OneTest™ Embedded

208

◦ calling_uuid is the unique identifier of the calling function.

◦ called_uuid is the unique identifier of the called function.

◦ line is the line number of the call in the module.

◦ col is the column number of the call in the module.

◦ same_module is set to true if the called function is in the same module that the calling function.

◦ level is a number that represents the level of the function in the call graph, starting from 0.

◦ calledby is the list of unique identifiers of functions that call the function.

Functions are listed as hashmap with the uuid, as following:

The list of the Control Flows, each of them have the following information:

• stacksize is the size of the stack computed for the control flow. This value is -1 if the tool was unable to

compute it.

• calls is the list of successive calls that composed this control flow, each of them is including the following

information:

◦ calling_uuid is the unique identifier of the calling function.

◦ called_uuid is the unique identifier of the called function.

◦ line is the line number of the call in the module.

◦ col is the column number of the call in the module.

◦ same_module is set to true id. The called function is in the same module that the calling function.

◦ alternates is a list of line & column in case of the calling function is called several times in this

function.

Chapter 5. Test Execution Specialist Guide

• isRecursive is set to true if a recursive call has been found in this control flow.

• missingFunctions is the list of functions (name and unique identifier) in the control flow for which we have not

the stack size.

Control flows are listed as an array, as follows:

Testing software components

Component testing overview
Component testing provides a unique, fully automated, and proven solution for applications written in C/C ++,

dramatically increasing test productivity.

Component testing in HCL OneTest™ Embedded supports C ++ ANSI C89 and C99.

A test case contains code blocks which call the methods under test and check blocks for variable checks, which

verify that the values of a variable are within a specified set of requirements during the run. The test harness is the

execution unit producing the executable. It contains the test cases, the source code under test and any files required

to run the application, including libraries, stubs, and the runtime of the Target Deployment Port (TDP), which allows

the test to run on a target platform. When you run the test harness, the code is compiled and tested. If any runtime

analysis tools are engaged on the test harness, then the source code is also instrumented.

During the run, the test cases interact with the source code, producing test results, and if engaged, coverage and

runtime analysis results.

After the run, you can open the test results in the test editor to check which test cases passed or failed, and to view

the actual values obtained for each variable during the run.

209

HCL® OneTest™ Embedded

210

A test suite is a list of test harnesses to run automatically. It generates an additional test suite report and a merged

coverage report. The test suite can be executed in batch mode or interactively. Each test suite allows you to select

one or two different configurations. When the two different configurations are selected, the tool generates the result

report in comparison mode so that you can have the obtained values in both configurations.

Test assets overview
HCL OneTest™ Embedded several types of assets, which each describe different levels of the test environment.

These test assets include the following items:

• Test cases contain the verification actions for source code functions.

• Stubs are dummy components that allow you isolate the components under test or to replace components

that do not exist.

• Test harnesses contain test cases and the associated source files and stubs required to run the test.

• Test suites contain multiple test harnesses that are run sequentially.

Test cases

A test case applies to a function and describes the checks that are performed against the variables contained in the

component under test.

For each variable, array, or struct, you can specify an initialization value and an expected value. These values can be

finite values, sets, or ranges, with multiple comparison types. When the test case is run, each check compares the

expected value to the actual value and generates a Passed or Failed verdict.

The data used to specify initialization and expected values can be provided by native code, function calls, data

pools or linked to a data dictionary. A data pool is a table, typically imported from a spreadsheet, containing multiple

associated data sets. A data dictionary is a list of initialization and expected values for each variable type that can be

reused by multiple test cases in the project.

You create a test case by selecting a function in the project explorer or the call graph. The test case is generated with

the variables that are visible from outside the function. For each variable, a default check is added to the test case.

You can use the test case editor to specify the initialization and expected values of each variable check.

Stubs

A stub is a dummy software component designed to replace a component that the component under test relies

on, but cannot use in the test because it is not practical or available. A stub simulates the response of the stubbed

component. Stubs can also be used to isolate the behavior of the component under test to provide more reliable test

results or to simulate specific input values that cannot be practically simulated with the actual component. Stubs can

be used in the following roles:

• Retrieving and storing input values to stubbed functions from a function under test.

• Assigning output values from the stubbed functions to a function under test.

Chapter 5. Test Execution Specialist Guide

Stubs generate passed or failed results based on the number of times that they are called.

You create a stub by selecting a function in the project explorer or the call graph. The stub is generated with the same

interface as the stubbed function.

You can use the stub editor to specify the behavior of the stubbed function. You can also add additional blocks of

code and conditions to structure the behavior of the test case.

Test configurations

The test configuration is an instance of a target deployment port (TDP) and its associated configuration settings.

Configuration settings are the particular properties assigned to each test harness for a given test configuration.

For example, you can create a test configuration for each compiler involved in your project. If you are developing

for an embedded platform, you can have one test configuration for native development on your Unix or Windows™

development platform and another test configuration for running and testing the same code on the target platform.

You can set up several test configurations based on the same TDP, but with different libraries, compilers or settings.

The configuration settings allow you to customize test and runtime analysis options for each test asset in the project.

You can reach the configuration settings for each test asset by right-clicking any node in the project explorer window

and selecting Properties > C/C++ Build > Settings and Build TDP or Build Instru.

Test harnesses

The test harness contains all the test assets that are required to compile and run the test. These test assets include:

• Test cases

• Stubs

• Required source files, including:

◦ Tested files: These are source files under test. The functions of these components are instrumented

and integrated into the test harness.

◦ Additional sources: These are dependency files that are added to test harness, but are not tested or

instrumented. For example: resource files can be compiled inside a test harness by specifying them as

additional files.

◦ Linked files: These are source files that are linked with the test harness but are not tested or

instrumented.

◦ Libraries: These are libraries that are required for the link. For example: math libraries.

The test harness can also contain header code and global declarations that are required to run the test and

instantiates the parameters of the test case.

You can use the test harness editor to add and remove test assets from the test harness and to graphically arrange

the order in which the test cases are run. You can also add additional blocks of code and conditions to structure the

behavior of the test harness.

211

HCL® OneTest™ Embedded

212

To run a test harness, it must be associated with a test configuration. You can do this in a run configuration or in a

test suite.

Test suites

A test suite contains multiple test harnesses that are run sequentially to provide global results for a project.

In the test suite, each test harness is associated with a test configuration (a TDP with associated configuration

settings) and can be run a second time with another test configuration to provide comparison results. For example,

this can be useful for certification purposes.

Creating test projects
In HCL® OneTest™ Embedded, projects are similar to C/C++ projects, but contain extra folders and a specific

toolchain for component testing and runtime analysis.

About this task

HCL OneTest™ Embedded can only work with its own managed build toolchain. You can also import and convert

existing Eclipse CDT projects to work with HCL OneTest™ Embedded.

To create a new project:

1. In the C/C++ perspective, click File > New > C Project/C ++ Project . Or you can work in Test RealTime

perspective, and click File > New > Project, and in the New project window, click C/C++, then C Project or C ++

Project.

2. In the C Project or C ++ Project wizard, type a Project name.

3. In Project type, select Executable > Empty project and in Toolchains, select . Click Next.

4. On the Select Configurations page, ensure that the correct configuration is selected and click Next.

You can select multiple configurations for the project.

5. On the Target Deployment Port, select a TDP that you want to use as the native target platform for your

project.

6. Click Finish.

What to do next

After creating a project, you can import an existing C/C++ project into the product or use the Eclipse CDT tools to

create a new project.

Related information

Importing C projects on page 64

Creating test harnesses from the call graph on page 226

Creating a test case from the project explorer on page 216

Chapter 5. Test Execution Specialist Guide

Test cases

Test case structure
The main objective of a test case is to define the variable checks that will compare the values obtained during the run

with the expected values defined in the test case.

During the run, the test case performs a call to the C function using a set of initialization expressions and compares

the return values with expected value expression. Each variable check is defined by:

• The name of the variable in the function.

• An initial expression: this is the expression of a value, or a set of values, that is submitted to the function

during the test. You can express multiple initialization values, which causes multiple iterations of calls to the

function under test.

• An expected expression: this is the expression of a value, or a set of values, that is compared to the actual

value obtained during the test. Compliance with the expected expression produces either a failed or passed

verdict for the test.

Activity diagram

The Activity diagram displays a flow chart describing the blocks that are required in the test case. If necessary,

you can add and remove blocks, conditions and arrow lines to edit the activity diagram. The test case criteria are

contained in one or several Check blocks.

The graphical flow chart allows you to add decision blocks and native C code to the test. For example, you can use

decision blocks to run specific checks when a variable matches a specific value, or you can write a code block to

define a counter and associate it with a decision block to create a loop.

Initialization and stubs
The Init & Stubs block summarizes the initialization values from all the check blocks and stub behaviors in the test

case.

Code

By default, the Code block contains code that performs the call to the function under test.

The code block enables you to add native code to a test. This can be useful to run a specific portion of code in the

middle of a test case. For example, you can change a hardware configuration before running a test or between two

check blocks that verify the same function.

You can also write a code block to define a counter and associate it with a decision block to create a loop.

Variable checks

The main objective of editing a test case is to define the variable and structure checks. This is done in the Checks

block by using the Variable checks table.

213

HCL® OneTest™ Embedded

214

Variable initial expressions
The initial expressions are used to assign an initial value to a variable under test. The initial expression for each

variable check is displayed in the test case.

Initial expressions can be among any of the following types:

• Numeric (integer or floating-point), character, or character string literal values, expressed using standard C

syntax.

• Native constants, which can be numeric, characters, or character strings.

• Series of values, with a From and To value, and a Step.

• Global variables that are declared by the program under test.

• A null pointer.

• Arrays and structures, any of the above-mentioned expressions between braces ('{}').

• C functions or expressions with one or more of the above elements combined using any operators and

casting, with all required levels of parentheses.

• Multiple arbitrary values, which can be specified in the test case editor, randomly picked between a given

range, or extracted from a datapool (read from a linked CSV file).

• No Change, which indicates that the test case does not set the value for the test.

• No Dump indicates that the variable initial value is not taken into account in the report, it is the same as

’unchanged’. This option is used so that the variable is not read during the initialization phase of the test case

execution.

The data type of the variable defines what is a valid initial expression.

Initial expressions can be synchronized, which means that a list of multiple values for one variable will be

synchronized with a matching number of values for another variable. See Synchronizing multiple values on

page 219 for more information.

Additional notes

The number of values inside an initialization expression is limited to 100 elements in a single variable.

If variables are used in the initialization expression, the test evaluates the initialization value with variable values from

after the execution.

Related information

Variable expected value expressions on page 214

Editing test cases on page 216

Variable expected value expressions
The expected expressions are used to specify a test criteria by comparison with the value of a variable. The test

receives a passed verdict when the actual obtained value matches the expected value expression.

Chapter 5. Test Execution Specialist Guide

The expected expressions can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be delimited by

single or double quotes.

• Native constants, which can be numeric, characters, or character strings.

• Ranges with lower and upper values and inclusive or exclusive bounds.

• Global variables that are declared by the program under test.

• A null pointer or a non-null pointer.

• Arrays and structures, any of the above-mentioned expressions between braces ('{}').

• C functions or expressions with one or more of the above elements combined using any operators and

casting, with all required levels of parentheses. The + operator allows to concatenate character string

variables.

• No Check, which specifies that no check is performed on that variable.

• Same As Init, which specifies that the expected variable equals the initialization expression.

• Data sets that are synchronized with a multiple initialization expression.

The data type of the variable defines the acceptable values for the expected value.

Numeric values can be associated with a comparison operator in the test case editor.

Expected expressions can be synchronized, which means that a list of multiple values for one variable will be

synchronized with a matching number of values for another variable. See Synchronizing multiple values on

page 219 for more information.

Additional notes

Any integers contained in an expression must be written either in accordance with native lexical rules, or under the

form:

• hex_integerH for hexadecimal values. In this case, the integer must be preceded by 0 if it begins with a letter.

• binary_integerB for hexadecimal values.

Ranges are not allowed for pointers.

The number of values inside an expected expression is limited to 100 elements in a single variable.

If variables are used in the expected expression, the test evaluates the initialization value with variable values from

after the execution.

Euclidean divisions performed by the test case round to the inferior integer. Therefore, writing -a/b returns a different

result than -(a/b), as in the following examples:

• -(9/2) returns -4

• -9/2 returns -5

215

HCL® OneTest™ Embedded

216

Related information

Variable initial expressions on page 214

Editing test cases on page 216

Creating a test case from the project explorer
You can create a test case from the project by simply selecting a source file or a function. Each test case focuses on

a particular function.

To create a test case from the project explorer:

1. In the project explorer, right-click the project, source file, or a function, and click New > Test Case.

If you select a function, skip to step 3.

Result

The Create Test Case wizard opens.

2. On the Select Test Assets page, select the function or variable that you want to test and click Next.

You can choose to only display Only functions, Only variables, or you can filter the list by typing characters in

Filter. Click Clear to clear the filter list.

3. On the Test Documentation page, you can edit the description of the test, and click Next.

The Published description contains information that you want to display in the test report. Use the Internal

notes to add personal notes and comments that can be viewed and edited in the test editor.

4. On the Test Case Location page, select a folder and a type a file name for the test case and click Finish.

5. Choose whether you want to create a new test harness or use an existing one.

A test harness contains one or several test cases and is necessary to run the test.

Choose from:

◦ If you want to add the test case to an existing test harness, in the click No. You must edit the test

harness to add the new test case.

◦ If not, click Yes and create a test harness with the Create Test Harness wizard.

Results

The test case and test harness are generated in the project explorer and the test case editor opens. Editing test cases

on page 216 for information about the test case editor.

Using the test case editor

Editing test cases
The test case editor enables you to visually design test cases associated with your source code and to create variable

checks.

About this task

The test case editor is made of two panes:

Chapter 5. Test Execution Specialist Guide

• The Activity diagram displays a flow chart describing the blocks that are required in the test case. If

necessary, you can add and remove blocks, conditions and arrow lines to edit the activity diagram. The test

case criteria are contained in one or several Check blocks.

• The Details pane contains information about the selected block. For example, click the Inits & Stubs block to

edit the initialization parameters, headers, and stubs required to run the test case.

Tip: You can find where the edited file is located by clicking on the title of editor or on the header and

selecting Navigate > Show In > Project Explorer . The explorer selects the current test case and expands

automatically all parent nodes.

The main objective of editing a test case is to define the variable and structure checks in the Check block.

1. In the project explorer, open a test case.

2. In the Activity diagram, create the necessary blocks for the test case and connect them with connector lines.

The default flow chart contains an Init. & Stubs block, followed by a Code block, followed by a Check block.

a. Click Create Code Block or Create Check Block buttons to create new blocks.

Code blocks can be used to run portions of C code inside the test case. Check blocks contain the test

criteria for the variables under test.

b. Click Create Decision Block to make the execution of other blocks conditional.

You can combine code blocks and decision blocks to create loops.

c. Click Create Connector to connect new blocks in the diagram.

Ensure that all blocks are properly connected.

3. On the Requirements page, document requirements that are specific to your program or quality process. You

can enter the name, a comment, and if a web page exists in your requirement management tools, enter the

link to the web page that displays the requirement. You can also add requirements that come from a .cvs file.

a. To add a requirement, click and enter a name for the requirement. You can modify the name. The

table is editable, you can modify the name of the requirement, add a comment and add a link to a web

page that is used as requirement in the table.

b. Click to duplicate a requirement in the table.

c. Click to view the requirement in a browser.

d. Click to add a requirement from a list. This button is available only if you previously set the

preferences to retrieve the requirements from a .cvs, .xml, or .reqif file. For more information, see Link

Tests to Requirements. The requirements are filtered by name and comment. In the test reports, you

can find the list of tests associated with the list of requirements.

4. In the Activity diagram, select a check block.

The Checked Variables table displays the variables and structures contained in the function under test.

5. For each variable or structure, specify an initial value and an expected value.

These values can be simple values, multiple values (ranges, series) or C structures.

217

HCL® OneTest™ Embedded

218

a. In the Checked Variables table, select a variable Initial Expression cell that you want to set and click

the menu button () to specify a single Value, Multiple values, a Series, whether to Use Structure

Fields, or to apply No Change to the initial value. You can also choose constructor in the list, which

means that you choose a constructor other than the default one. A constructor is a set of methods

that has the same name as the class it belongs to. It is used to initialize the current instance and it is

available only for a variable which is an instance of C ++ class.

See Variable initial expressions on page 214 for more information.

b. To edit single values, multiple values, or series, type the values in the quick edition area line above

the table. To specify structure values, edit the individual fields of the structure. To select a new

constructor, click the menu button () and select a value in the drop-down list.

The quick editor area adapts to the selected data type or entry mode.

c. In the Checked Variables table, select a variable Expected Expression cell that you want to set and

click the menu button to specify an expected value or range.

See Variable expected value expressions on page 214 for more information.

Note: By default, the Obtained Value column displays the actual value for the variable obtained during

the last run. Use the Available Runs list, located at the top of the test case editor, to display the actual

values obtained during a specific run.

6. When you have finished editing the test case, click Save and close the test case.

Defining series value sets in initialization values
When a series is defined as the initial expression, the variable check generates one call to the function under test (or

iteration) for each step in the series.

To create a series value set.

1. In the test editor, select a Check block to edit the variable checks.

2. In the Initial Expression column of one variable, click the menu button () and select Series.

The quick edition area switches to series edition mode.

3. In the quick edition area, type the starting and end values of the series and the step.

The number of iterations is evaluated and displayed on the Iterations line of the test editor.

4. Press ENTER or click to apply the changes.

Specifying multiple value sets in initialization values
When a multiple initialization value is defined, the test generates one call to the function under test (or iteration) for

each element in the set.

Chapter 5. Test Execution Specialist Guide

To create a multiple value set.

1. In the test editor, select a Check block to edit the variable checks.

2. In the Initial Expression column of one variable, click the menu button () and select Multiple.

3. In the Multiple Initial Expression window, specify the number of values in the set, and click OK.

The number of iterations is evaluated and displayed at the top of the test editor and the quick edition area

switches to multiple edition mode.

4. In the quick edition area, type a value for each element in the set.

◦ Press TAB to move to the next value in the set.

◦ Click the Previous and Next buttons to scroll through the elements of the set.

◦ You can increase and decrease the number of elements in the set.

◦ Click the ... button to open the advanced editor window

5. Press ENTER or click to apply the changes.

Synchronizing multiple values
In a variable check, when multiple values have been defined for a variable, you can create a synchronized set of

values, with the same number of elements, which can be synchronized.

Before you begin

Synchronizing values requires that at least two sets of values (series, multiple, datapool) have been defined in the test

case. Both value sets must have the same number of elements.

About this task

Without synchronization, each combination of all the values from all sets generates one call to the function under

test, or iteration. The number of iterations is displayed in the test case editor. Using multiple sets can rapidly generate

a large number of iterations, which can cause tests to run for long periods. For example, for the values in the

following table, the test generates 5 x 5 x 2 = 50 iterations.

Vari­

able Initialization value Number of elements

a [0.0, 1.0, 2.0, 3.0, 4.0] 5

b [0.0, 0.1, 5.0, 10.0, 10.1] 5

c [0, 1] 2

When two or more sets are synchronized, elements of each set are run together. In the previous example, if the

initialization values for a and b are synchronized, a=0 is called with b=0.0, a=2 is called with 0.1, and so on. The test

generates 5 x 2 = 10 iterations.

219

HCL® OneTest™ Embedded

220

Synchronizing variables enables you to run two or more sets of values in parallel, such as linked curves or sets of

coordinates.

To create a synchronized multiple value set.

1. In the test editor, select a check block to edit the variable checks.

2. In the Initial Expression column of one variable, click the Menu button and select Multiple.

3. In the Multiple Initial Expression window, select Synchronized with and select the variable which is initialized

with another multiple set.

The number of iterations is evaluated and displayed on the Iterations line of the test editor and the quick

edition area switches to multiple edition mode.

4. In the quick edition area, type a value for each element in the set.

◦ Press TAB to move to the next element in the set.

◦ Click the Previous and Next buttons to scroll through the elements of the set.

◦ Click the ... button to open the advanced editor window. The advanced editor provides an expanded

table view of the values.

5. Press ENTER or click to apply the changes.

Defining ranges in expected values
When a range expected expression is defined, the test checks that the obtained value is within the bounds of the

range.

To create a range expected expression.

1. In the test editor, select a check block to edit the variable checks.

2. In the Expected Expression column of one variable, click the menu button () button and select Range >

Native Expression.

The quick edition area switches to range edition mode.

3. In the quick edition area, type the lower and upper bound values for the range and click the [and] buttons to

set each bound as inclusive or exclusive.

4. Press ENTER or click to apply the changes.

Defining a synchronized expected value
When a multiple initialization value is defined, you can specify a synchronized set of expected values. The test checks

that for each initialization value element in the multiple set, the obtained result matches the corresponding element in

the synchronized expected value set.

Chapter 5. Test Execution Specialist Guide

To create a multiple value set.

1. In the test editor, select a Check block to edit the variable checks.

2. In the Expected Value column of one variable, click the menu button () and select Synchronized.

3. In the Multiple Initialization Expression window, specify the number of values in the set, and click OK.

The quick edition area switches to multiple edition mode.

4. In the quick edition area, type an expected value for each element in the set.

The number of synchronized expected values matches the number of multiple initialization values.

◦ Press TAB to move to the next value in the set.

◦ Click the Previous and Next buttons to scroll through the elements of the set.

◦ You can increase and decrease the number of elements in the set.

◦ Click the ... button to open the advanced editor window

5. Press ENTER or click to apply the changes.

Using values from a data pool
Data pools contain a series of values, or data patterns, that can be used as initialization or expected values for use in

a test case or the data dictionary.

Before you begin

The values contained in the data pool must match the type of the variable that you want to initialize.

About this task

Data pools do not import the data contained in a CSV file. When a CSV file is updated externally, any tests that refer to

the data pool will use the data contained in the updated CSV file.

To use values from a data pool:

1. In the test editor, select a Check block to edit the variable checks.

2. In the Initial Expression column of one variable, click the menu button () and select Data pool.

3. In Data pool, select a data pool that is in the project.

Values number indicates the number of rows contained in the CSV table.

4. In Column, select the column number of the data set that you want to use to initialize the variables and click

OK.

Results

The number of iterations displayed in the test case editor is updated to incorporate the number of values of the data

pool (or rows in the CSV file).

221

HCL® OneTest™ Embedded

222

Related information

Creating data pools on page 223

Generating 2D and 3D chart data on page 957

Using the data dictionary

Data dictionary overview
The data dictionary contains data sets, which are user-defined sets of values, multiples, ranges, series, or structures

that can be applied to initialization and expected values.

The data dictionary enables you to create, modify and reuse data sets in variable checks of the same type throughout

your project. You can also export data dictionaries, import them into other projects, or share them with a team.

For example, if your application frequently uses values representing the speed of a vehicle, you can predefine a data

set speed in the data dictionary, which will use a range from 0 to 200 kilometers per hour with a step of 20. You can

then apply this data set to any variable check in your project that represents speed.

The data dictionary maintains links between the data set and the variables that are linked to it. Variables that are

linked to a data set in the data dictionary are highlighted in green in the test editor.

When you modify an initial or expected value that is linked to the data dictionary, the changes automatically affect the

data set stored in the data dictionary and any other variables that are also linked to the data set.

The Data Dictionary view

The Data Dictionary view lists the data sets that you have created. Each data set has a name, a type and a set of initial

and expected values.

You can edit data sets in the data dictionary. Any changes to the initial or expected values affect the variable checks

in the same project that are linked to the data set.

If you delete a data set from the data dictionary, all variable checks that are linked to the data set retain the last

known values, but the links are removed.

Adding data sets to the data dictionary
Data sets are user-defined values that can be used as initial values or expected values in variable checks.

About this task

Data sets in the data dictionary can be linked to variables or structures in the test case editor. Once a data set is

created, it can be linked to a variable or structure. When you update the data set of a variable check that is linked to

the data dictionary, all other variable checks linked to the same data set are updated.

To add and edit data sets:

Chapter 5. Test Execution Specialist Guide

1. In the variable check table of the test case editor, select a variable or a structure and specify its initial value

and expected value.

For a structure, specify the initial values and expected values of its components.

2. Right-click the variable or structure and select Add Initial Expression to Dictionary or Add Expected

Expression to Dictionary.

Alternatively, you can drag and drop the variable or structure into the Data Dictionary view. You can also

choose to only add the initial value or the expected value.

3. Type a name for the data set and click OK.

By default, the name of the variable or structure is used.

4. The variable or structure is listed in the Data Dictionary view and the value that is linked to a data set is

highlighted in green in the test case editor.

Choose from:

◦ To dissociate a highlighted value in the test case editor from its data set in the data dictionary, right-

click the value and select Remove Link from Data Dictionary.

◦ To associate a data set to an existing variable of the corresponding type, drag and drop the data set

from the data dictionary on to the variable check in the test case editor.

◦ To delete a data set, right-click the data set in the data dictionary and select Delete. All variable checks

that are linked to the data set retain the last values, but the links are removed.

Creating data pools
Data pools are links to a CSV file that is either in the file system or in the workspace.

About this task

The data pool contains series of values, or data patterns, that can be used as initialization or expected values for

use in a test case or the data dictionary. The data pattern can also be used to produce a 2D or 3D chart with the test

results.

Data pools do not import the data contained in a CSV file. When a CSV file is updated externally, any tests that refer to

the data pool will use the data contained in the updated CSV file.

To create a datapool link to a CSV file:

1. Click File > New > Other > > Data Pool.

2. In the Create Data Pool wizard, click Browse to locate the CSV file, click Open, and click Next.

3. Select a folder in the workspace, type a name for the new data pool, and click Finish.

Result

The data pool editor opens.

4. In the data pool editor, select the Import parameters and Separator options.

Ensure that the selected language matches the locale settings used to generate the CSV file.

5. When the Preview area displays the correct data, save the data pool and close the editor.

223

HCL® OneTest™ Embedded

224

Related reference

Data pool editor reference on page 990

Related information

Using values from a data pool on page 221

Generating 2D and 3D chart data on page 957

Test harnesses

Test harness structure
Test harnesses contains all the information required to compile and run a test. This includes, test cases, source files

under test, stubs, and Target Deployment Port (TDP) configuration settings.

These test assets include:

• Test cases

• Stubs

• Required source files, including:

◦ Tested files: These are source files under test. The functions of these components are instrumented

and integrated into the test harness.

◦ Additional sources: These are dependency files that are added to test harness, but are not tested or

instrumented. For example: resource files can be compiled inside a test harness by specifying them as

additional files.

◦ Linked files: These are source files that are linked with the test harness but are not tested or

instrumented.

◦ Libraries: These are libraries that are required for the link. For example: math libraries.

To run a test harness, you must associate it with a test configuration from a run configuration for a standalone run

or from a test suite if you want to run multiple test harnesses in a step. For more information, see Running a test

harness on page 232 and Running a test suite on page 233.

You can use the test harness editor to add and remove test assets from the test harness and to graphically arrange

the order in which the test cases are run. You can also add additional blocks of code and conditions to structure the

behavior of the test harness.

Activity flow chart

The Activity area is located on the left of the test harness editor and contains a flow chart, which describes the

behavior of the test harness. You can use this flow chart to define the order in which each test case is run.

The Activity flow chart can contain blocks of native code, which can be run before or between test cases. This can be

useful for setting parameters or changing hardware to a specific configuration before running the test case.

Chapter 5. Test Execution Specialist Guide

You can also add decision blocks, making the execution of paths in the flow chart conditional.

The calls of test cases in a test harness are all taken into account by default when a test harness is run but you can

deactivate a test case from the activity flow chart so that it is not taken into account in the generation.

Test harness details

In addition to the behavior of the test, the test harness includes information that is required to run the test. The

Details section contains the following pages:

• Context Definitions: This page lists the source code assets that are required to run the test.

◦ Tested files: These are source files under test. The functions of these components are instrumented

and integrated into the test harness.

◦ Additional sources: These are dependency files that are added to test harness, but are not tested or

instrumented. For example: resource files can be compiled inside a test harness by specifying them as

additional files.

◦ Linked files: These are source files that are linked with the test harness but are not tested or

instrumented.

◦ Libraries: These are libraries that are required for the link. For example: math libraries.

• Build Instrumentation: This page contains the configuration settings that are used to build the test. These

settings override the default configuration settings of the project.

• Stubs: This page specifies any stub files that simulate functions that are required by the functions under test.

Stubs can be used to replace functions that are under development or not practical to use for testing. They

can also be used to inject specific values or conditions into the test.

• Requirements: This page allows you document the requirements for the test case.

• Header Code: This page contains code that is run before the test cases are executed.

• Declarations: This page specifies global and local variables that must be declared in the test harness.

Creating test harnesses
Use the New Test Harness wizard to create new test harnesses. A test harness contains one or several test cases

and is required to run the test, it also includes source files under test, stubs, and Target Deployment Port (TDP)

configuration settings.

To create a test harness from the project explorer:

1. In the project explorer, right-click the project and click New > Test Harness.

If you select a function, skip to step 3.

Result

The Create Test Case wizard opens.

2. In the Create Test Harness wizard, select one or several test cases that you want to run together and click

Next.

If no test cases exist, you can click New Test Case to create a new one.

3. On the Test Harness Location page, select the folder and name for the test harness and click Finish.

225

HCL® OneTest™ Embedded

226

Results

The test harness is created in the specified folder and opens in the test harness editor.

Creating test harnesses from the call graph
The call graph provides a visual diagram that helps you select the functions that require testing in your project. You

can use this diagram to create a test harness that contains a test case, stubs, and other test assets required to run

the test.

1. In the project explorer, right-click the project, source file, or a function, and click Open Call Graph.

Result

The call graph displays a diagram representing the function calls in the selected component.

2. In the call graph toolbar, click Create Test Harness .

Result

This opens the Test Creation Activity view, which details the steps to create the test harness.

3. Under Test Asset Selection, select a function to test and click Next.

You can take advantage of the call graph display to locate the functions that are critical to your application.

4. If some functions require stubbing, under Stub Selection, select a function to simulate, and click Next. If the

test does not require stubs, click Next.

See Stubbing overview on page 241 for more information about stubs.

5. Under Test Case Creation, select a folder or create a new one, type a file name for the test case, and click

Next.

6. Under Test Harness Creation, select a folder or create a new one, type a file name for the test harness, and

click Finish.

The test harness contains one or several test cases and is necessary to run the test.

Results

The test cases, stubs, and test harness are generated in the project explorer and the test harness editor opens.

Editing test harnesses on page 226 for information about the test harness editor.

Editing test harnesses
Use the test harness editor to edit test harnesses.

About this task

The test harness editor is made of two panes:

• The Activity diagram displays a flow chart describing the blocks that are required in the test harness. If

necessary, you can add and remove blocks, conditions and arrow lines to edit the activity diagram. The test

case criteria are contained in one or several Check blocks. You can also activate or deactivate a test case call

in a test harness. Click a test case block in the Activity diagram, and click the icon in the test case block to

deactivate a test case call, or click the icon to activate a test case call.

Chapter 5. Test Execution Specialist Guide

• The Details pane contains information about the selected block. For example, click a code block to edit the

C/C++ source code that you want to insert into the test harness or click the black initialization circle to define

the properties of the test harness. If you click a test case block in the Activity diagram, the pane displays all

functions/methods and variables used by the test harness.

Tip: You can find where the edited file is located by clicking on the title of editor or on the header and

selecting Navigate > Show In > Project Explorer . The explorer selects the current test harness and expands

automatically all parent nodes.

To edit a test harness:

1. In the project explorer, open a test harness.

2. In the Activity diagram, create the necessary blocks for the test harness and connect them with connector

lines.

The default flow chart contains a test case.

a. Click Insert Test Case to add an existing test case into the test harness.

b. Click the Create Code Block to add a block containing native C code that can be run between test

cases.

c. Click Create Decision Block to make the execution of other blocks conditional.

You can combine code blocks and decision blocks to create loops.

d. Click Create Connector to connect new blocks in the diagram.

Ensure that all blocks are properly connected.

3. On the Context Definition page, ensure that all the source files and libraries required to compile and run the

test harness are properly defined.

◦ Tested files: These are source files under test. The functions of these components are instrumented

and integrated into the test harness.

◦ Additional sources: These are dependency files that are added to test harness, but are not tested or

instrumented. For example: resource files can be compiled inside a test harness by specifying them as

additional files.

◦ Linked files: These are source files that are linked with the test harness but are not tested or

instrumented.

◦ Libraries: These are libraries that are required for the link. For example: math libraries.

4. On the Build Settings page, you can override the project the build settings.

See Build configuration settings on page 980 for information about each of these settings.

5. On the Stubs page, specify any stub behaviors that you want to replace a function with.

See Stubbing overview on page 241 for information about stub simulation.

227

HCL® OneTest™ Embedded

228

6. On the Requirements page, document requirements that are specific to your program or quality process. You

can enter the name, a comment, and if a web page exists in your requirement management tools, enter the

link to the web page that displays the requirement. You can also add requirements that come from a .cvs file.

a. To add a requirement, click and enter a name for the requirement. You can modify the name. Table

is editable, you can modify the name of the requirement, add a comment and add a link to a web page

that is used as requirement directly in the table.

b. Click to duplicate a requirement in the table.

c. Click to view the requirement in a browser.

d. Click to add a requirement from a list. This button is available only if you previously set the

preferences to retrieve the requirements from a .cvs, .xml or .reqif file. For more information, see Link

Tests to Requirements. The requirements are filtered by name and comment. In the test reports, you

can find the list of tests associated with the list of requirements.

7. On the Header Code page, add native C source code that might be required run as a header for the test

harness. For example, you could add code to initialize or set the hardware to a specific state before running

the test cases.

8. On the Declarations page, add any global or local variables that need to be set before running the test

harness.

a. Click Add application variable () to initialize a variable in the test harness.

Select one of the variables that are declared in the application.

b. Click Add application variable to simulate () to simulate a variable in the test harness.

Select one of the variables that are declared in the application.

c. Click Add local variable () to create a local variable for the test harness.

Specify a name and a type for the new variable.

9. In the Details pane, select the icon corresponding to the feature that you want to add to the settings of your

project: Code coverage, Memory profiling, Performance profiling, Application profiling, Control coupling, Data

coupling, Runtime tracing, Static metrics, and Code review.

10. When you have finished editing, save the test harness.

Note: You can run the test harness from the editor. For details, see Running a test harness on

page 232.

Test suites

Creating test suites
A test suite contains multiple test harnesses that are run sequentially to provide global results for a project. When you

create a test suite, you select the test harnesses that will be used in the test suite run. You can also select test scripts

that can be run from a test suite.

Chapter 5. Test Execution Specialist Guide

About this task

In the test suite, each test harness is associated with a test configuration (a TDP with associated configuration

settings). In the test suite editor , you select the main test configuration, that is an instance of a target deployment

port (TDP) and its associated configuration settings and usually carries the name of the TDP. A test harness can

optionally be run a second time with another test configuration to provide comparison results. This can be useful for

certification purposes or to compare the results of a test on two different hardware platforms.

The Test Suite Content wizard automatically displays all the files that are available in your project and that can be run

with the selected test harnesses: main test configuration files for test harnesses, .ptu files for PTU test scripts, .otd

files for OTD test scripts, .bat files for Windows scripts, .pl files for Perl scripts, .py files for Python scripts (.py files),

or .shell for Linux scripts.

To create a test suite:

1. In the project explorer, right-click the project and select New > Test Suite.

2. In the Create Test Suite wizard, select the test harnesses that you want to run together and the test scripts

located in your project. Then, click Next.

3. Select the main test configuration files for the test harnesses that are compatible with your test suite.

4. If you want to compare the test results with another test configuration, select Compare with and choose a

secondary test configuration.

229

HCL® OneTest™ Embedded

230

This will run the test suite twice, using both the main configuration and the secondary configuration. You can

use this option to run the same test suite on a native platform and an embedded platform, to ensure that

results are consistent.

5. Click Next.

6. Specify a location and file name for the test suite, and click Finish.

Results

The test suite is created in the selected location in the project, under the test suite folder in the Project Explorer.

Related information

Running a test suite on page 233

Configuring the Jenkins environment for running test suites
HCL OneTest™ Embedded for Eclipse IDE has command line interface that facilitates the integration of Jenkins in

HCL OneTest™ Embedded.

About this task

First create a test suite in your project and add all the test harness that you want to execute.

To configure Jenkins:

1. On the Jenkins dashboard, click Configure.

2. Under Build, click Add build step where you want to insert your test execution.

3. Select Execute Windows batch command for Windows, or Execute shell for UNIX.

4. Setup your command as described here to execute your test suite: rtrteclipse -WORKSPACE= <your

workspace> <your test suite>.

For more details, see Running test suites from the command line on page 234.

Test configurations

Creating test configurations
Test configurations contain the settings required to apply a target deployment port (TDP) to your compiler, linker,

debugger, and target deployment.

About this task

A test configuration can be understood as the base target deployment port settings, augmented with the various build

and settings for the project.

To create a new test configuration:

1. In the project explorer, right-click the project and click Properties.

2. Expand C/C++ Build, select Settings, and click Manage Configurations.

Chapter 5. Test Execution Specialist Guide

Result

The Manage Configurations window for the project opens.

3. Click New.

4. Type a Name and Description for the new configuration.

Example

For example, use the name of the compiler or target platform.

5. Specify the source settings to use to create the new configuration.

Choose from:

◦ Select Existing configuration to base this configuration on one of the previously created

configurations for this project.

◦ Select Default configuration to base the configuration on the default configurations for the project.

◦ Select Import from projects to copy the configuration from another project in the workspace.

◦ Select Import predefined to copy the configuration from one of the predefined configurations provided

with the product.

6. Click OK. If you want to use the new configuration, click Set Active.

7. Click OK to close the Manage Configurations window.

What to do next

To make any changes to the test configuration, edit the Build TDP and Build Settings pages of the Properties window.

See the Configuration Settings reference for more information.

Note: It is possible to rename test configurations. However, when the configuration is renamed, the previous

directory of the configuration is not renamed and a new one is created. To build the new makefiles for the

renamed configuration, you must edit the managed build to point to the source files that are in the new

configuration directory.

Related information

Switching test configurations on page 231

Switching test configurations
Although a project can use multiple configurations, as well as multiple TDPs, there must always be at least one active

configuration. You can switch from one configuration to another at any time, except during build activity.

About this task

The active configuration affects compiler and deployment options for each resource in the project.

Note: You can also run a test harness with two different test configurations by creating a test suite. See

Creating test suites on page 228.

To change the active test configuration:

231

HCL® OneTest™ Embedded

232

1. In the project explorer, right-click the project and click Properties.

2. Expand C/C++ Build, select Settings, and click Manage Configurations.

Result

The Manage Configurations window for the project opens.

3. Select the configuration that you want to use to build and run the test and click Set Active.

4. Click OK to close the Manage Configurations window.

Related information

Creating test configurations on page 230

Running a test

Running a test harness
The test harness contains everything required to run the test.

About this task

The test harness associates the test cases with the source code and other required components to a test

configuration. The test configuration is an instance of a target deployment port (TDP) with its association

configuration settings.

To run a test harness:

1. In the project explorer, in the Test Harness folder, right-click the test harness and click Run As > Run Test

Harness.

2. Alternatively, you can run a test harness from the test harness editor.

Note: In some environments, if you have installed the product in an existing Eclipse, the test result

timestamps and verdicts are not properly displayed in the package explorer. To correct this, in the

project explorer, click View Menu > Customize View > Content and ensure that only Working Sets,

Elements, CDT Elements, and Resources are selected.

Note: To run multiple test harnesses in a step, you must create a test suite, select the test harnesses

that will be run from the test suite and then run the test suite. For more information, see Creating test

suites on page 228 and Running a test suite on page 233.

Results

The Test Result folder in the Project Explorer contains the test harness result file. To open the reports, right-click the

Test result, select Open with > HTML reports and select the appropriate report.

Chapter 5. Test Execution Specialist Guide

Running a test suite
Test suites enable you to run multiple test harnesses or test scripts in a single step. You can update the list of test

harnesses and test scripts to be run, and the build configuration from the Test Editor before running a test suite.

About this task

In the test suite, each test harness is associated with a test configuration (a TDP with associated configuration

settings) and can be run a second time with another test configuration to provide comparison results. This can be

useful for validation purposes.

To run a test suite:

1. In the project explorer, open the Test Suite folder and double-click the test suite to open the Test Suite editor.

2. In the Test harness section of the test editor window, to update the test harness list, you can:

a. Select or deselect test harnesses and test scripts (examples: .ptu, .otd,.py, .pl, .bat) that are available in

your project

b. Add to the test suite other resources that are not displayed in the list by using one of the following

procedures:

▪ You can drag the test script files from the Project Explorer and drop them in the test harness

list in the Test harness section of the test suite editor.

▪ Click the Add test harness icon to select resources compatible with your project: supported

scripts and test harnesses.

c. Click the Delete icon to remove a test harness or a test script file from the test suite.

d. Click the 'Up arrow' and 'Down arrow' icons to modify the order of resources in the list. The test

harnesses and test scripts will be run in the order they are listed.

3. Save and click Run.

Result

After running the test suite, you can see the run result details in the Run results for selected test harnesses

with the run status (success, failed, inconclusive) in the test suite editor.

The Test Result folder in the Project Explorer contains the test results for each test harness and for the

generated test scripts contained in the test suite. You can produce a common, merged result file, containing

the results of all the test harnesses of the test, see details in the Merging test suite results page.

4. To open reports, right-click a Test result, select Open with > HTML reports and select the appropriate report.

5. To order the test results, select Sort result files by ascending date in Window > Preferences > HCL®

OneTest™ EmbeddedNavigator

233

HCL® OneTest™ Embedded

234

Note: In some environments, if you have installed the product in an existing Eclipse, the test result

timestamps and verdicts are not properly displayed in the package explorer. To fix this issue, in the

project explorer, click View Menu > Customize View > Content and ensure that only Working Sets,

HCL® OneTest™ Embedded Elements, CDT Elements, and Resources are selected.

Running test suites from the command line
You can integrate test suites created with HCL OneTest™ Embedded for Eclipse IDE into your command line tool

chain.

About this task

To run the test suite in command line mode, a Perl launcher script launches the Eclipse workbench silently. In this

mode, the Eclipse workbench is not started and there is no user interaction. All information is output to the console.

The launcher script is located in the bin folder of the HCL OneTest™ Embedded installation directory. This folder

directory is added to the PATH environment variable when the product is installed.

To run a test suite from the command line:

1. Close HCL OneTest™ Embedded for Eclipse IDE.

The Eclipse workspace must not be in use when you run the command line.

2. Type the following command line:

rtrteclipse [-WORKSPACE={workspace directory}] [testsuite_pathname [{testsuite_pathname}]]

[-BUILD_PROJECT={project_name | all}][-BINDIR={directory}][-TDPDIR={directory}]

[-REPORTDIR={directory}]

◦ <workspace> is the path to the workspace that contains the test suite. For example "C:\temp

\workspace".

◦ <test suite_pathname> is the path and filename of the test suite in the workspace. You can run multiple

test suites in the same workspace.

◦ <bin directory> optionally indicates the location of eclipse.exe. By default, the product uses:

"C:\Program Files\HCL\HCLOneTest\Embedded"

◦ <tdp directory> optionally indicates the location of the target deployment port directory. By default, the

product uses:

"C:\Program Files\HCL\HCLOneTest\Embedded\targets"

◦ <reportdir directory> indicates the location where all the .xml report files are copied.

Example

For example:

Chapter 5. Test Execution Specialist Guide

◦ rtrteclipse -WORKSPACE={workspace} {testsuitePathFromWorkspace} [{testsuite}] [options]

◦ rtrteclipse {testsuiteWithAbsolutePath} [{testsuite}] [options] #. In this case, the workspace

and the directory where are located the test suites, are deducted from the first test suite path.

3. When the test is finished, start HCL OneTest™ Embedded for Eclipse IDE to view the results or open the

directory reports with a web browser.

Test scripts files

Testing with PTU test scripts
You can add and configure PTU test scripts and execute them in a standalone mode or from a test suite in HCL

OneTest™ Embedded for Eclipse IDE.

About this task

You must import a PTU file in a project to be able to execute the test script.

1. To import a PTU file, select File > Import and choose General > File System to select the file. You can import

the file in any folder at any file structure level.

2. To configure a PTU test script file, see Configuring .ptu or .otd test scripts on page 236.

3. To execute PTU file, use one of the following method:

a. To execute one PTU test script, right-click on a PTU file and choose Run as > Script test file.

b. Alternatively, select Run Configurations and Test Script file in the dialog box that opens. Right-click

and select New to create a new launch configuration. Then proceed as follows:

▪ Set a name to your launch configuration.

▪ In the Testing Script tab, select your PTU file in Select Application panel.

▪ Select your configuration in the Configurations panel and click Run.

c. To execute multiple PTU test scripts, create a test suite and select the PTU test scripts before running

the test suite. For more details, see Creating test suites on page 228 and Running a test suite on

page 233.

Result

A test report and runtime analysis reports are generated. The test result and the test script results are

displayed in the Test Result folder. From these files, you can open the appropriate HTML reports.

4. To open the reports, select the report file corresponding to your last execution, right-click and select Open

With > Test Report.

Testing with .otd test scripts
You can add, configure and execute .otd test scripts in a standalone mode or from a test suite in HCL OneTest™

Embedded for Eclipse IDE.

About this task

235

HCL® OneTest™ Embedded

236

You must import the .otd file in a project and configure the test script to be able to execute it and see the results.

1. Select File > Import and choose General > File System and select the files that you want to import.

Note: You can import these files in any folder at any file structure level.

2. Follow the instructions that are described in the Configuring .ptu or .otd test scripts on page 236 page to

configure .otd test scripts.

3. To execute .otd files, use one of the following methods:

◦ Right-click the .otd file and choose Run as > Test script file.

◦ Alternatively, proceed as follows:

a. Select Run Configurations.

b. Select the .otd file under Test Script file, in the dialog that opens.

c. Right-click and select New to create a new launch configuration.

d. Set a name to your launch configuration.

e. Select your .otd file in Select Application panel, in the Testing Script tab.

f. Select your configuration in the Configurations panel and click Run. The reports are available

into the Test Result folder.

◦ To execute multiple .otd test scripts from a Test Suite, see Running a test suite on page 233.

Result

A test report and runtime analysis reports are generated. The reports are available into the Test Result folder.

From these files, you can open the appropriate HTML reports.

4. To open the reports, select the report file corresponding to your last execution, right-click and select Open

With > Test Report.

Configuring .ptu or .otd test scripts
You can add additional options in a .ptu or .otd test script before executing.

About this task

A .ptu or an .otd file test script might need additional files and additional options before running that must be

specified into the .ptu or the .otd file itself, as follows:

1. Enter instructions with specific lines starting with --%f and --%o located on top of the file, before the HEADER

keyword setting.

2. In the line starting with %o, enter build options. Options format must follow the one used for attolcc.

3. In the line starting with %f, enter the list of additional source files that must be taken into account into the

build.

4. Set relative paths to specify the test scripts location.

5. Set the PATH environment variable as follows to make the test scripts portable:

a. ${workspace_loc:/myproject/src/sub.c}

b. $workspace_loc:/myproject/src/sub.c

c. $(project_loc)/src/sub.c

Chapter 5. Test Execution Specialist Guide

Note: When the Path environment variable is configured and the test script run, the build automatically

creates the three following environment variables:

◦ 'workspace_loc' corresponding to the workspace location

◦ 'project_loc' corresponding to the project location

◦ 'tstscript_loc' corresponding to the test script location

Testing with Python, Perl, Windows or Linux scripts
In HCL OneTest™ Embedded for Eclipse IDE, you can import and execute PTU and OTD test scripts but also other

scripts such as Batch (Windows only), Shell (Linux only), Perl or Python.

Before you begin

To be able to run Python (.py files) scripts, you must install the PyDev plugin in Eclipse and configure Python

Interpreter preferences. You can download the plug-in from this page https://www.python.org/downloads/.

About this task

This task applies to users who want to test with .bat files (Windows only), .pl files (Perl), .py files (Python), and .sh

(Shell for Linux only). You must import the script files in a project to execute them.

1. To import a test script file, proceed as follows: select File > Import and choose General > File System to

select the files. You can import these files in any folder at any file structure level.

2. To configure Python, Perl, Windows or Linux script files, see Configuring Python, Perl, Windows or Linux

scripts on page 238.

3. To execute the test script file, use one of the following methods:

a. To execute a test in a standalone mode in HCL OneTest™ Embedded for Eclipse IDE, right-click the

script file and choose Run as > Script test file.

b. Alternatively, select Run Configurations. In the dialog that opens, under Script test file, select a script

file. Right-click and select New to create a new launch configuration. Then proceed as follows:

▪ Set a name to your launch configuration.

▪ In the Testing Script tab, select your test script file in Select Application panel.

▪ Select your configuration in the Configurations panel and click Run. The reports are available

into the Test Result folder.

c. To execute test scripts from a Test Suite in HCL OneTest™ Embedded for Eclipse IDE, see Running a

test suite on page 233.

Result

237

https://www.python.org/downloads/

HCL® OneTest™ Embedded

238

A test report and runtime analysis reports are generated. The reports are available into the Test Result

folder. From these files, you can open the appropriate HTML reports.

Tip: The default execution timeout is set to 20 seconds but some scripts can take more time

to execute. You can modify the script execution timeout from Window > Preferences > >

installation settings > installation settings.

4. To open the reports, select the report file corresponding to your last execution, right-click and select Open

With > Test Report.

Configuring Python, Perl, Windows or Linux scripts
To run Python, Perl, Windows or Linux scripts in a standalone mode, you must configure your scripts by using the java

runtime that is delivered with HCL OneTest™ Embedded.

A java runtime named ScriptReport.jar is available in the lib/java folder when you install HCL OneTest™

Embedded. It is used by default to ensure that test script results are displayed directly in your test suite, and in your

workspace after a manual refresh when the script is executed in a standalone mode. You must use some of the

runtime commands in your .py, .pl, .sh or .bat files to customize your reports.

Note: Using runtime commands in scripts requires advanced user level.

initreport

initreport <logfile>

This command is used in a script when all result files are created by the script.

It initializes necessary resources needed to create a log file.

This log file will contain the list of all intermediate files that are needed to create a result file.

<logfile> parameter is the name of this log file.

By convention, the extension is .xtp.

This log file will be generated if this command is used in a script that is executed in a standalone mode.

If this command used in a script that is executed from a test suite, the name of the test suite is taken into account,

and the parameter is ignored.

addreport

addreport <logfile> -path=<ressource path> [-kind=<ressource kind>]

<ressource path> : Resource to be added to the report. The resource path can be a relative path that points to the

script location, or an absolute path.

Chapter 5. Test Execution Specialist Guide

<ressource kind>: Kind of resource (optional)

This command registers a resource to be added to a logfile.

If you add a folder as a resource, this folder will be the used as relative resource path.

For very advanced users: If you have a resource with an unusual extension, you can enter your own <resource kind>

option.

The following table gives the list of file extensions that are recognized in HCL OneTest™ Embedded for Eclipse IDE

and the corresponding <ressource kind> options that must be entered in the script file.

File extension <resource kind> option Resource added to the log file

.ccf CCF ccf file

.crc CRC crc file for MISRA report

.crc.json CRJ crj file

.crx.html CRX MISRA code review report in html for­

mat

.dcp DCP dcp file

.dcp.json
DCJ dcj file

.dcx.html DCX dcx file in html format for data cou­

pling report

<executable without any extension> EXE

.exe EXE exe file

.fdc FDC fdc file for coverage report

<folder> DIR new reference for further relative

path

.html HTM .html user file in html format

.log LOG log file

.met MET met file for metrics report

.o

.obj

OBJ object file

.req REQ req file

.rio RIO rio file

239

HCL® OneTest™ Embedded

240

File extension <resource kind> option Resource added to the log file

.rtx RTX rtx file for charts report

.tdf TDF tdf file for trace report

.tgj.json TGJ tgj file

.tgx.html TGX tgx file for control coupling report in

html format

.tio TIO tio file

.tpf TPF tpf file for memory profiling report

.tqf TQF tqf file

.tqf.html TQX tqx file for performance profiling re­

port in html format

.tqf.json TQJ tqj file

.tsf TSF tsf file for trace

.tzf TZF tzf file

.tzf.json
TZJ tzj file

.tzx.html
TZX tzx file for stack profiling report

.xob XOB xob file

.xrd XRD xrd file for test report

.xtp XTP xtp file

genresult

genresult <logfile> [-path=<path>] [-name=<basename>]

<logfile> : Log file containing reports

<path> : Location where the result is generated (optional, the default value is <logfile folder>).

This command generates a result file from a logfile.

By default, it is the same location as the log file, with the same base name.

You can change this default behavior with optional parameters.

This command is supposed to be the last one, any resource added after this one will be ignored.

Chapter 5. Test Execution Specialist Guide

getconfig
getconfig <key> [<env key> <default value>]

Note: This command should be used by very advanced users only.

This command returns a key from the config file if it is executed from a test suite.

The command returns "<not found>" if the key is not found or executed in a standalone mode.

If the key is "<not found>", it returns an environment variable <env key>.

If the environment variable <env key> is not found, the command returns the <default value>.

This command is used to retrieve preferences from HCL OneTest™ Embedded for Eclipse IDE, when you call your

script from a test suite.

If it is executed in a standalone mode, you can enter an environment variable as optional parameter or a default value

if there is no environment variable.

For example, you can retrieve “confrule” file when you use Code Rule Checker.

You can retrieve the multiple keys that are existing in a generated file named “envTestRTcc.pl” that is located in

the %home% folder.

You can find examples in the ExamplesEclipse folder under the product installation files. The folder contains a

set of sources and three scripts (perl, bat and python). Theses scripts perform Code Rule Checker on sources and

produce reports. They all use relative locations for sources and results so that they can be executed in a standalone

mode or from a test suite, by using a the runtime commands.

Stubbing functions

Stubbing overview
Stubs are simulations of actual functions, which can be used to isolate the function under test and to check that calls

to the stubbed function are correctly formulated.

Stub simulation is based on the idea that certain functions are simulated and are replaced with stubs generated in the

test harness. Stubs provide the same interface as the simulated functions, but the body of the functions is replaced

with a basic behavior. From the point of view of other functions in the test harness, the stub looks identical to the

actual function that it simulates.

Stubs can be used in the following roles:

• Retrieving and storing input values to stubbed functions from a function under test.

• Assigning output values from the stubbed functions to a function under test.

Stubs are described with the following elements:

241

HCL® OneTest™ Embedded

242

• A variable array for the input parameters of the stub.

• A variable array for the output parameters of the stub.

• A body declaration for the stub behavior.

To create a stub, the source code of the stubbed function must be included in the project. HCL OneTest™ Embedded

analysis the prototype of the stubbed function to generate a stub with the same interfaces. Once the stub is created,

you use the stub editor to define the stub checks, which verify that each parameter in the call to the stubbed function

matches an expected expression.

Stub checks are based on the sequential number of the call, which typically reflects the iteration of the calling

function in the test case. The sequential call number is expressed as a range. For example a stub check for a

parameter a can be set to match an expected expression x for the first 10 calls received by the stub (range 0 to 10),

an expression y for the 11th to 20th calls (range 10 to 20), and an expression z for any following calls (range Others).

Stub expected value expressions

The expected expressions are used to specify a test criteria by comparison with the value of a call parameter received

by a stub. The test receives a passed verdict when the actual obtained value matches the expected value expression.

The expected expressions for a stub can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be delimited by

single or double quotes.

• Native constants, which can be numeric, characters, or character strings.

• Ranges with lower and upper values and inclusive or exclusive bounds.

• Global variables that are declared by the program under test.

• A null pointer or a non-null pointer.

• Arrays and structures, any of the above-mentioned expressions between braces ('{}').

• C functions or expressions with one or more of the above elements combined using any operators and

casting, with all required levels of parentheses. The + operator allows to concatenate character string

variables.

• No Check, which specifies that no check is performed on that variable.

• Same As Init, which specifies that the expected variable equals the initialization expression.

• Data sets that are synchronized with a multiple initialization expression.

The data type of the variable defines the acceptable values for the expected value.

Numeric values can be associated with a comparison operator in the stub editor.

Stub return value

Return values are used for parameters and functions if a return value is defined in the signature of stubbed function.

A special line named return in the parameter table is added to define the value for the return value of the function.

Chapter 5. Test Execution Specialist Guide

A return value can be defined for ouput parameters or input/output parameters. Change this setting in the Mode

column. The return value is a C native expression as numeric, character, or string...

The function's return value can be replaced by a special user source code. In this case, write the appropriate C source

code and add the return statement so that the function returns a value to the calling expression. To activate this

feature, select the return line and click the Use source code rather than return type tool button. The user source code

panel is activated and the C source code can be added.

Stub memory usage

For each STUB, the test harness allocates memory for the following tasks:

• Storing the expected expression of the input parameters during the test.

• Storing the obtained value of the input parameters during the test when an error is detected.

• Storing the values assigned to output parameters before the test.

A stub can be called several times during the execution of a test. The test harness allocates memory for expected

and returned values in accordance to the maximum number of calls to the stub in the test harness.

You can reduce the stub memory allocation value to a lower value in the configuration settings when running tests on

a target platform that is short on memory resources.

Creating stubs from the project explorer
You can create a stub from the project by simply selecting a source file or a function. Each stub simulates and

replaces a particular function.

To create a stub from the project explorer:

1. In the project explorer, right-click the project, source file, or a function, and click New > Stub Behavior.

If you select a function, skip to step 3.

Result

The Create Test Case wizard opens.

2. On the Stubbed function page, enter the function name that you want to test in the Filter field. You can choose

the functions displayed into the list.

3. On the Stub Behavior page, type a name for the stub behavior, an optional Description, and click Next.

The description contains information that can be viewed and edited in the test editor.

4. On the Stub Location page, select a folder and a type a file name for the stub and click Finish.

Results

The stub is generated in the project explorer and the stub editor opens. See Editing stubs on page 244 for

information about the stub editor. To use the stub in a test, you must add it to a test case, and add the function in the

stubbed function list of the test harness.

243

HCL® OneTest™ Embedded

244

Editing stubs
The stub editor enables you to visually describe the stub behavior and to define input and output parameters for the

stub.

About this task

The test case editor is made of three panes:

• The Stub Behaviors list displays one or several behaviors for the stub function. You can add new behaviors or

duplicate existing behaviors.

• The Calling Function pane displays the names of components that call the stubbed function.

• The Details pane contains the input and output values for the selected behavior.

• The User source code pane contains the user code added to compute a return value for the stub.

Tip: You can find where the edited file is located by clicking on the title of editor or on the header and

selecting Navigate > Show In > Project Explorer . The explorer selects the current stub and expands

automatically all parent nodes.

The main objective of editing a test case is to define the checks for each stub's call in the tested code.

1. In the project explorer, open a stub.

2. In the Stub Behaviors list, select the default behavior or create new one.

3. In the Details section, select a check block.

The Checked Variables table displays the variables and structures contained in the function under test.

4. For each variable or structure, specify an expected value and a return code.

These values can be simple values, multiple values (ranges, series) or C structures.

a. In the Stub call definition table, select a variable Expected Value cell that you want to set and click the

menu button to specify an expected value or range.

See Variable initial expressions on page 214 for more information.

b. To edit single values, multiple values, or series, type the values in the quick edition area line above the

table. To specify structure values, edit the individual fields of the structure.

The quick editor area adapts to the selected data type or entry mode.

c. In the Stub call definition table, select a variable return cell that you want to set and click the menu

button to specify a return value. This value can be a C native expression. If you want to replace a

single value by a section of source code, click on the button. The User source code is activated and

you can enter your special source code for the stub. Don't forget the return statement to return a value

for the calling expression.

5. When you have finished editing the test case, click Save and close the stub editor.

Chapter 5. Test Execution Specialist Guide

Application monitoring
With HCL OneTest™ Embedded for Eclipse IDE you can monitor the global variables of cyclic executive applications.

The monitoring feature is available from HCL OneTest™ Embedded for Eclipse IDE 8.3.1. It applies to cyclic executive

applications for software integration testing. A cyclic application is a long running program. It contains global

variables that read input data and set output data. With HCL OneTest™ Embedded for Eclipse IDE monitoring feature,

you can examine the global variables usage while your application is running.

Monitoring cyclic executive applications is an alternative to unit testing and software integration testing where only

one file of the application is tested (unit testing) or a collection of files is tested (software integration testing), the

other files are stubbed. With HCL OneTest™ Embedded for Eclipse IDE monitoring feature, you can test all the files

of your application. You can manually modify the input global variables in the monitoring view and select the output

variables that HCL OneTest™ Embedded for Eclipse IDE displays in a graph so that you can observe the behavior of

the application when the input values change.

To be able to monitor your application with HCL OneTest™ Embedded for Eclipse IDE, you must complete

prerequisites tasks. See Prerequisites to monitoring applications on page 245.

Prerequisites to monitoring applications
Before you can monitor a cyclic executive application, you must import your project to HCL OneTest™ Embedded for

Eclipse IDE, configure HCL OneTest™ Embedded for Eclipse IDE and your application, and build your project.

To monitor an application, you must first complete the following tasks:

• Create or import a project with a source file in C language. A sample monitoring project is delivered with

HCL OneTest™ Embedded for Eclipse IDE. You can import it to get started with the monitoring feature. See

Importing a monitoring project example on page 246.

245

HCL® OneTest™ Embedded

246

• Enable monitoring in your application. You must enter a dedicated pragma command in one function of your

application to enable HCL OneTest™ Embedded for Eclipse IDE to access the global variables. See Enabling

monitoring in your application on page 246.

• Configure the build and the monitoring settings in HCL OneTest™ Embedded for Eclipse IDE. See Configuring

the build and monitoring settings on page 246. If you want to use the command line interface to activate the

monitoring feature in HCL OneTest™ Embedded for Eclipse IDE, see C and C++ Instrumentor on page 1110.

• Run the application. See the note in Configuring the build and monitoring settings on page 246.

The monitoring procedure is described in Monitoring a cyclic executive application on page 248.

Importing a monitoring project example
A sample project is provided with HCL OneTest™ Embedded to help you get started with monitoring.

1. In the Project Explorer view of the C/C++ perspective, right-click and select Import.

2. In the wizard that opens, select Projects from Folder or Archive and click Next.

3. Click Archive, browse to the HCL OneTest™ Embedded installation directory.

4. In the ExamplesEclipse folder, select the engineSimulator.zip file and click Open.

5. Select the engineSimulator.zip_expanded\engineSimulator folder.

6. Click Finish.

Enabling monitoring in your application
You must enter a dedicated pragma command in a function of your application that is cyclically called to enable the

monitoring requests between HCL OneTest™ Embedded for Eclipse IDE and the target application.

About this task

In the identified cyclic function of your application, enter the following line at the appropriate location:

#pragma attol mnt_insert mnt_exec_request();

This function can have the following characteristics:

• Called in a timer interrupt

• Located in the main loop of your application

• Any regularly called function tin your application

The call frequency of this function becomes the basis frequency used to refresh the cyclic data in the monitor view.

Configuring the build and monitoring settings
To monitor your cyclic executive application from HCL OneTest™ Embedded, you must enable the compilation and

monitoring build settings and configure some parameters related to the communication and libraries that are used to

monitor your application.

About this task

Chapter 5. Test Execution Specialist Guide

1. Right-click in your project node.

2. Click Properties.

3. Select C/C++ Build > Settings in the Properties dialog box.

4. Click the Build TDP tab, click Target Deployment Port > Linker Options and set the appropriate library in

Libraries to enable compilation with a socket library. The default library is ws2_32.lib for Visual compiler or

-lwsock32 for GNU compiler. This option must be set for a socket communication mode only, see step8.

5. From the Build Settings tab, click Settings > General > Selective instrumentation.

6. In Build options, click Application profiling > ... and select Application profiling in the Build Options dialog

box.

7. From the Build Settings tab, click Settings > Application profiling > Monitoring and set Activate to yes. You

can keep the default settings for the other parameters.

8. Select the Communication type used to allow communication between HCL OneTest™ Embedded and the

target application. SOCKET is the default communication mode. To use a customized communication mode,

select USER.

9. Select Yes in Cyclic read allowed to allow cyclic read of the global variables in your application.

Note: You have to allocate memory to your application to complete cyclic read. If you can't allocate

memory to your application, you must select No.

10. Select the Default Frequency of the streaming process if you enabled a cyclic read. The default scale factor is

set to 10. This is a multiplying factor that applies to the cyclic read frequency that is set in the function code

with the pragma. This multiplying factor can also be changed in the monitoring view.

11. Select Read only mode in Bitfields support if your application use bit fields. Select NONE if your application

doesn't use bit fields in order to reduce memory consumption used by the runtime.

12. Select the bit format in Bitfields Order: Little endian or Big endian order if you enabled Bitfields support.

13. Click Apply.

Result

The monitoring feature is enabled and the settings are configured. You can start building your application.

What to do next

The next step is to build your project and then start your application.

Building a project for monitoring
After you configure HCL OneTest™ Embedded for Eclipse IDE and your application, you must build your project to

instrument the source code of the application with the new configuration settings.

In the Project explorer view, right click your project folder and select Build Project.

Note: You can alternatively instrument the source code of the application with the attolc4 instrumentor

command-line tool. For more details, see Instrumenting and Compiling the Source Code on page 1005.

Result

247

HCL® OneTest™ Embedded

248

When you build your project, two files are created: an executable file (.exe file) with an embedded runtime and a .mnt

file that contains the communication parameters and the description of all the global variables of your project.

What to do next

You must run the application.

Note:

• If you run your application from the command tool, click Properties > Resources contextual menu to

find the location of the execution file.

• To run your application from the Project Explorer view, right-click the execution file and select Run as

> Instrumented Application.

Monitoring a cyclic executive application
With HCL OneTest™ Embedded for Eclipse IDE, you can monitor a cyclic executive application that is running on a

target computer and connected to HCL OneTest™ Embedded for Eclipse IDE.

Before you begin

Before you can monitor, you must complete the following tasks:

• Create or import a project that contains the source code file of an application written in C language. You

can optionally use the sample project that is delivered with HCL OneTest™ Embedded for Eclipse IDE to get

started with the monitoring feature. For more information, see Importing HCL OneTest Embedded examples

on page 65.

• Enable monitoring in your application. See Enabling monitoring in your application on page 246.

• Enable the monitoring feature and configured the build settings. See Configuring the build and monitoring

settings on page 246.

• Build your project. For more information, see Building a project for monitoring on page 247.

• Start your application.

About this task

To monitor an application, follow these steps:

1. Open the C/C++ perspective.

2. In the Project explorer view, right-click your project file and select Open Monitoring to open the Monitoring

view.

Note: In the Monitoring view, you can view all the global variables of your application that are not

arrays. It is directly connected to the application that is running in background.

3. Select the variable values that must be monitored in your application:

Chapter 5. Test Execution Specialist Guide

◦ In the Read value column, select the variables that must be read by the application and click Read.

Clicking the Read button displays the variable value in the Read Value column. You can change this

value.

◦ In the Cyclic value, select the variables that must be read cyclically in the application and click Stream.

You can change the read process frequency in the Streaming list. This is a multiplier factor that

applies to the cyclic read frequency.

Note: The Cyclic value column is displayed only if you set the Cyclic read allowed option to

yes in the variable monitoring build settings. If the cyclic read is not allowed, the Stream is

disabled. For more details, see Configuring the build and monitoring settings on page 246

◦ In the Write value column, enter new values and select the variables that the application must read and

click Write.

Clicking Write displays the variable value in the Read Value column.

Note:

▪ Some write values can't be modified if you enabled the Bit Fields. In this case, the

values are presented in gray.

▪ A control check applies to the write values. The column cell turns red if you enter a

value with an invalid format, it turns yellow if the length of the value exceeds the size

that is defined for the type of value.

Result

A graph view is displayed when you click Stream so that you can examine the variable values usage in real-

time in your application. You can work with the different menus that are available in the toolbar of the Graph

view to change the graph format. In the Outline view, you can select the variables that are displayed in the

graph, you can also change the color of the curves in the graph.

4. Click Stop streaming to stop the monitoring process.

Result

When you stop the monitoring process, the graph is saved in a .rtx file in your project.

5. Click Add/Remove and in the Add/Remove dialog box that opens, select the variable values to add or remove

from the monitoring view.

Note: The default values that are displayed in the Monitoring view are the global variables. You might

want to remove the values that are not used or add values of an array to monitor.

6. In the Add/Remove dialog box, click New Element and enter the element number of the array in the New

Element dialog box. Then click OK to add it to the Monitoring view.

Result

249

HCL® OneTest™ Embedded

250

The variable is added to the Variable column of the Monitoring view and is labeled with the following name:

<arrayname>[<index>].

7. If your application is rebuilt and the list of global variables changed, the variables in the Monitoring view might

be inaccurate, so click Reload to update the Monitoring view.

All the initial selections are lost, you must select the variables and enter their values again.

8. Click the .rtx file to open it in the graph editor or right-click the file and select Open with > Text editor to see

all the variable values that were read by the application or written during the monitoring process.

Note:

◦ The variable values that are not checked are identified by NaN (Not a Number) in the report

because they are not requested during the monitoring process. You can monitor the following

data types: numeric, integer, or float data for the basic data, and array, structure, and union

data types for the collection of data elements. However, the output format of the data is

always numeric.

◦ The report gives the time when the variable values were read or written in the application.

◦ You can extract these values for testing or replay needs. You just need to remove the line that

are prefixed with the hash sign (﷓) and exported a file in the .csv format.

Results

All the completed actions and the updated values in the Monitoring view are automatically saved in the .rtx file.

Chapter 5. Test Execution Specialist Guide

Testing with Studio

 HCL OneTest™ Embedded Studio overview
HCL OneTest™ Embedded Studio is the classic user interface that supports C, C++, Ada test and analysis tools.

The HCL OneTest™ Embedded Studio test environment is not compatible with the HCL OneTest™ Embedded for

Eclipse IDE environment that was introduced in version 8.0 of the product. The documentation in this section is

intended for:

• Users who want to use existing projects with test scripts created in versions 7.5 and earlier of HCL OneTest™

Embedded Studio.

• Users who are testing programs written in Ada.

If you are creating new test projects in C, use HCL OneTest™ Embedded for Eclipse IDE. The Eclipse workbench

provides many benefits, including visual test design, a more accessible user interface, and a higher level of

compatibility with other software development environments.

Analyzing static source code

The static analysis feature set of HCL OneTest™ Embedded allows you to analyze your source code to measure

complexity and compliance to standards. Each feature analyzes the source code without compiling and running it.

To learn about See

How to perform static analysis on your source code Static analysis overview

on page 251

How to evaluate the complexity of your source code Static metrics overview

on page 252

Verifying compliance with industry-wide coding stan­

dards

Code review overview

on page 260

Checking with static analysis

The static analysis features of HCL OneTest™ Embedded allow you to measure the complexity of your source code

and to check the adherence to coding guidelines.

These tools are able analyze the source code providing without compiling or running the application.

• Static metrics provide statistic indicators of code complexity.

• Code review performs in-depth verification of the source code against a set of rules that implement best

practices, coding guidelines, and standards.

251

HCL® OneTest™ Embedded

252

These static analysis features can be used together with any of the automated testing features and runtime analysis

features.

Here is a basic rundown of the main steps to using the runtime analysis feature set.

To use the static analysis features:

1. From the Start page, set up a new project. This can be done automatically with the New Project Wizard.

2. Follow the Activity Wizard to add your application source files to the workspace.

3. Select the source files under analysis in the wizard to create the application node.

4. Select the runtime analysis tools to be applied to the application in the Build options.

5. Use the Project Explorer to set up the test campaign and add any additional runtime analysis or test nodes.

6. Run the application node to build and execute the instrumented application.

7. View and analyze the generated analysis and profiling reports.

The runtime analysis options can be run within a test by simply adding the runtime analysis setting to an existing test

node.

Runtime or static analysis tools do not run on System Testing nodes.

Related Topics

Static analysis overview on page 251 | Code review overview on page 260

Static metrics

About Static Metrics

Static Metrics for C, C++ and Ada

Statistical measurement of source code properties is an extremely important matter when you are planning multiple

tests or for project management purposes. HCL OneTest™ Embedded provides a Metrics Viewer, which displays

detailed source code complexity data and statistics for your C, C++ and Ada source code.

Static Metrics supports the following languages:

• Ada: Ada 83 and Ada 95

• C: C89 and C99

• C++: ISO/IEC 14882:1998

Chapter 5. Test Execution Specialist Guide

How the static metrics tool works

Metrics are updated each time a file is modified. Static metrics can be computed each time a node is built, but can

also be calculated without executing the application.

The metrics are stored in .met metrics files alongside the actual source files.

To learn about See

Opening a Metrics Report Viewing Static Metrics on

page 253

V(g) or cyclomatic complexity met­

rics

V(g) or Cyclomatic Number

on page 259

Halstead metrics Halstead Metrics on

page 258

Customizing metrics reports Metrics Viewer Prefer­

ences on page 1052

Related Topics

Runtime Analysis on page 335 | About Code Coverage on page 72

Viewing Static Metrics

Viewing static metrics

Static Metrics for C, C++ and Ada

Use the Metrics Viewer to view static testability measurements of the source files of your project. Source code

metrics are created each time a source file is added to the project.

To compute static metrics without executing the application:

1. In the Project Browser, select a node.

2. From the Build menu, select Options or click the Build Options button in the toolbar.

3. Clear all build options. Select only Source compilation and Static metrics.

4. Click the Build toolbar button.

To open the Metrics Viewer:

1. Right-click a node in the Asset Browser of the Project Explorer.

2. From the pop-up menu, select View Metrics.

To manually open a report file:

253

HCL® OneTest™ Embedded

254

1. From the File menu, select Open... or click the Open icon in the main toolbar.

2. In the Type box of the File Selector, select the .met Metrics File file type.

3. Locate and select the metrics files that you want to open.

4. Click OK.

Report Explorer

The Report Explorer displays the scope of the selected nodes, or selected .met metrics files. Select a node to switch

the Metrics Window scope to that of the selected node.

Metrics Window

Depending on the language of the analyzed source code, different pages are available:

• Root Page - File View: contains generic data for the entire scope

• Root Page - Object View: contains object related generic data for C++ only

• Component View: displays detailed component-related metrics for each file, class, method, function, unit,

procedure, etc...

The metrics window offer hyperlinks to the actual source code. Click the name of a source component to open the

Text Editor on page 725 at the corresponding line.

Related Topics

Root Level File View on page 255 | Root Level Object View on page 257 | Static Metrics on page 254 | Exporting

reports on page 737

Static metrics

Static Metrics for C, C++ and Ada

The Source Code Parsers provide static metrics for the analyzed C and C++ source code.

File Level Metrics

The scope of the metrics report depends on the selection made in the Report Explorer on page 1059 window. This

can be a file, one or several classes or any other set of source code components.

• Comment only lines: the number of comment lines that do not contain any source code

• Comments: the total number of comment lines

• Empty lines: the number of lines with no content

• Source only lines: the number of lines of code that do not contain any comments

• Source and comment lines: the number of lines containing both source code and comments

Chapter 5. Test Execution Specialist Guide

• Lines: the number of lines in the source file

• Comment rate: percentage of comment lines against the total number of lines

• Source lines: total number of lines of source code

File, Class or Package, and Root Level Metrics

These numbers are the sum of metrics measured for all the components of a given file, class or package.

• Total statements: total number of statement in child nodes

• Maximum statements: the maximum number of statements

• Maximum level: the maximum nesting level

• Maximum V(g): the highest encountered cyclomatic number

• Mean V(g): the average cyclomatic number

• Standard deviation from V(g): deviation from the average V(g)

• Sum of V(g): total V(g) for the scope.

Root level file view

Static Metrics for C, C++, Ada

At the top of the Root page, the Metrics Viewer displays a graph based on Halstead data.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes below the Root node.

Halstead Graph

The following display modes are available for the Halstead graph:

255

HCL® OneTest™ Embedded

256

• VocabularySize

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics on page 258 section for more information.

Metrics Summary

The scope of the metrics report depends on the selection made in the Report Explorer window. This can be a file, one

or several classes or any other set of source code components.

Below the Halstead graph, the Root page displays a metrics summary table, which lists for for the source code

component of the selected scope:

• V(g): provides a complexity estimate of the source code component

• Statements: shows the number of statements within the component

• Nested Levels: shows the highest nesting level reached in the component

• Ext Comp Calls: measures the number of calls to methods defined outside of the component class (C++)

• Ext Var Use: measures the number of uses of attributes defined outside of the component class (C++)

To select the File View:

1. Select File View in the View box of the Report Explorer.

2. Select the Root node in the Report Explorer to open the Root page.

Note With C and Ada source code, File View is the only available view for the Root page.

To change the Halstead Graph on the Root page:

1. From the Metrics menu, select Halstead Graph for Root Page.

2. Select another metric to display.

Related Topics

Root Level Object View on page 257 | Static Metrics on page 254 | Viewing Static Metrics on page 253

Chapter 5. Test Execution Specialist Guide

Object view

Static Metrics for C, C++ and Ada

Root Level Summary

At the top of the Root page, the Metrics Viewer displays a graph based on the sum ofdata.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes below the Root node.

File View is the only available view with C or Ada source code. When viewing metrics for C++, an Object View is also

available.

Two modes are available for the data graph:

• Vocabulary

• Size

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics on page 258 section for more information.

Metrics Summary

Below the Halstead graph, the Root page displays a metrics summary table, which lists for each source code

component:

257

HCL® OneTest™ Embedded

258

• V(g): provides a complexity estimate of the source code component

• Statements: shows the total number of statements within the object

• Nested Levels: shows the highest statement nesting level reached in the object

• Ext Comp Calls: measures the number of calls to components defined outside of the object

• Ext Var Use: measures the number of uses of variables defined outside of the object

Note The result of the metrics for a given object is equal to the sum of the metrics for the methods it contains.

To select the Object View:

1. Select the Root node in the Report Explorer to open the Root page.

2. Select Object View in the View box of the Report Explorer.

To switch the object graph mode:

1. From the Metrics menu, select Object Graph for Root Page.

2. Select ExtVarUse by ExtCompCall or Nested Level by Statement.

Related Topics

Root Level File View on page 255 | Static Metrics on page 254 | Viewing Static Metrics on page 253

Halstead Metrics

Static Metrics for C, C++, Ada

Halstead complexity measurement was developed to measure a program module's complexity directly from source

code, with emphasis on computational complexity. The measures were developed by the late Maurice Halstead as a

means of determining a quantitative measure of complexity directly from the operators and operands in the module.

Halstead provides various indicators of the module's complexity

Halstead metrics allow you to evaluate the testing time of any C/C++ source code. These only make sense at the

source file level and vary with the following parameters:

Parame­

ter

Meaning

n1 Number of distinct operators

n2 Number of distinct operands

Chapter 5. Test Execution Specialist Guide

N1 Number of operator in­

stances

N2 Number of operand instances

When a source file node is selected in the Metrics Viewer, the following results are displayed in the Metrics report:

Metric Meaning Formula

n Vocabulary n 1 + n 2

N Size N 2 + N 2

V Volume N * log2 n

D Difficulty n 1/2 * N 2/n 2

E Effort V * D

B Errors V / 3000

T Testing

time

E / k

In the above formulae, k is the stroud number, which has an arbitrary default value of 18. With experience, you can

adjust the stroud number to adapt the calculation of the estimated testing time (T) to your own testing conditions:

team background, criticity level, and so on.

When the Root node is selected, the Metrics Viewer displays the total testing time for all loaded source files.

Related Topics

Viewing Static Metrics on page 253 | V(g) or Cyclomatic Number on page 259

V(g) or Cyclomatic Number

Static Metrics for C, C++ and Ada

The V(g) or cyclomatic number is a measure of the complexity of a function which is correlated with difficulty in

testing. The standard value is between 1 and 10.

A value of 1 means the code has no branching.

A function's cyclomatic complexity should not exceed 10.

The Metrics Viewer presents V(g) of a function in the Metrics tab when the corresponding tree node is selected.

When the type of the selected node is a source file or a class, the sum of the V(g) of the contained function, the mean,

the maximum and the standard deviation are calculated.

259

HCL® OneTest™ Embedded

260

At the Root level, the same statistical treatment is provided for every function in any source file.

Related Topics

Viewing Static Metrics on page 253 | Halstead Metrics on page 258

Code review

Code review overview

Code Review for C

Automated source code review is a method of analyzing code against a set of predefined rules to ensure that the

source adheres to guidelines and standards that are part of any efficient quality control strategy. HCL OneTest™

Embedded provides an automated code review tool, which reports on adherence to guidelines for your C source code.

Among other guidelines, the code review tool implements rules from the MISRA-C:2004 standard, which are

Guidelines for the use of the C language in critical systems.

Code Review supports C89 and C99.

When an application or test node is built, the source code is analyzed by the code review tool. The tool checks the

source file against the predefined rules and produces a .crc report file that can be viewed and controlled from the HCL

OneTest™ Embedded graphical user interface (GUI).

Code review can be performed each time a node is built, but can also be calculated without executing the application.

The default code review report is generated in an HTML format. You can customize the report template that is

available in HCL OneTest™ Embedded.

To learn about See

Code review MISRA 2004 rules on page 114The list of rules used by HCL OneTest™ Embedded

code review Code review MISRA 2012 rules on page 145

Setting up the rules to used for reviewing code Configuring code review rules on page 322

Performing a code review Running a code review on page 326

Running all of the MISRA rules from an application

node

Running complete verification of MISRA rules from an applica­

tion node on page 328

For advanced users, executing the code review from

the CLI

Executing the code review from a script on page 327

Viewing and understanding the results of a code re­

view

Viewing code review results on page 328

Chapter 5. Test Execution Specialist Guide

Customizing the code review report Customizing the code review report on page 176

Customizing the code review report Customizing the code review report on page 176

Interpreting code review reports Understanding code review reports on page 329

Locally disabling a rule Code review deviation on page 114

Code review MISRA 2004 rules
The code review tool covers rules from the lists the rules that produced and error or a warning. Each rule can be

individually disabled or assigned a Warning or Error severity by using the Rule configuration window. Some rules also

have parameters that can be changed. Among other guidelines, the code review tool implements most rules from the

MISRA-C:2004 standard, "Guidelines for the use of the C language in critical systems". These rules are referenced

with an M prefix. In addition to the industry standard rules, HCL OneTest™ Embedded provides some additional coding

guidelines, which are referenced with an E prefix.

Code Review for C - MISRA 2004 rules

Table 6. MISRA 2004 rules

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Code compli­

ance

M1.1 Rule 1.1 ANSI C error: <error> All code shall conform to ISO 9899:1990

Required

M1.1w Rule 1.1 ANSI C warning: <warning>
Required

Language exten­

sions
Required

M2.2 Rule 2.2 Source code shall only use /* ...

*/ style comments

Source code shall only use /* ... */ style

comments

Required

M2.3 Rule 2.3 The character sequence /* shall

not be used within a comment

The character sequence /* shall not be

used within a comment

Required

261

HCL® OneTest™ Embedded

262

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E2.3.1 The character sequence // should not be

used within a 'C-style' comment

Advisory

E2.3.2 Line-splicing shall not be used in // com­

ments

Advisory

E2.6 A function should not contain unused label

declarations

Advisory

E2.7 There should be no unused para­

meters in functions

Advisory

E2.8 Macro %name% is never used
Advisory

E2.9 Type %name% is never used
Advisory

E2.10 Tag %name% is never used
Advisory

E2.50 Functions should have less than

'100' lines. Note The number of

lines can be specified.

Advisory

E2.51 Functions should have less than

'15' V(g) complexity. Note: The

complexity limit of lines can be

specified.

Advisory

E2.52 Functions should have less than

'%param%' lines, outside empty

lines (current value: %name%).

E2.53 Functions should have less than

'%param%' lines, outside empty

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

lines or comment lines (current

value : %name%).

E2.54 Functions should have less than

'%param%' lines, outside empty

lines, comment lines or bracket

lines (current value : %name%).

Lines are not counted in the following cas­

es:

• If they contain spaces (including \t,

\r, \n),

• If they contain only brackets (there

might be several brackets on same

line),

• If they contain comments only, or

if they contain brackets and com­

ments only.

E2.55 Compilation units should define

have less than '%param%' func­

tions (current value : %name%).

Optional

Compilation unit max number of functions.

Default parameter value: 10.

E2.56
Compilation units should have

less than '%param%' functions

(current value: %name%).

Optional

Compilation unit max number of variables.

Default parameter value: 10.

E2.57 Compilation unit should have

less than '%param%' lines (cur­

rent value: %name%).

Optional

Compilation unit max number of lines.

Default parameter value : 200.

E2.58 Compilation unit should have

less than '%param%' lines, not

counting empty lines (current val­

ue : %name%).

Optional

Compilation unit max number of lines.

Default parameter value : 200.

263

HCL® OneTest™ Embedded

264

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E2.59 Compilation unit should have

less than '%param%' lines, not

counting empty lines or com­

ments (current value: %name%).

Optional

Compilation unit max number of lines.

Empty lines or comments (current value:

%name%) are not counted.

Default parameter value : 200.

E2.60 Compilation units should have

less than '%param%' lines, not

counting empty lines, com­

ments or brackets (current value:

%name%) are not counted.

Optional

Compilation unit max number of lines.

Empty lines, comments or brackets (current

value : %name%) are not counted.

Default parameter value : 200.

E2.61 Functions should have less than

'%param%' parameters (current

value: %name%).

Documentation

M3.4 Rule 3.4 All uses of the ﷓pragma direc­

tive shall be documented and ex­

plained.

Required

Character sets

M4.1.1 Rule 4.1 Only escape sequences that are

defined in the ISO C standard

shall be used

Only escape sequences that are defined in

the ISO C standard shall be used

Required

M4.1.2 Rule 4.1 Only ISO C escape sequences are

allowed(\v)

Only ISO C escape sequences are al­

lowed(\v)

Required

M4.2 Rule 4.2 Trigraphs shall not be used Trigraphs shall not be used

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

Identifiers

M5.1 Rule 5.1 Identifiers %name% and %name

% are identical in the first <value>

characters. The number of char­

acters can be specified.

Identifiers (internal and external) shall not

rely on the significance of more than 31

characters

Required

E5.1.1 Identifiers %name% and %name%

are ambiguous because of pos­

sible character confusion. Note

that you can change parameters

for ambiguous characters.

Advisory

E5.1.2 Possible typing mistakes be­

tween the variables %name% or

%name% because of repeating

character.

Advisory

E5.1.3 Identifiers %name% and %name%

are identical in the first %param%

characters ignoring case

Advisory

E5.1.4 Macros %name% and %name%

are identical in the first %param%

characters

Advisory

E5.1.5 Macro %name% and identifier

%name% are identical in the first

%param% characters

Advisory

E5.1.6 Macros %name% and %name%

are identical in the first %param%

characters ignoring case

Advisory

E5.1.7 Macro %name% and identifier

%name% are identical in the first

%param% characters ignoring

case

Advisory

265

HCL® OneTest™ Embedded

266

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M5.2 Rule 5.2 Identifier %name% in an inner

scope hides the same identifier

in an outer scope : %location%

Identifiers in an inner scope shall not use

the same name as an identifier in an outer

scope, and therefore hide that identifier

Required

E5.3 The tag name %name% should

not be reused. Name already

found in %location%

Advisory

M5.3.1 Rule 5.3 The typedef name %name% should not be

reused except for its tag. Name already

found in %location%

Required

M5.3.2 Rule 5.3 The typedef name '%name%' should not be

reused even for its tag. Name already found

in %location%

Required

M5.4 Rule 5.4 A struct and union cannot use

the same tag name

A tag name shall be a unique identifier

Required

M5.5 Rule 5.5 The static object or function

%name% should not be reused.

Static object or function already

found in %location%.

No object or function identifier with static

storage duration should be reused

Advisory

M5.6 Rule 5.6
Avoid using the same identifier

%name% in two different name

spaces. Identifier already found

in %location%

No identifier in one name space should

have the same spelling as an identifier in

another name space, with the exception of

structure and union member names

Advisory

M5.7 Rule 5.7 The identifier %name% should

not be reused. Identifier already

found in %location%.

Advisory

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Types

M6.1.1 Rule 6.1 The C language plain char type

should only be used for character

values.

The C language plain char type should only

be used for character values.

Required

M6.1.2 Rule 6.1 Case char value is applicable on­

ly if the switch statement value is

plain character variable

Required

M6.1.3 Rule 6.1 Avoid using comparison opera­

tors on plain char.

Required

M6.2 Rule 6.2 The C language signed char or

unsigned char types should only

be used for numeric values.

The C language signed char or unsigned

char types should only be used for numeric

values.

Required

M6.3 Rule 6.3 The C language numeric type

%name% should not be used di­

rectly but instead used to define

typedef.

typedefs that indicate size and signedness

should be used in place of the basic types

Advisory

E6.3 The implicit 'int' type should not

be used.

Required

M6.4.1 Rule 6.4 Bit fields should only be of type

'unsigned int' or 'signed int'.

Required

M6.4.2 Rule 6.4 Bit fields should not be of type

'enum'

Required

M6.4.3 Rule 6.4 Bit fields should only be of explic­

itly signed or unsigned type

Required

M6.4.4 Rule 6.4 Bit fields should not be of type

'bool' under c99

Required

M6.4.5 Rule 6.4 Bit fields should not be of type

'boolean' outside c99

Required

267

HCL® OneTest™ Embedded

268

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M6.5 Rule 6.5 Bit fields of type 'signed int' must

be at least 2 bits long.

Required

Constants

M7.1 Rule 7.1 Octal constants and escape se­

quences should not be used.

Octal constants (other than zero) and octal

escape sequences shall not be used

Required

E7.1 Octal and hexadecimal escape

sequences shall be terminated
Required

E7.2 The lowercase character 'l' shall

not be used in a literal suffix
Required

E7.3 A string literal shall not be as­

signed to an object unless the

object's type is pointer to a con­

st-qualified char

Required

Declarations

and definitions

M8.1.1 Rule 8.1 A prototype for the function

%name% should be declared be­

fore defining the function.

Functions shall have prototype declarations

and the prototype shall be visible at both

the function definition and call

Required

E8.1.1 A prototype for the global object

%name% should be declared be­

fore defining the object

Required

M8.1.2 Rule 8.1 A prototype for the function

%name% should be declared be­

fore calling the function.

Functions shall have prototype declarations

and the prototype shall be visible at both

the function definition and call

Required

M8.1.3 Rule 8.1 A prototype for the function

%name% should be declared be­

fore calling the function

Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M8.2.1 Rule 8.2 The type of %name% should be

explicitly stated.

Whenever an object or function is declared

or defined, its type shall be explicitly stated

Required

M8.2.2 Rule 8.2 The type of parameter %name%

should be explicitly stated
Required

M8.3 Rule 8.3 Parameters and return types

should use the same type names

in the declaration and in the defi­

nition, even if basic types are the

same.

For each function parameter the type giv­

en in the declaration and definition shall be

identical, and the return types shall also be

identical

Required

E8.3 Parameters and return types

should use compatible type in

the declaration and in the defini­

tion

Required

M8.4 Rule 8.4 If objects or functions are de­

clared multiple times their types

should be compatible.

Required

M8.5.1 Rule 8.5 The body of function %name%

should not be located in a header

file.

Required

E.8.50 Use the const qualification for

variable %name% which is point­

er and which is not used to

change the pointed object

Required

E.8.51 The object %name% is never ref­

erenced

Required

M8.5.2 Rule 8.5 The memory storage (definition)

for the variable %name% should

not be in a header file.

Objects shall be defined at block scope if

they are only accessed from within a single

function.

Required

269

HCL® OneTest™ Embedded

270

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M8.6 Rule 8.6 Functions should not be declared

at block scope.
Required

M8.7 Rule 8.7 Global objects should not be de­

clared if they are only used from

within a single function.

Objects shall be defined at block scope if

they are only accessed from within a single

function

Required

M8.8.2 Rule 8.8 Static function %name% should

only be declared in a single file.

Redundant declaration found at:

%location%

Required

M8.8.3 Rule 8.8 Static object %name% should on­

ly be declared in a single file. Re­

dundant declaration found at:

%location%

Required

M8.8.4 Rule 8.8 Identifiers %name% that declare

objects or functions with external

linkage shall be declared once in

one and only one file

Required

M8.8.5 Rule 8.8 Identifiers %name% that declare

objects or functions with external

linkage shall be unique

Required

M8.9.1 Rule 8.9 The global object or function

%name% should have exactly one

external definition. Redundant

definition found in %location%

An identifier with external linkage shall

have exactly one external definition

M8.9.2 Rule 8.9 The global object or function

%name% should have exactly one

external definition. No definition

found.

Required

M8.10.1 Rule 8.10 Global object %name% that are

only used within the same file

should be declared using the sta­

tic storage-class specifier.

All declarations and definitions of objects

or functions at file scope shall have internal

linkage unless external linkage is required.

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

M8.10.2 Rule 8.10 Global function %name% that are

only used within the same file

should be declared using the sta­

tic storage-class specifier.

All declarations and definitions of objects

or functions at file scope shall have internal

linkage unless external linkage is required

Required

M8.11 Rule 8.11 Global objects or functions that

are only used within the same file

should be declared with using

the static storage-class specifier.

The static storage class specifier shall be

used in definitions and declarations of ob­

jects and functions that have internal link­

age

Required

M8.12 Rule 8.12 When a global array variable can

be used from multiple files, its

size should be defined at initial­

ization time.

Required

E.8.14 Inline function %name% should

be static

Required

Initialization The restrict type qualifier shall

not be used

Required

M9.1 Rule 9.1 Variables with automatic storage

duration should be initialized be­

fore being used.

Required

M9.2 Rule 9.2 Nested braces should be used to

initialize nested multi-dimension

arrays and nested structures.

Required

E9.2 Arrays shall not be partially ini­

tialized

Required

M9.3 Rule 9.3 Either all members or only the

first member of an enumerator

list should be initialized.

In an enumerator list, the “=" construct shall

not be used to explicitly initialize members

other than the first, unless all items are ex­

plicitly initialized

271

HCL® OneTest™ Embedded

272

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

M9.3 Rule 9.3 Either all members or only the

first member of an enumerator

list should be initialized

Required

E9.3 Rule E9.3 Enumeration member %name%

have a not unique implicitly spec­

ified value

Required

E9.4 The global variable %name% is

not initialized

Required

Arithmetic type

conversions

E10.1 Constraint violation : can't use

floating type as operand of '[], %,

<<, >>, ~, &, |, ^'

Required

M10.1.1 Rule 10.1 Implicit conversion of a complex

integer expression to a smaller

sized integer is not allowed.

The value of an expression of integer type

shall not be implicitly converted to a differ­

ent underlying type if:

• a) it is not a conversion to a wider

integer type of the same signed­

ness, or

• b) the expression is complex, or

• c) the expression is not constant

and is a function argument, or

• d) the expression is not constant

and is a return expression.

Required

M10.1.2 Rule 10.1 Implicit conversion of an integer

expression to a different signed­

ness is not allowed.

Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M10.2 Rule 10.2 Conversion of a complex floating

expression is not allowed. Only

constant expressions can be im­

plicitly converted and only to a

wider floating type of the same

signedness.

The value of an expression of floating type

shall not be implicitly converted to a differ­

ent type if:

• a) it is not a conversion to a wider

floating type, or

• b) the expression is complex, or

• c) the expression is a function argu­

ment, or

• d) the expression is a return expres­

sion.

Required

E10.2 Operand should be boolean. Required

M10.3 Rule 10.3 Type cast of complex integer

expressions is only allowed in­

to a narrower type of the same

signedness.

The value of a complex expression of inte­

ger type may only be cast to a type that is

narrower and of the same signedness as

the underlying type of the expression

Required

E10.3 Can't use a boolean as a numeric

value

Required

M10.4 Rule 10.4 Type cast of complex floating

expressions is only allowed in­

to a narrower type of the same

signedness.

The value of a complex expression of float­

ing type may only be cast to a narrower

floating type

Required

E10.4 Can't use a char as a numeric val­

ue

Required

M10.5 Rule 10.5 When using operator '~' or '<<' on

'unsigned char' or 'unsigned int',

you should always cast returned

value

Required

273

HCL® OneTest™ Embedded

274

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E10.5 Rule E10.5 Can't use a not anonymous enum

as a numeric value

Required

M10.6 Rule 10.6 Definitions of unsigned type con­

stants should use the 'U' suffix.

A “U" suffix shall be applied to all constants

of unsigned type

Required

E10.6 Shift and bitwise operations

should be performed on un­

signed value

Required

E10.7 Right hand operand of shift oper­

ation should be an unsigned val­

ue

Required

E10.8 Unary minus operation should

not be performed on unsigned

value

Required

E10.9 Expressions of essentially char­

acter type shall not be used inap­

propriately in addition and sub­

traction operations

Required

E10.10 The value of an expression shall

not be assigned to an object with

a narrower essential type

Required

E10.11 The value of an expression shall

not be assigned to an object with

a different essential type catego­

ry

Required

E10.12 Both operands of an operator in

which the usual arithmetic con­

versions are performed shall

have the same essential type cat­

egory

Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E10.13 The value of an expression

should not be cast to an inappro­

priate essential type

Required

E10.14 The value of a composite expres­

sion shall not be assigned to an

object with wider essential type

Required

E10.15 If a composite expression is

used as one operand of an opera­

tion in which the usual arithmetic

conversions are performed then

the other operand shall not have

wider essential type

Required

E10.16 The value of a composite expres­

sion shall not be cast to a differ­

ent essential type category or a

wider essential type

Required

Pointer type

conversions

M11.1 Rule 11.1 A function pointer should not

be converted to another type of

pointer.

Conversions shall not be performed be­

tween a pointer to a function and any type

other than an integral type

Required

E11.1 Conversions shall not be per­

formed between a pointer to an

incomplete type and any other

type

Required

M11.2 Rule 11.2 An object pointer should not be

converted to another type of

pointer.

Conversions shall not be performed be­

tween a pointer to object and any type oth­

er than an integral type, another pointer to

object type or a pointer to void

Required

275

HCL® OneTest™ Embedded

276

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E11.2 A conversion should not be per­

formed from pointer to void into

pointer to object

Required

M11.3 Rule 11.3 Casting a pointer type to an inte­

ger type should not occur.

A cast should not be performed between a

pointer type and an integral type

Advisory

E11.3 E11.3 A cast shall not be performed

between pointer to void and an

arithmetic type

Required

E11.4 A cast shall not be performed

between pointer to object and a

non-integer arithmetic type

Required

M11.4.1 Rule 11.4 Casting an object pointer type

to a different object pointer type

should not occur.

A cast should not be performed between a

pointer to object type and a different point­

er to object type

Advisory

M11.4.2 Rule 11.4 Casting an object pointer type

to a different object pointer type

should not occur, especially

when object sizes are not the

same.

Advisory

M11.5 Rule 11.5 Casting of pointers to a type that

removes any const or volatile

qualification on the pointed ob­

ject should not occur.

A cast shall not be performed that removes

any const or volatile qualification from the

type addressed by a pointer.

Required

Expressions

M12.1 Rule 12.1 Implicit operator precedence

may cause ambiguity. Use paren­

thesis to clarify this expression.

Limited dependence should be placed on

C’s operator precedence rules in expres­

sions

Advisory

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E12.11 Implicit bitwise operator prece­

dence may cause ambiguity. Use

parenthesis to clarify this expres­

sion.

Advisory

M12.3 Rule 12.3 The sizeof operator should not

be used on expressions that con­

tain side effects.

Required

M12.4.1 Rule 12.4 An expression that contains a

side effect should not be used in

the right-hand operand of a logi­

cal && or || operator.

M12.4.2 Rule 12.4 The function in the right-hand

operand of a logical && or || oper­

ator might cause side effects.

The right-hand operand of a logical && or ||

operator shall not contain side effects

Required

M12.5 Rule 12.5 Parenthesis should be used

around expressions that are

operands of a logical && or ||.

Required

E12.51 Ternary expression ?: should not

be used.

Advisory

E12.54 Expressions should not cause a

side effect assignment.

Advisory

M12.6 Rule 12.6 Only Boolean operands should be

used with logical operators (&&,

|| and !).

The operands of logical operators (&&, ||

and !) should be effectively Boolean. Ex­

pressions that are effectively Boolean

should not be used as operands to opera­

tors other than (&&, || and !)

Advisory

E12.61 The operator on a Boolean ex­

pression should be a logical op­

erator (&&, || or !).

Advisory

M12.7 Rule 12.7 Bitwise operators should only

use unsigned operands.

Bitwise operators shall not be applied to

operands whose underlying type is signed

277

HCL® OneTest™ Embedded

278

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

M12.8 Rule 12.8 The right-hand operand of a shift

operator should not be too big or

negative.

The right-hand operand of a shift operator

shall lie between zero and one less than the

width in bits of the underlying type of the

left-hand operand

Required

M12.9 Rule 12.9 Only use unary minus operators

with signed expressions.

The unary minus operator shall not be ap­

plied to an expression whose underlying

type is unsigned

Required

M12.10 Rule 12.10 Do not use the comma operator Required

M12.12 Rule12.12
Advisory

Parenthesis should be used around expres­

sion that is operand of 'sizeof' operator.

M12.13 Rule 12.13 The increment (++) or the decre­

ment (--) operators should not be

used with other operators in an

expression.

Advisory

Control state­

ment expres­

sions

E13.1 The result of an assignment op­

erator should not be used in an

expression

Required

M13.1.1 Rule 13.1 Boolean expressions should not

contain assignment operators.

Assignment operators shall not be used in

expressions that yield a Boolean value

Required

M13.1.2 Rule 13.1 Boolean expressions should not

contain side effect operators.

Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M 13.2 Rule 13.2 Non-Boolean values that are test­

ed against zero should have an

explicit test

Tests of a value against zero should be

made explicit, unless the operand is effec­

tively Boolean

Advisory

M13.3 Rule 13.3 The equal or not equal opera­

tor should not be used in float­

ing-point expressions.

Floating-point expressions shall not be test­

ed for equality or inequality

Required

M13.4 Rule 13.4 Floating-point variables should

not be used to control a for state­

ment.

Required

M13.5.1 Rule 13.5 Only loop counter should be ini­

tialized in a loop initialization

part.

The three expressions of a statement shall

be concerned with loop control only.

Required

M13.5.2 Rule 13.5
In the 'update part' of a 'for state­

ment', only 'loop counter' should

be updated

Required

M13.5.3 Rule 13.5 There should be one and only

one loop counter for loop state­

ment.

Required

M13.6 Rule 13.6 Loop counter of a 'for statement'

should not be modified within the

body of the loop.

Required

M13.7 Rule 13.7 Invariant Boolean expressions

should not be used.

Boolean operations whose results are in­

variant shall not be permitted

Required

Control flow

M14.1 Rule 14.1 Unreachable code. Required

279

HCL® OneTest™ Embedded

280

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M14.2 Rule 14.2 A non-null statement should ei­

ther have a side effect or change

the control flow.

Required

M14.3 Rule 14.3 A null statement in original

source code should be on a sep­

arate line and the semicolon

should be followed by at least

one white space and then a com­

ment.

Before preprocessing, a null statement

shall only occur on a line by itself; it may be

followed by a comment provided that the

first character following the null statement

is a white-space character

Required

M14.4 Rule 14.4 Do not use the goto statement. Required

E14.4.1 The goto statement shall jump to

a label declared later in the same

function

Required

E14.4.2 Any label referenced by a goto

statement shall be declared in

the same block, or in any block

enclosing the goto statement

Required

E14.4.3 There should be no more than

one break or goto statement

used to terminate any iteration

statement

Required

M14.5 Rule 14.5 Do not use the continue state­

ment.

Required

M14.6 Rule 14.6 Only one break statement should

be used within a loop.

For any iteration statement there shall be

at most one break statement used for loop

termination

Required

M14.7.1 Rule 14.7 Only one exit point should be de­

fined in a function.

A function shall have a single point of exit

at the end of the function

Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M14.7.2 Rule 14.7 The return keyword should not be

used in a conditional block.

Required

M14.8.1 Rule 14.8 The switch statement should be

followed by a compound state­

ment {}.

M14.8.2 Rule 14.8 The while statement should be

followed by a compound state­

ment {}.

M14.8.3 Rule 14.8 The do..while statement should

contain a compound statement

{}.

M14.8.4 Rule 14.8 The for statement should be fol­

lowed by a compound statement

{}.

The statement forming the body of a

switch, while, do ... while or for statement

shall be a compound statement

Required

M14.9.1 Rule 14.9 The if (expression) construct

should be followed by a com­

pound statement {}.

M14.9.2 Rule 14.9 The else keyword should be fol­

lowed by either a compound

statement or another if state­

ment.

M14.9.3 Rule 14.9 The else keyword should be fol­

lowed by a compound statement

An if (expression) construct shall be fol­

lowed by a compound statement. The else

keyword shall be followed by either a com­

pound statement, or another if statement

Required

M14.10 Rule 14.10 All if ... else if sequences should

have an else block.

All if ... else if constructs shall be terminat­

ed with an else clause

Required

Switch state­

ments

M15.0 Rule 15.0 A switch block should start with

a case.

The MISRA C switch syntax shall be used

Required

281

HCL® OneTest™ Embedded

282

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M15.1 Rule 15.1 A case or default statements

should only be used directly

within the compound block of a

switch statement.

A switch label shall only be used when the

most closely-enclosing compound state­

ment is the body of a switch statement

Required

E15.10 The switch expression should

not have side effects.

Required

M15.2 Rule 15.2 The break statement should only

be used to terminate every non-

empty switch block.

An unconditional break statement shall ter­

minate every non-empty switch clause

Required

M15.3.1 Rule 15.3 The switch statement should

have a default clause.

Required

M15.3.2 Rule 15.3 The default clause should be the

last clause of the switch state­

ment.

M15.4.1 Rule 15.4 A Boolean should not be used as

a switch expression.

A switch expression shall not represent a

value that is effectively Boolean

Required

M15.4.2 Rule 15.4 A constant should not be used as

a switch expression.

Required

M15.5 Rule 15.5 At least one case should be de­

fined in the switch.

Every switch statement shall have at least

one case clause

Required

Functions

M16.1 Rule 16.1 The function %name% should not

have a variable number of argu­

ments.

Functions shall not be defined with a vari­

able number of arguments

Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Rule M16.1.2 Rule 16.1 The library functions 'va_list, va_­

arg, va_start, va_end, va_copy'

should not be used

Required

M16.2.1 Rule 16.2 Recursive functions are not al­

lowed. The function %name% is

directly recursive.

M16.2.2 Rule 16.2 Recursive functions are not al­

lowed. The function %name% is

recursive when calling %name% .

Functions shall not call themselves, either

directly or indirectly Functions shall not call

themselves, either directly or indirectly

Required

M16.3 Rule 16.3 The function prototype should

name all its parameters.

Identifiers shall be given for all of the para­

meters in a function prototype declaration

Required

M16.4 Rule 16.4 The identifiers used in the proto­

type and definition should be the

same.

Required

M16.5 Rule 16.5 Functions with no parameters

should use the void type.

Required

E16.50 The function %name% is never

referenced.

Required

M16.6 Rule 16.6 The number of arguments used

in the call does not match the

number declared in the proto­

type.

Required

M16.7 Rule 16.7 Use the const qualification for

parameter %name% which is

pointer and which is not used to

change the pointed object.

A pointer parameter in a function prototype

should be declared as pointer to const if

the pointer is not used to modify the ad­

dressed object

Required

M16.8 Rule 16.8 The return should always be de­

fined with an expression for non-

void functions.

All exit paths from a function with non-

void return type shall have an explicit return

statement with an expression

283

HCL® OneTest™ Embedded

284

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Required

M16.9 Rule 16.9 Function identifiers should al­

ways use a parenthesis or a pre­

ceding &.

A function identifier shall only be used with

either a preceding &, or with a parenthe­

sized parameter list, which may be empty

Required

M16.10 Rule 16.10 When a function returns a value,

this value should be used.

If a function returns error information, then

that error information shall be tested

Required

Pointers and ar­

rays

M17.4 Rule 17.4 Pointer arithmetic except array

indexing should not be used.

Array indexing shall be the only allowed

form of pointer arithmetic

Required

M17.5 Rule 17.5 A declaration should not use

more than two levels of pointer

indirection.

Advisory

Structures and

unions

M18.1 Rule 18.1 Structure or union types should

be finalized before the end of the

compilation units.

Required

E18.1 Flexible arrays members shall

not be declared

Required

18.2 Variable-length array types shall

not be used

Required

E18.3 The declaration of an array para­

meter shall not contain the static

keyword between the []

Required

M18.4 Rule 18.4 Do not use unions. Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

Preprocessing

directives

M19.1 Rule 19.1 Only preprocessor directives or

comments may occur before the

﷓include statements.

﷓include statements in a file should only be

preceded by other preprocessor directives

or comments

Advisory

M19.2 Rule 19.2 Do not use non-standard charac­

ters in included file names.

Advisory

M19.3 Rule 19.3 Filenames with the ﷓include di­

rective should always use the

<filename> or "filename" syntax.

Required

M19.4 Rule 19.4 A C macro should only be ex­

panded to a constant, a braced

initializer, a parenthesised ex­

pression, a storage class key­

word, a type qualifier, or a do-

while-zero block.

Required

M19.5 Rule 19.5 Macro definitions or ﷓undef

should not be located within a

block.

Required

M19.6 Rule 19.6 Do not use the ﷓undef directive. Required

M19.7 Rule 19.7 Function should be used instead

of macros when possible.

Advisory

M19.8 Rule 19.8 Missing argument when calling

the macro.

A function-like macro shall not be invoked

without all of its arguments.

Required

M19.9 Rule 19.9 The preprocessing directive

%name% should not be used as

argument to the macro.

Arguments to a function-like macro shall

not contain tokens that look like prepro­

cessing directives

Required

285

HCL® OneTest™ Embedded

286

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M19.10 Rule 19.10 The parameter %name% in the

macro should be enclosed in

parentheses except when it is

used as the operand of ﷓ or ﷓﷓.

In the definition of a function-like macro

each instance of a parameter shall be en­

closed in parentheses unless it is used as

the operand of ﷓ or ﷓﷓

Required

M19.11 Rule 19.11 Undefined macro identifier in the

preprocessor directive.

All macro identifiers in preprocessor direc­

tives shall be defined before use, except in

﷓ifdef and ﷓ifndef preprocessor directives

and the defined() operator

Required

M19.12 Rule 19.12 The ﷓ or ﷓﷓ preprocessor opera­

tor should not be used more than

once.

There shall be at most one occurrence of

the ﷓ or ﷓ preprocessor operators in a sin­

gle macro definition

Required

M19.13 Rule 19.13 The ﷓ and ﷓﷓ preprocessor oper­

ator should be avoided.

Advisory

M19.14 Rule 19.14 Only use the 'defined' preproces­

sor operator with a single identifi­

er.

The defined preprocessor operator shall

only be used in one of the two standard

forms

Required

M19.15 Rule 19.15 Header file contents should be

protected against multiple inclu­

sions

Precautions shall be taken in order to pre­

vent the contents of a header file being in­

cluded twice

Required

M19.16 Rule 19.16 Possible bad syntax in prepro­

cessing directive.

Preprocessing directives shall be syntac­

tically meaningful even when excluded by

the preprocessor

Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

M19.17 Rule 19.17 A ﷓if, ﷓ifdef, ﷓else, ﷓elif or ﷓endif

preprocessor directive has been

found without its matching direc­

tive in the same file.

All ﷓else, ﷓elif and ﷓endif preprocessor di­

rectives shall reside in the same file as the

﷓if or ﷓ifdef directive to which they are re­

lated

Required

E19.18 The controlling expression of a

﷓if or ﷓elif preprocessing direc­

tive shall evaluate to 0 or 1

Required

E19.19 A macro parameter immediately

following a ﷓ operator shall not

immediately be followed by a ﷓﷓

operator

Required

E19.20 Macro parameter %name% used

as an operand to the ﷓ and ﷓﷓

operators shall not be used else­

where in this macro

Required

Standard li­

braries

M20.1 Rule 20.1 %name% should not be defined,

redefined or undefined.

Reserved identifiers, macros and functions

in the standard library, shall not be defined,

redefined or undefined

Required

E20.1 A macro shall not be defined with

the same name as a keyword:

%name%

Required

M20.2.1 ﷓define and ﷓undef shall not be

used on a reserved identifier or

reserved macro name: Identifier

%name% already found in %name

%

Required

M20.2.2 Rule 20.2 ﷓define and ﷓undef shall not be

used on identifier beginning with

Required

287

HCL® OneTest™ Embedded

288

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

an underscore or on 'defined' key­

word: %name%

M20.2.3 Rule 20.2 Declared identifier should not be

a reserved identifier or reserved

macro name: Identifier %name%

already found in %name%

Required

M20.2.4 Rule 20.2 Declared identifier should not be­

gin with an underscore or be 'de­

fined' keyword: %name%

Required

M20.4 Rule 20.4
Dynamic heap memory allocation

shall not be used.

This precludes the use of the functions cal­

loc, malloc, realloc free and strdup. There

is a whole range of unspecified, undefined

and implementation-defined behaviour as­

sociated with dynamic memory allocation,

as well as a number of other potential pit­

falls. Dynamic heap memory allocation may

lead to memory leaks, data inconsistency,

memory exhaustion, non-deterministic.

Note that some implementations may use

dynamic heap memory allocation to imple­

ment other functions (for example func­

tions in the library string.h). If this is the

case then these functions shall also be

avoided.

Required

M20.5 Rule 20.5
The error indicator errno shall not

be used.

errno is a facility of C, which in theory

should be useful, but which in practice is

poorly defined by the standard. A non zero

value may or may not indicate that a prob­

lem has occurred; as a result it shall not be

used. Even for those functions for which

the behaviour of errno is well defined, it is

preferable to check the values of inputs be­

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

fore calling the function rather than rely on

using errno to trap errors (see Rule 16.10).

Required

M20.6 Rule 20.6 The macro offsetof, in library

<stddef.h>, shall not be used.
Use of this macro can lead to undefined be­

haviour when the types of the operands are

incompatible or when bit fields are used.

Required

M20.7 Rule 20.7 The setjmp macro and the

longjmp function shall not be

used.

etjmp and longjmp allow the normal func­

tion call mechanisms to be bypassed, and

shall not be used.

Remark : sigsetjmp and siglongjmp (Gnu Li­

brary) are also detected

Required

E20.7 The standard header file <setjm­

p.h> shall not be used

Required

M20.8 Rule 20.8
The signal handling facilities of

<signal.h> shall not be used.

Signal handling contains implementa­

tion-defined and undefined behavior.

Required

M20.9 Rule 20.9
The input/output library <stdio.h>

shall not be used in production

code.

This includes file and I/O functions fgetpos,

fopen, ftell, gets, perror, remove, rename,

and ungetc.

Streams and file I/O have a large number

of unspecified, undefined and implemen­

tation-defined behaviours associated with

them. It is assumed within this document

that they will not normally be needed in pro­

duction code in embedded systems.

289

HCL® OneTest™ Embedded

290

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

If any of the features of stdio.h need to be

used in production code, then the issues

associated with the feature need to be un­

derstood.

Required

M20.10 Rule 20.10
The library functions atof, atoi

and atol from library <stdlib.h>

shall not be used.

These functions have undefined behavior

associated with them when the string can­

not be converted.

Required

M20.11 Rule 20.11
The library functions abort, exit,

getenv and system from library

<stdlib.h> shall not be used.

These functions will not normally be re­

quired in an embedded system, which does

not normally need to communicate with an

environment

Then, it is essential to check on the imple­

mentation-defined behavior of the function

in the environment.

Required

E20.11 The library macro or function

'bsearch, qsort' should not be

used

Required

M20.12 Rule 20.12
The time handling functions of li­

brary <time.h> shall not be used.

Includes time, strftime. This library is asso­

ciated with clock times. Various aspects

are implementation dependent or unspeci­

fied, such as the format of times. If any of

the facilities of time.h are used, then the ex­

act implementation for the compiler being

used must be determined, and a deviation

being raised.

Required

Chapter 5. Test Execution Specialist Guide

Table 6. MISRA 2004 rules

(continued)

Code review

reference

MISRA-C:

2004 reference
Code review message Description

E20.12 The input/output library

<wchar.h> shall not be used in

production code

Required

E20.13 The standard header file <tg­

math.h> shall not be used

Required

E20.14 The library macro or function

'feclearexcept, fegetexceptflag,

feraiseexcept, fesetexceptflag,

fetestexcept, FE_INEXACT, FE_­

DIVBYZERO, FE_UNDERFLOW,

FE_OVERFLOW, FE_INVALID, FE_­

ALL_EXCEPT' should not be used

Required

Rule U99.1 Warning

Rule U99.2 Error

Rule U99.3 Warning

Rule U99.4 Error

Rule U99.5 Warning

Rule U99.6 Error

Rule U99.7 Warning

Rule U99.8 Error

Rule U99.9 Warning

Rule U99.10 Error

You can customize this rule in the confrule

file

Note: Applies to HCL OneTest™ Embedded Studio only:

The code review references in bold in this table are disabled when they are run from the code review link

checker in test mode. To verify these rules, you must run the code review from the application node in HCL

291

HCL® OneTest™ Embedded

292

OneTest™ Embedded Studio. For more information, see Running complete verification of MISRA rules from an

application node on page 328.

Code review MISRA 2012 rules
The code review tool covers rules from the lists the rules that produced and error or a warning. Each rule can be

individually disabled or assigned a Warning or Error severity by using the Rule configuration window. Some rules also

have parameters that can be changed. Among other guidelines, the code review tool implements most rules from the

MISRA-C:2012 standard, "Guidelines for the use of the C language in critical systems". These rules are referenced

with an M prefix. In addition to the industry standard rules, HCL OneTest™ Embedded provides some additional coding

guidelines, which are referenced with an E prefix.

Code Review - MISRA 2012 rules

D is set for Decidable, U for Undecidable.

Code review

reference
Type D/U Description Level

M1.1 Error D ANSI C error: %name

%

Required

M1.1W Error D ANSI C warning:

%name%

Required

M1.2 Error U Use of ﷓pragma

%name% should al­

ways be encapsulat­

ed and documented

Advisory

E1.1 Error D Function max number

of line

Required

E.1.2 Error D Function max V(g) Required

E1.3 Functions should

have less than

'%param%' lines, out­

side empty lines (cur­

rent value: %name%).

E1.4 Functions should

have less than

'%param%' lines, out­

side empty lines or

comment lines (cur­

rent value : %name%).

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

E1.5 Functions should

have less than

'%param%' lines, out­

side empty lines,

comment lines or

bracket lines (current

value : %name%).

Lines are not counted

in the following cas­

es:

• If they contain

spaces (in­

cluding \t, \r,

\n),

• If they contain

only brackets

(there might

be several

brackets on

same line),

• If they contain

comments on­

ly, or if they

contain brack­

ets and com­

ments only.

E1.6
Optional

Compilation units

should define less

than '%param%' func­

tions (current value:

%name%).

Default parameter

value: 10.

293

HCL® OneTest™ Embedded

294

Code review

reference
Type D/U Description Level

E1.7 Optional

Compilation units

should define less

than '%param%' vari­

ables (current value:

%name%).

Default parameter

value: 10.

E1.8
Optional

Compilation units

should have less than

'%param%' lines (cur­

rent value: %name%).

Default parameter

value : 200.

E1.9
Optional

Compilation unit

should have less

than '%param%' lines,

not counting empty

lines (current value :

%name%).

Empty lines (current

value : %name%) are

not counted.

Default parameter

value : 200.

E1.10
Optional

Compilation unit

should have less than

'%param%' lines not

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

counting empty lines

or comments (current

value : %name%).

Empty lines or com­

ments (current val­

ue : %name%) are not

counted.

Default parameter

value : 200.

E1.11
Optional

Compilation unit

should have less than

'%param%' lines not

counting empty lines,

comments or brack­

ets (current value:

%name%).

Empty lines, com­

ments or brack­

ets (current value :

%name%) are not

counted.

Default parameter

value : 200.

E1.12 Functions should

have less than

'%param%' parame­

ters (current value :

%name%).

M2.1 Error U a project shall not

contain unreachable

code

Required

295

HCL® OneTest™ Embedded

296

Code review

reference
Type D/U Description Level

M2.2.1 Error U A non-null statement

should either have a

side effect or change

the control flow

Required

M2.2.2 Error U The function %name

% is never referenced

Required

M2.2.3 Error D The object %name%

is never referenced

Required

M2.3 Warning D Type %name% is nev­

er used

Advisory

M2.4 Warning D Tag %name% is never

used

Advisory

M2.5 Warning D Macro %name% is

never used

Advisory

M2.6 Warning D A function should not

contain unused label

declarations

Advisory

M2.7 Warning D There should be no

unused parameters in

functions

Advisory

M3.1.1 Error D The character se­

quence /* should not

be used within a com­

ment

Required

M3.1.2 Error D The character se­

quence // should not

be used within a 'C-

style' comment

Required

M3.2 Error D Line-splicing shall not

be used in // com­

ments

Required

E3.1 Error D A null statement in

original source code

should be on a sep­

arate line and the

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

semicolon should be

followed by at least

one white space and

then a comment

M4.1 Error D Octal and hexadec­

imal escape se­

quences shall be ter­

minated

Required

M4.2 Warning D Trigraphs should not

be used

Advisory

E4.1 Error D Only ISO C escape se­

quences are allowed

Advisory

E.4.2 Error D Only ISO C escape

sequences are al­

lowed(\v)

Advisory

M5.1.1 Error D External identifiers

shall be distinct in the

first 31 characters

Required

M5.1.2 Error D External identifiers

shall be distinct in the

first 6 characters ig­

noring case

Required

M5.2 Error D Identifiers %name

% declared in the

same scope and

name space shall

be distinct. Identifier

identical in the first

%param% characters

already found in %lo­

cation%

Required

M5.3 Error D Identifier %name%

declared in an inner

scope shall not hide

an identifier declared

in an outer scope.

Required

297

HCL® OneTest™ Embedded

298

Code review

reference
Type D/U Description Level

Identifier identical

in the first %param

% characters already

found in %location%

M5.4.1 Error D Macros %name% and

%name% are identical

in the first %param%

characters

Required

M5.4.2 Error D Macros %name% and

%name% are identical

in the first %param%

characters ignoring

case.

Required

M5.5.1 Error D Macro %name% and

identifier %name%

are identical in the

first %param% char­

acters.

Required

M5.5.2 Error D Macro %name% and

identifier %name%

are identical in the

first %param% char­

acters ignoring case.

Required

M5.6 Error D Macro %name% and

identifier %name%

are identical in the

first %name% %param

% characters ignor­

ing case. The type­

def name %name%

should not be reused

except for its tag.

Name already found

in %location%

Required

M5.7.1 Error D The tag name %name

% should not be

reused

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M5.7.2 Error D A struct and union

cannot use the same

tag name

Required

M5.8 Error D Identifiers that define

objects or functions

with external linkage

shall be unique

Required

M5.9 Error D Identifiers that define

objects or functions

with internal linkage

should be unique

Advisory

E5.1 Error D External identifiers

shall not be ambigu­

ous because of pos­

sible character confu­

sion.

Advisory

E5.2 Error D External identifiers

shall not be ambigu­

ous because of char­

acter repetition

Advisory

E5.3 Warning D The identifier<name>

should not be reused.

Identifier already

found in %location%

Advisory

E5.4 Error D Identifier %name% in

an inner scope hides

the same identifier in

an outer scope : %lo­

cation%

Advisory

E5.5 Error D The typedef name

%name% should not

be reused even for

its tag. Name already

found in %location%

Advisory

299

HCL® OneTest™ Embedded

300

Code review

reference
Type D/U Description Level

M6.1.1 Error D Bit fields should only

be of type 'unsigned

int' or 'signed int'

Required

M6.1.2 Error D Bit fields should not

be of type 'enum'

Required

M6.1.3 Error D Bit fields should only

be of explicitly signed

or unsigned type

Required

M6.1.4 Error D Bit fields should not

be of type 'bool' under

c99

Required

M6.1.5 Error D Bit fields should not

be of type 'boolean'

outside c99

Required

M6.2 Error D Single-bit fields shall

not be of a signed

type

Required

E6.1 Warning D The C language nu­

meric type %name%

should not be used

directly but instead

used to define type­

def

Required

E6.2 Warning D The implicit 'int' type

should not be used

Required

M7.1 Error D Octal constans shall

not be used

Required

M7.2 Error D A "u" or "U" suffix

shall be applied to all

integer constants that

are represented in an

unsigned type"

Required

M7.3 Error D The lowercase char­

acted l" shall not be

used in a literal suffix"

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M7.4 Error D A string litteral shall

not be assigned to an

object unless the ob­

ject's type is pointer

to a const-qualified

char

Required

M8.1 Error D Types shall be explic­

itly specified

Required

M8.2.1 Error D The function proto­

type should name all

its parameters

Required

M8.2.2 Error D Functions with no pa­

rameters should use

the void type

Required

M8.2.3 Error D The type of parame­

ter %name% should

be explicitly stated

Required

M8.3.1 Error D Parameters and re­

turn types should use

compatible type in

the declaration and in

the definition

Required

M8.3.2 Error D The identifiers used

in the prototype and

definition should be

the same

Required

M8.4.1 Error D A prototype for

the global function

%name% should be

declared before defin­

ing the function

Required

M8.4.2 Error D A prototype for the

global object %name

% should be declared

before defining the

object

Required

301

HCL® OneTest™ Embedded

302

Code review

reference
Type D/U Description Level

M8.4.3 Error D If objects or functions

are declared multi­

ple times their types

should be compatible

Required

M8.5 Error D Identifiers %name%

that declare objects

or functions with ex­

ternal linkage shall be

declared once in one

and only one file

Required

M8.6 Error D Identifiers %name%

that declare objects

or functions with ex­

ternal linkage shall be

unique

Required

M8.7.1 Warning D Global object %name

% that are only used

within the same file

should be declared

using the static stor­

age-class specifier.

Advisory

M8.7.12 Warning D Global function

%name% that are on­

ly used within the

same file should be

declared using the

static storage-class

specifier.

Advisory

M8.8 Error D The static storage

class specifier shall

be used in all declara­

tions of objects and

functions that have

internal linkage

Required

M8.9 Warning D An object should

be defined at block

scope if its identifier

Advisory

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

only appears in a sin­

gle function

M8.10 Error D Inline function

%name% should be

static

Required

M8.11 Warning D When an array with

external linkage is de­

clared, its size should

be explicitly specified

Advisory

M8.14 Error D The restrict type qual­

ifier shall not be used

Required

E.8.1 Error D Parameters and re­

turn types should use

exactly the same type

names in the declara­

tion and in the defini­

tion

Required

E.8.2 Error D A prototype for

the static function

%name% should be

declared before defin­

ing the function

Required

E.8.3 Error D Static function

%name% should only

be declared in a sin­

gle file. Redundant

declaration found at:

%name%

Required

E.8.4 Error D Static object %name

% should only be de­

clared in a single file.

Redundant declara­

tion found at: %loca­

tion%

Required

E.8.5 Error D Either all members or

only the first member

Required

303

HCL® OneTest™ Embedded

304

Code review

reference
Type D/U Description Level

of an enumerator list

should be initialized

E.8.6 Error D The body of function

%name% should not

be located in a header

file

Required

E.8.7 Error D The memory stor­

age (definition) for

the variable %name

% should not be in a

header file

Required

E.8.8 Error D Functions should not

be declared at block

scope

Required

E.8.9 Error D The global object or

function '%name%'

should have exactly

one external defini­

tion. Redundant defi­

nition found in %loca­

tion%

Required

E.8.10 Error D The global object or

function %name%

%name% should have

exactly one external

definition. No defini­

tion found

Required

E.8.11 Error D Use the const quali­

fication for variable

%name% which is

pointer and which is

not used to change

the pointed object

Required

M9.2 Error D The initializer for an

aggregate or union

shall be enclosed in

braces

Required

Exception not cov­

ered

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M9.3 w D Arrays shall not be

partially initialized

Required

Exception not cov­

ered

E9.1 Error D Variables with au­

tomatic storage du­

ration should be ini­

tialized before being

used

Required

E9.2 Error D The global variable

%name% is not initial­

ized

Required

M10.1.1 Error D Constraint violation :

can't use floating type

as operand of "[], %,

<<, >>, ~, &, |,

^"

Required

M10.1.2 Error D Operand should be

boolean

Required

M10.1.3 Error D Can't use a boolean

as a numeric value

Required

M10.1.4 Error D Can't use a char as a

numeric value

Required

M10.1.5 Error D Can't use a not anony­

mous enum as a nu­

meric value

Required

M10.1.6 Error D Shift and bitwise op­

erations should be

performed on un­

signed value

Required

M10.1.7 Error D Right hand operand

of shift operation

should be performed

on unsigned value

Required

M10.1.8 Error D Unary minus oper­

ation should not be

Required

305

HCL® OneTest™ Embedded

306

Code review

reference
Type D/U Description Level

performed on un­

signed value

M10.2 Error D Expressions of essen­

tially character type

shall not be used in­

appropriately in addi­

tion and subtraction

operations

Required

M10.3.1 Error D The value of an ex­

pression shall not be

assigned to an object

with a narrower es­

sential type

Required

M10.3.2 Error D The value of an ex­

pression shall not be

assigned to an object

with a different es­

sential type category

Required

M10.4 Error D Both operands of an

operator in which

the usual arithmetic

conversions are per­

formed shall have the

same essential type

category

Required

M10.5 Warning D The value of an ex­

pression should not

be cast to an inappro­

priate essential type

Advisory

M10.6 Error D The value of a com­

posite expression

shall not be assigned

to an object with

wider essential type

Required

M10.7 Error D If a composite ex­

pression is used as

one operand of an

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

operation in which

the usual arithmetic

conversions are per­

formed then the oth­

er operand shall not

have wider essential

type

M10.8 Error D The value of a com­

posite expression

shall not be cast to

a different essential

type category or a

wider essential type

Required

E10.1 Error D When using operator

'~' or '&lt;&am­

p;lt;' on 'unsigned

char' or 'unsigned int',

you should always

cast returned value

Required

M11.1 Error D A function pointer

should not be con­

verted to another type

of pointer

Required

M11.2 Error Conversions shall

not be performed be­

tween a pointer to an

incomplete type and

any other type

Required

M11.3.1 Error Casting an object

pointer type to a dif­

ferent object pointer

type should not occur

Required

M11.3.2 Error Casting an object

pointer type to a dif­

ferent object pointer

type should not oc­

cur, especially when

Required

307

HCL® OneTest™ Embedded

308

Code review

reference
Type D/U Description Level

object sizes are not

the same

M11.3.3 Error An object pointer

should not be con­

verted to another type

of pointer

Required

M11.4 Warning Casting a pointer type

to an integer type

should not occur

Advisory

M11.5 Warning A conversion should

not be performed

from pointer to void

into pointer to object

Advisory

M11.6 Error A cast shall not be

performed between

pointer to void and

and an arithmetic

type

Required

M11.7 Error A cast shall not be

performed between

pointer to object and

a non-integer arith­

metic type

Required

M11.8 Error Casting of pointers to

a type that removes

any const or volatile

qualification on the

pointed object should

not occur

Required

M12.1.1 warning Implicit operator

precedence may

cause ambiguity. Use

parenthesis to clarify

this expression

Advisory

M12.1.2 warning Implicit bitwise oper­

ator precedence may

Advisory

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

cause ambiguity. Use

parenthesis to clarify

this expression

M12.1.3 warning Parenthesis should

be used around ex­

pressions that are

operands of a logi­

cal &amp;&am­

p;amp; or ||

Advisory

M12.1.4 warning Parenthesis should

be used around

expression that is

operand of 'sizeof' op­

erator.

Advisory

M12.3 warning The comma operator

should not be used.

Advisory

E12.1 warning The operator on a

Boolean expression

should be a logical

operator (&&am­

p;, || or !)

Advisory

E12.2 warning Ternary expression '?:'

should not be used

Advisory

E12.3 error Expressions should

not cause a side ef­

fect assignment

Advisory

E12.4 error The equal or not

equal operator should

not be used in float­

ing-point expressions

Advisory

M13.3 Warning a full expression con­

taining an increment

(++) or decrement

(--) operator should

have no other poten­

tial side effects oth­

Advisory

309

HCL® OneTest™ Embedded

310

Code review

reference
Type D/U Description Level

er than that caused

by the increment or

decrement operator

M13.4.1 Warning Boolean expressions

should not contain

assignment opera­

tors.

Advisory

M13.4.2 Warning The result of an as­

signment operator

should not be used in

an expression

Advisory

M13.6 Error The operand of the

sizeof operator shall

not contain any ex­

pression which has

potential side effects

Required

E13.1 Error Boolean expressions

should not contain

side effect operators

Required

E13.2 Error An expression that

contains a side ef­

fect should not be

used in the right-hand

operand of a logical

&& or || op­

erator

Required

E13.3 Error The function in the

right-hand operand of

a logical && or || oper­

ator might cause side

effects

Required

M14.1.1 Error Floating-point vari­

ables should not be

used to control a for

statement

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M14.2.1 Error Only loop counter

should be initialized

in a for loop initializa­

tion part

Required

M14.2.2 Error In the 'update part' of

a 'for statement', only

'loop counter' should

be updated

Required

M14.2.3 Error There should be one

and only one loop

counter for loop

statement

Required

M14.2.4 Error Loop counter of a 'for

statement' should not

be modified within

the body of the loop

Required

M14.3.1 Error Invariant Boolean ex­

pressions should not

be used

Required

M14.4 Error Non-Boolean val­

ues that are tested

against zero should

have an explicit test

Required

M15.1 Warning The goto statement

should not be used

Advisory

M15.2 Error The goto statement

shall jump to a label

declared later in the

same function

Required

M15.3 Error Any label referenced

by a goto statement

shall be declared in

the same block, or in

any block enclosing

the goto statement

Required

311

HCL® OneTest™ Embedded

312

Code review

reference
Type D/U Description Level

M15.4 Warning There should be no

more than one break

or goto statement

used to terminate any

iteration statement

Advisory

M15.5 Warning A function should

have a single point of

exit at the end

Advisory

M15.6.1 Error The switch statement

should be followed

by a compound state­

ment

Required

M15.6.1 Error The switch statement

should be followed

by a compound state­

ment

Required

M15.6.2 Error The while statement

should be followed

by a compound state­

ment

Required

M15.6.3 Error The do..while state­

ment should contain

a compound state­

ment

Required

M15.6.4 Error The for statement

should be followed

by a compound state­

ment

Required

M15.6.5 Error The if (expression)

construct should be

followed by a com­

pound statement

Required

M15.6.6 Error The else keyword

should be followed

by either a compound

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

statement or another

'if' statement.

M15.7 Error All if ... else con­

structs shall be ter­

minated with an else

statement

Required

E15.1 Error Do not use the contin­

ue statement

Required

E15.2 Error Only one break state­

ment should be used

within a loop

Required

E15.3 Error The return keyword

should not be used in

a conditional block

Required

E15.4 Error The else keyword

should be followed

by a compound state­

ment.

Required

M16.1 Error All switch state­

ment should be well

formed

Required

M16.2 Error A switch label shall

only be used when

the most closely-en­

closing copound

statement is the body

of a switch statement

Required

M16.3 Error An unconditional

break statement

shall terminate every

switch-clause

Required

M16.4 Error Every switch state­

ment shall have a de­

fault label

Required

M16.5 Error A default label appear

as either the first or

Required

313

HCL® OneTest™ Embedded

314

Code review

reference
Type D/U Description Level

the last switch label

of a switch statement

M16.6 Error Every switch state­

ment shall have at

least two switch-

clauses

Required

M16.7 Error A switch expression

shall not have essen­

tially Boolean type

Required

E16.1 Error Case char value is

applicable only if the

switch statement val­

ue is plain character

variable

Required

E16.2 Error A constant should not

be used as a switch

expression

Required

E16.3 Error The switch expres­

sion should not have

side effects

Required

M17.1.1 Error The function '%name

%' should not have a

variable number of ar­

guments

Required

M17.1.2 Error The va_list, va_arg,

va_start, va_end and

va_copy functions of

<stdarg.h> shall not

be used

Required

M17.2.1 Error Recursive functions

are not allowed. The

function '%name%' is

directly recursive

Required

M17.2.2 Error Recursive functions

are not allowed. The

function '%name%' is

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

recursive when call­

ing '%name%'

M17.3 Error A function shall not

be declared implicitly

Required

M17.4 Error All exit paths from

a function with non-

void return type shall

have an explicit return

statement with an ex­

pression

Required

M17.6 Error The declaration of an

array parameter shall

not contain the static

keyword between the

[]

Advisory

M17.7 Error The value returned by

function having non-

void return type shall

be used

Required

E17.1 Error The number of argu­

ments used in the call

does not match the

number declared in

the prototype

Advisory

E17.2 Error Use the const quali­

fication for parame­

ter '%name%' which

is pointer and which

is not used to change

the pointed object

Advisory

E17.3 Error Function identifiers

should always use a

parenthesis or a pre­

ceding &

Advisory

M18.4 Error The +, -, += and -= op­

erators should not be

Advisory

315

HCL® OneTest™ Embedded

316

Code review

reference
Type D/U Description Level

applied to an expres­

sion of pointer type

M18.5 Error Declarations should

contain no more than

two levels of pointer

nesting

Advisory

M18.7 Error Flexible arrays mem­

bers shall not be de­

clared

Required

M18.8 Error Variable-length ar­

ray types shall not be

used

Required

M19.2 Warning The union keyword

should not be used

Advisory

E19.1 Error Structure or union

types '%name%'

should be finalized

before the end of the

compilation units

Advisory

M20.1 Warning ﷓include directive

should only preceded

by preprocessor di­

rectives or comments

Advisory

M20.2 Error The ', or \ character

and the /* or // char­

acter sequences shall

not occur in a header

file name"

Required

M20.3 Error The ﷓include direc­

tive shall be followed

by either a <file­

name> or a filename"

sequence"

Required

M20.4 Error A macro shall not

be defined with the

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

same name as a key­

word %name%

M20.5 Warning ﷓undef should not be

used

Advisory

M20.6 Error Token that look like a

preprocessing direc­

tive should not occur

withing a macro argu­

ment

Required

M20.7 Error Expressions resulting

from the expansion

of macro parameters

shall be enclosed in

parenthesis

Required

M20.8 Error The controlling ex­

pression of a ﷓if or

﷓elif preprocessing

directive shall evalu­

ate to 0 or 1

Required

M20.9 Error All identifiers used

in the controlling ex­

pression of ﷓if or

﷓elif preprocessing

directives shall be

﷓define'd before eval­

uation

Required

M20.10 Warning The ﷓ and ﷓﷓ pre­

processor operators

should not be used

Advisory

M20.11 Error A macro parameter

immediately following

a ﷓ operator shall not

immediately be fol­

lowed by a ﷓﷓ opera­

tor

Required

317

HCL® OneTest™ Embedded

318

Code review

reference
Type D/U Description Level

M20.12 Error A macro parameter

used as an operand

to the ﷓ and ﷓﷓ op­

erators shall only be

used as an operand

to these operators

Required

M20.13 Error A line whose first to­

ken is ﷓ shall be a

valid preprocessing

directive

Required

M20.14 Error Error All ﷓else, ﷓elif and

﷓endif preprocessor

directives shall reside

in the same file as

the ﷓if, ﷓ifdef or ﷓ifn­

def directive to which

they are related

Required

E20.1 Error Header file contents

should be protected

against multiple inclu­

sions

Required

E20.2 Error The ﷓ or ﷓﷓ pre­

processor operator

should not be used

more than once

Required

E20.3 Error Missing argument

when calling the

macro

Required

E20.4 Error Only use the 'defined'

preprocessor opera­

tor with a single iden­

tifier

Required

E20.5 Error Macro definitions or

'﷓undef' should not

be located within a

block

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

E20.6 Error A C macro should on­

ly be expanded to a

constant, a braced

initialiser, a paren­

thesised expression,

a storage class key­

word, a type qualifi­

er, or a do-while-zero

block

Required

M21.1.1 Error ﷓define and ﷓undef

shall not be used

on a reserved iden­

tifier or reserved

macro name: Iden­

tifier %name% al­

ready found in <

%libname%>

Required

M21.1.2 Error ﷓define and ﷓undef

shall not be used on

identifier beginning

with an underscore or

on 'defined' keyword

%name%

Required

M21.2.1 Error Declared identifier

should not be a re­

served identifier or re­

served macro name:

Identifier %name% al­

ready found in <%lib­

name%>

Required

M21.2.2 Error Declared identifier

should not begin with

an underscore or be

'defined' keyword

%name%

Required

M21.3 Error The memory allo­

cation and deallo­

Required

319

HCL® OneTest™ Embedded

320

Code review

reference
Type D/U Description Level

cation functions of

<stdlib.h> shall not

be used

M21.4 Error The standard header

file <setjmp.h> shall

not be used

Required

M21.5 Error The standard header

file <signal.h> shall

not be used

Required

M21.6.1 Error The input/output li­

brary <stdio.h>

shall not be used in

production code

Required

M21.6.2 Error The input/output li­

brary <wchar.h>

shall not be used in

production code

Required

M21.7 Error The library macro

or functions atof,

atoi, atol and atoll of

<stdlib.h> shall not

be used

Required

M21.8 Error The library macro or

functions abort, exit,

getenv and system of

<stdlib.h> shall not

be used

Required

M21.9 Error The library macro or

functions bsearch

and qsort of

<stdlib.h> shall not

be used

Required

M21.10 Error The standard library

time and date func­

tions shall not be

used

Required

Chapter 5. Test Execution Specialist Guide

Code review

reference
Type D/U Description Level

M21.11 Error The standard head­

er file <tgmath.h>

shall not be used

Required

M21.12 Warning The library macro or

function 'feclearex­

cept, fegetexceptflag,

feraiseexcept, fese­

texceptflag, fetestex­

cept, FE_INEXACT,

FE_DIVBYZERO, FE_­

UNDERFLOW, FE_­

OVERFLOW, FE_IN­

VALID or FE_ALL_EX­

CEPT' should not be

used.

Advisory

E21.1 Error The variable 'errno'

should not be used

Required

E21.2 Error The macro 'offsetof'

should not be used

Required

E21.3 Error The library macro

or function 'setjm­

p,longjmp,sigsetjm­

p,siglongjmp' should

not be used

Required

Rule U99.1 Warning

Rule U99.2 Error

Rule U99.3 Warning

Rule U99.4 Error

Rule U99.5 Warning

Rule U99.6 Error

Rule U99.7 Warning

Rule U99.8 Error

Rule U99.9 Warning

Rule U99.10 Error

You can customize

this rule in the con­

frule file

321

HCL® OneTest™ Embedded

322

Configuring code review rules

Code Review for C

The code review tool uses a set of predefined rules. You can select the default rule configuration file for the code

review tool. MISRA 2004 and MISRA 2012 from HCL OneTest™ Embedded Studio V8.2.0 are the default installed rule

configuration files. You can either disable or set the severity level to Warning or Error.

By default all rules are enabled and produce either an error or a warning in the code review report. You can save

multiple customized rule policies.

The default rule policy files are located in the <installation directory> /plugins/Common/lib/confrule.xml file for MISRA

2004 and in <installation directory> /plugins/Common/lib/confrule_2012.xml for MISRA 2012.

Note All new projects use the default rule configuration file that you have selected in the configuration settings. Do

not modify the default rule configuration files. The only change that can be done in the default rule configuration files

is to change or disable the severity level of the rule from the settings.

To select the configuration file and disable or set the severity level of code review rules:

1. Select a node in the Project Explorer view and click the Settings button.

2. In the Configuration Settings list, select Code Review.

In Default configuration, select the MISRA rules to apply to your project: MISRA 2004 or MISRA 2012.

3. To modify the default set of rules, in Rule configuration, click ...and select the rule file that you want to

configure.

4. In Rule configuration click Edit . This opens the Rule Configuration window where rules are grouped into

categories.

Note: You can filter the rules by labels from the Find field. Search is not case sensitive. When a rule is

selected, its description is displayed on the right panel with the parameter description and value if they

are defined in the selected rule.

Chapter 5. Test Execution Specialist Guide

5. Select the severity level:

◦ Disabled: The selected rule is ignored. The list of disabled rules is displayed at the end of the report.

◦ Warning: When any non-compliance instance is found, a warning is displayed in the code review

report.

◦ Error: When any non-compliance instance is found, an error is displayed in the code review report.

Note: Multiple user-custom rules (from Rule U99.1 to Rule U99.10) can be defined for MISRA 2004 and

MISRA 2012 with their own severity level.

6. Select Show only the first occurrence to only show the first occurrence of a non-compliance in a file.

7. Select Save and Close to save the current configuration or Save As to create a new rule configuration file.

If your application is multi-threaded, you can provide the list of entry points to avoid that the rules about 'non-used

functions' are raised.

To configure the Multi_thread option, follow these steps:

323

HCL® OneTest™ Embedded

324

1. Click Configuration Properties > Runtime Analysis > Multi-threads.

2. In the right pane, click ... in the value field of the Entry points option to open the editor.

3. In the editor, enter the list of entry points for each thread and click OK

The Entry point option applies to rule E16.50 (MISRA_2004) and M2.2.2 (MISRA 2012).

Related Topics

Code review overview on page 260 | Code review settings on page 1043 | Code review MISRA 2004 rules on

page 114 | Understanding code review reports on page 329

Using a customized naming script file
In HCL OneTest™ Embedded Studio, you can edit and customize a Perl Naming script file to check your own naming

rules (code custom naming rules U99.1). You must set the path to this customized naming script file in the code

review settings to check your naming rules.

About this task

1. From the Project Window view, select the project node.

2. Right-click and select Settings

Chapter 5. Test Execution Specialist Guide

3. In the window that opens, select Code Review, click in the Value column of the Naming script file option, and

select the sample file that you installed: Example “NamingRules1.pl”.

4. Apply and close the window.

What to do next

You must enable the code review feature before running a build.

325

HCL® OneTest™ Embedded

326

Code review deviations
In some cases, it can be useful to temporarily ignore a rule non-compliance on a short portion of source code, while

documenting the reason why you are allowing this deviation.

About this task

You can justify why you are allowing the deviation in a text. The text is added to the non-compliance in the

source code. You can declare a deviation in the source code, for a specified number of lines and for the first or all

occurrences of the error, by adding pragma lines to your source code.

1. Open the source file in the Text editor and find the lines of code that you want the rule to ignore.

2. Before the section of code for which compliance to the rule should be ignored, add one of the following lines:

◦ To justify non-compliance of a rule to the following pragma statement in the first occurrence:

#pragma attol crc_justify (<rule>[,<lines>],"<text>")

◦ To justify non-compliance of a rule to the following pragma statement in all occurrences:

#pragma attol crc_justify_all (<rule>,<lines>,"<text>")

◦ To justify the first occurrence of non-compliance of a rule in all the files of the current project,

including in traps located before the pragma statement:

#pragma attol crc_justify_everywhere (<rule>,"<text>")

For all the pragma statements: <rule>

◦ <rule> is the name of the code review rule (for example: 'Rule M8.5').

◦ <lines> is the number of lines.

◦ <text> is the reason why the rule is ignored.

The recommended usage for crc_justify_everywhere is to create a specific source file containing only the list

of pragma statements and add this file to the project.

Running a code review

Code Review for C

You can use the code review tool on any test or application node or a single source file. The code review tool is run on

the source code whenever you build the file.

To enable the code review tool on a source file, test or an application node, follow these steps:

1. In Project Explorer, select the node that you want to review, right-click and select Build > Build options.

Alternatively, click the Settings button and in the Configuration Settings wizard, select Configuration

Properties > Build > Build Options > .

2. In the Build Options value field, click ...

3. In the Build Options wizard, select Code Review.

Chapter 5. Test Execution Specialist Guide

To perform a code review without compiling and executing the application, follow these steps:

1. In the Project Browser tab of the Project Window view, select the node that you want to check.

2. Select Build > Options in the toolbar menu or click the Settings button and select Build > Build options.

3. Clear all build options and build steps (in the left) except Code Review.

4. Click the Build toolbar button.

Note: If your confrule.xml file is out-of-date, it is automatically upgraded during the build process. The

original configuration rule file is renamed and the .BAK extension is added. See the Messages tab in

the Output Window, where you can find the file path.

5. Double-click the results in the Project Browser to open the report. If the report is already open, close the report

and reopen it again.

Related Topics

Working with projects on page 706 | Building and running a node on page 730

Executing the code review from a script
You can execute the build from HCL OneTest™ Embedded Studio graphical interface or for advanced users, from the

command line interface.

327

HCL® OneTest™ Embedded

328

Note: The following procedure is for advanced-users.

• When crccc has been used, use crcld as follows:

crcld -xref="<model_file>.pl" "<crccc_result_file>.xob" -RULE="<confrule file>.xml" -TEST

• <model_file>.pl file will be generated, it contains data needed to perform custom namecheck rule.

• A file named <model_file>.R99.1.xob will be generated, it will be used on a final step when executing crcld.

• Use this xob file for the next call of crcld:

crcld -crc="<crc_file_name>.crc" "<all other xob file name>.xob" "<model_file>.R99.1.xob"
 -RULE="<confrule_file>.xml" -TEST

Running complete verification of MISRA rules from an application node
To get a complete verification of MISRA rules, you must run the code review from an application node.

About this task

When running a code review from the code review link checker in test mode from HCL OneTest™ Embedded Studio,

the option '-TEST' is set by default on all test nodes and, as a consequence some rules are filtered out. To see the list

of the rules that are filtered out, see the C Code Review Linker - crcld page in the Studio Reference category

of the help, under 'Runtime Analysis command line interface reference page.

To enable these rules, you must run a full check of MISRA rules from an application node in HCL OneTest™

Embedded Studio.

Create a project if not already done.

1. Create a project.

2. Create an 'application' node.

3. Add all your sources under this node.

4. Select the application node, right-click and select Settings > Build > Build options.

5. In the right panel, deselect all options except the Code Review option.

Edit compiler / user include directories to point to your header files.

6. Click Apply and then OK.

7. To run the build, select the application node, right-click and select Build.

8. To see the report, select the application node, right-click and select Open Report > Code Review.

Viewing code review results

Code Review for C

The GUI displays code review results in the Report Viewer.

Chapter 5. Test Execution Specialist Guide

Reloading a Report

If you open the report in the report viewer and the report has been updated in the meantime, you can use the Reload

command to refresh the display:

To reload a report:

1. From the View Toolbar, click the Reload button.

Exporting a Report to HTML

Code review results can be exported to an HTML file.

To export results to an HTML file:

1. From the File menu, select Export and Export Project Report in HTML files format.

2. In the HTML Export Configuration window, select Code Review.

3. Specify an output directory and click Export.

Related Topics

Understanding code review reports on page 329 | Code review MISRA 2004 rules on page 114

Understanding code review reports

Code Review for C

The Code Review report lists the rules that produced and error or a warning.

Report explorer

The Report Explorer window displays a list of rules that were broken for each source file and function. You can use

there elements in this view to navigate through the report.

Report summary

At the top of the Code Review report a summary provides information about the general configuration, the date and

the number of analyzed files.

It also lists the number of errors and warnings that were encountered.

Code review details

The code review report lists the rules for which errors or warnings were detected. It also provides information about

the location of the error. You can click the title to go directly to the corresponding line in the source code.

Related Topics

329

HCL® OneTest™ Embedded

330

Using the code review viewer on page 328 | Viewing reports on page 736 | Understanding reports on page 738 |

Code review MISRA 2004 rules on page 114

Customizing the code review report
The default code review report is generated in an HTML format from a template named misrareport.template as that

you can modify to customize the code review reports.

The code review HTML reports are generated from a template named misrareport.template that you can find in the

following folder as a text file:

• On Windows: <installation_directory>\lib\reports

• On Unix: <installation_directory>/lib/reports

The template file uses the following JavaScript libraries:

• Bootstrap

• JQuery

• Font Awesome

• VisJS

• Chart

These libraries are not provided. An internet connection is required to open the report. If you don't have any internet

connection, download the libraries (.css and .js files), copy them in the folder in which the report is saved, and modify

the template file as follows:

Replace the following block of lines:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.8.0/Chart.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.8.0/Chart.min.js"></script>

With the following one:

Chapter 5. Test Execution Specialist Guide

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
<link rel="stylesheet" href="./Chart.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script>
<script src="./Chart.min.js"></script>

The following sections give the list of elements that you can use in the raw data and the JavaScript functions to

customize your report file.

Data format

The misrareport.template template consists of two sections:

• The HTML section that is common to all reports,

• A JavaScript section that sets tables depending on two variables that are initialized dynamically when the

report is created:

var data = {{json}}; // the raw data, in json format
var d = new Date({{date}}) // the generation date

Raw data contains the following information at the top level:

• output is the name of the json file that contains the raw data

• title is the nternal title of the report (displayed in the “crc” file format)

• configurationTitle is the title of the used configuration file

• systemLevel is the C level norm used. The possible values are "C90", "C90 and Normative Addentum 1", "C99

or "C11"

• configuration is the configuration file used to generate this report

• date is the generation date of raw data

• nbAnalyzedFiles is the number of analyzed files

• nbFilesKO is the number of files containing errors

• nbFilesOK is the number of files without errors

• nbError is the total number of all errors in all analyzed files

• nbWarning is the total number of all warnings in all analyzed files

• files is the array of file element (each one represents a physical file) or array of deactivated element

• statistics is the array of rule statistics element

Example:

{
"output": "../build/fullreport_1.crc.json",
"title": "HCL OneTest (TM) Embedded MISRA C:2012 Report using C90",
"configurationTitle": "MISRA C:2012",
"systemLevel": "C90",

331

HCL® OneTest™ Embedded

332

"configuration": "C:\\Program
 Files\\HCL\\HCLOneTest\\Embedded/plugins/Common/lib/confrule_2012.xml",
"date": "Mon Oct 19 15:52:07 2020",
"nbAnalyzedFiles": 5,
"nbFilesKO": 4,
"nbFilesOK": 1,
"nbError": 49,
"nbWarning": 68,
"files": [
],
"statistics": [
]
}

Each file elementfile element represents an analyzed source file. It contains the following information at the top level:

• source is the physical location of source file

• fileDate is the date of last editing of this source

• nbErrorOrWarning is the total of error or warning in this file

• content is an array of rule element (if the rule is directly raised at file level) or function element. It is always

available but it can be empty (file with no function and with no error or warning)

Each function element represents a function. It contains the following information at the top level:

◦ function is the name of the function

◦ kind is the analysis result of this function. The possible values are 'Failed' or 'Passed'

◦ content is an array of rule element (rules that are raised inside this function). It is always available

but it can be empty (function with no error or no warning)

Examples:

file element

{
"source": "C:\\workspace\\project\\src\\core.h",
"fileDate": "Mon Sep 07 10:31:50 2020",
"nbErrorOrWarning": 25,
"content": [
]
}

function element:

{
"function": "win",
"kind": "Failed",
"content": [
]
}

Each rule element represents a triggered rule, justified or not. It contains the following information at the top level:

Chapter 5. Test Execution Specialist Guide

• rule is the name of the rule, corresponding to its label defined in the configuration file

• group is the family of this rule, it corresponds to the label of the rule’s group that is defined in the configuration

file

• kind is the severity of the rule. The possible values are 'error', 'warning' or 'info', depending on the error level in

the configuration file and on the possible justification (the justified rules have an 'info' type value)

• line is the line of the current file where the rule was triggered

• column is the column of the current file where the rule was triggered

• text is the rule description. It is related to the rule text in configuration file

• justification is the justification text for the rule. This field is optional, and is present only if the rule is justified

Example:

{
"rule": "M21.6.1",
"group": "21- Standard libraries",
"kind": "info",
"line": 21,
"column": 10,
"text": "The input/output library <stdio.h> shall not be used in production code.",
"justification": "This rule does not apply to the following line"
}

Each deactivated element represents a group of rules that is deactivated for a specific reason. It contains the

following information at the top level:

• deactivated_rules_by_user is used for all the rules that are deactivated when it is used in the configuration file

with the error set to level 0. This field is optional, it can be empty, or you can enter an array of deactivated rule

element

Example:

{
"deactivated_rules_by_user": [
]
}

• deactivated_rules_by_test_option is used for all the rules that are deactivated by using the “-test” option. This

field is optional, it can be empty, or you can enter an array of deactivated rule element

Example:

{
"deactivated_rules_test_option": [

333

HCL® OneTest™ Embedded

334

]
}

Each deactivated rule element represents a deactivated rule for any reason. It contains the following information at

the top level:

• rule is the name of the rule, it corresponds to the rule label that is defined in the configuration file

• text is the rule description, it corresponds to the rule text in configuration file

Example:

{
"rule": "E15.3",
"text": "The return keyword should not be used in a conditional block."
}

Each rule statistics element represents global statistics for the rule raised during test. It contains the following

information at the top level:

• ruleStatistics is the array of the statistic rule element

Example:

{
"rulesStatistics": [
]
}

Each statistic rule element contains a rule that was raised one or several times. It contains the following information

at the top level:

• rule is the name of the rule. It corresponds to the rule label that is defined in the configuration file

• kind is the severity of the rule. The possible values are 'error' or 'warning' that correspond to the error level in

the configuration file

• occurences is the number of times that the rule was raised

Example:

{
"rule": "M17.7",
"kind": "error",
"text": "When a function returns a value, this value should be used.",

Chapter 5. Test Execution Specialist Guide

"occurences": 4
}

Javascript functions

You can find in the misrareport.template template a set of JavaScript functions.

Some of the helper functions simplify access to “raw data”:

• isFct(element) checks whether an element is a function or not

• isFile(element) checks whether an element is a file or not

• isFileInError(element) checks whether an element is a file that contains an error or a warning

• isFctPassed(element) checks whether an element is a passed function or not

• isFctFailed(element) checks whether an element is a failed function or not

• isRuleError(element) checks whether a rule level is error or not

• isRuleWarning(element) checks whether a rule level is warning or not

• isRuleInfo(element) checks whether a rule level is an information or not

• isRuleJustified(element) checks whether a rule is justified or not

Other functions are used to display each section of the report:

• emptyLine() displays an empty line (helper function)

• startFile(element) is called at start of a file element.

• endFile() is called at end of a file element.

• startFileRules() is called at the beginning of a group of rules that is relative to a file. Used to display array

headers

• endFileRules() is called at end of a group of rules relative to a file.

• startFileFunctions() is called at the beginning of a function

• rule(element) is called to display details of a raised rule.

The last section is a set of functions that is used to display summaries:

• displayDeactivatedbytest(elem) displays all deactivated rules by using the '-test' option

• displayDeactivatedbyuser(elem) displays all deactivated rules that are used in the configuration file

• displayrulesstatistics(elem) displays statistics for all rules that are raised during the test

The main algorithm dispatches the function calls by parsing the raw data.

Analyzing running applications

The runtime analysis feature set of HCL OneTest™ Embedded allows you to closely monitor the behavior of your

application for debugging and validation purposes. Each feature instruments the source code providing real-time

analysis of the application while it is running, either on a native or embedded target platform.

335

HCL® OneTest™ Embedded

336

To learn about See

How to perform runtime analysis on your source code Using Runtime Analysis Fea­

tures on page 336

Detecting memory leaks in C and C++ source code About Memory Profiling on

page 393

Measuring software performance with Performance Profiling About Performance Profiling

on page 414

Performing code and test coverage with Code Coverage About Code Coverage on

page 72

Obtaining real-time UML sequence diagram traces from your software with Runtime

Tracing

About Runtime Tracing on

page 424

Runtime analysis overview

The runtime analysis tools of HCL OneTest™ Embedded allow you to closely monitor the behavior of your application

for debugging and validation purposes.

These features use source code insertion to instrument the source code providing real-time analysis of the

application while it is running, either on a native or embedded target platform.

• Memory Profiling on page 393 analyzes memory usage and detects memory leaks.

• Performance Profiling on page 414 provides metrics on execution time for each procedure/function/

method of the application. For C language, it also provides an estimation of Worst Case Estimation Time.

• Code Coverage on page 72 performs code coverage analysis.

• Control Coupling on page 182 provides coverage information on Control Coupling that represent the

interactions between modules (C language only).

• Data Coupling on page 192 provides coverage information on def/use pairs identified in the application(C

language only).

• Worst Stack Size on page 199 computes an estimation of the maximum of the application stack size (C

language only).

• Runtime Tracing on page 424 draws a real-time UML Sequence Diagram of your application.

• Contract Check on page 545 (for C++ only) verifies behavioral assertions during execution of the code and

produces a Contract Check sequence diagram. on page 557

Each of these runtime analysis tools can be used together with any of the automated testing features providing, for

example, test coverage information.

Chapter 5. Test Execution Specialist Guide

Note SCI instrumentation of the source code generates a certain amount of overhead, which can impact application

size and performance. See Source code instrumentation overview on page 16 for more information.

Here is a basic rundown of the main steps to using the runtime analysis feature set.

To use the runtime analysis tools:

1. From the Start page, set up a new project. This can be done automatically with the New Project Wizard on

page 696.

2. Follow the Activity Wizard on page 695 to add your application source files to the workspace.

3. Select the source files under analysis in the wizard to create the application node.

4. Select the runtime analysis tools to be applied to the application in the Build options.

5. Use the Project Explorer on page 1056 to set up the test campaign and add any additional runtime analysis or

test nodes.

6. Run the application node on page 730 to build and execute the instrumented application.

7. View and analyze the generated analysis and profiling reports on page 715.

The runtime analysis tools can be run within a test by simply adding the runtime analysis setting to an existing test

node.

The runtime analysis tools for C and C++ can also be used in an Eclipse development environment. Runtime or static

analysis tools do not run on System Testing nodes.

Related Topics

Reducing Instrumentation Overhead on page 72

About Memory Profiling on page 393

About Performance Profiling on page 414

About Code Coverage on page 72

About Runtime Tracing on page 424

Profiling shared libraries

Runtime Analysis

In order to perform runtime analysis on a shared library, you must create an application node containing both a small

program that uses the library, and a reference link to the library.

After the execution of the application node, the runtime analysis results are located in the application node.

To profile a shared library:

337

HCL® OneTest™ Embedded

338

1. Add the library to your project as described in Using library nodes on page 718.

2. Create an empty application node:

◦ Right-click a group or project node and select Add Child and Application from the popup menu.

◦ Enter the name of the application node

3. Inside the application node, create a source file containing a short program that uses the shared library.

4. Link the application node to the shared library:

◦ Right-click the application or test node that will use the shared library and select Add Child and

Reference from the popup menu.

◦ Select the library node and click OK.

5. Select the application node, click the Settings button, and set the Build options to include the runtime analysis

tools that you want to use.

6. Build and execute the application node.

Example

An example demonstrating how to use Runtime Analysis tools on shared libraries is provided in the Shared Library

example project. See Example projects on page 709 for more information.

Related Topics

Using library nodes on page 718 | Testing shared libraries on page 480 | Selecting Build Options for a Node on

page 731

Code coverage

Code coverage overview
Source code coverage consists of identifying which portions of a program are executed or not during a given test

case. Source code coverage is recognized as one of the most effective ways of assessing the efficiency of the test

cases applied to a software application.

The code coverage tool can provide the coverage information for the following source code elements:

• Statement blocks, decisions, and loops.

• Function or procedure calls.

• Basic conditions, modified conditions/decisions (MC/DC), multiple condition, and forced condition.

• Procedure entries and exits.

• Terminal or potentially terminal statements

• Statements that are considered non-coverable in C.

Chapter 5. Test Execution Specialist Guide

See Coverage levels on page 73 for more details about each coverage level.

Information modes

The information mode is the method used to code the trace output. This has a direct impact of the size of the trace

file as well as on CPU overhead. You can change the information mode in the coverage type settings. See Changing

code coverage settings on page 81.

There are three information modes:

• Default mode: Each branch generates one byte of memory. This offers the best compromise between code

size and speed overhead.

• Compact mode: This is functionally equivalent to Pass mode, except that each branch needs only one bit of

storage instead of one byte. This implies a smaller requirement for data storage in memory, but produces a

noticeable increase in code size (shift/bits masks) and execution time.

• Hit Count mode: In this mode, instead of storing a Boolean value indicating coverage of the branch, a specific

count is maintained of the number of times each branch is executed. This information is displayed in the code

coverage report.

Count totals are given for each branch, for all trace files transferred to the report generator as parameters. In the code

coverage report, branches that have never been executed are highlighted with an asterisk '*'. The maximum count in

the report generator depends on the amount of memory available on the computer running the tests. If this maximum

count is reached, the report signals it with a Maximum reached message.

Note: The last bracket (}) in a function after a return statement is always displayed in red in the coverage

report, even if the function reports 100% coverage.

On-the-fly display
By default, code coverage generates a report when the execution ends. The on-the-fly mode generates code coverage

results dynamically during the execution. This is useful for applications that never exit or to interact with the

execution during the analysis, for example if you want to stop the code coverage when you reach a specified coverage

rate threshold.

Information Modes

Code Coverage for Ada, C and C++

The Information Mode is the method used by Code Coverage to code the trace output. This has a direct impact of the

size of the trace file as well as on CPU overhead.

You can change the information mode used by Code Coverage in the Coverage Type settings. There are three

information modes:

339

HCL® OneTest™ Embedded

340

• Default mode

• Compact mode

• Hit Count mode

Default Mode

When using Default or Pass mode, each branch generates one byte of memory. This offers the best compromise

between code size and speed overhead.

Compact Mode

The Compact mode is functionally equivalent to Pass mode, except that each branch needs only one bit of storage

instead of one byte. This implies a smaller requirement for data storage in memory, but produces a noticeable

increase in code size (shift/bits masks) and execution time.

Hit Count Mode

In Hit Count mode, instead of storing a Boolean value indicating coverage of the branch, a specific count is

maintained of the number of times each branch is executed. This information is displayed in the Code Coverage

report.

Count totals are given for each branch, for all trace files transferred to the report generator as parameters.

In the Code Coverage report, branches that have never been executed are highlighted with asterisk '*' characters.

The maximum count in the report generator depends on the machine on which tests are executed. If this maximum

count is reached, the report signals it with a Maximum reached message.

Related Topics

About Code Coverage on page 72 | Selecting Coverage Type on page 340 | Estimating Instrumentation Overhead

on page 69 | Reducing Instrumentation Overhead on page 72

Coverage types

Code Coverage for Ada, C and C++

The Code Coverage feature provides the capability of reporting of various source code units and branches, depending

on the coverage type selected.

By default, Code Coverage implements full coverage analysis, meaning that all coverage types are instrumented by

source code insertion (SCI). However, in some cases, you might want to reduce the scope of the Code Coverage

report, such as to reduce the overhead generated by SCI for example.

Chapter 5. Test Execution Specialist Guide

Branches

When referring to the Code Coverage feature, a branch denotes a generic unit of enumeration. For each branch, you

specify the coverage type. Code Coverage instruments each branch when you compile the source under test.

Coverage Levels

The following table provides details of each coverage type as used in each language supported by the product

Coverage Level Languages

Block coverage C on

page 355

Ada on

page 342

C++ on

page 368

Call coverage C on

page 359

Ada on

page 345

Condition coverage C on

page 360

Ada on

page 346

C++ on

page 373

ATC coverage Ada on

page 346

Function, unit or method cover­

age

C on

page 365

Ada on

page 350

C++ on

page 371

Link files Ada on

page 352

Templates C++ on

page 378

Additional statements C on

page 367

Ada on

page 354

C++ on

page 379

To select a coverage level:

1. Right-click the application or test node concerned by the Code Coverage report.

2. From the pop-up menu, select Settings.

3. In the Configuration list, expand Code Coverage and select Instrumentation Control.

4. Select or clear the coverage levels as required.

5. Click OK.

Related Topics

341

HCL® OneTest™ Embedded

342

Source code instrumentation overview on page 16 | Generating SCI Dumps on page 1086 | Reducing Instrumentation

Overhead on page 72

Ada coverage

Block coverage

Code Coverage for Ada

When analyzing Ada source code, Code Coverage can provide the following block coverage types:

• Statement blocks

• Statement and decision blocks

• Statement, decision, and loop blocks

• Asynchronous transfer of control (ATC) blocks

Statement blocks (or simple blocks)

Simple blocks are the main blocks within units as well as blocks introduced by decisions, such as:

• then and else (elsif) of an if

• loop...end loop blocks of a for...while

• exit when...end loop or exit when blocks at the end of an instruction sequence

• when blocks of a case

• when blocks of exception processing blocks

• do...end block of the accept instruction

• or and else blocks of the select instruction

• begin...exception blocks of the declare block that contain an exceptions processing block.

• select...then abort blocks of an ATC statement

• sequence blocks: instructions found after a potentially terminal statement on page 354.

A simple block constitutes one branch. Each unit contains at least one simple block corresponding to its body, except

packages that do not contain an initialization block.

Decision coverage (implicit blocks)

An if statement without an else statement introduces an implicit block.

Chapter 5. Test Execution Specialist Guide

-- Function power_10

-- -block=decision or -block=implicit

function power_10 (value, max : in integer) return integer is

ret, i : integer ;

begin

if (value == 0) then

return 0;

-- implicit else block

end if ;

for i in 0..9

loop

if ((max /10) < ret) then

ret := ret *10 ;

else

ret := max ;

end if ;

end loop ;

return ret;

end ;

An implicit block constitutes one branch.

Implicit blocks refer to simple blocks to describe possible decisions. The Code Coverage report presents the sum of

these decisions as an absolute value and a ratio.

Loop coverage (logical blocks)

A for or while loop constitutes three branches:

343

HCL® OneTest™ Embedded

344

• The simple block contained in the loop is never executed: the exit condition is true immediately

• The simple block is run only once: the exit condition is false, and then true on the next iteration

• The simple block run at least twice: the exit condition is false at least twice, then finally true)

A loop...end loop block requires only two branches because the exit condition, if it exists, is tested within the loop:

• The simple block is played only once: the exit condition is true on the first iteration, if the condition exists

• The simple block is played at least twice: the exit condition false at least once and then finally true, if the

condition exists

In the following example, you need to execute the function try_five_times() several times for 100 % coverage of the

three logical blocks induced by this while loop.

-- Function try_five_times

function try_five_times return integer is

result, i : integer := 0 ;

begin

-- try is any function

while (i < 5) and then (result <= 0) loop

result := try ;

i := integer'succ(i);

end loop ;

return result;

end ; -- 3 logical blocks

Logical blocks are attached to the loop introduction keyword.

Asynchronous transfer of control (ATC) blocks

This coverage type is specific to the Ada 95 asynchronous transfer of control (ATC) block statement (see your Ada

documentation).

The ATC block contains tree branches:

Chapter 5. Test Execution Specialist Guide

• Control immediately transferred: The sequence of control never passes through the block then abort /end

select, but is immediately transferred to the block select/then abort.

• Control transferred: The sequence of control starts at the block then abort/end select, but never reaches the

end of this block. Because of trigger event appearance, the sequence is transferred to the block select/then

abort.

• Control never transferred: Because the trigger event never appears, the sequence of control starts and

reaches the end of the block then abort/end select, and was never transferred to the block select/then abort.

In the following example, you need to execute the compute_done function several times to obtain full coverage of the

three ATC blocks induced by the select statement:

function compute_done return boolean is

result : boolean := true ;

begin

-- if computing is not done before 10s ...

select

delay 10.0;

result := false ;

then abort

compute;

end select;

return result;

end ; -- 3 logical blocks

Code Coverage blocks are attached to the Select keyword of the ATC statement.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Call coverage

Code Coverage for Ada

When analyzing Ada source code, Code Coverage can provide coverage of function, procedure, or entry calls.

Code Coverage defines as many branches as it encounters function, procedure, or entry calls.

345

HCL® OneTest™ Embedded

346

This type of coverage ensures that all the call interfaces can be shown to have been exercised for each Ada unit

(procedure, function, or entry). This is sometimes a pass/fail criterion in the software integration test phase.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Condition Coverage

Code Coverage for Ada

Basic Conditions

Basic conditions are operands of logical operators (standard or derived, but not overloaded) or, xor, and, not, or else,

or and then, wherever they appear in ADA units. They are also the conditions of if, while, exit when, when of entry

body, and when of select statement, even if these conditions do not contain logical operators. For each of these basic

conditions, two branches are defined: the sub-condition is true and the sub-condition is false.

A basic condition is also defined for each when of a case statement, even each sub-expression of a compound when,

that is when A | B: two branches.

-- power_of_10 function -- -cond

Function power_of_10(value, max : in integer)

is

result : integer ;

Begin

if value = 0 then

return 0;

end if ;

result := value ;

for i in 0..9 loop

if (max > 0) and then ((max / value) < result) then

result := result * value;

else

result := max ;

end if ;

Chapter 5. Test Execution Specialist Guide

end loop;

return result ;

end ; -- there are 3 basic conditions (and 6 branches).

-- Near_Color function

Function Near_Color (color : in ColorType) return ColorType

is

Begin

case color is

when WHITE | LIGHT_GRAY => return WHITE ;

when RED | LIGHT_RED .. PURPLE => return RED ;

end case ;

End ; -- there are 4 basics conditions (and 4 branches).

Two branches are enumerated for each boolean basic condition, and one per case basic condition.

Forced Conditions

A forced condition is a multiple condition in which any occurrence of the or else operator is replaced with the or

operator, and the and then operator is replaced with the and operator. This modification forces the evaluation of the

second member of these operators. You can use this coverage type after modified conditions have been reached to

ensure that all the contained basic conditions have been evaluated. With this coverage type, you can be sure that only

the considered basic condition value changes between both condition vectors.

-- Original source : -- -cond=forceevaluation

if (a and then b) or else c then

-- Modified source :

if (a and b) or c then

Note This replacement modifies the code semantics. You need to verify that using this coverage type does not modify

the behavior of the software.

Example

procedure P (A : in tAccess) is

begin

347

HCL® OneTest™ Embedded

348

if A /= NULL and then A.value > 0 -- the evaluation of A.value will raise an

-- exception when using forced conditions

-- if the A pointer is nul

then

A.value := A.value - 1;

end if;

end P;

Modified Conditions

A modified condition is defined for each basic condition enclosed in a composition of logical operators (standard or

derived, but not overloaded). It aims to prove that this condition affects the result of the enclosing composition. To do

that, find a subset of values affected by the other conditions, for example, if the value of this condition changes, the

result of the entire expression changes.

Because compound conditions list all possible cases, you must find the two cases that can result in changes to the

entire expression. The modified condition is covered only if the two compound conditions are covered.

-- State_Control state -- -cond=modified

Function State_Condtol return integer

is

Begin

if ((flag_running and then (process_count > 10))

or else flag_stopped)

then

return VALID_STATE ;

else

return INVALID_STATE ;

end if ;

End ;

-- There are 3 basic conditions, 5 compound conditions

Chapter 5. Test Execution Specialist Guide

-- and 3 modified conditions :

-- flag_running : TTX=T and FXF=F

-- process_count > 10 : TTX=T and TFF=F

-- flag_stopped : TFT=T and TFF=F, or FXT=T and FXF=F

-- 4 test cases are enough to cover all the modified conditions :

-- TTX=T

-- FXF=F

-- TFF=F

-- FTF=F or FXT=T

Note You can associate a modified condition with more than one case, as shown in this example for flag_stopped.

In this example, the modified condition is covered if the two compound conditions of at least one of these cases are

covered.

Code Coverage calculates cases for each modified condition.

The same number of modified conditions as boolean basic conditions appear in a composition of logical operators

(standard or derived, but not overloaded).

Multiple Conditions

A multiple condition is one of all the available cases of logical operators (standard or derived, but not overloaded)

wherever it appears in an ADA unit. Multiple conditions are defined by the concurrent values of the enclosed basic

boolean conditions.

A multiple condition is noted with a set of T, F, or X letters, which means that the corresponding basic condition

evaluates to true or false, or it was not evaluated, respectively. Such a set of letters is called a condition vector. The

right operand of or else or and then logical operators is not evaluated if the evaluation of the left operand determines

the result of the entire expression.

-- State_Control Function -- -cond=compound

Function State_Control return integer

is

Begin

if ((flag_running and then (process_count > 10))

or else flag_stopped

349

HCL® OneTest™ Embedded

350

then

return VALID_STATE ;

else

return INVALIDE_STATE ;

end if ;

End ;

-- There are 3 basic conditions

-- and 5 compound conditions :

-- TTX=T <=> ((T and then T) or else X) = T

-- TFT=T

-- TFF=F

-- FXT=T

-- FXF=F

Code Coverage calculates the computation of every available case for each composition.

The number of enumerated branches is the number of distinct available cases for each composition of logical

operators (standard or derived, but not overloaded).

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Unit coverage

Code Coverage for Ada

Unit Entries

Unit entries determine which units are executed and/or evaluated.

-- Function factorial

-- -proc

function factorial (a : in integer) return integer is

begin

Chapter 5. Test Execution Specialist Guide

if (a > 0) then

return a * factorial (a - 1);

else

return 1;

end if;

end factorial ;

One branch is defined for each defined and instrumented unit. In the case of a package, the unit entry only exists if the

package body contains the begin/end instruction block.

For Protected units, no unit entry is defined because this kind of unit does not have any statements blocks.

Unit Exits and Returns

These are the standard exit (if it is coverable), each return instruction (from a procedure or function), and each

exception-processing block in the unit.

-- Function factorial

-- -proc=ret

function factorial (a : in integer) return integer is

begin

if (a > 0) then

return a * factorial (a - 1);

else

return 1;

end if ;

end factorial ; -- the standard exit is not coverable

-- Procedure divide

procedure divide (a,b : in integer; c : out integer) is

begin

if (b == 0) then

text_io.put_line("Division by zero");

351

HCL® OneTest™ Embedded

352

raise CONSTRAINT_ERROR;

end if ;

if (b == 1) then

c := a;

return;

end if ;

c := a / b;

exception

when PROGRAM_ERROR => null ;

end divide ;

For Protected units, no exit is defined because this kind of unit does not have any statements blocks.

In general, at least two branches per unit are defined; however, in some cases the coding may be such that:

• There are no unit entries or exits (a package without an instruction block (begin/end), protected units case).

• There is only a unit entry (an infinite loop in which the exit from the task cannot be covered and therefore the

exit from the unit is not defined).

The entry is always numbered if it exists. The exit is also numbered if it is coverable. If it is not coverable, it is

preceded by a terminal instruction containing return or raise instructions; otherwise, it is preceded by an infinite loop.

A raise is considered to be terminal for a unit if no processing block for this exception was found in the unit.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Link files

Code Coverage for Ada

Link files are the library management system used for Ada Coverage. These libraries contain the entire Ada

compilation units contained by compiler sources, the predefined Ada environment and the source files of your

projects. You must use link files when using Code Coverage in Ada for the Ada Coverage analyzer to correctly analyze

your source code.

You can include a link file within another link file, which is an easy way to manage your source code.

Chapter 5. Test Execution Specialist Guide

Link File Syntax

Link files have a line-by-line syntax. Comments start with a double hyphen (--), and end at the end of the line. Lines

can be empty.

There are two types of configuration lines:

• Link file inclusion: The link filename can be relative to the link file that contains this line or absolute.

<link filename> LINK

• Compilation unit description: The source filename is the file containing the described compilation unit

(absolute or relative to the link filename). The full unit name is the Ada full unit name (beware of separated

units, or child units).

<source filename> <full unit name> <type> [ada83]

The <type> is one of the following flags:

• ◦ SPEC for specification

◦ BODY for a body

◦ PROC for procedure or function

Use the optional ada83 flag if the source file cannot be compiled in Ada 95 mode, and must be analyzed in Ada 83

mode.

Generating a Link File

The link file can be generated either manually or automatically with the Ada Link File Generator (attolalk) tool. See the

Studio Reference section of the help for more information about command line tools.

Sending the Link File to the Instrumentor

The loading order of link files is important. If the same unit name is found twice or more in one (or more) loaded link

files, the Instrumentor issues a warning and uses the last encountered unit.

Included link files are analyzed when the file including the link file is loaded.

In Ada, Code Coverage loads the link files in the following order:

• By default, either adalib83.alk or adalib95.alk is loaded. These files are part of the Target Deployment Port.

• If you use the -STDLINK command line option, the specified standard link file is loaded first. See the Studio

Reference section of the help for more information

353

HCL® OneTest™ Embedded

354

• The link file specified by the ATTOLCOV_ADALINK environment variable is loaded.

• The link files specified by the -Link option is loaded.

Now, you can start analyzing the file instrument.

Loading A Permanent Link File

You can ask Code Coverage to load the link file at each execution. To do that, set the environment variable

ATTOLCOV_ADALINK with the link filename separated by ':' on a UNIX system, or ';' in Windows. For example:

ATTOLCOV_ADALINK="compiler.alk/projects/myproject/myproject.alk"

A Link file specified on the command line is loaded after the link file specified by this environment variable.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Additional Statements

Code Coverage for Ada

Terminal Statements

An Ada statement is terminal if it transfers control of the program anywhere other than to a sequence (return, goto,

raise, exit).

By extension, a decision statement (if, case) is also terminal if all its branches are terminal (i.e., if, then and else

blocks and non-empty when blocks contain a terminal instruction). An if statement without an else statement is never

terminal, since one of the blocks is empty and therefore transfers control in sequence.

Potentially Terminal Statements

An Ada statement is potentially terminal if it contains a decision choice that transfers control of the program

anywhere other than after it (return, goto, raise, exit).

Non-coverable Statements

An Ada statement is detected as being not coverable if it is not a goto label and if it is in a terminal statement

sequence. Statements that are not coverable are detected by the feature during the instrumentation. A warning is

generated to signal each one, which specifies its location source file and line. This is the only action Code Coverage

takes for statements that cannot be covered.

Note Ada units whose purpose is to terminate execution unconditionally are not evaluated. This means that Code

Coverage does not check that procedures or functions terminate or return.

Chapter 5. Test Execution Specialist Guide

Similarly, exit conditions for loops are not analyzed statistically to determine whether the loop is infinite. As a result, a

for, while or loop/exit when loop is always considered non-terminal (i.e., able to transfer control in its sequence). This

is not applicable to loop/end loop loops without an exit statement (with or without condition), which are terminal.

Related Topics

Selecting coverage types on page 340 | Code Coverage on page 1027

C coverage

Block coverage

Code Coverage for C

When running the Code Coverage feature on C source code, HCL OneTest™ Embedded can provide the following

coverage types for code blocks:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks (or Simple Blocks)

Simple blocks are the C function main blocks, blocks introduced by decision instructions:

• THEN and ELSE FOR IF

• FOR, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by switch case or default statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• blocks following a potentially terminal statement.

/* Power_of_10 Function */ /* -block */

int power_of_10 (int value, int max)

{

int retval = value, i;

if (value == 0) return 0; /* potentially terminal statement */

for (i = 0; i < 10; i++) /* start of a sequence block */

{

355

HCL® OneTest™ Embedded

356

retval = (max / 10) < retval ? retval * 10 : max;

}

return retval;

} /* The power_of_10 function has 6 blocks */

/* Near_color function */

ColorType near_color (ColorType color)

{

switch (color)

{

case WHITE :

case LIGHT_GRAY :

return WHITE;

case RED :

case PINK :

case BURGUNDY :

return RED;

/* etc ... */

}

} /* The near_color function has at least 3 simple blocks */

Each simple block is a branch. Every C function contains at least one simple block corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by an IF statement without an ELSE or a SWITCH statement without a DEFAULT.

/* Power_of_10 function */

/* -block=decision */

int power_of_10 (int value, int max)

{

Chapter 5. Test Execution Specialist Guide

int retval = value, i;

if (value == 0) return 0; else ;

for (i =0;i <10;i++)

{

retval = (max / 10) < retval ? retval * 10 : max;

}

return retval;

}

/* Near_color function */

ColorType near_color (ColorType color)

{

switch (color)

{

case WHITE :

case LIGHT_GRAY :

return WHITE;

case RED :

case PINK :

case BURGUNDY :

return RED;

/* etc ... with no default */

default : ;

}

}

Each implicit block represents a branch.

357

HCL® OneTest™ Embedded

358

Because the sum of all possible decision paths includes implicit blocks as well as statement blocks, reports

provide the total number of simple and implicit blocks as a figure and as a percentage. Code Coverage places this

information in the Decisions report.

Loops (Logical Blocks)

A typical FOR or WHILE loop can reach three different conditions:

• The statement block contained within the loop is executed zero times, therefore the output condition is True

from the start

• The statement block is executed exactly once, the output condition is False, then True the next time

• The statement block is executed at least twice. (The output condition is False at least twice, and becomes

True at the end)

In a DO...WHILE loop, because the output condition is tested after the block has been executed, two further branches

are created:

• The statement block is executed exactly once. The output is condition True the first time.

• The statement block is executed at least twice. (The output condition is False at least once, then true at the

end)

In this example, the function try_five_times () must run several times to completely cover the three logical blocks

included in the WHILE loop:

/* Try_five_times function */

/* -block=logical */

int try_five_times (void)

{

int result,i =0;

/*try ()is afunction whose return value depends

on the availability of a system resource, for example */

while (((result = try ())!=0)&&

(++i <5));

return result;

} /* 3 logical blocks */

Chapter 5. Test Execution Specialist Guide

Related Topics

Selecting Coverage Types on page 340 | About Code Coverage on page 72 | Code Coverage settings on

page 1027

Call coverage

Code Coverage for C

When analyzing C source code, Code Coverage can provide coverage of function or procedure calls.

Code Coverage defines as many branches as it encounters function calls.

Procedure calls are made during program execution.

This type of coverage ensures that all the call interfaces can be shown to have been exercised for each C function.

This may be a pass or failure criterion in software integration test phases.

You can use the -EXCALL option to select C functions whose calls you do not want to instrument, such as C library

functions for example.

Example

/* Evaluate function */

/* -call */

int evaluate (NodeTypeP node)

{

if (node == (NodeTypeP)0) return 0;

switch (node->Type)

{

int tmp;

case NUMBER :

return node->Value;

case IDENTIFIER :

return current value (node->Name);

case ASSIGN :

359

HCL® OneTest™ Embedded

360

set (node->Child->Name,

tmp = evaluate (node->Child->Sibling));

return tmp;

case ADD :

return evaluate (node->Child) +

evaluate (node->Child->Sibling);

case SUBTRACT :

return evaluate (node->Child) -

evaluate (node->Child->Sibling);

case MULTIPLY :

return evaluate (node->Child) *

evaluate (node->Child->Sibling);

case DIVIDE :

tmp = evaluate (node->Child->Sibling);

if (tmp == 0) fatal error ("Division by zero");

else return evaluate (node->Child) / tmp;

}

} /* There are twelve calls in the evaluate function */

Related Topics

C Block Coverage on page 355 | C Condition Coverage on page 360 | C Function Coverage on page 365 | C

Additional Statements on page 367 | Code Coverage settings on page 1027

Condition coverage

Code Coverage for C

When analyzing C source code, HCL OneTest™ Embedded can provide coverage for:

• Basic condition coverage

• Modified condition/decisioncoverage(MC/DC)

Chapter 5. Test Execution Specialist Guide

• Multiple condition coverage

• Forced condition coverage

Basic Conditions

Conditions are operands of either || or && operators wherever they appear in the body of a C function. They are also

if and ternary expressions, tests for for, while, and do/while statements even if these expressions do not contain || or

&& operators. Two branches are involved in each condition: the sub-condition can be true or false.

Basic conditions enable different cases or a default (which could be implicit) in a switch. These are distinguished

even when they invoke the same simple block. One basic condition is associated with every case and default, whether

implicit or not.

In the following example, there are 4*2 basic conditions:

/* Power_of_10 function */

/* -cond */

int power_of_10 (int value, int max)

{

int result = value, i;

if (value == 0) return 0;

for (i = 0; i < 10; i++)

{

result = max > 0 && (max / value) < result ?

result * value :

max;

}

return result ;

}

In the following example, there are 5 basic conditions:

/* Near_color function */

ColorType near_color (ColorType color)

361

HCL® OneTest™ Embedded

362

{

switch (color)

{

case WHITE :

case LIGHT_GRAY :

return WHITE;

case RED :

case PINK :

case BURGUNDY :

return RED;

/* etc ... */

}

}

Two branches are enumerated for each condition, and one per case or default.

Modified Conditions

A modified condition (MC) is defined for each basic condition enclosed in a composition of || or && operators, proving

that the condition affects the result of the enclosing composition. For example, in a subset of values affected by the

other conditions, if the value of this condition changes, the result of the entire expression changes.

Because compound conditions list all possible cases, you must find the two cases that can result in changes to the

entire expression. The modified condition is covered only if the two compound conditions are covered.

In this following example, there are 6 basic conditions (FALSE and TRUE of each), 5 compound conditions, and 3

modified conditions :

/* state_control function */

int state_control (void)

{

if (((flag & 0x01) &&

(instances_number > 10)) ||

(flag & 0x04))

Chapter 5. Test Execution Specialist Guide

return VALID_STATE;

else

return INVALID_STATE;

}

The conditions can be described as True (T), False (F), or Not evaluated (X), as in the following example:

• flag & 0x01 : TTX=T and FXF=F

• nb_instances > 10 : TTX=T and TFF=F

• flag & 0x04 : TFT=T and TFF=F, or FXT=T and FXF=F

Therefore the 4 following test cases are enough to cover all those modified conditions :

• TTX=T

• FXF=F

• TFF=F

• TFT=T or FXT=T

Note You can associate a modified condition with more than one case, as shown in this example for flag & 0x04. In

the example, the modified condition is covered if the two compound conditions of at least one of these cases are

covered.

Code Coverage calculates matching cases for each modified condition.

The number of modified conditions matches the number of Boolean basic conditions in a composition of || and &&

operators.

Multiple Conditions

A multiple (or compound) condition is one of all the available cases for the || and && logical operator's composition,

whenever it appears in a C function. It is defined by the simultaneous values of the enclosed Boolean basic

conditions.

Remember that the right operand of a || or && logical operator is not evaluated if the evaluation of the left operand

determines the result of the entire expression.

In the following example, there are 3 basic conditions and 5 compound conditions:

/* state_control function */

/* -cond=compound */

363

HCL® OneTest™ Embedded

364

int state_control (void)

{

if (((flag & 0x01) &&

(instances_number > 10)) ||

(flag & 0x04))

return VALID_STATE;

else

return INVALID_STATE;

}

The conditions can be described as True (T), False (F), or Not evaluated (X), as in the following example:

• TTX=T <=> ((T && T) || X) = T

• TFT=T

• TFF=F

• FXT=T

• FXF=F

Code Coverage calculates every available case for each composition.

The number of enumerated branches is the number of distinct available cases for each composition of || or &&

operators.

Forced Conditions

Forced conditions are multiple conditions in which the Instrumentor replaces any occurrence of the || and &&

operators in the code, with | and & binary operators. You can use this coverage type, after evaluating all modified

conditions, to be sure that every basic condition has been evaluated. With this forced condition coverage, you can

ensure that only the basic condition has changed between two tests.

/* User source code */ /* -cond=forceevaluation */

if ((a && b) || c) ...

/* Replaced with the Code Coverage feature with : */

if ((a & b) | c) ...

/* Note : Operands evaluation results are enforced to one if different from 0 */

Chapter 5. Test Execution Specialist Guide

Note This replacement modifies the code semantics. Before running the test, you need to verify that this coverage

type does not modify the behavior of the software.

int f (MyStruct *A)

{

if (A && A->value > 0) /* the evaluation of A->value will cause a program error using

forced conditions if A pointer

is null */

{

A->value -= 1;

}

}

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Function coverage

Code Coverage for C

When analyzing C source code, HCL OneTest™ Embedded can provide the following function coverage:

• Procedure Entries

• Procedure Entries and Exits

Procedure Entries

Inputs identify the C functions that are executed.

/* Factorial function */

/* -proc */

int factorial (int a)

{

if (a > 0) return a * factorial (a - 1);

365

HCL® OneTest™ Embedded

366

else return 1;

}

One branch is defined per C function.

Procedure Entries and Exits (Returns and Terminal Statements)

These include the standard output (if coverable), and all return instructions, exits, and other terminal instructions that

are instrumented, as well as the input.

/* Factorial function */

/* -proc=ret */

int factorial (int a)

{

if (a > 0) return a * factorial (a - 1);

else return 1;

} /* standard output cannot be covered */

/* Divide function */

void divide (int a, int b, int *c)

{

if (b == 0)

{

fprintf (stderr, "Division by zero\n");

exit (1);

};

if (b == 1)

{

*c = a;

return;

};

Chapter 5. Test Execution Specialist Guide

*c = a / b;

}

At least two branches are defined per C function.

The input is always enumerated, as is the output if it can be covered. If it cannot, it is preceded by a terminal

instruction involving returns or an exit.

In addition to the terminal instructions provided in the standard definition file, you can define other terminal

instructions using the pragma attol exit_instr.

Note: The last bracket '}' in a function after a return statement is always displayed in red in the coverage

report, even if the function reports 100% coverage.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Additional statements

Code Coverage for C

Terminal Statements

A C statement is terminal if it transfers program control out of sequence (RETURN, GOTO, BREAK, CONTINUE), or

stops the execution (EXIT).

By extension, a decision statement (IF or SWITCH) is terminal if all branches are terminal; that is if the non-empty

THEN ... ELSE, CASE, and DEFAULT blocks all contain terminal statements. An IF statement without an ELSE and a

SWITCH statement without a DEFAULT are never terminal, because their empty blocks necessarily continue program

control in sequence.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at least one statement that transfers

program control out of their sequence (RETURN, GOTO, BREAK, CONTINUE), or that terminates the execution (EXIT):

• IF without an ELSE

• SWITCH

• FOR

• WHILE or DO ... WHILE

367

HCL® OneTest™ Embedded

368

Non-coverable Statements in C

Some C statements are considered non-coverable if they follow a terminal instruction, a CONTINUE, or a BREAK,

and are not a GOTO label. Code Coverage detects non-coverable statements during instrumentation and produces a

warning message that specifies the source file and line location of each non-coverable statement.

Note User functions whose purpose is to terminate execution unconditionally are not evaluated. Furthermore, Code

Coverage does not statically analyze exit conditions for loops to check whether they are infinite. As a result, FOR ...

WHILE and DO ... WHILE loops are always assumed to be non-terminal, able to resume program control in sequence.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

C++ coverage

Block coverage

Code Coverage for C++

When analyzing C++ source code, Code Coverage can provide the following block coverage types:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks

Statement blocks are the C++ function or method main blocks, blocks introduced by decision instructions:

• THEN and ELSE FOR IF, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by SWITCH CASE or DEFAULT statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.

int main () /* -BLOCK */

{

try {

if (0)

Chapter 5. Test Execution Specialist Guide

{

func ("Hello");

}

else

{

throw UnLucky ();

}

}

catch (Overflow & o) {

cout << o.String << '\n';

}

catch (UnLucky & u) {

throw u;

} /* potentially terminal statement */

return 0; /* sequence block */

}

Each simple block is a branch. Every C++ function and method contains at least one simple block corresponding to its

main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by IF statements without an ELSE statement, and a SWITCH statements without a

DEFAULT statement.

/* Power_of_10 function */

/* -BLOCK=DECISION or -BLOCK=IMPLICIT */

int power_of_10 (int value, int max)

{

int retval = value, i;

if (value == 0) return 0; else ;

369

HCL® OneTest™ Embedded

370

for (i = 0; i < 10; i++)

{

retval = (max / 10) < retval ? retval * 10 : max;

}

return retval;

}

/* Near_color function */

ColorType near_color (ColorType color)

{

switch (color)

{

case WHITE :

case LIGHT_GRAY :

return WHITE;

case RED :

case PINK :

case BURGUNDY :

return RED;

/* etc ... with no default */

default : ;

}

}

Each implicit block represents a branch.

Since the sum of all possible decision paths includes implicit blocks as well as simple blocks, reports provide the

total number of simple and implicit blocks as a figure and a percentage after the term decisions.

Loops (Logical Blocks)

Three branches are created in a for or while loop:

Chapter 5. Test Execution Specialist Guide

• The first branch is the simple block contained within the loop, and that is executed zero times (the entry

condition is false from the start).

• The second branch is the simple block executed exactly once (entry condition true, then false the next time).

• The third branch is the simple block executed at least twice (entry condition true at least twice, and false at

the end).

Two branches are created in a DO/WHILE loop, as the output condition is tested after the block has been executed:

• The first branch is the simple block executed exactly once (output condition true the first time).

• The second branch is the simple block executed at least twice (output condition false at least once, then true

at the end).

/* myClass::tryFiveTimes method */ /* -BLOCK=LOGICAL */

int myClass::tryFiveTimes ()

{

int result, i = 0;

/* letsgo () is a function whose return value depends

on the availability of a system resource, for example */

while (((result = letsgo ()) != 0) &&

(++i < 5));

return result;

} /* 3 logical blocks */

You need to execute the method tryFiveTimes () several times to completely cover the three logical blocks included

in the while loop.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Method coverage

Code Coverage for C++

Inputs to Procedures

Inputs identify the C++ methods executed.

371

HCL® OneTest™ Embedded

372

/* Vector::getCoord() method */ /* -PROC

*/

int Vector::getCoord (int index)

{

if (index >= 0 && index < size) return Values[index];

else return -1;

}

One branch per C++ method is defined.

Procedure Inputs, Outputs and Returns, and Terminal Instructions

These include the standard output (if coverable), all return instructions, and calls to exit(), abort(), or

terminate(), as well as the input.

/* Vector::getCoord() method */ /* -PROC=RET */

int Vector::getCoord (int index)

{

if (index >= 0 && index < size) return Values[index];

else return -1;

}

/* Divide function */

void divide (int a, int b, int *c)

{

if (b ==0)

{

fprintf (stderr, "Division by zero\n");

exit (1);

};

if (b ==1)

Chapter 5. Test Execution Specialist Guide

{

*c =a;

return;

};

*c =a /b;

}

At least two branches per C++ method are defined. The input is always enumerated, as is the output if it can

be covered. If it cannot, it is preceded by a terminal instruction involving returns or by a call to exit(), abort(), or

terminate().

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at least one statement that transfers

program control out of its sequence (RETURN, THROW, GOTO, BREAK, CONTINUE) or that terminates the execution

(EXIT).

• IF without an ELSE

• SWITCH, FOR

• WHILE or DO...WHILE

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Condition coverage

Code Coverage for C++

When analyzing C++ source code, HCL OneTest™ Embedded can provide the following condition coverage:

• Basic Coverage

• Forced Coverage

Basic Conditions

Conditions are operands of either || or && operators wherever they appear in the body of a C++ function. They are also

if and ternary expressions, tests for for, while, and do/while statements even if these expressions do not contain || or

373

HCL® OneTest™ Embedded

374

&& operators. Two branches are involved in each condition: the sub-condition being true and the sub-condition being

false.

Basic conditions also enable different case or default (which could be implicit) in a switch to be distinguished even

when they invoke the same simple block. A basic condition is associated with every case and default (written or not).

There are 4*2 basic conditions in the following example:

/* Power_of_10 function */

/* -cond */

int power_of_10 (int value, int max)

{

int result = value, i;

if (value == 0) return 0;

for (i = 0; i < 10; i++)

{

result = max > 0 && (max / value) < result ?

result * value :

max;

}

return result ;

}

There are at least 5 basic conditions in this example:

/* Near_color function */

ColorType near_color (ColorType color)

{

switch (color)

{

case WHITE :

case LIGHT_GRAY :

Chapter 5. Test Execution Specialist Guide

return WHITE;

case RED :

case PINK :

case BURGUNDY :

return RED;

/* etc ... */

}

}

Two branches are enumerated for each condition, and one per case or default.

Forced Conditions

Forced conditions are multiple conditions in which any occurrence of the | | and && operators has been replaced in

the code with | and & binary operators. Such a replacement done by the Instrumentor enforces the evaluation of the

right operands. You can use this coverage type after modified conditions have been reached to be sure that every

basic condition has been evaluated. With this coverage type, you can be sure that only the considered basic condition

changed between the two tests.

/* User source code */ /* -cond=forceevaluation */

if ((a && b) || c) ...

/* Replaced with the Code Coverage feature with : */

if ((a & b) | c) ...

/* Note : Operands evaluation results are enforced to one if different from 0 */

Note This replacement modifies the code semantics. You need to verify that using this coverage type does not modify

the behavior of the software.

int f (MyStruct *A)

{

if (A && A->value > 0) /* the evaluation of A->value will cause a program error using

forced conditions if A pointer

is null */

375

HCL® OneTest™ Embedded

376

{

A->value -= 1;

}

}

Modified Conditions

A modified condition is defined for each basic condition enclosed in a composition of | | or && operators. It aims

to prove that this condition affects the result of the enclosing composition. To do that, find a subset of values

affected by the other conditions, for example, if the value of this condition changes, the result of the entire expression

changes.

Because compound conditions list all possible cases, you must find the two cases that can result in changes to the

entire expression. The modified condition is covered only if the two compound conditions are covered.

/* state_control function */

int state_control (void)

{

if (((flag & 0x01) &&

(instances_number > 10)) ||

(flag & 0x04))

return VALID_STATE;

else

return INVALID_STATE;

}

In this example, there are 6 basic conditions (FALSE and TRUE of each), 5 compound conditions, and 3 modified

conditions :

• flag & 0x01 : TTX=T and FXF=F

• nb_instances > 10 : TTX=T and TFF=F

• flag & 0x04 : TFT=T and TFF=F, or FXT=T and FXF=F

Therefore the 4 following test cases are enough to cover all those modified conditions :

Chapter 5. Test Execution Specialist Guide

• TTX=T

• FXF=F

• TFF=F

• TFT=T or FXT=T

Note You can associate a modified condition with more than one case, as shown in this example for flag & 0x04. In

this example, the modified condition is covered if the two compound conditions of at least one of these cases are

covered.

Code Coverage calculates matching cases for each modified condition.

The same number of modified conditions as Boolean basic conditions appears in a composition of | | and &&

operators.

Multiple Conditions

A multiple (or compound) condition is one of all the available cases for the || and && logical operator's composition,

whenever it appears in a C++ class. It is defined by the simultaneous values of the enclosed Boolean basic

conditions.

A multiple condition is noted with a set of T, F, or X letters. These mean that the corresponding basic condition

evaluated to true, false, or was not evaluated, respectively. Remember that the right operand of a || or && logical

operator is not evaluated if the evaluation of the left operand determines the result of the entire expression.

/* state_control function */

/* -cond=compound */

int state_control (void)

{

if (((flag & 0x01) &&

(instances_number > 10)) ||

(flag & 0x04))

return VALID_STATE;

else

return INVALID_STATE;

}

377

HCL® OneTest™ Embedded

378

In this example, there are 3 basic conditions and 5 compound conditions :

• TTX=T <=> ((T && T) || X) = T

• TFT=T

• TFF=F

• FXT=T

• FXF=F

Code Coverage calculates every available case for each composition.

The number of enumerated branches is the number of distinct available cases for each composition of || or &&

operators.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Template instrumentation

Code Coverage for C++

Code Coverage performs the instrumentation of templates, functions, and methods of template classes, considering

that all instances share their branches. The number of branches computed by the feature is independent of the

number of instances for this template. All instances will cover the same once-defined branches in the template code.

Files containing template definitions implicitly included by the compiler (no specific compilation command is required

for such source files) are also instrumented by the Code Coverage feature and present in the instrumented files where

they are needed.

For some compilers, you must specifically take care of certain templates (for example, static or external linkage). You

must verify if your Code Coverage Runtime installation contains a file named templates.txt and, if it does, read that

file carefully.

• To instrument an application based upon Rogue Wave libraries , you must use the

-DRW_COMPILE_INSTANTIATE compilation flag that suppresses the implicit include mechanism in the header

files. (Corresponding source files are so included by pre-processing.)

• To instrument an application based upon ObjectSpace C++ Component Series , you must use the

-DOS_NO_AUTO_INSTANTIATE compilation flag that suppresses the implicit include mechanism in the header

files. (Corresponding source files are so included by pre-processing.)

• Any method (even unused ones) of an instantiated template class is analyzed and instrumented by the

Instrumentor. Some compilers do not try to analyze such unused methods. It is possible that some of these

Chapter 5. Test Execution Specialist Guide

methods are not fully compliant with C++ standards. For example, a template class with a formal class

template argument named T can contain a compare method that uses the == operator of the T class. If the C

class used for T at instantiation time does not define an == operator, and if the compare method is never used,

compilation succeeds but instrumentation fails. In such a situation, you can declare an == operator for the C

class or use the -instantiationmode=used Instrumentor option.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Additional Statements

Code Coverage for C++

Non-coverable Statements

A C++ statement is non-coverable if the statement can never possibly be executed. Code Coverage detects non-

coverable statements during instrumentation and produces a warning message that specifies the source file and line

location of each non-coverable statement.

Related Topics

Selecting coverage types on page 340 | Code Coverage settings on page 1027

Using the Code Coverage Viewer to view reports

Code Coverage for Ada, C and C++

The Code Coverage Viewer allows you to view code coverage reports generated by the Code Coverage feature. Select

a tab at the top of the Code Coverage Viewer window to select the type of report:

• A Source Report on page 381, showing the source code under analysis, highlighted with the actual coverage

information.

• A Rates Report on page 384, providing detailed coverage rates for each activated coverage type.

You can use the Report Explorer to navigate through the report. Click a source code component in the Report Explorer

to go to the corresponding line in the Report Viewer.

You can jump directly to the next or previous Failed test in the report by using the Next Failed Test or Previous Failed

Test buttons from the Code Coverage toolbar.

You can jump directly to the next or previous Uncovered line in the Source report by using the Next Uncovered Line or

Previous Uncovered Line buttons in the Code Coverage feature bar.

379

HCL® OneTest™ Embedded

380

When viewing a Source coverage report, the Code Coverage Viewer provides several additional viewing features for

refined code coverage analysis.

To open a Code Coverage report, follow these steps:

1. Right-click a previously executed test or application node

2. If a Code Coverage report was generated during execution of the node, select View Report and then Code

Coverage.

Coverage types

Depending on the language selected, the Code Coverage feature offers (see Coverage Types on page 340 for more

information):

• Function or Method code coverage: select between function Entries, Entries and exits, or None.

• Call code coverage: select Yes or No to toggle call coverage for Ada and C.

• Block code coverage: select the desired block coverage method.

• Condition code coverage: select condition coverage for Ada and C.

Please refer to the related topics for details on using each coverage type with each language.

Any of the Code Coverage types selected for instrumentation can be filtered out in the Code Coverage report stage if

necessary.

To filter coverage types from the report, proceed as follows:

1. From the Code Coverage menu, select Code Coverage Type.

2. Toggle each coverage type in the menu.

For example, to filter out multiple conditions (MC) from the report, select Code Coverage > Code Coverage Type, and

clear Multiple conditions.

Alternatively, you can filter out coverage types from the Code Coverage toolbar by toggling the Code Coverage type

filter buttons.

Test by test analysis mode

The t est by test analysis mode allows you to refine the coverage analysis by individually selecting the various tests

that were generated during executions of the test or application node. In Test-by-Test mode, a Tests node is available

in the Report Explorer.

When test by test analysis is disabled, the Code Coverage Viewer displays all traces as one global test.

To toggle Test-by-Test mode, follow these steps:

Chapter 5. Test Execution Specialist Guide

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu, select Test-by-Test.

To select the Tests to display in Test-by-Test mode, follow these steps:

1. Expand the Tests node at the top of the Report Explorer.

2. Select one or several tests. The Code Coverage Viewer provides code coverage information for the selected

tests.

Reloading a report

If a Code Coverage report has been updated since the moment you have opened it in the Code Coverage Viewer, you

can use the Reload command to refresh the display:

To reload a report, select Reload from the Code Coverage menu, select Reload.

Resetting a report

When you run a test or application node several times, the Code Coverage results are appended to the existing report.

The Reset command clears previous Code Coverage results and starts a new report.

To reset a report, select Reset from the Code Coverage menu.

Related information

Code Coverage viewer preferences on page 1049

Coverage types on page 340

Exporting reports to HTML on page 737

Coverage source report

Code Coverage applies to Ada, C and C++ languages.

You can use the standards keys (arrow keys, home, end, etc.) to move about and to select the source code. The Code

Coverage source report displays covered and uncovered lines of code colors. You can change these colors in the

Code Coverage report preferences.

Note: In C source files, the last bracket '}' in a function after a return statement is always displayed as uncovered in

the coverage report, even if the function reports 100% coverage.

Code colors

The covered and uncovered lines are displayed with the following colors by default:

• Green for covered lines of code.

• Red for uncovered lines of code.

381

HCL® OneTest™ Embedded

382

• Orange for partially covered lines of code.

• Blue for justified lines of code.

• Blue with the + icon for justified lines of code, which means that they should not be justified.

• Red with - icon for unreachable code.

•

For uncovered line of codes that are justified, click on the blue attributes value to see more details about the

justification text.

Chapter 5. Test Execution Specialist Guide

You can change the default colors in the code coverage report preferences. In the main menu toolbar, click

Edit > Preferences > Code Coverage Viewer > Styles, you can modify the text color for the covered lines,

covered lines with justify, justified lines, partially covered lines, and uncovered lines.

Hypertext Links

The Source report provides hypertext navigation throughout the source code:

• Click a plain underlined function call to jump to the definition of the function.

• Click a dashed underlined text to view additional coverage information in a pop-up window.

• Right-click any line of code and select Edit Source to open the source file in the Text Editor at the selected line

of code.

Macro Expansion

Certain macro-calls are preceded with a magnifying glass icon.

Click the magnifying glass icon to expand the macro in a pop-up window with the usual Code Coverage color codes.

Hit Count

The Hit Count tool-tip is a special capability that displays the number of times that a selected branch was covered.

383

HCL® OneTest™ Embedded

384

Hit Count is only available when Test-by-Test analysis is disabled and when the Hit Count option has been enabled for

the selected Configuration on page 690.

To activate the Hit Count tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Hit. The mouse cursor changes shape.

3. In the Code Coverage Viewer window, click a portion of covered source code to display the Hit Count tool-tip.

Cross Reference

The Cross Reference tool-tip displays the name of tests that executed a selected branch.

Cross Reference is only available in Test-by-Test mode.

To activate the Cross Reference tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Cross Reference. The mouse cursor changes shape.

3. In the Code Coverage Viewer window, click a portion of covered source code to display the Cross Reference

tooltip.

Comment

You can add a short comment to the generated Code Coverage report by using the Comment option in the Misc.

Options Settings for Code Coverage. This can be useful to distinguish different reports generated with different

Configurations.

Comments are displayed as a magnifying glass symbol at the top of the source code report. Click the magnifying

glass icon to display the comment.

Related Topics

About the code coverage viewer on page 72 | Coverage rates report on page 384

Coverage rates report

Code Coverage for Ada, C and C++

From the Code Coverage Viewer window, select the Rates tab to view the coverage rate report.

To view the coverage rate and type for a particular source code component, select the component in the Report

Explorer. Select the Root node to view coverage rates for all current files.

Chapter 5. Test Execution Specialist Guide

To change the displayed format between absolute values, percentages, or both, click on the Display line located just

above the table.

To sort the table by one of the values, click the column title.

Code Coverage rates are updated dynamically as you navigate through the Report Explorer and as you select various

coverage types.

Related Topics

About the Code Coverage Viewer on page 72 | Source Report on page 381

Bitwise MC/DC coverage
Put your short description here; used for first paragraph and abstract.

Type your text here.

• an interesting point

• another interesting point

Subheading

Here's a little section in a concept.

Exemple

Example

Here's a little example section in a concept.

On-the-fly code coverage

Code Coverage for C and C++

By default code coverage generates a report when the execution ends. The On-the-fly mode generates code coverage

results dynamically during the execution. This is useful for applications that never exit or to interact with the

execution during the analysis, for example if you want to stop the code coverage when you reach at a given coverage

rate threshold.

To enable the On-the-fly mode in Code Coverage:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Runtime Analysis and select Coverage > Advanced Options > On-

the-fly frequency dump.

385

HCL® OneTest™ Embedded

386

4. Specify the number of function calls after which the coverage results are updated during execution. 0 means

that there is no on-the-fly updating and that results are only generated at the end of the execution.

5. When you have finished, click OK to validate the changes.

Related Topics

Code Coverage settings on page 1027

Code Coverage Dump Driver

Code Coverage for C and C++

In C and C++, you can dump coverage trace data without using standard I/O functions by using the Code Coverage

Dump Driver API contained in the atcapi.h file, which is part of the Target Deployment Port

To customize the Code Coverage Dump Driver, open the Target Deployment Port directory and edit the atcapi.h.

Follow the instructions and comments included in the source code.

Related Topics

Generating SCI Dumps on page 1086

Cleaning code coverage report files

Code Coverage for C and C++

Code Coverage produces reports on each execution of the application under test. After many executions, the .tio

coverage report files can become quite large and take up a lot of disk space.

You can use the -CLEAN option with the attolcov command to remove unused and obsolete traces and to regain

some space without losing your execution history.

You can use the -MERGETESTS command line option to merge all the specified .tio coverage report files together.

To clean the .tio coverage report files, run the following command line:

attolcov <oldfiles.tio> -clean=<newfile.tio> -mergetests

where <oldfiles.tio> is a list of old .tio coverage report files and <newfile.tio> is the new .tio coverage report file.

Related Topics

About code coverage on page 72 | File types on page 1067

Justification of non-covered lines of code

Chapter 5. Test Execution Specialist Guide

You can enter justification statements in uncovered branches of a program so that they are considered as exceptions

to the coverage rules. Thus, you identify in the source code the branches that are not covered and explain why they

are not covered. The justification text must be declared in the attol cov_justify pragma line of the uncovered branch

with one or multiple attributes.

Note: This feature applies to C and C++ programming languages only.

SYNTAX:

The justification pragma syntax is the following one:

#pragma attol cov_justify (<lineOffset>, <type>, <what>, <justification text>) [(….) [(….) …..]]

#pragma attol cov_justify is the pragma, and <lineOffset>, <type>, <what>, and <justification text> are the attributes.

Multiple statements can be specified in the same pragma line, with four attributes for each.

Each justification statement in a pragma line can cover only one branch of the code starting from a specified line of

the source code.

Double-quotes can be added if the attribute includes commas.

The attributes are the following ones:

• <type> attribute:

This attribute is mandatory. It is used to determine what kind of code must be covered and how it must be

covered.

You can use the following <type>values:

◦ proc: to justify that a function or a method is not covered.

◦ return: to justify that a return statement is not covered.

◦ branch or block: to justify that a block of code is not covered.

◦ implicit: to justify that an implicit else statement is not covered.

◦ logical, or for, or while: to justify that a loop is not covered (the loop number is given in the <what>

attribute).

◦ case: to justify that a case statement in a switch is not covered.

◦ call: to justify that a function call or method call is not covered.

◦ cond: to justify that a simple condition is not covered (the value true or false of the condition is given

in the <what> attribute).

◦ mcdc: to justify that a MC/DC is not covered (the description of the MD/DC is given in the <what>

attribute).

• <lineOffset> attribute:

This attribute is optional.

387

HCL® OneTest™ Embedded

388

<lineOffset> attribute represents the number of lines between the pragma and the branch that must be

justified. The value can be '+' if the branch is located after the pragma, or '-' if the branch is located before the

pragma.

If the <lineOffset> attribute is omitted <lineOffset> is considered as "0". It means that the justification applies

to the closest type of branch (attribute <type>) from the pragma. If there are multiple branches at a same

distance of the pragma, <lineOffset> helps distinguish between branches which branch should be justified.

The <lineOffset> attribute specifies the line where the branch or condition to justify starts, it is relative to the

pragma line (+/-), allowing to write this pragma line anywhere in the source file.

Note: For the <block> value, the target block of lines is the block where the pragma is declared.

• <what> attribute:

The <what> values are used to help specify some of the branches to be justified. It depends on the attribute

<type> values being used:

◦ For block or branch <type>: The value is a string that describes the logical position of the block in the

function, like ‘/then/else/seq’.

◦ For logical, for and while <type>: The value is a list of ‘0’ (the loop is not executed), ‘1’ (the loop is

executed only once) or ‘2+’ (the loop is executed more that once) separated by ‘ ;’, each of them could

be prefixed with the block description string.

◦ For cond <type>: The value is <expression>:<value>, <value> is true or false and <expression>.

◦ For mcdc <type>: The value is a list of impossible combinations of the conditions separated by ‘;’,

each value of the conditions are set with ‘T’ for true, ‘F’ for false, or ‘X’ if the condition is not evaluated.

For example, if the MC/DC consists of 3 conditions, the <what> value could be the following one:

“TFX;FXX”.

• <justification text> is the reason why this part of code can't be covered by a test.

<justification> is mandatory. It is presented as a free text in the coverage report that justifies a uncovered

branch. It explains why it is not covered.

Example:

#pragma attol cov_justify (call, ”my justification”) (block, ”myjustification”) (cond, ”:true”,
 ”my justification”) (for, ”0;1” ,”my justification”)

The following table lists the parameters that can be entered in the “<lineOffset>” and <what> attributes depending on

the parameters indicated in the <type> attribute.

<type> attribute <lineOffset> attribute <what> attribute

proc For the <type>=proc, the pragma line

declared above or inside the body, or

Chapter 5. Test Execution Specialist Guide

<type> attribute <lineOffset> attribute <what> attribute

just after the end of the body justifies

the function/procedure entry.

return For <type>=return, the pragma line,

must be just before or just after the

return line.

branch/block For <type>=branch or block. It starts

on the first { of that block or on the

line of the unique statement.

The “branch to cover" attribute is

used for a branch=<type> The branch

string format is a list of :

/then/else/seq or /

It is used to indicate which branch

to cover when there are multiple

branches on the same line.

It can be empty is there are no ambi­

guity with the line number.

implicit For <type>=implicit, the pragma line

must be just before the decision, or

at the else place.

The “branch to cover" attribute is

used for <type>= <branch>.

The branch string format is a list of: /

then/else/seq or /

It is used to indicate which branch

to cover when there are multiple

branches on the same line.

It can be empty is there are no ambi­

guity with the line number.

logical/for/do/while For <type>=logical/for/while, the

pragma line must be just before the

‘for' or ‘while’, or ‘do’ keyword.

This attribute is used for <type>=log­

ical, the branch string format looks

like ‘branch depth/instruction type/

value’ with :

instruction type is:

/for or /while or /do

The value is /0 or /1 or /2+ to specify

which part must be covered and jus­

389

HCL® OneTest™ Embedded

390

<type> attribute <lineOffset> attribute <what> attribute

tified. It is mandatory and can speci­

fy multiple parts if separated by ; e.g.

“/0 ; /1”

Branch depth is a suite of strings like

/then /else /for /while etc. clari­

fying the code depth of the branch

where the loop has been found.

e.g. “/else/then/for/while/1” or

“/while/1” or “/1”

case For <type>=case, the pragma line

must be just before or just after the

case line.

A case is both a block and a condi­

tion. If you enter a justification for a

case <type>, it is the condition that is

justified. You need to declare another

pragma to justify the corresponding

block.

Used for <type>=case, the string de­

tails the case expression (between

‘case’ and the ‘:’) to cover into the

switch block.

It can be empty is there are no ambi­

guity with the line number.

call For <type>=call, the pragma line

must be just before or just after the

call line,

Used for type=call, the string details

the called method name to cover.

It can be empty is there are no ambi­

guity with the line number.

cond For <type>=cond, the pragma line

must be just before or just after the

condition line.

“condition expression:value" is used

for “<type>”=cond.The string indi­

cates the condition expression to

cover into the decision with the value

to cover, true or false. The “condition

expression” can be empty if there is

no ambiguity with the line number

but the value must always be spec­

ified after a colon at the end of the

string.

Example: “var>5:false” or “:true”.

Chapter 5. Test Execution Specialist Guide

<type> attribute <lineOffset> attribute <what> attribute

Multiple values can be justified, sepa­

rated by ‘;’ such as “:true ; :false”

mcdc For <type>=mcdc, the pragma line

must be just before or after the first

condition line, or just before or after

the last condition line.

“combinations" is used for type=

mcdc. It is a series of patterns sepa­

rated by a semi-colon ";". It cannot be

empty.

Once the source code is built, you can see the results of the non-coverage justification statements in the Code

Coverage report, on the Source page.

For more information about the code coverage reports, see About coverage reports on page 961.

Code coverage for assembler source files
With HCL OneTest™ Embedded Studio, you can collect coverage metrics for assembler source files. Coverage

information is displayed in the coverage report.

Note:

This feature supports only ARM in 32 bits mode. It is an extension of the C language mode.

You must have configured HCL OneTest™ Embedded Studio to recognize the .asm file extension used for

assembler files. For more details, see Using assembler source files on page 716.

Coverage Assembler language for ARM processor is fully compatible with C/C++ and Ada code coverage.

Assembler source files are taken into account in the build as C/C++ source files. Optionally, C/C++ source

files could be instrumented at the assembler level and not at the C/C++ level. To launch code coverage

for assembler files from a command, see Command line to launch code coverage for assembler files on

page 1107.

The supported coverage levels are:

• Functions

• Functions and exits

391

HCL® OneTest™ Embedded

392

• Statement blocks

• Calls

CONFIGURATION

Code coverage for assembler source files requires the use of an appropriate TDP. You can use the

clinCrossRaspiRemote.xdp and cwinCrossRaspiRemote.xdp that are delivered, for example.

There two use case scenarios:

• For a project that uses both C and assembler source files, you only have to add the assembler .asm source

files to the list of sources to be compiled. The .asm files are then instrumented, built, and linked with the other

C sources to produce an executable file.

• For C code source files that are instrumented in assembler mode, the C source files are converted into

assembler files by using the gcc -S command. Then, they are instrumented in assembler mode, they are

converted into assembly language, and linked.

To implement this use case scenario, you must set the INSTR_C_AS_ASM=1 environment variable.

To add this environment variable in Studio, proceed as follows:

◦ Click Settings in the Project window.

◦ Select Build options > Environment.

◦ Click the Value field on the Environment variable line, and click

◦ Click the Add icon, give a name to the variable, and enter INSTR_C_AS_ASM=1 in Value.

◦ Apply and close the window.

Chapter 5. Test Execution Specialist Guide

See the following example:

Note: In some case, when the assembler code increased due to the code coverage level, it might be

necessary to re-organize the assembler code (Example: you can move data pools), or to decrease the level of

code coverage (Example: you can delete code coverage for some functions calls in libraries).

Memory profiling for C and C++

About Memory Profiling for C and C++

Memory Profiling for C and C++

Run-time memory errors and leaks are among the most difficult errors to locate and the most important to correct.

The symptoms of incorrect memory use are unpredictable and typically appear far from the cause of the error. The

errors often remain undetected until triggered by a random event, so that a program can seem to work correctly when

in fact it's only working by accident.

That's where the Memory Profiling feature can help you.

393

HCL® OneTest™ Embedded

394

• You associate Memory Profiling with an existing test node or application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output to the Memory Profiling Viewer, which

provides a detailed report of memory issues.

Memory Profiling uses Source Code Insertion Technology for C and C++.

Because of the different technologies involved, Memory Profiling for Java on page 409 is covered in a separate

section.

Memory Profiling for C and C++ supports the following languages:

• C: ANSI 89, ANSI 99, or K&R C

• C++: ISO/IEC 14882:1998

How Memory Profiling for C and C++ Works

When an application node is executed, the source code is instrumented by the C or C++ Instrumentor (attolcpp or

attolcc1). The resulting source code is then executed and the Memory Profiling feature outputs a static .tsf file for

each instrumented source file and a dynamic .tpf file.

These files can be viewed and controlled from the HCL OneTest™ Embedded GUI. Both the .tsf and .tpf files need to

be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the test or application node is executed in the HCL

OneTest™ Embedded GUI or Eclipse (for C and C++).

To learn about See

Performing Memory Profiling on C and C++ source

code

Using Runtime Analysis Features on

page 336

How Memory Profiling for C and C++ works Memory Profiling User in C and C++

on page 402

Source Code Insertion technology Source code instrumentation overview

on page 16

JVMPI technology for Java memory analysis JVMPI Technology on page 412

Understanding Memory Profiling Reports Memory Profiling Results on

page 395

Using the Memory Profiler Viewer Using the Memory Profiling Viewer on

page 407

Chapter 5. Test Execution Specialist Guide

Customizing the Memory Profiling Viewer Memory Profiling Viewer Preferences

on page 1054

Related Topics

Memory Profiling Settings on page 1030 | Runtime Analysis on page 335 | Memory Profiling for Java on

page 409

Memory Profiling Results for C and C++

Memory Profiling for C and C++

After execution of an instrumented application, the Memory Profiling report provides a summary diagram and a

detailed report for both byte and memory block usage.

A memory block is a number of bytes allocated with a single malloc instruction. The number of bytes contained in

each block is the actual amount of memory allocated by the corresponding allocation instruction.

Summary diagrams

The summary diagrams give you a quick overview of memory usage in blocks and bytes.

Where:

• Allocated is the total memory allocated during the execution of the application

• Unfreed is the memory that remains allocated after the application was terminated

• Maximum is the highest memory usage encountered during execution

395

HCL® OneTest™ Embedded

396

Detailed Report

The detailed section of the report lists memory usage events, including the following errors and warnings:

• Error messages on page 396

• Warning messages on page 399

Related Topics

Using the Memory Profiling Viewer on page 407 | Memory Profiling Settings on page 1030

Memory Profiling Error Messages

Memory Profiling Error Messages

Memory Profiling for C and C++

Error messages indicate invalid program behavior. These are serious issues you should address before you check in

code.

List of Memory Profiling Error Messages

• Free on page 396 ing Freed Memory (FFM) on page 397

• Freeing Unallocated Memory (FUM) on page 397

• Freeing Invalid Memory (FIM) on page 397

• Late Detect Array Bounds Write (ABWL) on page 397

• Late Detect Free Memory Write (FMWL) on page 398

• Memory Allocation Failure (MAF) on page 399

• Core Dump (COR) on page 399

Related Topics

Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030 | Warning Messages on

page 399

Freeing Freed Memory (FFM)

Memory Profiling for C and C++

An FFM message indicates that the program is trying to free memory that has previously been freed.

Chapter 5. Test Execution Specialist Guide

This message can occur when one function frees the memory, but a data structure retains a pointer to that memory

and later a different function tries to free the same memory. This message can also occur if the heap is corrupted.

Memory Profiling maintains a free queue, whose role is to actually delay memory free calls in order to compare with

upcoming free calls. The length of the delay depends on the Free queue length and Free queue threshold Memory

Profiling Settings. A large deferred free queue length and threshold increases the chances of catching FFM errors

long after the block has been freed. A smaller deferred free queue length and threshold limits the amount of memory

on the deferred free queue, taking up less memory at run time but providing a lower level of error detection.

Related Topics

Error Messages on page 396 | Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030

Freeing Unallocated Memory (FUM)

Memory Profiling for C and C++

An FUM message indicates that the program is trying to free unallocated memory.

This message can occur when the memory is not yours to free. In addition, trying to free the following types of

memory causes a FUM error:

• Memory on the stack

• Program code and data sections

Related Topics

Error Messages on page 396 | Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030

Freeing Invalid Memory (FIM)

Memory Profiling for C and C++

An FIM message indicates that the program is trying to free allocated memory with the wrong instruction.

This message can occur when the memory free instruction mismatches the memory allocation instruction.

For example, a FIM occurs when memory is freed with a free instruction when it was allocated with a new instruction.

Related Topics

Error Messages on page 396 | Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030

Late Detect Array Bounds Write (ABWL)

Memory Profiling for C and C++

397

HCL® OneTest™ Embedded

398

An ABWL message indicates that the program wrote a value before the beginning or after the end of an allocated

block of memory.

Memory Profiling checks for ABWL errors whenever free() or dump() routines are called, or whenever the free queue is

actually flushed.

This message can occur when you:

• Make an array too small. For example, you fail to account for the terminating NULL in a string.

• Forget to multiply by sizeof(type) when you allocate an array of objects.

• Use an array index that is too large or is negative.

• Fail to NULL terminate a string.

• Are off by one when you copy elements up or down an array.

Memory Profiling actually allocates a larger block by adding a Red Zone at the beginning and end of each allocated

block of memory in the program. Memory Profiling monitors these Red Zones to detect ABWL errors.

Increasing the size of the Red Zone helps HCL OneTest™ Embedded catch bounds errors before or beyond the block

at the expense of increased memory usage. You can change the Red Zone size in the Memory Profiling Settings.

The ABWL error does not apply to local arrays allocated on the stack.

Note Unlike PurifyPlus, the ABWL error in the HCL OneTest™ Embedded Memory Profiling tool only applies to heap

memory zones and not to global or local tables.

Related Topics

Error Messages on page 396 | Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030

Late Detect Free Memory Write (FMWL)

Memory Profiling for C and C++

An FMWL message indicates that the program wrote to memory that was freed.

This message can occur when you:

• Have a dangling pointer to a block of memory that has already been freed (caused by retaining the pointer too

long or freeing the memory too soon)

• Index far off the end of a valid block

• Use a completely random pointer which happens to fall within a freed block of memory

Chapter 5. Test Execution Specialist Guide

Memory Profiling maintains a free queue, whose role is to actually delay memory free calls in order to compare with

upcoming free calls. The length of the delay depends on the Free queue length and Free queue threshold Memory

Profiling Settings. A large deferred free queue length and threshold increases the chances of catching FMWL errors. A

smaller deferred free queue length and threshold limits the amount of memory on the deferred free queue, taking up

less memory at run time but providing a lower level of error detection.

Related Topics

Error Messages on page 396 | Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030

Memory Allocation Failure (MAF)

Memory Profiling for C and C++

An MAF message indicates that a memory allocation call failed. This message typically indicates that the program

ran out of paging file space for a heap to grow. This message can also occur when a non-spreadable heap is

saturated.

After Memory Profiling displays the MAF message, a memory allocation call returns NULL in the normal manner.

Ideally, programs should handle allocation failures.

Related Topics

Error Messages on page 396 | Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030

Core Dump (COR)

Memory Profiling for C and C++

A COR message indicates that the program generated a UNIX core dump. This message can only occur when the

program is running on a UNIX target platform.

Related Topics

Error Messages on page 396 | Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030

Memory Profiling Warning Messages

Memory Profiling Warning Messages

Memory Profiling for C and C++

Warning messages indicate a situation in which the program might not fail immediately, but might later fail

sporadically, often without any apparent reason and with unexpected results. Warning messages often pinpoint

serious issues you should investigate before you check in code.

399

HCL® OneTest™ Embedded

400

List of Memory Profiling Warning Messages

• Memory in Use (MIU) on page 400

• Memory Leak (MLK) on page 400

• Potential Memory Leak (MPK) on page 401

• File in Use (FIU) on page 401

• Signal Handled (SIG) on page 402

Related Topics

Memory Profiling Results on page 395 | Memory Profiling Settings on page 1030 | Error Messages on page 396

Memory in Use (MIU)

Memory Profiling for C and C++

An MIU message indicates heap allocations to which the program has a pointer.

Note At exit, small amounts of memory in use in programs that run for a short time are not significant. However, you

should fix large amounts of memory in use in long running programs to avoid out-of-memory problems.

Memory Profiling generates a list of memory blocks in use when you activate the MIU Memory In Use option in the

Memory Profiling Settings.

Related Topics

Memory Profiling Results on page 395 | Warning Messages on page 399 | Memory Profiling Settings on

page 1030

Memory Leak (MLK)

Memory Profiling for C and C++

An MLK message describes leaked heap memory. There are no pointers to this block, or to anywhere within this

block.

Memory Profiling generates a list of leaked memory blocks when you activate the MLK Memory Leak option in the

Memory Profiling Settings.

This message can occur when you allocate memory locally in some function and exit the function without first freeing

the memory. This message can also occur when the last pointer referencing a block of memory is cleared, changed,

or goes out of scope. If the section of the program where the memory is allocated and leaked is executed repeatedly,

Chapter 5. Test Execution Specialist Guide

you might eventually run out of swap space, causing slow downs and crashes. This is a serious problem for long-

running, interactive programs.

To track memory leaks, examine the allocation location call stack where the memory was allocated and determine

where it should have been freed.

You can ignore memory leaks that do not have a call stack, for memory allocations that occur before the application

starts by changing the configuration Runtime Analysis > Memory Profiling > Instrumentation control > Only show

memory leaks with call stack.

Related Topics

Memory Profiling Results on page 395 | Warning Messages on page 399 | Memory Profiling Settings on

page 1030

Memory Potential Leak (MPK)

Memory Profiling for C and C++

An MPK message describes heap memory that might have been leaked. There are no pointers to the start of the

block, but there appear to be pointers pointing somewhere within the block. In order to free this memory, the program

must subtract an offset from the pointer to the interior of the block. In general, you should consider a potential leak to

be an actual leak until you can prove that it is not by identifying the code that performs this subtraction.

Memory in use can appear as an MPK if the pointer returned by some allocation function is offset. This message

can also occur when you reference a substring within a large string. Another example occurs when a pointer to a C++

object is cast to the second or later base class of a multiple-inherited object and it is offset past the other base class

objects.

Alternatively, leaked memory might appear as an MPK if some non-pointer integer within the program space, when

interpreted as a pointer, points within an otherwise leaked block of memory. However, this condition is rare.

Inspection of the code should easily differentiate between different causes of MPK messages.

Memory Profiling generates a list of potentially leaked memory blocks when you activate the MPK Memory Potential

Leak option in the Memory Profiling Settings.

Related Topics

Memory Profiling Results on page 395 | Warning Messages on page 399 | Memory Profiling Settings on

page 1030

File in Use (FIU)

Memory Profiling for C and C++

401

HCL® OneTest™ Embedded

402

An FIU message indicates a file that was opened, but never closed. An FIU message can indicate that the program

has a resource leak.

Memory Profiling generates a list of files in use when you activate the FIU Files In Use option in the Memory Profiling

Settings.

Related Topics

Memory Profiling Results on page 395 | Warning Messages on page 399 | Memory Profiling Settings on

page 1030

Signal Handled (SIG)

Memory Profiling for C and C++

A SIG message indicates that a system signal has been received.

Memory Profiling generates a list of received signals when you activate the SIG Signal Handled option in the Memory

Profiling Settings.

Related Topics

Memory Profiling Results on page 395 | Warning Messages on page 399 | Memory Profiling Settings on

page 1030

Memory Profiling User Heap in C and C++

Memory Profiling for C and C++

When using Memory Profiling on embedded or real-time target platforms, you might encounter one of the following

situations:

• Situation 1: There are no provisions for malloc, calloc, realloc or free statements on the target platform.

Your application uses custom heap management routines that may use a user API. Such routines could, for example,

be based on a static buffer that performs allocation and free actions.

In this case, you need to customize the memory heap parameters RTRT_DO_MALLOC and RTRT_DO_FREE in the TDP

to use the custom malloc and free functions.

In this case, you can access the custom API functions.

• Situation 2: There are partial implementations of malloc, calloc, realloc or free on the target, but other

functions provide methods of allocating or freeing heap memory.

Chapter 5. Test Execution Specialist Guide

In this case, you do not have access to any custom API. This requires customization of the Target Deployment

Port. Please refer to the Target Deployment Guide provided with the Opening the Target Deployment Port Editor on

page 40.

In both of the above situations, Memory Profiling can use the heap management routines to detect memory leaks,

array bounds and other memory-related defects.

Note Application pointers and block sizes can be modified by Memory Profiling in order to detect ABWL errors (Late

Detect Array Bounds Write). Actual-pointer and actual-size refer to the memory data handled by Memory Profiling,

whereas user pointer and user-size refer to the memory handled natively by the application-under-analysis. This

distinction is important for the Memory Profiling ABWL and Red zone settings.

Target Deployment Port API

The Target Deployment Port library provides the following API for Memory Profiling:

void * _PurifyLTHeapAction (_PurifyLT_API_ACTION, void *, RTRT_U_INT32, RTRT_U_INT8);

In the function _PurifyLTHeapAction the first parameter is the type of action that will be or has been performed on the

memory block pointed by the second parameter. The following actions can be used:

typedef enum {

_PurifyLT_API_ALLOC,

_PurifyLT_API_BEFORE_REALLOC,

_PurifyLT_API_FREE

} _PurifyLT_API_ACTION;

The third parameter is the size of the block. The fourth parameter is either of the following constants:

﷓define _PurifyLT_NO_DELAYED_FREE 0

﷓define _PurifyLT_DELAYED_FREE 1

If an allocation or free has a size of 0 this fourth parameter indicates a delayed free in order to detect FWML

(Late Detect Free Memory Write) and FFM (Freeing Freed Memory) errors. See the section on Memory Profiling

Configuration Settings for Detect FFM, Detect FMWL, Free Queue Length and Free Queue Size.

A freed delay can only be performed if the block can be freed with RTRT_DO_FREE (situation 1) or ANSI free (situation

2). For example, if a function requires more parameters than the pointer to de-allocate, then the FMWL and FFM

error detection cannot be supported and FFM errors will be indicated by an FUM (Freeing Unallocated Memory) error

instead.

403

HCL® OneTest™ Embedded

404

The following function returns the size of an allocated block, or 0 if the block was not declared to Memory Profiling.

This allows you to implement a library function similar to the msize from Microsoft Visual 6.0.

RTRT_SIZE_T _PurifyLTHeapPtrSize (void *);

The following function returns the actual-size of a memory block, depending on the size requested. Call this function

before the actual allocation to find out the quantity of memory that is available for the block and the contiguous red

zones that are to be monitored by Memory Profiling.

RTRT_SIZE_T _PurifyLTHeapActualSize (RTRT_SIZE_T);

Examples

In the following examples, my_malloc, my_realloc, my_free and my_msize demonstrate the four supported memory

heap behaviors.

The following routine declares an allocation:

void *my_malloc (int partId, size_t size)

{

void *ret;

size_t actual_size = _PurifyLTHeapActualSize(size);

/* Here is any user code making ret a pointer to a heap or

simulated heap memory block of actual_size bytes */

...

/* After comes Memory Profiling action */

return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0);

/* The user-pointer is returned */

}

In situation 2, where you have access to a custom memory heap API, replace the "..." with the actual malloc API

function.

For a my_calloc(size_t nelem, size_t elsize) , pass on nelem*elsize as the third parameter of the _PurifyLTHeapAction

function. In this case, you might need to replace this operation with a function that takes into account the alignments

of elements.

To declare a reallocation, two operations are required:

void *my_realloc (int partId, void * ptr, size_t size)

Chapter 5. Test Execution Specialist Guide

{

void *ret;

size_t actual_size = _PurifyLTHeapActualSize(size);

/* Before comes first Memory Profiling action */

ret = _PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC, ptr, size, 0);

/* ret now contains the actual-pointer */

/* Here is any user code making ret a reallocated pointer to a heap or

simulated heap memory block of actual_size bytes */

...

/* After comes second Memory Profiling action */

return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0);

/* The user-pointer is returned */

}

To free memory without using the delay:

void my_free (int partId, void * ptr)

{

/* Memory Profiling action comes first */

void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, 0);

/* Any code insuring actual deallocation of ret */

}

To free memory using a delay:

void my_free (int partId, void * ptr)

{

/* Memory Profiling action comes first */

void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, 1);

/* Nothing to do here */

405

HCL® OneTest™ Embedded

406

}

To obtain the user size of a block:

size_t my_msize (int partId, void * ptr)

{

return _PurifyLTHeapPtrSize (ptr);

}

Use the following macros to save customization time when dealing with functions that have the same prototypes as

the standard ANSI functions:

﷓define _PurifyLT_MALLOC_LIKE(func) \

void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T size) \

{ \

void *ret; \

ret = func (_PurifyLTHeapActualSize (size)); \

return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0); \

}

﷓define _PurifyLT_CALLOC_LIKE(func) \

void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T nelem, RTRT_SIZE_T elsize) \

{ \

void *ret; \

ret = func (_PurifyLTHeapActualSize (nelem * elsize)); \

return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, nelem * elsize, 0); \

}

﷓define _PurifyLT_REALLOC_LIKE(func,delayed_free) \

void *RTRT_CONCAT_MACRO(usr_,func) (void *ptr, RTRT_SIZE_T size) \

{ \

void *ret; \

Chapter 5. Test Execution Specialist Guide

ret = func (_PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC, \

ptr, size, delayed_free), \

_PurifyLTHeapActualSize (size)); \

return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0); \

}

﷓define _PurifyLT_FREE_LIKE(func,delayed_free) \

void RTRT_CONCAT_MACRO(usr_,func) (void *ptr) \

{ \

if (delayed_free) \

{ \

_PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, delayed_free); \

} \

else \

{ \

func (_PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, delayed_free)); \

} \

}

Related Topics

About Memory Profiling for C and C++ on page 393 | Error Messages on page 396 | Opening the Target

Deployment Port Editor on page 40

Using the Memory Profiling Viewer

Memory Profiling for C and C++

Memory Profiling results for C and C++ are displayed in the Memory Profiling Viewer.

Error and Warning Filter

The Memory Profiling Viewer for C and C++ allows you to filter out any particular type of Error on page 396 or

Warning on page 399 message from the report.

407

HCL® OneTest™ Embedded

408

To filter out error or warning messages:

1. Select an active Memory Profiling Viewer window.

2. From the Memory Profiling menu, select Errors and Warnings.

3. Select or clear the type of message that you want to show or hide.

For example, you can disable MLK (Memory Leak) with empty stack trace to hide from the report memory allocations

that occurred before the application started.

Reloading a Report

If a Memory Profiling report has been updated since the moment you have opened it in the Memory Profiling Viewer,

you can use the Reload command to refresh the display:

To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a Report

When you run a test or application node several times, the Memory Profiling results are appended to the existing

report. The Reset command clears previous Memory Profiling results and starts a new report.

To reset a report:

1. From the View Toolbar, click the Reset button.

Related Topics

Memory Profiling results on page 395 | Opening a report on page 715 | Report Explorer on page 1059 | Using the

report viewer on page 737 | Exporting reports on page 737

Checking for ABWL and FMWL errors

By default, Memory Profiling checks for ABWL and FMWL errors whenever the routines are called, or whenever the

free queue is actually flushed.

In some cases, it might be desirable to manually specify when to check for ABWL and FMWL errors, and on which

functions.

By using the ABWL and FMWL check frequency setting you can order a check on:

• Each time the memory is dumped (by default).

• Each time a manual check macro is encountered in the code.

• Each function return.

Chapter 5. Test Execution Specialist Guide

The checks can be performed either on all memory blocks or only a selection of memory blocks.

Specifying a manual check

To indicate where you want an ABWL or FMWL check to occur in your source code, you insert an _ATP_CHECK()

macro at the corresponding location. The syntax for the macro is:

﷓pragma attol insert _ATP_CHECK(@RELFLINE)

Each time this macro is encountered during execution, Memory Profiling checks for ABWL and FMWL errors on the

specified blocks. The @RELFLINE parameter allows navigation from the Memory Profiling report to the corresponding

line in the source code.

Selecting blocks to check

To create a selection of blocks that you specifically want to verify, you create a list in your source code using the

_ATP_TRACK() macro variable. The syntax for this macro is:

﷓pragma attol insert _ATP_TRACK(<pointer>)

Example

A sample demonstrating how to use this feature is provided in the ABWL Check Frequency example project. See

Example projects on page 709 for more information.

Related Topics

Memory Profiling Settings on page 1030 | Late Detect Free Memory Write (FMWL) on page 398 | Late Detect Array

Bounds Write (ABWL) on page 397

Memory Profiling for Java

Run-time memory problems are among the most difficult errors to locate and the most important to correct. The

symptoms of incorrect memory use are unpredictable and typically appear far from the cause of the error. The issue

often remain undetected until triggered by a random event, so that a program can seem to work correctly when in fact

it's only working by accident.

That's where the Memory Profiling feature can help you get ahead.

• You associate Memory Profiling with an existing test node or Application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output to the Memory Profiling Viewer, which

provides a detailed report of memory issues.

The Java version of Memory Profiling differs from other programming languages, among other aspects, by the way

memory is managed by the Java Virtual Machine (JVM). The technique used is the JVMPI Agent technology for Java.

409

HCL® OneTest™ Embedded

410

Memory Profiling for Java supports JDK 1.3.x and JDK 1.4.x

• C++: ISO/IEC 14882:1998

How Memory Profiling for Java Works

When an application node is executed, the source code is executed. The Memory Profiling for Java feature uses the

JVMPI mechanism to monitor the application. JVMPI outputs a dynamic .jpt file.

The .jpt file is split into a .tpf file and a .txf file, which can be viewed and controlled from the HCL OneTest™

Embedded GUI. Both the .tpf and .txf files need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the test or application node is executed in the HCL

OneTest™ Embedded GUI.

To learn about See

Performing Memory Profiling on C, C++ and Java source

code

Using Runtime Analysis Features on

page 336

JVMPI technology for Java memory analysis JVMPI Technology on page 412

Understanding Memory Profiling Reports Memory Profiling Results for Java on

page 410

Viewing the Memory Profiling reports for Java Using the Report Viewer on

page 737

Customizing the Memory Profiling Viewer Memory Profiling Viewer Prefer­

ences on page 1054

Related Topics

Memory Profiling Settings on page 1030 | JVMPI Technology on page 412 | About Memory Profiling for C and C++

on page 393

Memory Profiling Results for Java

Memory Profiling for Java

After execution of an instrumented application, the Memory Profiling report displays:

• In the Report Explorer window: a list of available snapshots

• In the Memory Profiling window: the contents of the selected Memory Profiling snapshot

Chapter 5. Test Execution Specialist Guide

Report Explorer

The Report Explorer window displays a Test for each execution of the application node or for a test node when using

Component Testing for Java. Inside each test, a Snapshot report is created for each Memory Profiling snapshot.

Method Snapshots

The Memory Profiling report displays snapshot data for each method that has performed an allocation. If the Java

CLASSPATH is correctly set, you can click blue method names to open the corresponding source code in the Text

Editor. System methods are displayed in black and cannot be clicked.

Method data is reset after each snapshot.

For each method, the report lists:

• Method:The method name. Blue method names are hyperlinks to the source code under analysis

• Allocated Objects: The number of objects allocated since the previous snapshot

• Allocated Bytes: The total number of bytes used by the objects allocated by the method since the previous

snapshot

• Local + D Allocated Objects: The number of objects allocated by the method since the previous snapshot as

well as any descendants called by the method

• Local + D Allocated Bytes: The total number of bytes used by the objects allocated by the method since the

previous snapshot and its descendants

Referenced Objects

If you selected the With objects filter option in the JVMPI Settings dialog box, the report can display, for each method,

a list of objects created by the method and object-related data.

From the Memory Profiling menu, select Hide/Show Referenced Objects.

For each object, the report lists:

• Reference Object Class:The name of the object class. Blue class names are hyperlinks to the source code

under analysis.

• Referenced Objects: The number of objects that exist at the moment the snapshot was taken

• Referenced Bytes: The total number of bytes used by the referenced objects

Differential Reports

The Memory Profile report can display differential data between two snapshots within the same Test. This allows you

to compare the referenced objects. There are two diff modes:

411

HCL® OneTest™ Embedded

412

• Automatic differential report with the previous snapshot

• User differential report

Differential reports add the following columns to the current Memory Profiling snapshot report:

• Referenced Objects Diff AUTO: Shows the difference in the number of referenced objects for the same

method in the current snapshot as compared to the previous snapshot

• Referenced Bytes Diff AUTO : Shows the difference in the memory used by the referenced objects for the

same method in the current snapshot as compared to the previous snapshot

• Referenced Objects Diff USER: Shows the difference in the number of referenced objects for the same

method in the current snapshot as compared to the user-selected snapshot

• Referenced Bytes Diff USER: Shows the difference in the memory used by the referenced objects for the

same method in the current snapshot as compared to the user-selected snapshot

To add or remove data to the report:

1. From the Memory Profiling menu, select Hide/Show Data.

2. Toggle the data that you want to hide or display

To sort the report:

1. In the Memory Profiling window, click a column label to sort the table on that value.

To obtain a differential report:

1. From the Memory Profiling menu, select Diff with Previous Referenced Objects.

To obtain a user differential report:

1. In the Report Explorer, select the current snapshot

2. Right-click another snapshot in the same Test node and select Diff Report.

Related Topics

Using the Memory Profiling Viewer on page 407 | Memory Profiling Settings on page 1030

JVMPI Technology

Memory Profiling for Java

Memory Profiling for Java uses a special dynamic library, known as the Memory Profiling Agent, to provide advanced

reports on Java Virtual Machine (JVM) memory usage.

Chapter 5. Test Execution Specialist Guide

Garbage Collection

JVMs implement a heap that stores all objects created by the Java code. Memory for new objects is dynamically

allocated on the heap. The JVM automatically frees objects that are no longer referenced by the program, preventing

many potential memory issues that exist in other languages. This process is called garbage collection.

In addition to freeing unreferenced objects, a garbage collector may also reduce heap fragmentation, which occurs

through the course of normal program execution. On a virtual memory system, the extra paging required to service an

ever growing heap can degrade the performance of the executing program.

JVMPI Agent

Because of the memory handling features included in the JVM, Memory Profiling for Java is quite different from the

feature provided for other languages. Instead of Source Code Insertion technology, the Java implementation uses a

JVM Profiler Interface (JVMPI) Agent whose task is to monitor JVM memory usage and to provide a memory dump

upon request.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent is a dynamic library —DLL or lib.so depending on the platform used— that is loaded as an option on

the command line that launches the Java program.

During execution, when the agent receives a snapshot trigger request, it can either an instantaneous JVMPI dump of

the JVM memory, or wait for the next garbage collection to be performed.

Note Information provided by the instantaneous dump includes actual memory use as well as intermediate and

unreferenced objects that are normally freed by the garbage collection. In some cases, such information may be

difficult to interpret correctly.

The actual trigger event can be implemented with any of the following methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the graphical user interface

• Every garbage collection

The JVMPI Agent requires that the Java code is compiled in debug mode, and cannot be used with Java in just-in-

time (JIT) mode.

Related Topics

Source code instrumentation overview on page 16 | About Memory Profiling on page 393 | Memory Profiling for

Java on page 409

413

HCL® OneTest™ Embedded

414

Performance profiling

Performance Profiling

Performance Profiling applies to C and C++

The Performance Profiling feature puts successful performance engineering within your grasp. It provides complete,

accurate performance data in an understandable and usable format so that you can see exactly where your code is

least efficient. Using Performance Profiling, you can make virtually any program run faster. And you can measure the

results.

Performance Profiling measures performance for every component in C and C++ source code, in real-time, and on

both native or embedded target platforms. Performance Profiling instruments the C and C++ source code of your

application. To test an application with the performance profiling feature: .

• Associate Performance Profiling with an existingtest orapplication code.

• Build and execute your code in HCL OneTest™ Embedded.

• The application under test is instrumented with the Performance Profiling feature and provides a detailed

report with metrics on execution time for each procedure/function/method of the application. For C language,

it also provides an estimation of Worst Case Estimation Time.

Performance Profiling supports the following languages:

• C: ANSI 89, ANSI 99, or K&R C

• C++: ISO/IEC 14882:1998

Related Topics

Source code instrumentation overview on page 16

Performance profiling settings

You can configure the performance profiling settings before running your application in HCL OneTest™ Embedded for

Studio.

Configuration Settings

All the following options must be set from the Configuration Settings window. To open this window:

• In the Project Window, right-click on the project and select Settings.

Chapter 5. Test Execution Specialist Guide

Enable the Performance Profiling

• In the Configuration Settings window, in the left panel, click Configuration properties > Build >

Build options.

• In the right pane, click the Value field in Build options and click ... to open the Build options

window.

• In the Build options list, click Performance Profiling to enable the feature.

Generate a trace file

• In the Configuration Settings window, in the left panel, click Configuration properties > Runtime

analysis > Performance Profiling.

• In the right panel, click in the value field of the Trace file name (.tqf) line option, and click In

the editor window that opens, specify a filename for the generated .tqf trace file for performance

profiling.

To get an evaluation of the Worst Case Execution Time in the report, you must set the WCET option.

Select the Worst Case Execution Time and/or the maximum execution time for each function and descendants:

• In the Configuration Settings window, in the left panel, click Configuration properties > Runtime

analysis > Performance Profiling.

• In the right pane, click Compute F max and F+D max time and select a value depending on the

execution time that you want to be calculated for your project:

◦ No: Does not calculate the maximum execution time for each function and descendants.

◦ Yes: Calculate the maximum execution time for each function and its descendants.

◦ Yes + WCET: Calculate the maximum execution time for each function and descendants,

and the Worst Case Execution Time. With this option selected, the report indicates the

number of time a function is called.

To get the performance profiling per entry point, you must enter the list of entry point threads of your application.

Entry points

To get the performance profiling per entry point, you must enter the list of entry points for each thread of

your application.

• In the Configuration Settings window, in the left panel, click Configuration properties > Runtime

analysis > General> Multi-thread options.

• Click in the value field and click ... to open the editor and enter the list of entry points for each

thread of your application. Use commas to separate the thread names.

Then, run the application and see the Performance report.

415

HCL® OneTest™ Embedded

416

Performance Profiling Results
The Performance Profiling report provides function profiling data for your program and its components so that you

can see exactly where your program spends most of its time. When the configuration settings are set and the test

application is run, you can see the Performance Profiling report.

The default Performance report is in HTML format. It is generated from a template named wcetreport.template

provided as text file that you can modify to customize the report. It uses four online JavaScript libraries:

• Bootstrap,

• JQuery,

• Font Awesome,

• VisJS.

These libraries are not provided. You need an internet connectivity when you open the report. If not, download the

libraries (.css and .js files), copy them in the same folder than your report, and modify the template file as follows:

Replace the following lines:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>

With the following ones:

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script

The Performance profiling report is made of Summary, Functions and the Call Graph parts.

Chapter 5. Test Execution Specialist Guide

SUMMARY

Summary table

The Summary table displays the total number of functions and the number of functions that have

never been executed and for which we have no data. If the instrumentation has been done with the

WCET option (Worst Case Execution Time), then the table contains the list of the entry points with an

evaluation of the WCET for each of them. This information can be empty (and the cell is red) if the

WCET could not be computed. This can occur when one of the called functions in the call graph starting

with this entry point has never been executed.

The WCET is given for each entry point if you have entered the list of entry point of your application in

the Settings. For more details, see Performance profiling settings on page 95.

Function time graphs

The Summary is followed by two graphs that provide a high level view of the largest time consumers

detected by Performance Profiling in your application.

• % Function Time: It gives the five top functions with the greatest percentage of Function Time.

• Average Function Time: It gives the five top functions with the greatest Average Function Time.

FUNCTIONS

The Functions section of the report displays a table with the instrumented functions, procedures or methods

(collectively referred to as functions) found in the application with the following information:

• Functions: Name of the function (in red if the function has never been executed).

If you have selected the WCET option, the chevron in front of the name allows the user to see how many times

this function calls other functions. This can help to understand how the WCET is calculated.

417

HCL® OneTest™ Embedded

418

• EP: Indicate if this function is an entry point or not. You can provide the list of the entry points, or, if not, they

are deduced from the call graph (all the functions that are never called).

• # Calls: Number of times the function is called. If this value is 0, there is no more information for this function

in the table because it has never been executed.

• Function Time: Total time spent for executing the function, excluding its descendants.

• Function + Descendants Time: Total time spent for executing the function, including its descendants.

• % Function Time: Percentage of time spent in this function against the total execution time.

• % Function + Descendants Time: Percentage of time spent for executing the function and its descendants

against the total execution time.

• Average Function Time: Average time spent for executing this function, excluding its descendants.

• Max Function Time: Only if you set the option Compute F max and F + D max. Indicates the maximum time

spent in a call while executing this function, excluding its descendants.

• Max Function + Descendants Time: Only if you set the option Compute F max and F + D max time, see

Performance profiling settings on page 95. This is the maximum time spent in a call while executing this

function, including its descendants.

• WCET: Only if you set the option WCET, see Performance profiling settings on page 95. It gives an

evaluation of the Worst Case Execution Time. This information can be empty if the WCET could not be

calculated during the execution. It is the case when one of the function and its descendants has never been

executed. Click the chevron icon to deploy the list of functions that are not called.

Call Graph

The Call Graph part displays all the functions in an interactive call graph that can be moved from left to right or from

top to bottom. If the option WCET has been set, a tooltip on each function (node of the graph) gives the WCET. For

more information, see Performance profiling settings on page 95.

Customize the Performance Report
You can customize a Performance report.

The Performance report is based on a template called wcetreport.template that you can find in the following folder:

• In Windows:

<installation_directory>\IBM\TestRealTime\lib\reports

Chapter 5. Test Execution Specialist Guide

• In Unix:

<installation_directory>/IBM/TestRealTime/lib/reports

Raw data

This template is made of three sections:

• The HTML section that is the common part of all reports,

• A JavaScript section that sets the tables and call graph depending of 2 variables dynamically initialized while

the report is creating:

var data = {{json}}; // the raw data

var d = new Date({{date}}) // the date of the generation

Raw data is composed of three sections at the top level:

• The list of the modules, each of them has the following information:

◦ Name is the short name of the C file,

◦ Fullname is the name and path of the C file,

◦ uuid is a unique identifier of the module,

◦ unknown is set to true is the module is not part of the information you provided (there is only one

unknown module that gathers all the function calls that are not in the known modules),

◦ functions is the list of the unique identifiers of functions of the module.

Modules are listed as hashmap with the uuid, as follows:

• The list of functions including following information:

◦ name is the name of the C function,

◦ line is the first line of the function in the module,

◦ id is the number used in .tsf file to identify this function,

◦ stacksize is the stack size computed during the execution if this option has been set (otherwise -1),

◦ uuid is a unique identifier of the function,

◦ module is a unique identifier of the module in which the function is declared,

◦ calls is the list of the calls in this function. Each of them have the following information:

419

HCL® OneTest™ Embedded

420

▪ calling_uuid is the unique identifier of the calling function,

▪ called_uuid is the unique identifier of the called function,

▪ line is the line number of the call in the module,

▪ col is the column number of the call in the module,

▪ same_module is set to true id the called function is in the same module that the calling

function.

◦ level is a number that represent the level of the function in the call graph, starting to 0.

◦ calledby is the list of unique identifiers of functions that call this one.

◦ maxLocal is the maximum time spent in the function, excluding its descendants.

◦ maxTotal is the maximum time spent in the function, including its descendants.

◦ sumLocal is the time spent in the function, excluding its descendants.

◦ sumTotal is the time spent in the function, excluding its descendants.

◦ wcet is the Worst Case Execution Time of the function (this value is negative if it has not been

calculated).

• Functions are listed as hashmap with the uuid, as following:

• The final section contains the following information:

◦ entrypoints is the list of entry points of the application; each of them contains:

▪ name is the name of the entry points.

▪ module is the uuid of the module where is the entry point.

▪ wcet is the Worst Case Execution Time of the entry points (this value is negative if it has not

been calculated).

Chapter 5. Test Execution Specialist Guide

◦ timeunit is the unit of time used in the report (us is for micro-second, ms for millisecond, s for

second).

◦ level is the setting for performance (0 when there is no "compute F max + D max time", 1 when this

option is not set to yes, 2 when it is set to yes + WCET).

An example of this section:

Performance Profiling SCI Dump Driver

Performance Profiling for C and C++

In C and C++, you can dump profiling trace data without using standard I/O functions by using the Performance

Profiling Dump Driver API contained in the atqapi.h file, which is part of the Target Deployment Port

To customize the Performance Profiling Dump Driver, open the Target Deployment Port directory and edit the

atqapi.h. Follow the instructions and comments included in the source code.

Related Topics

Generating SCI Dumps on page 1086

Using the Performance Profiling Viewer

Performance Profiling for C and C++

The product GUI displays Performance Profiling results in the Performance Profiling Viewer.

Reloading a Report

If a Performance Profiling report has been updated since the moment you have opened it in the Performance Profiling

Viewer, you can use the Reload command to refresh the display:

• Click the Reload button to reload a report From the View Toolbar.

421

HCL® OneTest™ Embedded

422

Resetting a Report

When you run a test or application node several times, the Performance Profiling results are appended to the existing

report. The Reset command clears previous Performance Profiling results and starts a new report.

• Click the Reset button from the View Toolbar to reset a report.

Exporting a Report to HTML

Performance Profiling results can be exported to an HTML file.

• Select Export from the File menu to export results.

Related Topics

Performance Profiling Results on page 96 |Applying Performance Profile Filters on page 422 | Opening a Report

on page 715 | Report Explorer on page 1059

Applying Performance Profile Filters

Performance Profiling for C and C++

Filters allow you to streamline a performance profile report by filtering out specific events. Use the Filter List dialog

box to specify how events are to be detected and filtered.

The export and import facilities are useful if you want to share and re-use filters between Projects and users.

To access the Filter List:

1. From the Performance Profile Viewer menu, select Filters or click the Filter button in the Perfomance Profile

Viewer toolbar.

To create a new filter:

1. Click the New button

2. Create the new filter with the Event Editor on page 436.

To modify an existing filter:

1. Select the filter that you want to change.

2. Click the Edit button.

3. Modify the filter with the Event Editor.

To import one or several filters:

Chapter 5. Test Execution Specialist Guide

1. Click the Import button.

2. Locate and select the .xlf file(s) that you want to import.

3. Click OK.

To export a filter event:

1. Select the filter that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .xlf file.

4. Click OK.

Related Topics

Editing Performance Profile Filters on page 423 | Performance Profiling Results on page 96 | Using the

Performance Profiling Viewer on page 421

Editing Performance Profile Filters

Performance Profiling for C and C++

Use the Filter Editor to create or modify filters that allow you to hide or show routines in the performance profile

report, based on specified filter criteria.

By default, routines that match the filter criteria are hidden in the report. Use the Invert filter option to invert this

behaviour: only routines that match the filter criteria are displayed.

Routine filters can be defined with one or more of the following criteria:

• Name: Specifies the name of a routine as the filter criteria.

• Calls > and Calls <: The number times the function was called is greater or lower than the specified value.

• F Time > and F Time <: Function time greater or lower than the specified value.

• F+D Time > and F+D Time <: Function and descendant time greater or lower than the specified value.

• F Time (%) > and F Time (%) <: Function time, expressed in percentage, greater or lower than the specified

value.

• F+D Time (%) > and F+D Time (%) <: Function and descendant time, expressed in percentage, greater or lower

than the specified value.

• Average > and Average <: The average time spent executing the function greater or lower than the specified

value.

423

HCL® OneTest™ Embedded

424

To define a routine filter:

1. In the Name box, specify a name for the filter.

2. Click More or Fewer to add or remove a criteria.

3. From the drop-down criteria box, select a criteria for the filter, and an argument.

Arguments must reflect an exact match for the criteria. Pay particular attention when referring to labels that

appear in the sequence diagram since they may be truncated.

You can use wildcards (*) or regular expressions by selecting the corresponding option.

4. Add or remove a criteria by clicking the More or Fewer buttons.

5. Click Ok.

Related Topics

Applying Performance Profile Filters on page 422 | Performance Profiling Results on page 96 | Using the

Performance Profiling Viewer on page 421

Runtime tracing

Runtime Tracing

Runtime Tracing for C, C++

Runtime Tracing is a feature for monitoring real-time dynamic interaction analysis of your C, C++ source code.

Runtime Tracing uses exclusive Source Code Insertion (SCI) instrumentation technology to generate trace data, which

is turned into UML sequence diagrams within the HCL OneTest™ Embedded GUI.

In HCL OneTest™ Embedded, Runtime Tracing can run either as a standalone product, or in conjunction with a

Component Testing or System Testing test node.

• You associate Performance Profiling with an existing test or application code.

• You build and execute your code in HCL OneTest™ Embedded.

• The application under test, instrumented with the Runtime Tracing feature, then directs output to the UML/SD

Viewer on page 431, which a provides a real-time UML Sequence Diagram of your application's behavior.

Runtime Tracing supports the following languages:

• C: ANSI 89, ANSI 99, or K&R C

• C++: ISO/IEC 14882:1998

Chapter 5. Test Execution Specialist Guide

How Runtime Tracing Works

When an application node is executed, the source code is instrumented by the C, C++ Instrumentor (attolcc1, attolccp

or attolcc4). The resulting source code is then executed and the Runtime Tracing feature outputs a static .tsf file for

each instrumented source file as well as a dynamic .tdf file.

These files can be viewed and controlled from the HCL OneTest™ Embedded GUI. Both the .tsf and .tdf files need to

be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the test or application node is executed in the HCL

OneTest™ Embedded GUI or Eclipse (for C and C++).

UML sequence diagram overview

Runtime Tracing for C, C++./span>

The lifeline of an object is represented in the UML/SD Viewer as shown below.

The instance creation box displays the name of the instance.

Example

Below is an example of object lifelines generated by Runtime Tracing from a C++ application.

In this C++ example:

425

HCL® OneTest™ Embedded

426

• Functions and static methods are attached to the World instance.

• Objects are labelled with obj <number> : <classname>

• The black cross represents the destruction of the instance.

• Constructors are displayed as green arrow actions.

• Destructors are the blue arrows.

• Return messages are dotted red lines.

• Other functions and methods are black.

• Themain() is a function of the World instance called by the same World instance.

You can perform the following tasks from the sequence diagram:

• To jump to the corresponding portion of source code, double-click an element of the object lifeline to open the

Text Editor at the corresponding line in the source code

• To jump to the beginning or to the end of an instance:

◦ Right-click an element of the object lifeline to jump to the beginning or to the end of an instance.

◦ Select Go to Head or Go to Destruction in the pop-up menu.

• To filter an instance out of the UML sequence diagram:

◦ Right-click an element of the object lifeline.

◦ Select Filter instance in the pop-up menu.

Related information

UML Sequence Diagrams on page 426

Model Elements and Relationships in Sequence Diagrams on page 440

UML Sequence Diagrams

A sequence diagram is a Unified Modeling Language (UML) diagram that provides a view of the chronological

sequence of messages between instances (objects or classifier roles) that work together in an interaction or

interaction instance. A sequence diagram consists of a group of instances (represented by lifelines) and the

messages that they exchange during the interaction. You line up instances participating in the interaction in any order

from left to right, and then you position the messages that they exchange in sequential order from top to bottom.

Activations sometimes appear on the lifelines.

A sequence diagram belongs to an interaction in a collaboration or an interaction instance in a collaboration instance.

Chapter 5. Test Execution Specialist Guide

Related information

Model Elements and Relationships in Sequence Diagrams on page 440

Viewing UML sequence diagrams on page 431

Tracing a test node

Runtime Tracing for C and C++

When Runtime Tracing is activated with a Component Testing or System Testing test node, monitoring a UML

sequence diagram of the execution from Runtime Tracing is a matter of including Runtime Tracing in the Build

options of an existing test node.

If however you are using Runtime Tracing on its own, you need to create an application node in the Project Explorer,

and associate it with the source files that you want to monitor.

To enable the runtime tracing option:

1. From the Build toolbar, click the Options button.

2. In the options list, select Runtime Tracing.

3. Click anywhere outside the options list to close it.

Next time you run a Make command on the selected test node, a Runtime Tracing UML sequence diagram will be

produced simultaneously with the standard test output.

To view runtime tracing output:

1. Runtime Tracing output is displayed, with the UML/SD Viewer, in the same UML sequence diagram as the

standard test's graphical output.

Related Topics

C and Ada Component Testing UML Sequence Diagrams on page 541 | C++ Component Testing UML Sequence

Diagrams on page 556| System Testing UML Sequence Diagrams on page 673

Step-by-step tracing

Runtime Tracing for C and C++

When tracing large applications, it may be useful to slow down the display of the UML sequence diagram. You can do

this by using the Step-by-Step mode.

To activate Step-by-Step mode:

427

HCL® OneTest™ Embedded

428

1. From the UML/SD Viewer menu, select Display Mode and Step-by-Step.

To select the type of graphical element to skip over:

1. In the UML/SD Viewer toolbar, click the button.

2. Select the graphical elements that will stop the Step command. Clear the elements that are to be ignored.

To step to the next selected element:

1. Click the Step button in the UML/SD Viewer toolbar or press F10.

To skip to the end of execution:

1. Click the Continue button in the UML/SD Viewer toolbar. This will immediately display the rest of the UML

sequence diagram.

To restart the Step-by-Step display:

1. Click the Restart button in the UML/SD toolbar.

To de-activate Step-by-Step mode

1. From the UML/SD Viewer menu, select Display Mode and All.

Related Topics

UML/SD Viewer Preferences on page 1052 | Runtime Tracing Control Settings on page 1032 | UML/SD Viewer

Toolbar on page 1063

Using sequence diagram triggers

Runtime Tracing for C and C++

Sequence Diagram triggers allow you to predefine automatic start and stop parameters for the UML/SD Viewer. The

trigger capability is useful if you only want to trace a specific portion of an instrumented application.

Triggers can be inactive, time-dependent, or event-dependent.

To access the Trigger dialog box:

1. From the UML/SD Viewer menu, select Triggers or click the Trigger button in the UML/SD Viewer toolbar.

Start and End of Runtime Tracing:

The Runtime Tracing start is defined on the Start tab:

Chapter 5. Test Execution Specialist Guide

• At the beginning: Runtime Tracing starts when the application starts.

• On time: Runtime Tracing starts after a specified number of microseconds.

• On event: Runtime Tracing starts when a specified event is detected. One or several events must be specified

with the Event Editor.

The Runtime Tracing end is defined on the Stop tab:

• Never: Runtime Tracing ends when the application exits.

• On time: Runtime Tracing ends after a specified number of seconds.

• On event: Runtime Tracing ends when a specified event is detected. One or several events must be specified

with the Event Editor.

To create a new trigger event:

1. Click the New button

2. Create the new trigger event with the Event Editor.

To modify an existing trigger event:

1. Select the trigger event that you want to change.

2. Click the Edit button.

3. Modify the trigger event with the Event Editor.

To import one or several trigger events:

The import facility is useful if you want to reuse trigger events created in another Project.

1. Click the Import button.

2. Locate and select the file(s) that you want to import.

3. Click OK.

To export a trigger event:

The export facility allows you to transfer trigger events.

1. Select the trigger event that you want to export.

2. Click the Export button.

429

HCL® OneTest™ Embedded

430

3. Select the location and name of the exported .tft file.

4. Click OK.

Related Topics

Editing Trigger or Filter Events on page 436 | Applying Filters on page 430

Applying Sequence Diagram Filters

Runtime Tracing for C, C++.

Filters allow you to streamline a sequence diagram by filtering out specific event types. Use the Viewer's Filter List

dialog box to specify how events are to be detected and filtered.

The export and import facilities are useful if you want to share and re-use filters between Projects and users.

To access the Filter List:

1. From the UML/SD Viewer menu, select Filters or click the Filter button in the UML/SD Viewer toolbar.

To create a new filter:

1. Click the New button

2. Create the new filter with the Event Editor on page 436.

To modify an existing filter:

1. Select the filter that you want to change.

2. Click the Edit button.

3. Modify the filter with the Event Editor.

To import one or several filters:

1. Click the Import button.

2. Locate and select the .tft file(s) that you want to import.

3. Click OK.

To export a filter event:

1. Select the filter that you want to export.

2. Click the Export button.

Chapter 5. Test Execution Specialist Guide

3. Select the location and name of the exported .tft file.

4. Click OK.

Related Topics

Editing Trigger or Filter Events on page 436

Adding UML notes to source code

Runtime Tracing for C and C++

You can manually add your own notes inside your source code in order to make them display in the UML sequence

diagram when runtime tracing is enabled. To do this, you must insert the following line, called an instrumentation

pragma, in your C or C++ source code:

﷓pragma attol att_insert_ATT_USER_NOTE("Text")

This can be done automatically with the text editor.

To manually set the syntax coloring mode:

1. In a C or C++ source file, place your cursor at the line where you want a UML note to be displayed in the UML

sequence diagram.

2. In the toolbar, click Add Note . This inserts the instrumentation pragma line in the source code:

3. Replace "Text" with a meaningful string that will be displayed in the note.

Related Topics

Runtime tracing on page 424 | Editing code and test scripts on page 725 | UML sequence diagrams on

page 426 | Notes on page 682 | Instrumentation pragmas on page 1081

Viewing UML sequence diagrams

Runtime Tracing for C and C++

The UML/SD Viewer renders sequence diagram reports as specified by the UML standard.

UML sequence diagram can be produced directly via the execution of the SCI-instruction application when using the

Runtime Tracing feature.

The UML/SD Viewer can also display UML sequence diagram results for Component and System Testing features.

To learn about See

431

HCL® OneTest™ Embedded

432

The meaning of UML sequence diagrams produced by the Runtime

Tracing feature

Runtime Tracing sequence diagram represen­

tations

The meaning of UML sequence diagrams produced by the Compo­

nent Testing for C and Ada feature

Component Testing for C and Ada sequence

diagram representations on page 541

The meaning of UML sequence diagrams produced by the Compo­

nent Testing for C++ feature

Component Testing for C++ sequence diagram

representations

The meaning of UML sequence diagrams produced by the System

Testing for C feature

System Testing sequence diagram representa­

tions on page 673

Moving around in a UML sequence diagram Navigating through UML/SD Viewer reports

Filtering out specific events from the UML sequence diagram Applying filters

Setting start and stop triggers on specific events in the UML se­

quence diagram

Sequence diagram triggers

How to find particular items within a UML sequence diagram Finding a text string in a UML Sequence Dia­

gram

Using the zoom setting Setting a zoom level

Customizing the UML/SD Viewer UML/SD Viewer preferences

Related Topics

UML Sequence Diagrams on page 426

About Runtime Tracing on page 424

Navigating through UML Sequence Diagrams

Runtime Tracing for C and C++

There are several ways of moving around the UML sequence diagrams displayed by the UML/SD Viewer:

• Navigation Panel: Click and drag the Navigation button in the lower right corner of the UML/SD Viewer

window to scroll through a miniature navigation pane representing the entire UML sequence diagram.

• Free scroll: Press the Control key and the left mouse button simultaneously. This displays a compass icon,

allowing you to scroll the UML sequence diagram in all direction by the moving the mouse.

• Report Explorer: The Report Explorer is automatically activated when the UML/SD Viewer is activated. The

Report Explorer offers a hierarchical view of instances. Click an item in the Report Explorer to locate and

select the corresponding UML representation in the main UML/SD Viewer window.

Some elements in the sequence diagram provide links to the corresponding line in the source code. For example, if

you click a message in a sequence diagram, the text editor opens the corresponding source file in the text editor.

Chapter 5. Test Execution Specialist Guide

Note If the source file is already open, it is not brought forward.

Related Topics

Report Explorer on page 1059 | Finding Text in a UML Sequence Diagram on page 439 | Applying Filters on

page 430 | Sequence Diagram Triggers on page 428 | UML/SD Viewer Preferences on page 1052 | UML/SD

Viewer Toolbar on page 1063

Time Stamping

Runtime Tracing for C and C++

The UML/SD Viewer displays time stamping information on the left of the UML sequence diagram. Time stamps are

based on the execution time of the application on the target.

You can change the display format of time stamp information in the UML/SD Viewer Preferences.

The following time format codes are available:

• %n - nanoseconds

• %u - microseconds

• %m - milliseconds

• %s - seconds

• %M - minutes

• %H - hours

These codes are replaced by the actual number. For example, if the time elapsed is 12ms, then the format %mms

would result in the printed value 12ms. If the number 0 follows the % symbol but precedes the format code, then 0

values are printed to the viewer - otherwise, 0 values are not printed. For example, if the time elapsed is 10ns, and the

selected format code is %0mms %nns, then the time stamp would read 0ms 10ns .

Note To change the format code you must press the Enter key immediately after selecting/entering the new code.

Simply pressing the OK button on the Preferences window will not update the time stamp format code.

Related Topics

UML/SD Viewer Preferences on page 1052 | About the UML/SD Viewer on page 431

Coverage Bar

Runtime Tracing for C and C++

In C and C++, the coverage bar provides an estimation of code coverage.

433

HCL® OneTest™ Embedded

434

Note The coverage bar is unrelated to the Code Coverage feature. For detailed code coverage reports, use the

dedicated Code Coverage feature.

When using the Runtime Tracing feature, the UML/SD Viewer can display an extra column on the left of the UML/SD

Viewer window to indicate code coverage simultaneously with UML sequence diagram messages.

The UML/SD Viewer code coverage bar is merely an indication of the ratio of encountered versus declared function or

method entries and potential exceptions since the beginning of the sequence diagram.

If new declarations occur during the execution the graph is recalculated, therefore the coverage bar always displays a

increasing coverage rate.

To hide the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Coverage.

To show the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Coverage.

Related Topics

About Code Coverage on page 72 | Memory Usage Bar on page 434 | Time Stamping on page 433 | UML/SD

Viewer Preferences on page 1052 | Memory Profiling Settings on page 1030

Memory Usage Bar

Runtime Tracing for C and C++.

When using the Runtime Tracing feature on a Java application, the UML/SD Viewer can display an extra bar on the left

of the UML/SD Viewer window to indicate total memory usage for each sequence diagram message event.

The memory usage bar indicates how much memory has been allocated by the application and is still in use or not

garbage collected.

In parallel to the UML sequence diagram, the graph bar represents the allocated memory against the highest amount

of memory allocated during the execution of the application.

This ratio is calculated by subtracting the amount of free memory from the total amount of memory used by the

application. The total amount of memory is subject to change during the execution and therefore the graph is

recalculated whenever the largest amount of allocated memory increases.

A tooltip displays the actual memory usage in bytes.

Chapter 5. Test Execution Specialist Guide

To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling settings box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable coverage tracing for the selected node.

3. Click OK to override the default settings of the node

To hide the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Memory Usage.

To show the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Memory Usage.

Related Topics

Thread Bar on page 435 | Time Stamping on page 433 | UML/SD Viewer Preferences on page 1052 | Memory

Profiling Settings on page 1030

Thread Bar

Runtime Tracing for C and C++

When using the Runtime Tracing feature on C and C++ code, the UML/SD Viewer can display an extra column on the

left of its window to indicate the active thread during each UML sequence diagram event.

Each thread is displayed as a different colored zone. A tooltip displays the name of the thread.

Click the thread bar to open the Thread Properties window.

To hide the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Thread Bar.

To show the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Thread Bar.

435

HCL® OneTest™ Embedded

436

Related Topics

Thread Properties on page 436 | Memory Usage Bar on page 434 | Time Stamping on page 433 | UML/SD

Viewer Preferences on page 1052

Thread properties

Runtime Tracing for C and C++

The Thread Properties window displays a list of all threads that are created during execution of the application.

Threads are listed with the following properties:

• Colour tab: As displayed in the Thread Bar.

• Thread ID: A sequential number corresponding to the order in which each thread was created.

• Name: The name of the thread.

• State: Either Sleeping or Running state.

• Priority: The current priority of the thread.

• Since: The timestamp of the moment the thread entered the current state.

Click the title of each column to sort the list by the corresponding property

Thread Properties Filter

By default, the Thread Properties window displays the entire list of thread states during execution of the program.

To switch the Thread Properties Filter:

1. Click Filter to display reduce the display to the list of threads created by the application.

2. Click Unfilter to return the full list of thread states.

Related Topics

Thread Bar on page 435

Filtering sequence diagram events

Runtime Tracing for C and C++

Use the Event Editor to create or modify event triggers or filters for UML sequence diagrams:

Chapter 5. Test Execution Specialist Guide

• Filters: Specified events are hidden or shown in the UML sequence diagram.

• Start triggers: The UML/SD Viewer starts displaying the sequence diagram when a specified event is

encountered. If no event matches the output of the application, the diagram will appear blank.

• Stop triggers: The UML/SD Viewer stops displaying the sequence diagram when a specified event is

encountered.

Events can be related to messages, instances, notes, synchronizations, actions or loops.

To define an event or filter:

1. Specify a name for the event.

2. Select the type of UML element you want to define for the event and select Activate. Several types of elements

can be activated for a single filter or trigger event.

3. Click More or Fewer to add or remove line to the event criteria.

4. From the drop-down criteria box, select a criteria for the filter, and an argument.

5. Arguments must reflect an exact match for the criteria. Pay particular attention when referring to labels that

appear in the sequence diagram since they may be truncated.

6. You can use wildcards (*) or regular expressions by selecting the corresponding option.

7. Click the button to enable or disable case sensitivity in the criteria.

8. You can add or remove a criteria by clicking the More or Fewer buttons.

9. Click Ok.

Message Criteria

• Name: Specifies a message name as the filter criteria.

• Internal message: Considers all messages other than constructor calls coming from any internal source, as

opposed to those messages coming from the World instance.

• From Instance: Considers all messages other than constructor calls prior to the first message sent from the

specified object

• To Instance: Considers out all messages other than constructor calls if any message is sent to the specified

object

• From World: Considers all messages received from the World instance

• To World: Considers all messages sent to the World instance

437

HCL® OneTest™ Embedded

438

Instance Criteria

• Name: Specifies an instance name as the filter criteria

• Instance child of: Specifies a child instance of the specified class.

Note Criteria

• All: Considers all notes

• Name: Specifies a note name

• All message notes: Considers any note attached to a message

• All instance notes: Considers any note attached to an instance

• Instance child of: Specifies a note attached to an instance of the specified class

• Note on message named: Considers a note attached to a specified message

• With style named: Considers a note with the specified style attributes

Synchronization Criteria

• All: Considers all synchronization events

• Name: Specifies a synchronization name

Action Criteria

• All: Considers all actions

• Name: Specifies an action name

• From Instance: Considers an action performed by the specified object

• From World: Considers all actions performed by the World instance

• Instance child of: Specifies an action performed by an instance of the specified class

• With style named: Considers an action with the specified style attributes

Loop Criteria

• All: Considers all loops

• Name: Specifies a loop name

Chapter 5. Test Execution Specialist Guide

Boolean Operators

• All Except expresses a NOT operation on the criteria

• Match All performs an AND operation on the series of criteria

• Match Any performs an OR operation on the series of criteria

Related Topics

Applying Filters on page 430 | Sequence Diagram Triggers on page 428 | Understanding UML Sequence Diagrams

on page 425

Finding text in a sequence diagram

Runtime Tracing for C and C++

The UML/SD Viewer has an extensive search facility that allows users to locate specific UML sequence diagram

elements by searching for a text string.

To search for a text string inside the UML/SD Viewer:

1. Click inside a UML/SD Viewer window to activate it.

2. From the Edit menu, select Find menu item. The Find dialog box opens.

3. Type your search criteria in the Find dialog box.

4. Click the Find Next button.

5. If a string corresponding to the search criteria is found in the UML/SD Viewer, the string is highlighted and the

following message is displayed: Runtime Tracing has finished searching the document.

6. Click OK.

Search Options

• Forward and Backward specifies the direction of the search.

• The Search into option allows you to specify type of object in which you expect to find the search string.

• The Find dialog box accepts either UNIX regular expressions or DOS-like wildcards ('?' or '*'). Select either

wildcard or reg. exp. in the Find dialog box to select the corresponding mode.

Related Topics

About the UML/SD Viewer on page 431 | Navigating through UML/SD Viewer reports on page 432

439

HCL® OneTest™ Embedded

440

Exporting a sequence diagram to a text file (.csv)

The UML/SD Viewer can generate sequence diagram results in a .csv text file. A .csv file is a text file presented as

a table. You can import these results into a text editor, a spreadsheet application or use them to operate a file diff

comparison for non-regression evaluation.

You can specify the format used to generate the .csv text file in the Data table preferences.

To generate a .csv text file from a sequence diagram:

1. After running an application or test node with Runtime Tracing, open a sequence diagram.

2. From the Runtime Trace menu, select Generate CSV.

3. In the Generate CSV window, specify the name of the text file.

4. Select Generate columns header to insert a line with column titles at the top of the file.

5. In the Columns list, select the sequence diagram elements that you want to export to the text file. Use the Up

and Down buttons to change the order.

6. In the Additional Filters list, select any sequence diagram elements that you want to filter out of the report.

7. Click Preview to see how the table will appear in a spreadsheet application. The CSV Preview window is

limited to the first 100 lines. Click Close to exit the preview.

8. Click OK.

Related Topics

Data table preferences on page 1046 | Exporting reports to CSV | Exporting reports to HTML on page 737

Model Elements and Relationships in Sequence Diagrams

The UML sequence diagrams produced by the UML/SD Viewer illustrate program interactions with an emphasis on

the chronological order of messages.

To learn about See

Notation used to show when an instance (object or classifier role) is active Activations on

page 675

Model elements that represent roles played by classifiers participating in a collaboration Classifier Roles

on page 676

Notation used to show that an instance has been destroyed Destruction

Markers on

page 678

Notation used to show the existence of an instance during an interaction Lifelines on

page 679

Model elements that represent communication between classifier roles Messages on

page 681

Chapter 5. Test Execution Specialist Guide

Model elements that represent instances of classifiers Objects on

page 683

Model elements that represent communication between objects Stimuli on

page 684

Non-standard model elements that represent thrown exceptions in C++ Exceptions on

page 678

Model element that describes a role that a user plays when interacting with the system being

modeled

Actors on

page 675

Non-standard model elements that represent a loop in the execution of a program Loops on

page 680

Non-standard model elements that are used to represent synchronization points when multiple

files are viewed together

Synchro­

nizations on

page 686

Model elements that represent miscellaneous information such as comments or user-defined

messages

Notes on

page 682

Related Topics

UML Sequence Diagrams on page 426

Advanced runtime tracing

Multi-thread support

Runtime Tracing for C, C++

Runtime Tracing can be configured for use in a multi-threaded environment such as Windows.

Multi-thread mode protects Target Deployment Port global variables against concurrent access. This causes a

significant increase in Target Deployment Port size as well as an impact on performance. Therefore, select this option

only when necessary.

Multi thread settings:

These settings are ignored if you are not using a multi-threaded environment. To change these settings, use the Build

Settings > Target Deployment Port build dialog box.

441

HCL® OneTest™ Embedded

442

• Maximum number of threads: This value sets the size of the thread management table inside the Target

Deployment Port. Lower values save memory on the target platform. Higher values allow more simultaneous

threads.

• Record and display thread info: When selected, the UML Sequence Diagram displays a note each time a new

thread is created and each time a thread's schedule is changed.

To access the multi-thread build settings:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select Build > Target Deployment Port build.

4. Set the Multi-threaded application and Maximum number of threads settings.

5. Select Runtime Analysis > Runtime Tracing > Runtime options.

6. Set Record and display thread info to Yes or No.

7. When you have finished, click OK to validate the changes.

Related Topics

Runtime Tracing Control Settings on page 1032 | Build settings on page 1019 | About Configuration Settings on

page 690

Partial trace flush

Runtime Tracing for C, C++

When using this mode, the Target Deployment Port only sends messages related to instance creation and destruction,

or user notes. All other events are ignored. This can be useful to reduce the output of trace.

When Partial Trace Flush mode is enabled, message dump can be toggled on and off during trace execution.

The Partial Trace Flush settings are located in the Runtime Tracing Settings.

To enable Partial Trace Flush from the Node Settings:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select Runtime Analysis > Runtime Tracing > Runtime options.

4. Set the Partial Runtime Tracing flush setting to Yes or No to activate or disable the mode.

5. When you have finished, click OK to validate the changes.

Chapter 5. Test Execution Specialist Guide

To toggle message dump from within the source code:

1. To do this, use the Runtime Tracing pragma user directives:

• ◦ _ATT_START_DUMP

◦ _ATT_STOP_DUMP

◦ _ATT_TOGGLE_DUMP

◦ _ATT_DUMP_STACK

See the Reference Manual for more information about pragma directives.

To control message dump through a user signal (native UNIX only):

This capability is available only when using a native UNIX target platform.

Under UNIX, the kill command allows you to send a user signal to a process. Runtime Tracing can use this signal to

toggle message dump on and off.

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Partial Runtime Tracing flush setting to Yes or No to activate or disable the mode.

6. When you have finished, click OK to validate the changes.

Note By default, the expected signal is SIGUSR1, but you can change this by setting the ATT_SIGNAL_DUMP

environment variable to the desired signal number. See the Reference Manual for more information about

environment variables.

Related Topics

Runtime Tracing Control Settings on page 1032

Trace item buffer

Runtime Tracing for C and C++

Buffering allows you to reduce formatting and I/O processing at time-critical steps by telling the Target Deployment

Port to only output trace information when its buffer is full or at user-controlled points.

443

HCL® OneTest™ Embedded

444

This can prove useful when using Runtime Tracing on real-time applications, as you can control buffer flush from

within the source-under-trace.

To activate or de-activate trace item buffering:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Buffer trace items setting to Yes or No to activate or disable the mode.

6. Set the size of the buffer in the Items buffer size box.

7. When you have finished, click OK to validate the changes.

A smaller buffer optimizes memory usage on the target platform, whereas a larger buffer improves performance of

the real-time trace. The default value is 64.

Flushing the Trace Buffer through a User Directive

It can be useful to flush the buffer before entering a time-critical part of the application-under-trace. You can do this

by adding the _ATT_FLUSH_ITEMS user directive to the source-under-trace.

Note See Runtime Tracing pragma directives in the Reference Manual to control Target Deployment Port buffering

from within the source code.

Splitting trace files

Runtime Tracing for C and C++a

During execution, Runtime Tracing generates a .tdf dynamic file. When a large application is instrumented, the size of

the .tdf file can impact performance of UML/SD Viewer.

Splitting trace files allows you to split the .tdf trace file into smaller files, resulting in faster display of the UML

Sequence Diagram and to optimize memory usage. However, split trace files cannot be used simultaneously with On-

the-Fly tracing.

When displaying split .tdf files, Runtime Tracing adds Synchronization elements to the UML sequence diagram to

ensure that all instance lifelines are synchronized.

To set Split Trace mode:

Chapter 5. Test Execution Specialist Guide

1. In the Project Explorer, select the highest level node from which you want to activate split trace mode.

2. Click the Open Settings... button.

3. Select Runtime Analysis and the Runtime Tracing settings.

Select Trace Control.

Set the Size (Kb) of each split .tdf. The default size is 5000 Kb.

Specify a File Name Prefix for the split .tdf filenames. The prefix is followed by a 4-digit number that identifies each

file.

1. Click OK.

Note The total size of split .tdf files is slightly larger than the size of a single .tdf file, because each file contains

additional context information.

Trace Probes for C

Trace Probes for C

Trace Probes for C

The Trace Probes feature of HCL OneTest™ Embedded allows you to manually add special probe C macros at specific

points in the source code under test, in order to trace messages.

Upon execution of the instrumented binary, the probes record information on the exchange of specified messages,

including message content and a time stamp. Probe trace results can then be processed and displayed in the UML/

SD Viewer.

The use of C macros offers extreme flexibility. For example, when delivering the final application, you can leave the

macros in the final source and simply provide an empty definition.

Trace Probes supports ANSI 89, ANSI 99, or K&R C.

How Trace Probes work

The first step is to manually add specific macros to your C source code.

When the test or application node is executed, the Probe Processor produces an instrumented source file. which is

functionally identical to the original, but which generates extra message tracing results.

The resulting source code is then executed and the Trace Probe feature outputs a .rio output file for each probe

instance.

445

HCL® OneTest™ Embedded

446

A .tsf static trace file is generated during instrumentation, and the .rio output file is processed and transformed into a

.tdf file. These files can be viewed and controlled from the HCL OneTest™ Embedded GUI. Both the .tsf and .tdf files

need to be opened simultaneously to view the UML sequence diagram report.

Of course, these steps are mostly transparent to the user when the test or application node is executed in the HCL

OneTest™ Embedded GUI.

Related Topics

Probe Control Settings on page 1041 | Probe Output Modes on page 447 | Circular Trace Buffer on page 687 |

About the UML/SD Viewer on page 431

Using Probe Macros

Trace Probes for C

Before adding probe macros to your source code, add the following #include statement to each source file that is to

contain a probe:

﷓include "atlprobe.h"

The atl_start_trace() macro must be called before any probe activity can occur; for example, it can be placed at the

start of the application.

The atl_end_trace() macros must be called after all probe activity has ended; for example, when the application

terminates.

Other macros must be placed inside the source code, at locations that are relevant for the messages that you want to

trace.

The following probe macros are available:

• atl_dump_trace()

• atl_end_trace()

• atl_recv_trace()

• atl_select_trace()

• atl_send_trace()

• atl_start_trace()

• atl_format_trace()

Please refer to the section on Probe Macros in Reference for a complete definition of each probe macro.

Chapter 5. Test Execution Specialist Guide

To activate the Trace Probe feature:

1. In the Project Browser, select the application or System Testing node on which you want to use the feature.

2. Click Settings and open the Probe control box.

3. Set Probe enable to Yes, select the correct output mode in Probe Settings and click OK.

4. Edit the source code under test to add the trace probe macros, including the ﷓include line.

5. Set up your trace probes within your application source files.

To read the trace probe output:

1. From the File menu, select Open and File.

2. In the file selector, select Trace Files (*.tsf, *.tdf) and select the .tsf and .tdf files produced after the execution

of the application under test.

3. Click OK.

Trace Probe output modes

Trace Probes for C

By default, the message traces are written to the .rio output file. However, in some cases, this may not be practical,

therefore the Trace Probe feature can be configured to send trace information to a temporary buffer before writing to

a file.

To change the way traces are stored, specify the trace mode as specified in the Probe Control Settings:

• DEFAULT: In this mode, the message traces are written directly to the .rio output file.

• FIFO: Binary format traces are directed to a temporary first-in first-out memory buffer before writing to the

.rio file when the atl_dump_trace macro is encountered. This mode is intended for embedded or realtime

applications which may not be able to access a filesystem when running.

• FILE: Binary format traces are written to a low footprint temporary file before writing to the .rio file when

the atl_dump_trace macro is encountered. This mode is intended for embedded or realtime applications

which may not have enough memory or processing power to continuously write to the .rio file. In this case for

example, a second application could be set up to read the file and generate the .rio result file.

447

HCL® OneTest™ Embedded

448

• USER: Uses methods, described in a user-defined probecst.c file to direct traces to a user-defined format

before writing to the .rio file when the atl_dump_trace macro is encountered. See Customizing the USER

output mode on page 449 for more information.

• IGNORE: Use this setting to ignore trace probe macros on compilation. In this case, the binary is compiled

without instrumentation.

When FIFO, FILE or USER are selected, the traces must be flushed to the .rio file with a specific atl_dump_trace macro

placed in a source file.

Use the DEFAULT output mode whenever possible. In most other cases, the FIFO or FILE should be enough and can

be optimized using parameters provided in the Reference section.

Only use USER mode if none of the other settings are practical for your application. Using the USER output mode

requires that you rewrite your own probecst.c and probecst.h using the files provided with the product as a template.

See Customizing the USER output mode on page 449 for more information.

When using the USER mode, you must specify the location of the user-defined probecst.c and probecst.h files in the

USER custom files directory setting. See Probe control settings on page 1041 for details.

Related Topics

Trace Probes on page 445 | Circular Trace Buffer on page 687 | Probe Control Settings on page 1041 |

Customizing the USER output mode on page 449

Traces Probes and System Testing for C

Trace Probes for C

You can use Trace Probes to produce a System Testing .pts test script based on probe activity.

When a probed application is executed, the .rio result file is processed, which produces a .pts test script for System

Testing for C.

The Script generation flags setting allows you to specify the command line arguments that will be used to generate

the .pts test script. The available flags are:

-accuracy=<time>

-polling=<time>

These values express the desired accuracy and polling intervals to be used in the .pts test script, where <time> is

expressed in milliseconds (ms).

You can edit and reuse this script in later tests to replay the exact same data exchanges in a System Testing for C

test node.

Related Topics

Chapter 5. Test Execution Specialist Guide

Trace Probes for C on page 445 | About System Testing for C on page 618 | Probe Control Settings on page 1041

Customizing the USER output mode

Trace Probes for C

The USER output mode for Trace Probes requires that you rewrite user-defined probecst.c and probecst.h based on

the files provided with the product.

Only use the USER mode if the DEFAULT, FIFO or FILE modes are not practical for your application.

To rewrite your own routines, make a copy of the probecst.c and probecst.h that are provided with the product and

use them as a template. These files are located in the following directory located in the installation directory of the

product:

/lib/probe/probecst/fifo

Note These are the files that are used for the FIFO output mode, therefore ensure that any changes that you make are

performed on copies of these files.

The implementation delivered in the FIFO mechanism is based on a circular buffer. The instrumented application

sends traces to the intermediate storage buffer, by using the atl_write_probe function. The traces can then be read by

the atl_read_probe function.

You can modify this file to adapt the probe mechanism to your application and platform.

For example, when using USER mode, the main probed application may store messages in binary format in a shared

memory or pipe, whereas a dedicated "dump application" can be written to read the shared memory or pipe and to

generate the .rio result file.

By using this method, the probed application can still run with minimal overhead while another process generates the

.rio result file either on the fly or after the execution of the probed application.

Whichever storage mechanism you use, it is important that the dump application runs within the same hardware

architecture as the main application to avoid misalignment or little-big endian problems.

When using the USER mode, you must specify the location of the user-defined probecst.c and probecst.h files in the

USER custom files directory setting. See Probe control settings on page 1041 for details.

The probecst.c file contains definitions for the Trace Probe macro functions. These are detailed below. For the usage

and syntax of the Trace Probe macros, please refer to the Reference section. For each function, the probecst.c file

contains comments that should help you to rewrite each of these functions.

The following functions must be executed during the execution of the probed application:

• atl_create_probe

• atl_end_probe

449

HCL® OneTest™ Embedded

450

• atl_write_key

• atl_write_probe

The following functions can be executed when the probed application ends or after the application has finished in a

dedicated dump application:

• atl_open_probe

• atl_close_probe

• atl_read_probe

atl_start_trace

The atl_start_trace function executes atl_create_probe. It must be called before any other macros, once for each

instance. Its role is to open, create and initialize the intermediate storage media used to keep messages in the

intermediate binary format.

atl_end_trace

The atl_start_trace function executes atl_end_probe. It must be called at the end of the application, once for each

instance. Its role is to close the intermediate storage media used to keep messages in the intermediate binary format.

atl_send_trace and atl_recv_trace

The atl_send_trace and atl_recv_trace functions execute atl_write_probe in order to dump the message to the

intermediate storage media.

It is important that the .rio result file retains the message sequence. Therefore, ensure that data is recorded in the

execution order.

atl_write_probe

The role of the atl_write_probe function is to record the following data:

• The complete message, the length of the message is provided to help.

• The date of the event.

• An internal code.

• The key format.

If your USER mechanism required the use of intermediate storage, the atl_dump_trace must be called after the

atl_end_trace macro.

Chapter 5. Test Execution Specialist Guide

atl_dump_trace()

This macro can be either part of the probed application or part of a dedicated dump program that would be executed

after the main application, depending on what is practical in your application.

The atl_dump_trace() macro executes, for each instance,

• atl_open_probe,

• atl_read_probe for each recorded message, and

• atl_close_probe.

atl_open_probe

The role of the atl_open_probe function is to reopen the intermediate storage and point to the first recorded message.

atl_close_probe

The role of the atl_close_probe function is to close, destroy or free the memory of the intermediate storage.

atl_read_probe

The role of the atl_read_probe function is to retrieve the following data from the intermediate storage:

• The message as it was recorded during the execution.

• A timestamp of the message.

• An internal code.

• The key format of the message.

atl_select_trace

The role of the atl_select_trace function is to execute atl_write_key in the API. The code of this function must not be

customized. It must be copied from the original probecst.c without any change.

Related Topics

Trace Probes for C on page 445 | Trace Probe output modes on page 447 | Probe Control Settings on page 1041

Coupling Analysis
Coupling Analysis consists of Control Coupling and Data Coupling.

451

HCL® OneTest™ Embedded

452

Control Coupling
Control Coupling is defined as “the manner or degree by which one software component influences the execution

of another software component" in the Clarification of Structural Coverage Analyzes of Data Coupling and Control

Coupling document edited by the Certification Authorities Software Team (CAST). The purpose is 'to provide a

measurement and assurance of the correctness of these modules/components’ interactions and dependencies'.

Control Coupling is used to verify that all the interactions between modules have been covered by at least one test.

HCL OneTest™ Embedded introduces a new coverage level called “Control Coupling" for C language that consists in

verifying that all the interactions between modules have been covered by at least one test. This new coverage level is

implemented in HCL OneTest™ Embedded in two ways:

• Modules are compilation units, in this case:

◦ Control Couplings are calls between two functions that are in two different compilation units.

◦ Control Coupling is not a simple interaction. It is a control flow in the calling module that ends with an

interaction with another module.

◦ Groups of compilation units can be defined as a single module. This will increase the number of calls

between modules but also increase the number of control flows in the calling modules.

◦ The report contains a button to display:

▪ All the Control Couplings (default option).

▪ Only the shortest Control Couplings (only the last calls between modules are taken into

account)

▪ Only the longest Control Couplings (the sub-control flows are ignored)

• Modules are Functions, in this case:

◦ Control Couplings are considered as all the calls between two functions, in the same compilation unit

or not.

◦ Each Control Coupling is only a call, and not a control flow as previously defined.

So, to identify the Control Couplings, HCL OneTest™ Embedded analyzes all the external calls between modules

(definition of the modules could be different depending on the option) and statically identifies all the possible paths in

the calling module that end with each external call, excluding the one that starts with a static function (ex: a function

that can't be called from another module). This constitutes the set of Control Coupling of the application.

For each of them, HCL OneTest™ Embedded provides the following information:

• The calling modules.

• The complete control flow (example: the set of successive calls, the last one is the external call). If the option

"module as function" is set, each control flow has two functions only.

• In case of option module as "compilation unit":

◦ Is it the longest one that leads to this external call (it is not the longest when there is another Control

Coupling that includes the current one).

◦ Is it the shortest one that leads to this external call (it is not the shortest when there is another Control

Coupling that is included by the current one).

• It is covered or not.

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-19.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-19.pdf

Chapter 5. Test Execution Specialist Guide

• The list of test cases that each Control Coupling covered.

• The list of requirements that are related to the test cases.

How Control Coupling Works

When an application node or a test is executed, the source code is instrumented by the Instrumentor (attolcc4 for

C language) that produces a static file with the extension .tsf containing information on the Control Couplings. The

resulting source code is then compiled, linked and executed and the Control Coupling feature outputs a dynamic file

with the extension .tgf.

These 2 types of files are the input of the report generator that produces a report in HTML format (and optionally

the raw data can be generated in a Json file). A template is provided for this generator. You can provide your own

template to modify the report.

If the Control Coupling feature is used with unit testing feature, the report generator can take the .tdc files as input

files. This allows to have also in the report the test cases that covered each Control Coupling and the associated

requirements declared in the .ptu file. If not, the test cases are identified by their execution date, and there is no

requirement.

Note:

To visualize your report in HCL OneTest™ Embedded for Eclipse IDE, if you are using the default browser

option, be sure that JavaScript is enabled. Otherwise, you can choose another browser that is compatible with

your version of JavaScript by changing it in Window > Preferences > General > Web Browser .

Set Control Coupling Options
You can set the options for Control Coupling to build your project in HCL OneTest™ Embedded Studio.

Execute a build with Control Coupling

• In HCL OneTest™ Embedded Studio, open the Settings of the project and click the Configuration Properties >

Build > Build options menu.

• In the right panel, click on the Build options and edit the options by clicking on the … button.

• In the dialog window that shows up on the right, you can select the different tools that can be used for the

build. Select Ctrl Coupling analysis to enable the control coupling feature.

Control Coupling options

Options for Control Coupling can be updated in the following menu of the settings: Configuration Properties >

Runtime analysis > Control coupling

From this setting page, you can change the following choices:

453

HCL® OneTest™ Embedded

454

• Trace file name (.tgf): sets the name of the trace file dedicated to control coupling. By default, this name is

the base name of the test with the extension .tgf.

• Exclude libraries: Include or exclude the control couplings that end with a call to a function that is not part of

the application (sets the -noccext option of the report generator if it is set to yes).

• Report Template: changes the template of the report generator. By default, this template is ccreport.template.

• Module as: Select the choice that corresponds the best to your definition of a module. A module can be

defined as a function or a compilation unit. HCL OneTest™ Embedded offers two ways to interpret Control

Coupling, depending on how the "module" in CAST-19 is interpreted:

◦ Module as function: Each call between each function is considered as Control Coupling.

◦ Module as compilation unit: Only the calls between two functions in two different compilation units

are considered as Control Coupling. Moreover, the different called stacks in the calling module are

also considered as different Control Couplings. With the previous option set, the user can group two

or more compilation units in a single module (called component) in order to ignore the calls between

these compilation units.

Control Coupling Report
After you build a project with HCL OneTest™ Embedded, you can get a Control Coupling report with compilation unit

module or a Control Coupling report with function module, depending on the build settings.

The default Control Coupling report is in HTML format. It is generated from a template named ccreport.template (for

the module as compilation unit option), or ccfreport.template (for the module as function option). The templates are

provided as text files that you can modify to customize the report. It uses four online JavaScript libraries:

• Bootstrap,

• JQuery,

• Font Awesome,

• VisJS.

These libraries are not provided. You must have an internet connection when you open the report. If not, download the

libraries (.css and .js files), copy them in the same folder than your report, and modify the template file as follows:

Replace the following lines with the lines from the second text block:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>

Chapter 5. Test Execution Specialist Guide

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>

Replacement lines:

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script

If you set a module as a compilation unit in the control coupling properties, you get a control coupling report with

compilation units in output of your project build. If you set a module as a function, you get a control coupling report

with function in output. For more details about the control coupling settings, see Set Control Coupling options on

page 183 for HCL OneTest™ Embedded for Eclipse IDE. In a report with function as module, the report shows all the

function calls (internal and external).

The Control Coupling report includes three parts.

Summary

In the Summary section, you find the number of Control Couplings for your application that are covered, given the

information that you provided and the percentage of Control Couplings that are covered.

A graph displays the total percentage of covered and non covered control couplings for the entire application.

The Summary table displays the following information:

• The percentage of Control Couplings of your application by module pairs that have not been covered,

depending on the information that you provided.

• The percentage of Control Couplings that are covered by module pairs.

455

HCL® OneTest™ Embedded

456

Details

The Details table lists all the Control Couplings and displays the following information for each of them:

• The calling compilation unit.

• The control flow, for example: the successive calls in the module that end with the external call in the called

module. Note that the called module is mentioned in the last function of the control flow. In case of option

"module as function", this control flow contains only two functions.

• A check mark if it is a longest Control Flow but only if the "module as compilation unit" option is set.

• A check mark if it is a shortest Control Flow but only if the "module as compilation unit" option is set.

• The list of test cases that covered this control flow. If the Control Coupling feature is set with the unit testing

feature, the test cases are the one in the .ptu files named as <service>/<test>.

• The associated requirements. If the Control Coupling feature has been set with the unit testing feature, the

requirements are those that have been described in the .ptu files with the keyword REQUIREMENT for each

test cases that covered this Control Coupling.

• A check mark if the control coupling has been covered.

Call Graph

For each compilation unit, a partial call graph displays all the functions in an interactive call graph from left to right or

from top to bottom, depending on the selector button position on the top of the call graph.

You can select a control coupling in the table to highlight it in the call graph.

Chapter 5. Test Execution Specialist Guide

At the end of the report, a complete call graph displays all the functions calls.

Filters

You can apply filters in the report by selecting different options at the top:

• If the option “module as compilation unit" option is set, you can choose first to display all Control Couplings,

the longest (only the Control Couplings that have the longest control flow in the calling module) or the

shortest (only the Control Couplings that have the shortest control flow in the calling module). The summary

tables and the details table are updated accordingly to your selection. This option applies to reports with

compilation unit as module only.

• You can select the calling modules and the called modules. It filters the Control Couplings depending on

their calling and called modules. The summary tables and the details table are updated accordingly to your

selection.

• You can choose to display all graphs or hide them in the report.

• You can show or hide the Requirements.

Customize Control Coupling Report

The Control Coupling report is created from a template called ccreport.template (if option “module as compilation

unit" is set), or ccfreport.template (if option “module as function" is set) that you can find in the folder <install>/lib/

reports.

This template is made of 2 parts:

• The HTML part that is the common part of all reports,

• A JavaScript part that sets the tables and call graph depending of 2 variables initialized dynamically when the

report is creating:

var data = {{json}}; // the raw data

var d = new Date({{date}}) // the date of the generation

457

HCL® OneTest™ Embedded

458

Raw data

Raw data is composed of 4 sections at the top level:

• A summary of the Control Coupling metrics:

◦ nbcc is the number of Control Coupling found in the application,

◦ nbcovered is the number of Control Coupling found in the application that have been covered by at

least one test,

◦ nbccShortest and nbcoveredShortest are the same for the shortest Control Coupling,

◦ nbccLongest and nbcoveredLongest are the same for the longest Control Coupling,

◦ filtered is set to true if the report has been generated with a filter (shortest or longest),

◦ filtered_longest is set to true if the report has been generated with a filter longest (set only if filter is

true).

• The list of the modules, each of them has the following information:

◦ Name is the short name of the C file,

◦ Fullname is the name and path of the C file,

◦ uuid is a unique identifier of the module,

◦ unknown is set to true is the module is not part of the information you provided (there is only one

unknown module that gathers all the call to functions that are not in the known modules),

◦ functions is the list of the unique identifiers of functions of the module.

Chapter 5. Test Execution Specialist Guide

Modules are listed as hashmap with the uuid, as follows:

• The list of functions including following information:

◦ name is the name of the C function,

◦ line is the first line of the function in the module,

◦ id is the number used in .tsf file to identify this function,

◦ stacksize is the stack size computed during the execution if this option has been set (otherwise -1),

◦ uuid is a unique identifier of the function,

◦ module is a unique identifier of the module in which the function is declared,

◦ calls is the list of the calls in this function. Each of them have the following information:

▪ calling_uuid is the unique identifier of the calling function,

▪ called_uuid is the unique identifier of the called function,

▪ line is the line number of the call in the module,

▪ col is the column number of the call in the module,

▪ same_module is set to true id the called function is in the same module that the calling

function.

◦ level is a number that represent the level of the function in the call graph, starting to 0.

◦ calledby is the list of unique identifiers of functions that call this one.

459

HCL® OneTest™ Embedded

460

• Functions are listed as hashmap with the uuid, as following:

• The list of the Control Couplings, each of them have the following information:

◦ calls is the list of successive calls that composed this control coupling, each of them have the

following information:

▪ calling_uuid is the unique identifier of the calling function.

▪ called_uuid is the unique identifier of the called function.

▪ isShortest is set to true if the control coupling is a shortest one.

▪ isLongest is set to true if the control coupling is a longest one.

▪ line is the line number of the call in the module.

▪ col is the column number of the call in the module.

▪ same_module is set to true if the called function is in the same module that the calling

function.

◦ testcases is the list of test cases that covered the control coupling, each of them have the following

information:

▪ name is the name of the test case.

▪ requirements is the list of requirements that is covered by this test case.

Chapter 5. Test Execution Specialist Guide

Control couplings are listed as an array, as follows:

Data Coupling
Data Coupling is defined as “the manner or degree by which one software component influences the execution of

another software component" in the Clarification of Structural Coverage Analyzes of Data Coupling and Control

Coupling document edited by the Certification Authorities Software Team (CAST). The purpose is 'to provide a

measurement and assurance of the correctness of these modules/components’ interactions and dependencies'. Data

Coupling is used to verify that all the global variables of the application under test have been consumed in read (also

called use) and write (also called def) during the tests.

HCL OneTest™ Embedded introduces a new coverage level call “data coupling" for C language that consists to verify

that all the global variables of the application under test has been consumed in read (also called use) and write (also

called def) during the tests, as following:

• For each global variable, HCL OneTest™ Embedded identifies the def and use. Then it considers all the

possible def/use pair as a data coupling.

• To cover a Data Coupling, i.e. a def/use pair, this def and this use must be executed from at least one test.

HCL OneTest™ Embedded provides a new interactive HTML-based report for Data Coupling.

461

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-19.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-19.pdf

HCL® OneTest™ Embedded

462

To identify Data Coupling instances, HCL OneTest™ Embedded analyzes all the global variables of the application,

where they are read and written. For one global variable, each pair of write and read constitutes an instance of Data

Coupling.

For each data coupling, HCL OneTest™ Embedded provides the following information:

• The name of the global variable.

• The def position (file name, line, and column).

• The use position (file name, line, and column).

• The list of test cases that covered the Data Coupling.

• The list of requirements that are relative to these test cases.

How Data Coupling works

HCL OneTest™ Embedded identifies the position if the def/use using coverage information. When you select the Data

Coupling option, some coverage options are set automatically: blocks, calls and conditions.

Coverage files (.fdc and .tio) are the input of the report generator that produces a report in HTML format (and

optionally the raw data can be generated in a Json file). A template is provided for this generator. You can provide

your own template to modify the report.

If the Data Coupling feature is used with unit testing feature, the report generator could take as input the .tdc

files. This allows to have also in the report the test cases that covered each Control Coupling and the associated

requirements declared in the .ptu file. If not, the test cases are identified by its execution date, and there is no

requirement.

Set Data Coupling options
You can set the options for Data Coupling to run the build for your project in HCL OneTest™ Embedded Studio.

Execute a build with Data Coupling

• In HCL OneTest™ Embedded Studio, open the Settings of the project and click the Configuration Properties >

Build > Build options menu.

• In the right panel, click on the Build options and edit the options by clicking on the … button.

• In the dialog window that shows up on the right, you can select the different tools that can be used for the

build. Select Data Coupling analysis to enable the Data Coupling feature.

Data Coupling options

Options for Data Coupling can be updated in the following menu of the settings: Configuration Properties > Runtime

analysis > Data Coupling

From this setting page, you can change the following choice:

Chapter 5. Test Execution Specialist Guide

• Report Template: You can change the template of the report generator. By default, this template is

ccreport.template.

Data Coupling report
From HCL OneTest™ Embedded V8.2.0, you can get a HTML interactive Data Coupling report as a result to your

project build.

The default Data Coupling report is in HTML format. It is generated from a template named dcreport.template

provided as a text file that you can modify to customize the report. It uses four online JavaScript libraries:

• Bootstrap,

• JQuery,

• Font Awesome,

• VisJS.

These libraries are not provided. You need an Internet connection when you open the report. Otherwise, download the

libraries (.css and .js files), copy them in the same folder as your report's, and modify the template file as follows:

Replace:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>

with

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script

The Report is made of three parts.

463

HCL® OneTest™ Embedded

464

Summary

In the summary section, a table displays the following information:

• The number of global variables in your application.

• The number of Data Couplings in your application.

• The number and the list of global variables without Data Coupling. If you get this information,

it means that HCL OneTest™ Embedded has identified global variables that are read but never

written, or written but never read. This could be due to the fact that only a part of the application

is analyzed.

Two charts display the following information:

• The percentage of Data Coupling in a pie graph.

• A two-colored horizontal graph that provides a number of covered and uncovered Data

Couplings for each global variable.

Details

A table lists all the Data Couplings and displays the following information for each of them:

• Variable: The name of the global variable.

• Def: The Def position of the column: file name [line] and (column).

• Use: The Use position of the column: file name [line] and (column).

• Test Cases: The list of cases that covered the Data Coupling.

• Requirements: The list of requirements relative to these test cases.

• Covered: This option is checked if the Data Coupling has been covered.

They are grouped by global variables.

Chapter 5. Test Execution Specialist Guide

Call graph

The call graph displays all the global variables with their interactions with one or more functions of the

application that read or/and write them.

• Incoming arrows are 'Def' (write).

• Outcoming arrows are 'Use' (read).

The arrows between them represent a 'Def' or a 'Use' (depending of the sense of the arrow). It is green

if the corresponding 'Def' or 'Use' has been covered. These arrows are not representing Data Coupling.

A Data Coupling instance is a couple of incoming and outcoming arrows that reach the same global

variables.

Filters

Buttons can be used to filter different sections of the report.

• Show/Hide Graph: It is used to show or hide the call graph at the end of the report.

• Show/Hide Requirements: It is used to show or hide the Requirements column in the Details

section of the report.

Customize Data Coupling Report

The Data Coupling report is based on a template called ccreport.template that you can find in the following folder:

Raw data

This template is made of 2 parts:

465

HCL® OneTest™ Embedded

466

• The HTML part that is the common part of all reports,

• A JavaScript part that sets the tables and call graph depending of 2 variables initialized dynamically when the

report is creating:

var data = {{json}}; // the raw data

var d = new Date({{date}}) // the date of the generation

Raw data is composed of 4 sections at the top level:

• A summary of the Data Coupling metrics:

◦ nbGlobalVariables is the number of global variables found in the application.

◦ nbDefUses is the number of Def/Use pairs found in the application.

◦ nbDefUsesCovered Def/Use pairs found in the application that have been covered by at least one test.

◦ nbVariablesWithoutDefUse is the number of global variables that have no Def/Use pairs in the

application.

◦ variablesWithoutDefUse is the list of global variables that have no Def/Use pairs in the application.

• The list of the modules, each of them has the following information:

◦ Name is the short name of the C file,

◦ Fullname is the name and path of the C file,

◦ uuid is a unique identifier of the module,

◦ unknown is set to true is the module is not part of the information you provided (there is only one

unknown module that gathers all the call to functions that are not in the known modules),

◦ functions is the list of the unique identifiers of functions of the module.

Modules are listed as hashmap with the uuid, as follows:

Chapter 5. Test Execution Specialist Guide

• The list of functions including following information:

◦ name is the name of the C function,

◦ line is the first line of the function in the module,

◦ id is the number used in .tsf file to identify this function,

◦ stacksize is the stack size computed during the execution if this option has been set (otherwise -1),

◦ uuid is a unique identifier of the function,

◦ module is a unique identifier of the module in which the function is declared,

◦ calls is the list of the calls in this function. Each of them have the following information:

▪ calling_uuid is the unique identifier of the calling function,

▪ called_uuid is the unique identifier of the called function,

▪ line is the line number of the call in the module,

▪ col is the column number of the call in the module,

▪ same_module is set to true id the called function is in the same module that the calling

function.

◦ level is a number that represent the level of the function in the call graph, starting to 0.

◦ calledby is the list of unique identifiers of functions that call this one.

• Functions are listed as hashmap with the uuid, as following:

• The list of the control flows, each of them have the following information:

◦ stacksize is the size computed for this control flow. This value is -1 if the tool was unable to compute.

◦ calls is the list of successive calls that composed this Control Flow, each of them have the following

information:

▪ calling_uuid is the unique identifier of the calling function.

▪ called_uuid is the unique identifier of the called function.

▪ line is the line number of the call in the module.

▪ col is the column number of the call in the module.

467

HCL® OneTest™ Embedded

468

▪ same_module is set to true if the called function is in the same module that the calling

function.

▪ alternates is a list of line and column if the function is called several times in this function

◦ isRecursive is set to true if a recursive call has been found in this control flow.

▪ name is the name of the test case.

▪ missingFunctions is the list of functions (name and unique identifier) in the control flow for

which there is no stack size.

Control couplings are listed as an array, as follows:

Application Profiling
Application Profiling is gathering the main features that provide profiling information at the application level: the

Worst Stack Size feature and the Worst performance (coming soon) feature.

Chapter 5. Test Execution Specialist Guide

Worst Stack Size
HCL OneTest™ Embedded introduces the Worst Stack Size feature to compute an estimation of the maximum stack

size of the application under test.

Overview

To implement this feature, HCL OneTest™ Embedded uses two mixed technologies:

• Static analysis that computes the call graph of the application (Example: all the calls between functions are

analyzed and computed as a graph),

• Dynamic analysis that provides the stack size of each functions when executing them.

This information is used to provide an estimation of the worst stack size. This estimation is accurate under the

following conditions:

• All the functions of the application should have been executed at least once in order to have the stack size for

each of them.

• Your application should not have recursive calls, because the number of loops in the recursive calls being

unpredictable, it is impossible to compute the stack size.

• If your application used libraries (Example: call functions for which we have not the source code), you should

provide an additional file that gives an estimation of the stack size for each of them. These estimations do not

need to be precise, but should be an upper bound of the exact stack size.

• If your compiler optimizes the Stack Size, you might have different Stack Sizes for the same function. In this

case, the Worst Stack Size is computed with the maximum value found in the different runs.

• If your application is multi-threaded, you can provide the list of entry points so that HCL OneTest™ Embedded

can calculate the worst total stack size and compare it to the maximum memory stack available on your

target to produce a pass/failed verdict.

For the Worst Stack, HCL OneTest™ Embedded provides a brand-new interactive HTML-based report. This report

identifies if one or more of these conditions are not met.

How Worst Stack Size Works

When an application node is executed, the source code is instrumented by the Instrumentor (attolcc4

for C language) that produces a static file with the .tsf extension that contains information on the

functions (this file is common with Control Coupling feature). The resulting source code is then

compiled, linked and executed and the Control Coupling feature outputs a dynamic file with the

extension .tzf.

These 2 types of files are used in input of the report generator that produces a report in HTML format

(and optionally the raw data can be generated in a Json file). A template is provided for this generator.

You can provide your own template to modify the report. An addition file could be provided to this report

generator in order to specify the stack size of the external functions.

469

HCL® OneTest™ Embedded

470

Note:

To visualize your report in Eclipse, if you are using the default browser option, be sure that JavaScript is enabled.

Otherwise, you can choose another browser that is compatible with your version of JavaScript by changing it in

Window> Preferences> General > Web Browser.

Set Worst Stack Size Options

Enable Worst Stack Size

• In HCL OneTest™ Embedded Studio, open the settings of the project and click Configuration Properties >

Build > Build options.

• Then, in the right panel, click on the value field of the Build options line and click the … button to open the

Build options editor.

• Then, a dialog window shows you on the right the different tools that you can select during the build. Select

Application profiling to enable the Worst Stack Size feature.

Multi-thread option

The Multi-thread option for the Worst Stack Size feature can be configured in the following menu of the settings:

• Click Configuration Properties > Runtime analysis > Multi-Threads.

• In the right pane, click the ... in the value field of the Entry points option to open the Entry points editor.

• In the Entry points editor, enter the list of entry points for each thread and click OK.

Stack Size options

Options for the Worst Stack Size feature can be updated in the following menu of the settings: Configuration

Properties > Runtime analysis > Application Profiling > Stack size.

In the setting page, you can change the following options:

• Trace file name (.tzf): set the name of the trace file dedicated to worst stack size. By default this name is the

base name of the test with the extension .tzf.

• Report Template: change the template of the report generator. By default this template is wssreport.template.

• External functions stack size: this is a file that contains the stack size of the external functions (generally

functions that are in libraries and used by your application). The format of this file should be in Json, with the

extension .tzfe, as follows:

[
 {"name":"printf", "stacksize":4},
 {"name":"sin", "stacksize":4},
 {"name":"cos", "stacksize":4},
 {"name":"tan", "stacksize":4}
]

Chapter 5. Test Execution Specialist Guide

• Maximum Size: Enter the maximum stack size in bytes that the application should not exceed.

• Security: Enter a percentage of available Stack Size for security.

If you provide the maximum Stack Size allowed and a percentage of available Stack Size for security, the

report displays the total Stack Size and verify if this size does not go over the available Stack Size.

Worst Stack Size Report

The default Worst Stack Size report is in HTML format. It is generated from a template named wssreport.template

provided as a text file that you can modify to customize the report. It uses four online JavaScript libraries:

• Bootstrap,

• JQuery,

• Font Awesome,

• VisJS.

These libraries are not provided. You need an Internet connection when you open the report. Otherwise, you need to

download the libraries (.css and .js files), copy them in the same folder as your report's, and modify the template file

as follows:

Replace:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.5.0/css/all.css"
 integrity="sha384-B4dIYHKNBt8Bc12p+WXckhzcICo0wtJAoU8YZTY5qE0Id1GSseTk6S+L3BlXeVIU"
 crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.min.css">
…
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.21.0/vis.js"></script>

with

<link rel="stylesheet" href="./bootstrap.min.css>
<link rel="stylesheet" href="./all.css">
<link rel="stylesheet" href="./vis.min.css">
…
<script src="./jquery-3.3.1.slim.min.js"></script>
<script src="./popper.min.js"></script>
<script src="./bootstrap.min.js"></script>
<script src="./vis.js"></script

The Worst Stack Size report is made of three parts.

471

HCL® OneTest™ Embedded

472

Summary

Worst Stack Size per Entry Point table

The Summary section displays a table with the Worst Stack Size calculated by the tools, given the

information you provided in the build settings. This number is provided in bytes.

The Worst Stack Size is given per entry point and per thread if you have entered the list of entry point

threads of your application in the Build Settings. You can set the list of entry point threads of your

application in the Build Settings.

The table displays the following information:

• The number of control flows found in your application. A control flow is a set of successive calls

starting from an entry point (each function that is never called by another one is considered as

an entry point) to a function with no call or to an external function.

• The number of control flows for which we have no estimation of the stack size. This happens

when one of the functions in this control flow has not been executed or if it is an external

function for which no estimation of the stack size is provided.

If this number if greater than 0, it is highlighted in red because there is no way to be sure that the

worst stack size is really the worst regarding the missing information.

• The number of recursive control flows found in the application. If this number if greater than 0,

it is highlighted in red because there is no way to be sure that the worst stack size is really the

worst.

• The number of functions in your application.

• The number of functions without stack size estimation. These are the functions that have not

been executed or the external functions for which we have not provided an estimation of the

stack size. If this number if greater than 0, it is highlighted in red because we can't be sure that

the worst stack size is really the worst.

The information is given for each entry thread.

If you don’t provide the list of entry points in the build settings, the information is displayed only

for the control flow and gives the Worst Stack Size.

Chapter 5. Test Execution Specialist Guide

Total Stack Size vs. Maximum Stack Size graph

If you provide in the Settings the list of entry points, optionally you can provide the maximum Stack Size

allowed and a percentage of available Stack Size for security. In such case, the report displays the total

Stack Size and verifies if this size does not go over the available Stack Size.

The Maximum Stack Size and Percentage of available Stack Size for security options can be set in the

Build Settings.

In the report, you can compare the Stack Size or the sum of Stack Size with the maximum of Stack

Size allowed and the percentage of available Stack Size for security if both options are provided in the

settings.

In the toolbar that is under the graph, you can select the information to display or hide (all entry points, or for only one

thread) and the number of control flows in the table. You can also show or hide the graph in the report from a button.

Details

The Details table lists by default the 10 first control flows with the biggest Stack Size and displays for each of them

the following information:

• The control flow, for example, the successive functions starting from an entry point (any function that is never

called by another one is considered as an entry point) to a function with no call, or to an external function.

Each function is identified by its name, its module (example: C file) between brackets, and by the line and

column where this call to the next function calls appear in the code in parenthesis.

• The estimation of the Stack Size. The information is blank if the tool has not been able to calculate the Stack

Size for this control flow. In this case, the functions in the control flow that prevent us from computing the

Stack Size are highlighted in red.

A drop down menu at the top of the table allows you to choose 10, 20, 30, 50, 100 or all the control flows to display.

Functions

The Functions table lists all the functions of your application, including external functions. The following information

is provided for each function:

473

HCL® OneTest™ Embedded

474

• The module name (i.e. the C file) where the function is saved.,

• The function name. This name is in red if there is no stack information for this function,

• The number of functions called in the current one.

• The Stack Size of the function in bytes.

Call Graph

The Call Graph part displays all the functions as an interactive call graph from left to right or from the top to the

bottom, depending on the selector button position on the top of the call graph.

You can select a control flow in the table to highlight it in the call graph.

Customize the Worst Stack Size Report

The Worst Stack Size report is based on a template called wssreport.template that you can find in the folder

<install>/lib/reports.

This template is made of 2 parts:

• The HTML part that is the common to all reports,

• A JavaScript part that sets the tables and call graph depending on 2 variables dynamically initialized when the

report is created:

o var data = {{json}}; // the raw data

o var d = new Date({{date}}); // the date of the generation

Raw data

Raw data is made of four sections at the top level:

• A summary of the Worst Stack Size metrics:

◦ worstStackSize is the worst stack size computed by the tools, depending on the information you

provided. This number is provided in bytes.

◦ nbFlows is the number of control flows found in your application. A control flow is a set of successive

calls starting from an entry point (each function that is never called by another one is considered as an

entry point) to a function without calls or to an external function.

◦ nbFlowsWithoutStack is the number of control flows for which there is no estimation of the stack

size. This happens when one of the functions in this control flow has not been executed, or if it is an

external function for which we have not provided an estimation of the stack size.

◦ nbRecursiveFlows is the number of recursive control flows found in the application.

Chapter 5. Test Execution Specialist Guide

◦ nbFunctions is the number of functions in your application.

◦ nbFunctionsNoValue is the number of functions without stack size estimation. These are the

functions that have not been executed, or the external functions for which there is no estimation of the

stack size provided.

The list of the modules, each of them has the following information:

• name is the short name of the C file,

• fullname is the name and path of the C file,

• uuid is a unique identifier of the module,

• unknown is set to true if the module is not part of the information you provided (there is only one unknown

module that gathers all the function calls that are not in the known modules),

• functions is the list of the unique identifiers of functions of the module.

Modules are listed as Hashmap with the uuid, as following:

The list of functions, each of them have the following information:

• name is the name of the C function.

• line is the first line of the function in the module.

• id is the number used in .tsf file to identify this function.

• stacksize is the stack size computed during the execution if this option has been set (otherwise -1).

• uuid is a unique identifier of the function.

• module is a unique identifier of the module in which the function is declared.

• calls is the list of the calls in this function. Each of them have the following information:

475

HCL® OneTest™ Embedded

476

◦ calling_uuid is the unique identifier of the calling function.

◦ called_uuid is the unique identifier of the called function.

◦ line is the line number of the call in the module.

◦ col is the column number of the call in the module.

◦ same_module is set to true if the called function is in the same module that the calling function.

◦ level is a number that represents the level of the function in the call graph, starting from 0.

◦ calledby is the list of unique identifiers of functions that call the function.

Functions are listed as hashmap with the uuid, as following:

The list of the Control Flows, each of them have the following information:

• stacksize is the size of the stack computed for the control flow. This value is -1 if the tool was unable to

compute it.

• calls is the list of successive calls that composed this control flow, each of them is including the following

information:

◦ calling_uuid is the unique identifier of the calling function.

◦ called_uuid is the unique identifier of the called function.

◦ line is the line number of the call in the module.

◦ col is the column number of the call in the module.

◦ same_module is set to true id. The called function is in the same module that the calling function.

◦ alternates is a list of line & column in case of the calling function is called several times in this

function.

Chapter 5. Test Execution Specialist Guide

• isRecursive is set to true if a recursive call has been found in this control flow.

• missingFunctions is the list of functions (name and unique identifier) in the control flow for which we have not

the stack size.

Control flows are listed as an array, as follows:

Testing software components

The test features provided with HCL OneTest™ Embedded allow you to submit your application to a robust test

campaign. Each feature uses a different approach to the software testing problem, from the use of test drivers

stimulating the code under test, to source code instrumentation testing internal behavior from inside the running

application.

• Component Testing for C and Ada performs black box or functional testing of software components

independently of other units in the same system.

• Component Testing for C++ uses object-oriented techniques to address embedded software testing.

• System Testing for C is dedicated to testing message-based applications.

These test features each use a dedicated scripting language for writing specialized test cases.HCL OneTest™

Embedded test features can also be used together with any of the runtime analysis tools.

To learn about See

477

HCL® OneTest™ Embedded

478

Black-box or functional testing of C software components independently of other units

in the same system.

Component Testing for C

and Ada on page 478

Using object-oriented techniques to test your C++ code Component Testing for C+

+ on page 543

Testing message-based applications written in C System Testing for C on

page 618

To use a component test feature:

Here is a rundown of the main steps to using the HCL OneTest™ Embedded test features:

1. Set up a new project in HCL OneTest™ Embedded. This can be done automatically with the New Project

Wizard on page 696.

2. Follow the Activity Wizard on page 695 to add your application source files to the workspace.

3. Select the source files under test with the Test Generation Wizard to create a test node. The Wizard guides

you through process of selecting the right test feature for your needs.

4. Develop the test cases by completing the automatically generated test scripts with the corresponding script

language and native code.

5. Use the Project Explorer on page 1056 to set up the test campaign and add any additional runtime analysis or

test nodes.

6. Run the test campaign on page 730 to builds and execute a test driver with the application under test.

7. View and analyze the generated test reports on page 715.

Related Topics

About Component Testing for C and Ada on page 478 | About Component Testing for C++ on page 543 | About

System Testing for C on page 618 | Using Runtime Analysis Features on page 336

Component Testing for C overview

Component Testing for C

The Component Testing for C feature of HCL® OneTest™ Embedded provides a unique, fully automated, and proven

solution for applications written in C, dramatically increasing test productivity.

Component Testing for C supports ANSI C89 and C99.

How Component Testing for C Works

When a test node is executed, the Test Script Compiler (attolpreproC) compiles both the test scripts and the source

under test. This preprocessing creates a .tdc file. The resulting source code generates a test driver.

If any Runtime Analysis tools are associated with the test node, then the source code is also instrumented with the

Instrumentor (attolcc1) tool.

Chapter 5. Test Execution Specialist Guide

The test driver, TDP, stubs and dependency files all make up the test harness.

The test harness interacts with the source code under test and produces test results. Test execution creates a .rio

file.

The .tdc and .rio files are processed together the Component Testing Report Generator (attolpostpro). The output is

the .xrd report file, which can be viewed and controlled in the HCL® OneTest™ Embedded GUI.

Of course, these steps are mostly transparent to the user when the test node is executed in the HCL® OneTest™

Embedded GUI.

To learn about See

Writing test scripts for your software under test Writing a Test Script on page 481

The types of source files under test Integrated, Simulated and Additional Files

on page 479

Configuration Settings for Component Testing test

nodes

Component Testing for C Settings on

page 1034

Viewing Component Testing for C test results Viewing Reports on page 539

Upgrading from a pre-2002 version of HCL® OneTest™

Embedded

Importing V2001 Component Testing

Files on page 537

Related Topics

Using Test Features on page 477 | Activity Wizards on page 695 | Manually Creating a Test or Application Node

on page 712 | About System Testing for C on page 618

Integrated, simulated and additional files

Component Testing for C

When creating a Component Testing test node for C and Ada, the Component Testing wizard offers the following

options for specifying dependencies of the source code under test:

• Integrated files

• Simulated files

• Additional files

Integrated Files

This option provides a list of source files whose components are integrated into the test program after linking.

479

HCL® OneTest™ Embedded

480

The Component Testing wizard analyzes integrated files to extract any global variables that are visible from outside.

For each global variable the Parser declares an external variable and creates a default test which is added to an

environment named after the file in the .ptu test script.

By default, any symbols and types that could be exported from the source file under test are declared again in the test

script.

Simulated Files

This option gives the Component Testing wizard a list of source files to simulate—or stub—upon execution of the test.

A stub is a dummy software component designed to replace a component that the code under test relies on, but

cannot use for practicality or availability reasons. A stub can simulate the response of the stubbed component.

The Component Testing parser analyzes the simulated files to extract the global variables and functions that are

visible from outside. For each file, a DEFINE STUB block, which contains the simulation of the file's external global

variables and functions, is generated in the .ptu test script.

By default, no simulation instructions are generated.

Additional Files

Additional files are merely dependency files that are added to the Component Testing test node, but ignored by the

source code parser. Additional files are compiled with the rest of the test node but are not instrumented.

For example, Microsoft Visual C resource files can be compiled inside a test node by specifying them as additional

files.

You can toggle a source file from under test to additional by using the Properties Window dialog box.

Related Topics

Component Testing Wizard on page 698

Testing shared libraries

Component Testing for C

In order to test a shared library, you must create a test node containing the .ptu component test script that uses the

library, and a reference link to the library.

After the execution of the test node, the runtime analysis and component test results are located in the application

node.

To test a shared library:

Chapter 5. Test Execution Specialist Guide

1. Add the library to your project:

a. Right-click a group or project node and select Add Child and Library from the popup menu.

b. Enter the name of the Library node

c. Right-click the Library node and select Add Child and Files from the popup menu.

d. Select the source files of the shared library.

2. Run the Component Testing wizard as usual on the source file of your library. This creates a test node

containing the test scripts and the source file.

3. Delete the source file from the test node.

4. Create a reference to the shared library in the test node:

a. Right-click the application or test node that will use the shared library and select Add Child and

Reference from the popup menu.

b. Select the library node and click OK.

5. Build and execute the test node.

Example

An example demonstrating how to test shared libraries is provided in the Shared Library example project. See

Example projects on page 709 for more information.

Related Topics

Using shared libraries on page 718 | Profiling shared libraries on page 337

Writing a Test Script

Component Testing for C

When you first create Component Testing for C test node with the Component Testing Wizard, HCL OneTest™

Embedded produces a .ptu test script template based on the source under test.

To write the test script, you can use the Text Editor provided with HCL OneTest™ Embedded.

Component Testing for C uses the C Test Script Language. Full reference information for this language is provided in

the Reference section.

To learn about See

481

HCL® OneTest™ Embedded

482

Basic .ptu test script instructions Test Script Structure

on page 482

Initializing and testing variable val­

ues

Testing Variables on

page 485

Simulating stub functions Stub Simulation on

page 588

Catching exceptions Unexpected Excep­

tions on page 612

Other specific C testing notions Advanced C Testing on

page 531

Related Topics

Structure Statements on page 565 | About the Text Editor on page 725

Test Script Structure

Component Testing for C

The C Test Script Language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment Port criteria.

Test script filenames must contain only plain alphanumerical characters.

A typical Component Testing .ptu test script looks like this:

HEADER add, 1, 1

<variable declarations for the test script>

BEGIN

SERVICE add

<local variable declarations for the service>

TEST 1

FAMILY nominal

ELEMENT

VAR variable1, INIT=0, EV=0

Chapter 5. Test Execution Specialist Guide

VAR variable2, INIT=0, EV=0

﷓<call to the procedure under test>

END ELEMENT

END TEST

END SERVICE

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write an instruction

over several lines using the ampersand (&) continuation character at the beginning of additional lines. In this

case, the ampersand must be the very first character on that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Structure statements

The following statements allow you to describe the structure of a test.

• HEADER: For documentation purposes, specifies the name and version number of the module being tested, as

well as the version number of the tested source file. This information is displayed in the test report.

• BEGIN: Marks the beginning of the generation of the actual test program.

• SERVICE: Contains the test cases related to a given service. A service usually refers to a procedure or

function. Each service has a unique name (in this case add). A SERVICE block terminates with the instruction

END SERVICE.

• TEST: Each test case has a number or identifier that is unique within the block SERVICE. The test case is

terminated by the instruction END TEST.

• FAMILY: Qualifies the test case to which it is attached. The qualification is free (in this case nominal). A list of

qualifications can be specified (for example: family, nominal, structure) in the Tester Configuration dialog box.

• ELEMENT: Describes a test phase in the current test case. The phase is terminated by the instruction END

ELEMENT. The different phases of the same test case cannot be dissociated after the tests are run, unlike the

test cases introduced by the instruction NEXT_TEST. However, the test phases introduced by the instruction

ELEMENT are included in the loops created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept simple. This structure allows:

483

HCL® OneTest™ Embedded

484

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test number, or the test family.

In the test script, the testers can add an optional REQUIREMENT statement in order to linked the tests to one or

several requirements of the application under test.

The REQUIREMENT instruction appears within TEST blocks, where it defines the requirements for this test or within

SERVICE blocks where it defines the requirements for the tests including in this service or before the first SERVICE

block where it defines the requirements for the all the tests in the file.

Euclidian divisions in C

All Euclidian divisions performed by the Test Script Compiler round to the inferior integer.

Therefore, writing -a/b returns a different result than -(a/b), as in the following examples:

• -(9/2) returns -4

• -9/2 returns -5

Related Topics

Component Testing Tester Configuration on page 733

Using native C statements

Component Testing for C

In some cases, it can be necessary to include portions of native C code inside a .ptu test script. You can use the #, @,

and ! prefixes to do this.

Analyzed native code - #

When lines are prefixed with the # character, the Test Script Compiler analyzes the line and then copies the line into

the generated code. You can use the # prefix to declare test script variables and to include the files that declare the

functions under test.

Variable declarations must be placed outside of C test script blocks preferably at the beginning of scenarios and

procedures.

Ignored native code - @

When lines are prefixed with the @ character, the Test Script Compiler only copies the line into the test harness and

does not analyze the line. You can use the @ prefix to copy instructions into the test harness, when the test script

compiler would not understand these instructions. Assembly instructions are examples of these instructions.

Chapter 5. Test Execution Specialist Guide

Parsed native code - !

When lines are prefixed with the ! character, the Test Script Compiler analyzes the lines, but does not copy the lines

into the test harness. You can use the ! prefix to declare variables and types that are built into the compiler.

Automatically updating a .ptu test script

Component Testing for C

Changes that are made during the development process can sometimes impact the test script, for example when new

functions are added after the test script was generated.

You can update a .ptu test script to automatically add new elements to SERVICES and INCLUDE blocks to reflect

changes that were made to the source code. An update does not remove or modify any existing statements.

For the update to work, you must not edit any generated comment lines that start with %c or %d in the test script. The

update command only works with .ptu test scripts that were generated by Test RealTime 7.0 or later, which contain

these %c and %d comment lines.

To update a .ptu test script

1. In the Project Explorer, right-click the .ptu test script that you want to update.

2. From the pop-up menu, select Update.

3. Edit the .ptu test script.

Related Topics

Writing a Test Script on page 481 | Stub Simulation on page 507

Testing variables

Component Testing for C

One of the main features of Component Testing for C is its ability to compare initial values, expected values and

actual values of variables during test execution. In the C Test Script Language, this is done with the VAR statement.

The VAR statement specifies both the test start-up procedure and the post-execution test for simple variables. This

instruction uses three parameters:

• Name of the variable under test: this can be a simple variable, an array element, or a field of a record. It is also

possible to test an entire array, part of an array or all the fields of a record.

• Initial value of the variable: identified by the keyword INIT.

• Expected value of the variable after the procedure has been executed: identified by the keyword EV.

485

HCL® OneTest™ Embedded

486

Declare variables under test with the VAR statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

It does not matter where the VAR instructions are located with respect to the test procedure call since the C code

generator separates VAR instructions into two parts :

• The variable test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

Many other forms are available that enable you to create more complex test scenarios.

Using C Expressions

Component Testing for C allows you to define initial and expected values with standard C expressions.

All literal values, variable types, functions and most operators available in the C language are accepted by Component

Testing for C.

Example

The following example demonstrates typical use of the VAR statement

HEADER add, 1, 1

﷓with add;

BEGIN

SERVICE add

﷓ a, b, c : integer;

TEST 1

FAMILY nominal

ELEMENT

VAR a, init = 1, ev = init

VAR b, init = 3, ev = init

VAR c, init = 0, ev = 4

﷓c := add(a,b);

Chapter 5. Test Execution Specialist Guide

END ELEMENT

END TEST

END SERVICE

Related Topics

Testing intervals on page 487 | Testing tolerances on page 488 | Initializing without testing on page 489 |

Testing expressions on page 489 | Declaring parameters on page 490 | Testing arrays on page 491 | Testing

structured variables on page 501

Testing intervals

Component Testing for C

You can test an expected value within a given interval by replacing EV with the keywords MIN and MAX.

You can also use this form on alphanumeric variables, where character strings are considered in alphabetical order

("A"<"B"<"C").

Example

The following example demonstrates how to test a value within an interval:

TEST 4

FAMILY nominal

ELEMENT

VAR a, INIT in {1,2,3}, EV = INIT

VAR b, INIT = 3, EV = INIT

VAR c, INIT = 0, MIN = 4, MAX = 6

﷓c = add(a,b);

END ELEMENT

END TEST

Related Topics

Testing variables on page 485 | Testing tolerances on page 488 | Initializing without testing on page 489 |

Testing expressions on page 489 | Declaring parameters on page 490 | Testing arrays on page 491 | Testing

structured variables on page 501

487

HCL® OneTest™ Embedded

488

Testing tolerances

Component Testing for C

You can associate a tolerance with an expected value for numerical variables. To do this, use the keyword DELTA with

the expected value EV.

This tolerance can either be an absolute value (the default option) or relative (in the form of a percentage <value>%).

You can rewrite the test from the previous example as follows:

TEST 5

FAMILY nominal

ELEMENT

VAR a, INIT in {1,2,3}, EV = INIT

VAR b, INIT = 3, EV = INIT

VAR c, INIT = 0, EV = 5, DELTA = 1

﷓c = add(a,b);

END ELEMENT

END TEST

or

TEST 6

FAMILY nominal

ELEMENT

VAR a, INIT in {1,2,3}, EV = INIT

VAR b, INIT = 3, EV = INIT

VAR c, INIT = 0, EV = 5, DELTA = 20%

﷓c = add(a,b);

END ELEMENT

END TEST

Related Topics

Chapter 5. Test Execution Specialist Guide

Testing variables on page 485 | Testing intervals on page 487 | Initializing without testing on page 489 | Testing

expressions on page 489 | Declaring parameters on page 490 | Testing arrays on page 491 | Testing structured

variables on page 501

Initializing without testing

Component Testing for C

It is sometimes difficult to predict the expected result for a variable; such as if a variable holds the current date or

time. In this case, you can avoid specifying an expected output.

Example

The following script show an example of an omitted test:

TEST 7

FAMILY nominal

ELEMENT

VAR a, init in {1,2,3}, ev = init

VAR b, init = 3, ev = init

VAR c, init = 0, ev ==

﷓c = add(a,b);

END ELEMENT

END TEST

Related Topics

Testing variables on page 485 | Testing intervals on page 487 | Testing tolerances on page 488 | Testing

expressions on page 489 | Declaring parameters on page 490 | Testing arrays on page 491 | Testing structured

variables on page 501

Testing expressions

Component Testing for C

To test the return value of an expression, rather than declaring a local variable to memorize the value under test, you

can directly test the return value with the VAR instruction.

In some cases, you must leave out the initialization part of the instruction.

489

HCL® OneTest™ Embedded

490

Example

The following example places the call of the add function in a VAR statement:

TEST 12

FAMILY nominal

ELEMENT

VAR a, init in {1,2,3}, ev = init

VAR b, init(a) with {3,2,1}, ev = init

VAR add(a,b), ev = 4

END ELEMENT

END TEST

In this example, you no longer need the variable c .

All syntax examples of expected values are still applicable, even in this particular case.

Related Topics

Testing variables on page 485 | Testing intervals on page 487 | Testing tolerances on page 488 | Initializing

without testing on page 489 | Declaring parameters on page 490 | Testing arrays on page 491 | Testing

structured variables on page 501

Declaring parameters

Component Testing for C

ELEMENT blocks contain specific instructions that describe the test start-up procedures and the post-execution tests.

The hash character (#) at the beginning of a line indicates a native language statement written in C.

This declaration is introduced after the SERVICE instruction because it is local to the SERVICE block; it is invalid

outside this block.

It is only necessary to declare parameters of the procedure under test. Global variables are already present in the

module under test or in any integrated modules, and do not need to be declared locally.

Related Topics

Testing variables on page 485 | Testing intervals on page 487 | Testing tolerances on page 488 | Initializing

without testing on page 489 | Testing expressions on page 489 | Testing arrays on page 491 | Testing

structured variables on page 501

Chapter 5. Test Execution Specialist Guide

Initial and Expected Value settings

Component Testing for C

The Initial and Expected Value settings are part of the Component Testing Settings for C on page 1034 dialog box

and describes how values assigned to each variable are displayed in the Component Testing report. Component

Testing allows three possible evaluation strategy settings.

Variable Only

This evaluation strategy setting generates both the initial and expected values of each variable evaluated by the

program during execution.

This is possible only for variables whose expression of initial or expected value is not reducible by the Test Script

Compiler. For arrays and structures in which one of the members is an array, this evaluation is not given for the initial

values. For the expected values, however, it is given only for Failed items.

Value Only

With this setting, the test report displays for each variable both the initial value and the expected value defined in the

test script.

Combined Evaluation

The combined evaluation setting combines both settings. The test report thus displays the initial value, the expected

value defined in the test script, and the value found during execution if that value differs from the expected value.

Related Topics

Component Testing Settings for C on page 1034 | Understanding Component Testing Reports on page 539 | Array

and Structure Display on page 542

Arrays

Testing Arrays

Component Testing for C

With Component Testing for C, you can test arrays in quite the same way as you test variables. In the C Test Script

Language, this is done with the ARRAY statement.

The ARRAY statement specifies both the test start-up procedure and the post-execution test for simple variables.

This instruction uses three parameters:

491

HCL® OneTest™ Embedded

492

• Name of the variable under test: species the name of the array in any of the following ways:

• ◦ To test one array element, conform to the C syntax: histo[0].

◦ To test the entire array without specifying its bounds, the size of the array is deduced by analyzing its

declaration. This can only be done for well-defined arrays.

◦ To test a part of the array, specify the lower and upper bounds within which the test will be run,

separated with two periods (..), as in: histo[1..SIZE_HISTO]

• Initial value of the array: identified by the keyword INIT.

• Expected value of the array after the procedure has been executed: identified by the keyword EV.

Declare variables under test with the ARRAY statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

It does not matter where the ARRAY instructions are located with respect to the test procedure call since the C code

generator separates ARRAY instructions into two parts :

• The array test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

To initialize and test an array, specify the same value for all the array elements.

You can use the same expressions for initial and expected values as those used for simple variables (literal values,

constants, variables, functions, and C operators).

Use the ARRAY instruction to run simple tests on all or only some of the elements in an array.

Testing Arrays with C Expressions

To initialize and test an array, specify the same value for all the array elements. The following two examples illustrate

this simple form.

ARRAY image, INIT = 0, EV = INIT

ARRAY histo[1..SIZE_HISTO-1], INIT = 0, EV = 0

You can use the same expressions for initial and expected values as those used for simple variables (literal values,

constants, variables, functions, and C operators).

Example

Chapter 5. Test Execution Specialist Guide

The following example highlights the ARRAY instruction syntax for C:

HEADER histo, 1, 1

﷓﷓include "histo.h"

BEGIN

SERVICE COMPUTE_HISTO

﷓int x1, x2, y1, y2;

﷓int status;

﷓T_HISTO histo;

TEST 1

FAMILY nominal

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init = 0, ev = init

VAR histo[0], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

ARRAY histo[1..SIZE_HISTO-1], init = 0, ev = 0

VAR status, init = 0, ev = 0

﷓status = compute_histo(x1, y1, x2, y2, histo);

END ELEMENT

END TEST

END SERVICE

Related Topics

Testing arrays with pseudo-variables on page 494 | Testing large arrays on page 495 | Testing arrays with lists

on page 496 | Testing character arrays on page 497 | Testing arrays with other arrays on page 498 | Testing an

array of union elements on page 499

493

HCL® OneTest™ Embedded

494

Testing arrays with pseudo-variables

Component Testing for C

Another form of initialization consists of using one or more pseudo-variables, as the following example illustrates:

TEST 3

FAMILY nominal

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init=(int)(100*(1+sin((float)(I1+I2)))), ev = init

ARRAY histo[0..200], init = 0, ev ==

ARRAY histo[201..SIZE_HISTO-1], init = 0, ev = 0

VAR status, init ==, ev = 0

﷓status = compute_histo(x1, y1, x2, y2, histo);

END ELEMENT

END TEST

I1 and I2 are two pseudo-variables which take as their value the current values of the array indices (for image, from 0

to 199 for I1 and I2). You can use these pseudo-variables like a standard variable in any C expression.

This lets you create more complicated test scripts in the case of very large arrays, where the use of enumerated

expressions is limited.

For multidimensional arrays, you can combine these different types of initialization and test expressions, as the

following example shows:

ARRAY image, init = {0 => I2, 1 => { 0 => 100, others => 0 },

& others => (I1 + I2) % 255 }

Related Topics

Chapter 5. Test Execution Specialist Guide

Testing arrays on page 491 | Testing large arrays on page 495 | Testing arrays with lists on page 496 | Testing

character arrays on page 497 | Testing arrays with other arrays on page 498 | Testing an array of union elements

on page 499

Testing large arrays

Component Testing for C

The maximum number of array elements that can be processed is 100. If you need to test an array that contains more

than 100 elements, then you must split the initialization of the array over two or more initializations, as shown in the

following example.

Example

The following initiatialization produces a Too many INIT or VA values error:

﷓int a[200];

ARRAY a, init=

{1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,20,1,2,3,4,5,6,7,8,9,30,1,2,3,4,

5,6,7,8,9,40,1,2,3,4,5,6,7,8,9,50,1,2,3,4,5,6,7,8,9,60,1,2,3,4,5,6,7,8,9,

70,1,2,3,4,5,6,7,8,9,80,1,2,3,4,5,6,7,8,9,90,1,2,3,4,5,6,7,8,9,100,1,2,3,

4,5,6,7,8,9,110,1,2,3,4,5,6,7,8,9,120,1,2,3,4,5,6,7,8,9,130,1,2,3,4,5,6,

7,8,9,140,1,2,3,4,5,6,7,8,9,150,1,2,3,4,5,6,7,8,9,160,1,2,3,4,5,6,7,8,9,

170,1,2,3,4,5,6,7,8,9,180,1,2,3,4,5,6,7,8,9,190,1,2,3,4,5,6,7,8,9,200}

, ev=init

Instead, use the following expression:

﷓int a[200];

ARRAY z [0..99],

init={1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,20,1,2,3,4,5,6,7,8,9,30,1,2

,3,4,5,6,7,8,9,40,1,2,3,4,5,6,7,8,9,50,1,2,3,4,5,6,7,8,9,60,1,2,3,4,5,6,

7,8,9,70,1,2,3,4,5,6,7,8,9,80,1,2,3,4,5,6,7,8,9,90,1,2,3,4,5,6,7,8,9,100}

, ev=init

ARRAY z [100..199],

495

HCL® OneTest™ Embedded

496

init={1,2,3,4,5,6,7,8,9,110,1,2,3,4,5,6,7,8,9,120,1,2,3,4,5,6,7,8,9,130,

1,2,3,4,5,6,7,8,9,140,1,2,3,4,5,6,7,8,9,150,1,2,3,4,5,6,7,8,9,160,1,2,3,

4,5,6,7,8,9,170,1,2,3,4,5,6,7,8,9,180,1,2,3,4,5,6,7,8,9,190,1,2,3,4,5,6,

7,8,9,200}

, ev=init

Related Topics

Testing arrays on page 491 | Testing arrays with pseudo-variables on page 494 | Testing arrays with lists on

page 496 | Testing character arrays on page 497 | Testing arrays with other arrays on page 498 | Testing an

array of union elements on page 499

Testing arrays with lists

Component Testing for C

While an expression initializes all the ARRAY elements in the same way, you can also initialize each element using an

enumerated list of expressions between brackets ({}). In this case, you must specify a value for each array element.

Furthermore, you can precede every element in this list of initial or expected values with the array index of the element

concerned followed by the characters "=>". The following example illustrates this form:

ARRAY histo[0..3], init = {0 => 0, 1 => 10, 2 => 100, 3 => 10} ...

This form of writing the ARRAY instruction has the following advantages:

• It improves the readability of the list.

• It allows you to mix values without worrying about the order.

You can also use this form together with the simple form if you follow this rule: once one element has been defined

with its array index, you must do the same with all the following elements.

If several elements in an array are to take the same value, specify the range of elements taking this value as follows:

ARRAY histo[0..3], init = { 0 .. 2 => 10, 3 => 10 } ...

You can also specify a value for all the as yet undefined elements by using the keyword others, as the following

example illustrates:

TEST 2

FAMILY nominal

ELEMENT

Chapter 5. Test Execution Specialist Guide

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init = {others=>{others=>100}}, ev = init

ARRAY histo, init = 0,

& ev = {100=>SIZE_IMAGE*SIZE_IMAGE, others=>0}

VAR status, init ==, ev = 0

﷓status = compute_histo(x1, y1, x2, y2, histo);

END ELEMENT

END TEST

Note The form {others => <expression> } is equivalent to initializing and testing all array elements with the same

expression.

You can also initialize and test multidimensional arrays with a list of expressions, as follows. In this case, the

previously mentioned rules apply to each dimension.

ARRAY image, init = {0, 1=>4, others=>{1, 2, others=>100}} ...

Note Some C compilers allow you to omit levels of brackets when initializing a multidimensional array. The Unit

Testing Scripting Language does not accept this non-standard extension to the language.

Related Topics

Testing arrays on page 491 | Testing arrays with pseudo-variables on page 494 | Testing large arrays on

page 495 | Testing character arrays on page 497 | Testing arrays with other arrays on page 498 | Testing an

array of union elements on page 499 | VAR, ARRAY and STR on page 773

Testing character arrays

Component Testing for C

Character arrays are a special case. Variables of this type are processed as character strings delimited by quotes.

You therefore need to initialize and test character arrays using character strings, as the following list example

illustrates.

497

HCL® OneTest™ Embedded

498

If you want to test character arrays like other arrays, you must use a format modification declaration (FORMAT

instruction) to change them to arrays of integers.

Example

The following list example illustrates this type of modification:

TEST 2

FAMILY nominal

FORMAT str[] = int

ELEMENT

VAR l, pointer, init = NIL, ev = NONIL

VAR s, init = "myfoo", ev = init

VAR str[0..5], init == , ev = {'m','y','f','o','o',0}

﷓l = strcpy(str,s);

END ELEMENT

END TEST 2

Related Topics

Testing arrays on page 491 | Testing arrays with pseudo-variables on page 494 | Testing large arrays on

page 495 | Testing arrays with lists on page 496 | Testing arrays with other arrays on page 498 | Testing an

array of union elements on page 499

Testing arrays with other arrays

Component Testing for C

The following example illustrates a form of initialization that consists of initializing or comparing an array with

another array that has the same declaration:

TEST 4

FAMILY nominal

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

Chapter 5. Test Execution Specialist Guide

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init = extern_image, ev = init

ARRAY histo, init = 0, ev ==

VAR status, init ==, ev = 0

﷓read_image(extern_image,"image.bmp");

﷓status = compute_histo(x1, y1, x2, y2, histo);

END ELEMENT

END TEST

Read_image and extern_image are two arrays that have been declared in the same way. Every element from the

extern_image array is assigned to the corresponding read_image array element.

You can use this form of initialization and testing with one or more array dimensions.

Related Topics

Testing arrays on page 491 | Testing arrays with pseudo-variables on page 494 | Testing large arrays on

page 495 | Testing arrays with lists on page 496 | Testing character arrays on page 497 | Testing an array of

union elements on page 499

Testing arrays of union elements

Component Testing for C

When testing an array of unions, detail your tests for each member of the array, using VAR lines in the ELEMENT

block.

Example

Considering the following variables:

﷓typedef struct {

﷓ int test1;

﷓ int test2;

﷓ int test3;

﷓ int test4;

499

HCL® OneTest™ Embedded

500

﷓ int test5;

﷓ int test6;

﷓ } Test;

﷓typedef struct {

﷓ int champ1;

﷓ int champ2;

﷓ int champ3;

﷓ } Champ;

﷓typedef struct {

﷓ int toto1;

﷓ int toto2;

﷓ } Toto;

﷓typedef union {

﷓ Test A;

﷓ Champ B;

﷓ Toto C;

﷓ } T_union;

﷓extern T_union Tableau[4];

The test must be written element per element:

TEST 1

FAMILY nominal

ELEMENT

VAR Tableau[0], init = {A => { test1 => 0, test2 => 0, test3 => 0, test4 => 0,

& test5 => 0, test6 => 0} }, ev = init

VAR Tableau[1], init = {B => { champ1 => 0, champ2 => 0, champ3 => 0} }, ev = init

VAR Tableau[2], init = {B => { champ1 => 0, champ2 => 0, champ3 => 0}} , ev = init

Chapter 5. Test Execution Specialist Guide

VAR Tableau[3], init = {B => { champ1 => 0, champ2 => 0, champ3 => 0}} , ev = init

﷓ret_fct;

END ELEMENT

END TEST -- TEST 1

Related Topics

Testing arrays on page 491 | Testing arrays with pseudo-variables on page 494 | Testing large arrays on

page 495 | Testing arrays with lists on page 496 | Testing character arrays on page 497 | Testing arrays with

other arrays on page 498

Structured Variables

Testing structured variables

Component Testing for C

To test all the fields of a structured variable, use a single instruction (STR) to define their initializations and expected

values:

TEST 2

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

STR *l, init == , ev = {"myfoo",NIL,NIL}

VAR s, init = "myfoo", ev = init

﷓l = push(l,s);

END ELEMENT

END TEST

You can only initialize and test structured variables with the following forms:

• INIT =

• INIT ==

501

HCL® OneTest™ Embedded

502

• EV =

• EV ==

If a field of a structured variable needs to be initialized or tested in a different way, you can omit its initial and

expected values from the global test of the structured variable, and run a separate test on this field.

The following example illustrates this:

TEST 4

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

VAR *l, init == , ev = {,NIL,NIL}

VAR s, init in {"foo","bar"}, ev = init

VAR l->str, init ==, ev(s) in {"foo","bar"}

﷓l = push(l,s);

END ELEMENT

END TEST

Using field names, write this as follows:

VAR *l, init ==, ev = {next=>NIL,prev=>NIL}

Related Topics

Testing variables on page 485 | Testing structured variables with C expressions on page 502 | Testing structured

variables with other structured variables on page 504 | C Unions on page 505 | Omitting a Field's Initial and Test

Values on page 504

Testing structured variables with C expressions

Component Testing for C

To initialize and test a structured variable or record, initialize or test all the fields using a list of native language

expressions (one per field). The following example (taken from list.ptu) illustrates this form:

STR *l, init == , ev = {"myfoo",NIL,NIL}

Each element in the list must correspond to the structured variable field as it was declared.

Chapter 5. Test Execution Specialist Guide

Every expression in the list must obey the rules described so far, according to the type of field being initialized and

tested:

• An expression for simple fields or arrays of simple variables initialized using an expression

• A list of expressions for array fields initialized using an enumerated list

• A list of expressions for structured fields

Using Field Names in Native Expressions

You can specify field names in native expressions by following the field name of the structure with the characters

"=>", as follows:

TEST 3

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

VAR *l, init == , ev = {str=>"myfoo",next=>NIL,prev=>NIL}

VAR s, init = "myfoo", ev = init

﷓l = push(l,s);

END ELEMENT

END TEST

If you use this form, you do not have to respect the order of expressions in the list.

You can also use the position of the fields in the structure or record instead of the field names, on the basis that the

field numbers begin at 1:

VAR *l, init ==, ev = {3 => NIL, 2 => NIL, 1 => "myfoo"}

As with arrays, you can also use a range for field positions, as follows:

VAR *l, init ==, ev = {1 => "myfoo", 2..3 => NIL}

Related Topics

Testing variables on page 485 | Testing structured variables on page 501 | Testing structured variables with other

structured variables on page 504 | C Unions on page 505 | Omitting a Field's Initial and Test Values on page 504

503

HCL® OneTest™ Embedded

504

Testing structured variables with other structured variables

Component Testing for C

You can initialize and test a structured variable or record using another structured variable or record of the same type.

The following example illustrates this form:

STR *l, init == , ev = l1

Each field of the structured variable will be initialized or tested using the associated fields of the variable used for

initialization or testing.

Related Topics

Testing Variables on page 485 | Testing a Structured Variable on page 501 | Testing a Structured Variable with C

Expressions on page 502 | Testing a Structured Variable with Another Structured Variable on page 504 | C Unions

on page 505 | Omitting a Field's Initial and Test Values on page 504

Omitting a Field’s Initial and Test Values

Component Testing for C

You can only initialize and test structured variables with the following forms:

• INIT =

• INIT ==

• EV =

• EV ==

If a field of a structured variable needs to be initialized or tested in a different way, you can omit its initial and

expected values from the global test of the structured variable, and run a separate test on this field.

The following example illustrates this:

TEST 4

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

VAR *l, init == , ev = {,NIL,NIL}

VAR s, init in {"foo","bar"}, ev = init

Chapter 5. Test Execution Specialist Guide

VAR l->str, init ==, ev(s) in {"foo","bar"}

﷓l = push(l,s);

END ELEMENT

END TEST

Using field names, write this as follows:

VAR *l, init ==, ev = {next=>NIL,prev=>NIL}

Related Topics

Testing Variables on page 485 | Testing a Structured Variable on page 501 | Testing a Structured Variable with C

Expressions on page 502 | Testing a Structured Variable with Another Structured Variable on page 504 | C Unions

on page 505

C Unions

Component Testing for C

If the structured variable involves a C union (defined using the union instruction) rather than a structure (defined using

the struct instruction), you need to specify which field in the union is tested. The initial and test value only relates to

one of the fields in the union, whereas, for a structure, it relates to all the fields.

The list.c example demonstrates this if you modify the structure of the list, such that the value stored at each node is

an integer, a floating-point number, or a character string:

list1.h:

enum node_type { INTEGER, REAL, STRING };

typedef struct t_list {

enum node_type type;

union {

long integer_value;

double real_value;

char * string_value;

} value;

struct t_list * next;

struct t_list * prev;

505

HCL® OneTest™ Embedded

506

} T_LIST, * PT_LIST;

In this case, the test becomes:

HEADER list1, 1, 1

﷓﷓include "list1.h"

BEGIN

SERVICE push1

﷓PT_LIST l;

﷓enum node_type t;

﷓char s[10];

TEST 1

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

VAR t, init = my_string, ev = init

VAR *l, init == ,

& ev = {STRING,{string_value=>"myfoo"}, NIL,NIL}

VAR s, init = "myfoo", ev = init

﷓l = push1(l, t, s);

END ELEMENT

END TEST

END SERVICE

The use of string_value => indicates that the chosen field in the union is string_value.

If no field is specified, the first field in the union is taken by default.

Related Topics

Testing variables on page 485 | Testing structured variables on page 501 | Testing structured variables with C

expressions on page 502 | Testing structured variables with other structured variables on page 504

Chapter 5. Test Execution Specialist Guide

Stub simulation

Component Testing for C

Stub simulation is based on the idea that certain functions are to be simulated and are therefore replaced with other

functions which are generated in the test driver. These generated functions, or stubs, have the same interface as the

simulated functions, but the body of the functions is replaced.

These stubs have the following roles:

• To store input values to simulated functions

• To assign output values from simulated functions

To generate these stubs, the Test Script Compiler must have the following information:

• The prototypes of the functions that are to be simulated from the stub point of view.

• A method of passing each parameter (input, output, or input/output).

When using the Component Testing Wizard, you specify the functions that you want to stub. This automatically adds

the corresponding code to the .ptu test script. On execution of the test, Component Testing for C generates the stub

in the test driver, which includes:

• a variable array for the input values of the stub

• a variable array for the output values of the stub

• a body declaration for the stub function

Function Prototypes

When generating a stub for a function, HCL® OneTest™ Embedded considers both the original and the simulation

version of the first prototype of the function that is encountered, which can be:

• The declaration of the function in an included header file.

• The declaration DEFINE STUB statement in the .ptu test script, which declares how the stub is used by the

application under test and how the check code is generated.

If the first declaration is not found HCL® OneTest™ Embedded considers that original is identical to the simulated

function.

Both can differ when the original prototype does not declare explicitly how the application uses it. For example, a void

* parameter can be used as char* or int *.

It is possible to stub a function that is located in the source file under test. In this case, the source file must be

included in the .ptu test script. If an existing body of stubbed function is encountered in the source code under test,

507

HCL® OneTest™ Embedded

508

HCL® OneTest™ Embedded renames the existing body to _atu_stub_ <function-name> and the stubbed version of the

function is used in the test driver.

An example is provided in the StubInUseFunc test node of the Stub C example project.

Note: To comply with the DO178B standard, the source code under test must be compiled separately from the .ptu. If

you choose to include the source file in the .ptu script, then you will need to justify this with the DO178B authority.

Passing Parameters

Passing parameters by pointer can lead to problems of ambiguity regarding the data actually passed to the function.

For example, a parameter that is described in a prototype by int *x can be passed in the following way:

int *x as input ==> f(x)

int x as output or input/output ==> f(&x)

int x[10] as input ==> f(x)

int x[10] as output or input/output ==> f(x)

Therefore, to describe the stubs, you should specify the following:

• The data type in the calling function

• The method of passing the data

Example

An example project called Stub C is available from the Examples section of the Start page. This example

demonstrates the use of stubs in Component Testing for C. See Example projects on page 709 for more

information.

Related Topics

Stub Definition in C on page 508 | Stub Usage in C on page 511 | Sizing Stubs on page 515 | Replacing Stubs on

page 513 | Advanced Stubs on page 516 | Example projects on page 709

Stub Definition

Component Testing for C

The following simulation describes a set of function prototypes to be simulated in an instruction block called DEFINE

STUB ... END DEFINE:

HEADER file, 1, 1

BEGIN

Chapter 5. Test Execution Specialist Guide

DEFINE STUB file

﷓int open_file(char _in f[100]);

﷓int create_file(char _in f[100]);

﷓int read_file(int _in fd, char _out l[100]);

﷓int write_file(int fd, char _in l[100]);

﷓int close_file(int fd);

END DEFINE

The prototype of each simulated function is described in ANSI form. The following information is given for each

parameter:

• The type of the calling function (char f[100] for example, meaning that the calling function supplies a

character string as a parameter to the open_file function)

• The method of passing the parameter, which can take the following values:

• _in for an input parameter

• _out for an output parameter

• _inout for an input/output parameter

These values describe how the parameter is used by the called function, and, therefore, the nature of the test to be

run in the stub.

• The _in parameters only will be tested.

• The _out parameters will not be tested but will be given values by a new expression in the stub.

• The _inout parameters will be tested and then given values by a new expression.

Any returned parameters are always taken to be _out parameters.

You must always define stubs after the BEGIN instruction and outside any SERVICE block.

Modifying Stub Variable Values

You can define stubs so that the variable pointed to is updated with different values in each test case. For example, to

stub the following function:

extern void function_b(unsigned char * param_1);

Declare the stub as follows:

509

HCL® OneTest™ Embedded

510

DEFINE STUB code_c

﷓void function_b(unsigned char _out param_1);

END DEFINE

Note Any _out parameter is automatically a pointer, therefore the asterisk is not necessary.

To return '255' in the first test case and 'a' in the second test case, you would write the following in your test script:

SERVICE function_a

SERVICE_TYPE extern

-- By function returned type declaration

﷓int ret_function_a;

TEST 1

FAMILY nominal

ELEMENT

VAR ret_function_a, init = 0, ev = 1

STUB function_b (255)

﷓ret_function_a = function_a();

END ELEMENT

END TEST -- TEST 1

TEST 2

FAMILY nominal

ELEMENT

VAR ret_function_a, init = 1, ev = 0

STUB function_b ('a')

﷓ret_function_a = function_a();

END ELEMENT

END TEST -- TEST 2

END SERVICE -- function_a

Chapter 5. Test Execution Specialist Guide

Simulating Global Variables

The simulated file can also contain global variables that are used by the functions under test. In this case, as with

simulated functions, you can simulate the global variables by declaring them in the DEFINE STUB block, as shown in

the following example:

DEFINE STUB file

﷓int fic_errno; /* simulated global variable */

﷓char fic_err_msg[100]; /* simulated global variable */

﷓int open_file(char _in f[100]);

﷓int create_file(char _in f[100]);

﷓int read_file(int _in fd, char _out l[100]);

﷓int write_file(int fd, char _in l[100]);

﷓int close_file(int fd);

END DEFINE

The global variables are created as if they existed in the simulated file. The global variables must be initialized within

the .ptu test script.

Using stubs

Component Testing for C

Use the STUB statement to declare that you want to use a stub rather than the original function. You can use the

STUB instruction within environments or test scenarios.

This STUB instruction tests input parameters and assigns a value to output parameters each time the simulated

function is called.

The following information is required for every stub called in a scenario:

• Test values for the input parameters

• Return values for the output parameters

• Test and return values for the input/output parameters

• Where appropriate, the return value of the called stub

Example

511

HCL® OneTest™ Embedded

512

The following example illustrates use of a stub which simulates file access.

SERVICE copy_file

﷓char file1[100], file2[100];

﷓int s;

TEST 1

FAMILY nominal

ELEMENT

VAR file1, init = "file1", ev = init

VAR file2, init = "file2", ev = init

VAR s, init == , ev = 1

STUB open_file ("file1")3

STUB create_file ("file2")4

STUB read_file (3,"line 1")1, (3,"line 2")1, (3,"")0

STUB write_file (4,"line 1")1, (4,"line 2")1

STUB close_file (3)1, (4)1

﷓s = copy_file(file1, file2);

END ELEMENT

END TEST

END SERVICE

The following example specifies that you expect three calls of foo.

STUB STUB1.foo(1)1, (2)2, (3)3

...

﷓foo(1);

﷓foo(2);

﷓foo(4);

Chapter 5. Test Execution Specialist Guide

The first call has a parameter of 1 and returns 1. The second has a a parameter of 2 and returns 2 and the third has a

parameter of 3 and returns 3. Anything that does not match is reported in the test report as a failure.

Replacing Stubs

Component Testing for C

Stubs can be used to replace a component that is still in development. Later in the development process, you might

want to replaced a stubbed component with the actual source code.

To replace a stub with actual source code:

1. Right-click the test node and select Add Child and Files

2. Add the source code files that will replace the Stubbed functions.

3. If you do not want a new file to be instrumented, right-click the file select Properties. Set the Instrumentation

property to No.

4. Open the .ptu test script, and remove the STUB sections from your script file.

Multiple stub calls

Component Testing for C

For a large number of calls to a stub, use the following syntax for a more compact description:

<call i> .. <call j> =>

You can describe each call to a stub by adding the specific cases before the preceding instruction, for example:

<call i> =>

or

<call i> .. <call j> =>

The call count starts at 1 as the following example shows:

TEST 2

FAMILY nominal

COMMENT Reading of 100 identical lines

ELEMENT

513

HCL® OneTest™ Embedded

514

VAR file1, init = "file1", ev = init

VAR file2, init = "file2", ev = init

VAR s, init == , ev = 1

STUB open_file 1=>("file1")3

STUB create_file 1=>("file2")4

STUB read_file 1..100(3,"line")1, 101=>(3,"")0

STUB write_file 1..100=>(4,"line")1

STUB close_file 1=>(3)1,2=>(4)1

﷓s = copy_file(file1,file2);

END ELEMENT

END TEST

Multiple stub calls

If a stub is called several times during a test, either of the following are possible:

• Describe the different calls in the same STUB instruction, as described previously.

• Use several STUB instructions to describe the different calls. (This allows a better understanding of the test

script when the STUB calls are not consecutive.)

The following example rewrites the test to use this syntax for the call to the STUB close_file:

STUB close_file (3)1

STUB close_file (4)1

No stub calls

To check that a STUB is never called, even if an ENVIRONMENT containing the STUB is used, use the following

syntax:

STUB write_file 0=>(4,"line")

No testing of the maximum number of stub calls

If you do not want to test the maximum number of calls to a stub, you can use the keyword others in place of the call

number to describe the behavior of the stub for the calls to the stub that are not yet described.

Chapter 5. Test Execution Specialist Guide

The minimum number of calls to a stub is checked against the maximum call number that is specified without the

others keyword.

For example, the following instruction lets you specify the first call and all the following calls without knowing the

exact number. In this example, the test checks that the stub has been called at least once:

STUB write_file 1=>(4,"line")1,others=>(4,"")1

Stub memory usage

Component Testing for C

For each STUB, the test allocates memory to:

• Store the expected value of the input parameters during the test

• Store the obtained value of the input parameters during the test when error is detected

• Store the values assigned to output parameters before the test

A stub can be called several times during the execution of a test.

The test allocates memory for expected and returned values in accordance with the maximum number of STUB calls

used in the tests.

In the following example, the script allocates storage space for expected and returned values for 4 ranges for

read_file and 3 ranges for write_file:

TEST 1

STUB read_file 1..10(3,"line")1,11..20(1,"line")2, 21..100(1,"line")3, 101=>(3,"")0

STUB write_file 1..5=>(4,"line")1,others=>(4,"")1

...

END TEST

.....

TEST 2

STUB read_file 1..100(3,"line")1, 101=>(3,"")0

STUB write_file 1..2=>(4,"line")1,3=>(4,"line")4,others=>(4,"")1

...

END TEST

515

HCL® OneTest™ Embedded

516

By default, when you define a STUB, the test allocates space for obtained values for the 10 first call in error.

In the following example, the script allocates storage space for the first 17 call errors to the stub:

DEFINE STUB file 17

﷓int open_file(char _in f[100]);

﷓int create_file(char _in f[100]);

﷓int read_file(int _in fd, char _out l[100]);

﷓int write_file(int fd, char _in l[100]);

﷓int close_file(int fd);

END DEFINE

In this case, only the first 17 errors are shown in the report. Any more errors are not recorded.

You can also reduce the stub allocation value to a lower value when running tests on a target platform that is short on

memory resources.

Advanced stubs

Component Testing for C

This section covers some of the more complex notions when dealing with stub simulations in Component Testing for

Ada.

To learn about See

Writing complex stubs in C Native Code in Stubs on page 517

Specifying items that are not to be tested Excluding a Parameter from a Stub on

page 596

Stubbing functions that take arrays in _inout mode Simulating Functions with _inout Mode Arrays

on page 599

Stubbing functions that use type modifiers Simulating Functions with Type Modifiers on

page 520

Stubbing functions for which the number of parameters may

vary

Simulating Functions with Varying Parame­

ters on page 521

Stubbing functions that use const parameters Simulating Functions with const Parameters

on page 520

Chapter 5. Test Execution Specialist Guide

Stubbing functions that use void* parameters Simulating Functions with void* Parameters

on page 522

Stubbing functions that use char* parameters Simulating Functions with char* Parameters

on page 523

Creating complex stubs

Component Testing for C

If necessary, you can make stub operation more complex by inserting native code into the body of the simulated

function. You can do this easily by adding the lines of native code after the prototype, as shown in the following

example:

DEFINE STUB file

﷓int fic_errno;

﷓char fic_err_msg[100];

﷓int open_file(char _in f[100])

﷓ { errno = fic_errno; }

﷓int create_file(char _in f[100])

﷓ { errno = fic_errno; }

﷓int read_file(int _in fd, char _out l[100])

﷓ { errno = fic_errno; }

﷓int write_file(int fd, char _in l[100])

﷓ { errno = fic_errno; }

﷓int close_file(int fd)

﷓ { errno = fic_errno; }

END DEFINE

Excluding a Parameter from a Stub

Component Testing for C

517

HCL® OneTest™ Embedded

518

Stub Definition

You can specify in the stub definition that a particular parameter is not to be tested or given a value. You do this using

a modifier of type _no instead of _in, _out or _inout, as shown in the following example:

DEFINE STUB file

﷓int open_file(char _in f[100]);

﷓int create_file(char _in f[100]);

﷓int read_file(int _no fd, char _out l[100]);

﷓int write_file(int _no fd, char _in l[100]);

﷓int close_file(int fd);

END DEFINE

In this example, the fd parameters to read_file and write_file are never tested.

Note You need to be careful when using _no on an output parameter, as no value will be assigned to it. It will then be

difficult to predict the behavior of the function under test on returning from the stub.

Stub Usage

Parameters that have not been tested (preceded by _no) are completely ignored in the stub description. Therefore,

changing _in to _no in the DEFINE STUB means that you must remove the corresponding input value in each STUB

check.

The easiest way to disable the check value is to add the _nocheck keyword before the _in.

The two values of the input/output parameters are located between brackets as shown in the following example:

DEFINE STUB file

﷓int open_file(char _in f[100]);

﷓int create_file(char _in f[100]);

﷓int read_file(int _no fd, char _inout l[100]);

﷓int write_file(int _no fd, char _in l[100]);

﷓int close_file(int _no fd);

END DEFINE

...

Chapter 5. Test Execution Specialist Guide

STUB open_file ("file1")3

STUB create_file ("file2")4

STUB read_file (("","line 1"))1, (("line 1","line 2"))1,

& (("line2",""))0

STUB write_file ("line 1")1, ("line 2")1

STUB close_file ()1, ()1

If a stub is called and if it has not been declared in a scenario, an error is raised in the report because the number of

the calls of each stub is always checked.

Functions Using _inout Mode Arrays

Component Testing for C

To stub a function taking an array in _inout mode, you must provide storage space for the actual parameters of the

function.

The function prototype in the .ptu test script remains as usual:

﷓extern void function(unsigned char *table);

The DEFINE STUB statement however is slightly modified:

DEFINE STUB Funct

﷓void function(unsigned char _inout table[10]);

END DEFINE

The declaration of the pointer as an array with explicit size is necessary to memorize the actual parameters when

calling the stubbed function. For each call you must specify the exact number of required array elements.

ELEMENT

STUB Funct.function 1 => (({'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 0x0},

& {'i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a', 0x0}))

﷓call_the_code_under_test();

END ELEMENT

519

HCL® OneTest™ Embedded

520

This naming convention compares the actual values and not the pointers.

The following line shows how to pass _inout parameters:

({<in_parameter>},{<out_parameter>})

Functions Containing Type Modifiers

Component Testing for C

Type modifiers can appear in the signature of the function but should not be used when manipulating any passed

variables. When using type modifiers, add @ prefix to the type modifier keyword.

HCL® OneTest™ Embedded recognizes @-prefixed type modifiers in the function prototype, but ignores them when

dealing internally with the parameters passed to and from the function.

This behavior is the default behavior for the "const" keyword, the '@' is not necessary for const.

Example

Consider a type modifier __foo

DEFINE STUB tst_cst

﷓int ModifParam(@__foo float _in param);

END DEFINE

Note In this example, __foo is not a standard ANSI-C feature. To force HCL® OneTest™ Embedded to recognize this

keyword as a type modifier, you must add the following line to the .ptu test script:

﷓﷓pragma attol type_modifier = __foo

Functions Using const Parameters

Component Testing for C

Functions using const parameters sometimes produce compilation errors when stubbed withHCL® OneTest™

Embedded.

This is because the preprocessor generates variables that are used for testing calls to the STUBs. These variables

have the same type as the parameter to the function being stubbed: const int. These const variables cannot be

modified, causing the compilation errors.

To work around this problem, you can to indicate that type modifiers for a STUB parameter should be used in the

function definition, but not in the declaration of the variables used to control the STUBs.

Chapter 5. Test Execution Specialist Guide

To do this, add an @ character as a prefix to the the type modifier. If your function takes a const pointer, then you don't

need the @ prefix:

This technique can be used with any type modifier.

Example

Consider the following function:

extern int ConstParam(const int param);

To stub the function, you would normally write the following lines in the .ptu test script. These will produce

compilation error messages:

DEFINE STUB Example

﷓int ConstParam(const int _in param);

END DEFINE

Instead, use the following syntax to define the stub:

DEFINE STUB Example

﷓int ConstParam(@const int _in param);

END DEFINE

If your function takes a const pointer:

DEFINE STUB Example

﷓int ConstParam(const int _in *param);

END DEFINE

Simulating functions with varying parameters

Component Testing for C

In some cases, functions may be designed to accept a variable number of parameters on each call.

You can still stub these functions with the Component Testing feature by using the '...' syntax indicating that there

may be additional parameters of unknown type and name.

In this case, Component Testing can only test the validity of the first parameter.

Example

521

HCL® OneTest™ Embedded

522

The standard printf function is a good a example of a function that can take a variable number of parameters:

int printf (const char* param, ...);

Here is an example including a STUB of the printf function:

HEADER add, 1, 1

﷓extern int add(int a, int b);

﷓﷓include <stdio.h>

BEGIN

DEFINE STUB MulitParam

﷓int printf (const char param[200], ...);

END DEFINE

SERVICE add

﷓int a, b, c;

TEST 1

FAMILY nominal

ELEMENT

VAR a, init = 1, ev = init

VAR b, init = 3, ev = init

VAR c, init = 0, ev = 4

STUB printf("hello %s\n")12

﷓c = add(a,b);

END ELEMENT

END TEST

END SERVICE

Simulating Functions with void* Parameters

Component Testing for C

Chapter 5. Test Execution Specialist Guide

When stubbing a function that takes void* type parameters, such as as fct_sim(double c, void * d), the Source Code

Parser generates incomplete code that might not compile.

Using void* _out means that the stub has to dereference a pointer to void, which is not possible.

When you are stubbing functions that take void* parameters, you must check and edit the .ptu test script in order to

specify the real type that the stub has to dereference.

Example

Consider the following test script generated by the C Source Code Parser:

DEFINE STUB fct_sim_c

﷓int fct_sim(double _in c, void _inout d);

END DEFINE

You should modify the .ptu script like this:

DEFINE STUB fct_sim_c

﷓int fct_sim(double _in c, unsigned char _inout d);

END DEFINE

Or, if testing the parameters is not required:

DEFINE STUB fct_sim_c

﷓int fct_sim(double _no c, unsigned char _no d);

END DEFINE

Simulating Functions with char* parameters

You can use Component Testing for C to stub functions that take a parameter of the char* type.

This feature applies to Component Testing for C.

The char* type causes problems with the Component Testing feature because of the ambiguity built into the C

programming language. The char* type can represent:

• Pointers

• Pointers to a single char

523

HCL® OneTest™ Embedded

524

• Arrays of characters of indeterminate size

• Arrays of characters of which the last character is the character \0, a C string.

By default, the product treats all variables of this type as C strings. To specify a different behavior, you must use one

of the following methods.

Pointers

Use the FORMAT command to specify that the test required is that of a pointer. For example:

HEADER charp, ,

﷓extern int CharPointer(char* pChar);

BEGIN

DEFINE STUB CH

﷓int CharPointer(void* pChar);

END DEFINE

SERVICE CharPointer1

﷓char *Chars;

﷓int ret;

TEST 1

ELEMENT

FORMAT Chars = void*

VAR Chars, init = NIL, ev = init

VAR ret, init = 0, ev = 0

STUB CharPointer(NIL)0

﷓ret = CharPointer(Chars);

END ELEMENT

END TEST -- TEST 1

END SERVICE -- CharPointer1

Chapter 5. Test Execution Specialist Guide

Pointers to a Single char

Define the type as _inout, as in the following example.

HEADER charp, ,

﷓extern int CharPointer(char* pChar);

BEGIN

DEFINE STUB CH

﷓int CharPointer(char Char);

END DEFINE

SERVICE CharPointer1

﷓char AChar;

﷓int ret;

TEST 1

ELEMENT

VAR AChar, init = 'A', ev = init

VAR ret, init = 0, ev = 'A'

STUB CharPointer('A')'A'

﷓ret = CharPointer(&AChar);

END ELEMENT

END TEST -- TEST 1

END SERVICE -- CharPointer1

Arrays of Characters of Indeterminate Size

Use the FORMAT command to specify that the array is in fact an array of unsigned chars not chars, as the product

considers that char arrays are C strings. For example:

HEADER charp, ,

﷓extern int CharPointer(char* pChar);

BEGIN

DEFINE STUB CH

525

HCL® OneTest™ Embedded

526

﷓int CharPointer(unsigned char Chars[4]);

END DEFINE

SERVICE CharPointer1

﷓char Chars[4];

﷓int ret;

TEST 1

ELEMENT

FORMAT Chars = unsigned char[4]

ARRAY Chars, init = {'a','b','c','d'}, ev = init

VAR ret, init = 0, ev = 'a'

STUB CharPointer({'a','b','c','d'})0

﷓ret = CharPointer(Chars);

END ELEMENT

END TEST -- TEST 1

END SERVICE -- CharPointer1

C strings

Use an array of characters in which the last character is the character '\0', a C string.

HEADER charp, ,

﷓extern int CharPointer(char* pChar);

BEGIN

DEFINE STUB CH

﷓int CharPointer(char* pChar);

END DEFINE

SERVICE CharPointer1

﷓char Chars[10];

﷓int ret;

Chapter 5. Test Execution Specialist Guide

TEST 1

ELEMENT

VAR Chars, init = "Hello", ev = init

VAR ret, init = 0, ev = 'H'

STUB CharPointer("Hello")'H'

﷓ret = CharPointer(Chars);

END ELEMENT

END TEST -- TEST 1

END SERVICE -- CharPointer1

Environments

Testing environments

Component Testing for C

When drawing up a test script for a service, you usually need to write several test cases. It is likely that, except for

a few variables, these scenarios will be very similar. You could avoid writing a whole series of similar scenarios by

factorizing items that are common to all scenarios.

Furthermore, when a test harness is generated, there are often side-effects from one test to another, particularly as a

result of unchecked modification of global variables.

To avoid these two problems and leverage your test script writing, the Test Script Language lets you define test

environments introduced by the keyword ENVIRONMENT.

These test environments are effectively a set of default tests performed on one or more variables.

Declaring environments

Component Testing for C

A test environment consists of a list of variables for which you specify:

• Default initialization conditions for before the test

• Default expected results for after the test

Use the VAR, ARRAY, and STR instructions described previously to specify the status of the variables before and after

the test.

527

HCL® OneTest™ Embedded

528

You can only use an environment once you have defined it.

Delimit an environment using the instructions ENVIRONMENT <environment_name> and END ENVIRONMENT. You

must place it after the BEGIN instruction. When you have declared it, an environment is visible to the block in which it

was declared and to all blocks included therein.

Example

The following example illustrates the use of environments:

HEADER histo, 1, 1

﷓﷓include <math.h>

﷓﷓include "histo.h"

BEGIN

ENVIRONMENT image

ARRAY image, init = 0, ev = init

END ENVIRONMENT

USE image

SERVICE COMPUTE_HISTO

﷓int x1, x2, y1, y2;

﷓int status;

﷓T_HISTO histo;

﷓T_IMAGE image1;

ENVIRONMENT compute_histo

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE?1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE?1, ev = init

ARRAY histo, init = 0, ev = 0

VAR status, init == , ev = 0

END ENVIRONMENT

Chapter 5. Test Execution Specialist Guide

USE compute_histo

Specifying parameters for environments

Component Testing for C

You can specify parameters for environments.

Declare the parameters in the ENVIRONMENT instruction as you would for a service:

ENVIRONMENT compute_histo1(a,b,c,d)

VAR x1, init = a, ev = init

VAR x2, init = b, ev = init

VAR y1, init = c, ev = init

VAR y2, init = d, ev = init

ARRAY histo[0..SIZE_HISTO?1], init = 0, ev = 0

VAR status, init ==, ev = 0

END ENVIRONMENT

The parameters are identifiers, which you can use in variable status instructions, as follows:

• In initial or expected value expressions

• In expressions delimiting bounds of arrays in extended mode

The parameters are initialized when they are used:

USE compute_histo1(0,0,SIZE_IMAGE?1,SIZE_IMAGE?1)

The number of values must be strictly equal to the number of parameters defined for the environment. The values can

be expressions of any type.

Environment override

Component Testing for C

To provide more flexibility in using environments, you can override the initialization and test specifications in an

ENVIRONMENT block for one or more variables, one or more array elements, or one or more fields of a structured

variable by using either of the following:

529

HCL® OneTest™ Embedded

530

• A new environment

• The instructions VAR, ARRAY, or STR in the ELEMENT block

The ENVIRONMENT concept greatly improves test robustness. You can use this approach to group default

initialization and test specifications with all the variables that are global to a module under test, allowing you to check

that unexpected global variables in tests on a service are indeed not modified.

The following steps are used to handle environments:

• VAR, ARRAY and STR instructions are stored between ENVIRONMENT and END ENVIRONMENT instructions.

• When the Test Script Compiler comes across the instruction USE, it determines the scope of the environment

that has been stored.

• At every END ELEMENT instruction, the Test Script Compiler browses through all visible environments

beginning with the most recently declared one. The Test Script Compiler then checks every environment

variable to see if it has been fully or partially tested. If it has only been partially tested, the Test Script Compiler

generates the necessary tests to complete the testing of the variable.

This process means that:

• Tests linked to environments are always carried out last.

• The higher the environment's precedence, the earlier the tests it contains will be carried out.

Example

The following example illustrates an override of an array element in two tests:

TEST 1

FAMILY nominal

ELEMENT

VAR histo[0], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

﷓status = compute_histo(x1,y1,x2,y2,histo);

END ELEMENT

END TEST

TEST 2

FAMILY nominal

ELEMENT

Chapter 5. Test Execution Specialist Guide

ARRAY image, init = {others => {others => 100}}, ev = init

ARRAY histo[100], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

﷓status = compute_histo(x1,y1,x2,y2,histo);

END ELEMENT

END TEST

In the first test, only histo[0] has an override. Therefore, all the default tests were generated except for the test on the

histo variable, which had its 0 element removed, and a test was generated on histo[1..255].

In the second test, the override is more noticeable; the histo[100] element has been removed to generate two tests:

one on histo[0..99], and the other on histo[101..255].

Using environments

Component Testing for C

The USE keyword declares the use of an environment (in other words, the beginning of that environment's visibility).

The impact or visibility of an environment is determined by the position at which you declare the environment's use

with the USE statement.

The initial values and tests associated with the environment are applied as follows, depending on the position of the

declaration:

• To all the tests in a program

• To all the tests in a service

• To all the ELEMENT blocks of a particular test

• Within one ELEMENT block of a given test.

Advanced C testing

Advanced C Testing

Component Testing for C

This section covers some of the more complex notions behind Component Testing for C.

To learn about See

531

HCL® OneTest™ Embedded

532

Macro definition conditions Test Script Compiler Macro Definitions on

page 532

Testing the main() function of C programs Testing Main Functions on page 533

Initializing and testing pointer variables Initializing Pointer Variables while Preserving the

Pointed Value on page 536

Testing pointers against structure elements which are also

pointers

Testing Pointers against Pointer Structure Ele­

ments on page 534

Working around the ambiguity of the C language between ar­

rays and pointers

Testing a String Pointer as a Pointer on page 535

Writing cleaner .ptu test scripts C Syntax Extensions on page 513

Using SERVICES and FAMILY statements Component Testing Tester Configuration on

page 733

Breaking loop forever for the test Testing a function with an infinite loop on

page 539

Test Script Compiler Macro Definitions

Component Testing for C

You can specify a list of conditions to be applied when starting the Test Script Compiler. You can then generate the

test harness conditionally. In the test script, you can include blocks delimited with the keywords IF, ELSE, and END IF.

If one of the conditions specified in the IF instruction is present, the code between the keywords IF and ELSE (if

ELSE is present), and IF and END IF (if ELSE is not present) is analyzed and generated. The ELSE / END IF block is

eliminated.

If none of the conditions specified in the IF instruction is satisfied, the code between the keywords ELSE and END IF is

analyzed and generated.

By default, no generation condition is specified, and the code between the keywords ELSE and END IF is analyzed and

generated.

Testing Long Types

Component Testing for C

HCL® OneTest™ Embedded does not support 64-bit long types as standard. The long long and _int64 types do not

exist in the C Testing Language. However, a workaround does permit the use of long types within a .ptu test script.

Chapter 5. Test Execution Specialist Guide

1. Locate the ana/atus_c.def file in the TDP directory and verify that the following customization point exists.

﷓define _int64 long

If the line does not exist, you must add this customization point to the ana/atus_c.def file.

2. Locate the following line:

﷓pragma attol sizeof(long)=32

and replace the line with the two following lines:

﷓pragma attol sizeof(long)=64

﷓pragma attol sizeof(int)=64

If the line does not exist, you must add both lines to the ana/atus_c.def file.

3. Within the .ptu test script, append an L to the notation of initial and expected long values, and use h64 to

format the results. For example:

VAR MyVarLong, long﷓h64, init = 0xAAAAAAAAAAAAAAAAL, ev = 0x0FFFFFFFFFFFFFFFL

Testing Main Functions

Component Testing for C

You can use the Component Testing feature to test C language main functions. To do so, you must rename those

functions.

Example

﷓ifdef ATTOL

int test_main (int argc, char** argv)

﷓else

int main (int argc, char** argv)

﷓endif

{

...

}

If you are running an runtime analysis feature on the Component Testing test node, you can also use the -rename

command line option to rename the main function name.

533

HCL® OneTest™ Embedded

534

See the command line interface pages of Studio reference section in the Reference category of the help..

Testing Pointers against Pointer Structure Elements

Component Testing for C

To test pointers against structure elements which are also pointers, specify for each pointer the variable it is pointing

to.

For example, consider the following code:

typedef struct st_Test

{

int a;

int b;

struct st_Test *Ptr1;

}st_Toto;

int FunctionTest (st_Toto *p_toto)

{

int res=0;

if (p_toto != 0)

{

if(p_toto->Ptr1 == 0)

{

res = 1;

}

}

else

{

res = 2;

}

return(res);

Chapter 5. Test Execution Specialist Guide

}

To test the pointer p_toto, write the following test script:

SERVICE TestFunction

SERVICE_TYPE extern

-- Tested service parameter declarations

﷓st_toto *p_toto;

-- By function returned type declaration

﷓int ret_TestFunction;

ENVIRONMENT ENV_TestFunction

VAR ret_TestFunction, init = 0, ev = init

END ENVIRONMENT -- ENV_TestFunction

USE ENV_TestFunction

TEST 1

FAMILY nominal

ELEMENT

STR *p_toto, init = { a => 0, b => 0, Ptr1 => NIL }, ev= init

STR *p_toto->Ptr1, init = {a=>2,b=>32, Ptr1=>NIL}, ev= init

VAR ret_TestFunction, init = 0, ev = init

﷓ret_TestFunction = TestFunction(p_toto);

END ELEMENT

END TEST -- TEST 1

FIN SERVICE -- TestFunction

Testing a String Pointer as a Pointer

Component Testing for C

535

HCL® OneTest™ Embedded

536

Use the string_ptr keyword on a VAR line to work around the ambiguity of the C language between arrays and

pointers.

For example the following VAR line (supposing the declaration char* string;) will generate C code that will copy the

string into the memory location pointed by string.

VAR string, init = "foo", ev = init

-- This is the "traditional" way

Of course, if no memory was allocated to the variable, this is not possible.

The following alternative approach causes the string to point to the memory location containing "foo". The string is

then compared to "foo" using a string comparison function:

VAR string, string_ptr, init = "foo", ev = init

-- Note the additional field in the line

This syntax allows you to initialize the variable to "NIL", and to compare its contents to a given string after the test.

Initializing Pointer Variables while Preserving the Pointed Value

Component Testing for C

To initialize a variable as a pointer while keeping the ability to test the value of the pointed element, use the FORMAT

string_ptr statement in your .ptu test script.

This allows you to initialize your variable as a pointer and still perform string comparisons using str_comp.

Example:

TEST 1

FAMILY nominal

ELEMENT

FORMAT pointer_name = string_ptr

-- Then your variable pointer_name will be first initialized as a pointer

....

VAR pointer_name, INIT="l11c01pA00", ev=init

-- It is initialized as pointing at the string "l11c01pA00",

Chapter 5. Test Execution Specialist Guide

--and then string comparisons are done with the expected values using str_comp.

Importing legacy component testing files

Component Testing for C

The file format of ATTOL UniTest and HCL OneTest™ Embedded v2001A Component Testing for C and Ada is not

compatible with the current file format used by HCL OneTest™ Embedded.

This means that any .prj, .cmp, and .ses files created with pre-v2002 versions of the product must be imported and

converted in order to be used in a current HCL OneTest™ Embedded project.

The Import feature creates a new workspace with the updated Component Testing script files.

Note This problem only affects the Component Testing for C and Ada feature. You can use previous Component

Testing for C++ and System Testing tests in your current projects without importing them.

1. From the File menu, select Import.

2. In the window Import V2001A Component Testing Files Into a New Workspace, select the Add... button and

then select those V2001A Component Testing files that you wish to import. To import a complete UniTest or

Test RealTime v2001A project, you must select all the .prj, .cmp, and .ses files from that project.

3. Click the OK button

4. In the window Name Workspace, type in a name for the new workspace and click OK.

Limitations

This feature imports the session, project and campaign data from the old version of Component Testing, including

references to and from test scripts as well as tested and integrated source files.

After the importation, you must manually check and update the following items:

• Target Deployment Port: Use the TDP Editor to reconfigure any custom ATTOL Target Package settings. The

Target Deployment Guide contains advanced information about upgrading from an old Target Package.

• Configuration Settings: The Import feature retrieves -D condition information and include directories. Check

the General, Build and Component Testing for C tabs of the Configuration Settings dialog box to identify any

other settings that need updating.

• Service and Family parameters: These are not imported and require manual updating with the Tester

Configuration function.

Related Topics

About Component Testing for C and Ada on page 478 | Manually Creating a Test or Application Node on page 712

| Tester Configuration on page 733 | Migrating from previous versions on page 45 | Upgrading from v2001 target

deployment ports on page 45

537

HCL® OneTest™ Embedded

538

Link tests to Requirements

HCL OneTest™ Embedded allows you to link a test or a set of tests to a requirement coming from another tool to

create a traceability matrix between requirements and test results.

• To link a test or set of tests to a requirement, enter the following command line:

REQUIREMENT <name> { , [<attrName> =|:] <attrValue> }

Where:

◦ ▪ <name> is the name of the requirement. Optionally, this name could be followed by attributes.

▪ <attrName> is the name of the attribute. This name is optional. It is automatically added if it is

missing.

▪ <attrValue> is the value of the attribute.

Example:

REQUIREMENT REQ_TEST2ELEM_025, type=robustness, level:1, John

The tests linked by a requirement depend on the position of the keyword REQUIREMENT in the script:

HEADER add, 1, 1
<variable declarations for the test script>
BEGIN
 REQUIREMENT… -- Requirement defined for all tests in the script
SERVICE add
 <local variable declarations for the service>
 REQUIREMENT… -- Requirement defined for all tests in the service
 TEST 1
 REQUIREMENT… -- Requirement defined for the test only
 FAMILY nominal
 ELEMENT
 VAR variable1, INIT=0, EV=0
 VAR variable2, INIT=0, EV=0
 #<call to the procedure under test>
 END ELEMENT
 END TEST
END SERVICE

Attribute values can be overloaded by environment variables during pre-processing phase. For example, if

$TARGETNAME is set, the value of the attribute $TARGETNAME in the script will be overloaded by this environment.

This allows you to dynamically configure some attributes in your build chain depending on the execution context.

After the tests execution, a requirement status is computed for each requirement, based on the result of the tests that

are linked to this requirement.

A tool rod2req generates an XML file with all the requirement status and a coverage status.

Chapter 5. Test Execution Specialist Guide

Testing a function with an infinite loop

Component Testing for C

You can use the Component Testing feature to test C language functions that contain an infinite loop, that is function

with for(;;) or while(1) or similar syntax. If you want to do so, you must use a coverage feature with at least the option

logical block and set the option Component testing for C and Ada > Test Compiler > Breaking loop forever for the

test to a different value than No.

In such case, the infinite loop is replaced by a stub that should return 0 to break the loop.

The same feature is available with the command line interface of the instrumenter. Use the following option:

• -SET=TSTWHILELOOP to replace the while infinite loop by a stub

• -SET=TSTFORLOOP to replace the for infinite loop by a stub

• -SET=TSTWHILELOOP,TSTFORLOOP for both

Viewing Reports

Component Testing for C

After test execution, depending on the options selected, a series of Component Testing for C test reports are

produced.

To learn about See

Accessing the test reports Opening a Report on page 715

Navigating through test reports Using the Report Viewer on page 737

Interpreting test results Understanding Component Testing Test Reports on

page 615

Interpreting sequence diagrams of a test report Understanding Component Testing UML Sequence Dia­

grams on page 541

Performing a diff between two test reports Comparing C Test Reports on page 541

How the test report handles arrays and structured vari­

ables

Array and Structure Display on page 542

Understanding Component Testing Reports

Component Testing for C

Test reports for Component Testing are displayed in the HCL® OneTest™ Embedded Report Viewer.

539

HCL® OneTest™ Embedded

540

The test report is a hierarchical summary report of the execution of a test node. Parts of the report that have Passed

are displayed in green. Failed tests are shown in red.

Report Explorer

The Report Explorer on page 1059 displays each element of a test report with a Passed , Failed symbol.

• Elements marked as Failed are either a failed test, or an element that contains at least one failed test.

• Elements marked as Passed are either passed tests or elements that contain only passed tests.

Test results are displayed for each instance, following the structure of the .ptu test script.

Report Header

Each test report contains a report header with:

• The version of HCL® OneTest™ Embedded used to generate the test as well as the date of the test report

generation

• The path and name of the project files used to generate the test

• The total number of test cases Passed and Failed. These statistics are calculated on the actual number of test

elements listed in the sections below

Test Results

The graphical symbols in front of the node indicate if the test, item, or variable is Passed or Failed :

• A test is Failed if it contains at least one failed variable. Otherwise, the test is considered Passed.

You can obtain the following data items if you click with the pointer on the Information node:

• Number of executed tests

• Number of correct tests

• Number of failed tests

A variable is incorrect if the expected value and the value obtained are not identical, or if the value obtained is not

within the expected range.

If a variable belongs to an environment, an environment header is previously edited.

In the report variables are edited according to the value of the Display Variables setting of the Component Testing test

node.

The following table summarizes the editing rules:

Chapter 5. Test Execution Specialist Guide

Results
Display Variable

All Variables

Display Variable

Incorrect Variables

Display Variable

Failed Tests Only

 Passed test Variable edited automatical­

ly

Variable not edited Variable not edited

 Failed test Variable edited automatical­

ly

Variable edited automatical­

ly

Variable edited if incor­

rect

The Initial and Expected Values on page 491 option changes the way initial and expected values are displayed in the

report.

Related Topics

Opening a report on page 715 | Using the Report Viewer on page 737 | Array and structure display on page 542 |

Initial and expected values on page 491 | Exporting reports on page 737

Understanding Component Testing UML Sequence Diagrams

Component Testing for C

During the execution of the test, Component Testing generates trace data this is used by the UML/SD Viewer. The

Component Testing sequence diagram uses standard UML notation to represent both Component Testing results.

When using Component Testing for C with Runtime Tracing or other HCL OneTest™ Embedded features that generate

UML sequence diagrams, all results are merged in the same sequence diagram.

You can click any element of the UML sequence diagram to open the test report at the corresponding line. Click again

in the test report, and you will locate the line in the .pts test script.

Related Topics

About the UML/SD Viewer on page 431 | UML/SD Viewer Toolbar on page 1063 | Understanding Component

Testing Reports for C and Ada on page 539 | Understanding Component Testing Reports for C++ on page 554

Comparing C Test Reports

Component Testing for C

The Component Testing comparison capability allows you to compare the results of the last two consecutive tests.

To activate the comparison mode, select Compare two test runs in the Component Testing Settings for C on

page 1034 dialog box.

In comparison mode an additional check is performed to identify possible regressions when compared with the

previous test run.

541

HCL® OneTest™ Embedded

542

The Component Testing Report displays an extra column named "Obtained Value Comparison" containing the actual

difference between the current report and the previous report.

Related Topics

Component Testing Settings for C on page 1034 | Understanding Component Testing Reports on page 539

Array and Structure Display

Component Testing for C

The Array and Structure Display option indicates the way in which Component Testing processes variable array and

structure statements. This option is part of the Component Testing Settings for C on page 1034 dialog box.

Standard Array and Structure Display

This option processes arrays and structures according to the statement with which they are declared. This is the

default operating mode of Component Testing. The default report format is the Standard editing.

Extended Array and Structure Display

Arrays of variables may be processed after the keywords VAR or ARRAY, and structured variables after the keywords

VAR, ARRAY, or STRUCTURE:

• After a VAR statement, each element in the array is initialized and tested one by one. Likewise, each member

of a structure that is an array is initialized and tested element by element.

• After an ARRAY statement, the entire array is initialized and checked. Likewise, each member of a structure is

initialized and checked element by element.

• After a STRUCTURE statement, the whole of the structure is initialized and checked.

When Extended editing is selected, Component Testing interprets ARRAY and STRUCTURE statements as VAR

statements.

The output records in the unit test report are then detailed for each element in the array or structure.

Note This setting slightly slows down the test execution because checks are performed on each element in the array.

Packed Array and Structure Display

This command has the opposite effect of the Extended editing option. When Packed editing is selected, Component

Testing interprets VAR statements as ARRAY or STRUCTURE statements.

Array and structure contents are fully tested, only the output records are more concise.

Note This setting slightly improves speed of execution because checks are performed on each array as a whole.

Chapter 5. Test Execution Specialist Guide

Related Topics

Component Testing for C and Ada Settings on page 1034

Component Testing for C++

Component Testing for C++ overview

Component Testing for C++

Component Testing for C++ is a fully integrated feature of HCL OneTest™ Embedded that uses object-oriented

techniques to address automated testing of C++ embedded and native software.

Object-oriented testing does not mean that the Component Testing for C++ feature is designed solely for testing

object-oriented languages. Whether the target application is object-oriented or not, Component Testing for C++

adapts to the environment.

In fact, Component Testing for C++ can be used for:

• Software feature tests,

• Component integration tests,

• Software validation,

• Non-regression tests.

Component Testing for C++ supports ISO/IEC 14882:1998.

Overview

Basically, Component Testing for C++ interacts with your source code through a scripting language called C++ Test

Script Language. You use the HCL OneTest™ Embedded GUI or command line tools to set up your test campaign, write

your test scripts, run your tests and view the test results. Object Testing's mode of operation is twofold:

• C++ Test Driver scripts describe a test harness that stimulates and checks basic I/O of the code under test.

• C++ Contract Check scripts, which instrument the code under test, verifying behavioral assertions during

execution of the code.

Note: Contract Check is part of the Component Testing for C++ feature. However, contract check scripts can also be

used in application nodes, as a Runtime Analysis feature.

When the test is executed, Component Testing for C++ compiles both the test scripts and the source under test, then

instruments the source code and generates a test driver. Both the instrumented application and the test driver provide

output data which is displayed within HCL OneTest™ Embedded.

543

HCL® OneTest™ Embedded

544

How Component Testing for C++ Works

When a test node is executed, the Test Compiler (atoprepro) compiles both the test scripts and the source under test.

This preprocessing creates an .ots file. The resulting source code generates a test driver.

If any Runtime Analysis tools are associated with the test node, then the source code is also instrumented with the

Instrumentor (attolcpp) tool.

The test driver, TDP, stubs and dependency files all make up the test harness.

The test harness interacts with the source code under test and produces test results. Test execution creates a .tdf

file.

The .ots and .tdf files are processed together the Component Testing Report Generator (atopospro). The output is the

.xrd report file, which can be viewed and controlled in the HCL OneTest™ Embedded GUI.

Of course, these steps are mostly transparent to the user when the test node is executed in the HCL OneTest™

Embedded GUI.

Related Topics

Using Test Features on page 477 | Manually Creating a Test or Application Node on page 712

C++ testing overview

C++ test nodes

Component Testing for C++

The project structure of HCL OneTest™ Embedded GUI uses test nodes to represent your Component Testing test

harness.

Test nodes created for Component Testing for C++ use the following structure

• C++ Test Node: represents the Component Testing for C++ test harness

• <script> .otc: is the Contract-Check test script

• <script> .otd: is the test driver script

• <source> .cpp: is the source file under test

• <source>.cpp: is an additional source file

Related Topics

Component Testing for C++ on page 543 | Setting up a Project on page 706 | Additional Source Files on

page 549

Chapter 5. Test Execution Specialist Guide

C++ contract check Script

Component Testing for C++

The C++ Contract Check script allows you to test invariants and state charts as well as wraps for each method of the

class.

The Contract Check script is contained in an .otc file, whose name matches the name of the file containing the class

definition.

C++ Contract Check scripts are written in C++ Contract Check Language, which is part of the C++ Test Script

language designed for Component Testing for C++.

A typical Contract Check .otc test script is structured as follows:

CLASS <class to wrap>

{

WRAP <method>

REQUIRE <expression>

ENSURE <expression>

WRAP <method>

REQUIRE <expression>

ENSURE <expression>

}

See the Reference section for the semantics of the C++ Contract Check Language.

Note When an .otc contract check script is used in a test node, the related source files are always instrumented even

if they are displayed as not instrumented in Project Explorer.

Contract Check in a Component Test

You can use the Component Testing wizard to set up a test node and create the C++ contract-check script templates

or you can manually create a Component Testing for C++ test node to reuse existing test scripts.

The .otc contract-check script must be executed before an .otd Test Driver script, therefore the order in which both

script types appear in the Test node is critical. This is important if you are manually creating a test node.

Contract Check Runtime Analysis

C++ Contract Check scripts can also be used in a simple application node.

545

HCL® OneTest™ Embedded

546

In this case, you can either copy the .otc contract from an existing C++ component test node, or you can create an

.otc contract check script manually.

The .otc contract-check script must be placed before any other item in the application node.

Related Topics

C++ Test Driver Script on page 546 | Component Testing Wizard on page 698 | Manually Creating a Node on

page 712 | Using native C++ statements on page 548

C++ Test Driver Script

Component Testing for C++

The C++ Test Driver Script stimulates the source code under test to test assertions on a cluster of classes.

The test driver script itself is contained in an .otd file and may call two optional files:

• A declaration file (.dcl) that contains C++ code that ensures the types, class, variables and functions needed

by your test script will be available in your code.

• A stub file (.stb) whose purpose is to define variables, functions and methods which are to be stubbed.

Using a separate declaration and stub files is optional. It is possible to include all or certain declarations and stubs

directly within the test driver script file.

C++ Contract Check scripts are written in C++ Contract Check Language, which is part of the C++ Test Script

Language designed for Component Testing for C++.

A typical Component Testing .otd test script looks like this:

INCLUDE "Test.dcl";

TEST CLASS TestClass1 {

PROLOGUE {

<Declarations of variables>

<Actions to be performed before executing this test class.>

}

TEST CASE Test1 {

﷓method_under_test();

CHECK (expression_must_be_true == true);

Chapter 5. Test Execution Specialist Guide

}

EPILOGUE {

<Actions to be performed when leaving the test class>

}

RUN {

Test1;

}

}

RUN {

TestClass1 (File<char*>);

}

See the Reference section for the semantics of the C++ test driver language.

You can use the Component Testing wizard to set up a test node and create the C++ Test Driver script templates or

you can manually create a Component Testing for C++ test node to reuse existing test scripts.

An .otc contract-check script must be executed before an .otd Test Driver script, therefore the order in which both

script types appear in the Test node is critical. This is important if you are manually creating a test node.

See the Reference section for the semantics of the C++ Contract Check Language.

Related Topics

C++ Contract-Check Script on page 545 | Component Testing Wizard on page 698 | Using native C++ statements

on page 548

Files and classes under test

Component Testing for C++

Source Files

The Source under test are source files containing the code you want to test. These files must contain either the

definition of the classes targeted by the test, or method implementations of those classes.

Note Source files can be either body files (.C, .cc, .cpp...) or header files (.h), but it is usually recommended to select

the body file. Specifying both header and body files as Source under test is unnecessary.

547

HCL® OneTest™ Embedded

548

When using a C++ Test Driver Script, the wizard generates:

• A template test driver script (.otd) to test each class defined in the Candidate classes box.

• Declaration (.dcl) and stub (.stb) files to make the environment of the source under test available to the test

script.

When using a C++ Contract Check script, the wizard generates:

• A template contract script (.otc) containing template code allowing you to add invariants and state charts as

well as empty wraps for each method of the class.

Note If a source under test is a header file (a file containing only declarations, typically a .h file), the source file under

test is automatically included in the C++ Test Driver script.

Candidate Classes

For source files containing several classes, you may only want to submit a restricted number of classes to testing.

If no classes are selected, the wizard automatically selects all classes that are defined or implemented in the

source(s) under test as follow:

• The class is defined within the source file (i.e. the sequence class <name>{ };).

• At least one of the methods of the class is defined within the source file (i.e. a method's body).

Note Classes can only be selected if you have refreshed the File View before running the Test Generation Wizard.

Related Topics

Additional Files or Directories on page 549 | Component Testing Wizard on page 698

Using native C++ statements

Component Testing for C++

In some cases, it can be necessary to include portions of C++ native code inside an .otc or .otd test script for one the

following reasons:

• To declare native variables that participate in the flow of a scenario. Such statements must be analyzed by the

Component Testing Parser.

• To insert native code into a scenario. In this case, the code is ignored by the parser, but carried on into the

generated code.

Chapter 5. Test Execution Specialist Guide

Analyzed native code

Lines prefixed with a ﷓ character are analyzed by Component Testing Parser.

Prefix statements with a # character to include native C++ variable declarations as well as any code that can be

analyzed by the parser.

﷓int i;

﷓char *foo;

Variable declarations must be placed outside of Component Testing Language blocks or preferably at the beginning

of scenarios and procedures.

Ignored native code

Lines prefixed with a @ character are ignored by the parser, but copied into the generated code.

To use native C++ code in the test script, start instructions with a @ character:

@for(i=0; i++; i<100) func(i);

@foo(a,&b,c);

You can add native code either inside or outside of C++ Test Script Language blocks.

Related topics

C++ contract check script on page 545 | C++ test driver script on page 546

Additional and included files

Component Testing for C++

When creating a Component Testing test node for C++, the Component Testing wizard offers the following options for

specifying dependencies of the source code under test:

• Additional files

• Included files

Additional Files

Additional source files are source files that are required by the test script, but not actually tested. For example, with

Component Testing for C++, Visual C++ resource files can be compiled inside a test node by specifying them as

additional files.

Additional header files (.h) are not handled in the same way as additional body files (.cc, .C, or .cpp):

549

HCL® OneTest™ Embedded

550

• Body files: With a body file, the Test Generation Wizard considers that the compiled file will be linked with your

test program. This means that all defined variables and routines are considered as defined, and therefore not

stubbed.

• Header files: With a header file (a file containing only declarations), the Test Generation Wizard considers

that all the entities declared in the source file itself (not in included files) are defined. Typically, you would use

additional header files if you only have a .h file under test and a matching object file (.o or .obj), but not the

actual source file (.cc, .C, or .cpp).

You can toggle a source file from under test to additional by changing the Instrumentation property in the Properties

Window dialog box.

Additional directories are directories that are declared to only contain additional source files.

Functions which are not located in an additional file or in a tested file are simulated by Component Testing for C++.

Included Files

Included files are normal source files under test. However, instead of being compiled separately during the test, they

are included and compiled with the C++ Test Driver script.

Header files are automatically considered as included files, even if they are not specified as such.

Source files under test should be specified as included when:

• The file contains the class definition of a class you want to test

• A function or a variable definition depends upon a type which is defined in the file under test itself

• You need access in your test script to a static variable or function, defined in the file under test

In most cases, you do not have to specify files to be included. The Component Testing wizard automatically

generates a warning message in the Output Window on page 1056, when it detects files that should be specified as

included files. If this occurs, rerun the Component Testing wizard, and select the files to be included in the Include

source files section of the Advanced Options on page 705 dialog box.

To specify included files while creating a test node:

1. Select a valid C++ configuration and run the Component Testing wizard.

2. On the Test Script Generation Settings page (Step 3/5), expand Components Under Test and <Test Name> .

where <Test Name> is the name of the Test Node.

3. Scroll down the list to Included Files, select the value field and click the '...' button to enter a list of files.

4. Enter any other advanced settings and continue with the Component Testing wizard.

To specify additional files while creating a test node:

Chapter 5. Test Execution Specialist Guide

1. Select a valid C++ configuration and run the Component Testing wizard.

2. On the Test Script Generation Settings page (Step 3/5), select General and switch the Test Mode setting to

Expert Mode.

3. Expand Components Under Test and select Test Boundaries.

4. Under Additional Files or Directories, select the value field and click the '...' button to enter a list of files or

directories

5. Enter any other advanced settings and continue with the Component Testing wizard.

Related Topics

Files and Classes Under Test on page 547 | Component Testing Wizard on page 698 | Advanced Options on

page 705

Declaration files

Component Testing for C++

A declaration file (.dcl) ensures that the types, class, variables and functions needed by your test script will be

available in your code.

Using a separate .dcl file is optional, since it is merely included within the C++ Test Driver script. It is possible to

declare types, classes, variables and functions directly within an C++ Test Driver script file.

Typically, .dcl files are created by the Component Testing Wizard and do not need to be edited by the user. If you

do need to define your own declarations for a test, it is recommended that you do this within the Test Driver script.

Declaration files appear in the Component Testing for C++ test node.

Declaration files must be written in C++ Test Script Language and contain native code declarations. See the

Reference section for details about the language.

Related Topics

C++ Test Driver Script on page 546 | Simulated, Additional and Included Files on page 549

Error Handling

An error may be generated by either native code or any of the following instructions in a test script:

• CHECK

• CHECK PROPERTY

• CHECK EXCEPTION

551

HCL® OneTest™ Embedded

552

• CHECK STUB on page 794

• CHECK METHOD

• REQUIRE

• ENSURE

• Native statement

Refer to each of these keywords to see when the instructions generate an error.

Error handling behavior is specified with the keyword ON ERROR on page 800. According to the choice specified by

ON ERROR, the script may continue normal execution, skip the current block, or exit.

Test Results

When no errors occur during execution of a C++ Test Script Language script, the script receives Passed status.

Otherwise, it is considered Failed.

When the test is completed, the errors appear in the Report Viewer or in the UML/SD Viewer as red notes.

Template Classes

Component Testing for C++ supports assertions only for fully generic and fully specialized template classes. Partial

specializations are not supported.

A contract referring to a generic template class is applied to every instance of this template class, unless a specific

contract has been defined for an instance of this template class.

There may be a state machine description associated with the template class, and another with a template

specialization. In such a case, the latter applies to the specific template instance, and the first applies to any other

instance.

Same mechanism for invariant definition (There may be invariants associated with the template class, and other

invariants with a template specialization. In such a case, the latter ones apply to the specific template instance, while

the first one apply to any other instance.)

A wrap defined within a generic template class contract does not apply to specialization of the associated method. If

you want to test a method specialization, you must define a WRAP into the contract associated to the class instance

the method specialization belongs to.

It is not possible to define WRAPs for template methods within a non-template class.

Specialization

Specialized templates are templates for which some of the parameters are real. Full-specialization of a template is an

instance of the template (all parameters are real).

Chapter 5. Test Execution Specialist Guide

Example

template <class T,int N> class C; // generic template, not a specialization

template <class T> class C<T,2>; // partial specialization (not supported by Component Testing for C++)

template <> class C<char *,2>; // full-specialization

Note When using full-specializations, latest ISO/IEC C++ standards suggest using the template prefix template<>.

Testing shared libraries

Component Testing for C++

In order to test a shared library, you must create a test node containing the .otd component test script that uses the

library, and a reference link to the library.

After the execution of the test node, the runtime analysis and component test results are located in the application

node.

To test a shared library:

1. Add the library to your project:

a. Right-click a group or project node and select Add Child and Library from the popup menu.

b. Enter the name of the Library node

c. Right-click the Library node and select Add Child and Files from the popup menu.

d. Select the source files of the shared library.

2. Run the Component Testing wizard as usual on the source file of your library. This creates a test node

containing the .otc and .otd test scripts and the source file.

3. Delete the source file from the test node.

4. Create a reference to the shared library in the test node:

a. Right-click the application or test node that will use the shared library and select Add Child and

Reference from the popup menu.

b. Select the library node and click OK.

5. Build and execute the test node.

553

HCL® OneTest™ Embedded

554

Example

An example demonstrating how to test shared libraries is provided in the Shared Library example project. See

Example projects on page 709 for more information.

Related Topics

Using shared libraries on page 718 | Profiling shared libraries on page 337

C++ test reports

Understanding Component Testing for C++ reports

Component Testing for C++

Test reports for Component Testing for C++ are displayed in HCL OneTest™ Embedded Report Viewer.

The test report is a hierarchical summary report of the execution of a test node. Parts of the report that have Passed

are displayed in green. Failed tests are shown in red.

Report Explorer

The Report Explorer displays each element of a Test Verdict report with a Passed , Failed or Undefined

symbol:

• Elements marked as Failed are either a failed test, or an element that contains at least one failed test.

• An Undefined marker means either that the test was not executed, or that the element contains a test that

was not executed AND all executed tests were passed.

• Elements marked as Passed are either passed tests or elements that contain only passed tests.

Test results are displayed in two parts:

• Test Classes, Test Suites and Test Cases of all the executed C++ Test scripts.

• Class results for the entire Test. Each class contains assertions (WRAP statement), invariants, states and

transitions.

Report Header

Each Test Verdict report contains a report header with:

Chapter 5. Test Execution Specialist Guide

• The path and name of the .xrd report file.

• A general verdict for the test campaign: Passed or Failed.

• The number of test cases Passed and Failed. These statistics are calculated on the actual number of test

elements (Test Case, Procedure, Stub and Classes) listed sections below.

Note The total number counts the actual test elements, not the number of times each element was executed. For

instance, if a test case is run 5 times, of which 2 runs have failed, it will be counted as one Failed test case.

Test Script

Each script is displayed with a metrics table containing the number of Test Suite, Test Class, Test Case, Epilogue,

Procedure, Prologue and Stub blocks encountered. In this section, statistics reflect the number of times an element

occurs in a C++ Test script.

Test Results

For each Test Case, Procedure and Stub, this section presents a summary table of the test status. The table contains

the number of times each verification was executed, failed and passed.

For instance, if a Test Case containing three CHECK statements is run twice, the reported number of executions will

be six, the number of failed verifications will be two, and the number of passed verifications will be four.

The general status is calculated as follows:

Condition Result Status

A verification fails Failed

A verification does not occur Unde­

fined

All verifications pass on each execu­

tion

Passed

Tested Classes

Class results are grouped at the end of the report and sorted in alphabetical order.

For each class the report shows the general status of assertions (WRAP statement), invariants, states and

transitions.

The general status is computed as follows:

Condition Result Status

555

HCL® OneTest™ Embedded

556

An assertion or invariant fails Failed

An assertion or invariant does not occur Undefined

All assertions or all invariants pass on each execution Passed

A state is not reached Not reached

A state has no exit transition Not fired

When a class does not behave as expected, a table of violations is displayed. A violation is observed at the exit of a

state and can be one of the following:

• Multiple: means that several states were reachable at the same time,

• Illegal: means that no state was reachable.

The displayed table gives the number of times a violation has occurred for each state. The status of this table is

always Failed.

Related Topics

Understanding Component Testing for C++ UML Sequence Diagrams on page 556 | Using the Report Viewer on

page 737 | Opening a report on page 715 | Exporting reports on page 737

Understanding Component Testing for C++ UML Sequence Diagrams

Component Testing for C++

During the execution of the test, Component Testing for C++ generates trace data this is used by the UML/SD Viewer.

The Component Testing for C++ sequence diagram uses standard UML notation to represent both Contract-Check

and Test Driver results.

• Class Contract-check sequence diagrams,

• Test Driver Sequence Diagrams.

Both types of results can appear simultaneously in the same sequence diagram. When using Runtime Tracing with

Component Testing for C++, all results are generated in the same sequence diagram.

Related Topics

Understanding Component Testing for C++ Reports on page 554 | Opening a Report on page 715 | About the

UML/SD Viewer on page 431

Chapter 5. Test Execution Specialist Guide

Illegal and multiple transitions

Component Testing for C++

When dealing with state or transition diagrams, Component Testing for C++ adds a custom observation state, which

is both the initial state and error state. All user-defined states can make a transition towards the initial/error state, and

this state can transition towards all user-defined states.

At the beginning of test execution, the object is in the initial/error state.

During the test, the object is continuously tested to comply to the user-defined STATEs and TRANSITIONs. There are

three possible cases.

• The transition can be fired to a single state: the current state is set.

• The transition cannot be fired to any of the defined states: in this case, the state switches to the observation

state and Component Testing for C++ generates an ILLEGAL TRANSITION note.

• The transitions can be fired to two or more states. In this case, the transition diagram is no longer

unambiguous. The state is set to the observation state and Component Testing for C++ generates a

MULTIPLE TRANSITION.

When the state diagram is in the initial/error state, the transition is still continuously checked, however all user defined

states can be potentially fired.

Contract-Check sequence diagrams

Component Testing for C++

The following example shows how a typical class contract is represented by Component Testing for C++. C++

classes are represented as vertical lines, like object instances. The events related to the class - method entry and exit,

assertion and state chart checks - are attached to the class lifeline.

557

HCL® OneTest™ Embedded

558

Methods

For each class, methods are shown with method entry and exit actions:

• Method entry actions have a solid border,

• Method exit actions have a dotted border.

Contract-Checks

Pre and post-conditions, invariants and state verifications are displayed as Notes, attached to the class instance, and

contained within the method.

You can click a note to highlight the corresponding OTC Contract-Check script line in the Text Editor window.

Illegal and Multiple Transitions

State or transition diagram errors are identified as ILLEGAL TRANSITION or MULTIPLE TRANSITION Notes as shown

in the following figure:

Related Topics

Test Driver Sequence Diagrams on page 558 | About the UML/SD Viewer on page 431 | UML Sequence Diagrams

on page 426

Test Driver Sequence Diagrams

Component Testing for C++

The following example illustrates typical results generated by a Test Driver script:

Chapter 5. Test Execution Specialist Guide

Instances

When using a Test Driver script, each of the following C++ Test Script Language keywords are represented as a

distinct object instance:

• TEST CLASS

• TEST SUITE

• TEST CASE

• STUB

• PROC

You can click an instance to highlight the corresponding statement in the Text Editor window.

Checks

Test Driver checks are displayed as Passed (" ") or Failed (" ") glyphs attached to the instances.

You can click any of these glyphs to highlight the corresponding statement in the Text Editor window.

• CHECK

• CHECK PROPERTY

• CHECK STUB

559

HCL® OneTest™ Embedded

560

• CHECK METHOD

• CHECK EXCEPTION

To distinguish checks that occur immediately from checks that apply to a stub, method or exception, the three latter

use different shades of red and green.

You can click an instance to highlight the corresponding statement in the Text Editor window.

Pre and Post-conditions

The following pre and post-condition statements are green (Passed) or red (Failed) actions contained in STUB or

PROC instances.

• REQUIRE

• ENSURE

Exceptions

Component Testing for C++ generates UNEXPECTED EXCEPTION Notes whenever an unexpected exception is

encountered. These notes will be followed by the ON ERROR condition.

Error Handling

Whenever a check and a pre- or post-condition generates an error, or an UNEXPECTED EXCEPTION occurs, the ON

ERROR condition is displayed as shown in the following diagrams.

An ON ERROR BYPASS condition:

An ON ERROR CONTINUE condition:

Chapter 5. Test Execution Specialist Guide

Comments and Prints

COMMENT and PRINT statements generate a white note, attached to the corresponding instance.

Messages

Messages can represent either a RUN or a CALL statement, or a native code stub call, as shown below:

Related Topics

Contract-Check Sequence Diagrams on page 557 | About the UML/SD Viewer on page 431 | UML Sequence

Diagrams on page 426

Component Testing for Ada

The Component Testing feature of HCL OneTest™ Embedded provides a unique, fully automated, and proven solution

for the Ada language, dramatically increasing test productivity.

To learn about See

General information on the Component Testing fea­

ture

Component Testing for Ada Overview on

page 561

Writing test scripts for your software under test Writing a Test Script on page 564

The types of source files under test Integrated, Simulated and Additional Files

(Ada) on page 562

Viewing Component Testing test results Viewing Reports on page 614

Upgrading from a pre-2002 version of HCL OneTest™

Embedded

Importing V2001 Component Testing Files on

page 537

Related Topics

Using Test Features on page 477 | Activity Wizards on page 695 | Manually Creating a Test or Application Node

on page 712 | About System Testing for C on page 618

Component Testing for Ada Overview

Component Testing for Ada

Component Testing for Ada interacts with your source code through the Ada Test Script Language.

561

HCL® OneTest™ Embedded

562

Testing with Component Testing for Ada is as simple as following these steps:

• Set up your test project in the GUI

• Write a .ptu test script

• Run your tests

• View the results.

Component Testing for Ada supports Ada 83 and Ada 95.

How Component Testing for Ada Works

When a test node is executed, the Test Script Compiler (attolpreproADA) compiles both the test scripts and the

source under test. This preprocessing creates a .tdc file. The resulting source code generates a test driver.

If any Runtime Analysis tools are associated with the test node, then the source code is also instrumented with the

Instrumentor (attolada) tool.

The test driver, TDP, stubs and dependency files all make up the test harness.

The test harness interacts with the source code under test and produces test results. Test execution creates a .rio

file.

The .tdc and .rio files are processed together the Component Testing Report Generator (attolpostpro). The output is

the .xrd report file, which can be viewed and controlled in the HCL OneTest™ Embedded GUI.

Of course, these steps are mostly transparent to the user when the test node is executed in the HCL OneTest™

Embedded GUI.

To learn about See

Source file types for code under test Integrated, Simulated and Additional

Files on page 562

Configuration Settings for Ada Component Testing test

nodes

Initial and Expected Value Settings on

page 563

Integrated, simulated and additional Files

Component Testing for Ada

When creating a Component Testing test node for Ada, the Component Testing wizard offers the following options for

specifying dependencies of the source code under test:

Chapter 5. Test Execution Specialist Guide

• Integrated files

• Simulated files

• Additional files

Integrated Files

This option provides a list of source files whose components are integrated into the test program after linking.

The Component Testing wizard analyzes integrated files to extract any global variables that are visible from outside.

For each global variable the Parser creates a default test which is added to an environment named after the file in the

.ptu test script.

Simulated Files

This option gives the Component Testing wizard a list of source files to simulate—or stub—upon execution of the test.

A stub is a dummy software component designed to replace a component that the code under test relies on, but

cannot use for practicality or availability reasons. A stub can simulate the response of the stubbed component.

The Component Testing parser analyzes the simulated files to extract the global variables and functions that are

visible from outside. For each file, a DEFINE STUB block is generated in the .ptu test script.

By default, no simulation instructions are generated.

Additional Files

Additional files are merely dependency files that are added to the Component Testing test node, but ignored by the

source code parser. Additional files are compiled with the rest of the test node but are not instrumented.

You can toggle instrumentation of a source file by using the Properties Window dialog box.

Related Topics

Component Testing Wizard on page 698

Initial and expected value settings

Component Testing for Ada

The Initial and Expected Value settings are part of the Component Testing Settings for Ada on page 1034 dialog

box and describe how values assigned to each variable are displayed in the Component Testing report. Component

Testing allows three possible evaluation strategy settings.

563

HCL® OneTest™ Embedded

564

Variable Only

This evaluation strategy setting generates both the initial and expected values of each variable evaluated by the

program during execution.

This is possible only for variables whose expression of initial or expected value is not reducible by the Test Script

Compiler. For arrays and structures in which one of the members is an array, this evaluation is not given for the initial

values. For the expected values, however, it is given only for Failed items.

Value Only

With this setting, the test report displays for each variable both the initial value and the expected value defined in the

test script.

Combined evaluation

The combined evaluation setting combines both settings. The test report thus displays the initial value, the expected

value defined in the test script, and the value found during execution if that value differs from the expected value.

Related Topics

Component Testing Settings on page 1034 | Understanding Component Testing Reports on page 615

Writing a Test Script

Component Testing for Ada

When you first create Component Testing for Ada test node with the Component Testing Wizard, HCL OneTest™

Embeddedproduces a .ptu test script template based on the source under test.

To write the test script, you can use the Text Editor provided with HCL OneTest™ Embedded.

Component Testing for Ada uses the Ada Test Script Language. Full reference information for this language is

provided in the Reference. section.

section

To learn about See

Basic .ptu test script instructions Structure Statements on

page 565

Specifying the main Ada entry unit Test Program Entry Point

on page 606

Initializing and testing variable val­

ues

Initial and Expected Val­

ues on page 567

Chapter 5. Test Execution Specialist Guide

Simulating stub functions Stub Simulation on

page 588

Catching exceptions Unexpected Exceptions on

page 612

Other specific Ada testing notions Advanced Ada Testing on

page 602

Related Topics

Structure Statements on page 565 | About the Text Editor on page 725

Test Script Structure

Component Testing for Ada

The Ada Test Script Language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment Port criteria.

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive.

• Statements start at the beginning of a line and end at the end of a line. You can, however, write an instruction

over several lines using the ampersand (&) continuation character at the beginning of additional lines.

• Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

The basic structure of a Component Testing .ptu test script for Ada looks like this:

HEADER add, 1, 1

<variable declarations for the test script>

BEGIN

SERVICE add

<local variable declarations for the service>

TEST 1

FAMILY nominal

565

HCL® OneTest™ Embedded

566

ELEMENT

VAR variable1, INIT=0, EV=0

VAR variable2, INIT=0, EV=0

﷓<call to the procedure under test>

END ELEMENT

END TEST

END SERVICE

Structure statements

The following statements allow you to describe the structure of a test.

• HEADER: For documentation purposes, specifies the name and version number of the module being tested, as

well as the version number of the tested source file. This information is displayed in the test report.

• BEGIN: Marks the beginning of the generation of the actual test program.

• SERVICE: Contains the test cases related to a given service. A service usually refers to a procedure or

function. Each service has a unique name (in this case add). A SERVICE block terminates with the instruction

END SERVICE.

• TEST: Each test case has a number or identifier that is unique within the block SERVICE. The test case is

terminated by the instruction END TEST.

• FAMILY: Qualifies the test case to which it is attached. The qualification is free (in this case nominal). A list of

qualifications can be specified (for example: family, nominal, structure) in the Tester Configuration dialog box.

• ELEMENT: Describes a test phase in the current test case. The phase is terminated by the instruction END

ELEMENT. The different phases of the same test case cannot be dissociated after the tests are run, unlike the

test cases introduced by the instruction NEXT_TEST. However, the test phases introduced by the instruction

ELEMENT are included in the loops created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept simple. This structure allows:

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test number, or the test family.

In the test script, the testers can add an optional REQUIREMENT statement in order to linked the tests to one or

several requirements of the application under test.

Chapter 5. Test Execution Specialist Guide

The REQUIREMENT instruction appears within TEST blocks, where it defines the requirements for this test or within

SERVICE blocks where it defines the requirements for the tests including in this service or before the first SERVICE

block where it defines the requirements for the all the tests in the file.

Related Topics

Ada Test Script Basics on page 564 | Test Iterations on page 613

Using native Ada statements

Component Testing for Ada

In some cases, it can be necessary to include portions of Ada native code inside a .ptu test script. You can use the #,

@, and ! prefixes to do this.

Analyzed native code - #

When lines are prefixed with the # character, the Test Script Compiler analyzes the line and then copies the line into

the generated code. You can use the # prefix to declare test script variables and to include the files that declare the

functions under test.

Variable declarations must be placed outside of Ada test script blocks preferably at the beginning of scenarios and

procedures.

Ignored native code - @

When lines are prefixed with the @ character, the Test Script Compiler only copies the line into the test harness and

does not analyze the line. You can use the @ prefix to copy instructions into the test harness, when the test script

compiler would not understand these instructions. Assembly instructions are examples of these instructions.

Parsed native code - !

When lines are prefixed with the ! character, the Test Script Compiler analyzes the lines, but does not copy the lines

into the test harness. You can use the ! prefix to declare variables and types that are built into the compiler.

Related Topics

Test script structure on page 565

Testing Variables

Component Testing for Ada

One of the main features of Component Testing for Ada is its ability to compare initial values, expected values and

actual values of variables during test execution. In the Ada Test Script Language, this is done with the VAR statement.

567

HCL® OneTest™ Embedded

568

The VAR statement specifies both the test start-up procedure and the post-execution test for simple variables. This

instruction uses three parameters:

• Name of the variable under test: this can be a simple variable, an array element, or a field of a record. It is also

possible to test an entire array, part of an array or all the fields of a record.

• Initial value of the variable: identified by the keyword INIT.

• Expected value of the variable after the procedure has been executed: identified by the keyword EV.

Declare variables under test with the VAR statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

Component Testing for Ada allows you to define initial and expected values with standard Ada expressions.

All literal values, variable types, functions and most operators available in the Ada language are accepted by

Component Testing for Ada.

It does not matter where the VAR instructions are located with respect to the test procedure call since the Ada code

generator separates VAR instructions into two parts :

• The variable test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

Many other forms are available that enable you to create more complex test scenarios.

Example

The following example demonstrates typical use of the VAR statement

HEADER add, 1, 1

﷓with add;

BEGIN

SERVICE add

﷓ a, b, c : integer;

TEST 1

FAMILY nominal

Chapter 5. Test Execution Specialist Guide

ELEMENT

VAR a, init = 1, ev = init

VAR b, init = 3, ev = init

VAR c, init = 0, ev = 4

﷓c := add(a,b);

END ELEMENT

END TEST

END SERVICE

Related Topics

Testing intervals on page 569 | Testing tolerances on page 570 | Reporting a variable without testing on

page 572 | Testing expressions on page 571

Testing Intervals

Component Testing for Ada

You can test an expected value within a given interval by replacing EV with the keywords MIN and MAX.

You can also use this form on alphanumeric variables, where character strings are considered in alphabetical order

("A"<="B"<="C").

Example

The following example demonstrates how to test a value within an interval:

TEST 4

FAMILY nominal

ELEMENT

VAR a, init in (1,2,3), ev = init

VAR b, init = 3, ev = init

VAR c, init = 0, min = 4, max = 6

﷓c = add(a,b);

END ELEMENT

END TEST

569

HCL® OneTest™ Embedded

570

Related Topics

Testing variables on page 567 | Testing intervals on page 569 | Testing tolerances on page 570 | Reporting a

variable without testing on page 572 | Testing expressions on page 571

Testing Tolerances

Component Testing for Ada

You can associate a tolerance with an expected value for numerical variables. To do this, use the keyword DELTA with

the expected value EV.

This tolerance can either be an absolute value (the default option) or relative (in the form of a percentage <value>%).

Example

TEST 5

FAMILY nominal

ELEMENT

VAR a, INIT in (1,2,3), EV = INIT

VAR b, INIT = 3, EV = INIT

VAR c, INIT = 0, EV = 5, DELTA = 1

﷓c = add(a,b);

END ELEMENT

END TEST

or

TEST 6

FAMILY nominal

ELEMENT

VAR a, INIT in (1,2,3), EV = INIT

VAR b, INIT = 3, EV = INIT

VAR c, INIT = 0, EV = 5, DELTA = 20%

﷓c = add(a,b);

Chapter 5. Test Execution Specialist Guide

END ELEMENT

END TEST

Related Topics

Testing variables on page 567 | Testing intervals on page 569 | Reporting a variable without testing on page 572

| Testing expressions on page 571

Testing expressions

Component Testing for Ada

To test the return value of an expression, rather than declaring a local variable to memorize the value under test, you

can directly test the return value with the VAR instruction.

In some cases, you must leave out the initialization part of the instruction.

Example

The following example places the call of the add function in a VAR statement:

TEST 12

FAMILY nominal

ELEMENT

VAR a, init = 1, ev = init

VAR b, init = 3, ev = init

VAR add(a,b), ev = 4

END ELEMENT

FIN TEST

In this example, you no longer need the variable c . The resulting test report an Unknown status indicating that it

has not been tested.

All syntax examples of expected values are still applicable, even in this particular case.

Related Topics

Testing variables on page 567 | Testing intervals on page 569 | Testing tolerances on page 570 | Initializing

without testing on page 572

571

HCL® OneTest™ Embedded

572

Initializing without testing

Component Testing for Ada

It is sometimes difficult to predict the expected result for a variable; such as if a variable holds the current date or

time. In this case, you might want to avoid specifying an expected output but still have the value of the variable

initialized in the test script. To do this, use the EV == syntax.

Example

In the following script a, b, and c are initialized, but only a and b are tested.

TEST 7

FAMILY nominal

ELEMENT

VAR a, init in (1,2,3), ev = init

VAR b, init = 3, ev = init

VAR c, init = 0, ev ==

﷓c = add(a,b);

END ELEMENT

END TEST

Related Topics

Testing variables on page 567 | Testing intervals on page 569 | Testing expressions on page 571 |

Declaring global variables for testing

Component Testing for Ada

The Target Deployment Ports for Ada do not provide any variables that can be used freely by the tester.

To avoid having to modify the code under test, it is easier to add an extra C package, which is actually just the spec

part of the package, to provide a set of globally accessible variables. You can do this directly in the .ptu test script.

Declaring Global Variables

Any code inserted between the HEADER and BEGIN keywords is copied into the generated code as is. For example:

Header Code_Under_Test, 1.0, 1.0

 #With Code_Under_Test; -- only if Code_Under_Test is used within My_Globals
 -- this context clause goes into the package My_Globals

Chapter 5. Test Execution Specialist Guide

 #package My_Globals is
 # Global_Var_Integer : Integer := 0;
 #end My_Globals;
 #with Code_Under_Test;
 #with My_Globals;

-- these two context clauses go into the generated test harness

Begin

-- etc..

Note Any Ada instruction between HEADER and the BEGIN instruction must be encapsulated into a procedure or a

package. Context clauses are possible.

Accessing Global Variables

The extra global variable package is visible from within all units of the test driver.

Variables can be accessed like this:

#My_Globals.Global_Var_Integer := 1;

Variables can be accessed from a DEFINE STUB block for example:

Define Stub Another_Package

#with My_Globals;
#procedure some_proc (param : in out some_type) is
#begin
My_Globals.Global_Var_Integer := 2;
#end some_proc;
-- however, no "return" statement is possible within this block
End Define

Variables can be accessed in the ELEMENT blocks, just like any other variable:

VAR My_Globals.Global_Var_Integer, init = 0, EV = 1

HCL OneTest™ Embedded processes the .ptu test script in such a way that global variable package automatically

becomes a separate compilable unit.

Related Topics

Testing variables on page 567 | Testing intervals on page 569 | Testing expressions on page 571 | Handling

global variables with stubs on page 600

Testing arrays

Component Testing for Ada

573

HCL® OneTest™ Embedded

574

With Component Testing for Ada, you can test arrays in quite the same way as you test variables. In the Ada Test

Script Language, this is done with the ARRAY statement.

The ARRAY statement specifies both the test start-up procedure and the post-execution test for simple variables.

This instruction uses three parameters:

• Name of the variable under test: species the name of the array in any of the following ways:

• ◦ To test one array element, conform to the Ada syntax: histo(0).

◦ To test the entire array without specifying its bounds, the size of the array is deduced by analyzing its

declaration. This can only be done for well-defined arrays.

◦ To test a part of the array, specify the lower and upper bounds within which the test will be run,

separated with two periods (..), as in: histo(1..SIZE_HISTO)

• Initial value of the array: identified by the keyword INIT.

• Expected value of the array after the procedure has been executed: identified by the keyword EV.

Declare variables under test with the ARRAY statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

It does not matter where the ARRAY instructions are located with respect to the test procedure call since the Ada

code generator separates ARRAY instructions into two parts :

• The array test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

Testing an Array with Ada Expressions

To initialize and test an array, specify the same value for all the array elements. The following two examples illustrate

this simple form.

ARRAY image, init = 0, ev = init

ARRAY histo[1..SIZE_HISTO-1], init = 0, ev = 0

You can use the same expressions for initial and expected values as those used for simple variables (literal values,

constants, variables, functions, and Ada operators).

Example

Chapter 5. Test Execution Specialist Guide

HEADER histo, 1, 1

﷓with histo; use histo;

BEGIN

SERVICE COMPUTE_HISTO

﷓ x1, x2, y1, y2 : integer;

﷓ histo : T_HISTO;

TEST 1

FAMILY nominal

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE﷓1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE﷓1, ev = init

ARRAY image(1..200,1..200), init = 0, ev = init

VAR histo(1), init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

ARRAY histo(1..SIZE_HISTO), init = 0, ev = 0

﷓compute_histo(x1, y1, x2, y2, histo);

END ELEMENT

END TEST

END SERVICE

Related Topics

Testing variables on page 567 | Testing an array with pseudo-variables on page 575 | Testing character arrays on

page 576 | Testing large arrays on page 577 | Testing arrays with lists on page 578 | Testing arrays with other

arrays on page 580

Testing arrays with pseudo-variables

Component Testing for Ada

Another form of initialization consists of using one or more pseudo-variables, as the following example illustrates:

575

HCL® OneTest™ Embedded

576

TEST 3

FAMILY nominal

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init=(int)(100*(1+sin((float)(I1+I2)))), ev = init

ARRAY histo[0..200], init = 0, ev ==

ARRAY histo[201..SIZE_HISTO-1], init = 0, ev = 0

VAR status, init ==, ev = 0

﷓status = compute_histo(x1, y1, x2, y2, histo);

END ELEMENT

END TEST

I1 and I2 are two pseudo-variables which take as their value the current values of the array indices (for image, from 0

to 199 for I1 and I2). You can use these pseudo-variables like a standard variable in any Ada expression.

This allows you to create more complex test scripts when using large arrays when the use of enumerated expressions

is limited.

For multidimensional arrays, you can combine these different types of initialization and test expressions, as

demonstrated in the following example:

ARRAY image, init = (0 => I2, 1 => (0 => 100, others => 0),

& others => (I1 + I2) % 255)

Related Topics

Testing variables on page 567 | Testing arrays on page 573 | Testing character arrays on page 576 | Testing

large arrays on page 577 | Testing arrays with lists on page 578 | Testing arrays with other arrays on page 580

Testing Character Arrays

Component Testing for Ada

Chapter 5. Test Execution Specialist Guide

Character arrays are a special case. Variables of this type are processed as character strings delimited by quotes.

You therefore need to initialize and test character arrays using character strings, as the following list example

illustrates.

If you want to test character arrays like other arrays, you must use a format modification declaration (FORMAT

instruction) to change them to arrays of integers.

Example

The following list example illustrates this type of modification:

TEST 2

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

VAR s, init = "foo", ev = init

VAR l.str(1..5), init = "foo" , ev = ('f','o','o')

﷓l := stack(s, l);

END ELEMENT

END TEST

Related Topics

Testing variables on page 567 | Testing arrays on page 573 | Testing an array with pseudo-variables on

page 575 | Testing large arrays on page 577 | Testing arrays with lists on page 578 | Testing arrays with other

arrays on page 580

Testing large arrays

Component Testing for Ada

The maximum number of array elements that can be processed is 100. If you need to test an array that contains more

than 100 elements, then you must split the initialization of the array over two or more initializations, as shown in the

following example.

Example

The following initiatialization produces a Too many INIT or VA values error:

ARRAY a, init=

577

HCL® OneTest™ Embedded

578

(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,20,1,2,3,4,5,6,7,8,9,30,1,2,3,4,

5,6,7,8,9,40,1,2,3,4,5,6,7,8,9,50,1,2,3,4,5,6,7,8,9,60,1,2,3,4,5,6,7,8,9,

70,1,2,3,4,5,6,7,8,9,80,1,2,3,4,5,6,7,8,9,90,1,2,3,4,5,6,7,8,9,100,1,2,3,

4,5,6,7,8,9,110,1,2,3,4,5,6,7,8,9,120,1,2,3,4,5,6,7,8,9,130,1,2,3,4,5,6,

7,8,9,140,1,2,3,4,5,6,7,8,9,150,1,2,3,4,5,6,7,8,9,160,1,2,3,4,5,6,7,8,9,

170,1,2,3,4,5,6,7,8,9,180,1,2,3,4,5,6,7,8,9,190,1,2,3,4,5,6,7,8,9,200)

, ev=init

Instead, use the following expression:

ARRAY z [0..99],

init=(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,20,1,2,3,4,5,6,7,8,9,30,1,2

,3,4,5,6,7,8,9,40,1,2,3,4,5,6,7,8,9,50,1,2,3,4,5,6,7,8,9,60,1,2,3,4,5,6,

7,8,9,70,1,2,3,4,5,6,7,8,9,80,1,2,3,4,5,6,7,8,9,90,1,2,3,4,5,6,7,8,9,100)

, ev=init

ARRAY z [100..199],

init={1,2,3,4,5,6,7,8,9,110,1,2,3,4,5,6,7,8,9,120,1,2,3,4,5,6,7,8,9,130,

1,2,3,4,5,6,7,8,9,140,1,2,3,4,5,6,7,8,9,150,1,2,3,4,5,6,7,8,9,160,1,2,3,

4,5,6,7,8,9,170,1,2,3,4,5,6,7,8,9,180,1,2,3,4,5,6,7,8,9,190,1,2,3,4,5,6,

7,8,9,200}

, ev=init

Related Topics

Testing variables on page 567 | Testing arrays on page 573 | Testing an array with pseudo-variables on

page 575 | Testing character arrays on page 576 | Testing arrays with lists on page 578 | Testing arrays with

other arrays on page 580

Testing arrays with lists

Component Testing for Ada

Chapter 5. Test Execution Specialist Guide

While an expression initializes all the array elements in the same way, you can also initialize each element by using an

enumerated list of expressions between brackets "()". In this case, you must specify a value for each array element.

Furthermore, you can precede every element in this list of initial or expected values with the array index of the element

concerned followed by the characters "=>". The following example illustrates this form:

ARRAY histo[0..3], init = (0 => 0, 1 => 10, 2 => 100, 3 => 10) ...

This form of writing the ARRAY statement has several advantages:

• Improved readability of the list

• Ability to mix values without worrying about the order

You can also use this form together with the simple form if you follow this rule: once one element has been defined

with its array index, you must do the same with all the following elements.

If several elements in an array are to take the same value, specify the range of elements taking this value as follows:

ARRAY histo[0..3], init = (0 .. 2 => 10, 3 => 10) ...

You can also initialize and test multidimensional arrays with a list of expressions, as follows. In this case, the

previously mentioned rules apply to each dimension.

ARRAY image, init = (0, 1=>4, others=>(1, 2, others=>100)) ...

Example

You can specify a value for all the as yet undefined elements by using the keyword others, as the following example

illustrates:

TEST 2

FAMILY nominal

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init = (others=>(others=>100)), ev = init

ARRAY histo, init = 0,

579

HCL® OneTest™ Embedded

580

& ev = (100=>SIZE_IMAGE*SIZE_IMAGE, others=>0)

VAR status, init ==, ev = 0

﷓status = compute_histo(x1, y1, x2, y2, histo);

END ELEMENT

END TEST

Related Topics

Testing variables on page 567 | Testing arrays on page 573 | Testing an array with pseudo-variables on

page 575 | Testing character arrays on page 576 | Testing large arrays on page 577 | Testing arrays with other

arrays on page 580

Testing arrays with other arrays

Component Testing for Ada

Component Testing for Ada is flexible enough to allow complex array comparisons. You can initialize or compare an

array with another array that shares the same declaration.

You can use this form of initialization and testing with one or more array dimensions.

Example

The following example tests the two arrays read_image and extern_image , which have been declared in the same

way. Every element from the extern_image array is assigned to the corresponding read_image array element.

TEST 4

FAMILY nominal

﷓read_image(extern_image,"image.bmp");

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init = extern_image, ev = init

ARRAY histo, init = 0, ev ==

Chapter 5. Test Execution Specialist Guide

VAR status, init ==, ev = 0

﷓status = compute_histo(x1, y1, x2, y2, histo);

END ELEMENT

END TEST

Related Topics

Testing variables on page 567 | Testing arrays on page 573 | Testing an array with pseudo-variables on

page 575 | Testing character arrays on page 576 | Testing large arrays on page 577 | Testing arrays with lists on

page 578

Testing Records

Component Testing for Ada

To test all the fields of a structured variable or record, use a single STR instruction to define the initializations and

expected values of the structure.

The STR statement specifies both the test start-up procedure and the post-execution test for simple variables. This

instruction uses three parameters:

• Name of the variable under test: this can be a simple variable, an array element, or a field of a record. It is also

possible to test an entire array, part of an array or all the fields of a record.

• Initial value of the variable: identified by the keyword INIT.

• Expected value of the variable after the procedure has been executed: identified by the keyword EV.

Declare variables under test with the STR statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

It does not matter where the STR instructions are located with respect to the test procedure call since the Ada code

generator separates STR instructions into two parts :

• The variable test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

Many other forms are available that enable you to create more complex test scenarios.

581

HCL® OneTest™ Embedded

582

Example

The following example demonstrates typical use of the STR statement:

--procedure push(l: in out list; s:string);

TEST 2

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

STR l.all, init == , ev = ("myfoo",NIL,NIL)

VAR s, init = "myfoo", ev = init

﷓push(l,s);

END ELEMENT

END TEST

Related Topics

Testing Records on page 581 | Testing a Record with Ada Expressions on page 582 | Testing a Record with

Another Record on page 583 | Testing Records with Discriminants on page 584 | Testing Tagged Records on

page 585 | No Test on page 587

Testing a Record with Ada Expressions

Component Testing for Ada

To initialize and test a structured variable or record, you must initialize or test all the fields using a list of native

language expressions (one per field). The following example illustrates this form:

STR l.all, init == , ev = ("myfoo",NIL,NIL)

Each element in the list must correspond to the structured variable field as it was declared.

Every expression in the list must obey the rules described so far, according to the type of field being initialized and

tested:

• An expression for simple fields or arrays of simple variables initialized using an expression

• In Ada, an aggregate for fields of type record or array

Chapter 5. Test Execution Specialist Guide

Using Field Names in Native Expressions

As with arrays, you can specify field names in native expressions by following the field name of the structure with the

characters =>, as follows:

TEST 3

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

VAR l.all, init == , ev = (str=>"myfoo",next=>NIL,prev=>NIL)

VAR s, init = "myfoo", ev = init

﷓l = push(l,s);

END ELEMENT

END TEST

When using this form, you do not have to respect the order of expressions in the list.

Related Topics

Testing Records on page 581 | Testing a Record with Another Record on page 583 | Testing Records with

Discriminants on page 584 | Testing Tagged Records on page 585 | No Test on page 587

Testing a Record with Another Record

Component Testing for Ada

As with arrays, you can initialize and test a record using another record of the same type. The following example

illustrates this form:

STR l.all, init == , ev = l1.all

Each field of the structured variable will be initialized or tested using the associated fields of the variable used for

initialization or testing.

Related Topics

Testing Records on page 581 | Testing a Record with Ada Expressions on page 582 | Testing Records with

Discriminants on page 584 | Testing Tagged Records on page 585 | No Test on page 587

583

HCL® OneTest™ Embedded

584

Testing Records with Discriminants

Component Testing for Ada

You can use record types with discriminants, with the following Ada restrictions:

• The initialization part must be complete.

• The evaluation can omit every field except discriminant fields.

Initialization and expected value expressions are Ada aggregates beginning with the value of the discriminant.

Example

Ada example:

type rec (discr:boolean:=TRUE)

case discr is

when TRUE =>

ch2:float;

when FALSE =>

ch3:integer;

end case;

end record;

Test Script Sample:

﷓r1: rec(TRUE);

﷓r2: rec;

TEST 1

FAMILY nominal

ELEMENT

var r1, init = (TRUE, 0.0), ev ==

var r2, init = (FALSE, 1), ev = (TRUE, 1.0)

﷓func (r);

END ELEMENT

Chapter 5. Test Execution Specialist Guide

END TEST

Related Topics

Testing Records on page 581 | Testing a Record with Ada Expressions on page 582 | Testing a Record with

Another Record on page 583 | Testing Tagged Records on page 585 | No Test on page 587

Testing Tagged Records

Component Testing for Ada

Component Testing for Ada supports tagged record types. As with other classic records, you can omit a field in the

initialization or evaluation part. You can also define tagged types with a discriminant part. In such cases, the only

limitation is that of the discriminant.

Example

The following example illustrates tagged records. First, the source code:

Package Items Is

Type Item Is Tagged Record

X_Coord : Float;

Y_Coord : Float;

End Record;

Procedure foo_test;

End Items;

With Items; Use Items;

Package Forms Is

Type Point Is New Item With Null Record;

Type Circle Is New Item With Record

Radius : Float;

End Record;

Type Triangle Is New Item With Record

A,B,C : Float;

End Record;

585

HCL® OneTest™ Embedded

586

Type Cylinder Is New Circle With Record

Height : Float;

End Record;

End Forms;

Following is the associated test script:

HEADER Items, ,

﷓With Items; Use Items;

﷓With Forms; Use Forms;

BEGIN Items

﷓I : Item := (1.0,0.5);

﷓C : Circle := (0.0,1.0,13.5);

﷓T : Triangle;

﷓P : Point;

﷓Cyl : Cylinder;

SERVICE Compute_Items

SERVICE_TYPE extern

TEST 1

FAMILY Nominal

ELEMENT

Var T, Init = (0.0,1.5,4.5,5.0,6.5), Ev = (I with A=>4.0, B=>5.0, C=>6.0)

Var P, Init = I, Ev = (Y_coord => 1.0, X_coord => 0.0)

Var I, Init = (0.0,1.0), Ev = Item(C)

Var P, Init = (I with NULL record), Ev = (Y_coord => 1.0, X_coord => 0.0)

End Element

END TEST -- Test 1

TEST 2

Chapter 5. Test Execution Specialist Guide

FAMILY Nominal

ELEMENT

Var I, Init = (2.0,3.0), Ev ==

Var T, Init = (2.0,3.0,4.0,5.0,6.0), Ev = (I with A=>4.0, B=>5.0, C=>6.0)

Var Cyl, Init = (2.0, 3.0, 4.0, 5.0), Ev ==

Var I, Init ==, Ev = Item(Cyl)

END ELEMENT

END TEST -- Test 2

END SERVICE -- Compute_Items

Related Topics

Testing Records on page 581 | Testing a Record with Ada Expressions on page 582 | Testing a Record with

Another Record on page 583 | Testing Records with Discriminants on page 584 | No Test on page 587

No Test

Component Testing for Ada

You can only initialize and test records with the following forms:

• INIT =

• INIT ==

• EV =

• EV ==

If a field of a structured variable needs to be initialized or tested in a different way, you can omit its initial and

expected values from the global test of the structured variable, and run a separate test on this field.

The following example illustrates this:

TEST 4

FAMILY nominal

ELEMENT

VAR l, init = NIL, ev = NONIL

587

HCL® OneTest™ Embedded

588

VAR l.all, init == , ev = (next=>NIL,prev=>NIL)

VAR s, init in ("foo","bar"), ev = init

VAR l.str, init ==, ev(s) in ("foo","bar")

﷓push(l,s);

END ELEMENT

END TEST

Related Topics

Testing Records on page 581 | Testing a Record with Ada Expressions on page 582 | Testing a Record with

Another Record on page 583 | Testing Records with Discriminants on page 584 | Testing Tagged Records on

page 585

Stub Simulation

Component Testing for Ada

Stub simulation is based on the idea that subroutines to be simulated are replaced with other subroutines generated

in the test driver. These simulated subroutines are often referred to as stubs.

Stubs use the same interface as the simulated subroutines, only the body of the subroutine is replaced.

Stubs have the following roles:

• Check in and in out parameters against the simulated subroutine. If there is a mismatch, the values are

stored.

• Assign out and in out parameters from the simulated procedure

• Return a value for a simulated function

To generate stubs, the Test Script Compiler needs to know the specification of the compilation units that are to be

simulated.

Passing parameters by pointer can lead to problems of ambiguity regarding the data actually passed to the function.

For example, a parameter that is described in a prototype by int *x can be passed in the following way:

int *x as input ==> f(x)

int x as output or input/output ==> f(&x)

int x[10] as input ==> f(x)

Chapter 5. Test Execution Specialist Guide

int x[10] as output or input/output ==> f(x)

Therefore, to define a stub, you must specify the following information:

• The data type in the calling function

• The method of passing the data

Example

An example project called Stub Ada is available from the Examples section of the Start page. This example

demonstrates the use of stubs in Component Testing for Ada. See Example projects for more information.

Related Topics

Defining stubs on page 589 | Using Stubs on page 591 | Ada Syntax Extensions on page 593 | Advanced Stubs

(Ada) on page 595 | Example projects on page 709

Defining stubs

Component Testing for Ada

The following example highlights the simulation of all functions and procedures declared in the specification of

file_io. A new body is generated for file_io in file <testname> _fct_simule.ada.

HEADER file, 1, 1

BEGIN

DEFINE STUB file_io

END DEFINE

You must always define stubs after the BEGIN instruction and outside any SERVICE block.

Simulation of Generic Units

You can stub a generic unit like an ordinary unit with the following restrictions:

Parameters of a procedure or function, and function return types of a type declared in a generic unit or parameter of

this unit must use the _NO mode.

For example, if you want to stub the following generic package:

GENERIC

TYPE TYPE_PARAM is;

589

HCL® OneTest™ Embedded

590

Package GEN is

TYPE TYPE_INTO is;

procedure PROC(x:TYPE_PARAM,y:in out TYPE_INTO,Z:out integer);

function FUNC return TYPE_INTO;

end GEN;

Use the following stub definition:

DEFINE STUB GEN

﷓ procedure PROC(x: _NO TYPE_PARAM,y: _NO TYPE_INTO,Z:out integer);

﷓ function FUNC return _NO TYPE_INTO;

END DEFINE

You can add a body to procedures and functions to process any parameters that required the _NO mode.

Note With some compilers, when stubbing a unit by using a WITH operator on the generic package, cross

dependencies may occur.

Separate Body Stub

It some cases, you might need to define the body stub separately, with a proprietary behavior. Declare the stub

separately as shown in the following example, and then you can define a body for it:

DEFINE STUB <STUB NAME>

﷓ procedure My_Procedure(...) is separate ;

END DEFINE

The Ada Test Script Compiler will not generate a body for the service My_Procedure, but will expect you to do so.

Initializing variables with a stub

When a stub that returns a value is called before the main program initialization (for example if the stubbed function

is used to initialize a variable), the initialization should be declared in the stub as in the following example:

DEFINE STUB PACKAGE_1

﷓ Function Proc_1 ... return <type> is

﷓ BEGIN

Chapter 5. Test Execution Specialist Guide

﷓ if Attol_f_Idx < 0

﷓ THEN

﷓ RETURN <value of type>;

﷓ end if;

﷓ END;

END DEFINE

Related Topics

Stub Simulation on page 588 | Using Stubs on page 591 | Sizing Stubs on page 594 | Ada Syntax Extensions on

page 593 | Advanced Stubs (Ada) on page 595

Using Stubs

Component Testing for Ada

Range of Values of STUB Parameters

When using stubs, you may need to define an authorized range for each STUB parameter. Furthermore, you can

summarize several calls in one line associated with this parameter.

Write such STUB lines as follows:

STUB F 1..10 => (1<->5)30

This expression means that the STUB F will be called 10 times with its parameter having a value between 1 and 5, and

its return value is always 30.

You can combine this with several lines; the result looks like the following example:

STUB F 1..10 => (1<->5)30,

& 11..19 => (1<->5)0,

& 20..30 => (<->) 1,

& others =>(<->)-1

To check that a STUB is never called, even if an ENVIRONMENT containing the STUB is used, use the the following

syntax:

STUB F 0=>(<->)

591

HCL® OneTest™ Embedded

592

Raise-exception Stubs

You can force to raise a user-defined (or pre-defined) exception when a STUB is called with particular values.

The appropriate syntax is as follows:

STUB P(1E+307<->1E+308) RAISE STORAGE_ERROR

If the STUB F happens to be called with its parameter between 1E+307 and 1E+308, the exception STORAGE_ERROR

will be raised during execution of the application; the test will be FALSE otherwise.

Suppose that the current stubbed unit contains at least one overloaded sub-program. When calling this particular

STUB, you will need to qualify the procedure or function. You can do this easily by writing the STUB as follows:

STUB A.F (1<->2:REAL)RAISE STANDARD.CONSTRAINT_ERROR

The STUB A.F is called once and will raise a CONSTRAINT_ERROR if its parameter, of type REAL, has a value between

1 and 2.

Compilation Sequence

The Ada Test Script Compiler generates three files:

• <testname> _fct_simule.ada for the body of simulated functions and procedures

• <testname> _var_simule.ada for the declaration of simulation variables

• <testname> _var_simule_B.ada for the body of test procedures

You must compile your packages in the following order:

1. Simulated unit (specification)

2. <testname> _var_simule.ada

3. <testname> _var_simule_B.ada

4. Test program

5. <testname> _fct_simule.ada

Replacing Stubs

Stubs can be used to replace a component that is still in development. Later in the development process, you might

want to replaced a stubbed component with the actual source code.

To replace a stub with actual source code:

1. Right-click the test node and select Add Child and Files

2. Add the source code files that will replace the Stubbed functions.

Chapter 5. Test Execution Specialist Guide

3. If you do not want a new file to be instrumented, right-click the file select Properties. Set the Instrumentation

property to No.

4. Open the .ptu test script, and remove the STUB sections from your script file.

Related Topics

Stub Simulation on page 588 | Defining Stubs on page 589 | Sizing Stubs on page 594 | Ada Syntax Extensions

on page 593 | Advanced Stubs (Ada) on page 595

Multiple stub calls

Component Testing for Ada

For a large number of calls to a stub, use the following syntax for a more compact description:

<call i> .. <call j> =>

You can describe each call to a stub by adding the specific cases before the preceding instruction, for example:

<call i> =>

or

<call i> .. <call j> =>

The call count starts at 1 as the following example shows:

TEST 2

FAMILY nominal

COMMENT Reading of 100 identical lines

ELEMENT

VAR file1, init = "file1", ev = init

VAR file2, init = "file2", ev = init

VAR s, init == , ev = 1

STUB open_file 1=>("file1")3

STUB create_file 1=>("file2")4

STUB read_file 1..100(3,"line")1, 101=>(3,"")0

STUB write_file 1..100=>(4,"line")1

593

HCL® OneTest™ Embedded

594

STUB close_file 1=>(3)1,2=>(4)1

﷓s = copy_file(file1,file2);

END ELEMENT

END TEST

Several Calls to a Stub

If a stub is called several times during a test, either of the following are possible:

• Describe the different calls in the same STUB instruction, as described previously.

• Use several STUB instructions to describe the different calls. (This allows a better understanding of the test

script when the STUB calls are not consecutive.)

The following example rewrites the test to use this syntax for the call to the STUB close_file:

STUB close_file (3)1

STUB close_file (4)1

No Testing of the Number of Calls of a Stub

If you don't want to test the number of calls to a stub, you can use the keyword others in place of the call number to

describe the behavior of the stub for the calls to the stub not yet described.

For example, the following instruction lets you specify the first call and all the following calls without knowing the

exact number:

STUB write_file 1=>(4,"line")1,others=>(4,"")1

Related Topics

Stub Simulation on page 588 | Defining Stubs on page 589 | Using Stubs on page 591 | Sizing Stubs on

page 594 | Advanced Stubs on page 595

Stub memory allocation

Component Testing for Ada

For each STUB, the Component Testing feature allocates memory to:

• Store the value of the input parameters during the test

• Store the values assigned to output parameters before the test

Chapter 5. Test Execution Specialist Guide

A stub can be called several times during the execution of a test. By default, when you define a STUB, the Component

Testing feature allocates space for 10 calls. This means that only the 10 first errors found in stub calls are displayed

in the report and that any more errors are ignored. If you call the STUB more than 10 times, then you must specify the

number of expected calls in the STUB declaration statement.

In the following example, the script allocates storage space for the first 17 calls to the stub:

DEFINE STUB file 17

﷓procedure proc_inout (param1 : in out integer) is

﷓begin

﷓ param1:=param1+1

﷓end proc_inout

END DEFINE

You can also reduce the stub allocation value to a lower value when running tests on a target platform that is short on

memory resources.

Related Topics

Stub Simulation on page 588 | Defining Stubs on page 589 | Using Stubs on page 591 | Ada Syntax Extensions

on page 593 | Advanced Stubs (Ada) on page 595

Advanced Stubs

Component Testing for Ada

This section covers some of the more complex notions when dealing with stub simulations in Component Testing for

Ada.

To learn about See

Writing complex stubs in Ada Native Code in Stubs on page 596

Defining stubs of generic Ada units Simulating Generic Units on page 598

Stubbing functions that take arrays in _inout mode Simulating Functions with _inout Mode Arrays

on page 599

Stubbing functions for which the number of parameters may

vary

Simulating Functions with Varying Parame­

ters on page 600

Defining a stub in a separate body Separate Body Stub on page 602

595

HCL® OneTest™ Embedded

596

Creating complex stubs

Component Testing for Ada

If necessary, you can make stub operation more complex by inserting native Ada code into the body of the simulated

function. You can do this easily by adding the lines of native code after the prototype.

Example

The following stub definition makes extensive use of native Ada code.

DEFINE STUB file

﷓function open_file(f:string) return file_t is

﷓begin

﷓ raise file_error;

﷓end;

END DEFINE

Related Topics

Advanced Stubs on page 595 | Excluding a Parameter from a Stub on page 596 | Simulating Generic Units on

page 598 | Simulating Functions with _inout Mode Arrays on page 599 | Simulating Functions that Use a Variable

Number of Parameters on page 600 | Separate Body Stub on page 602

Excluding a parameter from a stub

Component Testing for Ada

You can specify in the stub definition that a particular parameter is not to be tested or given a value. This is done

using a modifier of type no instead of in, out or in out.

Note You must be careful when using _no on an output parameter, as no value will be assigned. It will then be difficult

to predict the behavior of the function under test on returning from the stub.

Example

In this example, the f parameters to read_file and write_file are never tested.

DEFINE STUB file

﷓procedure read_file(f: _no file_t; l:out string; res:out BOOLEAN);

Chapter 5. Test Execution Specialist Guide

﷓procedure write_file(f: _no file_t, l : string);

END DEFINE

Related Topics

Advanced Stubs on page 595 | Native Code in Stubs on page 596 | Simulating Generic Units on page 598 |

Simulating Functions with _inout Mode Arrays on page 599 | Simulating Functions that Use a Variable Number of

Parameters on page 600 | Separate Body Stub on page 602

Stubbing separate compilation units

It is possible to create stubs for separate compilation units, such as procedures or packages, even for protected

packages.

For the stubbing of a protected object to work, you must either:

• Stub the package containing the protected object, or

• A body exists for the package in which the protected body is declared as separate.

To stub a protected object you must use the following syntax:

DEFINE STUB SEPARATE(<package>) <compilation unit>

...

END DEFINE

If the compilation unit does contain an entry statement, the entry itself cannot be stubbed. In this case you must

define the entry body within the DEFINE STUB block as in the following example:

DEFINE STUB SEPARATE(<package>) <compilation unit>

﷓ entry body E1 ... is ...

END DEFINE

Example

The following example is a .ptu test script implementing a stub of a separate compilation unit. It is available in the

StubAda example project provided with the product.

HEADER PARENT, ,

﷓With PARENT;

BEGIN

597

HCL® OneTest™ Embedded

598

DEFINE STUB package

END DEFINE

DEFINE STUB SEPARATE(package) MY_VALUE

END DEFINE

SERVICE SOMETHING

SERVICE_TYPE extern

-- Declaration of service's parameters

﷓X : INTEGER;

﷓Ret : INTEGER;

TEST 1

FAMILY nominal

ELEMENT

-- stub of the protected object "get"

STUB My_Value.Get()2

Var X, Init = 0, ev = Init

Var Ret, Init = 0, ev = 2

﷓Ret := PARENT.SOMETHING(X);

END ELEMENT

END TEST -- TEST 1

END SERVICE -- SOMETHING

Related Topics

Advanced stubs on page 595 | Creating Complex Stubs on page 596

Stubbing generic units

Component Testing for Ada

You can stub generic units just as ordinary units by using the following syntax:

DEFINE STUB STUB_NAME < dimension>

Chapter 5. Test Execution Specialist Guide

﷓ optional declarations

END DEFINE

The Unit Testing Ada Test Script Compiler generates a stub body for this unit to perform the desired simulations.

Related Topics

Advanced Stubs on page 595 | Native Code in Stubs on page 596 | Excluding a Parameter from a Stub on

page 596 | Simulating Functions with _inout Mode Arrays on page 599 | Simulating Functions that Use a Variable

Number of Parameters on page 600 | Separate Body Stub on page 602

Simulating functions with _inout mode arrays

Component Testing for Ada

To stub a function that takes an array in _inout mode, you must provide storage space for the actual parameters of

the function.

The function prototype in the .ptu test script remains as usual:

﷓extern void function(unsigned char *table);

The DEFINE STUB statement however is slightly modified:

DEFINE STUB Funct

﷓void function(unsigned char _inout table[10]);

END DEFINE

The declaration of the pointer as an array with explicit size is necessary to memorize the actual parameters when

calling the stubbed function. For each call you must specify the exact number of required array elements.

ELEMENT

STUB Funct.function 1 => (({'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 0x0},

& {'i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a', 0x0}))

﷓call_the_code_under_test();

END ELEMENT

This naming convention compares the actual values and not the pointers.

The following line shows how to pass _inout parameters:

599

HCL® OneTest™ Embedded

600

({<in_parameter>},{<out_parameter>})

Related Topics

Advanced Stubs on page 595 | Native Code in Stubs on page 596 | Excluding a Parameter from a Stub on

page 596 | Simulating Generic Units on page 598 | Simulating Functions that Use a Variable Number of

Parameters on page 600 | Separate Body Stub on page 602

Handling global variables with stubs

Component Testing for Ada

You can enable stubs to manipulate global variables in your test. For example, you can use this method to test a

system input function that sets a value to a global variable.

In the stub declaration, declare an alias for the global variable in a procedure or function, as in the following

examples:

DEFINE STUB tostub

﷓ with toto;

﷓ procedure pr1(x:integer)[alias1:in out va];

﷓ function return_false(param: in boolean) [alias1:in out va,alias2:in out toto.a] return BOOLEAN;

END DEFINE

To use the global variable, specify the behavior of the global variable as in the following examples:

STUB tostub.pr1(5)[(3,6)]

...

STUB return_false 1=>(FALSE)[alias1=>(8,0),alias2=>((1,3),(4,5))] TRUE

STUB return_false 2=>(TRUE)[(0,10),((1,3),(7,9))] TRUE

Related Topics

Testing variables on page 567 | Defining stubs on page 589 | Declaring global variables for testing on page 572

Stubbing functions with varying parameters

Component Testing for Ada

In some cases, functions may be designed to accept a variable number of parameters on each call.

Chapter 5. Test Execution Specialist Guide

You can still stub these functions with the Component Testing feature by using the '...' syntax indicating that there

may be additional parameters of unknown type and name.

In this case, Component Testing can only test the validity of the first parameter.

Example

The standard printf function is a good a example of a function that can take a variable number of parameters:

int printf (const char* param, ...);

Here is an example including a STUB of the printf function:

HEADER add, 1, 1

﷓extern int add(int a, int b);

﷓﷓include <stdio.h>

BEGIN

DEFINE STUB MulitParam

﷓int printf (const char param[200], ...);

END DEFINE

SERVICE add

﷓int a, b, c;

TEST 1

FAMILY nominal

ELEMENT

VAR a, init = 1, ev = init

VAR b, init = 3, ev = init

VAR c, init = 0, ev = 4

STUB printf("hello %s\n")12

﷓c = add(a,b);

END ELEMENT

END TEST

601

HCL® OneTest™ Embedded

602

END SERVICE

Related Topics

Advanced Stubs on page 595 | Native Code in Stubs on page 596 | Excluding a Parameter from a Stub on

page 596 | Simulating Generic Units on page 598 | Simulating Functions with _inout Mode Arrays on page 599 |

Separate Body Stub on page 602

Stubbing a body separately

Component Testing for Ada

Under certain circumstances, it may be useful to define the body stub separately, with a proprietary behavior.

To do this, declare the stub separately and then define a body for it.

Example

In the following example, Component Testing for Ada will not generate a body for the service My_Procedure, but will

expect you to do so:

DEFINE STUB <STUB NAME>

﷓ procedure My_Procedure(...) is separate ;

END DEFINE

Related Topics

Advanced Stubs on page 595 | Native Code in Stubs on page 596 | Excluding a Parameter from a Stub on

page 596 | Simulating Generic Units on page 598 | Simulating Functions with _inout Mode Arrays on page 599 |

Simulating Functions that Use a Variable Number of Parameters on page 600

Advanced Ada testing

Component Testing for Ada

This section covers some of the more complex notions behind Component Testing for Ada.

To learn about See

Internal procedures, internal variables and private variables Testing Internal Procedures and Internal and

Private Variables on page 603

Generic units Testing Generic Compilation Units on

page 603

Chapter 5. Test Execution Specialist Guide

Initializing and testing pointer variables Testing Pointer Variables while Preserving the

Pointed Value on page 607

Testing in a asynchronous environment Testing Tasks on page 608

Making private type structures, internal procedures and variables

visible to the test program

Separate Compilation on page 610

Generating the test harness as a separate package Generating a Separate Test Harness on

page 611

Macros definition conditions Test Script Compiler Macro Definitions on

page 612

Invalid values produced by the Ada Component Testing Wizard. Unknown Values on page 612

Link tests to Requirement. Requirement. on page 613

Testing Internal Procedures and Internal and Private Variables

Component Testing for Ada

Black box testing is not sufficient as soon as you want to test the following:

• Internal procedures of packages

• Internal variables of packages

• Private type variables

For packages, you can test internal procedures via external procedures. However, it is sometimes easier to test them

directly.

You cannot modify or test internal variables with a black box approach. Internal variables are generally tested via

external procedures, but it is sometimes easier to modify and test them directly also.

Private type variables are also a problem because their structure is not visible from outside the package.

Testing Generic Compilation Units

Component Testing for Ada

Types and objects in a generic unit depend on generic formal parameters that are not known by the Test Script

Compiler. Therefore, Component Testing for Ada cannot directly test a generic package.

To test a generic package, you must first instanciate the package and then call the instance. Such instances must

appear in compilation units or at the beginning of the test script (in any case before the BEGIN statement), as follows:

603

HCL® OneTest™ Embedded

604

WITH <generic>;

PACKAGE <instance> IS NEW <generic> (...);

Depending on the nature of the source code under test, there are two ways to test an instanciation of a generic

package:

• If the code cannot contain a specific procedure for testing purposes and the test does not need access to

internal variables, then the test body can be generated as an external package. The test body can view the

instance under test through the use of a WITH instruction.

In the .ptu test script, after the generic instanciation, add the WITH <instance> ; statement before the BEGIN

keyword. For example:

WITH <Generic_Package>;

PACKAGE <Instance> IS NEW <Generic_Package> (...);

WITH <Instance>;

BEGIN

where <Generic_Package> is the name of the generic unit under test, and <Instance> is the name of the instanciated

unit from the generic.

• If you need to test private types within the generic package and the test needs access to all internal variables,

then the test body must be part of the generic package as a specific test procedure.

In the .ptu test script, specify the generic package, the instance package and the test procedure on the BEGIN line.

For example:

WITH <Generic_Package>;

PACKAGE <Instance> IS NEW <Generic_Package> (...);

BEGIN GENERIC(<Generic_Package>, <Instance>), <Procedure_Name>

where <Generic_Package> is the name of the generic unit under test, and <Instance> is the name of the instanciated

unit from the generic. The <Procedure_Name> parameter is not mandatory. Component Testing uses Attol_Test by

default.

This instruction generates the test body into <Procedure_Name> as a separate unit of the Generic package as well as

the WITH to this instance, as requested by the test body.

If specified, <Procedure_Name> must be part of the generic package as separate procedure.

Example

Consider the following Ada compilation unit:

Chapter 5. Test Execution Specialist Guide

Generic

Type t is private ;

Procedure swap(x,y :in out t) ;

Procedure swap(x,y :in out t) is

Z :t ;

Begin

Z := x ;

X := y;

Y := z;

End swap ;

With swap ;

Procedure swap_integer is new swap(integer) ;

You can test the swap_integer procedure just like any other procedure:

HEADER swap_integer,,

﷓with swap_integer;

BEGIN

SERVICE swap_integer

﷓x,y:integer;

TEST 1

FAMILY nominal

ELEMENT

VAR x , init = 1 , ev = 4

Var Y , init=4 ,ev = 1

﷓swap_integer(x,y) ;

END ELEMENT

END TEST

605

HCL® OneTest™ Embedded

606

END SERVICE

Related Topics

Simulating Generic Units on page 598 | Advanced Ada Testing on page 602

Test Program Entry Point

Component Testing for Ada

Since ATTOL_TEST is a sub-unit and not a main unit, Component Testing for Ada generates a main procedure at the

end of the test program with the name provided on the command line.

Two methods are available to start the execution of the test program:

• Call during the elaboration of the unit under test.

• Call by the main procedure.

Call During the Elaboration of the Unit

In this case, you must add an additional line in the body of the unit tested:

PACKAGE <name>

...

END;

PACKAGE BODY <name>

...

PROCEDURE ATTOL_TEST is SEPARATE;

BEGIN

...

ATTOL_TEST;

END;

The package specification is not modified, but the test procedure is called at every elaboration of the package.

Therefore, you need to remove or replace this call with an empty procedure after the test phase.

Call by the Main Procedure

In this case, you must add an additional line in the specification of the unit tested:

Chapter 5. Test Execution Specialist Guide

PACKAGE < name>

...

PROCEDURE ATTOL_TEST;

...

END;

PACKAGE BODY <name> is

...

PROCEDURE ATTOL_TEST is SEPARATE;

END;

Component Testing will then automatically generate a call to the ATTOL_TEST procedure in the main procedure of the

test program. The test will be executed during the execution of the main program.

Limitations

Consider the following limitations:

• The unit under test must be of type package.

• The root body of ATTOL_TEST (procedure ATTOL_TEST is separate) cannot appear inside a generic package.

Testing Pointer Variables while Preserving the Pointed Value

Component Testing for Ada

To initialize a variable as a pointer while keeping the ability to test the value of the pointed element, use the FORMAT

string_ptr statement in your .ptu test script.

This allows you to initialize your variable as a pointer and still perform string comparisons using str_comp.

Example:

TEST 1

FAMILY nominal

ELEMENT

FORMAT pointer_name = string_ptr

-- Then your variable pointer_name will be first initialized as a pointer

607

HCL® OneTest™ Embedded

608

....

VAR pointer_name, INIT="l11c01pA00", ev=init

-- It is initialized as pointing to the string "l11c01pA00",

--and then string comparisons are done with the expected values using str_comp.

Testing Ada Tasks

Component Testing for Ada

As a general matter, HCL OneTest™ Embedded Component Testing for Ada was designed for synchronous

programming. However, it is possible to achieve component testing even in an asynchronous environment.

The important detail is that any task which might be producing Runtime Analysis information (especially by calling

stubbed procedures or functions) must be terminated when control reaches the END ELEMENT instruction in the .ptu

test script.

If the code under test does not provide select statements or entry points in order to request the termination of the

task, an abort call to the task might be necessary. For tasks who terminate after a certain time (not entering a infinite

loop), the tester might check the task’s state and sleep until termination of the task. In the .ptu test script, this might

read as follows:

﷓while not TaskX’Terminated loop

﷓ delay 1;

﷓end loop;

This instruction block is placed just before the END ELEMENT statement of the Test Script.

Example

The source files and complete .ptu script for following example are provided in the examples/Ada_Task directory.

In this example, the task calls a stubbed procedure. Therefore the task must be terminated from within the Test

Script. Two different techniques of starting and stopping the task are shown here in Test 1 and Test 2.

HEADER Prg_Under_Tst, 0.3, 0.0

﷓with Pck_Stub;

BEGIN Prg_Under_Tst

DEFINE STUB Pck_Stub

﷓with Text_IO;

Chapter 5. Test Execution Specialist Guide

﷓procedure Proc_Stubbed is

﷓begin

﷓ Text_IO.Put_Line("Stub called.");

﷓end;

END DEFINE

SERVICE S1

SERVICE_TYPE extern

﷓Param_1 : duration;

﷓task1 : Prioritaire;

TEST 1

FAMILY nominal

ELEMENT

VAR Param_1, init = duration(0), ev = init

STUB Pck_Stub.Proc_Stubbed 1..1 => ()

﷓Task1.Unit_Testing_Exit_Loop;

﷓delay duration(5);

﷓Task1.Unit_Testing_Wait_Termination;

END ELEMENT

END TEST -- TEST 1

TEST 2

FAMILY nominal

ELEMENT

VAR Param_1, init = duration(2), ev = init

STUB Pck_Stub.Proc_Stubbed 1..1 => ()

﷓declare

﷓ Task2 : T_Prio := new Prioritaire;

609

HCL® OneTest™ Embedded

610

﷓begin

﷓ Task2.Do_Something_Useful(Param_1);

﷓ Task2.Unit_Testing_Exit_Loop;

﷓ Task2.Unit_Testing_Wait_Termination;

﷓end;

END ELEMENT

END TEST -- TEST 2

END SERVICE --S1

In the BEGIN line of the script, it is not necessary to add the name of the separate procedure Attol_Test, as this is the

default name;

The user code within the STUB contains a context clause and some custom native Ada instructions.

In both Test 1 and Test 2 it is necessary not only to stop the main loop of the task before reaching the END ELEMENT

instruction, but also the task itself in order to have the tester return.

Task1 and Task2 could run in parallel, however, the test Report would be unable to distinguish between the STUB

calls coming in from either task, and would show the calls in a cumulative manner.

The entry points Unit_Testing_Exit_Loop and Unit_Testing_Wait_Termination can be considered as implementations

for testing purposes only. They might not be used in the deployment phase.

The second test is False in the Report, the loop runs twice. This allows to check that the dump goes through

smoothly.

Separate Compilation

Component Testing for Ada

You can make internal procedures and variables and the structure of private types visible from the test program, by

including them in the body of the unit under test with a separate Ada instruction.

You must add the following line at the end of the body of the unit tested:

PACKAGE BODY <name>

...

PROCEDURE Test is separate;

END;

Chapter 5. Test Execution Specialist Guide

Defining the procedure Test this way allows you to access every element of the specification and also those defined

in the body.

Generating a Separate Test Harness

Component Testing for Ada

Because of restrictions of the Ada language, Component Testing cannot generate a test harness which is a separate

of more than one package.

You can however generate the main test harness as a separate of one of the packages and declare additional

procedures as separates of other packages. This is done in the header of the .ptu test script, as in the following

example:

Header Code_Under_Test, 1.0, 1.0

﷓separate (Second_Package);

﷓procedure Something is

﷓begin

﷓ -- here internal variables of Second_Package are

﷓ -- visible; private types can be accessed etc.

﷓ null;

﷓end Something;

﷓with Second_Package;

-- this is to gain visibility on the package

-- from within the test harness

Begin First_Package, Test_Entry_Point

-- this causes HCL OneTest™ Embedded to generate a procedure

-- "Test_Entry_Point" as a separate of "First_Package" as

-- "main" procedure of the Test Harness

-- etc.

If the test script requires access to items from Second_Package, it can call the corresponding procedure from within

an ELEMENT block of this .ptu test script.

611

HCL® OneTest™ Embedded

612

Element

-- some VAR instructions here

﷓Second_Package.Something;

﷓-- here is the call to the tested procedure

End Element

Related Topics

Declaring Global Variables for Testing on page 572

Test Script Compiler Macro Definitions

Component Testing for Ada

You can specify a list of conditions to be applied when starting the Test Script Compiler. You can then generate the

test harness conditionally. In the test script, you can include blocks delimited with the keywords IF, ELSE, and END IF.

If one of the conditions specified in the IF instruction is present, the code between the keywords IF and ELSE (if

ELSE is present), and IF and END IF (if ELSE is not present) is analyzed and generated. The ELSE / END IF block is

eliminated.

If none of the conditions specified in the IF instruction is satisfied, the code between the keywords ELSE and END IF is

analyzed and generated.

By default, no generation condition is specified, and the code between the keywords ELSE and END IF is analyzed and

generated.

Unexpected Exceptions

Component Testing for Ada

The generated test driver detects all raised exceptions. If a raised exception is not specified in the test script, it is

displayed in the report.

When the exception is a standard Ada exception (CONSTRAINT_ERROR, NUMERIC_ERROR, PROGRAM_ERROR,

STORAGE_ERROR, TASKING_ERROR), the exception name is displayed in the test report.

Unknown Values

Component Testing for Ada

In some cases, Component Testing for Ada is unable to produce a default value in the .ptu test script. When this

occurs, Component Testing produces an invalid value with the prefix _Unknown.

Chapter 5. Test Execution Specialist Guide

Such cases include:

• Private values: _Unknown_private_value

• Function pointers: _Unknown_access_to_function

• Tagged limited private: _Unknown_access_to_tagged_limited_private

Before compiling you must manually replace these _Unknown values with valid values.

Test Iterations

Component Testing for Ada

You can execute the test case several times by adding the number of iterations at the end of instruction TEST, for

example:

TEST <name> LOOP <number>

You can add other test cases to the current test case by using the instruction NEXT_TEST:

TEST <name>

...

NEXT_TEST

...

END TEST

This instruction allows a new test case to be added that will be linked to the preceding test case. Each loop

introduced by the instruction LOOP relates to the test case to which it is attached.

Test cases introduced by the instruction NEXT_TEST can be dissociated after the tests are run. With the ELEMENT

structure, the different phases of the same test case can be dissociated.

Test phases introduced by the instruction ELEMENT can be included in the loops created by the LOOP instruction.

Requirement

• To link a test or set of tests to a requirement, enter the following command line:

REQUIREMENT <name> { , [<attrName> =|:] <attrValue> }

Where:

613

HCL® OneTest™ Embedded

614

◦ ▪ <name> is the name of the requirement. Optionally, this name could be followed by attributes.

▪ <attrName> is the name of the attribute. This name is optional. It is automatically added if it is

missing.

▪ <attrValue> is the value of the attribute.

Example:

REQUIREMENT REQ_TEST2ELEM_025, type=robustness, level:1, John

The tests linked by a requirement depend on the position of the keyword REQUIREMENT in the script:

HEADER add, 1, 1
<variable declarations for the test script>
BEGIN
 REQUIREMENT… -- Requirement defined for all tests in the script
SERVICE add
 <local variable declarations for the service>
 REQUIREMENT… -- Requirement defined for all tests in the service
 TEST 1
 REQUIREMENT… -- Requirement defined for the test only
 FAMILY nominal
 ELEMENT
 VAR variable1, INIT=0, EV=0
 VAR variable2, INIT=0, EV=0
 #<call to the procedure under test>
 END ELEMENT
 END TEST
END SERVICE

Attribute values can be overloaded by environment variables during pre-processing phase. For example, if

$TARGETNAME is set, the value of the attribute $TARGETNAME in the script will be overloaded by this environment.

This allows you to dynamically configure some attributes in your build chain depending on the execution context.

After the tests execution, a requirement status is computed for each requirement, based on the result of the tests that

are linked to this requirement.

A tool rod2req generates an XML file with all the requirement status and a coverage status.

Viewing Reports

Component Testing for Ada

After test execution, depending on the options selected, a series of Component Testing for Ada test reports are

produced.

To learn about See

Accessing the test reports Opening a Report on page 715

Navigating through test reports Using the Report Viewer on page 737

Chapter 5. Test Execution Specialist Guide

Performing a diff between two test reports Comparing Ada Test Reports on page 616

Interpreting test results Understanding Component Testing Test Re­

ports on page 615

Understanding Component Testing reports

Component Testing for Ada

Test reports for Component Testing are displayed in the Report Viewer.

The test report is a hierarchical summary report of the execution of a test node. Parts of the report that have Passed

are displayed in green. Failed tests are shown in red.

Report Explorer

The Report Explorer on page 1059 displays each element of a test report with a Passed , Failed symbol.

• Elements marked as Failed are either a failed test, or an element that contains at least one failed test.

• Elements marked as Passed are either passed tests or elements that contain only passed tests.

Test results are displayed for each instance, following the structure of the .ptu test script.

Report Header

Each test report contains a report header with:

• The version of HCL OneTest™ Embedded used to generate the test as well as the date of the test report

generation

• The path and name of the project files used to generate the test

• The total number of test cases Passed and Failed. These statistics are calculated on the actual number of test

elements listed in the sections below

Test Results

The graphical symbols in front of the node indicate if the test, item, or variable is Passed or Failed :

• A test is Failed if it contains at least one failed variable. Otherwise, the test is considered Passed.

You can obtain the following data items if you click with the pointer on the Information node:

615

HCL® OneTest™ Embedded

616

• Number of executed tests

• Number of correct tests

• Number of failed tests

A variable is incorrect if the expected value and the value obtained are not identical, or if the value obtained is not

within the expected range.

If a variable belongs to an environment, an environment header is previously edited.

In the report variables are edited according to the value of the Display Variables setting of the Component Testing test

node.

The following table summarizes the editing rules:

Results
Display Variable

All Variables

Display Variable

Incorrect Variables

Display Variable

Failed Tests Only

 Passed test Variable edited automatical­

ly

Variable not edited Variable not edited

 Failed test Variable edited automatical­

ly

Variable edited automatical­

ly

Variable edited if incor­

rect

The Initial and Expected Values on page 563 option changes the way initial and expected values are displayed in the

report.

Tests that contain only a STUB statement and no VAR, ARRAY, or STR statement are reported as empty tests. The

STUB instruction is not considered as part of the the TEST as STUBs are always tested whether there is a STUB

statement present or not.

Related Topics

Opening a report on page 715

Using the Report Viewer on page 737

Initial and expected values on page 563

Exporting reports on page 737

Comparing Ada Test Reports

Component Testing for Ada

Chapter 5. Test Execution Specialist Guide

The Component Testing comparison capability allows you to compare the results of the last two consecutive tests.

To activate the comparison mode, select Compare two test runs in the Component Testing for C and Ada Settings on

page 1034 dialog box.

In comparison mode an additional check is performed to identify possible regressions when compared with the

previous test run.

The Component Testing Report displays an extra column named "Obtained Value Comparison" containing the actual

difference between the current report and the previous report.

Related Topics

Component Testing for Ada Settings on page 1034 | Understanding Component Testing reports on page 615

Array and structure display

Component Testing for Ada

The Array and Structure Display option indicates the way in which Component Testing processes variable array and

structure statements. This option is part of the Component Testing Settings for C on page 1034 dialog box.

Standard array and structure display

This option processes arrays and structures according to the statement with which they are declared. This is the

default operating mode of Component Testing. The default report format is the Standard editing.

Extended array and structure display

Arrays of variables may be processed after the keywords VAR or ARRAY, and structured variables after the keywords

VAR, ARRAY, or STRUCTURE:

• After a VAR statement, each element in the array is initialized and tested one by one. Likewise, each member

of a structure that is an array is initialized and tested element by element.

• After an ARRAY statement, the entire array is initialized and checked. Likewise, each member of a structure is

initialized and checked element by element.

• After a STRUCTURE statement, the whole of the structure is initialized and checked.

When Extended editing is selected, Component Testing interprets ARRAY and STRUCTURE statements as VAR

statements.

The output records in the unit test report are then detailed for each element in the array or structure.

Note This setting slightly slows down the test execution because checks are performed on each element in the array.

617

HCL® OneTest™ Embedded

618

Packed array and structure display

This command has the opposite effect of the Extended editing option. When Packed editing is selected, Component

Testing interprets VAR statements as ARRAY or STRUCTURE statements.

Array and structure contents are fully tested, only the output records are more concise.

Note This setting slightly improves the speed of execution because checks are performed on each array as a whole.

Related Topics

Component Testing for C and Ada Settings on page 1034

System Testing for C

About System Testing for C

System Testing for C is the first commercial automated feature dedicated to testing message-based applications.

Until now most of the projects developing real-time, embedded or distributed systems spent a fair amount of

resources building dedicated test beds. Project managers can now save time and money by avoiding this costly, non-

core-business activity.

System Testing for C helps you solve complex testing issues related to system interaction, concurrency, and time and

fault tolerance by addressing the functional, robustness, load, performance and regression testing phases from small,

single threads or tasks up to very large, distributed systems.

With the System Testing tool, test engineers can easily design, code and execute virtual testers that represent

unavailable portions of the system under test - SUT - and its environment.

System Testing for C is recommended for testing:

• Telecommunication and networking equipment using standard protocols

• Aerospace equipment using standard or proprietary operating systems and a communication bus

• Automotive Electronic Control Units (ECUs) or appliance systems

• Distributed applications based on message-oriented middleware

System Testing for C supports C89 and C99.

Related Topics

Using Test Features on page 477 | About Component Testing for C and Ada on page 478 | About Component

Testing for C++ on page 543

Chapter 5. Test Execution Specialist Guide

Agents and Virtual Testers

About Virtual Testers

System Testing for C

Virtual Testers are multiple contextual incarnations of a single .pts System Testing test script.

One Virtual Tester can be deployed simultaneously on one or several targets, with different test configurations. A

same virtual tester can also have multiple clones on the same target host machine.

System Testing generates Virtual Testers from a test script according to the declared instances on page 654. The

System Testing Supervisor, which runs on the HCL OneTest™ Embedded host computer, is in charge of deploying and

controlling remote Virtual Testers.

Note A System Testing Agent must be installed and running on each target host before deploying Virtual Testers to

those targets.

Following the execution architecture and constraints needed to comply, the Test Script Compiler provides several

ways to generate the Virtual Testers.

Related Topics

Configuring Virtual Testers on page 623 | Deploying Virtual Testers on page 625 | Debugging Virtual Testers on

page 624 | System Testing Supervisor on page 687 | System Testing in a Multi-Threaded or RTOS Environment on

page 628

System Testing Agents

Installing System Testing Agents

System Testing for C

When using Virtual Testers on remote target hosts, a daemon must be running on the target to act as an interface

between the virtual tester and the System Testing Supervisor. This daemon is known as the System Testing Agent.

Note Always make sure that the version of the System Testing Agent matches the version of HCL OneTest™

Embedded. If you have upgraded from a previous version of HCL OneTest™ Embedded, you must also update all

System Testing Agents on remote machines.

The installation directory of System Testing includes the following necessary agent files:

• atsagtd.bin: the agent executable binary for UNIX

• atsagtd.exe: the agent executable binary for Windows

619

HCL® OneTest™ Embedded

620

• atsagtd: the agent launcher for UNIX when using inetd

• atsagtd.sh: a UNIX shell script that starts atsagtd.bin

On Windows platforms, the ATS_DIR environment variable must be set to indicate the directory where the atsagtd.exe

and atsagtd.ini files are located. If the file cannot be found, only the current user on the current computer will be

authorized.

Installing the Agent

There are two methods for installing the System Testing Agent:

• Manual launch

• Inetd daemon installation

To install a System Testing Agent for manual execution:

This procedure does not require system administrator access, but launching of the agent is not fully automated.

1. Copy atsagtd.bin or atsagtd.exe to a directory on the target machine.

2. On the target machine, set the ATS_DIR environment variable to the directory containing the agent binaries.

3. Add that same agent directory to your PATH environment variable.

Note You can add these commands to the user configuration file: login, .cshrc or .profile.

1. On UNIX systems, create an agent access file .atsagtd file in your home directory. On Windows create an

atsagtd.ini file in the agent installation directory. See System Testing Agent Access Files on page 622.

2. Move the agent access file to your chosen base directory, such as the directory where the Virtual Testers will

be launched.

3. Launch the agent as a background task, with the port number as a parameter. By default, this number is

10000.

atsagtd.bin <port number>&
atsagtd <port number>

To install a System Testing Agent with inetd:

This procedure is for UNIX only. Launching agents on target machines is automatic with inetd.

With this method, the inetd daemon runs the atsagtd.sh shell script that initializes environment variables on the target

machine and launches the System Testing Agent.

1. Copy atsagtd.sh and atsagtd.bin to a directory on the target machine.

2. On the target machine, set the ATS_DIR environment variable to the directory containing the agent binaries.

3. Add that same agent directory to your PATH environment variable.

Chapter 5. Test Execution Specialist Guide

Note You can add these commands to the user configuration file: login, .cshrc or .profile.

1. Log on as root on the target machine.

2. Add the following line to the /etc/services file:

atsagtd <port number>/tcp

The agent waits for a connection to <port number>. By default, System Testing uses port 10000.

Note If NIS is installed on the target machine, you may have to update the NIS server. You can check this by typing

ypcat services on the target host.

1. Add the following line to the /etc/inetd.conf file:

atsagtd stream tcp nowait <username> <atsagtd path> <atsagtd path>

where <username> is the name of the user that will run the agent on the target machine and <atsagtd path> is the full

path name of the System Testing Agent executable file atsagtd.

To reconfigure the inetd daemon, use one of the following methods:

• Type the command /etc/inetd -c on the target host.

• Send the SIGHUP signal to the running inetd process.

• Reboot the target machine.

In some cases, you might need to update the file atsagtd.sh shell script to add some environment variables to the

target machine.

Return to your user account and create an agent access file .atsagtd file in your home directory. See System Testing

Agent Access Files on page 622.

Forcing IPv4 only

You can force the agent to bind a socket listener using only IPv4 (excluding IPv6) by using the -IPv4 option:

atsagtd <port number> -IPv4

Troubleshooting the agent

To check the installation, type the following command on the host running HCL OneTest™ Embedded:

telnet <target machine> <port number>

where <port number> is the port number you specified during the installation procedure. By default, System Testing

uses port 10000. The System Testing Agent should answer with the following message:

210 hello, please to meet you.

621

HCL® OneTest™ Embedded

622

After the connection succeeds, press Enter to close the connection or type the following command to check that

<username> is set up as a user:

Jef <username>

If the connection fails, try the following steps to troubleshoot the problem:

• Check the target hostname and port.

• Check the Agent Access File.

• Check the target hostname and port in the atsagtd.sh shell script.

• Check the /etc/services and /etc/inetd.conf files on the target machine.

• If you are using NIS services on your network, check the NIS configuration.

To see the current working directory, type the following command:

PWD

To close the connection, type:

QUIT

Related Topics

System Testing Agent Access Files on page 622 | About Virtual Testers on page 619

System Testing Agent Access Files

System Testing for C

The .atsagtd (UNIX) or atsagtd.ini (Windows) agent access file is an editable configuration file that secures access to

System Testing Agents and contains a list of machines and users authorized to execute agents on that machine, with

the following syntax:

<computer name> <username> [﷓<comment>]

On Windows platforms, the System Testing Agent uses the ATS_DIR environment variable to locate the atsagt.ini file.

A plus sign + can be used as a wildcard to provide access to all users or all workstations.

The minus sign - suppresses access to a particular user.

You can add comments to the agent access file by starting a line with the ﷓ character. Blank lines are not allowed.

Example

﷓ This is a sample .atsagtd or atsagtd.ini file.

Chapter 5. Test Execution Specialist Guide

﷓ The following line allows access from user jdoe on a machine named workstation

workstation jdoe

﷓ The following line allows access from all users of workstation

workstation +

﷓ The following allows access from jdoe on any host

+ jdoe

﷓ The following allows access to all users except anonymous from the machine workstation

workstation +

workstation -anonymous

Related Topics

Installing System Testing Agents on page 619 | System Testing Supervisor - atsspv on page 1142

Configuring Virtual Testers

System Testing for C

The Virtual Tester Configuration dialog box allows you to create and configure a set of Virtual Testers that can be

deployed for System Testing.

To open the Virtual Test Configuration dialog box:

1. In the Project Explorer, right-click a .pts test script.

2. From the pop-up menu, select Virtual Tester Configuration.

Note The Virtual Tester Configuration box is also included as part of the System Testing Wizard on page 701 when

you are setting up a new activity.

Virtual Tester List

Use the Virtual Tester List to create a New Virtual Tester, Remove or Copy an existing one.

Select a Virtual Tester in the Virtual Tester List to apply any changes in the property tabs on the right.

General Tab

This tab specifies an instance and target deployment to be assigned to the selected Virtual Tester.

623

HCL® OneTest™ Embedded

624

• VT Name: This is the name of the Virtual Tester currently selected in the Virtual Tester List. The name of the

virtual tester must be a standard C identifier.

• Implemented INSTANCE: Use this box to assign an instance, defined in the .pts test script, to the selected

virtual tester. This information is used for Virtual Tester deployment. Select Default to specify the instance

during deployment.

• Target: This specifies the Target Deployment Port compilation parameters for the selected Virtual Tester.

• Configure Settings: This button opens the Configuration Settings on page 690 dialog for the selected Virtual

Tester node.

Scenario Tab

Use this tab to select one or several scenarios as defined in the .pts test script. During execution, the Virtual Tester

plays the selected scenarios.

Family Tab

Use this tab to select one or several families as defined in the .pts test script. During execution, the Virtual Tester

plays the selected families.

Related Topics

About Virtual Testers on page 619 | About Configuration Settings on page 690 | Deploying Virtual Testers on

page 625

Debugging Virtual Testers

System Testing for C

In some cases, you may want to observe how your system under test reacts when an error occurs and the

consequences of this error on the whole process, without stopping the Virtual Tester.

By default, when an error occurs in a block, the execution of the block is interrupted. To prevent interruption, use the

virtual tester debug mode.

You can statically activate the debug mode by compiling the generated Virtual Tester with the

ATL_SYSTEMTEST_DEBUG variable, as in the following example:

cc -c -I$ATLTGT/lib/ -DATL_SYSTEMTEST_DEBUG <source.c>

where $ATLTGT is the current TDP directory.

Related Topics

About Virtual Testers on page 619 | On-the-Fly Tracing on page 688

Chapter 5. Test Execution Specialist Guide

Deploying Virtual Testers

System Testing for C

The Virtual Tester Deployment Table allows to deploy previously created Virtual Testers.

To open the Virtual Tester Deployment Table

1. Make sure that Execution is selected in your Build options.

2. In the Project Explorer, right-click a System Testing node.

3. From the pop-up menu, select Deployment Configuration.

4. Select Advanced Options and click Rendezvous.

Note The Virtual Tester Deployment Table is also included in the System Testing Wizard on page 701 when you are

setting up a new activity.

Virtual Tester Deployment Table

Use the Add, Remove or Copy buttons to modify the list. Each line represents one or several executions of a Virtual

Tester assigned to an instance, target host, and other parameters.

• Number of Occurrences: Specifies the number of simultaneous executions of the current line.

• Virtual Tester Name: Specifies one of the previously created Virtual Testers.

• Instance: Specifies the instances assigned to this Virtual Tester. If an instance was specifically assigned in

the Virtual Tester Configuration on page 623 box, this cannot be changed. Select <all> only if no INSTANCE

is defined in the test script.

• Network Node: This defines the target host on which the current line is to be deployed. You can enter a

machine name or an IP address. Leave this field blank if you want to use the IP address specified in the Host

Configuration section of the General Settings on page 1022.

Note If the IP address line in the Host Configuration settings is blank, then the Virtual Tester Deployment Table

retrieves the IP address of the local machine when generating the deployment script.

Advanced Options

Click the Advanced Options button to add the following columns to the Virtual Tester Deployment Table, and to add

the Rendezvous... button.

• Agent TCP/IP Port: This specifies the port used by the System Testing Agents on page 619 to communicate

with HCL OneTest™ Embedded. By default, System Testing uses port 10000.

• Delay: This allows you to set a delay between the execution of each line of the table.

625

HCL® OneTest™ Embedded

626

• First Occurrence ID: This specifies the unique occurrence ID identifier for the first Virtual Tester executed on

this line. The occurrence ID is automatically incremented for each number of instances of the current line. See

Communication Between Virtual Testers on page 653 for more information.

• RIO filename: This specifies the name of the .rio file containing the Virtual Tester output, for use in multi-

threaded or RTOS environments on page 628.

Click the Rendezvous Configuration button to set up any rendezvous members on page 627.

File System Limitations

Deployment of the Virtual Testers results in the creation of an .spv deployment script. This script contains file system

commands, such as CHDIR. If you are deploying the test to a target platform that does not support a file system, you

must edit the .spv script manually.

For the .spv supervisor script to be generated, the Execution option must be selected in the Build options.

Related Topics

About Virtual Testers on page 619 | Configuring Virtual Testers on page 623 | Setting Up Rendezvous Members

on page 627 | Editing the Deployment Script on page 626 | System Testing supervisor script (.spv) on page 926

| System Testing Supervisor - atsspv on page 1142

Editing the Deployment Script

System Testing for C

The System Testing Supervisor actually runs a script, which is automatically generated by configuring Virtual Testers

on page 623 and deploying Virtual Testers on page 625.

In some cases, you will need to manually edit the script. To do this, you first have to generate an .spv deployment

script in your workspace.

To generate a deployment script

1. Make sure that Execution is selected in your Build options.

2. In the Project Explorer, right-click a System Testing node.

3. From the pop-up menu, select Generate Deployment Script.

4. Enter a name for the generated script.

If you decide to manually maintain a deployment script, you must ensure that any pathnames and other parameters

remain up to date with the rest of the System Testing node.

For information on the .spv script command language, please refer to the Reference section.

Chapter 5. Test Execution Specialist Guide

Related Topics

About Virtual Testers on page 619 | System Testing Supervisor on page 687 | Installing System Testing Agents on

page 619

Optimizing Execution Traces

System Testing for C

Each Virtual Tester generates a trace file during its execution. This trace file is used to generate the System Testing

Report on page 672.

You may want to adapt the volume of traces generated at execution time. For example, each Virtual Tester saves its

execution traces in an internal buffer that you can configure.

To optimize execution trace output, use the Execution Traces area in the Test Script Compiler Settings on page 1038

dialog box.

• By default, System Testing generates a normal trace file.

• Select Time stamp only to generate traces for each scenario begin and end, all events, and for error cases.

This option also generates traces for each WAITTIL and PRINT instruction. Use this option for load and

performance testing, if you expect a large quantity of execution traces and you want to store all timing data.

• Select Block start/end only to generate traces for each scenario beginning and end, all events, and for all error

cases.

• Select Error only to generate traces only if an error is detected during execution of the application. This

report will be incomplete, but the report will show failed instructions as well as a number of instructions that

preceded the error. This number depends on the virtual tester trace buffer size. Use this option for endurance

testing, if you expect a large quantity execution traces.

In addition to the above, you can select the Circular trace option for strong real-time constraints when you need full

control over the flush of traces to disk. If you want to still store a large amount of trace data, specify a large buffer.

Related Topics

Test Script Compiler Settings on page 1038 | Circular Trace Buffer on page 687

Setting Up Rendezvous Members

System Testing for C

When you have used Rendezvous points in your .pts test script, it is necessary to indicate the number of members

that the supervisor must expect at each rendezvous.

The Rendezvous Members dialog box is an advanced option of the Virtual Tester Configuration on page 623.

627

HCL® OneTest™ Embedded

628

To specify the number of members for each rendezvous:

1. In the Project Explorer, right-click a System Testing node.

2. From the pop-up menu, select Deployment Configuration.

3. Select Advanced Options and click Rendezvous.

4. For each rendezvous encountered in the .pts test script, select a number of rendezvous members.

5. Select AutoGenerate to automatically compute the number of members in each Rendezvous. In some cases,

such as when rendezvous are placed in an exception, this option cannot provide correct information to the

supervisor.

6. Click OK.

Related Topics

Deploying Virtual Testers on page 625 | System Testing Supervisor on page 687

System Testing in a Multi-Threaded or RTOS Environment

System Testing for C

When Virtual Testers must be executed as a threaded part of a UNIX or Windows process, or on RealTime Operating

Systems (RTOS) you must take several constraints into account:

• The Virtual Tester should be generated as a function and not a main program.

• You must consider the configuration of the Virtual Testers' execution.

There are memory management constraints:

• There is no dynamic memory allocation.

• Stacks are small.

• Virtual Testers share global data.

• Configuration of Virtual Tester execution.

Virtual Tester as a Thread or Task

When using a flat-memory RTOS model, the Virtual Testers can run as a process thread or as a task in order to avoid

conflicts with the application under test's global variables.

Moreover, the Target Deployment Port is fully reentrant. Therefore, you can run multiple instances of a Virtual Tester

in the same process. The system runs each process as a different process thread.

Chapter 5. Test Execution Specialist Guide

In this case, the Test Script Compiler generates the virtual tester source code without a main() function, but with a

user function.

To configure System Testing to run in multi-threaded mode, select the Not shared option in Test Script Compiler

Settings on page 1038.

Multiple Instances of a Same Virtual Tester

Multiple instances of a same Virtual Tester can run simultaneously on a same target. In this case, you need to protect

the Virtual Tester threads in the same process against access to global variables.

The Not Shared setting in Test Script Compiler Settings on page 1038 allows you to specify global variables in the

test script that should remain unshared by separate Virtual Tester threads. When selected, multiple instances of a

Virtual Tester can all run in the same process.

You can share some global static variables in order to reuse data among different Virtual Testers by using the SHARE

command in the .pts test script. See the Reference section for information about the System Testing Language.

Related Topics

About Virtual Testers on page 619 | System Testing in a Multi-Threaded or RTOS Environment on page 628 | Test

Script Compiler Settings on page 1038

Launching virtual tester threads

System Testing for C

In a multi-threaded environment, there are two methods of starting the virtual tester threads:

• From a specially designed thread launcher program that you must write to include in your project.

• From a TDP thread launcher if available.

TDP thread launcher from TDP

Some TDPs can launch the virtual tester threads without needing a special program. If your TDP supports this

method, the only requirement is to specify this in the Configuration settings of the System Testing test node.

To use the TDP thread launcher:

1. In the Project Explorer, click the Settings button.

2. Select a System Testing test node in the Project Explorer pane.

3. In the Configuration Settings list, expand System Testing and select Test Script Compiler.

4. Set the Use thread launcher from TDP setting to Yes.

5. When you have finished, click OK to validate the changes.

629

HCL® OneTest™ Embedded

630

TDP thread launcher program

If the TDP does not contain a TDP thread launcher, the only way to start Virtual Tester threads is to write a program,

specifying:

• The name of the execution trace file

• The name of the instance to be started

To do this, use the ATL_T_ARG structure, defined in the ats.h header file of the Target Deployment Port.

Example

The following example is a sample program for launching virtual tester threads.

﷓include <stdio.h>

﷓include <sched.h>

﷓include <pthread.h>

﷓include <errno.h>

﷓include "TP.h"

extern ATL_T_THREAD_RETURN *start(ATL_PT_ARG);

int main(int argc, char *argv[])

{

pthread_t thrTester_1,thr_Tester_2;

pthread_attr_t pthread_attr_default;

ATL_T_ARG arg_Tester_1, arg_Tester_2;

int status;

arg_Tester_1.atl_riofilename = "Tester_1.rio";

arg_Tester_1.atl_filters = "";

arg_Tester_1.atl_instance = "Tester_1";

arg_Tester_1.atl_occid = 0;

arg_Tester_2.atl_riofilename = "Tester_2.rio";

arg_Tester_2.atl_filters = "";

Chapter 5. Test Execution Specialist Guide

arg_Tester_2.atl_instance = "Tester_2";

arg_Tester_2.atl_occid = 0;

pthread_attr_init(&pthread_attr_default);

/* Start Thread Tester 1 */

pthread_create(&thrTester_1,&pthread_attr_default,start,&arg_Tester_1);

/* Start Thread Tester 2 */

pthread_create(&thrTester_2,&pthread_attr_default,start,&arg_Tester_2);

/* Both Testers are running */

/* Wait for the end of Thread Tester 1 */

pthread_join(thrTester_1, (void *)&status);

/* Wait for the end of Thread Tester 2 */

pthread_join(thrTester_2, (void *)&status);

return(0);

}

An example demonstrating how to use System Testing for C on multi-threaded applications is provided in the

Broadcast Server example project. See Example projects on page 709 for more information.

Related Topics

About Virtual Testers on page 619 | System Testing in a Multi-Threaded or RTOS Environment on page 628

System Testing for C Test Scripts

Flow control

Flow Control Instructions

System Testing for C

Several execution flow instructions let you develop algorithms with multiple branches.

System Testing .pts test script flow control instructions include:

• Function calls on page 632

• Conditions on page 633

631

HCL® OneTest™ Embedded

632

• Iterations on page 634

• Multiple Conditions on page 635

Related Topics

Instances on page 654 | Event Management on page 638 | Time Management on page 666 | Using Native

Language on page 671

Function calls

System Testing for C

The CALL instruction lets you call functions or methods in a test script and to check return values of functions or

methods.

For the following example, you must pre-declare the param1, param2, param4, and return_param variables in the test

script, using native language.

CALL function ()

-- indicates that the return parameter is neither checked nor stored in a variable.

CALL function () @ "abc"

-- indicates that the return parameter to the function must be compared with the string "abc", but its value is not

stored in a variable.

CALL function () @@return_param

-- indicates that the return parameter is not checked, but is stored in the variable return_param.

CALL function () @ 25 @return_param

-- indicates that the return parameter is checked against 25 and is stored in the variable return_param.

Related Topics

Using Native Language on page 671 | CALL on page 871

Include Statements

System Testing for C

To avoid writing large test scripts, you can split test scripts into several files and link them using the INCLUDE

statement.

This instruction consists of the keyword INCLUDE followed by the name of the file to include, in quotation marks (" ").

Chapter 5. Test Execution Specialist Guide

INCLUDE instructions can appear in high- and intermediate-level scenarios, but not in the lowest-level scenarios.

You can specify both absolute or relative filenames. There are no default filename extensions for included files. You

must specify them explicitly.

Example

HEADER "Socket validation", "1.0", "beta"

INCLUDE "../initialization"

SCENARIO first

END SCENARIO

SCENARIO second

INCLUDE "scenario_3.pts"

SCENARIO level2

FAMILY nominal, structural

...

END SCENARIO

END SCENARIO

Conditions

System Testing for C

The IF statement comprises the keywords IF, THEN, ELSE, and END. It lets you define branches and follows these

rules:

• The test following the keyword IF must be a Boolean expression in C or C++.

• IF instructions can be located in scenarios, procedures, or environment blocks.

• The ELSE branch is optional.

The sequence IF (test) THEN must appear on a single line. The keywords ELSE and END IF must each appear

separately on their own lines.

Example

HEADER "Instruction IF", "1.0", "1.0"

633

HCL® OneTest™ Embedded

634

﷓int IdConnection;

SCENARIO Main

COMMENT connection

CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection

IF (IdConnection == -1) THEN

EXIT

END IF

END SCENARIO

Related Topics

Iterations on page 634 | Multiple Conditions on page 635 | IF on page 888

Iterations

System Testing for C

The WHILE instruction comprises the keywords WHILE and END. It lets you define loops and follows these rules:

• The test following the keyword WHILE must be a C Boolean expression.

• The WHILE instructions can be located in scenarios, procedures, or environment blocks.

The sequence WHILE (test) and the keyword END WHILE must each appear separately on their own lines.

Example

HEADER "Instruction WHILE", "", ""

﷓int count = 0;

﷓appl_id_t id;

﷓message_t message;

SCENARIO One

FAMILY nominal

CALL mbx_init(&id) @ err_ok

VAR id.applname, INIT="JUPITER"

CALL mbx_register(&id) @ err_ok

Chapter 5. Test Execution Specialist Guide

VAR message, INIT={

& type=>DATA,

& applname=>"SATURN",

& userdata=>"hello world!"}

WHILE (count<10)

CALL mbx_send_message(&id,&message) @ err_ok

VAR count, INIT=count+1

END WHILE

CALL mbx_unregister(&id) @ err_ok

CALL mbx_end(&id) @ err_ok

END SCENARIO

Related Topics

Conditions on page 633 | Multiple Conditions on page 635 | WHILE on page 923

Multiple Conditions

System Testing for C

The multiple-condition statement CASE comprises the keywords CASE, WHEN, END, OTHERS and the arrow symbol

=>.

CASE instructions follow these rules:

• The test following the keyword CASE must be a C or C++ Boolean expression. The keyword WHEN must be

followed by an integer constant.

• The keyword OTHERS indicates the default branch for the CASE instruction. This branch is optional.

• CASE instructions can be located in scenarios, procedures, or environment blocks.

Example

HEADER "Instruction CASE", "", ""

...

MESSAGE message_t: response

635

HCL® OneTest™ Embedded

636

SCENARIO One

...

CALL mbx_send_message(&id,&message) @ err_ok

DEF_MESSAGE response, EV={}

WAITTIL(MATCHING(response),WTIME == 10)

-- Checking the just received event type

CASE (response.type)

WHEN ACK =>

CALL mbx_send_message(&id,&message) @ err_ok

WHEN DATA =>

CALL mbx_send_message(&id,&ack) @ err_ok

WHEN NEG_ACK =>

CALL mbx_send_message(&id,&error) @ err_ok

WHEN OTHERS => ERROR

END CASE

END SCENARIO

Related Topics

Conditions on page 633 | Iterations on page 634 | System Testing language reference on page 926 | CASE on

page 874

Procedures

System Testing for C

You can also use procedures to build more compact test scripts. The following are characteristics of procedures:

• They must be defined before they are used in scenarios.

• They do not return any parameters.

A procedure begins with the keyword PROC and ends in the sequence END PROC. For example:

HEADER "Socket Validation", "1.0", "beta"

Chapter 5. Test Execution Specialist Guide

PROC function ()

...

END PROC

SCENARIO first

...

CALL function ()

...

END SCENARIO

SCENARIO second

SCENARIO level2

FAMILY nominal, structural

...

END SCENARIO

END SCENARIO

A procedure can call sub-procedures as long as these sub-procedures are located above the current procedure.

Procedure blocks can take parameters. When defining a procedure, you must also specify the input/output

parameters.

Each parameter is described as a type followed by the name of the variable.

The declaration syntax requires, for each argument, a type identifier and a variable identifier. If you want to use

complex data types, you must use either a macro or a C or C++ type declaration.

Example

In the following example, the argument to procedure function1 is a character string of 35 bytes. The arguments to

procedure function2 are an integer and a pointer to a character.

HEADER "Socket Validation", "1.0", "beta"

﷓typedef char string[35];

﷓﷓define ptr_car char *

PROC function1 (string a)

637

HCL® OneTest™ Embedded

638

...

END PROC

PROC function2 (int a, ptr_car b)

...

END PROC

SCENARIO first

...

CALL function1 ("foo")

...

END SCENARIO

Adaptation layer

Adaptation Layer

System Testing for C

The adaptation Layer helps you describe communication between the Virtual Tester and the system under test.

Many different means of communication allow your systems to talk with each other. At the software application level,

a communication type is identified by a set of services provided by specific functions.

For example, a UNIX system provides several means of communication between processes, such as named pipes,

message queues, BSD sockets, or streams. You address each communication type with a specific function.

Furthermore, each communication type has its own data type to identify the application you are sending messages

to. This type is often an integer (message queues, BSD sockets, ...), but sometimes a structure type.

Data exchanged this way must be interpreted by all communicating applications. For this reason, each type of

exchanged data must be well identified and well known. By providing the type of exchanged data to the Virtual Tester,

it will be able to automatically print and check the incoming messages.

• Basic Declarations on page 639

• Sending Messages on page 640

• Receiving Messages on page 643

Chapter 5. Test Execution Specialist Guide

• Messages and Data Management on page 647

• Communication Between Virtual Testers on page 653

Basic Declarations

System Testing for C

COMMTYPE Instruction

For each communication type, there is a specific data type that identifies the application you are sending messages

to. In a test script, the COMMTYPE instruction is used to identify clearly this data type, and then, the communication

type.

The COMMTYPE instruction cannot handle basic types. Therefore, you must previously define the type with a typedef

statement.

For example, on UNIX systems, the data type for the BSD sockets is an integer. The COMMTYPE instruction is

therefore used as follows:

﷓typedef int bsd_socket_id_t;

COMMTYPE ux_bsd_socket IS bsd_socket_id_t

In the stack example provided with the product, the following line defines a new communication type called

appl_comm:

COMMTYPE appl_comm IS appl_id_t

MESSAGE Instruction

The MESSAGE instruction identifies the type of the data exchanged between applications. It also defines a set of

reference messages.

The type of the messages exchanged between applications using our stack example is message_t.

The following instruction also declares three reference messages:

MESSAGE message_t: ack, neg_ack, data

CHANNEL Instruction

The CHANNEL instruction is used to declare a communication channel on a specific communication type. Thanks to

channels of communication, the user can easily manage a large number of opened connections.

CHANNEL appl_comm: appl_channel_1, appl_channel_2

639

HCL® OneTest™ Embedded

640

ADD_ID Instruction

A communication channel is a logical medium of communication that multiplexes several opened connections of the

same type between the Virtual Tester and applications under test. When opening a new connection, it has to be linked

to a communication channel, so that the Virtual Tester knows about this new connection.

CALL mbx_init(&id) @ err_ok @ errcode

ADD_ID (appl_channel, id)

In this example, the function call to mbx_init opens a connection between the Virtual Tester and the system under

test. This connection is identified by the value of id after the call. The ADD_ID instruction add this new connection to

the channel appl_channel.

Related Topics

COMMTYPE on page 878 | MESSAGE on page 896 | CHANNEL on page 876 | ADD_ID on page 870 |

Adaptation layer on page 638

Sending Messages

System Testing for C

PROCSEND Instruction

Event management provides a mechanism to send messages. This mechanism needs the definition of a message

sending procedure or PROCSEND for each couple communication type, message type.

The PROCSEND instruction is then called automatically by the SEND instruction to sends a message to the system

under test (SUT).

In the following example, msg is a message_t typed input formal parameter specifying the message to send. The

input formal parameter id is used to know where to send the message on the communication type appl_comm.

PROCSEND message_t: msg ON appl_comm: id

CALL mbx_send_message (&id, &msg) @ err_ok

END PROCSEND

The sending is done by the API function call to mbx_send_message. The return code is treated to decide whether the

message was correctly sent. Another value than err_ok means that an error occurred during the sending.

The script must have one PROCSEND for each message type and channel type pair used by any of the SEND

instructions.

Chapter 5. Test Execution Specialist Guide

The name of each PROCSEND in the generated C code is made up with the signature of the message type and

channel type for each PROCSEND found in the test script, as follows.

VAR Instruction

The instruction VAR allows you to initialize messages declared using MESSAGE instructions. This message may also

be initialized by any other C or C++ function or method:

VAR ack, INIT= { type => ACK }

VAR data, INIT= {

& type => DATA,

& applname => "SATURN",

& userdata => "hello world !" }

To learn all the nuts and bolts of the DEF_MESSAGE Instruction, see the Messages and Data Management chapter.

SEND Instruction

This instruction allows you to invoke a message sending on one communication channel .

It has two arguments:

• the message to send,

• the communication channel where the message should be sent.

The send instruction is as follows:

SEND (message , appl_ch)

In the previous figure, the SEND instruction allows the test program to send a message on a known connection (see

the ADD_ID instruction). If an error occurs during the sending of the message, the SEND exits with an error. The

scenario execution is then interrupted.

To send the message on the appropriate channel, the generated code calls the PROCSEND named with the signature

of the message type to be sent (first parameter) and the channel type to be used (second parameter).

The message type is provided by the MESSAGE instruction. The channel type is provided by the CHANNEL

instruction.

Therefore, in the generated code, the SEND instruction calls the following function:

PROCSEND_message_t_appl_comm(message, appl_ch)

641

HCL® OneTest™ Embedded

642

which corresponds to the following line in the test script:

PROCSEND message_t ... ON appl_comm

Example

The following test script describes a simple use of our stack. First of all, some resources are allocated and a

connection is established with the communication stack (mbx_init). This connection is made known by the Virtual

Tester with the ADD_ID instruction. Then, the Virtual Tester registers (mbx_register) onto the stack by giving its

application name (JUPITER). The Virtual Tester sends a message to an application under test (SATURN). Finally, the

Virtual Testers unregisters itself (mbx_unregister) and frees the allocated resources (mbx_end).

HEADER "SystemTest 1st example: sending a message","1.0",""

COMMTYPE appl_comm IS appl_id_t

MESSAGE message_t: message, ack, data, neg_ack

CHANNEL appl_comm: appl_ch

﷓appl_id_t id;

﷓int errcode;

PROCSEND message_t: msg ON appl_comm: id

CALL mbx_send_message (&id, &msg) @ err_ok

END PROCSEND

SCENARIO first_scenario

FAMILY nominal

COMMENT Initialize, register, send data

COMMENT wait acknowledgement, unregister and release

CALL mbx_init(&id) @ err_ok @ errcode

ADD_ID(appl_ch,id)

VAR id.applname, INIT="JUPITER"

CALL mbx_register(&id) @ err_ok @ errcode

VAR message, INIT={

& type=>DATA,

Chapter 5. Test Execution Specialist Guide

& applname=>"SATURN",

& userdata=>"hello Saturn!"}

SEND (message, appl_ch)

CALL mbx_unregister(&id) @ err_ok @ errcode

CLEAR_ID(appl_ch)

CALL mbx_end(&id) @ err_ok @ errcode

END SCENARIO

Receiving Messages

System Testing for C

CALLBACK Instruction

The event management provides an asynchronous mechanism to receive messages. This mechanism needs the

definition of a callback for each couple communication type, message type.

A procedre should do a non-blocking read for a specific message type on a specific communication type.

The MESSAGE_DATE instruction lets you mark the right moment of the reception of messages. The NO_MESSAGE

instruction exits from the callback and indicates that no message has been read.

The callback to receive messages from our system under test could be:

CALLBACK message_t: msg ON appl_comm: id

CALL mbx_get_message (&id, &msg, 0) @@ errcode

MESSAGE_DATE

IF (errcode == err_empty) THEN

NO_MESSAGE

END IF

IF (errcode != err_ok) THEN

ERROR

END IF

END CALLBACK

643

HCL® OneTest™ Embedded

644

In this example, msg is an output formal parameter of the callback. Its type is message_t.

When multiple connections are used, the input formal parameter id is used to know where to read a message on the

communication type appl_comm.

The reading is done by the function call to mbx_get_message. The return code is stored into the variable errcode. The

value err_empty for the return code means that no message has been read. Another value than err_ok or err_empty

means that an error occurred during the reading. The NO_MESSAGE and ERROR instructions make the callback to

return.

The script must have one CALLBACK for each message type - channel type pair used by any WAITTIL instructions.

The name of each CALLBACK in the generated C code is made up with the signature of the message type and channel

type for each CALLBACK found in the test script.

DEF_MESSAGE Instruction

The DEF_MESSAGE instruction defines the values of a reference message declared with the MESSAGE instruction. A

reference message is a set of field values as expected by the virtual tester from the system under test. Any undefined

fields are not compared to the receive message.

DEF_MESSAGE ack, EV= { type => ACK }

DEF_MESSAGE data, EV= {

& type => DATA,

& applname => "SATURN",

& userdata => "hello world !" }

To learn more about the DEF_MESSAGE Instruction, see the Messages and Data Management chapter.

WAITTIL Instruction

The WAITTIL instruction allows the test script to wait for events or conditions. WAITTIL is made of two Boolean

expressions: an expected condition, and a failure condition. The script execution pauses until one of the two

expressions becomes true.

In the following example, the WAITTIL instruction receives all the messages sent to the Virtual Tester on a known

connection. As soon as a received message matches the reference message ack, the WAITTIL exits normally.

Otherwise, if any message matching the reference message ack is received during 3000ms (300 x 10ms, the default

time unit), the WAITTIL exits with an error. The scenario execution is interrupted.

WAITTIL (MATCHING(ack, appl_ch), WTIME == 300)

The time unit is configurable in the Target Deployment Port depending on the target platform.

Chapter 5. Test Execution Specialist Guide

To receive a message on the appropriate channel, the generated code calls a CALLBACK named with the signature of

the expected message type (first parameter) and the channel type (second parameter).

The message type is provided by the MESSAGE instruction. The channel type is provided by the CHANNEL instruction.

Therefore, in the generated code, the SEND instruction calls the following function:

CALLBACK_message_t_appl_comm(message, appl_ch)

which corresponds to the following line in the test script:

CALLBACK message_t ... ON appl_comm

If the channel parameter is omitted in the WAITTIL instruction, the generated code calls all CALLBACK instructions

that read the corresponding message type on all known channel types.

In the example given above, the status of the reference event variable ack is tested using the function MATCHING()

which identifies if the last incoming event corresponds to the content of the variable ack. WTIME is a reserved

keyword valuated with the time expired since the beginning of the WAITTIL instruction.

The WAITTIL Boolean conditions are described using C or C++ conditions including operators to manipulate events:

• MATCHING: does the last event match the specified reference event?

• MATCHED: did the Virtual Tester receive an event matching the specified event?

• NOMATCHING: is the last event different from the specified reference event?

• NOMATCHED: did the Virtual Tester receive an event different from the specified event?

The different combinations of these operators allow an easy an extensive definition of event sequences:

-- I expect evt1 on channel1 before my_timeout is reached

WAITTIL (MATCHING(evt1, channel1), WTIME>my_timeout)

-- I expect evt1 then evt2 on one channel before my_timeout is reached

WAITTIL (MATCHED(evt1)&& MATCHING(evt2), WTIME>my_timeout)

-- I expect to receive nothing during my_time

WAITTIL (WTIME>my_time, MATCHING(empty_evt))

-- I expect evtA or evtB before my_timeout is reached

WAITTIL (MATCHING(evtA)||MATCHING(evtB), WTIME>my_timeout)

*

After the WAITTIL instruction, the value of these operators is available until the next call to WAITTIL.

645

HCL® OneTest™ Embedded

646

Example

The following test script describes a simple use of our stack. First of all, some resources are allocated and a

connection is established with the communication stack (mbx_init). This connection is made known by the Virtual

Tester with the ADD_ID instruction. Then, the Virtual Tester registers (mbx_register) onto the stack giving its

application name (JUPITER).

The Virtual Tester sends a message to an application under test (SATURN), and waits for the acknowledgment sent

back by the stack with the WAITTIL instructions. Finally, the Virtual Tester unregisters (mbx_unregister) and frees the

allocated resources (mbx_end).

HEADER "SystemTest 1st example: sending & receiving a message","1.0",""

COMMTYPE appl_comm IS appl_id_t

MESSAGE message_t: message, ack, data, neg_ack

CHANNEL appl_comm: appl_ch

﷓appl_id_t id;

﷓int errcode;

PROCSEND message_t: msg ON appl_comm: id

CALL mbx_send_message (&id, &msg) @ err_ok

END PROCSEND

CALLBACK message_t: msg ON appl_comm: id

CALL mbx_get_message (&id, &msg, 0) @@ errcode

MESSAGE_DATE

IF (errcode == err_empty) THEN

NO_MESSAGE

END IF

IF (errcode != err_ok) THEN

ERROR

END IF

END CALLBACK

SCENARIO first_scenario

Chapter 5. Test Execution Specialist Guide

FAMILY nominal

COMMENT Initialize, register, send data

COMMENT wait acknowledgement, unregister and release

CALL mbx_init(&id) @ err_ok @ errcode

ADD_ID(appl_ch,id)

VAR id.applname, INIT="JUPITER"

CALL mbx_register(&id) @ err_ok @ errcode

VAR message, INIT={

& type=>DATA,

& applname=>"SATURN",

& userdata=>"hello Saturn!"}

SEND (message, appl_ch)

COMMENT Negative acknowledgment expected

COMMENT (Saturn is not running !)

DEF_MESSAGE ack, EV={type=>ACK}

WAITTIL (MATCHING(ack), WTIME==10)

CALL mbx_unregister(&id) @ err_ok @ errcode

CLEAR_ID(appl_ch)

CALL mbx_end(&id) @ err_ok @ errcode

END SCENARIO

Related Topics

Event Management on page 638 | Basic Declarations on page 639 | Sending Messages on page 640 |

Messages and Data Management on page 647

Messages and Data Management

System Testing for C

The instruction VAR allows you to initialize and check the contents of simple or complex variables.

647

HCL® OneTest™ Embedded

648

The process of initializing or checking variables is performed independently by the following two sub-instructions:

VAR <variable> , INIT = <init_expr>

or

VAR <variable> , EV = <expec_expr>

This instruction allows you to initialize and check the contents of structured variables, such as messages.

The field <variable> represents a variable or part of a structured variable.

<init_expr> and <expec_expr> let you describe the contents of structured variables using a simple syntax.

To describe a sequence of fields at the same level in a structured variable, you enclose the sequence in braces '{}' or

brackets '[]' and separate the fields with a comma ','.

You can reference members of a structured variable in the following ways:

• Reference by name

• Reference by position

You cannot however mix both methods.

The System Testing report does not show VAR instructions relating to initializations. Only VAR instructions relating to

content checks on variables or messages are recorded in the test report.

The DEF_MESSAGE instruction allows you to define reference messages using the DEF_MESSAGE instruction, using

exactly the same syntax. The following examples are presented using the VAR instruction, but are also applicable to

DEF_MESSAGE.

The report does not show DEF_MESSAGE instruction as they appear in the test script, but only when they are used

within a WAITTIL instruction.

Reference by Name

You can describe the contents of a structure by naming each field in the structure. This is very useful if you do not

know the order of the fields in the declaration of the structure.

When referencing by name, a parameter is described by the name of the field in the structure followed by the arrow

symbol (=>) and the initialization or checking expression.

﷓typedef struct

﷓ {

﷓ int Integer;

﷓ char String [15];

Chapter 5. Test Execution Specialist Guide

﷓ float Real;

﷓ } block;

﷓ block variable;

VAR variable, INIT={Real=>2.0, Integer=>26, String=>"foo"}

You can omit the specification of structure elements by name if you know the order of the fields within the structure.

For the block type defined above, you can write the following VAR statement:

VAR variable, INIT={ 26, "foo", 2.0 }

Reference by Position

You can describe the contents of an array by giving the position of elements within the array.

When referencing by position, define a parameter by giving the position of the field in the array followed by the arrow

symbol (=>) and the initialization or checking expression.

Note that numbering begins at zero.

﷓int array[5];

VAR array, EV=[4=>5, 1=>12, 2=>-18, 5=>15-26, 3=>0, 0=>123]

You can use ranges of positions when referencing by position. These ranges are specified by two bounds separated

by the symbol double full-stop (..).

﷓typedef int matrix[3][150];

VAR matrix, EV= [

& 2=>[0..99=>1, 100..149=>2],

& 0=>[99..0=>2, 100..149=>1],

& 1=>[0..80=>-1, 81..149=>0]]

Note that the bounds of an interval can be reversed.

When referencing by position, you must reference an entire sequence at a given level.

Partial Initialization and Checks

With a VAR instruction, you can partially initialize and check a structured variable.

﷓float array[10];

649

HCL® OneTest™ Embedded

650

VAR array, INIT=[5..7=>2.1]

The array elements 5, 6 and 7 are initialized to 2.1. Other elements are not initialized.

Multi-dimension Initialization and Checks

With a VAR instruction, you can initialize and check multi-dimension variables with judicious use of bracket '[]' and

brace '{}' separators.

The separators delimit the description of a structured variable to a given dimension. The absence of separators at a

given level indicates that the initialization or checking value is valid for all the sub-dimensions of the variable.

In the following example:

• Ex. 1: The set of 300 integer values of the matrix variable are initialized to zero.

• Ex. 2: The 100 integer values contained in matrix[0] are initialized to 1, the 100 values of matrix[1] are

initialized to 2, and the 100 values of matrix[2] are initialized to 3.

• Ex. 3: Only the matrix[0][0] is initialized to zero.

• Ex. 4: Only the first 100 values of matrix[0] are initialized to zero.

﷓int matrix[3][100];

-- -Ex. 1- Global initialization

VAR matrix, INIT=0

-- -Ex. 2- Global initialization of lines

VAR matrix, INIT=[1,2,3]

-- -Ex. 3- Initialization of only one element

VAR matrix, INIT=[[0]]

-- -Ex. 4- Initialization of only one line

VAR matrix, INIT=[0]

The following example provides a set of VAR instructions that are semantically identical:

﷓int matrix[3][3];

VAR matrix, EV=0

VAR matrix, EV=[0,0,0]

Chapter 5. Test Execution Specialist Guide

VAR matrix, EV=[[0,0,0],[0,0,0],[0,0,0]]

In the three VAR instructions above, all the matrix elements are checked against zero.

Array Indices

With a VAR instruction, you can initialize and check array elements according to their index at a given level.

The index is specified by a capital I followed by the level number. Levels begin at 1. You can use I1, I2, I3, etc. as

implicit variables.

﷓int matrix[3][100];

VAR matrix, EV=I1*I2

Each element of the above matrix is checked against the product of variables I1 and I2, which indicate, respectively, a

range from 0 to 2 and a range from 0 to 99. The above matrix is checked against the 3 by 100 multiplication table.

Reference by Default

You can reference the remaining set of fields in an array, structure, or object in a VAR instruction. To do this, use the

keyword OTHERS, followed by the arrow symbol =>, and an expression in C or C++.

Note: To use OTHERS, the remaining fields must be the same type and must be compatible with the expression

following OTHERS.

﷓typedef struct {

﷓ char String[25];

﷓ int Value;

﷓ int Value2;

﷓ int Array[30];

﷓} block;

﷓ block variable;

VAR variable, INIT=[

& String=>"chaine",

& Array=>[0..10=>0, OTHERS=>1] ,

& OTHERS=>2]

In the previous example, OTHERS has two functions:

651

HCL® OneTest™ Embedded

652

• When initializing the array, the values indexed from 11 to 29 begin at 1.

• When initializing the structure, the value and value2 fields begin at 2.

Checking Pointers

With a VAR instruction, you may use NIL and NONIL, to check for null and non-null pointers.

﷓typedef struct {

﷓ int a;

﷓ float b;

﷓} block, *PT_block;

﷓PT_block addr[10];

VAR addr, EV=[0..5=>NIL, OTHERS=>NONIL]

In the above example, the pointers indexed from 0 to 5 of the addr array are compared with the null address. The test

of the pointers indexed from 6 to 9 is correct if these pointers are different from the null address.

Checking Ranges

You may use ranges of acceptable values instead of immediate values. To do this, use the following syntax:

VAR <variable>, EV=[Min..Max]

DEF_MESSAGE <variable>, EV=[Min..Max]

The following example demonstrates this syntax:

﷓typedef struct {

﷓ int a;

﷓ float b;

﷓} block, *PT_block;

﷓PT_block addr[10];

VAR addr, EV=[0..5=>{a=>[0..100]}, OTHERS=>NONIL]

In the previous example, the elements indexed from 0 to 5 of the addr array are checked with the following constraint:

a should be greater than 0 and lower than 100.

Chapter 5. Test Execution Specialist Guide

The test of the pointers indexed from 6 to 9 is correct if these pointers are different from null address

Character Strings

When you use the VAR instruction for character strings, you may alter it. In C, a character string can also be an array.

This flexibility is retained in the VAR instruction.

In the following example, the first variable String initializes as in C (null-terminated). The second String initializes as

an array of characters (not null-terminated).

﷓char String[15];

VAR String, INIT="abcdef"

VAR String, INIT=['a', 'b', 'c', 'd', 'e', 'f']

Note You must define the VAR instruction either as a character string or an array of characters.

Communication Between Virtual Testers

System Testing for C

Virtual Testers can communicate between themselves with simple messages by using the INTERSEND and

INTERRECV statements. Virtual Tester messages can be either an integer or a text string.

For information about the INTERSEND and INTERRECV statements, please refer to the System Testing Script

Language section in the Studio Reference pages of the help.

For these statements to be active, you must enable On-the-fly Runtime Tracing in the Configuration Settings.

To enable Virtual Tester communication:

1. In the Project Explorer, select the System Testing test node, and click Settings.

2. In the Configuration Settings dialog box, select System Testing and Target Deployment Port for System

Testing.

3. Set Enable On-the-fly Runtime Tracing to Yes and click OK.

Identifier

For message delivery purposes, each Virtual Testers carries a unique identifier. The virtual tester identifier is

constructed with the following rules:

• If the Virtual Tester is run as an instance named <instance>:

<instance>_<occid>

653

HCL® OneTest™ Embedded

654

• If the Virtual Tester is running in multi-threaded mode, with its entry point in <function>:

<function_name>_<occid>

• In any other case, the identifier uses the .rio file name:

<filename>.rio_<occid>

By default the occurrence identification number <occid> for each Virtual Tester is 0, but you can set different <occid>

values in the Virtual Tester Deployment on page 625 dialog box.

There must never be two Virtual Testers at the same time with the same identifier. If an INTERSEND message cannot

be delivered because of an ambiguous identifier, the System Testing supervisor returns an error message.

Related Topics

About Virtual Testers on page 619 | Configuring Virtual Testers on page 623 | System Testing in a Multi-Threaded

or RTOS Environment on page 628 | Deploying Virtual Testers on page 625

Instances

Instances

System Testing for C

In a distributed environment, you can merge the description of several entities, Virtual Testers, in a unique test script.

This is possible through the concept of interaction instances, as defined in UML.

Hence, you create Virtual Testers, all based on a same test script, with distinct behaviors such as a client and a server

or both.

The use of instances in a test script must be split into two parts, as follows:

• The declaration of the instances on page 654 used in test script

• The description of the instances on page 655 by specific blocks containing declarations or instructions.

Related Topics

Instance Declaration on page 654 | Instance Synchronization on page 655 | About Virtual Testers on page 619

Instance Declaration

System Testing for C

The DECLARE_INSTANCE instruction lets you declare the set of the instances included in the test script.

Chapter 5. Test Execution Specialist Guide

Note Each instance behavior will be translated into different Virtual Testers executed within a process or a thread.

The DECLARE_INSTANCE instruction must be located before the top-level scenario.

The instance declaration can be done by one or several DECLARE_INSTANCE instructions. They must appear in the

test script in such a way that no INSTANCE block containing global declarations uses an instance that has not been

previously declared.

Example

HEADER "Multi-server / Multi-client example","1.0",""

DECLARE_INSTANCE server1, server2

...

DECLARE_INSTANCE client1, client2, client3

...

SCENARIO Principal

...

Related Topics

DECLARE_INSTANCE on page 879 | Instance synchronization on page 655

Instance Synchronization

System Testing for C

The RENDEZVOUS statement, provides a way to synchronize Virtual Testers to each instance.

When a scenario is executed, the RENDEZVOUS instruction stops the execution until all Virtual Testers sharing this

synchronization point (the identifier) have reached this statement.

When all Virtual Testers have met the rendezvous, the scenario resumes.

SCENARIO first_scenario

FAMILY nominal

-- Synchronization point shared by both Instances

RENDEZVOUS sync01

INSTANCE JUPITER:

RENDEZVOUS sync02

655

HCL® OneTest™ Embedded

656

. . .

END INSTANCE

INSTANCE SATURN:

RENDEZVOUS sync02

. . .

END INSTANCE

END SCENARIO

Synchronization can be shared with other parts of the test bench such as in-house Virtual Testers, specific feature ,

and so on. This can be done easily by linking these pieces with the current Target Deployment Port.

Then, to define a synchronization point, you must make a call to the following function:

atl_rdv("sync01");

This synchronization point matches the following instruction used in a test script:

RENDEZVOUS sync01

Example

The following test script is based on the example developed in the Event Management on page 638 section. The

script provides an example of the usefulness of instances for describing several applications in a same test script.

HEADER "SystemTest Instance-including Scenario Example", "1.0", ""

DECLARE_INSTANCE JUPITER, SATURN

COMMTYPE appl_comm IS appl_id_t

MESSAGE message_t: message, data, my_ack, neg_ack

CHANNEL appl_comm: appl_ch

﷓appl_id_t id;

﷓int errcode;

PROCSEND message_t: msg ON appl_comm: id

CALL mbx_send_message(&id, &msg) @ err_ok

END PROCSEND

CALLBACK message_t: msg ON appl_comm: id

Chapter 5. Test Execution Specialist Guide

CALL mbx_get_message (&id, &msg, 0) @@ errcode

MESSAGE_DATE

IF (errcode == err_empty) THEN

NO_MESSAGE

END IF

IF (errcode != err_ok) THEN

ERROR

END IF

END CALLBACK

SCENARIO first_scenario

FAMILY nominal

COMMENT Initialize, register, send data

COMMENT wait acknowledgement, unregister and release

CALL mbx_init(&id) @ err_ok @ errcode

ADD_ID(appl_ch,id)

INSTANCE JUPITER:

VAR id.applname, INIT="JUPITER"

END INSTANCE

INSTANCE SATURN:

VAR id.applname, INIT="SATURN"

END INSTANCE

CALL mbx_register(&id) @ err_ok @ errcode

COMMENT Synchronization of both instances

RENDEZVOUS start_RDV

INSTANCE JUPITER:

VAR message, INIT={type=>DATA,num=>id.s_id,

657

HCL® OneTest™ Embedded

658

& applname=>"SATURN",

& userdata=>"Hello Saturn!"}

SEND(message , appl_ch)

DEF_MESSAGE my_ack, EV={type=>ACK}

WAITTIL (MATCHING(my_ack), WTIME==300)

DEF_MESSAGE data, EV={type=>DATA}

WAITTIL (MATCHING(data), WTIME==1000)

END INSTANCE

INSTANCE SATURN:

DEF_MESSAGE data, EV={type=>DATA}

WAITTIL (MATCHING(data), WTIME==1000)

VAR message, INIT={type=>DATA,num=>id.s_id,

& applname=>"JUPITER",

& userdata=>"Fine, Jupiter!"}

SEND(message , appl_ch)

DEF_MESSAGE my_ack, EV={type=>ACK}

WAITTIL (MATCHING(my_ack), WTIME==300)

END INSTANCE

CALL mbx_unregister(&id) @ err_ok @ errcode

CLEAR_ID(appl_ch)

CALL mbx_end(&id) @ err_ok @ errcode

COMMENT Termination Synchronization

RENDEZVOUS term_RDV

END SCENARIO

The scenario describes the behavior of two applications (JUPITER and SATURN) exchanging messages by using a

communications stack.

Chapter 5. Test Execution Specialist Guide

Some needed resources are allocated and a connection is established with the communication stack (mbx_init). This

connection is made known by the Virtual Tester with the ADD_ID instruction. Note that this is a common part to both

instances.

Then, the two applications register (mbx_register) onto the stack by giving their application name (JUPITER or

SATURN). These operations are specific to each instance, which is why these operations are done in two separate

instance blocks.

The application JUPITER sends the message "Hello Saturn!" to the SATURN application (through the communication

stack) which is supposed to have set itself in a message waiting state (WAITTIL (MATCHING(data), ...)).

Once the message has been sent, JUPITER waits for an acknowledgment from the communication stack

(WAITTIL(my_ack),...). Then, it waits for the response of SATURN (WAITTIL (MATCHING(data),...)) which answers by

the message "Fine, Jupiter!" (SEND(message , appl_ch)). These operations are specific to each instance.

Finally, the applications unregister themselves and free the allocated resources in the last part, which is common to

both instances.

Related Topics

Instance declarations on page 654 | RENDEZVOUS on page 908 | MATCHED() on page 894 | MATCHING() on

page 895 | NOTMATCHED() on page 900 | NOTMATCHING() on page 901 | WAITTIL on page 922

Environments

Environments

System Testing for C

When creating a test script, you typically write several test scenarios. These scenarios are likely to require the same

resources to be deployed and then freed. You can avoid writing a series of scenarios containing similar code by

factorizing elements of the scenario.

To resolve these problems and leverage your test script writing, you can define environments introduced by the

keywords INITIALIZATION, TERMINATION, and EXCEPTION.

This section describes

• Error Handling on page 660

• Exception Environment (Error Recovery Block) on page 661

• Initialization Environment on page 663

• Termination Environment on page 664

659

HCL® OneTest™ Embedded

660

Error Handling

System Testing for C

The ERROR Statement

The ERROR instruction lets you interrupt execution of a scenario where an error occurs and continue on to the next

scenario at the same level.

ERROR instructions follow these rules:

• ERROR instructions can be located in scenarios, in procedures, or in environment blocks.

• If an ERROR instruction is encountered in an INITIALIZATION block, the Virtual Tester exits with an error from

the set of scenarios at the same level.

Note In debug mode, the behavior of ERROR instructions is different (see Debugging Virtual Testers).

The following is an example of an ERROR instruction:

HEADER "Instruction ERROR", "1.0", "1.0"

﷓int IdConnection;

SCENARIO Main

COMMENT connection

CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection

IF (IdConnection == -1) THEN

ERROR

END IF

END SCENARIO

The EXIT Statement

The EXIT instruction lets you interrupt execution of a Virtual Tester. Subsequent scenarios are not executed.

EXIT instructions follow these rules:

• EXIT instructions can be located in scenarios, procedures, or environment blocks.

• If an EXIT instruction is encountered, the EXCEPTION blocks are not executed.

The following is an example of an EXIT instruction:

Chapter 5. Test Execution Specialist Guide

HEADER "Instruction EXIT", "1.0", "1.0"

﷓int IdConnection;

SCENARIO Main

COMMENT connection

CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection

IF (IdConnection == -1) THEN

EXIT

END IF

END SCENARIO

Related Topics

Exception Environment (Error Recovery Block) on page 661 | Environments on page 659 | Initialization

Environment on page 663 | Termination Environment on page 664

Exception Environment (Error Recovery Block)

System Testing for C

A test script is composed of a hierarchy of scenarios. An exception environment can be defined at a given scenario

level.

When an error occurs in a scenario all exception blocks at the same level or above are executed sequentially.

The syntax for exception environments can take two different forms, as follows:

• A block: This begins with the keyword EXCEPTION and ends with the sequence END EXCEPTION. A

termination block can contain any instruction.

• A procedure call: This begins with the keyword EXCEPTION followed by the name of the procedure and, where

appropriate, its arguments.

Example

In the following example, the highest level of the test script is made up of two scenarios called first and second. The

exception environment that precedes them is executed once if scenario premier finished with an error, and once if

scenario second finishes with an error.

HEADER "Validation", "01a", "01a"

661

HCL® OneTest™ Embedded

662

PROC Unload_mem()

...

END PROC

EXCEPTION Unload_mem()

SCENARIO first

...

END SCENARIO

SCENARIO second

EXCEPTION

...

END EXCEPTION

SCENARIO level2_1

FAMILY nominal, structural

...

END SCENARIO

SCENARIO level2_2

FAMILY nominal, structural

...

END SCENARIO

END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The second exception environment is

executed after incorrect execution of scenarios level2_1 and level2_2. The highest-level exception environment is not

re-executed if scenarios level2_1 and level2_2 finish with an error.

Only one exception environment can appear at a given scenario level.

An exception environment can appear among scenarios at the same level. It does not have to be placed before a set

of scenarios at the same level.

In a test report, the execution of an exception environment is shown even if you decided not to trace the execution.

Chapter 5. Test Execution Specialist Guide

Related Topics

Error Handling on page 660 | Environments on page 659

Initialization Environment

System Testing for C

A test script is composed of scenarios in a tree structure. An initialization environment can be defined at a given

scenario level.

This initialization environment is executed before each scenario at the same level.

The syntax for initialization environments can take two different forms, as follows:

• A block: This begins with the keyword INITIALIZATION and ends with the sequence END INITIALIZATION. An

initialization block can contain any instruction.

• A procedure call: This begins with the keyword INITIALIZATION followed by the name of the procedure and,

where appropriate, its arguments.

Example

In the following example, the highest level of the test script is made up of two scenarios called first and second. The

initialization environment that precedes them is executed twice: once before scenario first is executed and once

before scenario second is executed.

HEADER "Validation", "01a", "01a"

PROC Load_mem()

...

END PROC

INITIALIZATION Load_mem()

SCENARIO first

...

END SCENARIO

SCENARIO second

INITIALIZATION

END INITIALIZATION

663

HCL® OneTest™ Embedded

664

SCENARIO level2_1

FAMILY nominal, structural

...

END SCENARIO

SCENARIO level2_2

FAMILY nominal, structural

...

END SCENARIO

END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The second initialization environment is

executed before scenarios level2_1 and level2_2 are executed. The highest-level initialization environment is not re-

executed between scenarios level2_1 and level2_2.

Only one initialization environment can appear at a given scenario level.

An initialization environment can appear among scenarios at the same level. The initialization environment does not

have to be placed before a set of scenarios at the same level.

In a test report, the execution of an initialization environment is shown beginning with the word INITIALIZATION and

ending with the words END INITIALIZATION.

Related Topics

Termination Environment on page 664 | Environments on page 659

Termination Environment

System Testing for C

A test script is composed of scenarios in a tree structure A termination environment can be defined at a given

scenario level.

This termination environment is executed at the end of every scenario at the same level, provided that each scenario

finished without any errors.

The syntax for termination environments can take two different forms, as follows:

Chapter 5. Test Execution Specialist Guide

• A block: This begins with the keyword TERMINATION and ends with the sequence END TERMINATION. A

termination block can contain any instruction.

• A procedure call: This begins with the keyword TERMINATION followed by the name of the procedure and,

where appropriate, its arguments.

Example

In the previous example, the highest level of the test script is made up of two scenarios called first and second. The

termination environment that precedes them is executed twice:

• once after scenario first is executed correctly

• once after scenario second is executed correctly

HEADER "Validation", "01a", "01a"

PROC Unload_mem()

...

END PROC

TERMINATION Unload_mem()

SCENARIO first

...

END SCENARIO

SCENARIO second

TERMINATION

...

END TERMINATION

SCENARIO level2_1

FAMILY nominal, structural

...

END SCENARIO

SCENARIO level2_2

FAMILY nominal, structural

665

HCL® OneTest™ Embedded

666

...

END SCENARIO

END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The second termination environment is

executed after the correct execution of scenarios level2_1 and level2_2. The highest-level termination environment is

not re-executed between scenarios level2_1 and level2_2.

Only one termination environment can appear at a given scenario level.

A termination environment can appear among scenarios at the same level. The termination environment does not

have to be placed before a set of scenarios at the same level.

In a test report, the execution of a termination environment is shown beginning with the word TERMINATION and

ending with the words END TERMINATION.

Related Topics

Initialization Environment on page 663 | Environments on page 659 | Basic Structure

Time management

Time management

System Testing for C

In some cases, you will need information about execution time within a test script.

The following instructions provide a way to dump timing data, define a timer, clear a timer, get the value of a timer,

and temporarily suspend test script execution:

• TIME instruction on page 666

• TIMER instruction on page 667

• RESET instruction on page 668

• PRINT instruction on page 669

• PAUSE instruction on page 670

TIME instruction

System Testing for C

Chapter 5. Test Execution Specialist Guide

The TIME instruction returns the current value of a timer. You must use a C expression or scripting instruction (IF,

PRINT, and so on).

Before using TIME, you must declare the timer with the TIMER on page 667 instruction.

Example

HEADER "Socket validation", "1.0", "beta"

TIMER globalTime

PROC first

TIMER firstProc

...

PRINT globalTimeValue, TIME (globalTime)

END PROC

SCENARIO second

SCENARIO level2

TIMER level2Scn

...

PRINT level2ScnValue, TIME (level2Scn)

END SCENARIO

END SCENARIO

Related Topics

TIMER Instruction on page 667 | RESET Instruction on page 668 | PRINT Instruction on page 669 | PAUSE

Instruction on page 670

TIMER instruction

System Testing for C

The TIMER instruction declares a timer in the test script.

You may declare a timer in any test script block: global, initialization, termination, exception, procedure, or scenario.

The timer lasts as long as the block in which the timer is defined. This means that a timer defined in the global block

can be used until the end of the test script.

667

HCL® OneTest™ Embedded

668

You may define multiple timers in the same test script. The timer starts immediately after its declaration.

The unit of the timer unit is defined during execution of the application, with the WAITTIL and WTIME instructions.

Example

HEADER "Socket validation", "1.0", "beta"

TIMER globalTime

PROC first

TIMER firstProc

...

END PROC

SCENARIO second

SCENARIO level2

TIMER level2Scn

...

END SCENARIO

END SCENARIO

Related Topics

TIME Instruction on page 666 | RESET Instruction on page 668 | PRINT Instruction on page 669 | PAUSE

Instruction on page 670

RESET instruction

System Testing for C

The RESET instruction lets you reset a timer to zero.

The timer restarts immediately when the RESET statement is encountered.

A timer must be declared before using RESET.

Example

HEADER "Socket validation", "1.0", "beta"

TIMER globalTime

Chapter 5. Test Execution Specialist Guide

PROC first

TIMER firstProc

RESET globalTime

...

END PROC

SCENARIO second

SCENARIO level2

TIMER level2Scn

...

RESET level2Scn

END SCENARIO

END SCENARIO

Related Topics

TIME Instruction on page 666 | TIMER Instruction on page 667 | PRINT Instruction on page 669 | PAUSE

Instruction on page 670

PRINT instruction

System Testing for C

You can print the result of an expression in a performance report by using the PRINT statement. The PRINT

instruction prints an identifier before the expression.

Example

HEADER "Socket validation", "1.0", "beta"

﷓long globalTime = 45;

SCENARIO first

PRINT timeValue, globalTime

END SCENARIO

SCENARIO second

SCENARIO level2

669

HCL® OneTest™ Embedded

670

PRINT time2Value, globalTime*10+5

...

END SCENARIO

END SCENARIO

Related Topics

TIME Instruction on page 666 | TIMER Instruction on page 667 | RESET Instruction on page 668 | PAUSE

Instruction on page 670

PAUSE instruction

System Testing for C

The PAUSE instruction lets you temporarily stop test script execution for a given period.

The unit of the PAUSE instruction is defined during execution of the application, with the WAITTIL and WTIME

instructions.

Example

HEADER "Socket validation", "1.0", "beta"

﷓long time = 20;

PROC first

PAUSE 10

...

END PROC

SCENARIO second

SCENARIO level2

PAUSE time*10

...

END SCENARIO

END SCENARIO

Related Topics

Chapter 5. Test Execution Specialist Guide

TIME Instruction on page 666 | TIMER Instruction on page 667 | RESET Instruction on page 668 | PRINT

Instruction on page 669

Using native C statements

System Testing for C

In some cases, it can be necessary to include portions of C native code inside a .pts test script for one the following

reasons:

• To declare native variables that participate in the flow of a scenario. Such statements must be analyzed by the

System Testing Parser.

• To insert native code into a scenario. In this case, the code is ignored by the parser, but carried on into the

generated code.

Analyzed native code

Lines prefixed with a # character are analyzed by Component Testing Parser.

Only prefix statements with a # character to include native C variable declarations that must be analyzed by the

parser.

﷓int i;

﷓char *foo;

Variable declarations must be placed outside of System Testing Language blocks or preferably at the beginning of

scenarios and procedures.

Ignored native code

Lines prefixed with a @ character are ignored by the parser, but copied into the generated code.

To use native C code in the test script, start instructions with a @ character:

@for(i=0; i++; i<100) func(i);

@foo(a,&b,c);

You can add native code either inside or outside of System Testing Language blocks.

Related Topics

CALL Instruction on page 632 | Basic Structure | System Testing language reference on page 926

671

HCL® OneTest™ Embedded

672

Understanding System Testing for C Reports

Understanding System Testing for C Reports

System Testing for C

Test reports for System Testing are displayed in HCL OneTest™ Embedded Report Viewer.

The test report is a hierarchical summary report of the execution of a test node. Parts of the report that have Passed

are displayed in green. Failed tests are shown in red.

Report Explorer

The Report Explorer on page 1059 displays each element of a test report with a Passed , Failed symbol.

• Elements marked as Failed are either a failed test, or an element that contains at least one failed test.

• Elements marked as Passed are either passed tests or elements that contain only passed tests.

Test results are displayed for each instance, following the structure of the .pts test script.

Report Header

Each test report contains a report header with:

• The version of HCL OneTest™ Embedded used to generate the test as well as the date of the test report

generation

• The path and name of the project files used to generate the test

• The total number of test cases Passed and Failed. These statistics are calculated on the actual number of test

elements listed in the sections below

• Virtual Tester information.

Main Report Sections

For each Virtual Tester execution, the report lists the details of test script execution, with time stamps

and test result tables.

• Messages: The report displays fields and values for each field

• Tests Results: For each message, the report compares initial values, expected values and obtained values

Related Topics

Understanding System Testing UML Sequence Diagrams on page 673 | Using the Report Viewer on page 737 |

Opening a Report on page 715 | Exporting reports on page 737

Chapter 5. Test Execution Specialist Guide

Understanding System Testing UML Sequence Diagrams

System Testing for C

During the execution of the test, System Testing generates trace data this is used by the UML/SD Viewer. The System

Testing sequence diagram uses standard UML notation to represent both System Testing results.

This is an example of a typical System Testing UML sequence diagram.

You can modify the appearance of UML sequence diagrams by changing the UML/SD Viewer Preferences on

page 1052.

When using System Testing with Runtime Tracing or otherHCL OneTest™ Embedded features that generate UML

sequence diagrams, all results are merged in the same sequence diagram.

673

HCL® OneTest™ Embedded

674

You can click any element of the UML sequence diagram to open the System Testing reports on page 672 at the

corresponding line. Click again in the test report, and you will locate the line in the .pts test script.

Virtual Testers and System Under Test

The system under test (SUT) and the Virtual Testers (VT) are represented as vertical instances. Messages sent and

received by the Virtual Tester are represented along the Virtual Tester lifeline.

Messages

Messages are sent and received between Virtual Tester and system instances.

Rendezvous

RENDEZVOUS statements are displayed as Synchronizations on page 686 in the Virtual Tester lifeline.

Test Script Events and Errors

Test script events and errors are represented as UML actions on page 674. Only significant instructions, such as

INITIALIZATION, WAITTIL blocks and test errors are represented.

By default, errors appear in red. Other events are green.

WAITTIL blocks are displayed with their start and end events. Matching conditions are represented as notes on

page 682. Use the mouse cursor tool-tip to get more information about the matching conditions.

On-the-Fly Tracing

If you are using the On-the-Fly option, only the following information can be displayed in real-time during the execution

of the application:

• Virtual Tester and system under test

• Messages

• Rendezvous

• Test script blocks

Related Topics

About the UML/SD Viewer on page 431 | UML/SD Viewer Toolbar on page 1063 | Understanding System Testing

Reports on page 672 | On-the-Fly Tracing on page 688

Actions

An action is represented as shown below:

Chapter 5. Test Execution Specialist Guide

The action box displays the name of the action.

The action is linked to its source file. In the UML/SD Viewer, click an action to open the Text Editor at the

corresponding line in the source code.

Related Topics

UML Sequence Diagrams on page 426 | Model Elements and Relationships in Sequence Diagrams on page 440

Actors

An actor is a model element that describes a role that a user plays when interacting with the system being modeled.

Actors, by definition, are external to the system. Although an actor typically represents a human user, it can also

represent an organization, system, or machine that interacts with the system. An actor can correspond to multiple

real users, and a single user may play the role of multiple actors.

Shape

An actor usually appears as a "stick man" shape.

In models depicting software applications, actors represent the users of the system. Examples include end users,

external computer systems, and system administrators.

Naming Conventions

Each actor has a unique name that describes the role the user plays when interacting with the system.

Related Topics

Objects on page 683 | UML Sequence Diagrams on page 426

Activations

An activation (also known as a focus of control) is a notation that can appear on a lifeline to indicate the time during

which an instance (an actor instance, object, or classifier role) is active. An active instance is performing an action,

such as executing an operation or a subordinate operation. The top of the activation represents the time at which the

activation begins, and the bottom represents the time at which the activation ends.

For example, in a sequence diagram for a "Place Online Order" interaction, there are lifelines for a ":Cart" object and

":Order" object. An "updateTotal" message points from the ":Order" object to the ":Cart" object. Each lifeline has an

activation to indicate how long it is active because of the "updateTotal" message.

675

HCL® OneTest™ Embedded

676

Shape

An activation appears as a thin rectangle on a lifeline. You can stack activations to indicate nested stack frames in a

calling sequence.

Using Activations

Activations can appear on your sequence diagrams to represent the following:

• On lifelines depicting instances (actors, classifier roles, or objects), an activation typically appears as the

result of a message to indicate the time during which an instance is active.

• On lifelines involved in complex interactions, nested activations (also known as stacked activations or nested

focuses of control) are displayed to indicate nested stack frames in a calling sequence, such as those that

happen during recursive calls.

• On lifelines depicting concurrent operations, the entire lifeline may appear as an activation (thin rectangles)

instead of dashed lines.

Naming Conventions

An activation is usually identified by the incoming message that initiates it. However, you may add text labels that

identify activations either next to the activation or in the left margin of the diagram.

Related Topics

Classifier Roles on page 676 | Lifelines on page 679 | Messages on page 681 | Objects on page 683 | UML

Sequence Diagrams on page 426 | Stimuli on page 684

Classifier Roles

A classifier role is a model element that describes a specific role played by a classifier participating in a collaboration

without specifying an exact instance of a classifier. A classifier role is neither a class nor an object. Instead, it is a

model element that specifies the kind of object that must ultimately fulfill the role in the collaboration. The classifier

role limits the kinds of classifier that can be used in the role by referencing a base classifier. This reference identifies

the operations and attributes that an instance of a classifier will need in order to fulfill its responsibilities in the

collaboration.

Classifier roles are commonly used in collaborations that represent patterns. For example, a subject-observer pattern

may be used in a system. One classifier role would represent the subject, and one would represent the observer. Each

role would reference a base class that identifies the attributes and operations that are needed to participate in the

subject-observer collaboration. When you use the pattern in the system, any class that has the specified operations

and behaviors can fill the role.

Chapter 5. Test Execution Specialist Guide

Shape

A classifier role appears as a rectangle. Its name is prefixed with a slash and is not underlined. In sequence diagrams,

a lifeline (a dashed, vertical line) is attached to the bottom of a classifier role to represent its life over a period of time.

For details about lifelines, see Lifelines on page 679.

Classifier

Role

Classifier Role with Life­

line

Using Classifier Roles

Classifier roles can appear on a model to represent the following:

• In models depicting role-based interactions, a classifier role represents an instance in an interaction. Using

classifier roles instead of objects can provide two advantages: First, a class can serve as the base classifier

for multiple classifier roles. Second, instances of a class can realize multiple classifier roles in one or more

collaborations.

• In models depicting patterns, a classifier role specifies the kind of object that must ultimately fulfill a role in

the pattern. The classifier role shows how the object will participate in the pattern, and its reference to a base

class defines the attributes and operations that are required for participation in the pattern. When the pattern

is used in the model, classes are bound to the collaboration to identify the type of objects that realize the

classifier roles.

The classifier roles in a model are usually contained in a collaboration and usually appear in sequence diagrams.

Naming Conventions

The name of a classifier role consists of a role name and base class name. You can omit one of the names. The

following table identifies the variations of the naming convention.

Convention Example Description

/rolename:base­

class

/courseOffer­

ing:course

The courseOffering role is based on the course class.

/rolename /courseOffering Role name. The base class is hidden or is not de­

fined.

:baseclass :course Unnamed role based on the course class.

Related Topics

Objects on page 683Model Elements and Relationships in Sequence Diagrams on page 440

677

HCL® OneTest™ Embedded

678

Exceptions

When tracing C++ exceptions, Runtime Tracing locates the throw point of the exception (the throw keyword in C++) as

well as its catch point.

Exceptions are displayed as a slanted red line, as shown in the example below, generated by Runtime Tracing.

To jump to the corresponding portion of source code:

1. Click an instance to open the Text Editor at the line in the source code where the exception is thrown.

2. Click the catch exception or end of catch exception notes to open the Text Editor at the line where the

exception is caught.

To filter an instance out of the UML sequence diagram:

1. Right-click an exception and select Filter instance in the pop-up menu.

Related Topics

UML Sequence Diagrams on page 426 | Model Elements and Relationships in Sequence Diagrams on page 440

Destruction Markers

A destruction marker (also known as a termination symbol) is a notation that can appear on a lifeline to indicate that

an instance (object or classifier role) has been destroyed. Usually, the destruction of an object results in the memory

occupied by the data members of the object being freed.

For example, when a customer exits the Web site for an e-commerce application, the ":Cart" object that held

information about the customer's activities is destroyed, and the memory that it used is freed. The destruction of the

":Cart" object can be shown in a sequence diagram by adding a destruction marker on the ":Cart" object's lifeline.

Chapter 5. Test Execution Specialist Guide

Shape

A destruction marker appears as an X at the end of a lifeline.

Naming Conventions

Destruction markers do not have names.

Related Topics

Classifier Roles on page 676 | Lifelines on page 679 | Messages on page 681 | Objects on page 683

Lifelines

A lifeline is a notation that represents the existence of an object or classifier role over a period of time. Lifelines

appear only in sequence diagrams, where they show how each instance (object or classifier role) participates in the

interaction.

For example, a "Place Online Order" interaction in an e-commerce application includes a number of lifelines in a

sequence diagram, including lifelines for a ":Cart" object, ":OnlineOrder" object, and ":CheckoutCart" object. As the

interaction is developed, stimuli are added between the lifelines.

Shape

A lifeline appears as a vertical dashed line in a sequence diagram.

Lifeline for an Ob­

ject

Lifeline for a Classifier

Role

Using Lifelines

When a classifier role or object appears in a sequence diagram, it will automatically have a lifeline. Lifelines indicate

the following:

• Creation – If an instance is created during the interaction, its lifeline starts at the level of the message or

stimulus that creates it; otherwise, its lifeline starts at the top of the diagram to indicate that it existed prior to

the interaction.

• Communication – Messages or stimuli between instances are illustrated with arrows. A message or stimulus

is drawn with its end on the lifeline of the instance that sends it and its arrowhead on the lifeline of the

instance that receives it.

679

HCL® OneTest™ Embedded

680

• Activity – The time during which an instance is active (either executing an operation directly or through a

subordinate operation) can be shown with activations.

• Destruction – If an instance is destroyed during the interaction, its lifeline ends at the level of the message

or stimulus that destroys it, and a destruction marker appears; otherwise, its lifeline extends beyond the final

message or stimulus to indicate that it exists during the entire interaction.

Naming Conventions

A lifeline has the name of an object or classifier role. For details, see Objects on page 683 or Classifier Roles.

Related Topics

Classifier Roles on page 676 | Model Elements and Relationships in Sequence Diagrams on page 440 | Messages

on page 681 | Objects on page 683 | Stimuli on page 684

Loops

Loop detection simplifies UML sequence diagrams by summarizing repeating traces into a loop symbol.

Note Loops are extensions to UML Sequence Diagrams and are not supported by the UML standard.

A loop is represented as shown below:

A tag displays the name of the loop and the number of executions.

The loop is linked to its source file. In the UML/SD Viewer, click a loop to open the Text Editor at the corresponding

line in the source code.

To configure Runtime Tracing to detect loops:

1. From the Project Explorer, select the highest level node to which you want to apply the option, such as the

Workspace.

2. Right-click the node, and select Settings... from the pop-up menu.

3. In the Configuration Settings dialog, select the Runtime Tracing node, and Trace Control.

Chapter 5. Test Execution Specialist Guide

4. From the options box, set the Automatic Loop Detection to Yes.

5. Click OK.

Related Topics

UML Sequence Diagrams on page 426 | Model Elements and Relationships in Sequence Diagrams on page 440

Messages

A message is a model element that specifies a communication between classifier roles and usually indicates that

an activity will follow. The types of communications that messages model include calls to operations, signals to

classifier roles, the creation of classifier roles, and the destruction of classifier roles. The receipt of a message is an

instance of an event.

For example, in the observer pattern, the instance that is the subject sends an "Update" message to instances that

are observing it. You can illustrate this behavior by adding "Subject" and "Observer" classifier roles and then adding an

"Update" message between them.

Shape

A message appears as a line with an arrow. The direction of the arrow indicates the direction in which the message is

sent. In a sequence diagram, messages usually connect two classifier role lifelines.

Message shapes can be adorned with names and sequence numbers.

Types of Messages

Different types of messages can be used to model different flows of control.

Type Shape Description

Procedure Call

or Nested Flow

of Control

Models either a call to an operation or a call to a nested flow of control. When calling a

nested flow of control, the system waits for the nested flow of control to complete before

continuing with the outer flow.

Asynchronous

Flow of Control

Models an asynchronous message between two objects. The source object sends the

message and immediately continues with the next step.

Return From a

Procedure Call

Models a return from a call to a procedure. This type of message can be omitted from dia­

grams because it is assumed that every call has a return.

Using Messages

Messages can appear in a sequence diagram to represent the communications exchanged between classifier roles

during dynamic interactions.

681

HCL® OneTest™ Embedded

682

Note Both messages and stimuli are supported. Stimuli are added to collaboration instances, and messages are

added to collaborations. For details about stimuli, see Stimuli on page 684.

The messages in a model are usually contained in collaborations and usually appear in sequence diagrams.

Naming Conventions

Messages can be identified by a name or operation signature.

Type Example Description

Name // Get the

Password

A name identifies only the name of the message. Simple names are often used in diagrams de­

veloped during analysis because the messages are identified by their responsibilities and not

operations. One convention uses double slashes (//) to indicate that the stimulus name is not

associated with an operation.

Sig­

na­

ture

getPass­

word(String)

When an operation is assigned to a message, you can display the operation signature to identi­

fy the name of the operation and its parameters. Signatures are often used in diagrams devel­

oped during design because the provide the detail that developers need when they code the de­

sign.

Related Topics

Classifier Roles on page 676 | Lifelines on page 679 |UML Sequence Diagrams on page 426

Notes

Notes appear as shown below and are centered on, and attached to, the element to which they apply:

sequence diagram notes can be associated to messages and instances.

The note is linked to its source file. In the UML/SD Viewer, click a note to open the Text Editor at the corresponding

line in the source code.

Notes can be automatically added to the diagram by Component Testing and Runtime Analysis tools. For example,

memory profiling adds notes indicating where memory errors and warnings were detected. Component Testing for C

and Ada adds notes when a test fails.

You can manually add notes to your C and C++ source code by clicking Add Note in the text editor. This inserts

the _ATT_USER_NOTE instrumentation pragma into your source code.

Related Topics

Chapter 5. Test Execution Specialist Guide

| Instrumentation Pragmas on page 1081 UML Sequence Diagrams on page 426Model Elements and Relationships

in Sequence Diagrams on page 440

Objects

An object is a model element that represents an instance of a class. While a class represents an abstraction of a

concept or thing, an object represents an actual entity. An object has a well-defined boundary and is meaningful in the

application. Objects have three characteristics: state, behavior, and identity. State is a condition in which the object

may exist, and it usually changes over time. The state is implemented with a set of attributes. Behavior determines

how an object responds to requests from other objects. Behavior is implemented by a set of operations. Identity

makes every object unique. The unique identity lets you differentiate between multiple instances of a class if each

has the same state.

The behaviors of objects can be modeled in sequence and activity diagrams. In sequence diagrams, you can display

how instances of different classes interact with each other to accomplish a task. In activity diagrams, you can show

how one or more instances of an object changes states during an activity. For example, an e-commerce application

may include a "Cart" class. An instance of this class that is created for a customer visit, such as "cart100:Cart." In a

sequence diagram, you can illustrate the stimuli, such as "addItem()," that the "cart100:Cart" object exchanges with

other objects. In an activity diagram, you can illustrate the states of the "cart100:Cart" object, such as empty or full,

during an activity such as a user browsing the online catalog.

Shape

In sequence and activity diagrams, an object appears as a rectangle with its name underlined. In sequence diagrams,

a lifeline (a dashed, vertical line) is attached to the bottom of an object to represent the existence of the object over a

period of time. For details about lifelines, see Lifelines on page 679.

Object Object with Life­

line

Types of Objects

The following table identifies three types of objects.

Types of

Objects

Description

Active Owns a thread of control and may initiate control activity. Processes and tasks are kinds of active ob­

jects.

Passive Holds data, but does not initiate control.

Multiobject Is a collections of object or multiple instances of the same class. It is commonly used to show that a

set of objects interacts with a single stimulus.

683

HCL® OneTest™ Embedded

684

Using Objects

Objects can appear in a sequence diagram to represent concrete and prototypical instances. A concrete instance

represents an actual person or thing in the real world. For example, a concrete instances of a "Customer" class

would represent an actual customer. A prototypical instance represents an example person or thing. For example, a

prototypical instance of a "Customer" class would contain the data that a typical customer would provide.

Naming Conventions

Each object must have a unique name. A full object name includes an object name, role name, and class name. You

may use any combination of these three parts of the object name. The following table identifies the variations of

object names.

Syntax Example Description

ob­

ject/role:class

cart100/

storage:cart

Named instance (cart100) of the cart class that is playing the storage role during an inter­

action.

objec­

t:class

cart100:cart Named instance (cart100) of the cart class.

/role:class /stor­

age:cart

Anonymous instance of the cart class playing the storage role in an interaction.

ob­

ject/role

cart/stor­

age

An object named cart playing the storage role. This object is either an object that is hiding

the name of the class or an instance that is not associated with a class.

object cart100 An object named cart100. This object is either an instance that is hiding the name of the

class or an instance that is not associated with a class.

/role /storage An anonymous instance playing the storage role. This object is either an instance that is

hiding the name of the object and class or an instance that is not associated with an ob­

ject or class.

:class :cart Anonymous instance of the customer class.

Related Topics

UML Sequence Diagrams on page 426 | Stimuli on page 684

Stimuli

A stimulus is a model element that represents a communication between objects in a sequence diagram and usually

indicates that an activity will follow. The types of communications that stimuli model include calls to operations,

signals to objects, the creation of objects, and the destruction of objects. The receipt of a stimulus is an instance of

an event.

Chapter 5. Test Execution Specialist Guide

Shape

A stimulus appears as a line with an arrow. The direction of the arrow indicates the direction in which the stimulus is

sent. In a sequence diagram, a stimulus usually connects two object lifelines.

Stimulus shapes can be adorned with names and sequence numbers.

Types of Stimuli

Different types of stimuli can be used to model different flows of control.

Type Shape Description

Procedure Call

or Nested Flow

of Control

Models either a call to an operation or a call to a nested flow of control. When calling a

nested flow of control, the system waits for the nested flow of control to complete before

continuing with the outer flow.

Asynchronous

Flow of Control

Models an asynchronous stimulus between two objects. The source object sends the

stimulus and immediately continues with the next step.

Return from a

Procedure Call

Models a return from a call to a procedure. This type of stimulus can be omitted from dia­

grams because it is assumed that every call has a return.

Naming Conventions

Stimuli can have either names or signatures.

Type Example Description

Name // Get the

Password

A name identifies only the name of the stimulus. Simple names are often used in diagrams de­

veloped during analysis because the stimuli are identified by their responsibilities and not by

their operations. One convention uses double slashes (//) to indicate that the stimulus name is

not associated with an operation.

Sig­

na­

ture

getPass­

word(String)

When an operation is assigned to a stimulus, you can display the operation signature to identi­

fy the name of the operation and its parameters. Signatures are often used in diagrams devel­

oped during design because the provide the detail that developers need when they code the de­

sign.

Related Topics

Lifelines on page 679 | Objects on page 683 | UML Sequence Diagrams on page 426

685

HCL® OneTest™ Embedded

686

Synchronizations

Synchronizations are an extension to the UML standard that only apply when using the split trace file feature of

Runtime Tracing. They are used to show that all instance lifelines are synchronized at the beginning and end of each

split TDF file.

Shape

A synchronization is represented as shown below:

The synchronization box displays the name of the synchronization.

The synchronization is linked to its source file. In the UML/SD Viewer, click a synchronization to open the Text Editor

at the corresponding line in the source code.

When the Split Trace capability is enabled, the UML/SD Viewer displays the list of TDF files generated in the UML/SD

Viewer toolbar.

At the beginning of each diagram, before the Synchronization, the Viewer displays the context of the previous file.

Another synchronization is displayed at the end of each file, to insure that all instance lifelines are together before

viewing the next file.

Related Topics

UML Sequence Diagrams on page 426 | Model Elements and Relationships in Sequence Diagrams on page 440

Chapter 5. Test Execution Specialist Guide

Advanced System Testing

System Testing Supervisor

System Testing for C

HCL OneTest™ Embedded System Testing manages the simultaneous execution of Virtual Testers distributed over

a network. When using System Testing feature of HCL OneTest™ Embedded, the machine running HCL OneTest™

Embedded runs a Supervisor process, whose job is to:

• Set up target hosts to run the test

• Launch the Virtual Testers, the system under test and any other tools.

• Synchronize Virtual Testers during execution

• Retrieve the execution traces after test execution

The System Testing Supervisor uses a deployment script on page 626, generated by the Virtual Tester Configuration

on page 623 and Virtual Tester Deployment on page 625 dialog boxes, to control System Testing Agents installed

on each distributed target host. Agents can launch either applications or Virtual Testers.

While the agent-spawned processes are running, their standard and error outputs are redirected to the supervisor.

Note You must install and configure the agents on page 619 on the target machines before execution.

Related Topics

About Virtual Testers on page 619 | Installing System Testing Agents on page 619 | Editing the Deployment Script

on page 626

Circular Trace Buffer

System Testing for C

The circular trace buffer memorizes System Testing for C traces and flushes them to the .rio output file when the

Virtual Tester ends or at a specified point in the .pts test script.

To activate the circular trace buffer option or to set the size of the buffer, see Test Script Compiler Settings on

page 1038.

How the Circular Buffer Works

During execution of the test node, System Testing accumulates traces in the buffer. When the buffer fills up, new

traces replace old ones, as shown in the following diagram, without flushing to file.

Contents of the Buffer

By default, the buffer stores all traces.

687

HCL® OneTest™ Embedded

688

Use the TRACE_OFF instruction in your .pts System Testing for C test script to trace only scenario begins and ends,

environment blocks, procedure blocks, PRINT instructions, and failed instructions.

Use the TRACE_ON instruction to resume default behavior.

See the Reference section for detailed information on .pts test script instructions.

Flushing the Buffer on the Disk

By default, the buffer is flushed to a file when the Virtual Tester ends.

You may flush the buffer at any point in the .pts test script by using the FLUSH_TRACE instruction.

You cannot call the FLUSH_TRACE instruction, either directly or indirectly, from a CALLBACK or PROCSEND block.

See the Reference section for detailed information on .pts test script instructions.

Note The TRACE_ON, TRACE_OFF and FLUSH_TRACE instructions only apply when the Circular Trace Buffer option is

selected.

Related Topics

Test Script Compiler Settings on page 1038 | System Testing for C Settings on page 1038

On-the-Fly Tracing

System Testing for C

The System Testing for C on-the-fly tracing capability allows you to monitor the Virtual Testers during the test

execution in a UML sequence diagram. Information provided by dynamic tracking includes:

• Beginning and end of scenarios

• Rendezvous

• Sent and received messages

• Inter-tester messages (only received messages)

• Beginning and end of termination, initialization and exception blocks

• End of Testers

On-the-fly tracing output is displayed in the UML/SD Viewer on page 431 in real-time. You can click any item in the

sequence diagram to instantly highlight the corresponding test script line in the Text Editor window.

To activate System Testing dynamic tracking:

Chapter 5. Test Execution Specialist Guide

1. select On-the-fly tracing in the System Testing Advanced Settings for the System Testing test node

2. ensure that the Allow remote connections option in selected in the General Preferences.

Related Topics

Understanding System Testing UML Sequence Diagrams on page 673

Using the graphical user interface

The graphical user interface (GUI) of HCL OneTest™ Embedded provides an integrated environment designed to act

as a single, unified work space for all automated testing and runtime analysis activities.

This section describes the features and capabilities included within the GUI.

GUI Philosophy

In addition to acting as an interface with your usual development tools, the GUI provides navigation facilities, allowing

natural hypertext linkage between source code, test, analysis reports, UML sequence diagrams. For example:

• You can click any element of a test report to highlight the corresponding test script line in the embedded text

editor.

• You can click any element of an runtime analysis report to highlight and edit the corresponding item in your

application source code

• You can click a file name in the output window to open the file in the Text Editor

In addition, the GUI provides easy-to-use Activity Wizards to guide you through the creation of your project

components.

To learn about See

Starting a new activity Activity Wizards on page 695

Using the Project Explorer to create, develop and execute your project

nodes

Setting Up a Project on page 706

Understanding Configurations and Configuration Settings About Configuration Settings on

page 690

Identifying and using various the components of the GUI
Discovering the GUI on page 1055

Launching a GUI node from the command line Running a Node from the Command

Line on page 996

Viewing and editing a source file or test script About the Text Editor on page 725

689

HCL® OneTest™ Embedded

690

Controlling source code versions Working with Configuration Manage­

ment on page 49

Viewing a report Using the Report Viewer on page 737

Customizing the GUI Editing Preferences on page 1044

Adding external tools to the GUI About the Tools Menu on page 744

Related Topics

Command Line Interface on page 995 |

GUI components and tools

The HCL OneTest™ Embedded GUI provides a comprehensive set of tools and components that make it an efficient

and customizable development environment.

• The text editor on page 725 is a full-featured editor for source code

• The Tools on page 744 menu is a convenient way of integrating any command-line tool into the GUI

• The test process monitor on page 740 provides ongoing activity statistics and metrics

• The report viewer on page 737 displays runtime analysis reports

• The UML/SD viewer on page 431 displays UML sequence diagrams provided by Runtime Tracing feature.

Related Topics

Using the Graphical User Interface on page 689 | Activity Wizards on page 695 | Discovering the GUI on

page 1055

Configurations and settings

Configurations and Settings

Two major concepts of HCL OneTest™ Embedded are Configurations and Configuration Settings:

• A Configuration is an instance of a Target Deployment Port (TDP) as used in your project.

• Configuration Settings are the particular properties assigned to each node in your project for a given

Configuration.

A Configuration is not the actual Target Deployment Port. Configurations are derived from the Target Deployment Port

that you select when the project is created, and contain a series of Settings for each individual node of your project.

This provides extreme flexibility when you are using multiple platforms or development environments. For example:

Chapter 5. Test Execution Specialist Guide

• You can create a Configuration for each programming language or compiler involved in your project.

• If you are developing for an embedded platform, you can have one Configuration for native development on

your Unix or Windows development platform and another Configuration for running and testing the same code

on the target platform.

• You can set up several Configurations based on the same TDP, but with different libraries or compilers.

• If you are using multiple programming languages in your project, you can even override the TDP on one or

several nodes of a project.

The Configuration Settings allow you to customize test and runtime analysis configuration parameters for each node

or group of your project, as well as for each Configuration. You reach the Configuration Settings for each node by

right-clicking any node in the Project Explorer window and selecting Settings.

The left-hand section of the Configuration Settings window allows you to select the settings families related to the

node, as well as the Configuration itself, to which changes will be made. The right-hand pane lists the individual

setting properties.

The right-hand section contains the various settings available for the selected node.

Propagation Behavior of Configuration Settings

The Project Explorer displays a hierarchical view of the nodes that constitute your project.

Settings for each node are inherited by child nodes from parent nodes. For instance, Settings of a project node will be

cascaded down to all nodes in that project.

Child settings can be set to override parent settings. In this case, the overridden settings will, in turn, be cascaded

down to lower nodes in the hierarchy. Overridden settings are displayed in bold.

Settings are changed only for a particular Configuration. If you want your changes to a node to be made throughout

all Configurations, be sure to select All Configurations in the Configuration box.

To change the settings for a node:

1. In theProject Explorer, click theSettingsbutton.

2. Use the Configuration box to change the Configuration for which the changes will be made.

3. In the left pane, select the settings family that you want to edit.

4. In the right pane, select and change the setting properties that you want to override.

5. When you have finished, click OK to validate the changes.

691

HCL® OneTest™ Embedded

692

Note: The Enter and Esc keys do not work in the Configuration Settings window. Use the OK, Apply, and

Cancel buttons.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Configuration Settings Structure

The Configuration Settings provides access to the following settings families:

• General

• Build

• Runtime Analysis

• Component Testing

The actual settings available for each node depend on the type of node and the language of the selected

Configuration.

General Settings

To learn about See

Configuring the compiler and linker options Build Settings on

page 1019

General project settings General Settings on

page 1022

Adding a user-specified command line to the

project

External Command Settings

on page 1042

Controlling System Testing Probes Probe Control Settings on

page 1041

Runtime Analysis

The Runtime Analysis setting family covers Configuration Settings for Memory Profiling, Performance Profiling, Code

Coverage and Runtime Tracing.

To learn about See

Chapter 5. Test Execution Specialist Guide

Setting up instrumentation and file storage locations General Runtime Analysis Set­

tings on page 1024

Configuring Memory Profiling error and warning detection Memory Profiling Settings on

page 1030

Specifying a trace file name for Performance Profiling Performance Profiling settings on

page 1032

Setting coverage levels and instrumentation options for Code Cover­

age

Code Coverage Settings on

page 1027

Configuring sequence diagram output Runtime Tracing Control Settings

on page 1032

Automated Testing Settings

This setting family covers Configuration Settings for Component Testing and System Testing features.

To learn about See

Setting up C and Ada test execu­

tion

Component Testing Settings for C and

Ada on page 1034

Setting up C++ test execution Component Testing for C++ Settings on

page 1036

Setting up system test execution System Testing Settings on page 1038

Related Topics

Modifying Configurations on page 694 | Selecting Configurations on page 231 | Project Explorer on page 1056

Switching test configurations
Although a project can use multiple configurations, as well as multiple TDPs, there must always be at least one active

configuration. You can switch from one configuration to another at any time, except during build activity.

About this task

The active configuration affects compiler and deployment options for each resource in the project.

Note: You can also run a test harness with two different test configurations by creating a test suite. See

Creating test suites on page 228.

To change the active test configuration:

693

HCL® OneTest™ Embedded

694

1. In the project explorer, right-click the project and click Properties.

2. Expand C/C++ Build, select Settings, and click Manage Configurations.

Result

The Manage Configurations window for the project opens.

3. Select the configuration that you want to use to build and run the test and click Set Active.

4. Click OK to close the Manage Configurations window.

Related information

Creating test configurations on page 230

Modifying Configurations

Configurations are based on the Target Deployment Ports (TDP) that are specified when you create a new project. In

fact, a Configuration contains basic Configuration Settings for a given TDP applied to a project, plus any node-specific

overridden settings.

Remember that although a project can use multiple Configurations, as well as multiple TDPs, there must always be at

least one active Configuration.

When you create a new configuration, the settings are initialized using the default settings of the TDP.

Configuration Settings are a main characteristic of the project and can be individually customized for any single node

in the Project Explorer.

To create a new Configuration for a Project:

1. From the Project menu, select Configurations.

2. In the Configurations dialog box, click the New... button.

3. Enter a Name for the Configuration.

4. Select the Target Deployment Port to be used to create the Configuration.

5. Enter the Hostname, Address and Port of the machine on which the Target Deployment Port is to be

compiled.

6. Click OK.

7. Click Close.

To remove a Configuration from a Project:

If you choose to remove a Configuration, all custom settings for that Configuration will be lost.

Chapter 5. Test Execution Specialist Guide

1. From the Project menu, select Configurations.

2. In the Configurations dialog box, select the Configuration to be removed.

3. Click the Remove button.

4. Click Yes to confirm the removal of the Configuration

To copy an existing Configuration:

This can be useful if you want several Configurations, with different custom settings, based on a unique Target

Deployment Port.

1. From the Project menu, select Configurations.

2. In the Configurations dialog box, select an existing Configuration.

3. Click the Copy To... button

4. Enter a Name for the new Configuration.

5. Click OK.

Related Topics

Opening the Target Deployment Port Editor on page 40 | About Configuration Settings on page 690 | Selecting

Configurations on page 231 | Target deployment port overview on page 17

Creating tests and applications

Activity wizards overview

The Start Page provides with a full set of activity wizards to help you get started with a new project or activity.

To start a new activity wizard:

1. From the Start Page, click New Activities

2. Select the activity of your choice.

To learn about See

Creating a new project New Project Wizard on

page 696

Creating a new application node configured for a Runtime Analysis fea­

ture

Runtime Analysis Wizard

on page 696

695

HCL® OneTest™ Embedded

696

Creating a new test node for Component Testing Component Testing Wiz­

ard on page 698

Creating a new test node for System Testing System Testing Wizard on

page 701

Related Topics

Discovering the GUI on page 1055 | Start Page on page 1055 | Manually Creating a Test or Application Node on

page 712

Creating a new project

When HCL OneTest™ Embedded starts, the Start Page offers to either open an existing project or create a new

project. The New Project wizard creates a brand new project.

To create a new project:

1. From the Start Page, select New Project. If you want to use a project template as the basis for your project,

selectNew Project from Template.

2. In the Project Name, enter a name for the project.

3. In the Location box, change the default directory if necessary and click Next to continue.

4. Select one or several Target Deployment Ports for the new project.

The Wizard creates a Configuration based on each selected Target Deployment Port. Later, when working with the

project, any changes are made to the Configuration Settings on page 690, not to the Target Deployment Port itself.

1. Click the Set as Active button to set the current TDP. The active port is the default Configuration to be used in

your project.

2. Click Finish.

Once your project has been created, the wizard opens the Activities page.

Related Topics

Target deployment port overview on page 17 | Activity wizards on page 695 | Start page on page 1055 | Using

project templates on page 720

Creating a runtime analysis application node

The Runtime Analysis Wizard helps you create a new application node in the Project Explorer. Basically, an application

node represents the build of your C, C++, or Ada source code, which is very similar to most other integrated

development environments (IDE). You can actually use this graphical user interface as your primary IDE.

Chapter 5. Test Execution Specialist Guide

Once you have created your application node, you simply add the options required to run any of the runtime analysis

features:

• Memory Profiling

• Performance Profile

• Code Coverage

• Runtime Tracing

To create an application node with the Runtime Analysis Wizard:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration box.

3. On the Start Page, select Activities and choose the Runtime Analysis activity.

4. TheApplication Filespage opens. Use theAddandRemovebuttons to build a list of source files and header files

(for C and C++) to add to your project.

The Configuration Settings button allows you to override the default Configuration Settings.

Use the Move Up and Move Down buttons to change the order in which files appear in the application node, and

subsequently are compiled.

Use the Remove button to remove files from the selection.

Click Next to continue.

1. Select the C procedures and functions, or C++ classesor Ada unitsthat you want to analyze.

Use the Select File and Deselect File buttons to specify the files that contain the components that you want to

analyze. The Select All and Deselect All buttons to select or clear all components.

Click Next to continue.

Enter a name for the application node.

By default, the new application node inherits Configuration Settings from the current project. If necessary, click

Settings to access the Configuration Settings dialog box. This allows you to change any particular settings for the

new application node as well as its contents.

Click Next to continue.

1. In the Summary page, check that all the parameters are correct, and click Finish.

The wizard creates an application node that includes all of the associated source files.

697

HCL® OneTest™ Embedded

698

You can now select your build options to apply any of the runtime analysis tools to the application under analysis.

Related Topics

Activity Wizards on page 695| Component Testing Wizard on page 698 | Using Runtime Analysis Features on

page 336| Selecting Build Options on page 731

Creating a component test

The Component Testing Wizard helps you create a new Component Testing test node in your project for C, C++ and

Ada.

For each script type, the wizard analyzes the source code under test to extract unit information and will produce a

corresponding test script template using the following test script types:

• C Test Script Language

• C++ Test Driver Script Language

• C++ Contract-Check Language

• Ada Test Script Language

• JUnit Test Harness

You use the generated test script template to elaborate your own test cases.

You can later add to this test node any of the runtime analysis features on page 336 included in HCL OneTest™

Embedded.

There are two methods of creating a test node with the Component Testing wizard:

• From the Start page: this method allows you to specify a set of files or components to test.

• From the Asset Browser: this method rapidly creates a test from a single file or source code component

selected in the Asset Browser.

Once the test node has been generated, you can complete your Component Testing test scripts in the Text Editor.

Refer to the HCL OneTest™ Embedded Reference section of the help for information about the actual language

semantics.

To run the Component Testing Wizard from the Start Page:

1. Use theStart Pageor theFilemenu to open or create a project. Ensure that the correct Configuration is selected

in theConfiguration box. The selected programming language impacts the type of Component Testing test

node to be created.

2. On the Start Page, select Activities and choose the Component Testing activity.

Chapter 5. Test Execution Specialist Guide

3. On the Application Files page, use the Add and Remove buttons to build a list of source files and header files

(for C and C++) to add to your project. The Configuration Settings button allows you to override the default

configuration settings.

4. Select Compute Static Metrics to run the analysis of static testability metrics.

5. Click Next to continue.

Note: If the static metrics analysis takes too much time, you can clear the Compute Static Metrics

option. In this case, the calculation and display of static metrics in any further steps are disabled.

Note: With Component Testing for Ada, it is not possible to submit only an Ada procedure file. Instead,

you must include the single procedure in a package.

6. On the Components Under Test page, select the units or files for the selected source files. In order to help

you choose which components you want to test, this page displays the metrics for each file or unit (packages,

classes or functions depending on the language).

7. Select File Selection to choose files under test or Unit Selection to choose the source code units that require

testing. The selection mode toggles the static metrics displayed between file metrics or unit metrics.

Note: If the Unit Selection view seems incomplete, cancel the wizard, from the Project menu, select

Refresh File Information and restart the wizard.

8. Click Metrics Diagram to select the units under test from a graph representation on page 704.

9. Click Next to continue or Generate to skip any further configuration and to use default settings.

10. On the Test Script Generation Settings page, specify the test node generation options. The General settings

specify how the wizard creates the test node.

◦ Test Name:Enter a name for the test node.

◦ Test Mode:Disables or enables the test boundaries.

◦ Typical Mode:No test boundaries are specified. This is the default setting.

◦ Expert Mode:This mode allowing you to manually drive generation of the test harness. This provides

more flexibility in sophisticated software architectures.

◦ Node Creation Mode: Selects how the test node is created:

▪ Single Mode:In C and Ada, this mode creates one test node for each source file under test. In C

++, it creates one test node for all selected source code components.

▪ Multiple Mode:This creates a single test node for each selected source code unit.

The Components Under Test settings specify advanced settings for each component of the test node. These

settings depend on the language and Configuration.

11. Click Next to continue.

12. Review the Summary. This page provides a summary of the selected options and the files that are to be

generated by the wizard.

13. Click Next to create the test node based on this information.

699

HCL® OneTest™ Embedded

700

14. The Test Generation Result page displays progression of the test node creation process. Click Settings to set

the Configuration Settings on page 690. You can always modify the test node Configuration Settings later if

necessary, from the Project Explorer.

Note: If you apply new settings after the test generation, the wizard reruns the test generation. This

allows you to fine-tune any settings that may cause the test generation to fail.

15. Once a test node has been successfully generated, click Finish to quit the Component Testing Wizard and

update the project.

To run the Component Testing Wizard from the Asset Browser:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration box. The selected programming

language impacts the type of Component Testing test node to be created.

3. In the Project Explorer, select the Asset Browser tab.

4. Right click an object, package or source file under test. From the pop-up menu, selectTest.

5. On the Test Script Generation Settings, specify the test node generation options. The General settings specify

how the wizard creates the test node.

◦ Test Name: Enter a name for the test node.

◦ Test Mode: Disables or enables the test boundaries.

◦ Typical Mode: No test boundaries are specified. This is the default setting.

◦ Expert Mode: This mode allowing you to manually drive generation of the test harness. This provides

more flexibility in sophisticated software architectures.

6. The Components Under Test settings specify advanced settings for the component of the test node. These

settings depend on the language and Configuration.

7. Click Next to continue.

8. Review the Summary. This page provides a summary of the selected options and the files that are to be

generated by the wizard.

9. Click Next to create the test node based on this information.

10. The Test Generation Result page displays progression of the test node creation process. ClickSettingsto set

the Configuration Settings on page 690. You can always modify the test node Configuration Settings later if

necessary, from the Project Explorer.

Note: If you apply new settings after the test generation, the wizard reruns the test generation. This

allows you to fine-tune any settings that may cause the test generation to fail.

11. Once a test node has been successfully generated, click Finish to quit the Component Testing Wizard and

update the project.

Related Topics

Chapter 5. Test Execution Specialist Guide

Component Testing for C and Ada on page 478 | Component Testing for C++ on page 543|

Creating a system test

The System Testing Wizard helps you create a new System Testing test node in your project.

Basically, a System Testing node contains a .pts test script as well as a set of Virtual Testers for message-based

testing.

Note: System Testing for C does not support paths or file names which contain spaces. When naming files or

directories, make sure that these do not contain any spaces.

To create a System Testing node:

1. Enter the name of the new System Testing test node.

2. On the Test Script Selection (1/7)page, select the source files that are used to build your application among

the source files that are currently in your workspace.

a. Select whether you want to create a new .pts test script file, or if you want to reuse an existing test

script. In both cases you will need to enter a name for the .pts test script.

b. Next, use the Add and Remove buttons to build a list of interface files. The Interface Files List must

contain .h header files that define the message structures used by your application.

c. Click Next to continue.

3. On the Include Directories List (2/7) page, specify the directories that contain include files that can be

required by the interface files and the messaging API.

a. Use the Add and Remove buttons to build a list of include directories. These are the directories that

contain files that are included by your application's source code. If necessary, you can use the Up and

Down buttons to indicate the order in which they are searched.

b. Click Next to continue. If you chose to use an existing .pts test script, this brings you straight to step 5.

4. If you chose to create a new .ptstest script, on theGenerate New Test Script (3/7) page, specify the message

type to be used by the test.

a. Message type: Select the type definition that will be used for messages.

b. If you want to use an existing .hts adaptation layer file choose Select an adaptation layer file and add

your .hts files to the list.

c. If you want to create a new messaging API for the test, select Create a messaging APIand enter the

following information:

▪ Generate with INSTANCE blocks: Select this option if you want INSTANCE statements to be

created in the .pts test for a multi-process or multi-threaded test driver.

▪ Base filename: Specify the name of the generated API files. The wizard generates .c, .h and

.hts files based on this filename.

▪ Directory: Specify the location where the API files will be generated.

d. Click Next to continue.

5. On theGenerate New Test Script (4/7) page, change the configuration settings of the test node or clickNext.

701

HCL® OneTest™ Embedded

702

6. On the Virtual Tester Driver Creation (5/7) page, you can create a set of virtual testers.

a. Use the New button to create and name a new virtual tester. You can create and duplicate several

virtual testers. You can also skip this page and decide to create your virtual testers later on.

b. When a virtual tester is selected, in the General tab, specify an instance and target deployment port for

the virtual tester.

▪ VT Name: This is the name of the selected virtual tester. This must be a standard C identifier.

▪ Implemented INSTANCE: Use this box to assign an INSTANCE statement, defined in the .pts

test script, to the selected virtual tester. This information is used to deploy the virtual tester.

Select Default to manually specify the instance during deployment.

▪ Target: Select the Target Deployment Port that will be used for the selected Virtual Tester.

c. In the Scenario tab, select one or several scenarios as defined in the .pts test script. During execution,

the Virtual Tester plays the selected scenarios.

d. In the Family tab, select one or several families as defined in the .pts test script. During execution, the

Virtual Tester plays the selected families.

e. If necessary, click the Configure Settings button to change the configuration settings for the selected

virtual tester.

f. The API source files list displays the generated messaging API source files. Use the Add or Remove

buttons to modify this list if your messaging API requires more files.

g. Click Next to continue.

7. On theDeploy Configuration (6/7)page, specify how to deploy the virtual testers onto host and target

computers. Use the Add, Remove buttons to modify the list. Each line represents one or several parallel

executions of a virtual tester assigned to an instance, target host, and other parameters.

◦ Number of Occurrences: Specifies the number of simultaneous executions of the current line.

◦ Virtual Tester Name: Specifies one of the previously created virtual testers.

◦ INSTANCE: Specifies the instances assigned to this virtual testers. If an instance was specifically

assigned in the Virtual Tester Configuration on page 623 box, this cannot be changed. Select

<default> only if no INSTANCE is defined in the test script.

◦ Network Node: This defines the target host on which the current line is to be deployed. You can enter

a machine name or an IP address. Leave this field blank if you want to use the IP address specified in

the Host Configuration section of the General Settings on page 1022.

Note: If the IP address line in the Host Configuration settings is blank, then the Virtual

Tester Deployment Table retrieves the IP address of the local machine when generating the

deployment script.

8. Click the Advanced Options button to add the following columns to the Virtual Tester Deployment Table, and

to add the Rendezvous... button.

◦ Agent TCP/IP Port: This specifies the port used by the System Testing Agents on page 619 to

communicate with HCL OneTest™ Embedded.

◦ By default, System Testing uses port 10000.

◦ Delay: This allows you to set a delay between the execution of each line of the table.

Chapter 5. Test Execution Specialist Guide

◦ First Occurrence ID: This specifies the unique occurrence ID identifier for the first Virtual Tester

executed on this line. The occurrence ID is automatically incremented for each number of instances of

the current line. See Communication Between Virtual Testers on page 653 for more information.

◦ RIO filename: This specifies the name of the .rio file containing the Virtual Tester output, for use in

multi-threaded or RTOS environments on page 628.

◦ If necessary, click the Rendezvous Configuration button to set up any rendezvous members.

◦ Click Next to continue.

9. Review the options in theTest Generation Summary (7/7)page and use theBack button if necessary to make

any changes.

◦ Test Script File: indicates the name of the .pts test script.

◦ Interface Files:lists the interface files defining the communication routines of your application.

◦ Included Directories:lists the directories containing files included by your application.

◦ Virtual Testers:lists the virtual testers that are to be deployed by the test.

10. Click the Finish button to launch the generation of the System Testing node with the corresponding virtual

testers.

The wizard creates a test node with the associated test scripts. The test node appears in the Project Explorer.

If you chose to create a new .pts test script, you can now complete the generated System Testing test script in the

Text Editor and then configure on page 623 and deploy on page 625 your virtual testers.

Refer to the System Testing language reference on page 926 for information about the System Testing script

language.

Related Topics

Activity Wizards on page 695 | Configuring Virtual Testers on page 623 | Deploying Virtual Testers on page 625

| Setting Up Rendezvous Members on page 627 | INSTANCE on page 891 | SCENARIO on page 909 | FAMILY on

page 885 | System Testing settings on page 1038 | System Testing supervisor on page 687 |

Metrics Diagram Options

The Metrics Diagram displays a simple two-axis plot based on the static metrics calculated by the wizard. The

metrics on each axis can be changed in the Metrics Diagram Options dialog box:

• Axis Selection: Set the most relevant metrics for your application on the Vertical Axis and Horizontal Axis.

• Horizontal Axis Scale: Use this setting to display a gray line at the specified step.

• Vertical Axis Scale: Use this setting to display a gray line at the specified step.

• Display unit name: select this option to display the names of units next to the diagram checkboxes.

See About Static Metrics on page 252 for information about the available metrics.

To modify the Testability Metrics Graph:

703

HCL® OneTest™ Embedded

704

1. Run the Component Testing wizard.

2. From the Components under Test page, click Metrics Diagram.

3. Click Options.

4. Change the display options and click OK.

Related Topics

Metrics Diagram on page 704 | Component Testing Wizard on page 698 | About Static Metrics on page 252

Viewing a static metrics diagram

As part of the Component Testing wizard, HCL OneTest™ Embedded provides static testability metrics to help you

pinpoint the critical components of your application. You can use these static metrics to prioritize your test efforts.

The graph displays a simple two-axis plot based on the static metrics calculated by the wizard. The actual metrics on

each axis can be changed in the Metrics Diagram Options on page 703 dialog box.

Each unit (function, package or class, depending on the current Configuration language) is represented by a checkbox

located at the intersection of the selected testability metrics values.

Move the mouse pointer over a checkbox to display a tooltip with the names of the associated units. To test a unit,

select the corresponding checkbox.

HCL OneTest™ Embedded also provides a Static Metrics Viewer on page 253, which is independent from the

Component Testing wizard and can be accessed at any time.

To access the wizard Metrics Diagram:

1. From the Start Page, run the Component Testing wizard.

2. From the Components under Test page, click Metrics Diagram.

To select a unit for test:

1. If necessary, click Options to set the two most relevant metrics for your application. This displays each unit at

the intersection point of the two values.

2. Move the mouse pointer over a checkbox to display a tooltip with the name of the unit.

3. Select the most relevant units to test. Units under test are displayed in the list box.

4. Click OK to validate the selection.

Related Topics

Chapter 5. Test Execution Specialist Guide

Component Testing Wizard on page 698 | About Static Metrics on page 252 | Metrics Diagram Options on

page 703

Specifying advanced component test options

The Advanced Options dialog box allows you to specify a series of advanced test generation parameters in the

Component Testing wizard. In most cases, you can leave the default values.

The actual options available in this dialog box depend on the programming language of the current Configuration:

• C or Ada

• C++

Component Testing for C and Ada

The following advanced options are available in the Component Testing wizard with a C or Ada Target Deployment

Port:

• Tested file: name of the source file under test

• Test script and path: location and name of the generated test script template

• Test static/private data or functions: specifies whether the file under test is included in a ﷓include statement.

• Additional options: allows you to add specific command line options for the C or Ada Source Code Parser.

See the Command Line Reference section in the help for further information.

Component Testing for C++

The following advanced options are available in the Component Testing wizard for C++:

• Tested file: name of the source file under test.

• Test driver script: specifies whether an .otd test driver script is to be generated.

• Contract-Check script: specifies whether an .otc Contract Check driver script is to be generated.

• Test script and path: location and name of the generated .otd test driver script template.

• Directory for Contract-Check script files: sets the location where the .otc Contract Check script files are

created.

• Additional options: allows you to add specific command line options for the C++ Source Code Parser. See the

Line Command section in the Reference section of the help for further information.

• Ignore #line directive: by default, the Test Generation Wizard analyzes #line directives, although use of

preprocessed files with Component Testing for C++ is not recommended. Select this option when #line

directives should be ignored.

705

HCL® OneTest™ Embedded

706

• Test union and struct as class: tells the Test Generation Wizard to consider classes defined with the struct

or union keyword as candidate classes. This option is only available if the auto-select candidate classes was

selected on the File and Classes under Test page.

• Test each template instance: tells the wizard to generate C++ Test Script Language code for each instance

of a template class. If this option is selected, there must be template class instances in the source file under

test. By default, the Test Generation Wizard generates a single portion of C++ Test Script Language code for a

template class.

• Overwrite previous test scripts: tells the wizard to overwrite any previously generated .otc or .otd test scripts.

if this option is not selected, no changes will be made to any existing .otc or .otd test scripts.

• Path for included header files: specifies how include file names must be analyzed.

• ◦ Select Relative for relative filenames.

◦ Select Absolute for absolute filenames.

◦ Select Copy to use include the path as specified.

• Included files: use the Add and Remove buttons to add and remove files in the list. The include file list used by

the Component Testing wizard is kept in the generated test node settings.

Related Topics

Component Testing Wizard on page 698 | About Configuration Settings on page 690

Working with Projects

The project is your main work area in HCL OneTest™ Embedded , as displayed in the Project Explorer window.

A project is a tree representation that contains nodes. Projects can contain one or more sub-projects which are

actually links to other projects.

Note Previous versions of the product used Workspaces instead of sub-projects. Workspaces are automatically

converted to sub-projects when loaded into the current version of the product.

Within the project tree, each node has its own individual Configuration Settings —inherited from its parent node— and

can be individually executed.

To learn about See

Creating a new project New Project Wizard on page 696

Understanding how projects work Understanding Projects on page 707

Creating a group folder inside a project Creating a Group on page 714

Chapter 5. Test Execution Specialist Guide

Adding a new application node to a project without using an activity wiz­

ard

Manually Creating an Application

Node on page 712

Adding files from an existing makefile Importing a Makefile on page 722

Adding a command line to a project Creating an External Command Node

on page 713

Adding source files to an existing node Adding Files to the Project on

page 720

Excluding a node from execution Excluding a Node from a Build on

page 732

Removing a node from a project Deleting a Node on page 714

Renaming an existing node in the project Renaming a Node on page 719

Changing build options and Runtime Analysis tools Selecting Build Options on page 731

Executing the project or an individual node Building and Running a Node on

page 730

Using the Debug setting of your compiler Debug Mode on page 734

Removing all previously generated files Cleaning Up Generated Files on

page 734

Related Topics

Project Explorer on page 1056

About Configuration Settings on page 690

Activity Wizards on page 695

Project overview

A project is a tree representation that contains nodes.

Within the project tree, each node has its own individual Configuration Settings —inherited from its parent node— and

can be individually executed.

Project Nodes

The project is your main work area in HCL OneTest™ Embedded.

A project is materialized as a directory in your file system, which contains everything you need to test and analyze

your code:

707

HCL® OneTest™ Embedded

708

• Source code

• Test scripts

• Analysis and test result files

In the HCL OneTest™ Embedded graphical user interface, a project is organized as follows:

• Project node: this node contains any of the following nodes:

• ◦ Group node: Allows you to group together several application or test nodes.

◦ Application node: contains a complete application.

◦ ▪ Results node: contains your runtime analysis result files, once the application has been

executed. Use this node to control the result files in Rational ClearCase or any other

configuration management system.

▪ Source node: these are the actual source files under test. They can be instrumented or not

instrumented .

◦ Test node: represents a complete test harness, for Component Testing for C and Ada , C++ , or

System Testing . A test node containing.

◦ ▪ Results node: contains your test result files, once the test has been executed. Use this node to

control the result files in Rational ClearCase or any other configuration management system.

▪ Test Script node: contains the test driver script for the current test.

▪ Source node: these are the actual source files under test. They can be instrumented or not

instrumented .

◦ External Command node: this node allows you to execute a command line anywhere in the project.

Use this to launch applications or to communicate with the application under test.

Application and test nodes can be moved around the project to change the order in which they are executed. The

order of files inside a Test node cannot be changed; for example the test script must be executed before the source

under test.

Projects and sub-projects

Projects can contain one or more sub-projects which are actually links to other project directories. The behaviour of a

sub-project is the same as a project. In fact, a sub-project can be opened separately as a stand-alone project.

Note Previous versions of the product used Workspaces instead of sub-projects. Workspaces are automatically

converted to sub-projects when loaded into the current version of the product.

Chapter 5. Test Execution Specialist Guide

Here are several examples of the use of super-projects and sub-projects:

• In a team, users work on their own projects to develop and test portions of a larger development project. For

testing the whole project, a single master project can be created to integrate, build, and test multiple sub-

projects in one go.

• A single project may contain different sub-projects for different target platforms.

Results Node

By default, each application and test node contains a Results node.

Once the test or runtime analysis results have been generated, this node contains the report files. Right-click the

result node or the report files to bring up the Source Control pop-up menu.

If you are not controlling result files in a configuration management system, you can hide the Results node by setting

the appropriate option in the Project Preferences.

Related Topics

Project Preferences on page 1050 | Working with Projects on page 706 | Working with Configuration Management

on page 49 | Creating a super-project with sub-projects on page 723

Example projects

HCL OneTest™ Embedded is provided with a range of example projects aimed at demonstrating most of the

features of the product. You may use them to familiarize yourself with those features. Do not hesitate to review and

manipulate the source files and scripts provided in these examples.

Most examples are designed to run directly with a default Configuration.

To access open an example project:

1. From the Start page, click Examples on the left side of the page. This opens the Examples page.

2. Click any of the example projects to open them in the product.

Example Lan­

guage

Description

BaseStation

C

C/C+

+

Main sample project covering most test and runtime analysis features. This sample is used for

the C and C++ tutorial.

Broadcast

Server

C A sample that demonstrates the use of System Testing for C with a single VT as a process, a

double VT as a double process and a double VT as one multithreaded process.

Chained List C++ This sample shows how to test chained lists with Component Test for C++.

709

HCL® OneTest™ Embedded

710

ABWL

Check Fre­

quency

C This sample demonstrates the Memory Profiling manual check feature for checking ABWL and

MFWL errors. See Checking for ABWL and FMWL errors on page 408 for more information.

Data Pool C This project shows how to incorporate data tables in .csv format in your tests. See Importing a

Data Table (.csv File) on page 724.

Enum Ada Ada A project that demonstrates Component Testing for Ada for testing enum types.

Generic Ada Ada A sample demonstrating how to test generic units in Ada. See Testing Generic Compilation

Units on page 603.

Histogram

Ada

Ada This project demonstrates array handling and overriding ENVIRONMENT statements with

Component Test for Ada.

Philosopher C A sample C application for Runtime Analysis in a multithreaded environment (Windows only)

Dinner Party C++ A Component Testing for C++ sample application in a multithreaded environment with class

inheritance (Windows only).

Shape C++ A simple class inheritance example for Component Testing for C++.

Shape Ada Ada This example demonstrates Component Testing on object-oriented Ada.

Shared Li­

brary

C++ This sample demonstrates how to use shared library files in your applications. See Using

shared libraries on page 718 for more information.

Stack C A simple example project on a stack application for System Testing for C.

Stub Ada Ada A simple example project demonstrating the usage of stubs with Component Testing for Ada.

See Stub simulation Ada on page 588.

Stub C C A simple example project demonstrating the usage of stubs with Component Testing for C.

See Stub Simulation in C on page 507.

Task Ada Ada A simple example project demonstrating how to test Ada tasks with Component Testing for

Ada.

Add C An extremely short example to help you to develop new TDPs.

Template

Cpp

C++ An example of Component Testing for C++ on C++ templates

Testing Ada Ada This sample demonstrates how to test various variable types in Ada.

Testing C C This sample demonstrates how to test various variable types in C.

Test Suite

Ada

Ada Use this sample to validate any changes made to an Ada Target Deployment Port.

Test Suite C C Use this sample to validate any changes made to a C Target Deployment Port.

Chapter 5. Test Execution Specialist Guide

Troubleshooting a project

When executing a node for the first time in HCL OneTest™ Embedded, it is not uncommon to experience compilation

issues. Most common problems are due to some common oversights pertaining to library or include paths or Target

Deployment Port settings.

To help debug such problems during execution, you can prompt the GUI to report more detailed information in the

Output window by selecting the verbose output option.

To set the verbose output option from the GUI:

1. From theEditmenu, selectPreferences.

2. Select theProjectpreferences.

3. SelectVerbose outputand clickOK.

To set the verbose output option from the command line:

1. Set the environment variable$ATTOLSTUDIO_VERBOSE.

2. Rerun the command line tools.

Related Topics

Project Preferences on page 1050 | Configurations and Settings on page 690 | S on page 731 electing Build

Options on page 731 | Troubleshooting Command Line Usage on page 1009

Refreshing the asset browser

The Asset Browser view of the Project Explorer window analyzes source files and extracts information about source

code components (classes, methods, functions, etc...) as well as any dependency files. This capability, known as file

tagging, allows you to navigate through your source files more easily and provides direct access to the source code

components through the Text Editor on page 725.

When the automatic file tagging option is selected, HCL OneTest™ Embedded refreshes the file information whenever

a change is detected. However, you can use the Refresh Information command to update a single file or the entire

project.

You can change the way files are tagged by changing the Source File Information Configuration Settings for the

current project.

Note When many files are involved in the tagging process, the Refresh Information command may take several

minutes.

To manually refresh a single file in the Asset Browser:

1. In the Project Explorer, select the Asset Browser tab.

2. Right-click the file or object that you want to refresh.

3. From the pop-up menu, select Refresh Information.

711

HCL® OneTest™ Embedded

712

To refresh all project files:

1. From the Project menu, select Refresh File Information.

To activate or deactivate the automatic refresh:

With the automatic file tagging option, files are automatically refreshed whenever a file is loaded into the workspace

or selected in the Project Explorer.

1. From the Edit menu, select Preferences.

2. Select the Project preferences node.

3. Select or clear the Activate file tagging option, and then click OK.

To edit the Source File Information settings for the project:

1. In the Project Explorer, click the Settings button.

2. Select the project node in the Project Explorer pane.

3. In the Configuration Settings list, expand General.

4. Select Source File Information.

5. When you have finished, click OK to validate the changes.

Related Topics

About the Text Editor on page 725

Project Preferences on page 1050

General Settings on page 1022

Manually creating an application or test node

Application nodes and test nodes are the main building blocks of your workspace. An application node typically

contains the source files required to build the application.

Test nodes contain the source under test, test scripts and any dependency filed requires for the test.

The preferred method to create an application or test node is to use the Activity Wizard on page 695, which guides

you through the entire creation process.

However, if you are re-using existing components, you might want to create an empty application node and manually

add its components to the workspace.

The GUI allows you to freely create and modify test or application nodes. However, you must follow the logical rules

regarding the order of execution of the items contained in the node. When using Component Testing for C++, .otc

scripts must be placed before .otd scripts.

To manually add components to the application node.

Chapter 5. Test Execution Specialist Guide

1. In the Project Explorer, right-click a Project node or a Group node.

2. From the pop-up menu, select Add Child and Files.

3. In the File Selector, select the files that you want to add to the application node.

4. Click Ok.

Note Before running an application node created with this method, please ensure that all necessary files are present

in the application node and that all Configuration Settings on page 690 have been correctly set.

Related Topics

Deleting a Node on page 714

Creating an External Command Node on page 713

Creating a Group on page 714

Creating an external command node

External Command nodes are custom nodes that allow you to add a user-defined command line at any point in the

project tree.

This is particularly useful when you need to run a custom command line during test execution.

To add an external command to a workspace:

1. In the Project Explorer, right-click the node inside which you want to create the test, application or external

command node

2. From the pop-up menu, select Add Child and External Command.

3. To move the node up or down in the workspace, right-click the external command node and select Move Up

or Move Down .

To specify a command line for the external node:

Once the External Command node has been created, you can specify the command line that it will be carrying in the

Configuration Settings dialog box:

1. In the Project Explorer, click the Settings button.

2. Click the External Command node.

3. Enter the command in the Command box.

4. Click OK.

713

HCL® OneTest™ Embedded

714

Note External Commands support the GUI Macro Language so that you can send variables from the GUI environment

to your command line. See the GUI Macro Language section in the Reference Manual for further details.

Related Topics

About Configuration Settings on page 690 | External Command Settings on page 1042 | GUI macro variables on

page 1064

Creating a group

The Group node is designed to contain several application nodes. This allows you to organize workspace by grouping

applications together.

This also allows you to build and run a specific group of application nodes without running the entire workspace.

To create a group node:

1. In the Project Explorer, right-click the workspace node or right-click any application node.

2. From the pop-up menu, select Add Child and Group.

3. In the New Group box, enter the name of the group.

4. Click OK.

Related Topics

Building and Running a Node on page 730 | Project Explorer on page 1056

Deleting a node

Removing nodes from a project does not actually delete the files, but merely removes them from the Project

Explorer's representation.

To delete a node from the Project Explorer:

1. Select one or several nodes that you want to delete.

2. From the Edit menu, select Delete or press the Delete key.

Related Topics

Report Explorer on page 1059

Chapter 5. Test Execution Specialist Guide

Opening a report

Because of the links between the various views of the GUI, there are many ways of opening a test or runtime analysis

report in HCL OneTest™ Embedded . The mst common ones are described here.

Note Some reports require opening several files. For example, when manually opening a UML sequence diagram, you

must select at the complete set of .tsf files as well as the .tdf file generated at the same time. A mismatch in .tsf and

.tdf files would result in erroneous tracing of the UML sequence diagram.

To open a report from the Project Explorer:

1. Execute your test with the Build command.

2. Right-click the application or test node.

3. From the pop-up menu, select View Report and then the appropriate report.

Note Reports cannot be viewed before the application or test has been executed.

To manually open a report made of several files:

1. From the File menu, select Browse Reports. Use the Browse Reports window to create a list of files to be

opened in a single report. For example, a .tdf dynamic trace file with the corresponding .tsf static trace files.

2. Click the Add button. In the Type box of the File Selector, select the appropriate file type. For example,

select .tdf.

3. Locate and select the report files that you want to open. Click Open.

4. Click the Add button. In the Type box of the File Selector, select the appropriate file type. For example,

select .tsf.

5. Locate and select the report files that you want to open. Click Open.

6. In the Browse Reports window, click Open.

Report Viewers

The GUI opens the report viewer adapted to the type of report:

• The UML/SD Viewer displays UML sequence diagram reports.

• The Report Viewer displays test reports

• The Code Coverage Viewer on page 379 displays code coverage reports.

• The Memory Profiling Viewer on page 407 and Performance Profiling Viewer on page 421 display Memory

Profiling for Cand C++ and Performance Profiling results.

Related Topics

715

HCL® OneTest™ Embedded

716

Understanding Reports on page 738 | Using the Report Viewer on page 737 | Using the Memory Profiling Viewer

on page 407 | Using the Performance Profiling Viewer on page 421 | About the UML/SD Viewer on page 431 |

About the Code Coverage Viewer on page 379

Creating a source file folder

The Project Explorer Asset Browser provides a convenient way of viewing the source files in your project.

To make this even more convenient, you can create custom folders to accommodate any file types. This makes

navigation through your source files even easier.

Note The Asset Browser provides a virtual navigation interface. The actual files do not change location. Use the

Properties Window to view the actual file locations.

To create a custom folder:

1. In the Asset Browser, select the By File sort method.

2. Right-click on an existing folder.

3. From the popup menu, select New Folder...

4. Enter a name for the new folder and a file filter for the desired file type.

Related Topics

Discovering the GUI on page 1055 | Project Explorer on page 1056 | Properties Window on page 1058

Using assembler source files

HCL OneTest™ Embedded provides support for using assembler source code in your projects. Due to their nature, you

cannot use Component Testing or Runtime Analysis tools directly on assembler files.

Because assembler file extensions are not standard and depend on your development environment, it is necessary

to configure HCL OneTest™ Embedded to recognize the file extension used for assembler files. You must specify the

assembler file extension:

• In the Project Preferences on page 1050 in order for the GUI to recognize the file type.

• In the Using the TDP Editor on page 42 for the TDP to recognize assembler files.

To specify the file type preferences:

1. From the Edit menu, select Preferences and select the Project > Source File Types page.

2. Click Add to create a new line.

3. In the Extension column, enter the file extension. For example: *.asm.

Chapter 5. Test Execution Specialist Guide

4. In the Description column, enter the description of the file type. For example: Assembler source files.

5. Click OK.

To change ASMEXT in the TDP Editor:

1. Open the TDP Editor: from the Tools menu, select Target Deployment Port Editor > Start.

2. In the TDP Editor select Basic Settings and the native language of the TDP.

3. Double-click the ASMEXT customization point, and add the assembler file extension. For example: asm.

4. Save the TDP and quit the TDP Editor.

To add the assembler files to your project.

1. In the Project explorer, right click antest or application node and select Add Child > Files.

2. Select the corresponding file type; and locate and select the assembler files that you want to use in your

project.

3. Click OK.

Related Topics

Project Preferences on page 1050 | Using shared libraries on page 718 | Using the TDP Editor on page 42

Unloadable libraries

In some cases, the architecture of an application requires that shared libraries are loaded and unloaded dynamically

during the execution in order to optimizing memory usage.

HCL OneTest™ Embedded supports this behavior by allowing you to specify this in the Configuration settings of the

project. There are two steps to this:

• Define a shared library as unloadable

• Specify an application as using unloadable libraries

To use unloadable libraries in a project:

1. In theProject Explorer, click theSettings button.

2. Select an applicationor testnode in theProject Explorerpane.

3. In theConfiguration Settingslist, expandBuild > Build Target Deployment Port.

4. OnUse unloadable library, selectYes.

5. Select the library node of your unloadable shared library in theProject Explorerpane.

6. In theConfiguration Settingslist, expandBuild > Build Target Deployment Port.

7. OnBuild as unloadable library, selectYes.

8. When you have finished, clickOKto validate the changes.

717

HCL® OneTest™ Embedded

718

Related Topics

Using shared libraries on page 718 | Build Settings on page 1019

Using shared libraries

HCL OneTest™ Embedded provides support for using, testing and profiling shared libraries with any C or C++ test or

application node.

Shared libraries must be stored inside library nodes within the project in order for them to be accessed by test or

application nodes. The library node is a container for the source files of the shared library.

Once the library has been included in the project, you must create link the library to the test or application by creating

a reference node in the test or application node.

There are three steps that you must follow in order to use a shared library in your project:

• Create a library node in the project.

• Specify how the library is to be linked (statically or dynamically).

• Create a reference to the library in the test or application node.

To add a shared library to your project:

1. Right-click a group or project node and select Add Child and Library from the pop-up menu.

2. Enter the name of the Library node

3. Right-click the Library node and select Add Child and Files from the popup menu.

4. Select the source files of the shared library and clickOK.

To specify link settings for a library node:

1. Select a library node in the Project Explorer pane.

2. In the Project Explorer, click the Settings button.

3. Select the Build > Linker page and select the Generation Format:

◦ Static library (.lib, .a)

◦ Dynamic library (.dll, .so)

◦ Executable file (.exe)

4. When you have finished, click OK to validate the changes.

To link a library node to a test or application node:

Chapter 5. Test Execution Specialist Guide

1. Right-click the test or application node that will use the shared library and select Add Child and Reference

from the pop-up menu.

2. Select the library that you want to reference and click OK.

Example

An example demonstrating how to test and profile shared libraries is provided in the Shared Library example project.

See Example projects on page 709 for more information.

Related Topics

Profiling shared libraries on page 337 | Testing shared libraries on page 480

Viewing node properties

You can obtain and change file or node properties by opening the Properties window.

To view file properties:

1. Right-click a file in the Project Explorer.

2. Select Properties... from the pop-up menu.

Related Topics

Properties Window on page 1058

Renaming a node

Renaming a node in the Project Explorer involves modifying the properties of the node.

To change the name of a node:

1. In the Project Explorer, right-click the node that you want to modify.

2. Select Properties in the pop-up menu.

3. Change the Name of the node.

4. Click OK.

Related Topics

Viewing File Properties on page 719 | Working with Projects on page 706

719

HCL® OneTest™ Embedded

720

Adding files to a project

The Project Explorer centralizes all Project files in a unique location. For HCL OneTest™ Embedded to access and

analyze source files, they must be accessible from the Project Explorer on page 1056.

Files are automatically added when you use the Activity Wizard on page 695.

To add files to the Project Explorer:

1. In the Project Explorer, select the Object Browser tab

2. In the Sort Method box, select By Files.

3. SelectProject > Add to Current Project > New File.

4. This opens the file selector. In the file Type box, select the type of files that are to be added.

5. Locate and select one or several files to be added, and click Open.

The selected files will appear under the Source sections of the Project Explorer.

If you have the Automatic source browsing option enabled, your source files will be analyzed, making their

components directly accessible in the Project Explorer.

You can also create new files by right-clicking a node and selecting A dd Child > Add New File.

Related Topics

Editing Preferences on page 1044

Using project templates

You can save _HCL OneTest™ Embedded projects as .rtpl project templates. Project templates allow you to

accelerate the creation of a new project by using a template that contains your basic test project environment,

including settings, test or application nodes, or common libraries.

To create a project template:

1. In theProject Browser, set up a basic project that you will use as a template.

2. SelectFile > Save Project As Template.

To create a new project based on a template:

1. On the Start Page, select Get Started and New Project from Template or click File > New > New Project from

Template.

2. Locate the.rtplproject template and clickOpen.

3. SelectFile > Save Project As Template.

Related Topics

Working with Projects on page 706 | Creating a new project on page 696

Chapter 5. Test Execution Specialist Guide

Importing files

Importing files from a Microsoft Visual Studio project

HCL OneTest™ Embedded Studio offers the ability to create a project by importing source files from an existing

Microsoft Visual Studio 6.0 or .NET project.

Note The Import feature merely imports a list o

f files as referenced in the Visual Studio project. It does not import everything you need to immediately build a project

in HCL OneTest™ Embedded.

The makefile import feature creates a new project, reads the .dsp or .vcproj project file and adds the source files

found in the Visual Studio project to the HCL OneTest™ Embedded project. The project is created with the default

Configuration Settings of the current Target Deployment Port (TDP).

Any other information contained in the Visual Studio project, such as compilation options, must be entered manually

in the Configuration Settings dialog box.

Alternatively, you can import the files as a sub-project of the HCL OneTest™ Embedded current project. In this case,

the sub-project inherits the Configuration Settings of the master project.

To import files from a Microsoft Visual Studio project as a new project:

1. Close any open projects.

2. From the File menu, select Import > Import from Visual Studio 6.0 Project or Import from Visual Studio .NET

Project.

3. Use the file selector to locate a valid .dsp or .vcproj project file and click Open.

4. Enter a name for the new project and click OK.

5. Select the correct Configuration in the Configuration toolbar.

6. In the Project Explorer, click Settings .

7. Enter any specific compilation options in the Build settings and click OK.

To import files from a Microsoft Visual Studio project as a sub-project:

1. With a project open, select the project node.

2. Right-click the project node and select Add Child > Import.

3. Use the file selector to locate a valid .dsp or .vcproj project file and click Open.

4. In the Project Explorer, click Settings .

5. Enter any specific compilation options in the Build settings and click OK.

Related Topics

Adding Files to the Project on page 720 | Importing Files from a Makefile on page 722 | Manually Creating a Test

or Application Node on page 712 | Selecting Configurations on page 231 | Working with Projects on page 706

721

HCL® OneTest™ Embedded

722

Importing files from a makefile or a build log

The HCL OneTest™ Embedded GUI offers the ability to create a project by importing source files from an existing

makefile.

Note The Import Makefile feature merely imports a list of files as referenced in the makefile or build log. It does not

import everything you need to immediately build a project in HCL OneTest™ Embedded.

The makefile import feature creates a new project, reads the makefile or build log and adds the source files to the

project. The project is created with the default Configuration Settings of the current Target Deployment Port (TDP).

Any other information contained in the makefile, such as compilation options must be entered manually in the

Configuration Settings dialog box. The following limitations apply:

• Source files must be referenced in the build line

• The makefile cannot be recursive

• Any external commands such as Unix Shell commands are not imported

• Complex operations with variables cannot be imported

Any environment variables used within the makefile must be valid.

You can also use Import Makefile feature to import any list of files contained in a plain text file.

Alternatively, you can import the project as a sub-project of the HCL OneTest™ Embeddedcurrent project. In this case,

the sub-project inherits the Configuration Settings of the master project.

To import files from a makefile as a new project:

1. Close any open projects.

2. From the File menu, select Import > Import from Makefile. Use the file selector to locate a valid makefile and

click Open.

3. Enter a name for the new project and click OK.

4. Select the correct Configuration in the Configuration toolbar.

5. In the Project Explorer, click Settings .

6. Enter any specific compilation options in the Build settings and click OK.

To import files from a makefile as a sub-project:

1. With a project open, select the project node.

2. Right-click the project node and select Add Child > Import.

3. Use the file selector to locate a valid makefile and click Open.

4. In the Project Explorer, click Settings .

5. Enter any specific compilation options in the Build settings and click OK.

Chapter 5. Test Execution Specialist Guide

Related Topics

Adding Files to the Project on page 720 | Importing Files from a Microsoft Visual Studio Project file on page 721 |

Manually Creating a Test or Application Node on page 712 | Selecting Configurations on page 231 | Working with

Projects on page 706

Importing sub-projects

Sub-projects are projects that are grouped together within a master project. Projects can contain one or more sub-

projects which are actually links to other project directories. The behaviour of a sub-project is the same as a project.

There are two ways of setting up a master project:

• Add the projects manually to a new or existing project. Use this method to import projects one by one from

different locations or to add sub-projects to an existing project.

• Imports all the projects contained in a specific directory into a master project. Use this method to

automatically import many sub-projects when they are all located in the same directory.

To add an existing sub-project:

1. Create a new project or open an existing project.

2. Select File > Add Project > Existing Project. This opens the file selector.

3. Locate and select an .rtp project file and click OK.

To create a new sub-project:

1. Create a new project or open an existing project.

2. Select File > Add Project > New Project. This opens the Add New Project wizard.

3. Enter a name and location for the new project, and click Finish. The new sub-project is created with the

configuration settings of the super-project.

To create a master project containing all sub-projects from a directory:

1. Close any open projects

2. Select File > Import > Import multiple HCL OneTest™ Embedded projects.

3. Enter the name of the new master project and the location of the existing projects and click OK. The new

project is created in the selected directory and imports all the projects found in all sub-directories of that

location. When browsing many directories, the import can take a long time.

Related Topics

New Project Wizard on page 696 | Understanding projects on page 707 | Working with Projects on page 706

723

HCL® OneTest™ Embedded

724

Importing a data table (.csv file)

HCL OneTest™ Embedded Component Testing for C and C++ provide the ability to import .csv table files and to

turn these into standard .h header files. The resulting header file uses the same filename with a .h extension. Once

included in your .ptu or .otd test script, this data can be used by the test driver script or the application under test.

Such .csv files can be produced by most spreadsheet programs or a text editor.

To import a .csv file into a test node:

1. From the Project Explorer, right click an existing test node.

2. From the pop-up menu, select Add File...

3. Locate and select the .csv file and click OK.

4. By default, added files are excluded from the build. Click theExcludedmarker to allow the file to be built.

The.csvtable file must be located before the.ptutest script in the test node.

5. Edit the .ptu test script to manually add an include statement of the resulting .h header file.

Note The .csv data table file must be located before the .ptu test script in the test node. If not, then you must

manually build the .csv data table file before building the test node.

CSV File Format

The formatting rules for the .csv file are as follow:

• The first line contains the names of the variable arrays separated by the default CSV separator specified in the

preferences or the Configuration settings.

• The second line optionally specifies the data type:string,charorint,long,floatanddouble, which can

besignedorunsigned. if this information is not specified, thenintis assumed by default.

• Each following line contains the data for the corresponding array

• When a blank value is encountered, an end of array is assumed. Any further values for that array will be

ignored.

When the test node is built, HCL OneTest™ Embedded produces a <filename> .h header file, where <filename> is based

on the name of the input <filename> .csv file.

Use the arrays produced by the .csv file by including <filename> .h into your test script or source code.

The separator options for the .csv file are defined in two locations:

• Data tables preferences: These specify the default behavior for HCL OneTest™ Embedded.

• Data tables section in the General Configuration settings: These allow you to override the default settings for a

particular project of test node.

Chapter 5. Test Execution Specialist Guide

Example

This is an example of a valid table.csv data table:

var_A;var_B;var_C

int;signed int;float

12;34;45.2345

14;2;3.142

;-5;0

This produces the following corresponding table.h file:

int var_A[]={12,14};

signed int var_B[]={34,2,-5};

float var_C[]={45.2345,3.142,0};

Related Topics

General Settings on page 1022 | Data table preferences on page 1046

Editing code and test scripts

Editing code and test scripts

The product GUI provides its own text editor for editing and browsing script files and source code.

The Text Editor is a fully-featured text editor with the following capabilities:

• Syntax Coloring

• Find and Replace functions

• Go to line or column

The main advantage of the Text Editor included with HCL OneTest™ Embedded is its tight integration with the rest of

the GUI. You can click items within the Project Explorer, Output Window, or any Test and Runtime Analysis report to

immediately highlight and edit the corresponding line of code in the Editor.

To learn about See

Creating a new text file Creating a text file on page 726

Opening an existing text file in the Text Editor Opening a text file on page 726

725

HCL® OneTest™ Embedded

726

Locating a text string in the Text Editor Finding text in the text editor on page 727

Replacing a text string with another string Replacing text in the text editor on

page 728

Going to a specific line or column in a text file Locating a line and column in the text edi­

tor on page 729

Adjusting the syntax coloring to the current lan­

guage

Text editor syntax coloring on page 729

Customizing the Text Editor Text editor preferences on page 1047

Related Topics

Using the Graphical User Interface on page 689 | GUI elements on page 1055

Creating a text file

To create a new text file, follow one of these procedures:

• Procedure 1:

1. Click the New Text File toolbar button.

2. From the Editor menu, use the Syntax Color sub-menu to select the language.

• Procedure 2:

1. From the File menu, select New...and then open the Text File option.

2. From the Editor menu, use the Syntax Color sub-menu to select the language.

Opening a text file

The Text Editor is tightly integrated with the HCL OneTest™ EmbeddedGUI. Because of the links between the various

views of the GUI, there are many ways of opening a text file. The most common ones are described here.

Using the Open command:

1. From theFilemenu, selectOpen... or click theOpen button from the standard toolbar.

2. Use the file selector to select the file type and to locate the file.

3. Select the file you want to open.

4. Click OK.

Using the File Explorer:

Chapter 5. Test Execution Specialist Guide

1. Select a file in the Project Explorer on page 1056. If there are recognized components in the file, a '+' symbol

appears next to it.

2. Click the '+' symbol to expand the list of references in the file.

3. Double-click a reference to open the Text Editor at the corresponding line.

You can also navigate through the source file by double-clicking other reference points in the Project Explorer.

Using a Test or Report Viewer:

1. With the Report Viewer open, locate an element inside the report.

2. Double-click the item to open the Text Editor at the corresponding line.

Related Topics

About the Text Editor on page 725 | Finding Text in the Text Editor on page 727 | Locating a Line and Column in

the Text Editor on page 729

Finding text in the text editor

To locate a particular text string within the text editor, use the Find command.

Search Options

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at the current cursor position.

Match case restricts search criteria to the exact same case.

Match whole word only restricts the search to complete words.

Use regular expression allows you to specify UNIX-like regular expressions as search criteria.

To find a text string in the Text Editor:

1. From the Edit menu, select Find...

2. The editor Find and Replace dialog appears with the Find tab selected.

3. Type the text that you want to find in the Find what: section. A history of previously searched words is

available by clicking the Find List button.

4. Change search options if required.

5. Click Find.

727

HCL® OneTest™ Embedded

728

Related Topics

About the Text Editor on page 725 | Replacing Text in the Text Editor on page 728 | Locating a Line and Column in

the Text Editor on page 729

Replacing text in the text editor

To replace a text string with another string, you use the Find and Replace command.

To replace a text string:

1. From the Edit menu, select Replace...

2. The editor Find and Replace dialog appears with the Replace tab selected.

3. Type the text that you want to change in the Find what box. A history of previously searched words is available

by clicking the Find List button.

4. Type the text that you want to replace it with in the Replace with box. A history of previously replaced words is

available by clicking the Replace List button.

5. Change search options (see below) if required.

6. Click Replace to replace the first occurrence of the searched text, or Replace All to replace all occurrences.

Search Options

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at the current cursor position.

• Match case restricts search criteria to the exact same case.

• Match whole word only restricts the search to complete words.

• Use regular expression allows you to specify UNIX-like regular expressions as search criteria.

Related Topics

About the Text Editor on page 725 | Finding Text in the Text Editor on page 727 | Locating a Line and Column in

the Text Editor on page 729

Chapter 5. Test Execution Specialist Guide

Locating a line and column in the text editor

The Go To command allows you to move the cursor to a specified line and column within the Text Editor.

To use the Go To feature:

1. From the Edit menu, select Go To...

2. The Text Editor's Find and Replace dialog appears with the Go To tab selected.

3. Enter the number of the line or column or both.

4. Click Go to close the dialog box and to move the cursor to the specified position.

Related Topics

About the Text Editor on page 725 | Replacing Text in the Text Editor on page 728 | Finding Text in the Text Editor

on page 727

Text editor syntax coloring

The Text Editor provides automatic syntax coloring for C, Ada and C++ source code as well for the C and Ada, C++

test script languages, and System Testing Script Language. The Text Editor automatically detects the language from

the filename extension.

If the filename does not have a standard extension, you must select the language from the Syntax Color submenu.

To manually set the syntax coloring mode:

1. From the Editor menu, select the desired language through the Syntax Color submenu.

Related Topics

Text Editor Preferences on page 1047

Commenting code in the text editor

The text editor allows you simply to comment and uncomment blocks of source code or test script. The same

principle also applies to declaring native C code in a C test script by prefixing each with a dash (﷓) character.

To comment a block of source code

1. In the text editor, select a block of code.

2. Click the Comment (-- or // depending on the language) button in the toolbar.

To uncomment a block of commented source code

729

HCL® OneTest™ Embedded

730

1. In the text editor, select a block of commented code.

2. Click the Uncomment (-- or // depending on the language) button in the toolbar.

To declare native code in a .ptu test script

1. In the .ptu test script, select a block of native C code.

2. Click the Native # button in the toolbar.

Related Topics

Editing code and test scripts on page 725 | Text editor syntax coloring on page 729

Running tests and applications

Building and Running a Node

You build and execute workspace nodes by using the Build button on the Build toolbar. The build process compiles,

links, deploys, executes, and then retrieves results. However, you first have to specify the various build options.

You can use the Build command to execute any application node, as well as a single specific source file, a group

node or even the whole project.

Note When you run the Build command, all open files are saved. This means that any unsaved changes will

actually be taken into account for the build.

Before building a node:

1. Select the correct Configuration for your target in the build toolbar.

2. Exclude any temporarily unwanted nodes from the build.

3. Select the build options for each particular node.

4. If necessary, clean up files left by any previous executions by clicking the Clean button.

To build and execute the node:

1. From the Build toolbar, click the Build button.

2. During run-time, the Build Clock indicates the execution time and the green LED flashes. The Project Explorer

displays a check mark next to each item to mark progression of the build process.

3. When the build process is finished, you can view the related test reports.

Chapter 5. Test Execution Specialist Guide

Note If you are running a component test node containing multiple test scripts on the same source file, the test will

run correctly but the results from the last compiled test will overwrite the previous ones. Only the results from the last

test will be available.

To stop the execution:

1. If you want to stop the execution of a node before it finishes, or if the application does not stop by itself, click

the Stop Build/Execution button.

Note You can save the content of your build log (compilation, command options, all traces...) in a file so that you

can send it to the support if you encounter any problem. To do so, in the main toolbar, click Project > Save build log.

Then, enter a file name in the window that opens to save the content of the log. To get more details in the log file, it is

recommended to enable the verbose output preference. From the main toolbar, click Edit > Preferences and click to

enable the Verbose output option.

Related Topics

Selecting Configurations on page 231 | Selecting Build Options on page 731 | Excluding a Node from a Build on

page 732 | Cleaning Up Generated Files on page 734

Selecting Build Options for a Node

The HCL OneTest™ Embedded Graphical User Interface allows you to specify the actions that will be performed

during a build for each node in the test project.

Build options contain two sections:

• Stages contains the compilation options. In most cases, you will need to select the All option to ensure the

test is up to date.

• Runtime Analysis allows you to enable debugging and Runtime Analysis tools.

Build options are linked to each node through the Configuration Settings mechanism. For example, you can decide

to only apply Code Coverage to one node in the project. If you want you changes to apply to the entire project, set the

build options on the project node.

By default, the build options of each node are inherited from those of the parent node. When you override the settings

of a parent node, changes are propagated to all child nodes within the same Configuration.

To set the build options of a node:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. Select the Build node.

4. Click the Value column the ... button.

731

HCL® OneTest™ Embedded

732

5. Select the Runtime Analysis features (Memory Profiling, Performance Profiling, Code Coverage and Runtime

Tracing) and build options to use them on the current node.

6. Click OK and Apply.

Related Topics

Building and Running a Node on page 730 | Excluding a Node from a Build on page 732 | Cleaning Up Generated

Files on page 734

Excluding a Node from a Build

In some cases, you might want to exclude one or several nodes from the build process. This can be done by changing

the Build state of the node directly in the Project Explorer, as described below, or through the Properties window.

Note If you exclude a node that contains child nodes, such as an application node, a group or even a project, none of

the contents of the node are executed.

In the Project Explorer, there are three possible build states:

Build state Symbol Description

Build The node is normally built and executed.

Report only R The node is not built, but is used to produce the report.

Exclude from

Build

The node is not built and ignored.

The Report only option means that only static result files (.tsf and .fdc) are used to generate the report, but the node

is not built and does not produce any dynamic results.

To change the Build state of a node:

1. In the Project Explorer, click the Build state symbol to toggle the three different states.

2. In the Properties window set the Build property to No.

Related Topics

Building and Running a Node on page 730 | Excluding a Node from Instrumentation on page 732 | Selecting Build

Options on page 731 | Properties Window on page 1058

Excluding a Node from Instrumentation

In some cases, you might want to exclude one or several source files from the instrumentation process. This can be

done directly in the Project Explorer, as described below, or through the Properties window.

Chapter 5. Test Execution Specialist Guide

• Instrumented files are displayed with a blue icon

• Non-instrumented files are displayed with a white icon

You can combine both of the following methods to exclude or include a large number of files from the

instrumentation process.

To exclude entire directories from instrumentation:

1. In the Project Explorer, click the Settings button.

2. Select Runtime Analysis, General Runtime Analysis and Selective Instrumentation.

3. In Directories excluded from Instrumentation, add the directories to be excluded.

4. Click Ok.

To turn off instrumentation for an individual node:

1. In the Project Explorer, select the node that you want to exclude from the build.

2. In the Properties window set the Instrumented property to No.

Related Topics

Excluding a Node from a Build on page 732 | General Runtime Analysis Settings on page 1024

Enabling and disabling tests, services and families

The Test Selection window enables you to enable or disable particular SERVICE, TEST or FAMILY blocks in the

generated test driver. By default, all elements of a test script are enabled. During the run, the Component Test will only

execute elements that are enabled.

To open the Test Selection window:

1. In the Project Explorer, right-click a .ptu test script.

2. From the pop-up menu, select Test Selection. Select the Service or Family tabs to specify the elements that

you want to enable or disable.

◦ Use this Service tab to enable or disable one or several SERVICE or TEST blocks defined in the test

driver.

◦ Use this Family tab to enable or disable one or several FAMILY blocks defined in the test driver.

733

HCL® OneTest™ Embedded

734

3. Select Use selection below to modify the default list of tests, services or families that you want to include

in the test. If the option Use selection below is not selected, then all listed items are enabled, regardless of

whether they appear selected or not.

4. Click Close.

Related Topics

About Component Testing for C and Ada on page 478 | Test Script Structure on page 482

Cleaning Up Generated Files

In some cases, you might want to delete any files created by a build execution, such as to perform the build process

in a clean environment or when you are running short of disk space.

Use the Clean All Generated Files command to do this.

To clean your workspace, click the Clean All Generated Files button from the Build toolbar.

Related Topics

Building and Running a Node on page 730 | Selecting Build Options on page 731

Debug mode

The Debug option allows you to build and execute your application under a debugger.

The debugger must be configured in the Target Deployment Port. See the The Target Deployment section for further

information.

Note Before running in Debug mode you must change the Compilation and Link Configuration Settings to support

Debug mode. For example set the -g option with most Linux compilers.

Related Topics

Configuration Settings on page 690 | Selecting Build Options on page 731

Setting Environment Variables

The command line interface (CLI) tools require several environment variables to be set.

These variables determine, for example, the Target Deployment Port (TDP) that you are going to use. The available

TDPs are located in the product installation directory, under targets. Each TDP is contained in its own sub-directory.

Prior to running any of the CLI tools, the following environment variables must be set:

Chapter 5. Test Execution Specialist Guide

• TESTRTDIR indicates the installation directory of the product

• ATLTGT and ATUTGT specify the location of the current TDP: $TESTRTDIR/targets/ <tdp>, where <tdp> is the

name of the TDP.

• PATH must include an entry to $TESTRTDIR/bin/ <platform> / <os>, where <platform> is the hardware

platform and <os> is the current operating system.

You must also add the product installation bin directory to your PATH.

Note Some command-line tools may require additional environment variables. See the pages dedicated to each

command in Reference section of the help.

Most of these environment variables are set during installation of the product. Under Linux, use the testrtinit.sh script

to set these variables. See the Reference on page 1016 section for more information about these scripts.

Automated Testing

If you are using Component Testing or System Testing features, the following additional environment variables must

be set:

• ATUDIRfor Component Testing, points to$TESTRTDIR/lib

• ATS_DIR, for System Testing, points to$TESTRTDIR/bin/ <platform> / <os>, where<platform>is the hardware

platform and<os>is the current operating system.

Library Paths

UNIX platforms require the following additional environment variable:

• On Solaris and Linux platforms: LD_LIBRARY_PATHpoints to$TESTRTDIR/lib/ <platform> / <os>

• On HP-UX platforms:SHLIB_PATHpoints to$TESTRTDIR/lib/ <platform> / <os>

• On AIX platforms: LIB_PATH points to $TESTRTDIR/lib/ <platform> / <os>

where <platform> is the hardware platform and <os> is the current operating system.

Example

The following example shows how to set these variables for HCL OneTest™ Embedded with a sh shell on a Suse Linux

system. The selected Target Deployment Port is clinuxgnu .

TESTRTDIR=/opt/HCL OneTest™ Embedded/TestRealTime.v2002R2

ATCDIR=$TESTRTDIR/bin/intel/linux_suse

ATUDIR=$TESTRTDIR/lib

735

HCL® OneTest™ Embedded

736

ATS_DIR=$TESTRTDIR/bin/intel/linux_suse

ATLTGT=$TESTRTDIR/targets/clinuxgnu

ATUTGT=$TESTRTDIR/targets/clinuxgnu

LD_LIBRARY_PATH=$TESTRTDIR/lib/intel/linux_suse

PATH=$TESTRTDIR/bin/intel/linux_suse:$PATH

export TESTRTDIR

export ATCDIR

export ATUDIR

export ATS_DIR

export ATLTGT

export ATUTGT

export LD_LIBRARY_PATH

export PATH

Report Viewer

The Report Viewer allows you to view Test or Runtime Analysis reports from Component Testing, System Testing and

any of the Runtime Analysis tools

To learn about See

Opening and browsing Test or Runtime Analysis reports. Using the Report Viewer on

page 737

Exporting Test or Runtime Analysis reports in HTML. Exporting reports on page 737

Interpreting results of Test or Runtime Analysis reports. Understanding Reports on

page 738

Changing and customizing the zoom level on a report. Setting a Zoom Level on page 739

Obtaining a summery report. Displaying a Report Summary Header

on page 739

Understanding Report Viewer toolbar buttons. Report Viewer Toolbar

Customizing the Test or Runtime Analysis reports. Report Viewer Style Preferences on

page 1054

Chapter 5. Test Execution Specialist Guide

Using the report viewer

Most reports are produced as .xrd files, which are generated during the execution of the test or application node.

To navigate through the report:

1. You can use the Report Explorer to navigate through the report. Click an element in the Report Explorer to go

to the corresponding line in the Report Viewer.

2. You can also jump directly to the next or previous Failed test in the report by using the Next Failed Test or

Previous Failed Test buttons.

To filter out passed tests:

You can choose to only display the Failed tests in the report.

1. From the Report Viewer menu, select Failed Tests Only or click the Failed Tests Only button in the Report

Viewer toolbar.

2. To switch back to a complete view of the report, from the Report Viewer menu, select All Tests or click the All

Tests button in the Report Viewer toolbar.

To hide or show report nodes:

The Report Viewer can filter out certain elements of a report.

1. From the Report Viewer menu, select the elements that you want to hide or show.

Related Topics

Openin a Report on page 715 | Report Explorer on page 1059 | Understanding Reports on page 738 | Report

Viewer preferences on page 1054 | Viewing UML sequence diagrams on page 431

Exporting reports to HTML

You can export the following Test and Runtime Analysis reports to HTML.

• Memory Profiling

• Performance Profiling

• Code Coverage

• Static Metrics

• Component Testing for C and Ada

• Component Testing for C++

• System Testing for C

737

HCL® OneTest™ Embedded

738

There are two methods of exporting to HTML, depending on whether you are viewing the report in a loaded project or

you are viewing the report as a standalone document.

To export a report to HTML:

1. Open the report:

◦ If the report is in a project, open the project in _HCL OneTest™ Embedded and select a report in the

Project Browser.

◦ If the report is not in a project, open the report with the studioreport command line. This automatically

creates a project.

2. Select File > Export project report in HTML file format.

3. Choose between exporting the entire project (all the report files contained in the project) or only the selected

report.

4. Select the type of report to export (only if you have selected the entire project) and the directory where you

want the HTML files to be generated.

5. Click Export.

Note The Generate HTML menu option in the report viewer menu is no longer supported.

Related Topics

Viewing reports on page 736

Studio Report - studioreport on page 1098

Understanding Reports

HCL OneTest™ Embedded generates Test and Runtime Analysis reports based on the execution of your application.

Runtime analysis reports

• Memory Profiling on page 393

• Performance Profiling on page 414

• Code Coverage on page 379

• Runtime Tracing on page 424

Static analysis reports

• Static metrics on page 253

• Code review on page 329

Chapter 5. Test Execution Specialist Guide

Test verdict reports

• Component Testing for C and Ada on page 539

• Component Testing for C++ on page 554

• System Testing for C on page 672

Setting the zoom level

UML sequence diagrams and other reports can be viewed with different zoom levels.

To set the zoom level, follow one of these procedures:

• Change the zoom level in the View Toolbar by using the Zoom In and Zoom Out buttons.

• Select one of the pre-defined or custom levels from the Choose Zoom Level box of the View Toolbar.

Related Topics

Toolbars on page 1060

Displaying a report summary header

In some cases, test reports can be quite large and complicated when all you want is a quick summary. The report

viewer can display a short summary header at the top of a Component Testing test report.

The summary header contains:

• The name of the report

• The number of failed and passed tests

• The total number of tests

To display the summary header for the current test:

1. Open a test report

2. From the Test Report menu, select Show Header.

To display a full summary for the entire project:

1. Right-click the main project node

2. Select View Report and Test.

3. From the Test Report menu, select Show Header.

739

HCL® OneTest™ Embedded

740

Related Topics

Report Viewer Toolbar | Using the Report Viewer on page 737

Viewing graphical results

HCL OneTest™ Embedded can produce graphs that display the execution results of Component Testing and System

Testing tests that involve loops and FOR loops. Graphs can be displayed and manipulated in the Graphic Viewer.

To enable graph output:

1. In theProject Explorer, click theSettings button.

2. Select a node in theProject Explorerpane.

3. In theConfiguration Settingslist, expandBuildandBuild Options.

4. Click '...' to editEnvironment Variablesand set the variableATURTXtoACTIV.

5. ClickOKto validate the changes.

To open the Graphic Viewer:

1. Execute your test with the Build command.

2. Right-click the application or test node.

3. From the pop-up menu, select View Report, and then click Graphic.

Note Reports cannot be viewed before the application or test has been executed.

To change the view displayed in the Graphic Viewer:

1. With the Graphic Viewer open, open the Graphics menu (or Command menu in Eclipse).

a. Display Curves, Display XY Curves, or Display XYZ Curves enable you to change the axis of view of the

graph. In 3D mode (XYZ curves) you can change the angle of view by clicking and moving the mouse.

b. Configure enables you to change the scale and display options for each axis.

c. Reload enables you to reload the .rtx graph file.

d. Generate HTML produces an html file with a .png image output of the current view.

Related Topics

Graphic viewer preferences on page 1053 | Build settings on page 1019

Monitoring the test process

About the test process monitor

The test process monitor provides an integrated monitoring feature that helps project managers and test engineers

obtain a statistical analysis of the progress of their development effort.

Chapter 5. Test Execution Specialist Guide

Each generated metric is stored in its own file and consists of one or more fields.

The test process monitor works by gathering the statistical data from these files and then generating a graphical

chart based on each field.

The preexistence of a file is required before running the test process monitor. Files are created either by running a

runtime analysis feature that generates test process data, or by creating and updating your own file.

Note Only the Code Coverage tool provides data for the test process monitor. You can, however, build your own files

with the Test Process Monitor tool (tpmadd).

Related Topics

Test Process Monitor Tool on page 1094

Changing Curve Properties

The Curve Properties menu allows you to change the way a particular graph is displayed.

To change the curve color:

1. Right-click a curve.

2. From the pop-up menu, select Change Curve Color.

3. Use the Color Palette to select a new color, and click OK.

To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

To set a maximum value:

Changing the maximum displayed value for a curve actually changes the scale at which it is displayed. For instance,

when a curve only reaches 100, there is no point in displaying it at on a scale of 1000, unless you want to compare it

with another curve that uses that scale.

1. Right-click a curve.

2. From the pop-up menu, select Set Max Value.

3. Enter the scale value, and click OK.

Note Setting a maximum value lower than the actual maximum value of a curve can result in erratic results.

To display a scale:

For any curve, you can display a scale on the right or left-hand side of the graph. When you display a new scale, it

replaces any previously displayed one.

741

HCL® OneTest™ Embedded

742

1. Right-click a curve.

2. From the pop-up menu, select Right Scale or Left Scale.

Custom Curves

In some cases, you may want to remove certain figures from a chart to make it more relevant. The custom curves

capability allows you to alter the chart by selecting the records that you want to include.

Note Using the custom curves capability does not impact the actual database. If you remove a record from the chart

by using the custom curves function, the actual record remains in the database and may impact other figures.

Custom curves create a new metric, using the name of the base metric, with a Custom prefix.

To create a custom curve:

1. Make sure a user is selected in the Report Explorer pane. If not, select a user.

2. From the Project menu, select Test Process Monitor and Custom Curves.

3. In the Custom Curves dialog box, select a metric and the start and end date of your chart.

4. The record list displays all the records contained in the database of that metric. Select the records that you

want to use for your custom curve. Clear the records that you do not want to use.

5. Click OK. A new metric is created.

To change a custom curve:

1. From the Project menu, select Test Process Monitor and Custom Curves.

2. In the Custom Curves dialog box, select the Custom metric that you want to modify.

3. Select the records that you want to use for your custom curve. Clear the records that you do not want to use.

4. Click OK.

Event markers

Use event markers to identify milestones or special events within your Test Process Monitor chart. An event marker is

identified by the date of the event and a marker label.

Event markers appear as bold vertical lines in a Test Process Monitor chart.

To create an event marker:

Chapter 5. Test Execution Specialist Guide

1. Right-click the location where you want to put the chart

2. From the pop-up menu, select Event Properties and New Event.

3. Enter the date of the event, and a marker label, and click OK.

To remove an event marker:

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Delete Event.

To hide a specific event marker:

Hiding a marker does not remove it. You can still make the marker reappear.

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Hide Event.

To hide or show all event markers:

1. In the Test Process Monitor toolbar, click the Events button to hide all event markers.

2. Click again to show all hidden event markers.

Setting the time scale

The scale capability defines the period that you want to view in the Test Process Monitor window. This option allows

you to select an annual, monthly or daily view, as well as a user-definable time period.

To set the time scale:

1. Select a user in the Report Explorer pane.

2. From the Project menu, select Test Process Monitor, Scale and the desired time scale.

3. If you chose Customize, enter the start and end date of the period that you want to monitor, and click OK.

Adding a metric

Metrics generated Code Coverage or other tools are directly available through the Test Process Monitor. Each metric

file contains one or several fields.

To open a metric database a metric chart:

743

HCL® OneTest™ Embedded

744

1. From the Project menu, select Test Process Monitorand eitherProjectorCurrent Workspace.Current

Workspaceapplies to the user of the current workspace.Projectapplies to all workspace users in the project.

2. If a new metric database is detected, you need to provide a name for the metric, as well as a label for each

field of the database.

3. In the Report Explorer, select a user.

4. From the Project menu, select Test Process Monitor, the metric and the field that you want to display.

You can add as many curves as you want to the chart.

To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

Customizing tools

Custom tools overview

The Tools menu is a user-configurable menu that allows you to access personal tools from the HCL OneTest™

Embedded graphical user interface (GUI). You can customize the Tools menu to meet your own requirements.

Custom tools can be applied to a selection of nodes in the Project Explorer. Selected nodes can be sent as a

parameter to a user-defined tool application. A series of macro variables is available to pass parameters on to your

tool's command line.

The Tool Configuration dialog allows you to configure a new or existing tool.

In the Tools menu, each tool appears as a sub-menu item, or Name, with one or several associated actions or

Captions.

Identification

In this tab, you describe how the tool will appear in the Tools menu.

• Enter the Name of the tool sub-menu as it will appear in the Tools menu and a Comment that is displayed in

the lower section of the Toolbox dialog box.

• Select the type of tool:

• ◦ Select Change Management System if the tool is used to send and retrieve from a change

management system. When Change Management System is selected, Check In and Check Out

actions are automatically added to the Action tab (see below) and a Change Management System

toolbar is activated.

Chapter 5. Test Execution Specialist Guide

◦ Select External Editor if the tool is an editor. When External Editor is selected, you can select

Automatic Launch if you want this editor to replace theHCL OneTest™ Embedded editor for file

extensions specified in the Files Filter list. (for example: "*.c;*.cpp;*.txt").

◦ Select Other if the tool is neither a configuration management tool nor an editor.

• Clear the Add to Tools menu check box if you do not want the tool to be added to the Tools menu.

• Select Send messages to custom tab if you want to view the tool's text output to be sent to a specific tab in

the Output Window.

• Use the Icon button to attach a custom icon to the tool that will appear in the Tools menu. Icons must be

either .xpm or .png graphic files and have a size of 22x22 pixels.

Actions

This tab allows you to describe one or several actions for the tool.

• The Actions list displays the list of actions associated with the tool. If Change Management System is

selected on the Identification tab, Check In and Check Out tool commands will listed here. These cannot be

renamed or removed.

• Menu text is the name of the action that will appear in the Tools sub-menu.

• Command is a shell command line that will be executed when the tool action is selected from Tools menu.

Command lines can include GUI macro variables and functions.

A series of macro variables is available to pass parameters on to your tool's command line. See GUI Macro Variables

in the Reference section for detailed information about using the macro command language.

Click OK to validate any changes made to the Tool Edit dialog box.

Examples

IBM Rational ClearCase is pre-configured in the Tools menu as the default configuration management tool. If you are

using another tool you can simply add it to the Tools menu. For example, to add CVS to the Tools menu:

1. Select Tools > Configure Tools and click Add.

2. On the Identification page, enter CVS in the Name field, and select Change Management System.

3. On the Actions page, enter the following command lines:

◦ Add to Source Control: cvs -add $$VCSITEMS

◦ Check Out: cvs -co $$VCSITEMS

745

HCL® OneTest™ Embedded

746

◦ Check In: cvs -ci $$VCSITEMS

4. Click OK.

To add, for example, the Windows Notepad editor to the Tools menu:

1. Select Tools > Configure Tools and click Add.

2. On the Identification page, enter Notepad in the name field, and select External Editor.

3. If you want Notepad to replace the default editor for .c files for example, then select Automatic launch and

enter:

*.c

1. On the Actions page, enter:

notepad.exe $$NODEPATH

1. Click OK.

Related Topics

Configuring the Tools menu on page 746 | GUI macro variables on page 1064

Customizing the Tools menu

The Tools menu is a user-configurable menu that allows you to access personal tools from the HCL OneTest™

Embedded graphical user interface (GUI). You can customize the Tools menu to meet your own requirements.

In the Tools menu, each tool appears as a sub-menu item, or Name, with one or several associated actions or

Captions.

The Tool Configuration dialog allows you to configure a new or existing tool.

Using the Tools Menu

To use a user-defined tool:

1. Select an icon from the Project Explorer pane.

2. Click the Tools menu and select the tool you want to use.

To add a new tool to the Tools menu:

Chapter 5. Test Execution Specialist Guide

1. Select Tools > Configure Tools.

2. To add a new tool, click Add... If you want to create and modify a copy of an existing tool, select the existing

tool, click Copy and click Edit...

3. Edit the tool in the Tool Edit box. See Custom tools overview on page 744.

4. Click OK and Close.

To edit a user-defined tool:

1. Select Tools > Configure Tools.

2. Select the tool that you want to modify and click Edit...

3. Edit the tool in the Tool Edit box. See Custom tools overview on page 744.

4. Click OK and Close.

To remove a tool from the Tools menu:

1. Select Tools > Configure Tools.

2. Select an existing tool from the tool list.

3. Click Remove and Close.

Related Topics

About the Tools Menu on page 744

Test script languages

This section contains advanced information for using HCL OneTest™ Embedded test script languages, component

test and system test command line tools

To learn about See

Component Testing for C test scripts C test script language on page 748

Component Testing for C++ test scripts C++ test driver script (.otd) on

page 784

Component Testing for C++ contract check

scripts

C++ contract check script (.otc) on

page 818

Component Testing for Ada test scripts Ada test script language on

page 833

747

HCL® OneTest™ Embedded

748

System Testing for C test scripts System Testing driver script (.pts) on

page 866

System Testing for C supervisor scripts System Testing supervisor script

(.spv) on page 926

Component Testing for C

C test script language reference

Component Testing for C uses its own simple language for test scripting.

This section describes each keyword of the C test script language, including:

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation conventions

Throughout this guide, command notation and argument parameters use the following standard convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } { <filenames> } Series of values

[{ }] [{ <filenames> }

]

Optional series of vari­

ables

| on|off OR operator

C test script keywords are case insensitive. This means that STUB, stub, and Stub are interpreted the same way. The

keyword others is an exception, and must always be expressed in lower case.

For conventional purposes however, this document uses upper-case notation for the C test script keywords in order to

differentiate from native source code.

Chapter 5. Test Execution Specialist Guide

Split statements

C test script statements may be split over several lines in a .ptu test script. Continued lines must start with the

ampersand ('&') symbol to be recognized as a continuation of the previous line. No tabs or spaces should precede the

ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Language identifiers

A C test script identifier is a text string used as a label, such as the name of a TEST or a STUB in a .ptu test script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following statement, for example, is

syntactically correct:

TEST 1

...

END TEST

C test script identifiers are case sensitive. This means that LABEL, label, and Label are three different identifiers.

C test script structure

The C test script language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment Port criteria.

Test script filenames must contain only plain alphanumerical characters.

Basic structure

A typical C Component Testing .ptu test script looks like this:

749

HCL® OneTest™ Embedded

750

HEADER add, 1, 1

<variable declarations for the test script>

BEGIN

SERVICE add

<local variable declarations for the service>

TEST 1

FAMILY nominal

ELEMENT

VAR variable1, INIT=0, EV=0

VAR variable2, INIT=0, EV=0

﷓<call to the procedure under test>

END ELEMENT

END TEST

END SERVICE

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write an instruction

over several lines using the ampersand (&) continuation character at the beginning of additional lines. In this

case, the ampersand must be the very first character on that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Structure statements

The following statements allow you to describe the structure of a test.

• HEADER: For documentation purposes, specifies the name and version number of the module being tested, as

well as the version number of the tested source file. This information is displayed in the test report.

• BEGIN: Marks the beginning of the generation of the actual test program.

Chapter 5. Test Execution Specialist Guide

• SERVICE: Contains the test cases related to a given service. A service usually refers to a procedure or

function. Each service has a unique name (in this case add). A SERVICE block terminates with the instruction

END SERVICE.

• TEST: Each test case has a number or identifier that is unique within the block SERVICE. The test case is

terminated by the instruction END TEST.

• FAMILY: Qualifies the test case to which it is attached. The qualification is free (in this case nominal). A list of

qualifications can be specified (for example: family, nominal, structure) in the Tester Configuration dialog box.

• ELEMENT: Describes a test phase in the current test case. The phase is terminated by the instruction END

ELEMENT. The different phases of the same test case cannot be dissociated after the tests are run, unlike the

test cases introduced by the instruction NEXT_TEST. However, the test phases introduced by the instruction

ELEMENT are included in the loops created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept simple. This structure allows:

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test number, or the test family.

Related Topics

C test script keywords on page 751 | C test script language on page 748 | Writing a Test Script on page 481

C test script keywords

The C Test Script Language keywords are not case sensitive. This means that STUB, stub, and Stub are equivalent. For

conventional purposes however, this document uses upper-case notation for the C Test Script Language keywords in

order to differentiate from native source code.

Block Keywords

• ELEMENT...END ELEMENT on page 755

• ENVIRONMENT...END ENVIRONMENT on page 757

• INITIALIZATION...END INITIALIZATION on page 763

• SERVICE...END SERVICE on page 765

• SIMUL...ELSE_SIMUL...END SIMUL on page 766

• TERMINATION...END TERMINATION on page 770

• TEST...END TEST on page 771

751

HCL® OneTest™ Embedded

752

Other Keywords

• BEGIN on page 752

• COMMENT on page 753

• DEFINE STUB on page 754

• FAMILY on page 758

• FORMAT on page 759

• HEADER on page 760

• IF...ELSE...END IF on page 761

• INCLUDE on page 763

• NEXT_TEST on page 764

• STUB on page 767

• USE on page 772

• VAR, ARRAY and STR on page 773

◦ <initialization> Parameter on page 776

◦ <expected> Parameter on page 780

◦ <variable> Parameter on page 775

BEGIN

C Test Script Language

Purpose

The BEGIN instruction marks the beginning of the test program.

Syntax

BEGIN

Description

BEGIN marks the beginning of the C code generation.

The BEGIN instruction is mandatory and must be located before any other Component Testing instruction for C,

except a HEADER instruction.

Chapter 5. Test Execution Specialist Guide

If the BEGIN keyword is not found, a warning message is generated and a BEGIN instruction is implicitly created

before the first occurrence of a SERVICE instruction.

Related Topics

HEADER on page 760 | SERVICE on page 765

COMMENT

C Test Script Language

Purpose

The COMMENT instruction adds a textual comment to the test report.

Syntax

COMMENT [<text>]

Argument

<text> is an optional text string to be displayed.

Description

The COMMENT instruction is optional and can be used anywhere in the test script.

The position of the COMMENT instruction in the test script determines the position where the comment is displayed

in the test report:

• Before the first SERVICE block: the comment is displayed after the report information header and before the

first service.

• Inside a SERVICE block: the comment is displayed in the service header, before the test descriptions.

• Outside a SERVICE block: the comment is displayed in the following service header, before the test

descriptions.

• After the last SERVICE block: the comment is ignored.

• Inside an ELEMENT block: the comment is displayed before the variable state descriptions.

• After a TEST instruction: the comment is displayed in the test header, before the variable descriptions.

Example

TEST 1

FAMILY nominal

753

HCL® OneTest™ Embedded

754

COMMENT histogram computation for a black image

ELEMENT

Related Topics

ELEMENT on page 755 | TEST on page 771 | SERVICE on page 765

DEFINE STUB ... END DEFINE

The DEFINE STUB and END DEFINE instructions delimit a simulation block consisting of stub definition functions,

variables or procedure declarations.

This instruction applies to C Test Script Language.

Syntax

DEFINE STUB <stub_name> [<stub_dim>]
END DEFINE

<stub_name> is the mandatory name of a simulation block.

<stub_dim> is an optional maximum number of stub calls errors that will be displayed in the report.

Description
Defining stubs in a test script is optional.

By using the stub definitions, the C Test Script Compiler generates simulation variables and functions with the same

interface for the stubbed variables and functions.

The purpose of these simulation variables and functions is to store and test input parameters, assign values to output

parameters, and if necessary, return appropriate values.

Definitions of functions must be in the form of ANSI prototypes for C.

Stub parameters describe both the type of item used by the calling function and the passing mode. The parameter

passing mode is specified by adding the following parameters before the parameter name:

• _in for input parameters

• _out for output parameters

• _inout for input/output parameters

• _no for parameters that you do not want to test

Additionally, when using the _in or _inout parameter, you can add an optional _nocheck parameter before the _in or

_inout parameter (see the Example). This allows the parameters to be sent to the stub without being checked.

Chapter 5. Test Execution Specialist Guide

You can also add _atcc_const before the _in or _inout parameter when the parameter is declared as a const type. By

default the const type modifier is ignored to allow better use of the parameters during the test, but this can lead to

compilation issues. If you use _atcc_const, the parameter will be considered as a const type.

The parameter mode is optional. If no parameter mode is specified, the _in mode is assumed by default.

A return parameter is always deemed to be an output parameter.

Global variables defined in DEFINE STUB blocks replace the real global variables.

By default, only the first 10 errors are shown in the report. Additional errors are not recorded. The number of calls

should be customized if necessary by using the <stub_dim> parameter.

DEFINE STUB / END DEFINE blocks must be located after the BEGIN instruction and outside any SERVICE block.

Example

An example of the use of stubs is available in the StubC example project installed with the application.

BEGIN
DEFINE STUB Example
 #int open_file(char _in f[100]);
 #int create_file(char _in f[100]);
 #int read_file(int _in fd, char _out l[100]);
 #int write_file(int fd, char _in l[100]);
 #int write(int fd, char _nocheck _in l[100]);
 #int close_file(int fd);
END DEFINE

DEFINE STUB Example
#int foo1 (int _in param1)
#{
{int foo1_b ;
foo1_b = 10 ;}
#}
END DEFINE

Related Topics

STUB on page 767 instruction

ELEMENT ... END ELEMENT

C Test Script Language

Purpose

The ELEMENT and END ELEMENT instructions delimit a test phase or ELEMENT block.

Syntax

ELEMENT

755

HCL® OneTest™ Embedded

756

END ELEMENT

Description

The ELEMENT instruction is mandatory and can only be located within a TEST block. If absent, a warning message is

generated and the ELEMENT block is implicitly declared before the first occurrence of a VAR, ARRAY, STR, or STUB

instruction.

The block must end with the instruction END ELEMENT. If absent, a warning message is generated and it is implicitly

declared before the next ELEMENT instruction, or the END TEST instruction.

The ELEMENT block contains a call to the service under test as well as instructions describing the initializations and

checks on test variables.

Positioning of VAR, ARRAY, STR or STUB instructions is irrelevant, with respect to the test procedure call since the

Test Script Compiler separates these instructions into two parts:

1. The test initializer (described by INIT) is generated with the ELEMENT instruction.

The test of the expected value (described by EV) is generated with the END ELEMENT instruction.

Example

TEST 1

FAMILY nominal

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init = 0, ev = init

VAR histo[0], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

ARRAY histo[1..SIZE_HISTO-1], init = 0, ev = 0

VAR status, init ==, ev = 0

﷓status = compute_histo(x1,y1,x2,y2,histo);

END ELEMENT

END TEST

Chapter 5. Test Execution Specialist Guide

Related Topics

VAR on page 773 | ARRAY on page 773 | STR on page 773 | STUB on page 767 | NEXT_TEST on page 764 |

Initialization Expressions for C on page 776 | Expected Value Expression for C on page 780

ENVIRONMENT ... END ENVIRONMENT

The ENVIRONMENT instruction defines a test environment declaration, that is, a default set of test specifications. It

applies to C Test Script Language.

Syntax
ENVIRONMENT <name> [(<param> { , <param> })]
END ENVIRONMENT

<name> is a mandatory identifier that provides a unique environment name.

<param> is an optional identifier.

Description

The test environment defines a general context. Variables that are declared within a context can be overwritten by a

TEST statement.

Every environment can contain parameters. The declared parameters can be used in initialization and expected value

expressions. These parameters are initiated by the USE instruction.

The END ENVIRONMENT instruction marks the end of an environment declaration.

<name> specifies an environment name that is referenced in the USE instruction.

An environment must be defined after the BEGIN instruction.

Each environment is visible in the block in which it has been declared and in any blocks included in this block, after its

declaration.

An environment can only contain VAR, ARRAY, STR, FORMAT or STUB instructions and conditional generation

instructions. If it is empty, a warning message is generated.

An environment is activated by the USE instruction that defines its scope and its priority. ENVIRONMENT blocks are

executed in the reverse order of their respective USE instruction.

After generating the initializations and the tests of an ELEMENT block, visible environments are included in order of

priority, at every END ELEMENT instruction, in order to complete the initializations and tests.

The scope of an ENVIRONMENT block is important insofar as only "visible" environment blocks apply, and use

clauses can be out of scope.

Example

757

HCL® OneTest™ Embedded

758

ENVIRONMENT compute_histo
 VAR x1, init = 0, ev = init
 VAR x2, init = SIZE_IMAGE-1, ev = init
 VAR y1, init = 0, ev = init
 VAR y2, init = SIZE_IMAGE-1, ev = init
 ARRAY histo, init = 0, ev = 0
 VAR status, init ==, ev = 0
END ENVIRONMENT

Related Topics

USE on page 772 | VAR on page 773 | ARRAY on page 773 | STR on page 773 | FORMAT on page 759

instructions

FAMILY

C Test Script Language

Purpose

The FAMILY instruction groups tests by families or classes.

Syntax

FAMILY <family_name> { , <family_name>}

Argument

<family_name> is a mandatory identifier indicating the name of the test family. Typically, you could specify nominal,

structural, or robustness families.

Description

The FAMILY instruction appears within TEST blocks, where it defines the families to which the test belongs.

When you run the test sequence, you can request that only tests of a given family are executed.

A test can belong to several families. In this case, the FAMILY instruction contains a <family_name> list, separated by

commas.

The FAMILY instruction must be located before the first ELEMENT block of the TEST block and must be unique in the

TEST block.

The FAMILY instruction is optional. If it is omitted, a warning message is generated and the test belongs to every

family.

Example

TEST 1

FAMILY nominal

Chapter 5. Test Execution Specialist Guide

COMMENT histogram computation on a black image

ELEMENT

Related Topics

ELEMENT on page 755 | TEST on page 771

FORMAT

C Test Script Language

Syntax

FORMAT <variable> = [<new type>[﷓<display directive> [<size>]]

FORMAT <type> = <new type>[﷓<display directive> [<size>]]

FORMAT <field> = <new type>[﷓<display directive> [<size>]]

Description

The FORMAT instruction allows you to modify the type of the tested element, where:

• <variable> is a variable.

• <type> is a simple C type declared by typedef; in this case, the new type will be applied to all variables of this

type.

• <field> is a member of a structure or a C union; in this case, the new type will be applied to all the members of

this field.

The <new type> is an abstract C type.

The optional <display directive> is one of the following suffixes for integers only:

• #h for hexadecimal display,

• #b for binary display,

• #u for unsigned decimal display,

• #d for signed decimal display,

With the following possibilities for floating variables:

759

HCL® OneTest™ Embedded

760

• #f to display without an exponent,

• #e to display with an exponent.

For integers, <size> is the number of bits to be displayed. For floating variables, <size> is the number of the number of

digits after the decimal point.

Associated Rules

The FORMAT statement is optional and must be located after the BEGIN statement.

The FORMAT definition can be replaced by an optional <format> parameter in a VAR statement.

It is applicable immediately, only in the block in which it is declared.

<variable> follows standard C syntax rules. <type> is a C identifier used in typedef, struct or union instructions.

<format> is an abstract C type.

If the change is to be applied to array elements, you can use an abstract C type to describe the new modified variable,

field, or type.

A format cannot be empty. It must contain either the abstract C type or the display directive.

In the display directive, the size is optional. The size must be a multiple of 8 for the integers. The default values for

this size are the following ones:

• For integers, the number of bits of the abstract type if it is given, or if it is not, the number of bits of the type or

the variable whose printing format is modified

For #f, 6 digits after the decimal point and for #e, 2 digits after the decimal point

Example

#char x;
#char t[10];
FORMAT t = int -- t is an array of integers
FORMAT x = int#h8 -- display in hexa, only 8 bits
FORMAT y = #b -- display in binary without modifying the type
FORMAT z = short#u -- display in unsigned decimal
FORMAT f1 = #f -- displays for example 3.670000
FORMAT f1 = #f4 -- displays for example 3.6700
FORMAT f1 = #e4 -- displays for example 0.36700E1

Related Topics

VAR, ARRAY and STR on page 773

HEADER

C Test Script Language

Chapter 5. Test Execution Specialist Guide

Purpose

The HEADER instruction specifies the name and version of the module under test as well as the version number of

the test script.

Syntax

HEADER <module_name> , <module_version> , <test_plan_version>

<module_name>, <module_version> and <test_plan_version> are character strings with no restrictions, except for

versions beginning with a dollar sign ('$'). These instructions must be followed by an identifier.

Description

This information contained in the HEADER keyword is reproduced in the test report header to identify the test

sequence.

The module and test script versions can be read from the environment variables if they are identifiers beginning with

a dollar sign ($).

The HEADER instruction is mandatory, but its arguments are optional. It must be the first instruction in the test

program. If it is absent, a warning message is generated.

Example

HEADER histo, 01a, 01a

BEGIN

IF ... ELSE ... END IF

C Test Script Language

Syntax

IF <condition> { , <condition> }

ELSE

END IF

Description

The IF, ELSE and END IF statements allow conditional generation of the test program.

These statements enclose portions of script that are included depending on the presence of one of the conditions in

the list provided to the C Test Script Compiler by the -define option.

The <condition> list forms a series of conditions that is equivalent to using an expression of logical ORs.

761

HCL® OneTest™ Embedded

762

The IF instruction starts the conditional generation block.

The END IF instruction terminates this block.

The ELSE instruction separates the condition block into 2 parts, one being included when the other is not.

Associated Rules

<condition> is any identifier. You must have at least one condition in an IF instruction.

This block can contain any scripting or native language.

IF and END IF instructions must appear simultaneously.

The ELSE instruction is optional.

The generating rules are as follows:

• If at least one of the conditions specified in the IF instruction's list of conditions appears in the list associated

with the -define option, the first part of the block is included.

If none of the conditions specified in the IF instruction appears in the list associated with the -define option,

then the second part of the block is included (if ELSE is present).

The IF...ELSE...END IF block is equivalent to the following block in C:

﷓if defined(<condition>) { || defined(<condition>) } ...

...

﷓else

...

﷓endif

Example

IF test_on_target

VAR register, init == , ev = 0

ELSE

VAR register, init = 0 , ev = 0

END IF

Chapter 5. Test Execution Specialist Guide

INCLUDE

C Test Script Language

Syntax

INCLUDE CODE <file>

INCLUDE PTU <file>

Description

The INCLUDE specifies an external file for the C Test Script Compiler to process.

When an INCLUDE instruction is encountered, the C Test Script Compiler leaves the current file, and starts pre-

processing the specified file. When this is done, the C Test Script Compiler returns to the current file at the point

where it left.

Including a file with the additional keyword CODE lets you include a source file without having to start each line with a

hash character ('﷓').

Including a file with the additional keyword PTU lets you include a test script within a test script. In this case, included

.ptu test scripts must not contain BEGIN or HEADER statements.

Associated Rules

The name of the included file can be specified with an absolute path or a path relative to the current directory.

If the file is not found in the current directory, all directories specified by the -incl option are searched when the

preprocessor is started.

If it is still not found or if access is denied, an error is generated.

The instruction INCLUDE CODE <file> inserts the entire file into the generated source code. A workaround to this is to

use the following line in C:

﷓﷓include "<file>"

Example

INCLUDE CODE file1.c

INCLUDE CODE ../file2.c

INCLUDE PTU /usr/foo/test/file3.ptu

INITIALIZATION ... END INITIALIZATION

C Test Script Language

763

HCL® OneTest™ Embedded

764

Syntax

INITIALIZATION

END INITIALIZATION

Description

The INITIALIZATION and END INITIALIZATION statements let you provide native code that is integrated into the

generation as the first native instructions of the test program (first lines of main).

In some environments, such as if you are using a different target machine, this provides a way to initialize the target.

Associated Rules

An INITIALIZATION block must appear after the BEGIN instruction or between two SERVICE blocks.

This block can only contain native code. This code must begin with '#' or '@'.

There is no limit to the number of INITIALIZATION blocks. During the run process, they are concatenated in the order

in which they appeared in the test script.

Related Topics

TERMINATION on page 770

NEXT_TEST

C Test Script Language

Syntax

NEXT_TEST [LOOP <nb>]

where:

• <nb> is an integer expression strictly greater than 1.

Description

The NEXT_TEST instruction allows you to repeat a series of test contained within a previously defined TEST block.

It contains one more ELEMENT block. It does not contain the FAMILY instruction.

For this new test, a number of iterations can be specified by the keyword LOOP.

The NEXT_TEST instructions can only appear in a TEST ... END TEST block.

The main difference between a NEXT_TEST block and an ELEMENT block is when you use an INIT IN statement

within a test block:

Chapter 5. Test Execution Specialist Guide

• If the INIT IN is in a TEST block, there will be a loop over the entire TEST block, without consideration of the

ELEMENT blocks that it might contain.

If the INIT IN is inside a NEXT_TEST block however, the loop will not affect the ELEMENT blocks within other

TEST blocks

Example

SERVICE COMPUTE_HISTO

﷓ int x1, x2, y1, y2 ;

﷓ int status ;

﷓ T_HISTO histo;

TEST 1

FAMILY nominal

ELEMENT

...

END ELEMENT

NEXT_TEST LOOP 2

ELEMENT

Related Topics

TEST on page 771 | ELEMENT ... END ELEMENT on page 755

SERVICE ... END SERVICE

Appies to C Test Script Language

Syntax

SERVICE <service_name>

END SERVICE

Description

The SERVICE instruction starts a SERVICE block. This block contains the description of all the tests relating to a given

service of the module to be tested.

The <service_name> parameter flags the tested service in the test report, and is therefore usually the name of this

service (although this is not obligatory).

765

HCL® OneTest™ Embedded

766

The END SERVICE instruction indicates the end of the service block.

Associated Rules

The SERVICE instruction must appear after the BEGIN instruction.

The <service_name> parameter can be any identifier. It is obligatory. It must be unique in the PTU.

Example

BEGIN

SERVICE COMPUTE_HISTO

﷓ int x1, x2, y1, y2 ;

﷓ int status ;

﷓ T_HISTO histo;

TEST 1

FAMILY nominal

SIMUL ... ELSE_SIMUL ... END SIMUL

C Test Script Language

Purpose

The SIMUL, ELSE_SIMUL, and END SIMUL instructions allow conditional generation of test script program.

Syntax

SIMUL

ELSE_SIMUL

END SIMUL

Description

Code enclosed within a SIMUL block is conditionally generated depending on the status of the Simulation setting in

HCL OneTest™ Embedded.

The SIMUL instruction starts the conditional generation block.

The END SIMUL instruction terminates this block.

The ELSE_SIMUL instruction separates this block into two parts, one being included when the other is not, and vice

versa.

Chapter 5. Test Execution Specialist Guide

This block of instructions can appear anywhere in the test program and can contain both scripting instructions or

native code.

The SIMUL and END SIMUL instructions must appear as a pair. One cannot be used without the other.

The ELSE_SIMUL instruction is optional.

When using HCL OneTest™ Embedded in the command line interface, use the -nosimulation option to deactivate the

simulation setting in the C Test Script Compiler on page 1157.

When using the HCL OneTest™ Embedded user interface, select or clear the Simulation option in the Component

Testing for C tab of the Configuration Settings dialog box.

The generating rules are as follows:

1. If Simulation is enabled => the first part of the SIMUL block is included.

2. If Simulation is disabled => the second part of the block (ELSE_SIMUL) is included if it exists. If there is no

ELSE_SIMUL statement, then the SIMUL block is ignored.

Example

SIMUL

﷓x = 0;

ELSE_SIMUL

﷓x = (type_x *) malloc (sizeof(*x));

END SIMUL

...

SIMUL

VAR x , INIT = 0 , EV = 1

VAR p , INIT = NIL , EV = NONIL

ELSE_SIMUL

VAR x , INIT = 0 , EV = 0

VAR p , INIT = NIL , EV = NIL

END SIMUL

STUB

C Test Script Language

767

HCL® OneTest™ Embedded

768

Purpose

The STUB instruction for C describes all calls to a simulated function in a test script.

Syntax

STUB [<stub_name>.] <function> [<call_range> =>] ([<param_val> {, <param_val> }]) [<return_val>] {, [<call_range> =>]

([<param_val> {, <param_val> }]) [<return_val>] }

Description

The following is described for every parameter of this function and for every expected call:

1. For _in parameters, the values passed to the function; these values will be stored and then tested during

execution,

For _out parameters and, where appropriate, the return value, the values returned by the function; these values

will be stored in order to be returned during execution,

For _inout parameters, both the previous two values are required,

For _no parameters, any parameter is ignored.

The optional <call_range> describes one or several successive calls as follows:

<call_num> =>

<call_num> .. <call_num> =>

others =>

where <call_num> is the number of the stub call. The keyword others specifies the behavior of any further calls that

have not been described. A <call_num> value of 0 means that no calls are expected to the stub. For example, the

following line specifies that test will pass if there are 0 or more calls to the stub:

STUB close_file others=>(5)1

Moreover, you can use others to specify that the calls are optional. Combining others with a list of call numbers,

enables you to check the minimum number of calls. For example, the following line specifies that test will pass if

there are at least 4 calls to the stub:

STUB close_file 1=>(3)1, 2..4=>(4)1, others=>(5)1

If <call_range> is not specified, then the next call number is assumed. For example, the following lines specify that the

test will pass if there are 2 calls to the stub:

STUB open_file ("file1")3

Chapter 5. Test Execution Specialist Guide

STUB open_file ("file2")4

<function> is the name of the simulated function. It is obligatory. You must previously have described this function in

a DEFINE STUB ... END DEFINE STUB block. You can specify in which stub (<stub_name>) the declaration was made.

<param_val> is an expression describing the test values for _in parameters and the returned values for _out

parameters. For _inout parameters, <param_val> is expressed in the following way:

(<in_param_val> , <out_param_val>)

<return_val> is an expression describing the value returned by the function if its type is not void. Otherwise, no value is

provided.

You must give values for every _in, _out and _inout parameter; otherwise, a warning message is generated. You must

not give a value for any _no parameters; otherwise, a warning message is generated.

<param_val> and <return_val> are expressions that can contain:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be delimited by

single or double inverted commas

• Constants which can be numeric, characters, or character strings

• Constants defined in the test script

• Variables belonging to the test program or the module to be tested

• C functions

• The keyword NIL to designate a null pointer

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where I n is the current index of the nth dimension of the parameter

and J m the current number of the subtest generated by the test scenario's mthINIT IN, INIT FROM or LOOP;

the I and I1 variables are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are

incremented by 1 at each iteration

• An expression with one or more of the above elements combined using any of the C operators (+, -, *, /, %, &,

|, ^, &&, ||, <<, >>) and casting, with all required levels of parentheses, and conforming to C rules of syntax and

semantics, the + operator being allowed to concatenate character string variables

• For arrays and structures, a list of expressions between braces ('{' and '}') or brackets ('[' and ']') with, where

appropriate:

◦ For an array element, part of an array or a structure field, its index, interval or name followed by '=>' and

by the value of the array element, common to all elements of the array portion or structure field

◦ The keyword others (written in lower case) followed by '=>' and the default value of any array elements

or structure fields not yet mentioned.

769

HCL® OneTest™ Embedded

770

You must describe at least one call in the STUB instruction. There can be several descriptions, separated by commas

(','). STUB instructions can appear in ELEMENT or ENVIRONMENT blocks.

Type Modifier '@' Syntax

In a STUB definition you can use a @ before a type modifier to indicate that this type modifier should not be used

when generating variable that test the correct execution of STUBs.

Without the @ symbol, the variables are of const int type and therefore are not modified by the test harness.

Example

STUB read_file (3,"line 1")1, (3,"line 2")1, (3,"")0

STUB write_file (4,"line 1")1, (4,"line 2")1

STUB close_file 1=>(3)1, 2..4=>(4)1, others=>(5)1

TERMINATION ... END TERMINATION

C Test Script Language

Syntax

TERMINATION

END TERMINATION

Description

The TERMINATION and END TERMINATION instructions delimit a block of native code that is integrated into the

generation process as the last instructions to be executed (last lines of main).

In certain environments (for example, a different target machine), these instructions terminate execution on the target

machine.

Associated Rules

A TERMINATION/END TERMINATION block must appear after the BEGIN instruction and outside any SERVICE block.

This block can only contain native code. This code must begin with '#' or '@'.

There is no limit to the number of TERMINATION blocks. They are concatenated at generation.

Related Topics

INITIALIZATION on page 763

Chapter 5. Test Execution Specialist Guide

TEST ... END TEST

C Test Script Language

Syntax

TEST <test_name> [LOOP <nb>]

END TEST

Description

The TEST instruction starts a TEST block. This block describes the test case for a service. It contains one more

ELEMENT blocks specifying the test.

In the test report, the <test_name> parameter flags the test within the SERVICE block. Tests are usually given numbers

in ascending order.

A number of iterations can be specified for each test with the optional LOOP keyword.

The TEST LOOP statement can generate graph metric results in a .rtx file. To do this, you must set the environment

variable ATURTX to True . The produced .rtx graph can be viewed in the HCL OneTest™ Embedded Graphic Viewer.

The END TEST instruction marks the end of the TEST block.

Associated Rules

The TEST and END TEST instructions can only appear in a SERVICE block.

<test_name> is obligatory. If it is absent, the Test Script Compiler generates an error message.

<nb> is an integer expression strictly greater than 1.

Example

SERVICE COMPUTE_HISTO

﷓ int x1, x2, y1, y2 ;

﷓ int status ;

﷓ T_HISTO histo;

TEST 1

FAMILY nominal

ELEMENT

Related Topics

771

HCL® OneTest™ Embedded

772

ELEMENT on page 755 | SERVICE on page 765

USE

C Test Script Language

Purpose

The USE instruction activates a test environment that is defined using the ENVIRONMENT instruction.

Syntax

USE <name> [(<expression> { , <expression> })]

Description

The position of the USE instruction determines which tests are affected by the environment used:

1. If USE occurs outside a SERVICE block, the instructions contained in this environment are applied to all

subsequent ELEMENT blocks.

If USE occurs within a SERVICE block and outside a TEST block, the instructions contained in this

environment are applied to all subsequent ELEMENT blocks of this SERVICE block.

If USE occurs within a TEST block and outside an ELEMENT block, the instructions contained in this

environment are applied to all subsequent ELEMENT blocks of this TEST block.

If USE occurs within an ELEMENT block, the instructions contained in this environment will only be applied to

this block.

Because the USE instruction can appear at these four different levels, four priority levels are created from "outside a

SERVICE block" (the lowest priority) to "inside an ELEMENT block" (the highest priority).

Within the same priority level, the last USE instruction is the one with the highest priority.

Testing is completed according to these priority rules, and on the basis that variables tested several times are

included in the environment with the highest priority.

This is also true for every element of arrays described in extended mode.

If the environment it references takes parameters, the USE instruction must initialize these parameters using C

expressions.

Associated Rules

The USE instruction can appear after BEGIN and outside an ENVIRONMENT block, after the definition of the

environment it references.

<name> is the name of an environment declared by the ENVIRONMENT instruction.

Chapter 5. Test Execution Specialist Guide

<expression> must be an expression that conforms to C syntax and semantics.

Example

ENVIRONMENT compute_histo

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY histo, init = 0, ev = 0

VAR status, init ==, ev = 0

END ENVIRONMENT

USE compute_histo

Related Topics

ENVIRONMENT on page 757

VAR, ARRAY and STR

Purpose
The VAR, ARRAY, and STR instructions declare the test of a simple variable, a variable array or a variable structure. It

applies to C Test Script Language.

Syntax

VAR <variable>, [<format>], <initialization>, <expected_value>
ARRAY <variable>, [<format>], <initialization>, <expected_value>
STR <variable>, [<format>], <initialization>, <expected_value>

where:

• <variable> is a variable on page 775

• <format> optionally defines the format of the variable.

• <initialization> is a Component Testing initialization on page 776 parameter for C

• <expected value> is a Component Testing expected_value on page 780 parameter for C

773

HCL® OneTest™ Embedded

774

Description

Use the VAR, ARRAY, and STR instructions to declare a variable test. During test execution, if the value of the variable

is out of the bounds specified in the <expected_value> expression, the test is Failed.

The usage of VAR, ARRAY or STR does not change the behavior of the test, but each keyword specify how the result

is displayed in the test report. Use:

• VAR: for simple variables.

• ARRAY: for variable arrays.

• STR: for variable structures.

If you use a VAR statement to test an array or structure, the report lists each element of the array or structure.

If you use a STR in an ENVIRONMENT block, then all elements of the structure are shown in the report, regardless of

whether the test passes or fails. If the STR is in an ELEMENT block, then only the failed elements of the structure are

displayed.

The VAR, ARRAY, and STR instructions must be located in an ELEMENT or an ENVIRONMENT block.

Note:

• The initialization expressions must not use '--' or '++' operators, as these may be interpreted as

comments in some environments.

The optional <format> parameter allows you to modify the type of the tested element. This parameter uses the same

syntax as a the FORMAT statement. See FORMAT on page 759 for more information.

In addition the following formats are available in a VAR, ARRAY, or STR statement only:

• pointer: Initialize and test as a pointer, with pointer cast (void*).

• string_ptr: Initialize as a pointer and test as a string.

• string: Initialize and test as a string.

Example

﷓char *ar;

﷓char *ar1;

﷓char ar2[50];

﷓unsigned char t;

Chapter 5. Test Execution Specialist Guide

VAR t, ﷓h, init=200, ev =init -- display as hexadecimal

VAR ar1,string_ptr, init ="defg", ev =INIT -- init as a pointer and test as a string

VAR ar2,string, init ="defgh", ev =INIT -- init and test as a string

VAR ar,pointer﷓b, init =0x12345678, ev =NONIL -- init and test as a pointer and display in binary

Related Topics

Initialization Expressions for C on page 776 | Expected Value Expression for C on page 780 | C Variables on

page 775 | FORMAT on page 759

VAR, ARRAY and STR variable Parameter

VAR, ARRAY and STR <variable> Parameter

C Test Script Language

Description

In the current documentation, the Component Testing <variable> parameter for C is a conventional notation name for

a C variable under test. The syntax of the <variable> parameter allows you to specify the upper and lower boundaries

of the range of the test for each dimension of the array:

[<lower> .. <upper>]

where:

<lower> is lower boundary for acceptable values of <variable>

<upper> is the upper boundary for acceptable values of <variable>

Associated Rules

<variable> can be a simple variable (integer, floating-point number, character, pointer or character string), an element

of an array or structure, part of an array, an entire array, or a complete structure.

If no test boundaries have been specified for a variable array, all array elements are tested. Similarly, if one of the

fields of a variable structure is an array, all elements of this field are tested.

The variable must have been declared in advance.

Example

VAR x, ...

VAR y[4], ...

VAR z.field, ...

775

HCL® OneTest™ Embedded

776

VAR p->value, ...

ARRAY y[0..100], ...

ARRAY y, ...

STR z, ...

STR *p, ...

Related Topics

VAR, ARRAY and STR on page 773 | Initialization Expressions on page 776 | Expected Value Expressions on

page 780

VAR, ARRAY and STR <initialization> Parameter
In this documentation, the Component Testing <initialization> parameters for C Test Script Language specify the

initial value of the variable.

Syntax

 INIT = <exp>
 INIT IN { <exp>, <exp>, ... }
 INIT (<variable>) WITH { <exp>, <exp>, ... }
 INIT FROM <exp> TO <exp> [STEP <exp> | NB_TIMES <nb> | NB_RANDOM <nb>[+ BOUNDS]]
 INIT FROM <exp> TO <exp> [STEP <exp> | NB_VALUE <nb> | NB_RANDOM <nb>[+ BOUNDS]]
INIT ==

where:

• <exp> is an expression as described below.

• <nb> is an integer constant that is either literal or derived from an expression containing native constants.

• <variable> is a C variable.

Description

The <initialization> expressions are used to assign an initial value to a variable. The initial value is displayed in the

Component Testing report for C.

The INIT value is calculated during the pre-processing phase, not dynamically during test execution.

Initializations can be expressed in the following ways:

• INIT = <exp> initializes a variable before the test with the value <expression>.

• INIT IN { <exp> , <exp> , ...} declares a list of initial values. This is a condensed form of writing that enables

several tests to be contained within a single instruction.

Chapter 5. Test Execution Specialist Guide

• INIT (<variable>) WITH { <exp> , <exp> , ...} declares a list of initial values that is assigned in correlation with

those of the variable initialized by an INIT IN instruction. There must be the same number of initial values.

• INIT FROM <lower> TO <upper> allows the initial value of a numeric variable (integer or floating-point) to vary

between lower and upper boundary limits:

• STEP: the value varies by successive steps.

• NB_TIMES <nb> or NB_VALUE <nb>: The value varies by a number <nb> of values that are equidistant between

the two boundaries, where <nb> >= 2 (NB_TIMES and NB_VALUE are equivalent keywords). This option

requires that the target platform supports floating point numbers.

• NB_RANDOM <nb>: The value varies by generating random values between the two boundaries, including,

when appropriate, the boundaries, where <nb> >= 1.

• BOUNDS: When you enter the ‘+ BOUNDS’ instruction after ‘NB_RANDOM nb’, two numerical values are added

to the nb (number) values.

Important:

• The INIT IN and INIT (<variable>.) WITH expressions cannot be used for ARRAYS that were initialized

in extended mode or for structures.

• The INIT FROM expression can only be used for numeric variables.

• The STEP syntax cannot be used when the same variable is tested by another VAR, ARRAY or STR

statement.

• The NB_TIMES, NB_VALUE, and NB_RANDOM keywords require that the target platform supports

floating point numbers.

• The NB_TIMES, NB_VALUE, and NB_RANDOM keywords

• INIT == allows the variable to be left uninitialized. You can thus control the values of variables that

are dynamically created by the service under test. The initial value is displayed in the test report as a

question mark (?).

• An initialization expression can still be used (INIT == <expression>) to include of expected value

expression when using the INIT pseudo-variable is used. See Expected_Value Expressions on

page 780.

• The following syntaxes cannot be used in an ARRAY instruction:

◦ INIT FROM <exp> TO <exp> STEP <exp>,

◦ INIT FROM <exp> TO <exp> NB_TIMES <nb>,

◦ INIT FROM <exp> TO <exp> NB_VALUE <nb>,

777

HCL® OneTest™ Embedded

778

◦ INIT FROM <exp> TO <exp>NB_RANDOM <nb>,

◦ INIT FROM <exp> TO <exp>NB_RANDOM <nb>[+ BOUNDS]

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be delimited by

single or double quotes.

• Native constants, which can be numeric, characters, or character strings.

• Variables belonging to the test program or the module to be tested.

• C or Ada functions.

• The keyword NIL to designate a null pointer.

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where I n is the current index of the nth dimension of the parameter

and J m the current number of the sub-test generated by the test scenario's mth INIT IN, INIT FROM or

LOOP; the I and I1 variables are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are

incremented by 1 at each iteration. These pseudo-variables I, I n, J, and J n must not be declared as typedefs

or variables in the source code.

• A C expression with one or more of the above elements combined using any operators and casting, with all

required levels of parentheses, the + operator being allowed to concatenate character string variables.

• For arrays and structures, any of the above-mentioned expressions between braces ('{}') for C or brackets ('[]')

for Ada, including when appropriate:

◦ For an array element, part of an array or a structure field, its index, interval or name followed by '=>' and

by the value of the array element, common to all elements of the array portion or structure field.

◦ For structures you can test some fields only, by using the following syntax:

▪ For C: { <value>,,<value> }

▪ For all languages: [<fieldname>=><value>, <fieldname>=><value>]

• The keyword others (written in lower case) followed by '=>' and the default value of any array elements or

structure fields not yet mentioned.

• For INIT IN and INIT WITH only, a list of values delimited by braces ('{}') for C composed of any of the

previously defined expressions.

Additional Rules

Any integers contained in an expression must be written either in accordance with native lexical rules, or under the

form:

• <hex_integer> H for hexadecimal values. In this case, the integer must be preceded by 0 if it begins with a

letter.

• <binary_integer> B for binary values.

Chapter 5. Test Execution Specialist Guide

Note: Because of the way hexadecimal values are handled, the value range should not exceed half of the

maximum range when the initialization is expressed in hexadecimal.

• The number of values inside an INIT IN parameter is limited to 100 elements in a single VAR statement.

• The number of INIT IN parameters per TEST LOOP block is limited to 7.

• The number of INIT IN parameters per TEST block is limited to 8.

• In Component Testing for C, if variables are used in the expression, then the test evaluates the the INIT value

with variable values from after the execution.

• All Euclidean divisions performed by the Test Script Compiler round to the inferior integer. Therefore, writing

-a/b returns a different result than -(a/b), as in the following examples:

-(9/2) returns -4

-9/2 returns -5

Examples

 VAR x, INIT = pi/4-1, ...
VAR y[4], INIT IN { 0, 1, 2, 3 }, ...
VAR y[5], INIT(y[4]) WITH { 10, 11, 12, 13 }, ...
VAR z.field, INIT FROM 0 TO 100 NB_RANDOM 3, ...
VAR z.field, INIT FROM 0 TO 100 NB_RANDOM 3 + BOUNDS, ..
VAR p->value, INIT ==, ...
ARRAY y[0..100], INIT = sin(I), ...
ARRAY y, INIT = {50=>10,others=>0}, ...
STR z, INIT = {0, "", NIL}, ...
STR *p, INIT = {value=>4.9, valid=>1}, ...

In the following example, the C test Script Compiler generates code that tests x against a then b after the execution of

the code under test:

VAR y, init in (1,2), ev = init
 VAR a, init(y) with (10, 20), ev = 50
 VAR b, init(y) with (30, 40), ev = 70
 VAR x, init(y) with (a, b), ev = init
 #a := 50;
 #b := 70;

Additional Ex

VAR z.field, INIT FROM 0 TO 100 NB_RANDOM 3 + BOUNDS, ...

Related Topics

<expression> parameter on page 763 | Expected_Value Expressions on page 780 | <variable> parameter (C) on

page 775 | VAR, ARRAY and STR on page 773

779

HCL® OneTest™ Embedded

780

VAR, ARRAY and STR expected Parameter

Purpose

In this documentation, the Component Testing <expected value> parameters for C Test Script Language specify the

expected value of a variable.

EV = <exp>
 EV = <exp> , DELTA = <delta>
 MIN = <exp>, MAX = <exp>
 EV IN { <exp>, <exp>, ... }
 EV (<variable>) IN { <exp>, <exp>, ... }
EV ==

Where <exp> can be any of the expressions of the Initialization Parameters on page 776, and additionally the

following expressions:

• <delta> is the acceptable tolerance of the expected value and can be expressed.

• <variable> is a C variable.

Description

The <expected value> expressions are used to specify a test criteria by comparison with the value of a variable. The

test is considered as Passed when the actual value matches the <expected value> expression.

The EV value is calculated during the preprocessing phase, and not dynamically during test execution.

An acceptable tolerance <delta> can be expressed:

• As an absolute value, by a numerical expression in the form described above.

• As a percentage of the expected value. Tolerance is then written as follows: <exp> %.

Expected values can be expressed in the following ways:

• EV = <exp> specifies the expected value of the variable when it is known in advance. The value of variable is

considered correct if it is equal to <exp>.

• EV = <exp>, DELTA = <tolerance> allows a tolerance for the expected value. The value of variable is considered

correct if it lies between <exp> - <tolerance> and <exp> + <tolerance>.

• MIN = <exp> and MAX = <exp> specify an interval delimited by an upper and lower limit. The value of the

variable is considered correct if it lies between the two expressions. Characters and character strings are

processed in dictionary order.

• EV IN { <exp>, <exp>, ... } specifies the values expected successively, in accordance with the initial values, for

a variable that is declared in INIT IN. It is therefore essential that the two lists have an identical number of

values.

Chapter 5. Test Execution Specialist Guide

• EV (<variable>) IN is identical to EV IN, but the expected value is a function of other variable that has

previously been declared in INIT IN. As for EV IN, the two lists must have an identical number of values.

• EV == allows the value of <variable> not to be checked at the end of the test. Instead, this value is read and

displayed. The value of <variable> is always considered correct.

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be delimited by

single or double quotes.

• Native constants, which can be numeric, characters, or character strings.

• Variables belonging to the test program or the module to be tested.

• C or Ada functions.

• The keyword NIL to designate a null pointer.

• The keyword NONIL, which tests if a pointer is non-null.

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where I n is the current index of the nth dimension of the parameter

and J m the current number of the subtest generated by the test scenario's mthINIT IN, INIT FROM or LOOP;

the I and I1 variables are therefore equivalent as are J and J1; the sub-test numbers begin at 1 and are

incremented by 1 at each iteration.

• A C or Ada expression with one or more of the above elements combined using any operators and casting,

with all required levels of parentheses, the + operator being allowed to concatenate character string variables.

• For arrays and structures, any of the above-mentioned expressions between braces ('{}') for C, including when

appropriate:

◦ For an array element, part of an array or a structure field, its index, interval or name followed by '=>' and

by the value of the array element, common to all elements of the array portion or structure field.

◦ For structures you can test some fields only, by using the following syntax:

 { <value>,,<value> }

• The keyword others(written in lower case) followed by '=>' and the default value of any array elements or

structure fields not yet mentioned.

• The pseudo-variable INIT, which copies the initialization expression. You cannot use the pseudo-variable INIT

inside an array or structure. The keyword INIT applies to the entire expression.

Note: The following syntaxes cannot be used in an ARRAY instruction:

781

HCL® OneTest™ Embedded

782

EV IN (<exp>, <exp>, ...)
 EV (<variable>) IN (<exp>, <exp>, ...)

Additional Rules

• EV with DELTA is only allowed for numeric variables. The STR statement does not support DELTA.

• MIN = <exp> and MAX = <exp> are only allowed for alphanumeric variables that use lexicographical order for

characters and character strings.

• MIN = <exp> and MAX = <exp> are not allowed for pointers.

• Only EV = and EV == are allowed for structured variables.

• In some cases, in order to avoid generated code compilation warnings, the word CAST must be inserted

before the NIL or NONIL keywords.

• All Euclidian divisions performed by the Test Script Compiler round to the inferior integer. Therefore, writing

-a/b returns a different result than -(a/b), as in the following examples:

-(9/2) returns -4
-9/2 returns -5

• Not a number and infinite float values: Component testing can handle not a number and infinite float values

as MIN and MAX parameters. Such values must be assigned through a variable. The test produces a verdict

depending on the nature of the values.

The following table describes the verdict to be expected for each combination of MIN and MAX values. For example,

if the MIN is a real float value and the MAX is +infinite, then the test will fail if the actual return value is not a number

or +infinite and will pass if the value is +infinite or greater that MIN.

Expected values Actual return values

MIN MAX Not a number -infi­

nite

float value +infi­

nite

Not a number Not a number Pass Fail Fail Fail

Not a number -infinite Pass Pass Fail Fail

Not a number float value Pass Fail x==MAX Fail

Not a number +infinite Pass Fail Fail Pass

-infinite Not a number Pass Pass Fail Fail

-infinite -infinite Fail Pass Fail Fail

-infinite float value Fail Pass x<=MAX Fail

-infinite +infinite Fail Pass Pass Pass

float value Not a number Pass Fail x==MIN Fail

float value -infinite Fail Fail Fail Fail

Chapter 5. Test Execution Specialist Guide

float value float value Fail Fail MIN<=x<=MAX Fail

float value +infinite Fail Fail x>=MIN Pass

+infinite Not a number Pass Fail Fail Pass

+infinite -infinite Fail Fail Fail Fail

+infinite float value Fail Fail Fail Fail

+infinite +infinite Fail Fail Fail Pass

Example
VAR x, ..., EV = pi/4-1
VAR y[4], ..., EV IN { 0, 1, 2, 3 }
VAR y[5], ..., EV(y[4]) IN { 10, 11, 12, 13 }
VAR z.field, ..., MIN = 0, MAX = 100
VAR p->value, ..., EV ==
ARRAY y[0..100], ..., EV = cos(I)
ARRAY y, ..., EV = {50=>10,others=>0}
STR z, ..., EV = {0, "", NIL}
STR *p, ..., EV = {value=>4.9, valid=>1}

Related Topics

Initialization Expressions on page 776 | VAR, ARRAY and STR on page 773 | C Variables on page 775

Requirement

Purpose

The Requirement instruction allows the testers to link a test or a set of tests to one or a set of

requirements. Requirement is optional.

Syntax

REQUIREMENT <requirement_name> {, [<attribute_name> =|:] <attribute_value>}

Argument

<requirement_name> is a mandatory identifier indicating the name of the requirement.

<attribute_name> is the name of one attribute of the requirement. It is an identifier.

<attribute_value> is the value of the attribute. The syntax may be: $<identifier>. In this case, the attribute

value is substituted with the content of an environment variable whose name is $<identifier>.

Description

The REQUIREMENT instruction appears within TEST blocks, where it defines the requirements for this

test or within SERVICE blocks where it defines the requirements for the tests including in this service or

before the first SERVICE block where it defines the requirements for the all the tests in the file.

783

HCL® OneTest™ Embedded

784

Requirements are cumulative between test and service.

rod2req is a binary that generates an XML file analyzing the rod files and describing the tracability

matrix between tests and requirements with pass/failed status.

Example

TEST1

FAMILY nominal

REQUIREMENT req1, req2

 COMMENT histogram computation on a black image

ELEMENT

Component Testing for C++

C++ test driver script (.otd)

Component Testing for C++ uses its own simple language for test driver scripting.

This section describes each keyword of the C++ test driver script language, including:

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation conventions

Throughout this section, command notation and argument parameters use the following standard convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } { <filenames> } Series of values

[{ }] [{ <filenames> }

]

Optional series of vari­

ables

| on|off OR operator

C++ test driver script keywords are case insensitive. This means that STUB, stub, and Stub are interpreted the same

way.

Chapter 5. Test Execution Specialist Guide

For conventional purposes however, this document uses upper-case notation for the C++ test driver script keywords

in order to differentiate from native source code.

Split statements

C++ test driver script statements may be split over several lines in an .otd test script. Continued lines must start with

the ampersand ('&') symbol to be recognized as a continuation of the previous line. No tabs or spaces should precede

the ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Language identifiers

A C++ test script identifier is a text string used as a label, such as the name of a TEST or a STUB in an .otd test script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following statement, for example, is

syntactically correct:

TEST CASE 1

{

..

}

C++ test driver script identifiers are case sensitive. This means that LABEL, label, and Label are three different

identifiers.

Related Topics

C on page 786 ++ test driver script structure on page 786 | C++ test driver script keywords on page 788 | C++

contract check scripts (.otc) on page 818

785

HCL® OneTest™ Embedded

786

C++ test driver script structure

A Component Testing for C++ test driver script (.otd script) describes a test driver. Its purpose is to stimulate the

tested classes by creating objects and calling their methods. It provides different ways to check that the objects

behavior is the one that was expected.

When executed, the script is translated into a C++ source by Component Testing for C++. Furthermore, it instruments

the source code under test whenever the STUB, CHECK STUB, or CHECK METHOD statements are used.

Order is meaningful for INCLUDE and native statements. RUN may appear only once in a C++ Test Driver script. Other

entities are not ordered: for instance, a TEST CLASS can forward-reference a STUB.

Note A C++ Test Driver script is made both of statements and instructions. Instructions are ordered: their relative

position is meaningful. Statements have no order: they have a declarative nature.

Basic structure

A typical Component Testing .otd test script structure could look like this:

TEST CLASS TestAnyPhilosopher (Philosopher_type)

{

TEST CLASS TestNominal (Philosopher_type)

{

PROLOGUE

{

// Actions to be performed when entering this test class.

}

TEST CASE AssignForks

{

// CHECK statements

}

EPILOGUE

{

// Actions to be performed when leaving this test class.

}

Chapter 5. Test Execution Specialist Guide

RUN

{

// Runs the test cases

}

}

RUN

{

// Runs the test class

}

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write an instruction

over several lines using the ampersand (&) continuation character at the beginning of additional lines. In this

case, the ampersand must be the very first character on that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Structure statements

The following statements allow you to describe the structure of a test.

• TEST CLASS:Describes an object test class, which is one of the structuring entities of a C++ test driver script.

Test classes can appear at the root-level of a C++ Test Driver Script and in test classes.

• PROLOGUE: Defines native code that is to be executed whenever the surrounding test class execution begins.

This code is executed before any other of the test class' components.

• TEST CASE: Describes an object test case, which is the smallest testing structure in a hierarchical C++ test

driver script. Test cases appear in test classes and test suites.

• EPILOGUE: Defines native code that is to be executed whenever the execution of the surrounding test class

ends. This code is executed after other test class components.

• RUN:Defines the behavior of the surrounding test class.

787

HCL® OneTest™ Embedded

788

Related Topics

TEST CLASS on page 811 | PROLOGUE on page 805 | TEST CASE on page 810 | EPILOGUE on page 798 | RUN

on page 807

C++ test driver script keywords

Structure-related Keywords

• EPILOGUE

• INCLUDE

• TEST CLASS

• TEST SUITE

• TEST CASE

• PROLOGUE

• RUN

• PROPERTY

• PROC

• REQUIRE

• ENSURE

Verification Keywords

• CHECK

• CHECK EXCEPTION

• CHECK METHOD

• CHECK PROPERTY

• CHECK STUB on page 794

Error-handling Keyword

• ON ERROR on page 800

Stubbing Keyword

Chapter 5. Test Execution Specialist Guide

• STUB

• REQUIRE

• ENSURE

Instructions

• COMMENT

• PRINT

• CALL

CALL

C++ Test Script Language

Purpose

The CALL instruction calls a procedure defined with a PROC statement.

Syntax

CALL <procedure name> [(<actual parameter> [(, <actual parameter>)])] ;

Arguments

<procedure_name> is a valid procedure name, defined within a test class or test suite, or in an inherited test class.

<actual_parameter> is an optional list of parameters that must conform to the expected procedure parameter list.

Description

A CALL instruction can be located within a TEST CASE or PROC block.

Example

TEST CLASS TestA {

PROC InitArray (array, length)

{

﷓{

for (int i = 0; i<length; i++)

array[i].init ();

789

HCL® OneTest™ Embedded

790

}﷓

}

TEST CASE tc1 {

﷓Array<int> ia (50);

CALL InitArray (ia, 49);

}

}

CHECK

C++ Test Script Language

Purpose

The CHECK instruction evaluates the Boolean value of a native expression.

Syntax

CHECK [<comment>] (<native expression>);

Arguments

<comment> is an optional string that appears in the test results.

<native expression> is a valid C++ expression, which may be converted into a Boolean.

Location

TEST CASE, PROC, STUB, CHECK STUB on page 794

Description

The CHECK instruction evaluates the native expression. If the result of the check is TRUE, the result of the

corresponding test is Passed. Otherwise, an error is generated. The result of the error handling is specified with the

ON ERROR on page 800 keyword.

Example

TEST CLASS TestA {

TEST CASE tc1 {

CHECK (s.empty ());

}

Chapter 5. Test Execution Specialist Guide

RUN { tc1; }

}

CHECK EXCEPTION

C++ Test Script Language

Purpose

The CHECK EXCEPTION statement checks that an exception is raised within a block.

Syntax

CHECK EXCEPTION (<native type> [<native parameter name>]) (({ <on exception item>}) | ;)

Arguments

<native type> is the C++ type of the expected exception.

<native parameter name> is the optional name of the exception. It may also be used in <on exception item>.

<on exception item> may be a COMMENT, a PRINT or a native-code statement.

Description

The CHECK EXCEPTION statement specifies that the exception of type <native type> is expected to be raised in the

current C++ Text Script Language block (test case or proc). If this exception is not raised in the block, an error on

page 551 is generated.

Only one CHECK EXCEPTION may occur per block. A CHECK EXCEPTION can be located in a TEST CASE or PROC

block.

Example

TEST CASE TC1 {

CHECK EXCEPTION (DivideByZeroException) {

PRINT "ok";

}

﷓b = 1; c = 0;

﷓a = b / c;

}

Related Topics

791

HCL® OneTest™ Embedded

792

COMMENT on page 796 | PRINT on page 802 | TEST CASE on page 810 | PROC on page 803 | Error handling

on page 551 | Native code on page 816

CHECK METHOD

C++ Test Script Language

Syntax

CHECK METHOD <native routine signature>;

Location

TEST CASE

Description

The CHECK METHOD checks that a routine (function or class member) is called during the execution of the

surrounding test case. If the routine is not called, an error is generated. Error-handling behavior is specified with the

ON ERROR on page 800 keyword.

N ote The use of CHECK METHOD requires instrumentation of the source code under test.

<native routine signature> refers to an existing routine.

• If it is a class or namespace member, its name must be qualified but the return type may be omitted.

• If it is a class member, and if it not overloaded, the parameters may be omitted.

If parameters are specified, their names may be omitted.

Only one CHECK METHOD referring to each routine may occur in each TEST CASE.

Note When the CHECK METHOD statement is used in an .otd test script, the related source files are always

instrumented even if they are displayed as not instrumented in Project Explorer.

Example

TEST SUITE A {

TEST CASE 1 {

CHECK METHOD IntArray::ModifyCell (int);

﷓IntArray ia;

﷓InitializeArray (ia); // this function calls IntArray::ModifyCell

// ia is filled with random numbers

Chapter 5. Test Execution Specialist Guide

}

TEST CASE 2 {

CHECK METHOD IntArray::ModifyCell; // you can omit parameters

﷓IntArray ia;

// IntArray::ModifyCell was not called => error

}

}

RUN { A; }

CHECK PROPERTY

C++ Test Script Language

Syntax

CHECK PROPERTY ["<comment>"] <property name> [(<actual parameter> [(, <actual parameter>)*)]

Location

TEST CASE, PROC, STUB, CHECK STUB on page 794

Description

The CHECK PROPERTY instruction evaluates the property <property name>. If the result is TRUE, the test is passed.

Otherwise, it generates an error on page 551 . Error handling behavior is specified with the ON ERROR on

page 800 keyword.

<comment> is an optional string that appears in test results.

<property name> is a valid property defined in the current test class, in a nesting test class or in an inherited test

class.

Note: properties are defined with the keyword PROPERTY.

Example

TEST CLASS TestA {

PROPERTY Empty { (s.count() == 0) }

TEST CASE tc1 {

CHECK PROPERTY Empty;

793

HCL® OneTest™ Embedded

794

}

RUN { tc1; }

}

CHECK STUB

C++ Test Script Language

Syntax

CHECK STUB <stub name> { <stub item>}

CHECK STUB <stub name>;

Location

TEST CASE

Description

The CHECK STUB instruction checks that a stub is called at least once during the TEST CASE execution.

If a block is provided, it specifies that <stub item> should be executed instead of the stub's "..." zone. If no block is

provided, the execution of the stub's "..." does nothing.

If the stub is not called, an error is generated. Error handling behavior is specified with the ON ERROR on page 800

keyword.

Note: The use of stubs requires instrumentation of the source code under test.

<stub name> is a valid stub identifier.

<stub item> may be one the following entities:

1. CHECK

COMMENT

PRINT

Native statement

Only one CHECK STUB may refer to the same STUB in a TEST CASE.

Note The CHECK STUB statement may be used before the corresponding STUB is defined.

Example

Chapter 5. Test Execution Specialist Guide

STUB ModifyCell : int IntArray::Modify (int Cell)

REQUIRE (Cell != 128)

{

﷓int Nb = random(10000);

... // this part is completed by the code of CHECK STUB

this.array[Cell] = Nb;

﷓return (Nb);

}

TEST SUITE A {

TEST CASE 1 {

CHECK STUB ModifyCell;

﷓IntArray ia;

﷓InitializeArray (ia); // this function calls IntArray::ModifyCell

// ia is filled with random numbers

}

TEST CASE 2 {

CHECK STUB ModifyCell {

﷓Nb = 0;

}

﷓IntArray ia;

﷓InitializeArray (ia); // this function calls IntArray::ModifyCell

// ia is filled with 0

}

}

RUN { A; }

795

HCL® OneTest™ Embedded

796

COMMENT

C++ Test Script Language

Syntax

COMMENT <one-line text>

COMMENT { <multiple-line text> }

Location

TEST CASE, PROC, STUB, CHECK STUB on page 794, PROLOGUE, EPILOGUE, ON ERROR on page 800, CHECK

EXCEPTION

Description

The COMMENT instruction allows the output of static comments to a trace file. These comments can be visualized

through the UML/SD Viewer in the GUI.

Example

TEST CASE tc1 {

﷓s.push (i);

COMMENT An element was added to the stack.

CHECK (!s.full ());

}

ENSURE

C++ Test Script Language

Syntax

ENSURE <native expression>

Location

WRAP, STUB on page 808, PROC on page 803

Description

The ENSURE statement describes a method post-condition. It can be used in a WRAP, STUB or PROC block.

Note The information below pertains to the use of ENSURE within a WRAP block. For more information about using

the REQUIRE and ENSURE statement within a STUB or PROC block, please refer to the STUB on page 808 and

PROC on page 803.

Chapter 5. Test Execution Specialist Guide

<native expression>is a C++ Boolean expression (or an expression that can be converted into a Boolean), which can

use:

• Any of the public or protected class members.

• The method parameters (with the names used in the signature or in the method definition).

• Any of the global variables declared in the file where the method is defined.

• The _ATO_result, _ATO_old and _ATO_in_exception variables (see below).

The following symbols cannot be used in the <native expression> parameter of the ENSURE statement:

• Local variables

• Macros

Variables

• _ATO_result :This variable contains the method return value, if any. Its type is that of the method return

type. Its value may be undefined if no value is returned (because an exception was thrown, or a return

without a value is executed, or the function implicitly returns)._ATO_resultis not available when the option--

postcondition_before_returnis activated (see Target Deployment Port options on page 830).

• _ATO_old:This variablecontains a copy of the object as it was before the method call. The_ATO_oldobject

is generated by the class copy constructor. If the class copy constructor is explicitly defined, you

should remember that_ATO_oldis not araw copyof the current object, but a copy as defined by the copy

constructor._ATO_oldis not available in constructors.

For performance purposes, the _ATO_old variable is generated only if it is used in the ENSURE expression.

• _ATO_in_exception:This is a Boolean variable that isTRUEif the post-condition is executed because an

exception has been thrown. This variable is available only if the Target Deployment Package is configured to

support exceptions.

Evaluation

When --postcondition_before_return option is set in the Target Deployment Package .opp file, <native expression> is

evaluated before the return expression. If the return expression evaluation causes side-effects, they are not taken

into account at the time the post-condition is checked. This option is provided for compatibility with limited C++

compilers, and its use should be avoided as much as possible.

Otherwise, <native expression> is evaluated after any code of the method (local variables are already popped).

Warning: you can call methods in <native expression>, but you must make sure that these calls do not modify the

object's state (that is, they do not write to any field). You can ensure this by calling const methods only. If you want

the compiler to check this, use the ATO_AC_STRICT_CHECKING Target Deployment Port option.

797

HCL® OneTest™ Embedded

798

Example

C++ source code example:

class Stack {

public:

int count;

Stack () : count(0) {}

void push (void *);

void *pop ();

};

C++ Contract Check Script code example:

CLASS Stack {

WRAP push

ENSURE (count == _ATO_old.count + 1)

}

EPILOGUE

C++ Test Script Language

Syntax

EPILOGUE { <epilogue item>* }

Location

TEST CLASS | TEST SUITE

Description

The EPILOGUE structure defines native code that is to be executed whenever the execution of the surrounding test

class ends. This code is executed after other test class components.

An EPILOGUE statement may appear at most once in a test class. In an object-context, an EPILOGUE can be

compared to a destructor.

<epilogue item> may be one of the following entities:

Chapter 5. Test Execution Specialist Guide

• COMMENT

• PRINT

• Native statement

Order is meaningful.

Example

TEST CLASS ATest

{

PROLOGUE {

﷓Stack *s = new Stack(20);

﷓s->fill ();

}

EPILOGUE {

﷓delete s;

}

TEST CASE tc1 {

CHECK (!s->full ());

}

RUN {

tc1;

}

}

INCLUDE

C++ Test Script Language

Syntax

INCLUDE " <file name> ";

799

HCL® OneTest™ Embedded

800

Location

C++ Test Driver Script

Description

The INCLUDE statement opens the file <file name> and inserts its code into the C++ Test Driver Script.

A file cannot include itself, directly or indirectly.

An included file must not have a RUN statement at the script level. A RUN statement at script level is only allowed in

the main test script.

Example

INCLUDE "test1.otd";

ON ERROR

C++ Test Script Language

Syntax

ON ERROR [{ <error item> }] <error action>;

Location

C++ Test Driver Script, TEST CLASS, TEST SUITE, TEST CASE, PROC

Description

The ON ERROR statement defines the behavior of the test driver when an error occurs.

ON ERROR applies to the current scope level, and to nested scopes, unless another ON ERROR statement has been

defined. The general rule is that the most nested ON ERROR statement is applied.

Note An error can be raised by any instruction of a TEST CASE or a PROC, and by native code from a PROLOGUE or

EPILOGUE.

ON ERROR does not apply to stubs. There is always an implicit ON ERROR CONTINUE behavior in stubs

<error item> may be one of the following entities:

1. COMMENT

PRINT

Native statement

This block is executed when an error occurs.

Chapter 5. Test Execution Specialist Guide

<error action> is a keyword which defines the behavior of the test driver when an error occurs:

1. CONTINUE: The execution continues just as if no error occurred. If the error comes from an unexpected

exception raised by native code, the execution continues after the native code, except for an error in a

PROLOGUE block. Since it is the default behavior, this on-error action should only be specified to override

another on-error action.

EXIT : The execution of the test driver stops at the error point.

BYPASS: The execution of the rest of the current test case or procedure is skipped.

BYPASS <test class name> | <test suite name> | <test case name> | <proc name> : The execution of the rest of

the referred entity is skipped.

Example

ON ERROR CONTINUE;

TEST CLASS A {

ON ERROR EXIT;

TEST SUITE A1 {

ON ERROR BYPASS A;

TEST CASE A1a {

ON ERROR CONTINUE;

CHECK (false); // this leads to an error but execution continues

PRINT "ok"; // this instruction is executed

}

TEST CASE A1b {

CHECK (false); // this leads to an error

// execution resumes after TEST CLASS A

PRINT "ko"; // this instruction is never executed

}

}

TEST CASE A2 {

CHECK (false); // this leads to an error -- the test driver exits

801

HCL® OneTest™ Embedded

802

PRINT "ko"; // this instruction is never executed

}

RUN { A1; A2; }

}

TEST CLASS B {

TEST CASE B1 {

ON ERROR BYPASS;

CHECK (false); // this leads to an error -- execution resumes after B1

PRINT "ko"; // this instruction is never executed

}

TEST CASE B2 {

CHECK (false); // this leads to an error but execution continues

PRINT "ok"; // this instruction is executed

}

RUN { B1; B2; B1; }

}

RUN { B; A; A.A2; }

In this example, the execution is: B1 (aborted), B2, B1 (aborted), A1a, A1b (A is aborted), A2 (exited).

PRINT

C++ Test Script Language

Syntax

PRINT (<expression> [(, <expression>)]);

Location

C++ Test Driver Script, TEST CASE, PROC, STUB, CHECK STUB on page 794, PROLOGUE, EPILOGUE, ON ERROR on

page 800, CHECK EXCEPTION

Description

Chapter 5. Test Execution Specialist Guide

The PRINT instruction outputs dynamic comments to the traces file. These comments are displayed in the UML

sequence diagrams and test reports produced by Component Testing for C++.

<expression> is a valid C++ expression whose type must be handled by the Target Deployment Port (handled types

are scalar types, floating types, strings and pointers). <expression> is evaluated on execution.

A PRINT instruction may generate an error when the evaluation of one of the arguments raises an unexpected

exception. Use the CHECK EXCEPTION statement to specify exceptions.

Example

Execution of the following test displays the string: "Adding element 12 at position 3". This string is displayed as a

note in the sequence diagram and in a tab in the test report.

TEST CASE tc1 {

﷓ pos = s.push(I);

PRINT ("Adding element ", I, " at position ", pos);

CHECK (!s.full ());

}

PROC

C++ Test Script Language

Syntax

PROC <procedure name> [(<formal parameter> [(, <formal parameter>)])]

[REQUIRE (<native expression>)]

<procedure item>

[ENSURE (<native expression>)]

Location

TEST CLASS, TEST SUITE

Description

The PROC statement defines a procedure.

Note Procedures can be called with the CALL statement.

803

HCL® OneTest™ Embedded

804

<procedure name> is a C++ Test Script Language identifier. It is visible in the surrounding test class or test suite, in

sub-test classes or sub-test suites, and in inheriting test classes.

<formal parameter> is a C++ Test Script Language identifier. It has no type: it is replaced into the procedure by an

actual parameter. Thus it can refer to a C++ type as well a C++ constant or a C++ variable.

<native expression> is a C++ expression that can be evaluated to a Boolean. The REQUIRE expression is evaluated

before execution of the procedure. The ENSURE expression is evaluated after execution of the procedure. If any of

these optional expressions is False, the evaluation leads to an error in the caller's context.

<procedure item> may be one the following entities:

• CHECK EXCEPTION

• CHECK

• CHECK PROPERTY

• CALL

• CHECK STUB on page 794

• CHECK METHOD

• ON ERROR on page 800

• COMMENT

• PRINT

• Native statement

Order is meaningful, except for CHECK STUB, CHECK METHOD, and ON ERROR statements.

The ON ERROR statement may only appear once.

Example

TEST CLASS TestA {

PROC InitArray (array, length)

REQUIRE (length>30 && length<array.length())

{

﷓{

for (int i = 0; i<length; i++)

array[i].init ();

Chapter 5. Test Execution Specialist Guide

}﷓

}

ENSURE (array[0].initialized())

}

PROLOGUE

C++ Test Script Language

Syntax

PROLOGUE { <prologue item>* }

Location

TEST CLASS | TEST SUITE

Description

The PROLOGUE statement defines native code that is to be executed whenever the surrounding test class execution

begins. This code is executed before any other of the test class' components.

The PROLOGUE statement may appear at most once in a test class. In an object-context, a prologue can be compared

to a constructor.

<prologue item> may be one of the following entities:

• COMMENT

• PRINT

• Native statement

Order is meaningful. The native code can be made of declarations and instructions. Variables declared in prologue

are visible from every component of the surrounding test class.

Note If the native code raises an exception, the prologue generates an error, handled by the ON ERROR local block.

Even if the ON ERROR statement is CONTINUE, the whole TEST CLASS or TEST SUITE is skipped, including its

EPILOGUE.

Example

TEST CLASS ATest

{

805

HCL® OneTest™ Embedded

806

PROLOGUE {

﷓Stack s(20);

﷓s.fill ();

}

TEST CASE tc1 {

CHECK (!s.full ());

}

RUN {

tc1;

}

}

PROPERTY

C++ Test Script Language

Syntax

PROPERTY <property name> [(<parameter> [(, <parameter>)])]

{ ((<native expression>))}

Location

TEST CLASS, TEST SUITE

Description

The PROPERTY statement associates a global state, defined by the conjunction of <native expression>, to a name.

This name is visible in the TEST CLASS where the property is defined.

Note The occurrence of a property may be checked with the keyword CHECK PROPERTY.

<native expression> is a valid C++ expression that may be evaluated to a Boolean.

Example

TEST CLASS TestA {

PROPERTY Empty { (s.count() == 0) }

Chapter 5. Test Execution Specialist Guide

TEST CASE tc1 {

CHECK PROPERTY Empty;

}

RUN { tc1; }

}

RUN

C++ Test Script Language

Syntax

RUN { <run item> }

Location

TEST CLASS, OTD Script

Description

The RUN statement defines the behavior of the surrounding test class.

<run item> may be one of the following entities:

• Test class name

Test suite name

Test case name

These names refer to a component defined in the surrounding test class or in an inherited test class. Order is

meaningful. They can refer to a nested item (the nesting sequence is specified with the list of identifiers, from the

most-surrounding to the most-nested one, separated by a dot).

The RUN statement can be located either within a TEST CLASS or at the root level of a C++ Test Driver Script:

• When used in aTEST CLASS, theRUNstatement defines the behavior of the surroundingTEST CLASS.

• When used at the root level of a script, the RUN statement defines which entities are to be run when the script

is executed. The RUN items can refer to any entity of the script.

Only one RUN statement is allowed at the root of a script or within each TEST CLASS.

The RUN statement is not allowed in included scripts.

807

HCL® OneTest™ Embedded

808

RUN items are executed sequentially.

Example

TEST CLASS ATest

{

TEST CASE tc1 {

﷓s.push (i);

CHECK (!s.full ());

}

TEST CASE tc2 {

﷓s.pop ();

CHECK (!s.empty ());

RUN {

tc1; tc2; tc2; tc1;

}

}

STUB
The STUB statement defines a stub for a function or method. A stub defines or replaces the initial routine.

C++ Test Script Language

Syntax

STUB <stub name> : <native routine signature>
[REQUIRE (<require native expression>)]
{<stub item>... <stub item>}
[ENSURE (<ensure native expression>)]

Location

C++ contract check scripts (.otc) on page 818

Note The use of stubs requires instrumentation.

<stub name> is a unique C++ Test Script Language identifier.

<native routine signature> is a C++ signature matching the routine to stub. Unlike WRAP signatures, the signature

must be complete; the return type and parameters (type and name) must be specified. If the routine is a class

Chapter 5. Test Execution Specialist Guide

member or belongs to a namespace, its name must be qualified. If the routine is a template function or a template

class member, the usual template<...> prefix must be used. If it is a generic template, any instance of this template is

stubbed. If it is a template specialization, only the corresponding instance is stubbed.

<require native expression> is a C++ expression that can be evaluated to a Boolean. It is evaluated before the stub

execution. It can refer to:

• The global variables defined in the test script.

• The stubbed routine's parameters.

<ensure native expression> is a C++ expression which can be evaluated to a Boolean. It is evaluated after the stub

execution. It can refer to:

• The global variables defined in the test script.

• The stubbed routine's parameters.

• The_ATO_resultvariable that contains the routine return value, if any. Its type is that of the routine return type.

Its value may be undefined if no value is returned (because an exception was thrown, or a return without a

value is executed, or the function implicitly returns).

• The_ATO_in_exceptionBoolean variable, which isTrueif the post-condition is executed because an exception

has been thrown. This variable is available only if the Target Deployment Package is configured to support

exceptions.

If one of these expressions is False, the stub is failed but not the CHECK STUB, which could still have been defined to

ensure the stub is called.

<stub item> may be one the following entities:

• CHECK

• COMMENT

• PRINT

• Native statement

The "..." zone is optional and is replaced by the code provided through the CHECK STUB on page 794 statement. If

not specified, it is implicitly defined at the end of the STUB block.

You cannot define several stubs for the same method. However you can define a stub for each instance of a template

function or a template class member.

If a statement of the STUB generates an error, the stub is declared failed, but its execution continues (there is always

an implicit ON ERROR CONTINUE in stubs).

809

HCL® OneTest™ Embedded

810

An error in a STUB does not imply an error in the TEST CASE containing the corresponding CHECK STUB. The CHECK

STUB statement only checks that the stub is called, not that its execution is correct.

Example : STUB ModifyCell : int IntArray::Modify (int Cell)

REQUIRE (Cell != 128)

{

﷓int Nb = random(10000);

... // this part is completed by the code of CHECK STUB

﷓return (Nb);

}

In this example, a number Nb is randomly chosen. If no additional code is provided by a CHECK STUB, then this

number is returned. If a CHECK STUB is provided, assign the expected return value to Nb on a case-by-case basis.

TEST CASE

C++ Test Script Language

Syntax

TEST CASE <test case name> { <test case item>}

Location

TEST CLASS, TEST SUITE

Description

The TEST CASE statement describes an object test case, which is the smallest testing structure in a hierarchical C++

Test Driver Script. Test cases appear in test classes and test suites.

<test case name> is a C++ Test Script Language identifier.

<test case item> may be one of the following entities:

• ON ERROR on page 800

• CHECK EXCEPTION

• CHECK

• CHECK PROPERTY

• CHECK METHOD

Chapter 5. Test Execution Specialist Guide

• CHECK STUB on page 794

• CALL

• COMMENT

• PRINT

• Native statement

CALL, CHECK, CHECK PROPERTY, COMMENT, PRINT as well as Native statements are ordered (they are executed

sequentially). Other entities are not (they have a global effect on the test case).

ON ERROR and CHECK EXCEPTION may appear only once.

Example

TEST CLASS A {

TEST CASE 1 {

CHECK (x == 1);

﷓do_something ();

CHECK PROPERTY ok;

}

RUN {

1;

}

}

TEST CLASS

C++ Test Script Language

Syntax

TEST CLASS <test_class_ name> [<formal_parameter> [, <formal_parameter>]] [: <parent_class>]

[<actual_parameter> [, <actual_parameter>]] { <test_class_item>}

Location

C++ Text Driver Script, TEST CLASS

811

HCL® OneTest™ Embedded

812

Description

The TEST CLASS statement describes an object test class, which is one of the structuring entities of a C++ Test

Driver Script. Test classes can appear at the root-level of a C++ Test Driver Script and in test classes.

<test class name> is a C++ Test Script Language identifier.

<formal parameter> is a C++ Test Script Language identifier. It has no type: it is replaced into the test class by an

actual parameter. Thus it can refer to a C++ type as well a C++ constant or a C++ variable.

<actual parameter>is a C++ actual parameter.

<parent class> is a valid test class that is defined in the same scope that contains the TEST CLASS. All entities of a

parent class are inherited. This mean that they are available just as if they were defined in <test class name> itself.

The entities defined in the current test class with the same name as in the parent class are said to override, or replace,

the entities defined in the parent class.

<test class item> may be one of the following entities:

• TEST CLASS

• TEST SUITE

• TEST CASE

• ON ERROR on page 800

• PROPERTY

• PROC

• PROLOGUE

• EPILOGUE

• RUN

A test class scope has no order, so these entities can appear in any order. However ON ERROR, EPILOGUE,

PROLOGUE, and RUN may appear only once. The execution of a TEST CLASS on page 811 without a RUN

statement will execute the class' PROLOGUE and EPILOGUE only.

Example

TEST CLASS AdvancedTest (T) : BasicTest

{

PROLOGUE {

﷓Stack s (20);

Chapter 5. Test Execution Specialist Guide

}

PROPERTY Initial { (s.count == 0) }

PROPERTY Final { (s.count == 1) }

TEST CASE tc1 {

CHECK PROPERTY Initial;

﷓s.push (1);

CHECK PROPERTY Final;

}

RUN {

tc1;

}

}

TEST SUITE

C++ Test Script Language

Syntax

TEST SUITE <test suite name> { <test suite item>}

Location

OTD script, TEST CLASS, TEST SUITE

Description

The TEST SUITE statement describes an Object test suite, which is one of the structuring entities of an C++ Test

Driver Script. Test suites can appear at the root-level of a C++ Test Driver Script, in test classes, and in test suites.

<test suite name> is a C++ Test Script Language identifier.

<test suite item> may be one of the following entities:

• TEST SUITE

• TEST CASE

• ON ERROR on page 800

813

HCL® OneTest™ Embedded

814

• PROPERTY

• PROC

• PROLOGUE

• EPILOGUE

All entities but TEST CASE are not ordered in a test suite scope. However, ON ERROR, EPILOGUE, and PROLOGUE may

appear only once. The test cases and test suites of a test suite are executed sequentially.

Example

TEST SUITE ChargeTest {

TEST CASE Test1

{

/... */

}

TEST SUITE Test2

{

TEST CASE SubTest2a

{

/... */

}

TEST CASE SubTest2b

{

/... */

}

}

}

REQUIRE

C++ Test Script Language

Chapter 5. Test Execution Specialist Guide

Syntax

REQUIRE <native expression>

Location

WRAP, STUB on page 808, PROC on page 803

Description

The REQUIRE statement describes a method pre-condition. It can be used in a WRAP, STUB or PROC block.

Note The information below pertains to the use of REQUIRE within a WRAP block. For more information about using

the REQUIRE and ENSURE statement within a STUB or PROC block, please refer to the STUB on page 808 and

PROC on page 803.

<native expression> is a C++ Boolean expression (or an expression that can be converted into a Boolean), which can

use:

• Any of the public or protected class members.

• The method parameters (with the names used in the signature or in the method definition).

• Any of the global variables declared in the file where the method is defined.

The following symbols cannot be used in the <native expression> parameter of the REQUIRE statement:

• Local variables

• Macros

Evaluation

The <native expression> parameter of the REQUIRE statement is evaluated before any code of the method is executed

(local variables are not pushed yet).

Warning: you can call methods in <native expression>, but you must ensure that these calls do not modify the object's

state by writing to any field. You can ensure this by calling const methods only.

Example

C++ source code example:

class Stack {

int count;

Stack () : count(0) {}

void push (void *);

815

HCL® OneTest™ Embedded

816

void *pop ();

};

OTC code example:

CLASS Stack {

WRAP pop

REQUIRE (count > 0)

}

Native Code

Syntax

<single-line C++ code>

C++# <single-line C++ code>

#{ <multiple-line C++ code> }#

C++#{ <multiple-line C++ code> }#

Location

C++ Test Driver Script, PROLOGUE, EPILOGUE, TEST CASE, PROC, STUB, CHECK EXCEPTION

Description

<single-line C++ code> and <multiple-line C++ code> are made of one or several C++ statements. They must conform

to the syntax expected by the host compiler and must be relevant to the current context.

Macros may be used, but it is recommended to define them only at the root-level of the C++ Test Driver Script.

Native code is copied as is in the generated test driver source.

Only global declarations are allowed inside the C++ Test Driver Script.

Inside a PROLOGUE statement, the declaration's scope is that of the surrounding structure (TEST CLASS or TEST

SUITE). Elsewhere, the scope is local (visible from the declaration to the end of the C++ Test Script Language block).

the sequence #} is different from }#:

• }#ends a multiple-line native code block started by#{.

• #}is a single-line native code made with the character "closing brace."

Chapter 5. Test Execution Specialist Guide

Warning: The use of return , goto, or any other jump instruction is not allowed in native code. If jump instructions are

used, unexpected results will occur.

Native code may generate an error when it raises an unexpected exception. Use the CHECK EXCEPTION statement

to specify exceptions.

Example

﷓﷓include <myclass.h>

﷓{

static int counter;

extern void initialize (MyClass &);

static const int MAX=200;

}﷓

TEST CLASS A {

ON ERROR EXIT;

PROLOGUE {

﷓MyClass mc;

﷓initialize (mc);

﷓for (counter=0; counter < MAX; counter++) {

}

TEST CASE 1 {

﷓void *temp;

﷓temp = mc.create ();

﷓mc.unref (temp);

CHECK mc.empty ();

}

TEST CASE 2 {

﷓{

void *temp[MAX];

817

HCL® OneTest™ Embedded

818

for (int i = 0; i<counter; i++)

{

temp[i] = mc.create ();

}

for (int i = 0; i<counter; i++)

{

mc.unref (temp[i]);

}

CHECK mc.empty ();

}﷓

}

EPILOGUE {

﷓} //end of for

}

}

RUN {

A.1;

A.2;

}

In this example, a loop is defined around the components of the test class A. The loop starts in PROLOGUE, and ends

in EPILOGUE. The execution of test class A will run nothing, because there is no RUN statement in this test class.

However, the two test cases may be run separately, as it is shown in the above example.

The execution sequence is: A.PROLOGUE, A.1 (200 times), A.EPILOGUE, A.PROLOGUE, A.2 (200 times), A.EPILOGUE.

C++ contract check scripts (.otc)

Component Testing for C++ uses its own simple language for describing contracts.

This section describes each keyword of the C++ contract check language, including:

Chapter 5. Test Execution Specialist Guide

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation conventions

Throughout this section, command notation and argument parameters use the following standard convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } { <filenames> } Series of values

[{ }] [{ <filenames> }

]

Optional series of vari­

ables

| on|off OR operator

C++ test driver script keywords are case insensitive. This means that STUB, stub, and Stub are interpreted the same

way.

For conventional purposes however, this document uses upper-case notation for the C++ contract check script

keywords in order to differentiate from native source code.

Split statements

C++ contract check script statements may be split over several lines in an .otc contract check script. Continued lines

must start with the ampersand ('&') symbol to be recognized as a continuation of the previous line. No tabs or spaces

should precede the ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Language identifiers

A C++ contract check identifier is a text string used as a label, such as the name of a TEST or a STUB in an .otc

contract check script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

819

HCL® OneTest™ Embedded

820

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following statement, for example, is

syntactically correct:

CLASS 1

{

..

}

C++ test driver script identifiers are case sensitive. This means that LABEL, label, and Label are three different

identifiers.

Related Topics

C on page 786 ++ test driver script structure on page 786 | C++ test driver script keywords on page 788 | C++

contract check scripts (.otc) on page 818

C++ contract check script structure

A C++ Contract Check Script (.otc script) describes assertions for a set of classes. Each C++ class can be associated

to a Contract Check CLASS block. When built, the script instruments the source code under test.

The scripts, being descriptions, are made of statements only. As a consequence, the order of execution is irrelevant.

There is no hierarchical structure.

The Contract Check CLASS block describes assertions for a C++ class.

Note The evaluation of the contract should not have any side effects. The contract evaluation does not alter the

state of the corresponding system. For more specific information refer to REQUIRE, ENSURE, INVARIANT and STATE

sections.

Basic structure

A typical Component Testing .otc contract check script structure looks like this:

CLASS VCR {

STATE Empty {

(media_present() == false)

Chapter 5. Test Execution Specialist Guide

}

STATE Loaded {

(media_present() == true)

(mode () == m_stop;)

}

STATE Playing {

(media_present() == true)

(mode() == m_play || mode() == m_pause)

}

TRANSITION Empty TO Loaded;

TRANSITION Loaded TO Playing;

TRANSITION Playing TO Loaded;

TRANSITION Playing TO Empty;

TRANSITION Loaded TO Empty;

}

All instructions in a test script have the following characteristics:

• A CLASS block contains all the assertions for a C++ class.

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write an instruction

over several lines using the ampersand (&) continuation character at the beginning of additional lines. In this

case, the ampersand must be the very first character on that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Related Topics

C++ contract check script (.otc) on page 818 | C++ test script keywords on page 822

821

HCL® OneTest™ Embedded

822

C++ contract check script keywords

• CLASS and SINGLE CLASS

• WRAP

• REQUIRE

• ENSURE

• INVARIANT

• STATE

• TRANSITION ... TO

Related Topics

C++ contract check script (.otc) on page 818 | C++ contract check script structure on page 820

Inheritance

Contracts are divided into several semantic parts:

• State machine

• List of invariants

• Pre-conditions

• Post-conditions

Each of these parts can be inherited in separate ways in derived classes, unless a matching part has been found in

the derived class.

If you specify invariants for a class, they override the invariants defined for any base class. Similarly, a state machine

description for a class overrides any state machine definition inherited from a base class.

If a class inherits from several base classes for which a class contract is defined, but does not define any invariant,

the base class's invariants are merged. Similarly, if no state transition is defined, a state-transition is maintained for

every sub-object inheriting a tested base class.

If you want to define a contract for a class, but not all of its base classes are associated to a contract, then you

should use invariants and state transitions with care, because the methods inherited from the non-tested classes are

not instrumented. In this situation, define a contract, even empty, for every base class of the class you want to test. A

warning is generated during the instrumentation if such a case is encountered.

Chapter 5. Test Execution Specialist Guide

CLASS and SINGLE CLASS

C++ Test Script Language

Syntax

[SINGLE] CLASS <native class signature> { <class assertions>* }

Location

C++ Contract Check Script

Description

The CLASS statement introduces a block describing assertions for a specific C++ class. This block is called a class

contract. Assertions described in a CLASS statement also apply to derived classes, unless the SINGLE keyword is

used.

Use SINGLE CLASS to describe assertions only for the <native class signature> class.

<native class signature> is a qualified C++ class name. It can refer to template classes.

For instances of template classes on page 552, the signature must follow the pattern:

template<> class_name<actual_parameters>

Note: The template<> sequence may be omitted in order to comply with deprecated usage, but it is best to specify it.

For template classes with generic parameters, the signature must follow the pattern:

template<formal_parameters> class_name

Note: The template<...> sequence may be omitted, but in that case it is not possible to use the formal parameters in

the nested WRAP signatures).

<class assertions> can be one of the following:

• WRAP

• INVARIANT

• STATE

• TRANSITION

Examples

C++ source code example:

class A {

823

HCL® OneTest™ Embedded

824

class B {

// ...

};

// ...

};

template<class T,int N> class C

{

// ...

};

C++ Contract Check Script example:

CLASS A

{

INVARIANT (/*...*/);

// ...

}

CLASS A::B

{

// ...

}

CLASS template<class T,int N> C

{

// ...

}

CLASS template<> C<char*,255>

{

// ...

Chapter 5. Test Execution Specialist Guide

}

}

Related Topics

Inheritance | Template classes

INVARIANT

C++ Test Script Language

Syntax

INVARIANT <native expression>;

Location

CLASS

Description

The INVARIANT statement describes a condition that should be always true in an object life, that is, whenever one of

its method can be called. It appears in a CLASS block.

<native expression> is a C++ Boolean expression (or an expression that can be converted to a Boolean).

The following symbols can be used in <native expression>:

• Any of the class members.

• Any of the global variables declared in every file where a method of the class (or a method of descendant if it

is not a single class contract) is defined.

The following symbols cannot be accessed in <native expression>:

• Local variables of any methods.

• Macros: Global variables that are not defined in at least one file where a method of the class (or one of its

descendants, if it is not a single class contract) is defined.

Evaluation:

<native expression> is evaluated at the end of the execution of the class constructors (except the implicitly defined

copy constructor), at the beginning of the class destructors, and both at the beginning and the end of other non-static

non implicitly defined methods.

825

HCL® OneTest™ Embedded

826

Warning: You can call methods in <expr>, but you must ensure that these calls do not modify the object's state (that

is, they do not write to any field). You can ensure this by calling const methods only. If you want the compiler to check

this, see the ATO_AC_STRICT_CHECKING Target Package option.

Example

C++ source code example:

class Stack {

int count;

Stack () : count(0) {}

void push (void *);

void *pop ();

};

C++ Contract Check Script code example:

CLASS Stack {

INVARIANT (count >= 0);

}

STATE

C++ Test Script Language

Syntax

STATE <state name> { (<native expression>)}

Location

CLASS

Description

The STATE statement describes a state for the current class, which is defined by the conjunction of one or several

Boolean expression.

Notes STATE by itself does not generate any source code instrumentation. STATE should be used along with the

TRANSITION statement.

<state name> is a C++ Test Script Language identifier.

Chapter 5. Test Execution Specialist Guide

<native expression> is a C++ Boolean expression (or an expression that can be converted to a Boolean).

The following symbols can be used in <native expression> :

• Any of the class members.

• Any of the global variables declared in every file where a method of the class (or a method of descendant if it

is not a single class contract) is defined.

The following symbols cannot be accessed in <native expression>:

• Local variables of any methods.

• Macros.

• Global variables that are not defined in at least one file where a method of the class (or one of its descendants

if it is not a single class contract) is defined.

Evaluation

<native expression> may be evaluated at the end of the execution of class constructors (except for implicitly defined

copy constructors), at the beginning of class destructors, and both at the beginning and the end of other non-static

non-implicitly defined methods.

Warning: You can call methods in <native expression>, but you must ensure that these calls do not modify the object's

state by writing to any fields. You can ensure this by using const methods only. If you want the compiler to check this,

see the ATO_AC_STRICT_CHECKING Target Package option .

Example

C++ source code example:

class Stack {

int count;

Stack () : count(0) {}

void push (void *);

void *pop ();

};

C++ Contract Check Script code example:

CLASS Stack {

STATE Empty { (count == 0) }

827

HCL® OneTest™ Embedded

828

STATE NotEmpty { (count > 0) }

}

TRANSITION ... TO

C++ Test Script Language

Syntax

TRANSITION <state name> TO <state name>;

Location

CLASS

Description

The TRANSITION statement describes a transition between two states an object can execute during its life.

<state name> is a valid state name defined with the STATE keyword.

Transitions are checked between two state evaluations. States are evaluated at the end of the execution of class

constructors (except for implicitly-defined copy constructor), at the beginning of class destructors, and both at the

beginning and the end of other non-static non-implicitly defined methods.

All states are evaluated after an object has been created (when leaving a constructor). Consequently, the initial state

must be described in a non-ambiguous way: one - and one only - state must occur when leaving a constructor.

Once a state has been determined, only authorized states (according to the defined transitions) are checked.

Ambiguity must not occur when choosing the next state.

States are always reflexive. This means that a transition from a state to itself is implicitly defined. There must be no

ambiguity between one state and any other state that can be reached through a single transition.

Example

C++ source code example:

class Stack {

int count;

int capacity;

Stack () : count(0) {}

void push (void *);

void *pop ();

Chapter 5. Test Execution Specialist Guide

};

C++ Contract Check Script code example:

CLASS Stack {

STATE Empty { (count == 0) }

STATE NotEmpty { (count > 0) (count < capacity) }

STATE Full { (count == capacity) }

TRANSITION Empty TO NotEmpty;

TRANSITION NotEmpty TO Full;

TRANSITION Full TO NotEmpty;

TRANSITION NotEmpty TO Empty;

}

WRAP

C++ Test Script Language

Syntax

WRAP <native method signature> <WRAP assertions>

Location

CLASS

Description

The WRAP statement describes pre- and post-conditions for a method.

<native method signature> refers to an existing method within the class.

The return type may be omitted.

The parameters names may be omitted if the WRAP assertions do not refer to the parameters.

The parameters list may be omitted if the method is not overloaded and if the WRAP assertions do not refer to the

parameters.

<WRAP assertions> is made of either one or several REQUIRE on page 814 or ENSURE on page 796 statements.

Wraps can be defined for any method of the class, whatever its access specifiers may be.

829

HCL® OneTest™ Embedded

830

Wraps cannot be associated to an inherited method, defined in a base class. If you want to do so, define a WRAP in a

contract associated with the base class.

If the method is virtual, and the WRAP does not belong to a SINGLE CLASS, the wrap definition also applies to any

redefinition of the method, unless a specific wrap has been defined for the redefinition in a daughter class.

Example

C++ source code:

class A {

int f ();

char *g (int); // overloaded method

void g(void *); // overloaded method

};

C++ Contract Check Scriptcode:

CLASS A {

WRAP f /OK */

REQUIRE (/*... */)

ENSURE (/... */)

WRAP g /ambiguous -> error */

/... */

WRAP g(int) / OK */

/... */

WRAP g(void *p) / OK */

/... */

}

Target Deployment Port options

Common Options

Chapter 5. Test Execution Specialist Guide

The following options pertain to the Component Testing for C++ feature.

Option Description

ATO_­

CAST_­

PRINT_­

BUFFER_­

SIZE

This macro defines the size of the buffer devoted to the PRINT instruction. This buffer must be large

enough to contain the output of a single PRINT instruction. If memory is an issue, you can set this value

to 0. In that case, a single PRINT instruction will result in several notes in the graphical report, one per ar­

gument.

C++ Test Driver Script Options

The following options pertain only to C++ Test Driver Scripts.

Option Description

ATO_­

USE_­

CAST

UsuallyATL_YES, this macro can be set toATL_NOif you are not using C++ Test Driver scripting. In this

case, the Target Deployment Package object is smaller, and the compiler requires less memory to compile

instrumented files.

ATO_­

CAST_­

STOP_­

ON_ER­

ROR

When this macro is set toATL_YES, a function namedATL_Breakpointis called whenever an error occurs in

the C++ Test Driver Script. In this case, you must provide this function, either by defining it incustom.hor by

defining a macro naming your own breakpoint function incustom.h. You can thus set a breakpoint on this

function and debug your test application when an unexpected result is encountered.

ATO_­

CAST_­

DUMP_­

SUC­

CESS

By default the value isATL_YES. This macro can be set toATL_NOif you do not want passed checks of your

C++ Test Driver Script to be added to the trace file. This may be important if trace file size is an issue.

ATO_­

CAST_­

MAX_­

INS­

TANCES

This macro defines the maximum number of instances you expect to be used at the same time when run­

ning a C ++ Test Driver Script. An instance is pushed in a stack when aTEST CLASS,TEST SUITE, orTEST

CASEis entered and when aPROCor aSTUBis called. Note that stubs can be recursive. The default value

is 256. You can lower this value if memory is an issue and you know how many instances are used at the

same time. You can increase it if your script is complex or if you use many stubs that call themselves or

each other.

831

HCL® OneTest™ Embedded

832

C++ Contract Check Script Options

The following options pertain only to the C++ Contract Check Scripts.

Option Description

ATO_­

USE_­

AC

UsuallyATL_YES, this macro can be defined toATL_NOif you are not using C++ Contract Check scripting. In

this case, the Target Deployment Package object is smaller, and the compiler requires less memory to com­

pile instrumented files and generated files.

ATO_­

AC_S­

TOP_­

ON_­

ERROR

When this macro is set toATL_YES, a function namedATL_Breakpointis called whenever an error occurs in

the C++ Contract Check Script. In this case, you must provide this function, either by defining it incustom.h,

or by defining a macro naming your own breakpoint function incustom.h. You can thus set a breakpoint on

this function and debug your test application when an unexpected result is encountered.

ATO_­

AC_­

DUMP_­

SUC­

CESS

UsuallyATL_YES, this macro can be defined toATL_NOif you do not want passed checks of your C++ Con­

tract Check Script to be added to the trace file. This may be important if the trace file size is an issue.

ATO_­

AC_­

FILE_­

NAME

This macro defines the default trace file name when executing the C++ Contract Check Script instrumented

application. This name is used if you have not provided theGetEnvironmentmacro or$ATO_TRACESor$AT­

T_TRACES(%ATO_TRACES%or%ATT_TRACES%on Win32 platforms) environment variables, and if you are

not using C++ Contract Check scripting.

ATO_­

AC_­

STRIC­

T_­

CHECK­

ING

When this macro is set toATL_YES, the invariants and states defined in C++ Contract Check Scripts are en­

forced to beconst. This implies that the compiler ensures that they do not modify any field of the object,

and that they call onlyconstmethods. The default isATL_NObecause users often omit to specify thecon­

stqualifier for methods that are actuallyconst. IfATL_NOis chosen, you must make sure that your invariants

and state evaluations do not modify your objects.

Chapter 5. Test Execution Specialist Guide

Component Testing for Ada

Ada test script language reference

Component Testing for Ada uses its own simple language for test scripting.

This section describes each keyword of the Ada test script language, including:

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation conventions

Throughout this section, command notation and argument parameters use the following standard convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } { <filenames> } Series of values

[{ }] [{ <filenames> }

]

Optional series of vari­

ables

| on|off OR operator

Ada test script keywords are case insensitive. This means that STUB, stub, and Stub are interpreted the same way.

The keyword others is an exception, and must always be expressed in lower case.

For conventional purposes however, this document uses upper-case notation for the Ada test script keywords in order

to differentiate from native source code.

Split statements

Ada test script statements may be split over several lines in a .ptu test script. Continued lines must start with the

ampersand ('&') symbol to be recognized as a continuation of the previous line. No tabs or spaces should precede the

ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Language identifiers

An Ada test script identifier is a text string used as a label, such as the name of a TEST or a STUB in a .ptu test script.

833

HCL® OneTest™ Embedded

834

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following statement, for example, is

syntactically correct:

TEST 1

...

END TEST

Ada test script identifiers are case sensitive. This means that LABEL, label, and Label are three different identifiers.

Ada test script structure

The Ada test script language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment Port criteria.

Test script filenames must contain only plain alphanumerical characters.

Basic structure

A typical Ada Component Testing .ptu test script looks like this:

HEADER add, 1, 1

<variable declarations for the test script>

BEGIN

SERVICE add

<local variable declarations for the service>

TEST 1

FAMILY nominal

Chapter 5. Test Execution Specialist Guide

ELEMENT

VAR variable1, INIT=0, EV=0

VAR variable2, INIT=0, EV=0

﷓<call to the procedure under test>

END ELEMENT

END TEST

END SERVICE

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when Ada expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write an instruction

over several lines using the ampersand (&) continuation character at the beginning of additional lines. In this

case, the ampersand must be the very first character on that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Structure statements

The following statements allow you to describe the structure of a test.

• HEADER: For documentation purposes, specifies the name and version number of the module being tested, as

well as the version number of the tested source file. This information is displayed in the test report.

• BEGIN: Marks the beginning of the generation of the actual test program.

• SERVICE: Contains the test cases related to a given service. A service usually refers to a procedure or

function. Each service has a unique name (in this case add). A SERVICE block terminates with the instruction

END SERVICE.

• TEST: Each test case has a number or identifier that is unique within the block SERVICE. The test case is

terminated by the instruction END TEST.

• FAMILY: Qualifies the test case to which it is attached. The qualification is free (in this case nominal). A list of

qualifications can be specified (for example: family, nominal, structure) in the Tester Configuration dialog box.

835

HCL® OneTest™ Embedded

836

• ELEMENT: Describes a test phase in the current test case. The phase is terminated by the instruction END

ELEMENT. The different phases of the same test case cannot be dissociated after the tests are run, unlike the

test cases introduced by the instruction NEXT_TEST. However, the test phases introduced by the instruction

ELEMENT are included in the loops created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept simple. This structure allows:

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test number, or the test family.

Related Topics

Ada test script language reference on page 833 | Ada test script keywords on page 836 | Writing a test script on

page 564

Ada test script keywords

Block Keywords

• ELEMENT...END ELEMENT on page 840

• ENVIRONMENT ... END ENVIRONMENT on page 841

• INITIALIZATION...END INITIALIZATION on page 847

• SERVICE...END SERVICE on page 849

• SIMUL...ELSE_SIMUL...END SIMUL on page 851

• TERMINATION...END TERMINATION on page 855

• TEST...END TEST on page 856

Other Keywords

• BEGIN on page 837

• COMMENT on page 838

• DEFINE STUB on page 839

• FAMILY on page 844

• HEADER on page 844

• IF...ELSE...END IF on page 845

• INCLUDE on page 846

Chapter 5. Test Execution Specialist Guide

• NEXT_TEST on page 848

• STUB on page 853

• VAR, ARRAY and STR on page 857

◦ <initialization> parameter on page 859

◦ <expected> parameter on page 862

◦ <variable> parameter on page 858

BEGIN

Ada Test Script Language

Purpose

The BEGIN instruction marks the beginning of the Ada code generation. The BEGIN GENERIC option is specifically for

testing Ada generic packages.

Syntax

BEGIN [<parent_unit> [, <procedure>]]

BEGIN GENERIC(<generic_package>, <instance>) [, <procedure>]

where:

• <parent_unit> is the full name of the unit under test.

<procedure> is the name of the generated separate procedure, by default ATTOL_TEST.

<generic_package> is the name of a generic unit under test.

<instance> is the name of the instanciated unit from the generic.

Description

The BEGIN instruction is mandatory and must be located after a HEADER statement, and before any other Ada Test

Script instruction.

By default, the Ada Test Script Compiler creates an independent compilation unit. To test private elements of a

package you must first generate a procedure.

The reference body to the separate procedure must be written in the parent unit package.

If a BEGIN keyword is not found in the test script, a warning message is generated and a BEGIN instruction is

implicitly created before the first occurrence of a SERVICE instruction.

837

HCL® OneTest™ Embedded

838

To test a generic package, you need to generate the test driver separately and call it as a procedure of the instance.

Use the BEGIN GENERIC syntax to automatically generates a separate procedure <procedure> of <generic_package>.

This allows you to access the procedure <instance> . <procedure_name>, which is generated by the Ada Test Script

Compiler.

Note This technique also allows testing of private types within the generic package.

Related Topics

HEADER on page 844 | SERVICE on page 849

COMMENT

Ada Test Script Language

Purpose

The COMMENT instruction adds a textual comment to the test report.

Syntax

COMMENT [<text>]

where:

• <text> is an optional comment text string to be displayed.

Description

The COMMENT instruction is optional and can be used anywhere in the test script.

The position of the COMMENT instruction in the test script determines the position where the comment is displayed

in the test report:

• Before the first SERVICE block: the comment is displayed after the report information header and before the

first service.

• Inside a SERVICE block: the comment is displayed in the service header, before the test descriptions.

• Outside a SERVICE block: the comment is displayed in the following service header, before the test

descriptions.

• After the last SERVICE block: the comment is ignored.

• Inside an ELEMENT block: the comment is displayed before the variable state descriptions.

• After a TEST instruction: the comment is displayed in the test header, before the variable descriptions.

Example

Chapter 5. Test Execution Specialist Guide

TEST 1

FAMILY nominal

COMMENT histogram computation for a black image

ELEMENT

Related Topics

ELEMENT on page 840 | TEST on page 856 | SERVICE on page 849

DEFINE STUB ... END DEFINE

Ada Test Script Language

Purpose

The DEFINE STUB and END DEFINE instructions delimit a simulation block consisting of stub definition declarations

written in Ada.

Syntax

DEFINE STUB <stub_name> [<stub_dim>]

[﷓ <Ada statement>]

END DEFINE

where:

1. <stub_name> is the mandatory name of a simulation block.

<stub_dim> is an optional maximum number of stub calls errors that will be displayed in the report.

Description

Defining stubs in a test script is optional.

DEFINE STUB blocks must be located after the BEGIN instruction and outside any SERVICE block.

By default, all functions and procedures of the <stub_name> package are simulated. The DEFINE STUB block can also

contain Ada function, procedure and assignment declarations preceded with the ﷓ character.

Using the stub definitions, the Ada Test Script Compiler generates simulation variables and functions for which the

interface is identical to that of the stubbed variables and functions.

The purpose of these simulation variables and functions is to store and test input parameters, assign values to output

parameters, and if necessary, return appropriate values.

839

HCL® OneTest™ Embedded

840

Stub parameters describe both the type of item used by the calling function and the mode of passing. The mode of

passing the parameter is specified by adding the following before the parameter name:

1. in for input parameters

out for output parameters

in out for input/output parameters

_no for parameters that you do not want to test

Additionally, when using the in or in out parameters, you can add an optional _nocheck parameter before the in or in

out parameter (see the Example paragraph). This allows the parameters to be sent to the stub without being checked.

The parameter mode is optional. If no parameter mode is specified, the in mode is assumed by default.

A return parameter is always deemed to be an output parameter.

Global variables defined in DEFINE STUB blocks replace the real global variables.

By default, only the first 10 errors are shown in the report. Any more errors are not recorded. The number of calls

should be customized if necessary by using the <stub_dim> parameter.

Example

An example of the use of stubs is available in the StubAda example project installed with the application.

Related Topics

STUB on page 853

ELEMENT ... END ELEMENT

Ada Test Script Language

Purpose

The ELEMENT and END ELEMENT instructions delimit a test phase or ELEMENT block.

Syntax

ELEMENT

END ELEMENT

Description

The ELEMENT instruction is mandatory and can only be located within a TEST block. If absent, a warning message is

generated and the ELEMENT block is implicitly declared before the first occurrence of a VAR, ARRAY, STR, or STUB

instruction.

Chapter 5. Test Execution Specialist Guide

The block must end with the instruction END ELEMENT. If absent, a warning message is generated and it is implicitly

declared before the next ELEMENT instruction, or the END TEST instruction.

The ELEMENT block contains a call to the service under test as well as instructions describing the initializations and

checks on test variables.

Positioning of VAR, ARRAY, STR or STUB related to the actual test procedure is irrelevant as the Test Script Compiler

separates these instructions into two parts:

1. The test initialization (described by INIT) is generated with the ELEMENT instruction

The test of the expected value (described by EV) is generated with the END ELEMENT instruction

Example

TEST 1

FAMILY nominal

ELEMENT

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

VAR y1, init = 0, ev = init

VAR y2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init = 0, ev = init

VAR histo(0), init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

ARRAY histo(1..SIZE_HISTO-1), init = 0, ev = 0

﷓compute_histo(x1,y1,x2,y2,histo);

END ELEMENT

END TEST

Related Topics

VAR on page 857 | ARRAY on page 857 | STR on page 857 | STUB on page 853 | NEXT_TEST on page 848 |

Initialization Expressions for Ada on page 859 | Expected Value Expression for Ada on page 862

ENVIRONMENT ... END ENVIRONMENT

Ada Test Script Language

841

HCL® OneTest™ Embedded

842

Purpose

The ENVIRONMENT instruction defines a test environment declaration, that is, a default set of test specifications.

Syntax

ENVIRONMENT <name>

END ENVIRONMENT

<name> is a mandatory identifier that provides a unique environment name.

Description

The test environment defines a general context. Variables which are declared within a context can be overwritten by a

TEST statement.

The END ENVIRONMENT instruction marks the end of an environment declaration.

<name> specifies an environment name that is referenced in the USE instruction.

An environment must be defined after the BEGIN instruction.

Each environment is visible in the block in which it has been declared and in any blocks included in this block, after its

declaration.

An environment can only contain VAR, ARRAY, STR, FORMAT or STUB instructions and conditional generation

instructions. If it is empty, a warning message is generated.

An environment is activated by the USE instruction that defines its scope and its priority. ENVIRONMENT blocks are

executed in the reverse order of their respective USE instruction.

Note If the USE instruction follows directly the ENVIRONMENT block, the first occurrence of the ENVIRONEMENT

overrides the later, or local ones.

After generating the initializations and the tests of an ELEMENT block, visible environments are included in order of

priority, at every END ELEMENT instruction, in order to complete the initializations and tests.

The scope of an ENVIRONMENT block is important insofar as only "visible" environment blocks apply, and use

clauses can be out of scope.

Example

ENVIRONMENT compute_histo

VAR x1, init = 0, ev = init

VAR x2, init = SIZE_IMAGE-1, ev = init

ARRAY image, init = 0, ev = init

Chapter 5. Test Execution Specialist Guide

END ENVIRONMENT

Related Topics

VAR on page 857 | ARRAY on page 857 | STR on page 857

EXCEPTION

Ada Test Script Language

Purpose

The EXCEPTION instruction describes the behavior of the test script if any exceptions are raised during the execution.

Syntax

EXCEPTION <exception_name>

Description

This instruction can only appear in an ELEMENT block.

<exception_name> is the name of the exception under test.

This instruction must be unique in the block where it appears. If it is absent, the test shall not raise any exception,

otherwise, an error is generated.

Only exceptions raised by the procedure under test can be tested. Exceptions raised during the initialization of the

variables or during the test of the variables cannot be tested. They are nevertheless detected and written in the test

report.

Note Do not use the EXCEPTION statement simultaneously with any native exception handling code, as this will

create internal conflicts.

Example

In this example, the exception class is overflow.

ELEMENT

-- The test shall raise the overflow exception

EXCEPTION overflow

....

-- Using the ‘exception’ variable

VAR exception->ch1,

END ELEMENT

843

HCL® OneTest™ Embedded

844

FAMILY

Ada Test Script Language

Purpose

The FAMILY instruction groups tests by families or classes.

Syntax

FAMILY <family_name> { , <family_name>}

Argument

<family_name> is a mandatory identifier indicating the name of the test family. Typically, you could specify nominal,

structural, or robustness families.

Description

The FAMILY instruction appears within TEST blocks, where it defines the families to which the test belongs.

When you run the test sequence, you can request that only tests of a given family are executed.

A test can belong to several families. In this case, the FAMILY instruction contains a <family_name> list, separated by

commas.

The FAMILY instruction must be located before the first ELEMENT block of the TEST block and must be unique in the

TEST block.

The FAMILY instruction is optional. If it is omitted, a warning message is generated and the test belongs to every

family.

Example

TEST 1

FAMILY nominal

COMMENT histogram computation on a black image

ELEMENT

Related Topics

ELEMENT on page 840 | TEST on page 856

HEADER

Ada Test Script Language

Chapter 5. Test Execution Specialist Guide

Purpose

The HEADER instruction specifies the name and version of the module under test as well as the version number of

the test script.

Syntax

HEADER <module_name> , <module_version> , <test_plan_version>

<module_name>, <module_version> and <test_plan_version> are character strings with no restrictions, except for

versions beginning with a dollar sign ('$'). These instructions must be followed by an identifier.

Description

This information contained in the HEADER keyword is reproduced in the test report header to identify the test

sequence.

The module and test script versions can be read from the environment variables if they are identifiers beginning with

a dollar sign ($).

The HEADER instruction is mandatory, but its arguments are optional. It must be the first instruction in the test

program. If it is absent, a warning message is generated.

Example

HEADER histo, 01a, 01a

BEGIN

IF ... ELSE ... END IF

Ada Test Script Language

Purpose

The IF, ELSE and END IF statements allow conditional generation of the test driver.

Syntax

IF <condition> { , <condition> }

ELSE

END IF

where:

• <condition> is an identifier sent by the -define option to the Ada Test Script Compiler.

Description

845

HCL® OneTest™ Embedded

846

These statements enclose portions of script that are included depending on the presence of one of the conditions in

the list provided to the Ada Test Script Compiler by the -define option.

The <condition> list forms a series of conditions that is equivalent to using an expression of logical ORs.

The IF instruction starts the conditional generation block.

The END IF instruction terminates this block.

The ELSE instruction separates the condition block into 2 parts, one being included when the other is not.

Associated Rules

<condition> is any identifier. You must have at least one condition in an IF instruction.

This block can contain any code written in Ada Test Script Language or native Ada.

IF and END IF instructions must appear simultaneously.

The ELSE instruction is optional.

The generation rules are as follows:

• If at least one of the conditions specified in the IF instruction's list of conditions appears in the list associated

with the -define option, the first part of the block is included.

If none of the conditions specified in the IF instruction appears in the list associated with the -define option,

then the second part of the block is included (if ELSE is present).

Example

IF test_on_target

VAR register, init == , ev = 0

ELSE

VAR register, init = 0 , ev = 0

END IF

Related Topics

SIMUL ... ELSE_SIMUL ... END SIMUL on page 851

INCLUDE

Ada Test Script Language

Purpose

Chapter 5. Test Execution Specialist Guide

The INCLUDE statement specifies an external file for the Ada Test Script Compiler to process.

Syntax

INCLUDE CODE <file.ada>

INCLUDE PTU <file.ptu>

where:

1. <file.ada> is the file name of an external Ada source file

<file.ptu> is the file name of an Ada test script

Description

When an INCLUDE instruction is encountered, the Ada Test Script Compiler leaves the current file, and starts pre-

processing the specified file. When this is done, the Ada Test Script Compiler returns to the current file at the point

where it left.

Including a file with the additional keyword CODE lets you include a source file without having to start every line with a

hash character ('﷓').

Including a file with the additional keyword PTU lets you include an Ada test script within another Ada test script. In

this case, included .ptu test scripts must not contain BEGIN or HEADER statements.

The name of the included file can be specified with an absolute path or a path relative to the current directory.

If the file is not found in the current directory, all directories specified by the -incl option are searched when the

preprocessor is started.

If it is still not found or if access is denied, an error is generated.

Example

INCLUDE CODE file1.ada

INCLUDE CODE ../file2.ada

INCLUDE PTU /usr/tests/file3.ptu

INITIALIZATION ... END INITIALIZATION

Ada Test Script Language

Purpose

Specifies native Ada code to initialize the test driver

847

HCL® OneTest™ Embedded

848

Syntax

INITIALIZATION

END INITIALIZATION

Description

The INITIALIZATION and END INITIALIZATION statements let you provide native Ada code that is integrated as the

first main statements of the test driver.

In some environments, such as when using a different target machine, this is a convenient way to initialize the target.

An INITIALIZATION block must appear after the BEGIN instruction or between two SERVICE blocks.

This block can only contain native Ada code. Each line of native code must be preceded with '#' or '@'.

There is no limit to the number of INITIALIZATION blocks. Upon test driver generation, they are concatenated in the

order in which they appeared in the test script.

Related Topics

TERMINATION on page 855

NEXT_TEST

Ada Test Script Language

Purpose

The NEXT_TEST instruction starts a TEST block that is linked to the previous test block.

Syntax

NEXT_TEST [LOOP <nb>]

where:

1. <nb> is an integer expression strictly greater than 1.

Description

The NEXT_TEST instruction allows you to repeat a series of test contained within a previously defined TEST block.

It contains one more ELEMENT block. It does not contain the FAMILY instruction.

For this new test, a number of iterations can be specified by the keyword LOOP.

The NEXT_TEST instructions can only appear in a TEST ... END TEST block.

Chapter 5. Test Execution Specialist Guide

The main difference between a NEXT_TEST block and an ELEMENT block is when you use an INIT IN statement

within a test block:

1. If the INIT IN is in a TEST block, there will be a loop over the entire TEST block, without consideration of the

ELEMENT blocks that it might contain.

If the INIT IN is inside a NEXT_TEST block however, the loop will not affect the ELEMENT blocks within other

TEST blocks

Example

SERVICE COMPUTE_HISTO

﷓ x1, x2, y1, y2 : integer ;

﷓ histo : T_HISTO ;

TEST 1

FAMILY nominal

ELEMENT

...

END ELEMENT

NEXT_TEST LOOP 2

ELEMENT

Related Topics

TEST on page 856 | ELEMENT ... END ELEMENT on page 840

SERVICE ... END SERVICE

Ada Test Script Language

Purpose

A SERVICE block contains a common description for all tests related to a given service of the module under test.

Syntax

SERVICE <service_name>

END SERVICE

where:

849

HCL® OneTest™ Embedded

850

• <service_name> specified the tested service in the test report

Description

The SERVICE instruction starts a SERVICE block. This block contains the description of all the tests relating to a given

service of the module to be tested.

The <service_name> is usually the name of thes service under test, although this is not mandatory.

The END SERVICE instruction indicates the end of the service block.

Associated Rules

The SERVICE instruction must appear after the BEGIN instruction.

The <service_name> parameter can be any identifier. It is obligatory.

Example

BEGIN

SERVICE COMPUTE_HISTO

﷓ x1, x2, y1, y2 : integer ;

﷓ histo : T_HISTO ;

TEST 1

FAMILY nominal

SERVICE_TYPE

Ada Test Script Language

Purpose

The SERVICE_TYPE statement indicates the type of service tested.

Syntax

SERVICE_TYPE <type> {, <type>}

where:

1. <type> is a user-defined service type identifier

Description

The SERVICE_TYPE instruction allows you to specify an identifier indicating the type of service tested. This identifier

is included in the test report.

Chapter 5. Test Execution Specialist Guide

You can use this functionality to specify whether a service is internal or external.

If SERVICE_TYPE is placed within a SERVICE ... END SERVICE block, it indicates the type of the current SERVICE

block.

If the SERVICE_TYPE statement is placed outside a SERVICE block, then it indicates the default service type for all

SERVICE blocks that do not contain a SERVICE_TYPE statement.

Example

SERVICE_TYPE internal, external

SERVICE count

SERVICE_TYPE internal

...

END SERVICE

SIMUL ... ELSE_SIMUL ... END SIMUL

Ada Test Script Language

Purpose

The SIMUL, ELSE_SIMUL, and END SIMUL instructions allow conditional generation of test driver.

Syntax

SIMUL

ELSE_SIMUL

END SIMUL

Description

Code enclosed within a SIMUL block is conditionally generated depending on the status of the Simulation

configuration setting in the HCL OneTest Embedded GUI, or the -nosimulation command line option of the Ada Test

Script Compiler.

The SIMUL instruction starts the conditional generation block.

The END SIMUL instruction marks the end of the conditional block.

The ELSE_SIMUL instruction separates this block into two parts, one being included when the other is not, and vice

versa.

851

HCL® OneTest™ Embedded

852

This block of instructions can appear anywhere in the test program and can contain both Ada Test Script Language or

native Ada code.

The SIMUL and END SIMUL instructions must appear as a pair. One cannot be used without the other.

The ELSE_SIMUL instruction is optional.

When using the HCL OneTest™ Embedded user interface, select or clear the Simulation option in the Component

Testing for Ada tab of the Configuration Settings dialog box.

The code generation rules are as follows:

1. If Simulation is enabled => the first part of the SIMUL block is included.

2. If Simulation is disabled => the second part of the block (ELSE_SIMUL) is included if it exists. If there is no

ELSE_SIMUL statement, then the SIMUL block is ignored.

Example

SIMUL

﷓x := 0;

ELSE_SIMUL

﷓x := 1;

END SIMUL

...

SIMUL

VAR x , INIT = 0 , EV = 1

VAR p , INIT = NIL , EV = NONIL

ELSE_SIMUL

VAR x , INIT = 0 , EV = 0

VAR p , INIT = NIL , EV = NIL

END SIMUL

Related Topics

Ada Test Script Compiler on page 1176

Chapter 5. Test Execution Specialist Guide

STUB

Ada Test Script Language

Purpose

The STUB instruction for Ada describes all calls to a simulated function in a test script.

Syntax

STUB <stub_name> [<call_range> =>] ([<param_val> {, <param_val> }]) [<return_val>] {, [<call_range> =>] ([<param_val> {,

<param_val> }]) [<return_val>] }

Description

The following is described for every parameter of this function and for every expected call:

• For in parameters, the values passed to the function. These values are stored and tested during execution.

For out parameters and, where appropriate, the return value, the values returned by the function. These values

are stored in order to be returned during execution.

For in out and in access parameters, both the previous two values are required.

For no parameters, no expression is required.

<stub_name> is the name of the simulated procedure or function. It is obligatory. You must previously have described

this procedure or function in a DEFINE STUB block.

The optional <call_range> describes one or several successive calls as follows:

<call_num> =>

<call_num> .. <call_num> =>

others =>

where <call_num> is the number of the stub call. The keyword others specifies the behavior of any further calls that

have not been described. A <call_num> value of 0 means that no calls are expected to the stub. For example, the

following line specifies that test will pass if there are 0 or more calls to the stub:

STUB close_file others=>(5)1

Moreover, you can use others to specify that the calls are optional. Combining others with a list of call numbers,

enables you to check the minimum number of calls. For example, the following line specifies that test will pass if

there are at least 2 calls to the stub:

STUB close_file 1=>(3)1, 2=>(4)1, others=>(5)1

853

HCL® OneTest™ Embedded

854

If <call_range> is not specified, then the next call number is assumed. For example, the following lines specify that the

test will pass if there are 2 calls to the stub:

STUB open_file ("file1")3

STUB open_file ("file2")4

<param_val> is an expression describing the test values for in parameters and the returned values for out parameters.

If named, parameters can be in any order. For in out parameters, <param_val> is expressed in the following way:

([IN =>]<in_param_val> , [OUT =>]<out_param_val>)

If you use the optional IN => and OUT => specifiers, you can invert the order of the parameters.

<return_val> is an expression describing the value returned by the function if its type is not void. Otherwise, no value is

provided.

You must give values for every in, out and in out parameter; otherwise, a warning message is generated. The no

parameters are ignored.

<param_val> and <return_val> are Ada expressions that can contain:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be delimited by

single or double inverted commas.

Constants, in the Ada sense of the word, which can be numeric, characters, or character strings

Variables belonging to the test program or the module to be tested

Ada functions

The keyword NIL to designate a null pointer

Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where I n is the current index of the nth dimension of the parameter

and J m the current number of the subtest generated by the test scenario's mth INIT IN, INIT FROM or LOOP;

the I and I1 variables are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are

incremented by 1 at each iteration

An Ada expression with one or more of the above elements combined using any of the Ada operators and

casting, with all required levels of parentheses, and conforming to Ada rules of syntax and semantics

For arrays and structures, aggregates between parentheses ('()') or brackets ('[]').

<param_val> can contain for an in value:

• The <-> expression to specify that the parameter should be ignored

The < value> <-> < value> expression to specify a range of values for the parameter

Chapter 5. Test Execution Specialist Guide

<param_val> can contain for an out value or return value:

• The == expression to specify that the parameter should not be set

If are using one of the above expressions, you can specify the type of parameter by using the ==: <type> syntax for

the out and return value or <->: <type> for the in value.

<return_val> can also refer to an Ada exception name introduced by the following syntax:

[: <return_type>] RAISE <exception_name>

where : <return_type> is used to specify the function returned type in case of overloading.

You must describe at least one call in the STUB instruction. Several descriptions can occur separated by commas.

STUB instructions can appear in ELEMENT blocks.

Example

STUB open_file ("file1")3

STUB create_file ("file2")4

STUB read_file 1..2 =>(3,"line 1",1)1,(3,"line 2",2<->3)1,

& 4..7 =>(3,"",0)0

STUB write_file (4,"line 1")1, (4,"line 2")1

STUB close_file (3)1,(4)1, (<->) RAISE DEVICE_ERROR

Related Topics

DEFINE STUB ... END DEFINE on page 839

TERMINATION ... END TERMINATION

Ada Test Script Language

Syntax

TERMINATION

END TERMINATION

Description

The TERMINATION and END TERMINATION instructions delimit a block of native code that is integrated into the

generation process as the last main statements to be executed.

855

HCL® OneTest™ Embedded

856

In some environments, such as when using a different target machine, this is a convenient way to exit the target.

Associated Rules

A TERMINATION ... END TERMINATION block must appear after the BEGIN instruction and outside any SERVICE

block.

This block can only contain native Ada code. Each line of native code must be preceded with '#' or '@'.

There is no limit to the number of TERMINATION blocks. Upon test driver generation, they are concatenated in the

order in which they appeared in the test script.

Related Topics

INITIALIZATION on page 847

TEST ... END TEST

Ada Test Script Language

Syntax

TEST <test_name> [LOOP <nb>]

END TEST

Description

The TEST instruction starts a TEST block. This block describes the test case for a service. It contains one more

ELEMENT blocks specifying the test.

In the test report, the <test_name> parameter flags the test within the SERVICE block. Tests are usually given numbers

in ascending order.

A number of iterations can be specified for each test with the optional LOOP keyword.

The TEST LOOP statement can generate graph metric results in a .rtx file. To do this, you must set the environment

variable ATURTX to True . The produced .rtx graph can be viewed in the HCL OneTest Embedded Graphic Viewer.

The END TEST instruction marks the end of the TEST block.

Associated Rules

The TEST and END TEST instructions can only appear in a SERVICE block.

<test_name> is obligatory. If it is absent, the Test Script Compiler generates an error message.

<nb> is an integer expression strictly greater than 1.

Example

Chapter 5. Test Execution Specialist Guide

SERVICE COMPUTE_HISTO

﷓ int x1, x2, y1, y2 : integer ;

﷓ histo : T_HISTO ;

TEST 1

FAMILY nominal

ELEMENT

Related Topics

ELEMENT on page 840 | SERVICE on page 849

VAR, ARRAY, and STR

Ada Test Script Language

Purpose

The VAR, ARRAY, and STR instructions declare the test of a simple variable, a variable array or a variable structure.

Syntax

VAR <variable>, <initialization>, <expected>

ARRAY <variable>, <initialization>, <expected>

STR <variable>, <initialization>, <expected>

where:

• <variable> is a variable on page 858

• <initialization> is an initialization on page 859 parameter

• <expected value> is an expected on page 862 parameter

Description

Use the VAR, ARRAY, and STR instructions to declare a variable test. During test execution, if the value of the variable

is out of the bounds specified in the <expected> expression, the test is Failed.

VAR, ARRAY or STR are synonymous and do not change the way in which the result displayed in the test report.

857

HCL® OneTest™ Embedded

858

• VAR: For simple variables.

• ARRAY: For variable arrays.

• STR: For variable structures.

If you use a VAR statement to test an array or structure, the report lists each element of the array or structure.

The VAR, ARRAY, and STR instructions must be located in an ELEMENT or an ENVIRONMENT block.

If a TEST block does not contain a VAR, ARRAY, or STR instruction, it is reported as an empty test. The STUB

instruction is not considered as part of the the TEST as STUBs are always tested whether there is a STUB statement

present or not.

Related Topics

VAR, ARRAY and STR <variable> Parameter on page 858 | VAR, ARRAY and STR <initialization> Parameter on

page 859 | VAR, ARRAY and STR <expected> Parameter on page 862

VAR, ARRAY and STR <variable> Parameter

Description

In conjunction with the VAR, ARRAY and STR keywords, the <variable> parameter for Ada is a conventional notation

name for an Ada variable under test.

Associated Rules

<variable> can be a simple variable (integer, floating-point number, character, pointer, character string, ...), an element

of an array or record, part of an array, an entire array, or a complete record.

If the variable is an array for which no test boundaries have been specified, all the array elements are tested. Similarly,

if the variable is a record of which one of the fields is an array, all elements of this field are tested.

Brackets or parentheses can be used to index array variables.

The variable must have been declared in Ada before it is used in the .ptu test script.

Example

VAR x, ...

VAR y(4), ...

VAR z.field, ...

VAR p.value, ...

ARRAY y(0..100), ...

Chapter 5. Test Execution Specialist Guide

ARRAY y, ...

STR z, ...

STR p.all, ...

Related Topics

VAR, ARRAY and STR on page 857 | VAR, ARRAY and STR <expected> Parameter on page 862 | VAR, ARRAY and

STR <initialization> Parameter on page 859

VAR, ARRAY and STR <initialization> Parameter
In conjunction with the VAR, ARRAY and STR keywords, the <initialization> parameters for Ada Test Script Language

specify the initial value of the variable.

Syntax

INIT = <exp>
 INIT IN (<exp>, <exp>, ...)
 INIT (<variable>) WITH (<exp>, <exp>, ...)
 INIT FROM <exp> TO <exp> [STEP <exp> | NB_TIMES <nb> | NB_RANDOM <nb>[+ BOUNDS]]
 INIT FROM <exp> TO <exp> [STEP <exp> | NB_VALUE <nb> | NB_RANDOM <nb>[+ BOUNDS]]
INIT ==

where:

• <exp> is an expression as described below.

• <nb> is an integer constant that is either literal or derived from an expression containing native constants.

• <variable> is an Ada variable.

Description

The <initialization> expressions are used to assign an initial value to a variable. The initial value is displayed in the

Component Testing report for Ada.

The INIT value is calculated during the pre-processing phase, not dynamically during test execution.

Initializations can be expressed in the following ways:

• INIT = <exp> initializes a variable before the test with the value <expression>.

• INIT IN { <exp> , <exp> , ...} declares a list of initial values. This is a condensed form of writing that enables

several tests to be contained within a single instruction.

• INIT (<variable>) WITH { <exp> , <exp> , ...} declares a list of initial values that is assigned in correlation with

those of the variable initialized by an INIT IN instruction. There must be the same number of initial values.

859

HCL® OneTest™ Embedded

860

• INIT FROM <lower> TO <upper> allows the initial value of a numeric variable (integer or floating-point) to vary

between lower and upper boundary limits:

• STEP: the value varies by successive steps.

• NB_TIMES <nb> or NB_VALUE <nb>: the value varies by a number <nb> of values that are equidistant between

the two boundaries, where <nb> >= 2 (NB_TIMES and NB_VALUE are equivalent keywords). This option

requires that the target platform supports floating point numbers.

• NB_RANDOM <nb>: the value varies by generating random values between the 2 boundaries, including, when

appropriate, the boundaries, where <nb> >= 1.

• BOUNDS: When you enter the ‘+ BOUNDS’ instruction after ‘NB_RANDOM nb’, two numerical values are added

to the nb (number) values.

Note:

• The INIT IN and INIT (<variable>) WITH expressions cannot be used with for arrays that were

initialized in extended mode or for structures.

• The INIT FROM expression can only be used for numeric variables.

• The STEP syntax cannot be used when the same variable is tested by another VAR, ARRAY or STR

statement.

• The NB_TIMES, NB_VALUE, and NB_RANDOM keywords require that the target platform supports

floating point numbers.

• An initialization expression can still be used (INIT == <expression>) to include of expected value

expression when using the INIT pseudo-variable is used. See Expected_Value Expressions on

page 862.

• The following syntaxes cannot be used in an ARRAY instruction:

◦ INIT FROM <exp> TO <exp> STEP <exp>,

◦ INIT FROM <exp> TO <exp> NB_TIMES <nb>,

◦ INIT FROM <exp> TO <exp> NB_VALUE <nb>,

◦ INIT FROM <exp> TO <exp>NB_RANDOM <nb>,

◦ INIT FROM <exp> TO <exp>NB_RANDOM <nb>[+ BOUNDS]

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be delimited by

single or double quotes.

• Native constants, which can be numeric, characters, or character strings.

Chapter 5. Test Execution Specialist Guide

• Variables belonging to the test program or the module to be tested.

• Ada functions.

• The keyword NIL to designate a null pointer.

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where I n is the current index of the nth dimension of the parameter

and J m the current number of the subtest generated by the test scenario's mth INIT IN, INIT FROM or LOOP;

the I and I1 variables are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are

incremented by 1 at each iteration.

• An Ada expression with one or more of the above elements combined using any operators and casting, with

all required levels of parentheses, the + operator being allowed to concatenate character string variables.

• For arrays and structures, any of the above-mentioned expressions between brackets ('[]') for Ada, including

when appropriate:

◦ For an array element, part of an array or a structure field, its index, interval or name followed by '=>' and

by the value of the array element, common to all elements of the array portion or structure field.

◦ For structures you can test some fields only, by using the following syntax:

[<fieldname> => <value> , <fieldname> => <value>]

• The keyword others (written in lower case) followed by '=>' and the default value of any array elements or

structure fields not yet mentioned.

• For INIT IN and INIT WITH only, a list of values delimited by brackets ('[]') for Ada composed of any of the

previously defined expressions.

Additional Rules

• Any integers contained in an expression must be written either in accordance with native lexical rules, or

under the form:

◦ <hex_integer> H for hexadecimal values. In this case, the integer must be preceded by 0 if it begins

with a letter.

◦ <binary_integer> B for binary values.

Note: Because of the way hexadecimal values are handled, the value range should not exceed half of the

maximum range when the initialization is expressed in hexadecimal.

• The number of values inside an INIT IN parameter is limited to 100 elements in a single VAR statement.

• The number of INIT IN parameters per TEST LOOP block is limited to 7.

• The number of INIT IN parameters per TEST block is limited to 8.

• In Component Testing for Ada, if variables are used in the expression, then the test evaluate the the INIT value

with variable values from before the execution.

861

HCL® OneTest™ Embedded

862

Examples

VAR x, INIT = pi/4-1, ...
VAR y[4], INIT IN (0, 1, 2, 3), ...
VAR y[5], INIT(y[4]) WITH (10, 11, 12, 13), ...
VAR z.field, INIT FROM 0 TO 100 NB_RANDOM 3, ...
VAR p->value, INIT ==, ...
ARRAY y[0..100], INIT = sin(I), ...
ARRAY y, INIT = (50=>10,others=>0), ...
STR z, INIT = (0, "", NIL), ...
STR *p, INIT = (value=>4.9, valid=>1), ...

In the following example, the Ada test Script Compiler generates code that tests x against a then b before the

execution of the code under test:

VAR y, init in (1,2), ev = init
 VAR a, init(y) with (10, 20), ev = 50
 VAR b, init(y) with (30, 40), ev = 70
 VAR x, init(y) with (a, b), ev = init
 #a := 50;
 #b := 70;

Related Topics

VAR, ARRAY and STR on page 857 | VAR, ARRAY and STR <variable> Parameter on page 858 | VAR, ARRAY and

STR <expected> Parameter on page 862

VAR, ARRAY and STR <expected> Parameter

Purpose

In conjunction with the VAR, ARRAY and STR keywords, the <expected value> parameters for Ada Test Script

Language specify the expected value of a variable.

Syntax

 EV = <exp>
 EV = <exp> , DELTA = <delta>
 MIN = <exp>, MAX = <exp>
 EV IN (<exp>, <exp>, ...)
 EV (<variable>) IN (<exp>, <exp>, ...)
 EV = INIT
EV ==

where:

• <exp> can be any of the expressions of the Initialization Parameters on page 859, plus the following

expressions:

• <delta> is the acceptable tolerance of the expected value and can be expressed:

• <variable> is an Ada variable

Chapter 5. Test Execution Specialist Guide

Description

The EV expressions are used to specify a test criteria by comparison with the value of a variable. The test is

considered Passed when the actual value matches the <expected value> expression.

The EV value is calculated during the preprocessing phase, not dynamically during test execution.

An acceptable tolerance <delta> can be expressed:

• As an absolute value, by a numerical expression in the form described above

• As a percentage of the expected value. Tolerance is then written in the form <exp> %.

Expected values can be expressed in the following ways:

• EV = <exp> specifies the expected value of the variable when it is known in advance. The value of variable is

considered correct if it is equal to <exp>.

EV = <exp>, DELTA = <tolerance> allows a tolerance for the expected value. The value of variable is considered

correct if it lies between <exp> - <tolerance> and <exp> + <tolerance>.

MIN = <exp> and MAX = <exp> specify an interval delimited by an upper and lower limit. The value of the

variable is considered correct if it lies between the two expressions. Characters and character strings are

treated in dictionary order.

EV IN (<exp>, <exp>, ...) specifies the values expected successively, in accordance with the initial values, for

a variable that is declared in INIT IN. It is therefore essential that the two lists have an identical number of

values.

EV (<variable>) IN is identical to EV IN, but the expected values are a function of another variable that has

previously been declared in INIT IN. As for EV IN, the two lists must have an identical number of values.

EV == allows the value of <variable> not to be checked at the end of the test. Instead, this value is read and

displayed. The value of <variable> is always considered correct.

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be delimited by

single or double quotes

• Native constants, which can be numeric, characters, or character strings

• Variables belonging to the test program or the module to be tested

• Ada functions

863

HCL® OneTest™ Embedded

864

• The keyword NIL to designate a null pointer

• The keyword NONIL, which tests if a pointer is non-null

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where I n is the current index of the nth dimension of the parameter

and J m the current number of the subtest generated by the test scenario's mthINIT IN, INIT FROM or LOOP;

the I and I1 variables are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are

incremented by 1 at each iteration

• An Ada expression with one or more of the above elements combined using any operators and casting, with

all required levels of parentheses, the + operator being allowed to concatenate character string variables

• For arrays and structures, any of the above-mentioned expressions between brackets ('[]') for Ada, including

when appropriate:

• ◦ For an array element, part of an array or a structure field, its index, interval or name followed by '=>' and

by the value of the array element, common to all elements of the array portion or structure field

◦ For structures you can test some fields only, by using the following syntax:

◦ ▪ [<fieldname> => <value> , <fieldname> => <value>]

• The keyword others (written in lower case) followed by '=>' and the default value of any array elements or

structure fields not yet mentioned

• The pseudo-variable INIT, which copies the initialization expression. You cannot use the pseudo-variable INIT

inside an array or structure. The keyword INIT applies to the entire expression.

Note: The following syntaxes cannot be used in an ARRAY instruction:

EV IN (<exp>, <exp>, ...)
 EV (<variable>) IN (<exp>, <exp>, ...)

Additional rules

EV with DELTA is only allowed for numeric variables. The STR statement does not support DELTA.

MIN = <exp> and MAX = <exp> are only allowed for alphanumeric variables that use lexicographical order for

characters and character strings.

MIN = <exp> and MAX = <exp> are not allowed for pointers.

Only EV = and EV == are allowed for structured variables.

In some cases, in order to avoid generated code compilation warnings, the word CAST must be inserted before the

NIL or NONIL keywords.

Chapter 5. Test Execution Specialist Guide

Example

VAR x, ..., EV = pi/4-1
VAR y[4], ..., EV IN (0, 1, 2, 3)
VAR y[5], ..., EV(y[4]) IN) (10, 11, 12, 13)
VAR z.field, ..., MIN = 0, MAX = 100
VAR p->value, ..., EV ==
ARRAY y[0..100], ..., EV = cos(I)
ARRAY y, ..., EV = (50=>10,others=>0)
STR z, ..., EV = (0, "", NIL)
STR *p, ..., EV = (value=>4.9, valid=>1)

Related Topics

VAR, ARRAY and STR on page 857 | VAR, ARRAY and STR <expected> Parameter on page 862 | VAR, ARRAY and

STR <variable> Parameter on page 858

Requirement

Purpose

The Requirement instruction allows the testers to link a test or a set of tests to one or a set of

requirements. Requirement is optional.

Syntax

REQUIREMENT <requirement_name> {, [<attribute_name> =|:] <attribute_value>}

Argument

<requirement_name> is a mandatory identifier indicating the name of the requirement.

<attribute_name> is the name of one attribute of the requirement. It is an identifier.

<attribute_value> is the value of the attribute. The syntax may be: $<identifier>. In this case, the attribute

value is substituted with the content of an environment variable whose name is $<identifier>.

Description

The REQUIREMENT instruction appears within TEST blocks, where it defines the requirements for this

test or within SERVICE blocks where it defines the requirements for the tests including in this service or

before the first SERVICE block where it defines the requirements for the all the tests in the file.

Requirements are cumulative between test and service.

rod2req is a binary that generates an XML file analyzing the rod files and describing the tracability

matrix between tests and requirements with pass/failed status.

Example

TEST1

FAMILY nominal

865

HCL® OneTest™ Embedded

866

REQUIREMENT req1, req2

 COMMENT histogram computation on a black image

ELEMENT

C System Testing

System Testing driver script (.pts)

This section describes each System Testing driver script instruction, including:

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation Conventions

Throughout this guide, command notation and argument parameters use the following standard convention:

Notation Example Meaning

BOLD ADD_ID Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<file­

names>}]

Optional series of vari­

ables

| on|off OR operator

System test script keywords are case sensitive. All keywords must be entered in upper case.

For conventional purposes however, this document uses upper-case notation for the supervisor script keywords in

order to differentiate from native source code.

Split statements

Statements may be split over several lines in a .spv supervisor script. Continued lines must start with the ampersand

('&') symbol to be recognized as a continuation of the previous line. No tabs or spaces should precede the

ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Chapter 5. Test Execution Specialist Guide

Identifiers

A supervisor script identifier is a text string used as a label, such as the name of a message type.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

System Testing keywords and identifiers are case sensitive. This means that LABEL, label, and Label are three

different identifiers.

Related Topics

System Testing driver script structure on page 867 | System Testing driver script keywords on page 869 | System

Testing for C overview on page 618

System Test Script keywords (PTS)
System Testing for C helps you solve complex testing issues related to system interaction, concurrency, and time

and fault tolerance by addressing the functional, robustness, load, performance and regression testing phases from

small, single threads or tasks up to very large, distributed systems. Test script file names must contain only plain

alphanumerical characters. System Testing for C

Basic structure

A typical System Testing .pts test driver script is presented as follows:

HEADER "Registering", "1.0", "1.0"

SCENARIO basic_registration

FAMILY nominal

-- The body of my basic_registration test

END SCENARIO

SCENARIO extented_registration

FAMILY robustness

867

HCL® OneTest™ Embedded

868

SCENARIO reg_priv_area

-- The body of my reg_priv_area test

END SCENARIO -- reg_priv_area

SCENARIO reg_pub_area LOOP 10

-- The body of my reg_pub_area test

END SCENARIO -- reg_priv_area

END SCENARIO

The overall structure of a C system test script must follow these rules:

• A test script always starts with the HEADER keyword.

• A test script is composed of one or several scenarios.

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write an instruction

over several lines using the ampersand (&) continuation character at the beginning of additional lines. In this

case, the ampersand must be the very first character on that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Structuring statements

The basic structuring statements are:

• HEADER: Specifies the name of the test script, the version of the tested system, and the version of the test

script. This information will be included in the test report.

• SCENARIO: Indicates the beginning of a SCENARIO block. A SCENARIO block ends with an END SCENARIO

statement. A SCENARIO block can be iterated multiple times using to the LOOP keyword.

• FAMILY: Qualifies the scenario and all its sub-scenarios. The FAMILY attribute is optional. A list of qualifiers

can be given such as: FAMILY nominal, structural.

Each scenario can be split into sub-scenarios.

Chapter 5. Test Execution Specialist Guide

Related information

System Testing driver script (.pts) on page 866

System Testing driver script keywords on page 869

HEADER on page 887

SCENARIO ... LOOP ... END SCENARIO on page 909

FAMILY on page 885

System Testing driver script keywords

Flow control instructions

• CALL on page 871

• INCLUDE on page 889

• CASE on page 874

• IF on page 888

• PROC on page 905

• WHILE on page 923

Adaptation layer instructions

• ADD_ID on page 870

• COMMTYPE on page 878

• CHANNEL on page 876

• MESSAGE on page 896

• PROCSEND on page 906

• VAR on page 916

• SEND on page 910

• CALLBACK on page 872

• DEF_MESSAGE on page 879

• WAITTIL on page 922

• VIRTUAL CALLBACK on page 917

869

HCL® OneTest™ Embedded

870

• VIRTUAL PROCSEND on page 920

• INTERSEND on page 892

• INTERRECV on page 893

Instance instructions

• DECLARE_INSTANCE on page 879

• INSTANCE on page 891

• RENDEZVOUS on page 908

Environment instructions

• ERROR on page 882

• EXIT on page 884

• EXCEPTION on page 883

• INITIALIZATION on page 890

• TERMINATION on page 911

Time management instructions

• TIME on page 912

• TIMER on page 913

• WTIME on page 924

• RESET on page 908

• PRINT on page 904

• PAUSE on page 903

ADD_ID

System Testing Test Script Language.

Syntax

ADD_ID (<channel_identifier>, <connection_identifier>)

Description

Chapter 5. Test Execution Specialist Guide

The ADD_ID instruction dynamically adds the value of a connection identifier to a communication channel identifier.

A communication channel is a logical medium that integrates (multiplexes) the same type of connection between the

virtual tester and remote applications under test.

When opening a connection with your communication API, you must dynamically link the connection identifier with a

channel identifier.

You must declare a channel identifier with the CHANNEL instruction.

C connection identifiers must be compatible with C communication channels.

Examples

...

COMMTYPE ux_inet IS integer_t

CHANNEL ux_inet: ch

...

SCENARIO First

...

﷓integer_t id;

CALL socket(AF_UNIX, SOCK_STREAM, 0) @@ id

ADD_ID(ch, id)

....

Related Topics

CHANNEL on page 876 | CLEAR_ID on page 876 | WAITTIL on page 922

CALL

System Testing Test Script Language.

Syntax

CALL <identifier> (<arguments>) [@ [<expected_expr>] @ [<return_var>]]

Description

The CALL instruction lets you call a specific interface routine. This routine may be a function or a procedure.

871

HCL® OneTest™ Embedded

872

You can check a function's return values for interface routine calls.

The @ character is a separator.

<expected_expr> gives the expected return value of the function.

<return_var> gives the variable in which the return value of the function is stored.

If <return_var> is specified, the return value is stored in <return_var>.

The CALL instruction can be used in a PROC, SCENARIO, INITIALIZATION, TERMINATION, or EXCEPTION blocks.

Example

﷓int return_val;

﷓int V_in;

﷓int V1_out, V2_out;

SCENARIO TEST_1

FAMILY nominal

...

CALL API_function(V_in, REF(@0@V1_out),&1@0@V2_out)@1@return_val

...

Related Topics

Function calls on page 632

CALLBACK ... END CALLBACK

System Testing Test Script Language.

Purpose

The CALLBACK instruction dynamically recalls message reception and links a connection identifier value to a

communication channel identifier.

Syntax

CALLBACK <message_type> : <msg> ON <commtype>: <id> [<n>]

END CALLBACK

<message_type> is a message type previously declared in a MESSAGE statement.

Chapter 5. Test Execution Specialist Guide

<msg> is the output parameter of <message_type> that must be initialized in the callback if a message is received.

<commtype> is the type of communication used for reading messages previously declared in a COMMTYPE

statement.

<id> is the input connection parameter on which a message must be read.

Description

Callbacks are declared in the first part of the test script, before the first scenario.

<commtype> must be declared with the COMMTYPE instruction.

<message_type> must be declared with the MESSAGE instruction.

You can declare only one callback per combination of message and communication type.

Message reception in the CALLBACK statement must never be blocked. If no message is received, you must exit the

block using the NO_MESSAGE instruction.

Use of both a NO_MESSAGE and MESSAGE_DATE statement is mandatory within the callback or a procedure called

from a callback.

If the C <message_type> contains unions, you can define for each union the display and comparison field. The system

implicitly defines a structured variable, named as ATL_ followed by the name of the <message_type>. You can specify

which field to use by specifying select attribute for the union.

Freeze Mode

Freeze mode is a blocking mode in which the CALLBACK waits for a message to be received. To use freeze mode, you

must use only one CALLBACK block throughout the entire WAITTIL statement, messages can be read in freeze mode.

In this mode, the ATL_TIMEOUT macro specifies the maximum wait delay for a message. The value of ATL_TIMEOUT

is calculated from a WTIME expression used in the WAITTIL statement. Only on WTIME must be specified in the

WAITTIL statement. The ATL_TIMEOUT macro is an integer and uses the time unit defined in the Target Deployment

Port. By default, the time unit is a hundredth of second.

Example

typedef enum { e_name, e_id, e_balance } client_kind_t;

typedef struct {

client_kind_t kind;

union {

char name[50];

int id;

873

HCL® OneTest™ Embedded

874

float balance;

} my_union;

} client_info_t;

COMMTYPE socket IS socket_id_t

CHANNEL socket: ch

MESSAGE client_info_t: msg

CALLBACK client_info_t: info ON socket: id

CALL read(id, &info, sizeof(client_info_t))@@ret

IF (ret == 0) THEN

NO_MESSAGE

END IF

MESSAGE_DATE

VAR ATL_client_info_t.my_union.select, INIT=info.kind

END CALLBACK

Related Topics

COMMTYPE on page 878, MESSAGE on page 896, WAITTIL on page 922, MESSAGE_DATE on page 898, NO

MESSAGE on page 902, VIRTUAL CALLBACK on page 917

CASE ... IS ... WHEN OTHERS... END CASE

System Testing Test Script Language.

Syntax

CASE <expression> IS

WHEN <constant1> => <instructions>

WHEN <constant2> => <instructions>

WHEN <constant3> => <instructions>

WHEN OTHERS => <instructions>

END CASE

Chapter 5. Test Execution Specialist Guide

Description

The CASE instruction allows you to choose one of several sets of instructions according to the value of an

expression.

The CASE instruction may appear in a PROC, SCENARIO, INITIALIZATION, TERMINATION or EXCEPTION block.

The list of options for the expression begins after IS and ends in END CASE.

WHEN identifies the different constant expressions that cause a specific process to be carried out. This process is

defined by the instructions following the => symbol.

OTHERS processes all the values of expression that have not been explicitly processed in the CASE. This instruction

set is optional.

<expression> must take an integer value.

Examples

﷓﷓define ACK 0

﷓﷓define NACK 1

﷓int choice;

SCENARIO TEST_1

FAMILY nominal

CALL ApiGetChoice(choice)

CASE (choice) IS

WHEN ACK => CALL ApiAcknowledge()

WHEN NACK => CALL ApiReset()

...

WHEN OTHERS => CALL Api_DefaultMsg()

END CASE

...

Related Topics

Multiple Conditions on page 635 | Conditions on page 633

875

HCL® OneTest™ Embedded

876

CHANNEL

System Testing Test Script Language.

Syntax

CHANNEL <communication_type> : <channel> {[, <channel>]}

Description

The CHANNEL instruction allows you to declare a set of communication channels.

You must declare the <communication_type> with the COMMTYPE instruction.

Each <channel> variable identifies a new type of communication channel. A communication channel is a logical

medium that integrates (multiplexes) the same type of connection among virtual testers and remote applications

under test.

Use the CHANNEL instruction at the beginning of the test script, before the first scenario.

Examples

﷓typedef int inet_id_t;

COMMTYPE ux_inet IS inet_id_t WITH MULTIPLEXING

CHANNEL ux_inet: ch_1, ch_2, ch_3

CHANNEL ux_inet: ch_out

Related Topics

COMMTYPE on page 878 | WAITTIL on page 922

CLEAR_ID

System Testing Test Script Language.

Syntax

CLEAR_ID (<channel_identifier>)

Description

The CLEAR_ID instruction clears a communication channel.

The communication channel has no more links with remote applications under test.

You must declare a communication channel with the CHANNEL instruction.

Chapter 5. Test Execution Specialist Guide

Example

...

COMMTYPE ux_inet IS integer_t

CHANNEL ux_inet: ch

...

SCENARIO First

...

﷓integer_t id;

CALL socket(AF_UNIX, SOCK_STREAM, 0) @@ id

ADD_ID(id,ch)

...

CLEAR_ID(ch)

....

Related Topics

ADD_ID on page 870 | CHANNEL on page 876 | WAITTIL on page 922

COMMENT

COMMENT

System Testing Test Script Language.

Syntax

COMMENT

Description

The COMMENT instruction allows you to add comments to the results file by inserting text.

Its use in test scenarios is optional.

The position of the COMMENT instruction in the test program defines the position in which the comment appears in

the test report.

877

HCL® OneTest™ Embedded

878

The COMMENT instruction may appear in a PROC, SCENARIO, INITIALIZATION, TERMINATION or EXCEPTION block.

In the command line interface, you can deactivate the processing of comments by adding the -NOCOMMENT option

to the C Test Script Compiler on page 1147 command line.

Example

SCENARIO TEST_1

FAMILY nominal

COMMENT calling connection confirmation

CALL api_trsprt_connectionCF()

...

COMMTYPE

System Testing Test Script Language.

Syntax

COMMTYPE <identifier> IS <connection_id_type> [WITH MULTIPLEXING]

Description

The COMMTYPE instruction defines a type of communication. The C connection identifies the communication type.

The C <connection_id_type> must be a typedef, as defined in the interface file, an included file, or in the test script.

You can define the communication type as being able to multiplex connections for the read operation, using the

multiplexing option.

You must use the COMMTYPE instruction at the beginning of the test script, before the first scenario.

Example

...

﷓typedef int inet_id_t;

COMMTYPE ux_inet IS inet_id_t WITH MULTIPLEXING

﷓typedef struct { int key; int id; } msgqueue_id_t;

COMMTYPE ux_msgqueue IS msgqueue_id_t

....

Chapter 5. Test Execution Specialist Guide

Related Topics

CALLBACK on page 872

DECLARE_INSTANCE

System Testing Test Script Language.

Syntax

DECLARE_INSTANCE <instance> {[,<instance>]}

Description

The DECLARE_INSTANCE instruction allows you to define the set of the instances described in the test script.

A DECLARE_INSTANCE instruction takes effect after you have declared it.

<instance> may be any identifier. The DECLARE_INSTANCE must have at least one instance name passed by

parameter.

Example

HEADER "DEMO SOCKET", "1.0", "2.4"

DECLARE_INSTANCE client, server

SCENARIO Main

...

END SCENARIO

Related Topics

INSTANCE

DEF_MESSAGE

System Testing Test Script Language.

Syntax

DEF_MESSAGE <message>, EV= <cmp_expression>

Description

The DEF_MESSAGE instruction allows you to define a reference <message> variable. In order to do this, you must

define the reference values with <cmp_expression>.

879

HCL® OneTest™ Embedded

880

The message variable is the reference event variable initialized by the DEF_MESSAGE instruction. It has to be

declared by the MESSAGE instruction.

Associated Rules

The DEF_MESSAGE instruction can appear in a PROC, SCENARIO, INITIALIZATION, TERMINATION, or EXCEPTION

block.

You may partially define a reference message. The undefined <cmp_expression> fields are not used to compare

incoming messages.

Interface File

typedef struct {

int type;

struct {

char app_name[8];

unsigned char class_name;

} data;

char userdata[100];

} message_t;

Example

MESSAGE message_t: msg

SCENARIO first

DEF_MESSAGE msg, EV= { code=>ConnectCF,

& data=>{ app_name=>"ATCMKD" }}

Related Topics

MESSAGE on page 896 | WAITTIL on page 922 | VAR on page 916

END

System Testing Test Script Language.

Syntax

END <block>

Chapter 5. Test Execution Specialist Guide

Description

The END instruction delimits an instruction block.

You use it to end the following:

• A callback: END CALLBACK

A procedure: END PROC

A message sending procedure: END PROCSEND

An initialization block: END INITIALIZATION

A termination block: END TERMINATION

An exception block: END EXCEPTION

A scenario: END SCENARIO

An instance block: END INSTANCE

A CASE instruction: END CASE

An IF instruction: END IF

A WHILE instruction: END WHILE

Example

INSTANCE tester1, tester2:

PROC clean1

...

END PROC

...

END INSTANCE

INITIALIZATION

...

END INITIALIZATION

SCENARIO TEST1

...

881

HCL® OneTest™ Embedded

882

END SCENARIO

Related Topics

CALLBACK on page 872 | PROC on page 905 | PROCSEND on page 906 | INITIALIZATION on page 890 |

TERMINATION on page 911 | EXCEPTION on page 883 | SCENARIO on page 909 | INSTANCE on page 891 |

CASE on page 874 | IF...THEN...ELSE on page 888 | WHILE on page 923

ERROR

System Testing Test Script Language.

Syntax

ERROR

Description

When an unexpected output value for a function or a WAITTIL causes a problem, the current scenario halts as a

result. You may terminate the scenario deliberately with the ERROR instruction.

After an ERROR instruction, the EXCEPTION block is executed on the next scenario at the same level, if there is one.

Example

﷓int sock;

...

SCENARIO Main

SCENARIO Test1

...

IF (sock==-1) THEN

ERROR

END IF

...

END SCENARIO

SCENARIO Test2

...

CALL ...

Chapter 5. Test Execution Specialist Guide

...

END SCENARIO

END SCENARIO

In the above example, you can stop the Test1 scenario with the ERROR instruction. The virtual tester then proceeds

to Test2 scenario.

Related Topics

EXIT on page 884

EXCEPTION ... END EXCEPTION

System Testing Test Script Language.

Syntax

EXCEPTION [<proc>([<arg> { [, <arg>]}]]

END EXCEPTION

Description

The EXCEPTION instruction or block deletes a specific environment by executing the set of instructions or the

procedure <proc>. END EXCEPTION marks the end of the EXCEPTION block.

Associated Rules

An EXCEPTION block or instruction applies to the set of scenarios at its level.

It does not apply to subscenarios of these scenarios.

The EXCEPTION instruction or block is optional.

A maximum of one EXCEPTION block may occur in a scenario.

The EXCEPTION instruction is only executed if a scenario terminates with an error.

It does not matter where the EXCEPTION instruction is placed among scenarios in a given level.

Example

﷓int sock;

EXCEPTION

CALL close (sock)

883

HCL® OneTest™ Embedded

884

...

END EXCEPTION

...

SCENARIO Main

...

END SCENARIO

Related Topics

INITIALIZATION on page 890 | TERMINATION on page 911

EXIT

System Testing Test Script Language.

Syntax

EXIT

Description

This instruction lets you exit from the virtual tester. It causes all scenarios to terminate.

After an EXIT, the virtual tester terminates. For an EXIT instruction, the end of execution code of the virtual tester

process is -1.

The scenario in which the EXIT instruction was executed is deemed incorrect.

Example

﷓int sock;

...

SCENARIO Main

SCENARIO Test1

...

IF (sock==-1) THEN

COMMENT stop tester

EXIT

END IF

Chapter 5. Test Execution Specialist Guide

...

END SCENARIO

SCENARIO Test2

...

CALL ...

...

END SCENARIO

END SCENARIO

FAMILY

System Testing Test Script Language.

Syntax

FAMILY <family> {[, <family>]}

Description

The FAMILY instruction allows you to group tests by families or classes.

This instruction appears just once at the beginning of a SCENARIO block, where it defines the family or families to

which the scenario belongs.

When starting tests, you can request to execute only tests of a given family.

The <family> parameter indicates the name of the test family. You can define the following families: nominal,

structural, robustness.

A test can belong to several families: in this case, the FAMILY instruction contains a <family> list, separated by

commas.

<family> can be any identifier. You must have at least one family name.

The FAMILY instruction is optional. If omitted, the test belongs to every family.

Example

SCENARIO Test_1

FAMILY nominal

COMMENT ...

885

HCL® OneTest™ Embedded

886

...

END SCENARIO

FLUSH_TRACE

System Testing Test Script Language.

Syntax

FLUSH_TRACE

Description

The FLUSH_TRACE instruction dumps the execution traces stored in the circular buffer to the .rio file.

This instruction is taken into account only when the -TRACE=CIRCULAR Test Script Compiler option is set.

The FLUSH_TRACE instruction can be used in a PROC, SCENARIO, INITIALIZATION, TERMINATION, or EXCEPTION

block. You may not use FLUSH_TRACE in a CALLBACK or PROCSEND block.

Example

SCENARIO one

(...)

FLUSH_TRACE

(...)

END SCENARIO

Related Topics

-TRACE=CIRCULAR, TRACE_ON, TRACE_OFF

FORMAT

System Testing Test Script Language.

Syntax

FORMAT <variable> = <format>

FORMAT <type> = <format>

FORMAT <field> = <format>

Chapter 5. Test Execution Specialist Guide

Description

This FORMAT instruction modifies the way a variable, type, or field of a structure is tested and printed. All formats of

the same type is modified.

The new format is defined in C.

A format can also specify a print mode in binary or hexadecimal, using the options #B and #H.

The FORMAT instruction is optional. You may use it at the beginning of the test script or in a block of instructions,

depending on the required scope. However, FORMAT statements that apply to data contained in a CALLBACK or

PROCSEND block must be located before:

1. any CALLBACK or PROCSEND block

any PROC statements that contain DEF_MESSAGE or SEND instructions

Example

SCENARIO first

﷓char buffer[100];

﷓typedef struct {

﷓ int ax_register;

﷓ int bx_register;

﷓ int cx_register;

﷓} 8088_register_t;

FORMAT buffer = unsigned char[50]

FORMAT 8088_register_t.ax_register = ﷓B

FORMAT 8088_register_t.bx_register = ﷓H

END SCENARIO

HEADER

System Testing Test Script Language.

Syntax

HEADER <test_name>, <version>, <test_plan_version>

887

HCL® OneTest™ Embedded

888

Description

This instruction allows you to define a standard header at the beginning of the test script. The information contained

in this header enables you to identify a list of scenarios.

The headers can be strings or environment variables.

<test_name> is the name for the test script.

<version> is the version of the system tested.

<test_plan_version> is the test script version.

This instruction must appear before the first instruction block and strings must be enclosed in double-quotes (" ").

Example

HEADER "DEMO SOCKET", $VERSION, "2.4"

INITIALIZATION

...

END INITIALIZATION

SCENARIO Main

....

END SCENARIO

IF...THEN...ELSE

System Testing Test Script Language.

Syntax

IF <condition> THEN

ELSE

END IF

Description

This is a control statement. The simplest form of an IF instruction begins with the keyword IF, is followed by a

Boolean expression, and then the keyword THEN. A set of instructions follows. These instructions are executed if the

expression is true. The last END IF marks the end of the set of instructions.

Chapter 5. Test Execution Specialist Guide

Other actions can be executed depending on the value of the condition. Add an ELSE block, followed by the set of

instructions to be executed if the condition is false.

IF may be placed anywhere in the test program.

THEN must be placed at the end of a line.

ELSE must be on its own line.

END IF must be on its own line.

Example

HEADER "DEMO SOCKET RPC","1.0a", "2.5"

﷓int sock;

INITIALIZATION

...

IF (sock==-1) THEN

ERROR

ELSE

CALL listen(sock,5)

...

END IF

...

END INITIALIZATION

SCENARIO Main

....

Related Topics

Conditions on page 633

INCLUDE

System Testing Test Script Language.

Syntax

889

HCL® OneTest™ Embedded

890

INCLUDE <string>

Description

The INCLUDE instruction lets you include scenarios in the current test script.

Its use in test scenarios is optional.

The INCLUDE instruction may appear in any scenario as long as the scenario does not contain any primary

instructions. <string> is the name of the file to be included. The system searches for files in the current directory and

then searches the list of paths passed on to the Test Script Compiler.

Example

SCENARIO Test_1

FAMILY nominal

INCLUDE "../common/initialization"

INCLUDE "scenario_1_and_2"

SCENARIO scenario_3

COMMENT call connection

CALL api_trsprt_connexionCF()

CALL ...

END SCENARIO

END SCENARIO

INITIALIZATION ... END INITIALIZATION

System Testing Test Script Language.

Syntax

INITIALIZATION [<proc> ([<arg> { , <arg> }])]

END INITIALIZATION

Description

The INITIALIZATION instruction initializes a specific environment by executing a set of instructions or the procedure

<proc>. END INITIALIZATION marks the end of the INITIALIZATION block.

An INITIALIZATION block or instruction applies to the set of scenarios at its level. It does not apply to sub-scenarios.

Chapter 5. Test Execution Specialist Guide

The INITIALIZATION instruction or block is optional.

A maximum of one INITIALIZATION block or instruction may occur at a given scenario level.

This instruction is executed before every scenario at the same level.

The INITIALIZATION instruction may appear anywhere among scenarios at a given level.

Example

...

INITIALIZATION

CALL socket (AF_INET, SOCK_DGRAM, 0)@@ds

...

FD_ADD(ds,SOCKAPI)

END INITIALIZATION

...

Related Topics

TERMINATION on page 911 | EXCEPTION on page 883

INSTANCE ... END INSTANCE

System Testing Test Script Language.

Syntax

INSTANCE <instance>{[, <instance>]}:

END INSTANCE

Description

An INSTANCE ... END INSTANCE block allows you to specify associated declarations or the instructions.

When the INSTANCE ... END INSTANCE block is located before the top-level scenarios, it gives global declarations to

the test script for all the specified instances.

At the block or nested scenario level, it gives instructions or local declarations to the wrapping block or scenario.

You may not nest instance blocks.

You cannot mix declarations and instructions in the same instance block.

891

HCL® OneTest™ Embedded

892

Instance blocks containing instructions follow instance blocks containing declarations.

Examples

HEADER "DEMO SOCKET", $VERSION, "2.4"

DECLARE_INSTANCE client, server

INSTANCE server:

﷓static int var_c_time ;

END INSTANCE

INITIALIZATION

INSTANCE server:

var_c_time = 0;

END INSTANCE

END INITIALIZATION

SCENARIO Principal

...

INSTANCE client:

﷓int connectStatus ;

END INSTANCE

...

INSTANCE server:

var_c_time = TIME(globalTime);

END INSTANCE

END SCENARIO

INTERSEND

System Testing Test Script Language.

Syntax

INTERSEND(<integer>, <identifier>)

Chapter 5. Test Execution Specialist Guide

INTERSEND(<string>, <identifier>)

<identifer> is the unique identifier of a virtual tester to which the message is to be sent.

<integer> is a 32-bit integer value.

<string> is a string-type value.

Description

The INTERSEND statement allows the virtual tester to send a simple message to another virtual tester. The other

virtual tester receives the incoming message with the INTERRECV statement.

The message can be either an integer or a string.

<identifier> is <instance_name>_<occid> or <test_script.rio>_<occid>

The default value for <occid> is 0.

Example

INSTANCE JUPITER:

INTERSEND("How many messages did you receive from SUT?" , "SATURN_0")

INTERRECV(&transmitted_int)

END INSTANCE

INSTANCE SATURN:

INTERRECV(buffer, 1024)

INTERSEND(2 , "JUPITER_0")

END INSTANCE

Related Topics

INTERRECV() on page 893 | ATL_OCCID on page 924

INTERRECV

System Testing Test Script Language.

Syntax

INTERRECV(<integer_pointer>)

INTERRECV(<string_pointer> , <buffer size>)

893

HCL® OneTest™ Embedded

894

<integer_pointer> indicates the memory location of a 32-bit integer message.

<string_pointer> points to a static or allocated memory zone containing the incoming message.

<buffer size> is the size of the memory zone starting at <string_pointer>.

Description

The INTERRECV statement allows the virtual tester to receive a simple message sent by an INTERSEND statement

from another virtual tester.

Received messages are stored in static or allocated memory zone indicated by <integer_pointer> or <string_pointer>.

The message can be either an integer or a string. However if the message type expected by the INTERRECV

mismatches the actual message type sent by INTERSEND, System Testing for C attempts to convert the message.

Example

INSTANCE JUPITER:

INTERSEND("How many messages did you receive from SUT?" , "SATURN_0")

INTERRECV(&transmitted_int)

END INSTANCE

INSTANCE SATURN:

INTERRECV(buffer, 1024)

INTERSEND(2 , "JUPITER_0")

END INSTANCE

Related Topics

INTERSEND() on page 892, ATL_OCCID on page 924

MATCHED

System Testing Test Script Language.

Syntax

MATCHED(<ref_msg> {[, <channel>)]})

Description

<ref_msg> is a reference message variable declared with the MESSAGE instruction and initialized with the

DEF_MESSAGE instruction.

Chapter 5. Test Execution Specialist Guide

<channel> is a communication channel declared with the CHANNEL instruction and initialized by the ADD_ID

instruction.

MATCHED is a function that returns a Boolean value. It returns true if one of the messages received during a WAITTIL

matches the reference message <ref_msg>. If you specify a channel, it returns true only if the matching message was

received on this channel.

It returns true if at least one received message has the same values as those defined for the reference message.

MATCHED is only meaningful when used in a WAITTIL instruction or in control statements following a WAITTIL, such

as IF, WHILE, or CASE.

The MATCHED return value changes when you reuse it in a WAITTIL statement.

Examples

...

CHANNEL ux_socket: ch

SCENARIO Main

DEF_MESSAGE msg_1, EV={100,10}

DEF_MESSAGE msg_2, EV={200,20}

...

WAITTIL(MATCHED(msg_1) && MATCHED(msg_2,ch),WTIME==10)

...

IF (MATCHED(msg_1,ch)) THEN

...

Related Topics

CHANNEL on page 876 | DEF_MESSAGE on page 879 | WAITTIL on page 922 | MATCHING() on page 895

MATCHING

System Testing Test Script Language.

Syntax

MATCHING(<ref_msg> {[, <channel>)]})

Description

895

HCL® OneTest™ Embedded

896

MATCHING is a function that returns a Boolean value. It returns true if the last message received during a WAITTIL

matches the reference message <ref_msg>. If you specify a channel, it returns true only if the matching message was

received on this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction and initialized with the

DEF_MESSAGE instruction.

<channel> is a communication channel declared with the CHANNEL instruction and initialized by the ADD_ID

instruction.

It returns true if the last received message has the same values as those defined for the reference message.

Associated Rules

MATCHING is only meaningful when used in a WAITTIL instruction and in control statements following a WAITTIL,

such as IF, WHILE, or CASE.

The MATCHING return value changes when you reuse it in a WAITTIL.

Examples

...

CHANNEL ux_socket: ch

SCENARIO Main

DEF_MESSAGE msg_1, EV={100,10}

DEF_MESSAGE msg_2, EV={200,20}

...

WAITTIL(MATCHING(msg_1) || MATCHING(msg_2,ch),WTIME==10)

...

IF (MATCHING(msg_1,ch)) THEN

...

Related Topics

CHANNEL on page 876 | DEF MESSAGE on page 879 | WAITTIL on page 922 | MATCHED() on page 894

MESSAGE

System Testing Test Script Language.

Syntax

Chapter 5. Test Execution Specialist Guide

MESSAGE <message_type> : <ref_msg> {[, <ref_msg>]}

Description

The MESSAGE instruction allows you to declare a list of reference messages <ref_msg> of the <message_type> type.

<message_type> is in C and must be defined by a typedef in the interface file, an included file, or the test script.

You must use the MESSAGE instruction at the beginning of the test script, before the first scenario.

The reference messages are global variables. After a WAITTIL instruction, the reference messages used contains the

value of the last received message.

Interface file

typedef struct {

int code;

int flight_number;

struct {

char flight_name[8];

unsigned char class_name;

} data;

} aircraft_data_t;

Examples

MESSAGE aircraft_data_t: air_msg

SCENARIO first

DEF_MESSAGE air_msg, EV= {code => FlightReport }

WAITTIL(MATCHING(air_msg), WTIME == 100)

...

IF (air_msg.flight_number == 321) THEN

...

Related Topics

DEF_MESSAGE on page 879 | WAITTIL on page 922

897

HCL® OneTest™ Embedded

898

MESSAGE_DATE

System Testing Test Script Language.

Syntax

MESSAGE_DATE

Description

The MESSAGE_DATE instruction marks the date the user receives the message.

For instance, this date may be the moment a message is present in a reception queue or when a message has been

read and decoded. This instruction must appear once in a callback or in a procedure called in a callback.

The MESSAGE_DATE instruction must be used in a callback.

Examples

COMMTYPE socket IS socket_id_t

CHANNEL socket: ch

MESSAGE client_info_t: msg

CALLBACK client_info_t: info ON socket: id

CALL read(id, &info, sizeof(client_info_t))@@ret

IF (ret == 0) THEN

NO_MESSAGE

END IF

MESSAGE_DATE

END CALLBACK

Related Topics

CALLBACK on page 872

NIL

System Testing Test Script Language.

Syntax

NIL

Chapter 5. Test Execution Specialist Guide

Description

NIL is a macro that represents the value of a null pointer and can be used in any C expression.

Example

...

SCENARIO Main

CALL free_object(@NIL@object)

...

END SCENARIO

Related Topics

NONIL on page 899

NONIL

System Testing Test Script Language.

Syntax

NONIL

Description

NONIL is a macro that represents the value of a non-null pointer and can be used in any C expression.

NONIL is useful in a CALL or a VAR instruction. In these two cases, it verifies that the pointer does not have a null

value.

Example

...

SCENARIO Main

CALL alloc_object() @ NONIL @ object

VAR object, VA = NONIL

...

END SCENARIO

Related Topics

899

HCL® OneTest™ Embedded

900

CALL on page 871 | VAR on page 916 | NIL on page 898

NOTMATCHED

System Testing Test Script Language.

Syntax

NOTMATCHED(<ref_msg> [, <channel>])

Description

NOTMATCHED is a function that returns a Boolean value. It returns true if one of the messages received during a

WAITTIL does not match the reference message <ref_msg>. If you specify a channel, it returns true only if the non-

matching message was received on this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction and initialized with the

DEF_MESSAGE instruction.

<channel> is a communication channel declared with the CHANNEL instruction and initialized by the ADD_ID

instruction.

It returns true if at least one received message has a value different from those defined for the reference message.

NOTMATCHED is only meaningful when used in a WAITTIL instruction or in control statements following a WAITTIL,

such as IF, WHILE, or CASE.

The NOTMATCHED return value changes when reused in a WAITTIL.

Example

...

CHANNEL ux_socket: ch

SCENARIO Main

DEF_MESSAGE msg_1, EV={100,10}

DEF_MESSAGE msg_2, EV={200,20}

...

WAITTIL(WTIME==10, NOTMATCHED(msg_1))

...

IF (NOTMATCHED(msg_1,ch)) THEN

...

Chapter 5. Test Execution Specialist Guide

Related Topics

CHANNEL on page 876 | DEF_MESSAGE on page 879 | WAITTIL on page 922

NOTMATCHING

System Testing Test Script Language.

Syntax

NOTMATCHING(<ref_msg> [, <channel>])

Description

NOTMATCHING is a function that returns a Boolean value. It returns true if the last message received during a

WAITTIL does not match the reference message <ref_msg>. If you specify a channel, it returns true only if the non-

matching message was received on this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction and initialized with the

DEF_MESSAGE instruction.

<channel> is a communication channel declared with the CHANNEL instruction and initialized by the ADD_ID

instruction.

It returns true if the value of the last received message differs from the values specified for the reference message.

NOTMATCHING is only meaningful when used in a WAITTIL instruction or in control statements following a WAITTIL,

such as IF, WHILE, or CASE.

The NOTMATCHING return value changes when reused in a WAITTIL.

Example

...

CHANNEL ux_socket: ch

SCENARIO Main

DEF_MESSAGE msg_1, EV={100,10}

DEF_MESSAGE msg_2, EV={200,20}

...

WAITTIL(WTIME==10, NOTMATCHING(msg_2,ch))

...

901

HCL® OneTest™ Embedded

902

IF (NOTMATCHING(msg_2,ch)) THEN

...

Related Topics

CHANNEL on page 876 | DEF_MESSAGE on page 879 | WAITTIL on page 922

NO_MESSAGE

System Testing Test Script Language.

Syntax

NO_MESSAGE

Description

The NO_MESSAGE instruction is used to exit the callback if no message has been received.

This instruction has to appear once in a callback or in a procedure called in a callback.

The MESSAGE_DATE instruction must be used in a callback.

Example

COMMTYPE socket IS socket_id_t

CHANNEL socket: ch

MESSAGE client_info_t: msg

CALLBACK client_info_t: info ON socket: id

CALL read(id, &info, sizeof(client_info_t))@@ret

IF (ret == 0) THEN

NO_MESSAGE

END IF

MESSAGE_DATE

END CALLBACK

Related Topics

CALLBACK on page 872

Chapter 5. Test Execution Specialist Guide

PAUSE

System Testing Test Script Language.

Syntax

PAUSE [<duration>]

<duration> is an integer specifying the length of the delay in multiples of 10ms by default.

Description

PAUSE introduces a delay in the execution of the supervisor script. It does not delay any other processes that are

running on the machine.

The PAUSE instruction does not appear in generated reports.

<duration> is the duration of the delay in multiples of the time unit. By default the time unit is 10ms and can be

customized in the TDP.

Example

In the following example, the first PAUSE statement introduces a delay of 200ms before resuming the execution of

the script. The second PAUSE statement pauses the script for 1840ms.

﷓int hp = 3;

﷓int ds = 5;

PROC init (int sock_type)

...

PAUSE 20

...

END PROC

SCENARIO Main

...

CALL init(AF_UNIX)

PAUSE (hp+ds)*23

...

END SCENARIO

903

HCL® OneTest™ Embedded

904

Related Topics

WTIME on page 924

PRINT

System Testing Test Script Language.

Syntax

PRINT <identifier>, <expression>

Description

The PRINT instruction prints the value of <expression> in the generated reports. The identifier names the value.

<expression> must be a C integer expression.

The same identifier can be used in different PRINT instructions.

Example

﷓int hp = 3;

﷓int ds = 5;

TIMER time

PROC init (int sock_type)

...

PRINT SockTypeValue, sockType

...

END PROC

SCENARIO Main

...

CALL init(AF_UNIX)

PRINT HpDs, (hp+ds)*10

PRINT elapsedTime, TIME (time)

...

END SCENARIO

Chapter 5. Test Execution Specialist Guide

Related Topics

TIME on page 912 | TIMER on page 913 | VAR on page 916

PROC ... END PROC

System Testing Test Script Language.

Syntax

PROC <arg> {[, <arg>]}

END PROC

Description

The PROC instruction lets you define a local procedure inside a scenario. A procedure can take parameters defined as

data types.

Any previously defined global variables declared in the test script are visible in the PROC block. Variables declared

locally to a procedure block are only visible within that procedure.

Procedure parameters take basic data: int, char, and float as well as any data types defined by the a typedef

statement.

Procedures must be located at the beginning of the test script file, before the highest-level scenarios.

Procedures can be called from any scenario.

Procedures do not return any parameters.

Example

﷓int hp,ds;

PROC init (int sock_type)

...

CALL gethostbyname (serv_name)@@hp

CALL socket (sock_type, SOCK_DGRAM, 0)@@ds

...

END PROC

SCENARIO Main

...

905

HCL® OneTest™ Embedded

906

CALL init(AF_UNIX)

...

END SCENARIO

Related Topics

CALL on page 871

PROCSEND

System Testing Test Script Language.

Syntax

PROCSEND <message_type> : <msg> ON <commtype> : <id>

END PROCSEND

Description

The PROCSEND instruction allows you to define a message-sending procedure. The SEND statement uses this

instruction.

<message_type> is declared with the MESSAGE instruction.

<msg> is the input parameter of <message_type> that describes the message to be sent.

<commtype> is the communication method for sending messages.

Use the <id> formal input parameter to specify the connection on which a message has to be sent.

You must declare the message-sending procedure in the first part of the test script, before the first scenario.

Declare <commtype> with the instruction COMMTYPE.

Declare <message_type> with the instruction MESSAGE.

You only need to declare one message-sending procedure a message and communication type pair.

If the structured C <message_type> contains unions, you should declare the field of the union that you want to

use. For this purpose, a structured variable is implicitly defined. Its name adds ATL_ before the name of the

<message_type>. An attribute selected for each union lets you define the field.

Example

typedef enum { e_name, e_id, e_balance } client_kind_t ;

typdef struct {

Chapter 5. Test Execution Specialist Guide

client_kind_t kind ;

union {

char name[50];

int id ;

float balance ;

} my_union

} client_info_t;

COMMTYPE socket IS socket_id_t

CHANNEL socket: ch

MESSAGE client_info_t: msg

﷓socket_id_t id;

PROCSEND message_t: msg ON appl_comm: id

...

CALL socket (sock_type, SOCK_DGRAM, 0) @ 0

...

END PROCSEND

SCENARIO Principal

...

ADD_ID(ch,id)

...

SEND (msg,ch)

...

END SCENARIO

Related Topics

COMMTYPE on page 878 | MESSAGE on page 896 | SEND on page 910 | VIRTUAL PROCSEND on page 920

907

HCL® OneTest™ Embedded

908

RENDEZVOUS

System Testing Test Script Language.

Syntax

RENDEZVOUS <identifier>

Description

The RENDEZVOUS instruction allows you to synchronize several virtual testers. A rendezvous name is the

<identifier>following the keyword.

When the scenario is executed, the RENDEZVOUS instruction stops the execution until all virtual testers have reached

the rendezvous point, thereby validating the rendezvous.

When the rendezvous is valid, the scenario resumes the execution.

A RENDEZVOUS identifier does not appear more than one time in a scenario.

Example

SCENARIO Connection

RENDEZVOUS begin

...

RESET

System Testing Test Script Language.

Syntax

RESET <identifier>

Description

The RESET instruction lets you reset the <identifier> timer.

Declare the timer identifier with the TIMER instruction.

You may use a timer identifier only once in the same block. The timer immediately restarts after being reset.

Example

TIMER time

SCENARIO Connexion

...

Chapter 5. Test Execution Specialist Guide

RESET time

...

END SCENARIO

Related Topics

TIMER on page 913, TIME on page 912

SCENARIO ... LOOP ... END SCENARIO

System Testing Test Script Language.

Syntax

SCENARIO <scenario> [LOOP <iteration_factor>]

END SCENARIO

Description

This instruction allows you to define a scenario block. This is the highest level of instruction.

<scenario> is the name of the scenario.

The optional LOOP keyword lets you state the identifier's scenario <iteration_factor>.

Associated Rules

Scenarios at the same level must have different names.

A scenario that contains other scenarios can only include FAMILY and SCENARIO statements.

<scenario> must begin with an upper or lower case letter and may contain letters, numbers, underscores, and dollar

signs.

<iteration_factor> must be a positive integer.

Example

The Jn variable (n is the nesting level of the scenario that starts at 1) gives the current scenario iteration number.

SCENARIO principal LOOP 10

FAMILY nominal, robustness

...

SCENARIO number_one

909

HCL® OneTest™ Embedded

910

...

SCENARIO number_one_two LOOP 10

CALL ...

PRINT iteration_number_one_two, J3

END SCENARIO

...

END SCENARIO

SCENARIO number_two LOOP 5

...

CALL ...

PRINT iteration_number_two, J2

PRINT global_iteration, J1

...

END SCENARIO

END SCENARIO

SEND

System Testing Test Script Language.

Syntax

SEND (<message>, <channel>)

Description

The SEND instruction allows you to send a <message> on a specific <channel>. It calls the message-sending

procedure associated with the message and communication types.

The SEND instruction may be located in a PROC, SCENARIO, INITIALIZATION, TERMINATION, or EXCEPTION block.

Example

CHANNEL appl_comm: appl_ch

﷓message_t msg;

Chapter 5. Test Execution Specialist Guide

SCENARIO TEST_1

FAMILY nominal

...

SEND(msg, appl_ch)

Related Topics

PROCSEND on page 906, VIRTUAL PROCSEND on page 920

SHARE

System Testing Test Script Language.

Syntax

SHARE <identifier>

Description

The SHARE instruction allows you to specify global static variables declared in a test script.

This allows all instances of the same test script, to share these variables in multi-thread environments.

Associated Rules

The SHARE instruction must be at the beginning of a test script, before the first block.

The identifier is the name of the global static variable declared at the beginning of the test script.

Example

﷓static int id_Connection;

﷓static int Synchro;

﷓static int buffer;

SHARE Synchro

SCENARIO Test1

FAMILY nominal

...

TERMINATION ... END TERMINATION

System Testing Test Script Language.

911

HCL® OneTest™ Embedded

912

Syntax

TERMINATION [<proc>([<type identifier>]{ , type identifier })]

END TERMINATION

Description

The TERMINATION instruction deletes a specific environment by executing a set of instructions or the procedure

<proc>. END TERMINATION marks the end of the TERMINATION block.

A TERMINATION block or instruction applies to the set of scenarios on its level. It does not apply to sub-scenarios.

The TERMINATION instruction or block is optional. A maximum of one TERMINATION block or instruction may occur

at a given scenario level. The TERMINATION instruction is only executed when a scenario terminates without errors.

You may place a TERMINATION instruction anywhere among scenarios at the same level.

Example

﷓int sock;

TERMINATION

...

CALL close (sock)

...

END TERMINATION

...

SCENARIO Main

...

END SCENARIO

Related Topics

INITIALIZATION on page 890 | EXCEPTION on page 883

TIME

System Testing Test Script Language.

Syntax

TIME (<identifier>)

Chapter 5. Test Execution Specialist Guide

Description

The TIME instruction gives the value of the identifier timer.

The timer <identifier> must be declared by a TIMER instruction.

The TIME instruction can only appear in a C expression (analyzed or not).

Example

﷓static int id_connexion;

﷓static int Synchro;

﷓static int buffer;

TIMER globalTime

SCENARIO TEST_1

FAMILY nominal

﷓unsigned long C_var_Time = TIME (globalTime);

...

PRINT time, TIME (globalTime)

END SCENARIO

Related Topics

TIMER on page 913 | RESET on page 908

TIMER

System Testing Test Script Language.

Syntax

TIMER <identifier>

Description

The TIMER instruction lets you define a timer (which automatically starts after being defined).

A timer <identifier> can be declared once in the same block. The scope of an identifier is its definition block. For

example, an identifier declared in an exception block can only be used in this block. However, you may use an

identifier declared in the global block in all the other blocks.

Example

913

HCL® OneTest™ Embedded

914

﷓static int id_connexion;

﷓static int Synchro;

﷓static int buffer;

TIMER globalTime

PROC dummy

TIMER procTime

END PROC

SCENARIO TEST_1

FAMILY nominal

﷓unsigned long C_var_Time = TIME (globalTime);

...

PRINT time, TIME (globalTime)

END SCENARIO

Related Topics

TIME on page 912 | RESET on page 908

TRACE_ON

System Testing Test Script Language.

Syntax

TRACE_ON

Description

The TRACE_ON instruction stores execution traces in the circular buffer.

This instruction is taken into account only when the -TRACE=CIRCULAR option is set.

Associated Rules

The TRACE_ON instruction can be used in PROC, SCENARIO, INITIALIZATION, TERMINATION, or EXCEPTION blocks,

but not in CALLBACK or PROCSEND blocks.

Example

Chapter 5. Test Execution Specialist Guide

SCENARIO one

...

TRACE_ON

...

END SCENARIO

Related Topics

TRACE_OFF on page 915 | FLUSH_TRACE on page 886

TRACE_OFF

System Testing Test Script Language.

Syntax

TRACE_OFF

Description

The TRACE_OFF instruction turns off storage of execution traces in the circular buffer.

This instruction is taken into account only when the -TRACE=CIRCULAR option is set.

Associated Rules

The TRACE_OFF instruction can be used in PROC, SCENARIO, INITIALIZATION, TERMINATION, or EXCEPTION

blocks, but not in CALLBACK or PROCSEND blocks.

Example

SCENARIO one

...

TRACE_OFF

...

END SCENARIO

Related Topics

FLUSH_TRACE on page 886 | TRACE_ON on page 914

915

HCL® OneTest™ Embedded

916

VAR

System Testing Test Script Language.

Syntax

VAR <variable> , INIT= <expression> | EV= <expression>

Description

This instruction allows you to initialize or check a variable. The first statement performs the initialization. The second

statement compares the contents of the variable with the expression.

<variable> is a message or a variable that has previously been declared in native language. It may be any basic or

structure type expression.

<expression> is in C and takes the following form:

cmp_expression::= C_CPP__lang_exp

{cmp_init {,cmp_initialization}}

[attol_init {,attol_init}]

cmp_init::=Constant=>C_CPP_lang_exp |

Constant1 .. Constant2=>C_CPP_lang_exp |

C_CPP_lang_exp

field_name =>C_language_expression

When controlling a numeric value (VAR ... EV=), you can check a range of values with one of following syntaxes:

VAR <variable>, EV= [<expr_min> ..]

VAR <variable>, EV= [.. <expr_max>]

VAR <variable>, EV= [<expr_min> .. <expr_max>]

This indicates that the value should be greater than <expr_min>, less than <expr_max>, or between the two

expressions.

The VAR instruction may appear in a PROC, SCENARIO, INITIALIZATION, TERMINATION or EXCEPTION block.

The keyword OTHERS in a <expression> that represents ranges in an array or fields in a structure that have not been

previously specified.

Chapter 5. Test Execution Specialist Guide

The identifiers I1, I2, ... I20 are reserved to access different dimensions of an array. For a three-dimensional matrix,

I1 represents the index for the first dimension, I2 the index for the second dimension, and I3 the index for the third

dimension.

Example

SCENARIO Main

﷓int matrix[3][3];

﷓struct {

﷓ char name[30];

﷓ char color[20];

﷓ double size;

﷓ } object;

﷓ long x;

CALL compute(matrix)

VAR matrix, EV=[[1, 1, 1], [2, 2, 2], [1, 1, 1]]

-- OR

VAR matrix, EV=[2 => [2, 2, 2], OTHERS =>[1,1,1]]

-- multiplication table:

VAR matrix, INIT= I1 I2

VAR object, INIT=[name => "car", color => "rouge",

& size => 2.50]

VAR object, INIT=[size => 0.10, OTHERS => "orange"]

VAR x, EV=[11..28]

END SCENARIO

Related Topics

CALL on page 871 |

VIRTUAL CALLBACK

System Testing Test Script Language.

917

HCL® OneTest™ Embedded

918

C++ only.

The VIRTUAL keyword modifies the CALLBACK statement, allowing it to handle messages using C++ inheritance.

Syntax

VIRTUAL CALLBACK <message_type> : <msg> ON <commtype> : <id> [<n>]

END CALLBACK

Description

The CALLBACK instruction dynamically recalls message reception and adds a connection identifier value to a

communication channel identifier.

<message_type> is a message type, previously declared with a C++ typedef statement. Syntax using <message_type>

* is not allowed.

<msg> is the output parameter of <message_type> that must be a polymorphic C++ class, which means that it must

contain at least one virtual method.

<commtype> is the type of communication used for reading messages.

<id> is the input connection parameter on which a message must be read.

Because a single VIRTUAL CALLBACK can read several message types, the implicit choice of a CALLBACK may be

ambiguous. The following rules apply:

If a CALLBACK exists for a given <message type>, System Testing chooses it.

If not, and if the message type is actually a virtual class, then System Testing chooses the VIRTUAL CALLBACK with

the closest type in terms of path in the inheritance diagram of <message_type>.

If more than one VIRTUAL CALLBACK can be chosen by following the above rules, the CALLBACK is ambiguous and

System Testing produces an error.

Example

class high_level_message

{

public:

char from[12];

char applname[12];

virtual int get_type(){return 0;}

};

Chapter 5. Test Execution Specialist Guide

class ack : public high_level_message

{

public:

int get_type(){return ACK;}

};

class negack : public high_level_message

{

public:

int get_type(){return NEG_ACK;}

};

class data : public high_level_message

{

public:

char userdata[MAX_USERDATA_LENGTH];

int length;

int get_type(){return DATA;}

};

﷓typedef high_level_message * pt_ high_level_message;

VIRTUAL CALLBACK pt_ high_level_message: msg ON appl_comm: id

CALL get_message (&id, &msg, 0) @@ errcode

MESSAGE_DATE

IF (errcode == err_empty) THEN

NO_MESSAGE

END IF

IF (errcode != err_ok) THEN

ERROR

919

HCL® OneTest™ Embedded

920

END IF

END CALLBACK

This VIRTUAL CALLBACK allows you to read high_level_message, ack, negack and data message types, as shown on

the following lines:

MESSAGE data : a_data

MESSAGE ack : my_ack

MESSAGE negack : my_neg_ack

MESSAGE high_level_message : hm

DEF_MESSAGE my_ack, EV={}

WAITTIL (MATCHING(my_ack), WTIME==300)

DEF_MESSAGE a_data, EV={}

WAITTIL (MATCHING(a_data), WTIME==300)

Related Topics

CALLBACK ... END CALLBACK on page 872 | PROCSEND ... END PROCSEND on page 906 | VIRTUAL PROCSEND

on page 920 | MESSAGE on page 896

VIRTUAL PROCSEND

System Testing Test Script Language.

For C++ only.

The VIRTUAL keyword modifies the PROCSEND statement, allowing it to handle messages using C++ inheritance.

Syntax

VIRTUAL PROCSEND <message_type> : <msg> ON <commtype> : <id>

END CALLBACK

Description

The PROCSEND instruction allows you to define a message-sending procedure using C++ classes.

<message_type> is a message type, previously declared with a C++ typedef statement. Syntax using <message_type>

* is not allowed.

Chapter 5. Test Execution Specialist Guide

<msg> is the output parameter of <message_type> that must be a polymorphic C++ class, which means that it must

contain at least one virtual method.

<commtype> is the type of communication used for reading messages.

<id> is the input connection parameter on which a message must be read.

Associated Rules

Because a single VIRTUAL PROCSEND can read several message types, the implicit choice of a PROCSEND may be

ambiguous. The following rules apply:

If a PROCSEND exists for a given <message type>, System Testing chooses it.

If not, and if the message type is actually a virtual class, then System Testing chooses the VIRTUAL PROCSEND with

the closest type in terms of path in the inheritance diagram of <message_type>.

If more than one VIRTUAL PROCSEND can be chosen by following the above rules, the PROCSEND is ambiguous and

System Testing produces an error.

Example

VIRTUAL PROCSEND pt_high_level_message : msg ON appl_comm : id_stack

CALL send_message (msg) @ err_ok

END PROCSEND

This VIRTUAL PROCSEND example allows you to send high_level_message, ack, negack et data message types, as

shown on the following lines:

MESSAGE data : a_data

MESSAGE ack : my_ack

MESSAGE negack : my_neg_ack

MESSAGE high_level_message : hm

VAR a_data, INIT={applname=>"SATURN",userdata=>"Hello Saturn!"}

SEND(a_data , appl_ch)

VAR my_ack, INIT={applname=>"SATURN"}

SEND(my_ack , appl_ch)

VAR my_neg_ack, INIT={applname=>"SATURN"}

SEND(my_neg_ack , appl_ch)

921

HCL® OneTest™ Embedded

922

Related Topics

CALLBACK ... END CALLBACK on page 872 | PROCSEND ... END PROCSEND on page 906 | VIRTUAL CALLBACK

on page 917 | SEND on page 910

WAITTIL

System Testing Test Script Language.

Syntax

WAITTIL (<passed_expr>, <failed_ expr>)

Description

This instruction waits for several events and/or a timer.

<passed_expr> is a parameter that contains a Boolean expression. If this expression is true, the waiting process is

disabled and the test sequence continues.

<failed_ expr> is a parameter that contains a Boolean expression. If this expression is true, the waiting process is

disabled and it ends with an error.

The expressions <passed_expr> and <failed_expr> can only use global variables.

When <failed_ expr> is true, the execution of the scenario containing the WAITTIL is interrupted. The next scenario at

the same level is then executed.

To use this instruction, you need to take the following actions:

1. Declare a type of communication with the COMMTYPE instruction.

Declare a communication channel with the CHANNEL instruction.

Declare the reference messages with the MESSAGE instruction.

Write a callback for a non-blocking read of communication and message type.

Define the expected values for each reference message with the DEF_MESSAGE instruction.

Associate the identifier of a communication connection with the ADD_ID instruction.

Use the four comparison operators, MATCHING, MATCHED, NOTMATCHING, NOTMATCHED, and the timer

WTIME. Also use the && (logical and) and || (logical or) operators.

You must use a global variable to pass parameters to a WAITTIL statement, as in the following example. It does not

handle PROC parameters.

Example

Chapter 5. Test Execution Specialist Guide

The following lines are from the Basestation sample application delivered with the product.

﷓int tt; /* global var */

PROC con (int timeout)

VAR tt, INIT=timeout;

DEF_MESSAGE mResponse, EV={command=>cmd_connection_established}

WAITTIL (MATCHING(mResponse,BaseStation), WTIME>tt)

END PROC

Related Topics

ADD_ID on page 870 | MATCHED() on page 894 | MATCHING() on page 895 | NOTMATCHED() on page 900 |

NOTMATCHING() on page 901 | WTIME on page 924

WHILE ... END WHILE

System Testing Test Script Language.

Syntax

WHILE (condition)

END WHILE

Description

The instruction WHILE is a control structure. All the instructions between WHILE and END WHILE is executed if the

condition is true.

Example

﷓int i = 0;

SCENARIO Main

CALL api1_func...

WHILE (i<100)

CALL api_val(i)

VAR i, INIT=i+1

END WHILE

...

923

HCL® OneTest™ Embedded

924

END SCENARIO

Related Topics

Iterations on page 634

WTIME

System Testing Test Script Language.

Syntax

WTIME

Description

WTIME is a macro that acts as a timer in a WAITTIL instruction.

The value of WTIME is reset to zero before every WAITTIL. The value is a multiple of the time unit. By default the time

unit is 10ms and can be customized in the TDP.

You can assign parameters to the timer's unit of time in the Target Deployment Port.

Example

...

SCENARIO Acknowledge

...

WAITTIL (MATCHING (OK), WTIME > 1000)

END SCENARIO

ATL_OCCID

System Testing Test Script Language.

Description

ATL_OCCID is a macro that returns the value of the occurrence identification number (OCCID) that uniquely identifies

a virtual tester.

You can change the occurrence identification number of a virtual tester by adding the -OCCID= <number> parameter

to the command line of the generated virtual tester.

By default, the value of ATL_OCCID within a test script is 0.

Chapter 5. Test Execution Specialist Guide

Example

HEADER "Client", "1.0", "3.0"

SCENARIO Main

...

PRINT occnumber, ATL_OCCID

...

END SCENARIO

Related Topics

INTERRECV on page 893 | INTERSEND on page 892

ATL_TIMEOUT

System Testing Test Script Language.

Description

The value of ATL_TIMEOUT is calculated from a WTIME expression used in the WAITTIL statement. The

ATL_TIMEOUT macro is an integer and uses the time unit defined in the Target Deployment Port. By default, the time

unit is a hundredth of second.

Related Topics

CALLBACK on page 872

ATL_NUMINSTANCE

System Testing Test Script Language.

Description

ATL_NUMINSTANCE is a macro that returns the index number of an executed instance, according to the order defined

in the DECLARE_INSTANCE instruction.

Note The number returned by ATL_NUMINSTANCE is the index number +1. For example, the first instance returns 2,

the fourth instance returns 5.

Example

HEADER "Client", "1.0", "3.0"

DECLARE_INSTANCE client, server

925

HCL® OneTest™ Embedded

926

SCENARIO Main

...

PRINT instanceNum, ATL_NUMINSTANCE

...

END SCENARIO

Related Topics

DECLARE_INSTANCE on page 879

System Testing supervisor script reference (.spv)

When using the System Testing tool, the machine running HCL OneTest™ Embedded runs a supervisor process.

This section describes each supervisor script instruction, including:

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation Conventions

Throughout this guide, command notation and argument parameters use the following standard convention:

Notation Example Meaning

BOLD ADD_ID Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<file­

names>}]

Optional series of vari­

ables

| on|off OR operator

System test script keywords are case sensitive. All keywords must be entered in upper case.

For conventional purposes however, this document uses upper-case notation for the supervisor script keywords in

order to differentiate from native source code.

Chapter 5. Test Execution Specialist Guide

Split statements

Statements may be split over several lines in a .spv supervisor script. Continued lines must start with the ampersand

('&') symbol to be recognized as a continuation of the previous line. No tabs or spaces should precede the

ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Identifiers

A supervisor script identifier is a text string used as a label, such as the name of a message type.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

System Testing keywords and identifiers are case sensitive. This means that LABEL, label, and Label are three

different identifiers.

Related Topics

Supervisor script structure on page 927 | Supervisor script keywords on page 928 | System Testing supervisor on

page 687

Supervisor script structure

System Testing Supervisor Script Language.

System Testing manages the simultaneous execution of Virtual Testers distributed over a network. The supervisor

script language allows you to create a supervisor process to:

• Set up target hosts to run the test

• Launch the virtual testers, the system under test and any other tools.

• Synchronize virtual testers during execution

• Retrieve the execution traces after test execution

927

HCL® OneTest™ Embedded

928

Note When using the HCL OneTest™ Embedded graphical user interface, the .spv supervisor scripts are generated

automatically. Experienced users can edit these files manually. See System Testing supervisor on page 687

Test script file names must contain only plain alphanumerical characters.

Basic structure

A typical System Testing .spv supervisor script looks like this:

HOST machine_1 IS localhost

HOST machine_2 IS 193.256.6.2(10098)

HOST machine_3 IS $HOSTNAME

COPY local_file machine_2:remote_file

DO machine_1:program

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive.

• Statements start at the beginning of a line and end at the end of a line. You can, however, write an instruction

over several lines using the ampersand (&) continuation character at the beginning of additional lines. In this

case, the ampersand must be the very first character on that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some platforms.

Supervisor script instructions are sequential. There is no hierarchical structure in the script.

Related Topics

System Testing supervisor script (.spv) on page 926 | Supervisor script keywords on page 928 | System Testing

supervisor on page 687

Supervisor script keywords

• COPY on page 932

• CHDIR on page 933

• DELETE on page 934

• DO on page 935

• ENDOF on page 936

Chapter 5. Test Execution Specialist Guide

• ERROR on page 937

• EXECUTE on page 938

• EXIT on page 939

• HOST on page 940

• IF ... THEN ... ELSE ... END IF on page 941

• INCLUDE on page 942

• MEMBERS on page 943

• MKDIR on page 944

• PAUSE on page 945

• PRINT on page 945

• PRINTLN on page 946

• RMDIR on page 947

• UNSET on page 947

• STATUS on page 948

• SHELL on page 950

• SET on page 950

• STOP on page 951

• TRACE ... FROM on page 952

• WHILE on page 952

Related Topics

Supervisor script structure on page 927 | System Testing supervisor script (.spv) on page 926 | Expressions on

page 930

Environment variables

System Testing Supervisor Script Language.

System Testing supervisor scripts can read and write environment variables on the System Testing Supervisor

machine and on target machines.

929

HCL® OneTest™ Embedded

930

Precede an environment variable name with a dollar sign ($) to substitute the environment variable by its value within

a statement.

To force a variable to refer to the environment of the System Testing Supervisor machine, precede the environment

variable with the 'at' sign (@) instead of the dollar sign.

Example

HOST machine IS $HOSTNAME

-- show the contents of the target home directory

DO machine: ls $HOME

-- show the contents of the local home directory

SHELL ls $HOME

Related Topics

Expressions on page 930 | SET on page 950 | UNSET on page 947

Expressions

System Testing Supervisor Script Language.

Supervisor scripts may contain integer expressions only.

You may use expressions in variable assignments, IF instructions, and WHILE instructions.

Expressions may contain the following operators:

Opera­

tor

Description

== Equals

!= Does not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

+ Plus

- Unary or binary minus

* Multiply

Chapter 5. Test Execution Specialist Guide

/ Divide

% Modulo

! Negation

&& Logical AND

|| Logical OR

ENDOF See ENDOF on

page 936

STATUS See STATUS on

page 948

Expressions may be nested with parentheses. Operators obey the following ascending order of priority:

• &&, ||

• ==, !=

• >, >=, <, <=

• +, Unary or binary -

• *, /, %

• !, ENDOF, STATUS

Example

HOST machine IS 193.6.2.1

EXECUTE proc_1 IS machine:program

i = 1

-- declaration of i

j = (i + 3 2) + (i <= 2)

-- declaration of j

PRINTLN j

Related Topics

Variables on page 953 | ENDOF on page 936 | IF on page 941 | STATUS on page 948 | WHILE on page 952

931

HCL® OneTest™ Embedded

932

COPY

System Testing Supervisor Script Language.

Purpose

The COPY instruction transfers a binary or ASCII file from the System Testing Supervisor machine to a target

machine, or the opposite.

Syntax

COPY [<hostname> :]<source> [<hostname> :]<destination> [/ASCII]

where:

• <source> is the absolute or relative filename of the file to be copied.

<destination> is the absolute or relative path to which <source> is to be copied.

<hostname> is the optional name of the source or destination machine.

Description

When the <hostname> is not specified, the filename refers to a local file on the System Testing Supervisor machine.

When a <hostname> is specified, the filename refers to a file on the corresponding remote host.

COPY instructions can only transfer files from the System Testing Supervisor machine to a remote machine, or from a

remote machine to the System Testing Supervisor machine. Transfers from one remote machine to another must be

performed using two COPY instructions.

By default, transfers are in binary mode. If you specify the keyword /ASCII, the transfer is performed in character

mode, which insures that text files are correctly copied between different types of machines. In binary mode, the

target file's access permissions are updated so that the file is executable.

A filename may contain environment variables that are local to the System Testing Supervisor machine or that are

defined on the remote machine. For more information, refer to the section on Environment variables on page 929.

If the file to be copied does not exist or is read-protected, you will receive an error message (see ERROR on

page 937).

Path and filenames may contain long quoted pathnames, such as "C:\Program Files\HCL OneTest™ Embedded\HCL

OneTest™ Embedded\".

Example

HOST target_1 IS antares

...

Chapter 5. Test Execution Specialist Guide

COPY localfile target_1:$HOME/file.bin

COPY target_1:remotefile localfile /ASCII

...

Related Topics

DELETE on page 934

CHDIR

System Testing Supervisor Script Language.

Purpose

The CHDIR instruction changes the current working directory of the System Testing Supervisor machine or of a target

machine.

Syntax

CHDIR [<hostname>:] <directory>

where:

1. <hostname> is an optional logical name of a target machine (see HOST on page 940)

2. <directory> is the relative or absolute path of a directory

Description

When supervisor execution starts, the working directory of the System Testing Supervisor machine is the current

directory of the shell that runs the System Testing Supervisor.

When the script starts, the working directory of the target machine is the directory where the Agent has been started.

The <directory> path may contain local environment variables from the System Testing Supervisor machine, or remote

environment variables defined on the target machine. For more information, refer to the section on Environment

variables on page 929.

If the operation fails, you will receive an error message (see ERROR on page 937).

The <directory> path may contain long quoted pathnames, such as "C:\Program Files\HCL OneTest™ Embedded\HCL

OneTest™ Embedded\".

Example

HOST target IS workstation.domain.com

CHDIR localdir

933

HCL® OneTest™ Embedded

934

CHDIR $ATS_DIR

CHDIR target:$HOME

CHDIR target:/tmp/project

SET DIR=C:\tmp

CHDIR $DIR

Related Topics

MKDIR on page 944 | RMDIR on page 947

DELETE

System Testing Supervisor Script Language.

Purpose

The DELETE instruction deletes a local or remote file.

Syntax

DELETE <filename>

where:

• <filename> is a local or remote file to be deleted.

Description

<filename> may be specified with an absolute or relative path, or as <hostname> : <filename>, where <hostname> is a

remote host running a System Testing Agent daemon.

The filename may contain environment variables that are local to the System Testing Supervisor machine or that are

defined on the remote machine. For more information, refer to the section on Environment variables

If the file to be deleted does not exist or is write-protected, you will receive an error message. (See ERROR.)

Path and filenames may contain long quoted pathnames, such as "C:\Program Files\HCL OneTest™ Embedded\HCL

OneTest™ Embedded\".

Example

HOST target_2 IS 123.4.56.7(10098)

DELETE target_2:$DIR/../remote_file

DELETE local_file

Chapter 5. Test Execution Specialist Guide

Related Topics

ERROR on page 937

DO

System Testing Supervisor Script Language.

Purpose

The DO instruction executes a program on a remote machine and waits for the end of its execution.

Syntax

DO [<process> IS] <hostname> : <program> [<parameters>]

where:

• <process> optionally assigns a process name to the program

<hostname> is the name of the remote machine as defined by a HOST instruction

<program> is the name of the program to execute

<parameters> is a set of optional parameters that can be sent to <program>

Description

DO is a blocking instruction that waits for the program to end.

The field <hostname> is mandatory and must specify a remote machine.

You can give a logical name to a program by including the clause <process> IS. You can then form expressions with

the ENDOF and STATUS operators.

A process name may only appear once in a supervision script, otherwise you will receive an error when the scenario

does not execute. If <process> IS is not present, the ENDOF and STATUS operators cannot be used.

While the program runs, all logs sent to the standard and error outputs are redirected to the supervisor, except if you

have set TRACE OFF.

If the program does not start or does not have execution permission, an error message is produced. (See ERROR.)

Note If a logical process name is used in a DO instruction within a WHILE loop, the name refers not to a single

process, but a group of processes. (See the ENDOF and STATUS operators.)

Example

HOST remote IS 192.3.2.1

935

HCL® OneTest™ Embedded

936

DO process_1 IS remote: ls /tmp -l

i = 1

WHILE i < 10

DO group IS remote:program

i = i + 1

END WHILE

-- the variable group refers to a group of 9

-- executions of the process called program

Related Topics

ENDOF on page 936 | EXECUTE on page 938 | STATUS on page 948 | TRACE on page 952

ENDOF

System Testing Supervisor Script Language.

Purpose

ENDOF is a Boolean function that tests whether <process> has ended or not. ENDOF is true if the execution of

<process> has ended.

Syntax

ENDOF (<process>)

<process> is a logical process name, defined with an EXECUTE statement.

Description

You can use the ENDOF function in expressions analyzed by the supervisor.

ENDOF is a non-blocking operator.

If an unknown process identifier is specified, an error is generated during analysis of the supervision script before it is

executed.

Note If an EXECUTE instruction is placed inside a WHILE loop, the process identifier denotes a group of processes.

In this case, an ENDOF expression with this process identifier is true when all the processes associated with the

identifier have ended.

Example

Chapter 5. Test Execution Specialist Guide

...

i = 1

WHILE i < 10

EXECUTE proc_group IS machine:program

i = i + 1

END WHILE

...

IF ENDOF (proc_group) THEN

PRINT "end of execution of all processes"

END IF

Related Topics

EXECUTE on page 938 | IF on page 941 | STATUS on page 948 | WHILE on page 952

ERROR

System Testing Supervisor Script Language.

Purpose

The ERROR instruction indicates to the supervisor whether or not execution of a scenario should be interrupted if an

error occurs.

Syntax

ERROR [ON | OFF]

Description

Use ERROR ON to interrupt execution of the supervision script if an error is detected.

Use ERROR OFF to ignore errors and continue execution of the supervision script.

In both cases, you will still receive an error message through the standard output.

The use of ERROR in supervision scripts is optional. ERROR ON is the default setting.

You may use ERROR ON and ERROR OFF several times in the same supervisor script.

Example

937

HCL® OneTest™ Embedded

938

...

COPY localfile_1 target:file_1

ERROR OFF

DELETE localfile_1

ERROR ON

...

ERROR OFF

EXECUTE target:file_1

ERROR ON

EXECUTE

System Testing Supervisor Script Language.

Purpose

The EXECUTE instruction executes the program <program_name> on the <hostname> defined by a previous HOST

instruction.

Syntax

EXECUTE [<process> IS] <hostname>: <program> [<parameters>]

where:

• <process> optionally assigns a process name to the program

<hostname> is the name of the remote machine as defined by a HOST instruction

<program> is the name of the program to execute

<parameters> is a set of optional parameters that can be sent to <program>

Description

EXECUTE is a non-blocking instruction that asynchronously starts the <program> on <hostname>, and then returns.

The field <hostname> is mandatory and must specify a remote machine.

You can assign a logical name to the <program> by adding the optional <process> IS statement. You can use this

logical name to form expressions with the ENDOF and STATUS operators.

Chapter 5. Test Execution Specialist Guide

Any logical process name must be unique to a supervision script, otherwise it will generate an error when the

scenario execution fails.

If no logical process name is assigned to the program execution, the ENDOF and STATUS operators will generate an

error during the analysis of the supervisor script.

While <program> is running, all logs normally sent to the standard and error outputs are redirected to the supervisor,

except if you have used a TRACE OFF statement.

If the <program> file is missing or does not have execution permission, an error is generated.

Note If a logical process name is used in an EXECUTE instruction within a WHILE loop, the name refers not to a single

process, but a group of processes. (See the ENDOF and STATUS operators).

Example

HOST remote IS 192.3.2.1

EXECUTE process_1 IS remote: ls /tmp -l

EXECUTE remote: myFoo

i = 1

WHILE i < 10

EXECUTE group IS remote:program

i = i + 1

END WHILE

-- the variable group refers to a group of 9

-- executions of the process called program

Related Topics

DO on page 935 | ENDOF on page 936 | STATUS on page 948 | TRACE on page 952

EXIT

System Testing Supervisor Script Language.

Purpose

The EXIT instruction stops execution of the supervision script.

Syntax

939

HCL® OneTest™ Embedded

940

EXIT [" <message> "]

<message> is a an optional character string delimited by double-quotes (").

Description

Stopping the supervisor causes all processes started by agents to stop as well.

The optional <message> is printed as an information message.

Note If you need to include a double-quote in the message, use \".

Example

HOST remote IS 192.6.2.1

...

IF (i = 3) THEN

EXECUTE remote: ls /tmp -l

ELSE

EXIT "Exit on incorrect value of \"i\""

END IF

Related Topics

ERROR on page 937

HOST

System Testing Supervisor Script Language.

Purpose

The HOST instruction assigns a logical machine name to a target machine.

Syntax

HOST <logical_name> IS <address> [(< port_number>)]

<logical_name> is the identifier of the target machine.

<address> is the network address of the target machine

<port_number> is the network port to which the target machine's Agent is assigned.

Description

Chapter 5. Test Execution Specialist Guide

Executing a HOST instruction opens a connection with an agent on the target machine.

Logical machine names are used in CHDIR, COPY, DO, DELETE, EXECUTE, MKDIR, RMDIR, SET, TRACE and UNSET

instructions to refer to target machines.

The host <address> may be:

1. a hostname (for example: workstation.domain.com),

an alias (for example: workstation),

or an IP address (for example: 155.22.9.3).

The TCP/IP port number is optional. It helps specify the port used by the target machine's agent that listens for

connection demands. By default, the port used by the supervisor is the one specified by the ATS_PORT environment

variable, or 10000.

A logical machine name must be unique within the supervision script. If the System Testing Supervisor machine

cannot connect to the agent, the supervisor produces an error message and terminates, regardless of any ERROR

statement.

Example

HOST machine_1 IS localhost

HOST machine_2 IS 193.256.6.2(10098)

HOST machine_3 IS $HOSTNAME

COPY local_file machine_2:remote_file

DO machine_1:program

IF ... THEN ... ELSE ... END IF

System Testing Supervisor Script Language.

Purpose

The IF ... END IF statement allows you to define a conditional behavior based on the result of an expression.

Syntax

IF <expression> THEN

ELSE

END IF

941

HCL® OneTest™ Embedded

942

<expression> is a Boolean expression. See Expressions on page 930.

Description

IF defines the Boolean expression.

Instructions following the THEN keyword are executed if the expression is true.

Instructions following ELSE are executed if the expression is false.

END IF marks the end of the of the IF statement.

Example

HOST machine IS 193.6.2.1

DO prepro IS machine:preprocessing.exe

IF (STATUS (prepro) == 0) THEN

PRINTLN "preprocessing OK"

ELSE

PRINTLN "preprocessing FAILED"

EXIT

END IF

Related Topics

Expressions on page 930

INCLUDE

System Testing Supervisor Script Language.

Purpose

The INCLUDE instruction allows you to nest supervision scripts.

Syntax

INCLUDE " <filename> "

<filename> is the absolute or relative file name of an included supervision script, delimited by double quotes (").

Description

There is no limit to the levels of nested INCLUDE commands.

Chapter 5. Test Execution Specialist Guide

If an infinite loop of included files is detected during analysis, you will receive an error message and the execution will

fail.

INCLUDE instructions may appear anywhere in a supervision script, including inside a structured IF or WHILE

instruction.

There is no default file extension. If the filename has an extension, you must state it in the INCLUDE instruction.

Example

HOST machine_1 IS 193.6.2.1

INCLUDE "included_file.spv"

...

DO test_1 IS machine_1:test_1

MEMBERS

System Testing Supervisor Script Language.

Purpose

The MEMBERS instruction lets you declare the number of members awaited at a given rendezvous.

Syntax

MEMBERS <rendezvous> <number>

where:

<rendezvous> is the rendezvous identifier

<number> is a positive integer representing the number of members to wait for

Description

MEMBERS lets you synchronize virtual testers with the RENDEZVOUS instructions or with other applications with the

rendezvous Target Deployment Port.

A <rendezvous> identifier must be unique within the supervision script. If not, an error message is produced and the

scenario execution fails.

Example

...

MEMBERS beginning 3

943

HCL® OneTest™ Embedded

944

...

EXECUTE machine_1:test1

EXECUTE machine2:test2

...

RENDEZVOUS beginning

Related Topics

RENDEZVOUS on page 955

MKDIR

System Testing Supervisor Script Language.

Purpose

The MKDIR instruction creates a new directory on the System Testing Supervisor machine or on a target machine.

Syntax

MKDIR [<hostname>:] <directory>

where:

1. <hostname> is an optional logical name of a target machine (see HOST on page 940)

<directory> is the relative or absolute path of a directory

Description

The directory path name may contains local environment variables of the System Testing Supervisor machine, or

remote environment variables defined on the target machine.

If the operation fails, the script returns an error message.

Example

HOST target IS workstation.domain.com(10098)

MKDIR ../localdir

MKDIR target:$HOME/tmp

Related Topics

CHDIR on page 933 | RMDIR on page 947

Chapter 5. Test Execution Specialist Guide

PAUSE

System Testing Supervisor Script Language.

Purpose

You may use the PAUSE instruction to delay script execution.

Syntax

PAUSE <duration>

<duration> is an integer specifying the length of the delay in seconds.

Description

The PAUSE instruction introduces a delay in the execution of the supervisor script. PAUSE does not delay any other

processes that are already running on the machines.

<duration> is expressed in seconds. It may be an integer constant or an integer expression.

Example

DELAY = 25

...

PAUSE 3

...

PAUSE DELAY

PRINT

System Testing Supervisor Script Language.

Purpose

The PRINT instruction prints <argument> to the supervision script execution log file without a carriage return or line

feed.

Syntax

PRINT <argument>

where:

1. <argument> is a string or a variable that points to a string

945

HCL® OneTest™ Embedded

946

Description

The PRINT instruction does not cause a carriage return or line feed after printing the value of <argument>.

<argument> can be a string constant, delimited by quote double-quotes, or a variable integer value used in the

scenario.

If <argument> uses an unknown variable, the scenario execution exits with an error message.

Example

var_i = 25

PRINT "value of var_i "

PRINT var_i

Related Topics

PRINTLN on page 946

PRINTLN

System Testing Supervisor Script Language.

Purpose

The PRINTLN instruction prints <argument> to the supervision script execution log file with a carriage return or line

feed.

Syntax

PRINTLN [<argument>]

<argument> is an optional string or identifier that is to be printed.

Description

The value of <argument> can be a string constant, delimited by double-quotes, or a variable integer value used in the

scenario.

If you provide no argument, the instruction causes a carriage return or line feed.

If <argument> uses an unknown variable, the scenario execution exits with an error message.

Example

var_i = 25

PRINTLN "value of var_i "

Chapter 5. Test Execution Specialist Guide

PRINTLN var_i

Related Topics

PRINT on page 945

RMDIR

System Testing Supervisor Script Language.

Purpose

The RMDIR instruction deletes a directory from the System Testing Supervisor machine or from a target machine.

Syntax

RMDIR [<hostname>:] <directory>

where:

1. <hostname> is an optional logical name of a target machine (see HOST on page 940)

2. <directory> is the relative or absolute path of a directory

Description

The directory path name may contain local environment variables of the System Testing Supervisor machine

or remote environment variables defined on the target machine. For more information, refer to the section on

Environment variables on page 929.

If the operation fails, the script returns an error message.

The <directory> path may contain long quoted pathnames, such as "C:\Program Files\HCL OneTest™ Embedded\HCL

OneTest™ Embedded\".

Example

HOST target IS antares.tlse.fr(10098)

RMDIR ../localdir

RMDIR target:$HOME/tmp

Related Topics

CHDIR on page 933 | MKDIR on page 944

UNSET

System Testing Supervisor Script Language.

947

HCL® OneTest™ Embedded

948

Syntax

UNSET [<hostname>:] <env_var>

where:

1. <hostname> is the logical name of the target machine (See HOST.)

<env_var> is the name of the environment variable

Purpose

The UNSET instruction deletes an environment variable from the System Testing Supervisor machine or from the

target machine.

Description

Hostname is the logical name on a target machine as defined in the HOST instruction. If you do not specify a

hostname, the UNSET instruction deletes a local variable.

When you execute the UNSET instruction, the environment variable deletes until the end of the execution, or until you

reset it.

Example

HOST target IS workstation(10098)

...

SET LOCAL_TMP_DIR=/tmp

SET target:REMOTE_TMP_DIR=$TMPDIR

...

UNSET LOCAL_TMP_DIR

UNSET target:REMOTE_TMP_DIR

...

Related Topics

SET on page 950

STATUS

System Testing Supervisor Script Language.

Purpose

Chapter 5. Test Execution Specialist Guide

STATUS is an integer operator that retrieves the code returned by a remote process when it terminates.

Syntax

STATUS (process)

where:

• <process> is a logical process identifier

Description

The execution of a STATUS expression does not block execution of the scenario.

Applying STATUS to an ongoing process always returns a zero value. We recommend you use the STATUS operator in

conjunction with ENDOF.

Note If you place an EXECUTE or DO instruction inside a WHILE loop, the process identifier denotes a group of

processes. In this case, a STATUS expression returns a binary result or code from all the processes in the group. For

example, if ten processes terminate with a return code of 0 and one process terminates with the return code of 1, the

STATUS operator returns the value 1.

Example

EXECUTE proc_1 IS machine:foo0098

WHILE !ENDOF(proc_1)

PAUSE 1

END WHILE

j = STATUS (proc_1)

IF j != 0 THEN

PRINT "incorrect termination of program -> "

PRINTLN j

EXIT

END IF

Related Topics

DO on page 935 | ENDOF on page 936 | EXECUTE on page 938

949

HCL® OneTest™ Embedded

950

SHELL

System Testing Supervisor Script Language.

Syntax

SHELL command

Purpose

The SHELL instruction executes a command by the System Testing Supervisor machine.

Description

SHELL commands block execution of the supervision script until the command is complete.

The command's execution log is not recorded in the supervision script execution log.

Example

...

SHELL ls /tmp -l ...

Related Topics

DO on page 935 | EXECUTE on page 938

SET

System Testing Supervisor Script Language.

Purpose

The SET instruction sets an environment variable on either the System Testing Supervisor machine or the target

machine.

Syntax

SET [<hostname> :] <env_var> << <expression>

SET [<hostname>:] <env_var> = <string>

<hostname> is the logical name of the target machine,

<env_var> is the name of the environment variable,

<expression> is a numerical expression,

<string> is a text string.

Chapter 5. Test Execution Specialist Guide

Description

<hostname> must be previously declared with a HOST instruction. If you do not specify a hostname, the SET

instruction sets a local environment variable on the supervisor machine.

The environment variable is set when the SET instruction executes. It keeps its value until the end of the execution, or

until it resets.

The string from the equal sign (=) to the end of the line belongs to the expression.

To evaluate an expression and assign it to the variable, use the << symbol. The expression may contain variables.

Example

HOST target IS workstation(10098)

...

SET LOCAL_TMP_DIR=/tmp

SET target:REMOTE_TMP_DIR << $TMPDIR

SET target:NUMVALUE <<i+2

Related Topics

UNSET on page 947

STOP

System Testing Supervisor Script Language.

Syntax

STOP <process>

where:

1. <process> is the identifier of a process

Purpose

The STOP instruction stops a process began with the EXECUTE instruction.

Example

HOST target IS antares

EXECUTE server IS machine:server

951

HCL® OneTest™ Embedded

952

...

STOP server

Related Topics

ENDOF on page 936 | EXECUTE on page 938

TRACE ... FROM

System Testing Supervisor Script Language.

Syntax

TRACE ON | OFF [FROM <host_name>]

Purpose

The TRACE instruction enables or disables execution traces from the machine specified by host_name, where this

name was defined by a HOST instruction.

The traces are consolidated into the supervisor log file.

The keyword ON enables traces.

The keyword OFF disables traces.

Description

If the clause FROM host_name is not present, all traces from all machines are enabled or disabled.

If the clause FROM host_name is present, traces from machine host_name are enabled or disabled.

If you specify an unknown host name, you will receive an error when scenario execution fails.

By default, traces follow the HOST instruction.

Example

HOST machine_1 IS 193.5.4.3

HOST machine_2 IS remote

TRACE OFF FROM machine_1

WHILE

System Testing Supervisor Script Language.

Syntax

Chapter 5. Test Execution Specialist Guide

WHILE expression

instructions

END WHILE

Purpose

The WHILE instruction creates an execution loop.

Example

HOST machine IS 193.6.2.1

EXECUTE proc_1 IS machine:program

i = 1

WHILE !ENDOF (proc_1)

PAUSE 1

i = i + 1

END WHILE

j = STATUS (proc_1)

PRINT "execution time: "

PRINTLN i

PRINT "return code: "

PRINTLN j

Related Topics

Expressions on page 930

Variables

System Testing Supervisor Script Language.

A supervision script may contain integer variables only.

The system implicitly declares variables the first time they appear. The variable must first appear in an assignment

instruction.

953

HCL® OneTest™ Embedded

954

A variable must have a different name from any logical hostname defined in a HOST instruction, from any logical

process name defined in an EXECUTE instruction, and from any RENDEZVOUS name. Otherwise, you will receive an

error when scenario execution fails.

Variable names must begin with an upper or lowercase letter or with an underscore (_), followed, if necessary, by a

series of letters, digits, or underscore characters.

Variable names are case sensitive. For example, the variable Aa5 is different from the variable aA5.

Example

HOST machine IS 193.6.2.1

EXECUTE proc_1 IS machine:program

i = 1

-- declaration of i

WHILE !ENDOF (proc_1)

PAUSE 1

i = i + 1

END WHILE

j = STATUS (proc_1)

-- declaration of j

PRINT "execution time "

PRINTLN i

PRINT "return code "

PRINTLN j

Related Topics

Expressions on page 930 | PRINT on page 945 | PRINTLN on page 946

TIMEOUT

System Testing Supervisor Script Language.

Syntax

TIMEOUT <integer>

Chapter 5. Test Execution Specialist Guide

Purpose

The TIMEOUT instruction lets you define the time to wait for a rendezvous.

The value is measured in seconds.

Description

You may use only one TIMEOUT instruction in a test script.

The default value is 300 seconds (5 minutes).

Example

HOST machine_1 IS 193.5.4.3

HOST machine_2 IS remote.domain.fr

TIMEOUT 40

RENDEZVOUS phase_1

Related Topics

RENDEZVOUS on page 955

RENDEZVOUS

System Testing Supervisor Script Language.

Purpose

The RENDEZVOUS instruction synchronizes virtual testers and other processes.

Syntax

RENDEZVOUS <rendezvous>

<rendezvous> is a rendezvous identifier, previously declared by a MEMBERS statement.

Description

When the scenario reaches a RENDEZVOUS statement, the script is halted until all declared members arrive at the

rendezvous. When the rendezvous is met by all members, the supervisor orders all processes to resume.

RENDEZVOUS identifiers must be unique in the script, including from logical process names or variable names,

otherwise you will receive an error when execution fails.

If the rendezvous does not occur before the end of the timeout delay, you will receive an error. The default delay is five

minutes. You can modify the delay with the TIMEOUT instruction.

955

HCL® OneTest™ Embedded

956

Example

...

MEMBERS test1_test2 3

EXECUTE machine_1:test1

EXECUTE machine_2:test2

RENDEZVOUS test1_test2

Related Topics

MEMBERS on page 943 | TIMEOUT on page 954 | ERROR on page 937

Chapter 6. Test Manager Guide
This guide applies only to HCL OneTest™ Embedded for Eclipse IDE.

Generating test reports
You can generate tests reports from the results of a test harness run. Custom reports can be generated from XSL

transforms.

To generate a test report:

1. In the test navigator, right-click the test results and select Generate Report.

2. On the Report Scope page, select the scope of the report, and click Next.

Choose from:

◦ Select Full report to generate a complete report with all variables and values. This report includes

code coverage information.

◦ Select Filtered report to specify the level of information that you want to include in the report.

3. On the Report Format Selection page, select the XSL transformation file to generate the report, and click

Finish.

Results

The test report is generated in the Reports folder of the project.

Generating 2D and 3D chart data
You can use test data (initial values, expected values and obtained values) to generate various types of 2D and 3D

graphs and charts in the chart viewer. This representation of test data is particularly valuable associated with a data

pool to generate test patterns

Before you begin

To generate a chart, you must activate the chart feature and select the variables that you want to display before

running the test. You can display the chart in the chart viewer after the run.

Charts are more relevant when variables are associated with series of values that produce a pattern. Therefore, they

work best when you use data pools and initial expressions with series or multiple expressions.

To configure a test to generate a graph or chart:

1. Open a test case in the test case editor and select a Check block.

2. Click the Activate Chart () button.

This activates chart data generation for the current Check block.

3. Under Chart Configuration, click the Edit link to select the variables that you want to include in the chart.

Result

The Chart Configuration window opens.

957

HCL® OneTest™ Embedded

958

4. In Chart Type, select a type of chart:

Choose from:

◦ Line chart: Use this type of chart to display test data as a series of curves created from single data

points relative to each other.

◦ XY line chart: Use this type of chart to display test data on a 2 dimensional plane. This requires at least

2 data patterns for the X and Y axis.

◦ 3D chart: Use this type of chart to display test data in a 3 dimensional space. This requires at least 3

data patterns for the X, Y, and Z axis.

5. Click Add Curve () to generate the data for one of the checked variables from the test case, select a

variable in the list, and click OK.

6. Edit the variable data with the following parameters.

a. In the Name column, type a name that will be displayed in the chart on the corresponding axis.

b. In the Axis column, specify the X, Y or Z axis on which the variable will be drawn.

Ensure that the axis values match the type of chart. If you select an axis that is not available in an Line

or XY chart, then the variable data will be displayed on an available axis.

c. In the Source column, select whether the curve uses initial values, expected values or obtained values

(with a min and max option) to create the curve.

Note: These settings define how the variable data is recorded during the test run. You can modify the

way the data is displayed in the chart viewer after the run.

7. Repeat steps 5 and 6 for all the variables that you want to use to generate the chart data.

8. Click Close.

What to do next

After running the test, you can open the chart in the chart viewer.

Related information

Viewing 2D and 3D charts on page 971

Creating data pools on page 223

Publishing HTML reports to the Server
You can publish HTML reports generated from HCL OneTest™ Embedded to HCL OneTest™ Server.

Before you begin

You must have installed to HCL OneTest™ Server and started it. For more information about HCL OneTest™ Server,

see the Information center.

https://help.hcltechsw.com/onetest/hclonetestserver/10.1.1/index.html

Chapter 6. Test Manager Guide

About this task

With the current version of HCL OneTest™ Embedded, the following reports can be published:

• Coverage

• Code Review

• Data Coupling

• Control Coupling

• Performance profiling

• Stack Size profiling

This feature applies to Eclipse IDE.

You must first setup the server URL in the preferences:

1. Open the Preferences menu.

2. Click OneTest Server.

3. Enter the Server URL..

4. Click Test Connection to test the connection to the Server.

5. If you connect to Server for the first time, specify the offline user token that you created on the server. To

create a token on HCL OneTest Server, see Generating an offline token.

Note: You can publish HTML reports for the following tests: Applications, Test Harness, and Test

Suites.

6. Click Apply and close.

7. Right-click on the test you want to publish, select Publish on OneTest Server.

8. In the dialog that opens, select the project and the list of reports to be published.

9. If you have already published these reports, click Overwrite result to overwrite those results.

10. Click Publish .

Results

To view the published results, log in to the Server, select the project, and then click Results.

.

Opening runtime analysis reports
After running an instrumented application or a test harness, runtime analysis results can be displayed in a series of

specialized viewers or in HTML format reports.

Before you begin

Runtime analysis reports are available after having successfully run a test harness or an instrumented application.

Only the reports for the runtime analysis tools that were selected during the run are available.

959

https://help.hcltechsw.com/onetest/hclonetestserver/10.1.1/com.hcl.test.server.tester.doc/topics/t_tester_access_token.html

HCL® OneTest™ Embedded

960

To open a runtime analysis report:

1. Right-click the results that are available in the Project Explorer, in your project under Test > Application

Resultafter the instrumented application has run.

Note: The test results are listed with a timestamp.

2. Click Open With to select the viewer for the runtime analysis results that you want to see, or click Open With >

HTML reports to select the appropriate HTML report.

Choose from:

◦ Coverage

◦ Memory Profiling

◦ Performance Profiling

◦ Application Profiling

◦ Stack Size Profiling

◦ Control Coupling

◦ Data Coupling

◦ Static Metrics

◦ Runtime Tracing

◦ Code review

About test reports
Test reports are displayed in the test report viewer.

The Report Explorer displays each element of a test report with a Passed or Failed symbol.

• Elements marked as Failed are either a failed test, or an element that contains at least one failed test.

• Elements marked as Passed are either passed tests or elements that contain only passed tests.

Test results are displayed for each instance, following the structure of the test harness.

Each test report contains a report header containing the following elements:

• The version of the product used to generate the test and the timestamp of the test report.

• The path and name of the project files used to generate the test.

• The total number of test cases Passed and Failed.

These statistics are calculated from the actual number of test elements listed in the report.

The graphical symbols in front of the node indicate if the test harness, test case, or variable check is Passed or Failed.

A test is failed if it contains at least one failed variable check. Otherwise, the test is considered passed. Click the

Information button to obtain the following information:

Chapter 6. Test Manager Guide

• Number of tests run

• Number of tests passed

• Number of tests failed

A variable check is failed if the expected expression and the obtained value are not identical, or if the obtained value

is not within the expected range.

If a variable belongs to an environment, an environment header is edited. In the report, variables are edited according

to the value of the Display variables setting for the test harness. The following table summarizes the editing rules:

Table 7.

Result

Display variables

= All variables

Display variables =

Incorrect variables

Display variables

= Failed tests only

Passed Variable edited automatically Variable not edited Variable not edited

Failed Variable edited automatically Variable edited automatically Variable edited if incorrect

About coverage reports
The coverage report view displays code coverage information generated by the Code Coverage feature.

The coverage report contains the following elements:

• The Source page shows the source code under analysis, highlighted with the actual coverage information.

• The Rates page provides detailed coverage rates for each activated coverage type.

• The Outline view displays the source code components and with an coverage rate bar.

You can use the Outline view to navigate through the report. Click Root to display a global coverage graph, or click a

source code component in the Outline to go to the corresponding line on the Source page. Jump directly to the next

or previous uncovered portion of source code by using the Next Uncovered Line or Previous Uncovered Line buttons

in the toolbar.

Source page

By default, the Source page of the coverage report displays covered and uncovered lines of code in the following

colors:

• Green for covered lines of code,

• Red for uncovered lines of code,

• Orange for partially covered lines of code,

• Blue for justified lines of code,

• Blue with the + icon for justified but covered lines of code, which means that they should not be justified.

• Red with - icon for unreachable code.

961

HCL® OneTest™ Embedded

962

You can change these colors in the code coverage report preferences. In the main toolbar, click Window >

Preferences > Viewers > Coverage viewer, you can modify the text color for the covered lines, covered lines with

justify, justified lines, partially covered lines, and uncovered lines.

For non-covered line of codes that are justified, click on the blue attributes value to see more details about the

justification text.

Chapter 6. Test Manager Guide

Note: In C source files, the last bracket '}' in a function after a return statement is always displayed as

uncovered in the coverage report, even if the function reports 100% coverage.

The Source page provides hypertext navigation throughout the source code:

• Click a plain underlined function call to jump to the definition of the function.

• Click a dashed underlined text to view additional coverage information in a pop-up window.

• Right-click any line of code and select Edit Source to open the source file in the source code editor.

• Some macro calls are preceded with a magnifying glass icon. Click the magnifying glass icon to expand the

macro in a pop-up window with the usual coverage color codes.

A test-by-test analysis mode allows you to refine the coverage analysis. In test-by-test mode, an Available tests

section in the Outline view allows you to select and combine coverage results for different runs. To enable this mode,

select Test-by-Test in the toolbar.

The hit count tool displays the number of times that a selected branch was covered. Hit count is only available when

test-by-test analysis is disabled and when the hit count option has been enabled for the selected configuration. To

enable the hit count tool, right-click the source page and select Hit Count.

The cross reference tool displays the name of tests that executed a selected branch. Cross reference is only available

in test-by-test mode. To enable the hit count tool, right-click the source page and select Cross Reference.

963

HCL® OneTest™ Embedded

964

Rates page

The Rates page displays a table with the coverage information for each function.

To view the coverage rate and type for a particular component, select the component in the Outline view. Select the

Root node to view coverage rates for all current files.

To toggle the displayed format between absolute values, percentages, or both, click on the Display line located just

above the table. To sort the table by one of the values, click the column title. Coverage rates are updated dynamically

as you navigate through the Outline view and as you select various coverage types.

About memory profiling reports
After execution of an instrumented application, the Memory Profiling report provides a summary diagram and a

detailed report for both byte and memory block usage.

A memory block is a number of bytes allocated with a single malloc instruction. The number of bytes contained in

each block is the actual amount of memory allocated by the corresponding allocation instruction.

Summary diagrams

The summary bar graph diagrams provide a quick overview of memory usage in blocks and bytes, where:

• Allocated is the total memory allocated during the execution of the application.

• Unfreed is the memory that remains allocated after the application was terminated.

• Maximum is the highest memory usage encountered during execution.

Detailed report

The detailed section of the report lists memory errors and warnings described in the following paragraphs.

You can use the Filter Errors and Warnings button to select the level of information that you want to display.

Detected memory errors

Error messages indicate invalid program behavior. These are serious issues you should address before you check in

code.

Freeing Freed Memory (FFM)

An FFM message indicates that the program is trying to free memory that has previously been freed.

This message can occur when one function frees the memory, but a data structure retains a pointer to

that memory and later a different function tries to free the same memory. This message can also occur

if the heap is corrupted.

Memory Profiling maintains a free queue, whose role is to actually delay memory free calls in order to

compare with upcoming free calls. The length of the delay depends on the Free queue length and Free

queue threshold Memory Profiling Settings. A large deferred free queue length and threshold increases

Chapter 6. Test Manager Guide

the chances of catching FFM errors long after the block has been freed. A smaller deferred free queue

length and threshold limits the amount of memory on the deferred free queue, taking up less memory at

run time but providing a lower level of error detection.

Freeing Unallocated Memory (FUM)

An FUM message indicates that the program is trying to free unallocated memory.

This message can occur when the memory is not yours to free. In addition, trying to free the following

types of memory causes a FUM error:

• Memory on the stack.

• Program code and data sections.

Freeing Invalid Memory (FIM)

An FIM message indicates that the program is trying to free allocated memory with the wrong

instruction.

This message can occur when the memory free instruction mismatches the memory allocation

instruction. For example, a FIM occurs when memory is freed with a free instruction when it was

allocated with a new instruction.

Late Detect Array Bounds Write (ABWL)

An ABWL message indicates that the program wrote a value before the beginning or after the end of an

allocated block of memory.

Memory Profiling checks for ABWL errors whenever free() or dump() routines are called, or whenever

the free queue is actually flushed.

This message can occur when you:

• Make an array too small. For example, you fail to account for the terminating NULL in a string.

• Forget to multiply by sizeof(type) when you allocate an array of objects.

• Use an array index that is too large or is negative.

• Fail to NULL terminate a string.

• Are off by one when you copy elements up or down an array.

Memory Profiling actually allocates a larger block by adding a Red Zone at the beginning and end of

each allocated block of memory in the program. Memory Profiling monitors these Red Zones to detect

ABWL errors.

Increasing the size of the Red Zone helps HCL® OneTest™ Embedded catch bounds errors before or

beyond the block at the expense of increased memory usage. You can change the Red Zone size in the

Memory Profiling Settings.

The ABWL error does not apply to local arrays allocated on the stack.

965

HCL® OneTest™ Embedded

966

Note: The ABWL error in the HCL® OneTest™ Embedded Memory Profiling tool only applies to

heap memory zones and not to global or local tables.

Late Detect Free Memory Write (FMWL)

An FMWL message indicates that the program wrote to memory that was freed.

This message can occur when you:

• Have a dangling pointer to a block of memory that has already been freed (caused by retaining

the pointer too long or freeing the memory too soon).

• Index far off the end of a valid block.

• Use a completely random pointer which happens to fall within a freed block of memory.

Memory Profiling maintains a free queue, whose role is to actually delay memory free calls in order to

compare with upcoming free calls. The length of the delay depends on the Free queue length and Free

queue threshold Memory Profiling Settings. A large deferred free queue length and threshold increases

the chances of catching FMWL errors. A smaller deferred free queue length and threshold limits the

amount of memory on the deferred free queue, taking up less memory at run time but providing a lower

level of error detection.

Memory Allocation Failure (MAF)

An MAF message indicates that a memory allocation call failed. This message typically indicates that

the program ran out of paging file space for a heap to grow. This message can also occur when a non-

spreadable heap is saturated. After Memory Profiling displays the MAF message, a memory allocation

call returns NULL in the normal manner. Ideally, programs should handle allocation failures.

Freeing Freed Memory (FFM)

An MAF message indicates that a memory allocation call failed. This message typically indicates that

the program ran out of paging file space for a heap to grow. This message can also occur when a non-

spreadable heap is saturated.

After Memory Profiling displays the MAF message, a memory allocation call returns NULL in the normal

manner. Ideally, programs should handle allocation failures.

Core Dump (COR)

A COR message indicates that the program generated a UNIX core dump. This message can only occur

when the program is running on a UNIX target platform.

Detected memory warnings

Warning messages indicate a situation in which the program might not fail immediately, but might later fail

sporadically, often without any apparent reason and with unexpected results. Warning messages often pinpoint

serious issues you should investigate before you check in code.

Chapter 6. Test Manager Guide

Memory in Use (MIU)

An MIU message indicates heap allocations to which the program has a pointer.

Note: On exit, small amounts of memory in use in programs that run for a short time are not

significant. However, you should fix large amounts of memory in use in long running programs

to avoid out-of-memory problems.

Memory Profiling generates a list of memory blocks in use when you activate the MIU Memory In Use

option in the Memory Profiling Settings.

Memory Leak (MLK)

An MLK message describes leaked heap memory. There are no pointers to this block, or to anywhere

within this block. Memory Profiling generates a list of leaked memory blocks when you activate the MLK

Memory Leak option in the Memory Profiling Settings.

This message can occur when you allocate memory locally in some function and exit the function

without first freeing the memory. This message can also occur when the last pointer referencing a block

of memory is cleared, changed, or goes out of scope. If the section of the program where the memory is

allocated and leaked is executed repeatedly, you might eventually run out of swap space, causing slow

downs and crashes. This is a serious problem for long-running, interactive programs.

To track memory leaks, examine the allocation location call stack where the memory was allocated and

determine where it should have been freed.

You can ignore memory leaks that do not have a call stack, for memory allocations that occur before the

application starts by changing the configuration.

Memory Potential Leak (MPK)

An MPK message describes heap memory that might have been leaked. There are no pointers to the

start of the block, but there appear to be pointers pointing somewhere within the block. In order to

free this memory, the program must subtract an offset from the pointer to the interior of the block. In

general, you should consider a potential leak to be an actual leak until you can prove that it is not by

identifying the code that performs this subtraction.

Memory in use can appear as an MPK if the pointer returned by some allocation function is offset. This

message can also occur when you reference a substring within a large string.

Alternatively, leaked memory might appear as an MPK if some non-pointer integer within the program

space, when interpreted as a pointer, points within an otherwise leaked block of memory. However, this

condition is rare.

Inspection of the code should easily differentiate between different causes of MPK messages.

967

HCL® OneTest™ Embedded

968

Memory Profiling generates a list of potentially leaked memory blocks when you activate the MPK

Memory Potential Leak option in the Memory Profiling Settings.

File in Use (FIU)

An FIU message indicates a file that was opened, but never closed. An FIU message can indicate that

the program has a resource leak.

Memory Profiling generates a list of files in use when you activate the FIU Files In Use option in the

Memory Profiling Settings.

Signal Handled (SIG)

A SIG message indicates that a system signal has been received.

Memory Profiling generates a list of received signals when you activate the SIG Signal Handled option in

the Memory Profiling Settings.

About performance profiling reports
The performance profiling report provides function profiling data for your program and its components so that you

can see exactly where your program spends most of its time.

Top functions

This section of the report provides a percentage graph of the largest time consumers detected by performance

profiling in the application.

Performance summary

This section of the report indicates, for each instrumented function, procedure or method (collectively referred to as

functions), the following data:

• Calls: The number times the function was called

• Function (F) time: This value indicates the total time spent executing the function, exclusive of any calls to its

descendants.

• Function+descendant (F+D) time: The total time spent executing the function and any of its descendants (any

other functions called by this function).

Note: Because each of the descendants may have been called by other functions, it is not enough to

simply add the descendants' F+D to the caller function's F. In fact, it is possible for the descendants' F

+D to be larger than the calling function's F+D. The following example demonstrates three functions a,

b and c, where both a and b each call c once:

Chapter 6. Test Manager Guide

Table 8.

Func­

tion F F+D

a 5 15

b 5 15

c 20 20

The F+D value of a is less than the F+D value of c because the F+D of a (15) equals the F of a (5) plus

one half the F+D of c (20/2=10).

• F Time (% of root) and F+D Time (% of root): Same as above, expressed in percentage of total execution time

• Average F Time: The average time spent each time the function was executed.

• Min F+D: The minimum time spent executing the function and any of its descendants.

• Max F+D: The maximum time spent executing the function and any of its descendants.

Note: The Min and Max values are optional because their calculation uses a large amount of

memory. To calculate these values, you must activate the option in the Configuration Settings for the

corresponding node.

Click on a function in the table to open the source file in the source code editor. To sort the table by one of the values,

click the column title.

About metrics results
The metrics report provides static testability and complexity measurements of the source files of your project. Source

code metrics are created each time a source file is added to the project.

The scope of the metrics report depends on the selection made in the Outline view. This can be a file, one or several

classes or any other set of source code components.

The metrics window provides hyperlinks to the actual source code. Click the name of a source component to open

the source code editor at the corresponding line.

Complexity metrics

The V(g) or cyclomatic number is a measure of the complexity of a function, which is correlated to the difficulty of

testing the function. The typical V(g) for a function is between 1 and 10. A value of 1 means that the code has no

branching. The cyclomatic complexity of a function should not exceed 10.

Halstead complexity measurement was developed to measure a program module's complexity directly from source

code, with emphasis on computational complexity. The measures were developed by the late Maurice Halstead as a

969

HCL® OneTest™ Embedded

970

means of determining a quantitative measure of complexity directly from the operators and operands in the module.

Halstead provides various indicators of the module's complexity.

The Metrics Viewer presents V(g) and Halstead values of a function in the metrics report when a function is selected

in the Outline view. At the Root level, the same statistical treatment is provided for all functions in the source file.

File level metrics

Comment only lines

The number of comment lines that do not contain any source code.

Comments

The total number of comment lines.

Empty lines

The number of lines with no content.

Source only lines

The number of lines of code that do not contain any comments.

Comment only lines

The number of comment lines that do not contain any source code

Lines

The total number of lines in the source file.

Comment rate

The percentage of comment lines against the total number of lines.

Source lines

The total number of lines of source code

File, Class or Package, and Root Level Metrics

These numbers are the sum of metrics measured for all the components of a given file, class or package.

Total statements

total number of statement in child nodes

Maximum statements

The maximum number of statements in the selected scope.

Maximum level

The highest nesting level reached in the selected scope.

Maximum V(g)

The average cyclomatic number of the selected scope.

Chapter 6. Test Manager Guide

Standard deviation V(g)

Standard deviation V(g) of the selected scope

Sum of V(g)

Total V(g) for the selectedscope.

Viewing 2D and 3D charts
Use the chart viewer to display test data (initial values, expected values and obtained values) that was recorded

during a run.

Before you begin

To display a chart, you must have activated the chart feature in the Check block of the test case and selected the

variables to display before running the test. To configure a test case to record chart data, see Generating 2D and 3D

chart data on page 957.

To display a 2D or 3D chart in the chart viewer:

1. After running the test, right-click the test run in the test navigator and selecting Open With > Chart.

Result

The chart opens in the chart viewer.

2. Click the toolbar buttons to select alternative chart types.

The available chart types depend on the type and number of variables that were recorded during the test.

3. If necessary, you can edit the way the data is displayed in the chart viewer.

Choose from:

◦ Click the Data tab to display the data values that were recorded during the test.

◦ Use the Outline view to hide or show data sets and change their display color.

◦ If the chart is a 3D chart, you can click and drag the chart to change the view angle.

◦ Click the Curve Definition button to redefine colors, axis settings and the chart type.

Note: These settings only affect the way the recorded data is displayed in the chart viewer.

It does not change the variable name and axis settings that were configured in the test case

editor.

◦ Click the Configure Chart button to access advanced graph display options.

Related information

Generating 2D and 3D chart data on page 957

Creating data pools on page 223

971

972

Chapter 7. Reference Guide
Use these additional topics to gain more knowledge about the product.

UI reference

HCL OneTest™ Embedded preferences
Use these preferences to change general settings and file locations for HCL OneTest™ Embedded for Eclipse IDE.

To access the Preferences, click Window > Preferences > HCL OneTest™ Embedded.

Installation directory

Specifies the directory in the filesystem where the product is installed. The product uses this path to

locate its own resource.

Verbose mode

Enables verbose output to the Console window. If you disable this option... (?)

Clear temporary intermediate files before running a component test

Enable this option to clear temporary intermediate files before a run. If you disable this option, new

results will be merged with the existing results in the report. (?)

Related information

Overview on page 14

Call graph preferences
Use these preferences to change how the call graph is displayed in HCL OneTest™ Embedded for Eclipse IDE.

To access the Call Graph Preferences, click Window > Preferences > OneTest Enbedded > Call Graph.

Call graph colors and styles

Use these preferences to specify the colors and styles used in the call graph. Click a color to display a

color picker.

Editor preferences
Use these preferences to change the behavior of the test case, test harness, and stub editors in HCL OneTest™

Embedded for Eclipse IDE.

To access the Editor Preferences, click Window > Preferences > HCL OneTest™ Embedded > Editors.

Editor colors and styles

Use these preferences to specify the colors and styles used in the call graph. Click a color to display a

color picker.

Chapter 7. Reference Guide

Display variable under test smart tooltip on check blocks

Select this option to display a tooltip over check blocks.

Display chart configuration section

Select this option to display the chart configuration section in the test case, test harness, and stub

editors.

Marker colors

Use these preferences to specify the colors used for error and warning markers in the test case, test

harness, and stub editors.

Diagram

Use these preferences to specify the colors used in the diagrams in the test case, test harness, and stub

editors.

Coverage Bars

Use these preferences to specify the colors used in the coverage bars that are displayed in the test

case, test harness, and stub editors.

Run Results

Use these preferences to specify how run results are displayed in the test case, test harness, and stub

editors.

C Syntax coloring preferences
Use these preferences to change the color schemes for C code in HCL OneTest™ Embedded for Eclipse IDE.

To access the C Syntax Coloring Preferences, click Window > Preferences > ..

Coloring styles

Select a style and specify a foreground color, a background color and font styles.

Sample

This area provides an example of C++ source code with the selected coloring styles.

Errors and warnings preferences
Use these preferences to change how errors and warnings are displayed in HCL OneTest™ Embedded for Eclipse IDE.

To access the Errors and Warnings Preferences, click Window > Preferences > > Errors and Warnings.

Message types

For each type of message in the list, specify whether to consider it an Error, a Warning or to Ignore the

message. Errors and warnings are logged in the Console.

Navigator preferences
Use these preferences to change the behavior of the project navigator in HCL OneTest™ Embedded for Eclipse IDE.

973

HCL® OneTest™ Embedded

974

To access the Navigator Preferences, click Window > Preferences > > Navigator.

Sort result files by ascending date

Select this option to sort the result files by date. If this option is disabled, the result files are sorted by

alphabetical order.

Report generation preferences
Use these preferences to change how reports are generated in HCL OneTest™ Embedded for Eclipse IDE.

To access the Report Generation Preferences, click Window > Preferences > > Report Generation.

XML Generation Options

Specify the XML version and XML encoding information for the XML header.

Open the report after generation

Select this option if you want the report to be automatically opened after it is generated.

Target deployment port preferences
Use these preferences to change how target deployment ports (TDP) are generated in HCL OneTest™ Embedded for

Eclipse IDE.

To access the Target Deployment Port Preferences, click Window > Preferences > > Target Deployment Port.

Default Target Deployment Port

Specify the target deployment port (TDP) that is selected by default when you create a project.

Search path

Specify a list of directories where TDPs are located. TDPs are searched in the specified order. Select a

directory and click Up or Down to change the search order.

Test generation preferences
Use these preferences to change how tests are generated in HCL OneTest™ Embedded for Eclipse IDE.

To access the Test Generation Preferences, click Window > Preferences > > Test Generation.

Initialize char array as a character string (ex: var="")

Select this option to initialize character arrays as character strings by default.

Default array size for empty array in function parameter

Specify the default empty array size.

When function parameter is pointer type:

Specify the whether the default test generation behavior when pointer types are encountered as

parameters of a function is to leave the parameter as a pointer or to instantiate the variable as a pointed

type.

Chapter 7. Reference Guide

Except for following type

Specify the types for which the previous setting does not apply.

HCL OneTest™ Embedded preferences in Eclipse

HCL OneTest™ Embedded

for Eclipse CDT

The HCL OneTest™ Embedded preferences in the Eclipse workbench allow you to configure settings for HCL

OneTest™ Embedded in Eclipse.

HCL OneTest™ Embedded preferences

The HCL OneTest™ Embedded preferences allow you to change the following settings:

• Binary Directory: Specifies the directory where HCL OneTest™ Embedded binaries are located.

• Default TDP: Specifies the default TDP that will be used in the Default.settings configuration when you enable

HCL OneTest™ Embedded in a C or C++ project.

• Verbose Mode: Enables detailed information of HCL OneTest™ Embedded components in the console during

execution.

• Delete intermediate files: Select this option to automatically delete previous intermediate files each time you

run a test.

Results Editor preferences

The Results Editor preferences allow you to change the appearance of your Test and Runtime Analysis reports in

Eclipse.

These preferences are identical to the corresponding preferences in the HCL OneTest™ Embedded user interface.

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

To access the HCL OneTest™ Embedded preferences in Eclipse:

975

HCL® OneTest™ Embedded

976

1. In Eclipse, select Window > Preferences.

2. HCL OneTest™ Embedded

In the Preferences window, expand HCL OneTest™ Embedded.

Related Topics

User interface preferences on page 1044 | |

Enable runtime analysis tools on page 68

Viewer preferences
Modify these preferences to change how report viewers are displayed in HCL OneTest™ Embedded for Eclipse IDE.

To access the Viewer Preferences, click Window > Preferences > > Viewers.

Common preferences for viewers

Use these preferences to specify the colors and styles that are used by all viewers. Click a color to

display a color picker.

Chart viewer colors and styles

Use these preferences to specify the colors and styles used in charts. Click a color to display a color

picker.

Code coverage viewer colors and styles

Use these preferences to specify the colors and styles used in code coverage reports. Click a color to

display a color picker.

Code review colors and styles

Use these preferences to specify the colors and styles used in code review reports. Click a color to

display a color picker.

Memory profiling colors and styles

Use these preferences to specify the colors and styles used in memory profiling reports. Click a color to

display a color picker.

Static metrics colors and styles

Use these preferences to specify the colors and styles used in static metrics reports. Click a color to

display a color picker.

Performance profiling colors and styles

Use these preferences to specify the colors and styles used in performance profiling reports. Click a

color to display a color picker.

Chapter 7. Reference Guide

Runtime Tracing colors and styles

Use these preferences to specify the colors and styles used in UML sequence diagrams displayed in the

runtime tracing viewer. Click a color to display a color picker.

Test report colors and styles

Use these preferences to specify the colors and styles used in test reports. Click a color to display a

color picker.

TDP configuration settings
Use the target deployment port (TDP) build settings to adapt the test harness to the target platform.

To access to the target deployment port build settings, right-click the project and select Properties > C Build >

Settings > Build TDP.

Target deployment port

Target deployment port

This setting allows you to override the target deployment port (TDP) of the entire configuration for the

selected element. Use this for example if you are mixing different languages or compilers within a single

project. Any child elements will use the default configuration settings from this target deployment port,

such as compilation flags. When you change the TDP within a configuration, the settings are overwritten

using the default settings of the new TDP.

Directory

Specifies the TDP directory name or relative path. By default, HCL OneTest™ Embedded searches for the

TDP directory in the directories that are declared in the project preferences.

Path

Indicates the location of the selected target deployment port.

Initial definition file

Points to the default .ini file in the TDP directory.

Source file language

Specifies the language of the TDP.

Object file extension

Specifies the default extension for object files produced with the current TDP.

Static library file extension

Specifies the file extension used for static library files.

Dynamic library file extension

Specifies the file extension used for dynamic library files.

977

HCL® OneTest™ Embedded

978

Binary file extension

Specifies the default extension for executable binaries produced with the current TDP (for

example: .exe).

Source file extension

Specifies the default extension for source files used with the current TDP.

Compiler options

Preprocessor flags

Specify any compilation flags that are to be sent to the compiler.

Compiler flags

Specify any additional command line options to be sent to the compiler.

Preprocessor macro definitions

Specify any macro definition that are to be sent to both the compiler preprocessor (if used) and the

Test Script Compilers. Several generation conditions must be separated by a comma ',' with no space.

You can use a comma inside a condition, preceded a backslash character. For example: semTake(x

\,y)=TestRTsemTake(x\,y),WIN32,_DEBUG

Include directories

Use this setting to specify include directories that are specific to the current TDP. Click the ... button

to create or modify a list of directories for included files when the include statement is encountered in

source code and test scripts. In the directory selection box, use the Up and Down buttons to indicate the

order in which the directories are searched.

Linker options

Linker flags

Specify any particular flags that are to be sent to the linker.

Libraries

Specify a list of object libraries to be linked to the generated executable. Type the command line option

as required by your linker. See the documentation provided with your development tool for the correct

syntax.

Library paths

Click the ... button to create or modify a list of directories for library link files. In the directory selection

box, use the Up and Down buttons to indicate the order in which the directories are searched.

Advanced

Output buffer size

Sets the size of the output buffer. A smaller output buffer can save memory when resources are limited.

A larger buffer improves performance. The default setting for the output buffer is 1024 bytes.

Chapter 7. Reference Guide

Time measurement

Selects whether to use a real-time Operating system clock or a Process or task clock for time

measurement, if both options are available in the current target deployment port. Otherwise, this setting

is ignored.

Multi-threaded application

When selected, specifies whether to protect target deployment port global variables against concurrent

access when you are working in a multithreaded environment such as Posix, Solaris or Windows™. This

can cause an increase in size of the TDP and an impact on performance; therefore, only select this

option when necessary.

Multi-process application

When selected, specifies whether to produce a different output file for each process in forked

applications.

Maximum number of threads

When the multithread option is enabled, this setting sets the maximum number threads that can be run

at the same time by the application.

Override compiler flags

By default, the TDP is compiled with the build compiler flags. Use this setting to override the build

compiler flags with specific flags for compiling the TDP.

Use source compiler flags

Select Yes to use the source build compiler flags to compile the test driver. Select No to use the default

TDP settings.

Link flags for library format (for library files only)

Link flags for generating the TDP as a shared library or DLL.

TDP output format

This setting specifies how the TDP is linked to the application. None: No TDP is generated. Use this

setting if the TDP is already included in another section of the application. Object file (.obj, .o): Default

setting. Use this setting if your application does not use shared libraries. Static library (.lib, .a): Use this

setting to link the TDP as a static library. Dynamic library (.dll, .so): Use this setting to link the TDP as a

dynamic library for most cases when shared libraries are involved.

Use of unloadable libraries

Use the setting if your application uses shared libraries that can be unloaded dynamically from memory.

See Unloadable libraries for details. None: The application does not dynamically unload libraries during

execution. This is an unloaded library: Select this if the selected node is a library node that can be

dynamically unloaded during execution. Uses unloaded libraries: Select this if the selected node is an

application or test node that can use unloadable libraries.

979

HCL® OneTest™ Embedded

980

Related reference

Build configuration settings on page 980

Related information

Target deployment port overview on page 17

Build configuration settings
Use the build configuration settings to change how the project is built in HCL OneTest™ Embedded for Eclipse IDE.

To access the build settings, right-click the project and select Properties > C Build > Settings > Build Settings.

General

Selective instrumentation

Build options

Specifies the runtime analysis options for the selected resource. This is also where you

enable the runtime analysis tools. See Enable runtime analysis tools on page 68.

Instrument inline methods

Extends instrumentation to inline methods.

Instrument included methods or functions

Extends instrumentation to included methods or functions.

Excluded files

Specifies a list of source files that are parsed during the run, but are not instrumented.

Click the ... button and use the Add and Remove buttons to select the files to be excluded.

Excluded directories

Specifies a list of directories containing source files that are parsed during the run, but are

not instrumented. Click the ... button and use the Add and Remove buttons to select the

directories to be excluded.

Instrumentor hides all warnings

Set this option to Yes to hide instrumentation warnings.

Snapshot

In some case, such as with applications that never terminate or when working with timing or memory-

sensitive targets, you might need to dump traces at specifics points in your code. See Generating SCI

Dumps for more information.

Chapter 7. Reference Guide

On function entry

Allows you to specify a list of function names, from your source code, that will dump

traces at the beginning of the function. Click ... and use Add and Remove to create a list of

function names.

On function return

Allows you to specify a list of function names, from your source code, that will dump

traces at the end of the function. Click ... and use Add and Remove to create a list of

function names.

On function call

Allows you to specify a list of function names, from your source code, that will dump

traces before the function is called. Click ... and use Add and Remove to create a list of

function names.

Static file storage

Depending on the runtime analysis feature, the product generates .tsf or .fdc temporary static data

files during source code instrumentation of the application under analysis.

Code coverage static file storage (.fdc)

These settings apply to code coverage .fdc static trace files:

• Build Directory: Select this option to use the current directory for all generated

files.

• Other Directory: Select this option to define a specific directory.

• Source Directory: Select this option to use the same directory as the source under

analysis.

• Use Single Temporary File (.fdc): By default, code coverage produces one .fdc

file for each instrumented source file. Select this option to use a single .fdc file

for all instrumented source files, and specify its location.

FDC directory or name

If the Use single temporary file (.fdc) option is selected in the previous setting, specify a

location for the .fdc file.

Memory profiling, performance profiling, runtime tracing static file storage (.tsf)

This setting applies to memory profiling, performance profiling and runtime tracing .tsf

static trace files.

• Build directory: Select this option to use the current directory for all generated files.

• Other directory: Select this option to define a specific directory.

• Source directory: Select this option to use the same directory as the source under

analysis.

981

HCL® OneTest™ Embedded

982

• Use single temporary file (.tsf): By default, memory profiling, performance

profiling and runtime tracing produce one .tsf file for each instrumented source

file. Select this option to use a single .tsf file for all instrumented source files, and

specify its location.

TSF directory or name

If the Use single temporary file (.tsf) option is selected in the previous setting, specify a

location for the .tsf file.

Advanced options

Identification header

Select this option to add an identification header to files generated by the instrumentation.

The header includes the command line used to generate the file, the version of the

product, the date and operating system information.

Application includes system files

By default, unused methods within a template are ignored by the instrumentation. Set this

option to Yes to analyze and instrument all template methods, even if they are not used.

Internal data allocation

Set this option to Yes if the application includes system files such as windows.h in

Windows™ or pthread.h in UNIX™.

Full template instrumentation

Select either Static declaration or Dynamic allocation as the memory allocation method

for storing intermediate variables in the instrumented source code.

Check internal data before use

This setting allows you to add command line options for the instrumentation. Normally,

this line should be left blank.

Use alternate checksum

Select Yes to calculate a more unambiguous checksum for .fdc and .tsf files. Select

No to remain compatible with existing .fdc and .tsf files. Before using this option, you

must delete existing .fdc and .tsf files, which will be recreated with the new checksum.

File keys are not changed by this option.

Additional instrumentor options

Set this option to Yes if you are experiencing crashes of the application when runtime

analysis features are engaged. This option improves compatibility but increases memory

usage.

Generate TPM files

Set this option to Yes if you want to generate metrics for the test process monitor.

Chapter 7. Reference Guide

Code Coverage

Instrumentation control

You can use the coverage type settings to declare various types of coverage. See Coverage levels on

page 73 for more information about these settings.

Coverage level functions

Select between function Entries, With exits, or None.

Coverage level calls

Select Yes or No to toggle call code coverage.

Coverage level blocks

Select the desired block code coverage type. You can combine, enable, or disable any of

these coverage types before running the application node. All coverage types selected for

instrumentation can be filtered out in the coverage viewer.

Exclude for loops

Select Yes to exclude for loops from instrumentation. Only while and do loops are

instrumented.

Coverage level conditions

Selects the condition level of code coverage to be included in the report:

• None: The coverage report ignores conditions.

• Basic: Only basic conditions are included in the coverage report.

• Modified (MC/DC): Only modified conditions are included in the coverage section

of the test report.

• Modified and Multiple: Both modified and multiple conditions are included in the

coverage report.

• Forced Modified (MC/DC): The report includes modified conditions where all

operators are replaced with bitwise operators.

• Forced Modified and Multiple: The report includes modified and multiple

conditions where all operators are replaced with bitwise operators.

Condition in expressions

Select Yes to consider relational operators in an expression (for example: y = (a>0)) as

conditions.

Bitwise as logical

Select Yes to instrument bitwise operators as logical when both operands are booleans.

Ternary coverage

When this option is selected, code coverage reports ternary expressions as statement

blocks.

983

HCL® OneTest™ Embedded

984

Information mode

This setting specifies the information modes to be used by code coverage.

• Default (Optimized for Code Size and Speed): This setting uses one byte per

branch to indicate branch coverage.

• Compact (Optimized for Memory): This setting uses one bit per branch. This

method saves target memory but uses more CPU time.

• Report Hit Count: This adds information about the number of times each branch

was executed. This method uses one integer per branch.

Excluded function calls

Specifies a list of functions to be excluded from the call coverage instrumentation

type, such as printf or fopen. Use the Add, Remove buttons specify the functions to be

excluded.

Not returning functions

Type the identifiers (not signatures) of the functions that do not return (functions that

execute a longjmp or exit).

Advanced options

Trace file name (.tio)

this allows you to specify a path and filename for the .tio dynamic coverage trace file.

Key ignore source file path

Identifies source files based only on the filename instead of the complete path. Use this

option to consolidate test results when a same file can be located in different paths. This

can be useful in some multi-user environments that use source control. If you use this

option, make sure that the source file names used by your application are unique.

User comment

This adds a comment to the code coverage report. This can be useful for identifying

reports produced under different configurations. To view the comment, click the a

magnifying glass symbol that is displayed at the top of your source code in the coverage

viewer.

Report summary

Select Yes to add the coverage summary to the summary text file of the selected node.

On-the-fly frequency dump

Specify the function call number after which the coverage results are updated dynamically

during execution. 0 means no update during execution.

Chapter 7. Reference Guide

Memory Profiling

Instrumentation control

You can specify the type of memory errors and warnings that you want to detect. See Memory profiling

errors on page 991 and Memory profiling warnings on page 993 for more information about these

settings.

Detect File in Use (FIU)

When the application exits, this option reports any files left open.

Detect Memory in use (MIU)

When the application exits, this option reports allocated memory that is still referenced.

Free Invalid Memory (FIM)

This option activates the detection of invalid free memory instructions.

Detect Signal (SIG)

This option indicates the signal number received by the application forcing it to exit.

Detect Freeing Freed Memory (FFM) and Detect Free Memory Write (FMWL)

Select Yes to activate detection of these errors.

Free queue length (blocks)

Specifies the number of memory blocks that are kept free.

Free queue size (bytes)

Specifies the total buffer size for free queue blocks.

Largest free queue block size (bytes)

Specifies the size of the largest block to be kept in the free queue.

Detect Array Bounds Write (ABWL)

Select Yes to activate detection of ABWL errors.

Red zone length (bytes)

Specifies the number of bytes added by Memory Profiling around the memory range for

bounds detection.

Number of functions in call stack

Specifies the maximum number of functions reported from the end of the CPU call stack.

The default value is 6.

Only show memory leaks with call stack

Select this option to only record memory leaks that are associated with a call stack.

Memory allocations that occurred before the application started do not have a call stack

and are not included in the Memory Profiling report.

985

HCL® OneTest™ Embedded

986

Line number link

Select Statement to link the line number in the report to the corresponding allocation or

free statement in the function. Select Function to link only to the function entry and to

improve performance.

Only show new memory leaks in each dump

In multi-dump report, Memory leaks (MLK) and potential leaks (MPK) are only reported

once.

Advanced options

Trace File Name (.tpf)

This setting allows you to specify a filename for the generated .tpf trace file.

Exclude block tracking before init

Disables memory profiling for any memory blocks allocated before the first execution of

instrumented code. Use this option to prevent crashes when the system uses memory

allocations that cannot be tracked.

Excluded global variables

Specifies a list of global variables that are not to be inspected for memory leaks. This

option can be useful to save time and instrumentation overhead on trusted code. Use the

Add and Remove buttons to add and remove global variables.

Exclude variables from directories

Specifies a list of directories from which any variables found in files are not to be

inspected for memory leaks.

Break on error

Use this option to break the execution when an error is encountered. The break point must

be set to priv_check_failed in debug mode.

ABWL and FMWL check frequency

Use this to check for ABWL and FMWL errors:

• Each time the memory is dumped (by default).

• Each time a manual check macro is encountered in the code.

• Each function return.

These checks can be performed either on all memory blocks or only a selection

of memory blocks. See Checking for ABWL and FMWL errors on page 88 for more

information.

Chapter 7. Reference Guide

Preserve block content

Set this setting to Yes to preserve the content of memory blocks freed by the application.

Use this setting to avoid application crashes when memory profiling is engaged. When this

setting is enable, reads to freed blocks of memory are no longer detected.

Application Profiling

Stack size

You can configure the parameters to calculate the worst stack size.

Trace file name (.tzf)

This allows you to specify a path and filename for the .tzf dynamic stack trace file.

Measure Max Stack Used

This allows you to enable the Worst Stack Size feature. The default value is yes.

Report template

You can set your own report template. The default template id ccreport.template.

Debug Reports

You can specify the type errors and warnings that you want to detect.

Display path using biggest stack

Displays the called stack when the biggest stack size is detected during the execution.

The selected number is the displayed called stack in the report.

Detect File In Use (FIU)

When the application exits, this option reports any open files.

Detect Signal (SIG)

This option indicates the signal number received by the application that caused to exit.

Performance Profiling

Trace file name (.tqf)

This box allows you to specify a filename for the generated .tqf trace file for performance profiling.

Compute F max and F+D max time

Indicate whether you want the maximum execution time for each function and descendants to be

calculated, or not, or if it must be calculated with the Worst Case Execution Time.

Coupling

Control Coupling

You can specify parameter dedicated to the Control Coupling coverage.

987

HCL® OneTest™ Embedded

988

Trace File name (.tgf)

Set the name of the trace file dedicated to the Control Coupling. It is the default name of the test with

the extension .tgf.

Exclude libraries

Include or exclude the Control Couplings ending with a function call that is not part of the application

(this option set the option -noccext of the report generator if it is set to yes).

Report template

You can change the template of the report generator. By default the template is ccreport.template.

Runtime Tracing

Instrumentation control

Runtime Tracing file name (.tdf)

This allows you to force a filename and path for the dynamic .tdf file. By default, the

.tdf carries the name of the application node.

Show data classes

When this option is disabled, structures or classes that do not contain methods are

excluded from instrumentation. Disable this option to reduce instrumentation overhead.

Trace control

Split trace file

When you use several runtime analysis tools together, the executable produces a

multiplexed trace file, containing the output data for each tool. Use this option to split the

generated atlout.spt output trace file into multiple files.

Maximum size (Kbytes)

This specifies the maximum size for a split .tdf file. When this size is reached, a new

split .tdf file is created.

File name prefix:

By default, split files are named as att_<number>.tdf, where <number> is a 4-digit

sequence number. This setting allows you to replace the att_ prefix with the prefix of

your choice.

Automatic loop detection

Loop detection simplifies UML sequence diagrams by summarizing repeating traces into a

loop symbol. Loops are an extension to the UML sequence diagram standard and are not

supported by UML.

Additional options

This setting allows you to add command line options. Normally, this line should be left

blank.

Chapter 7. Reference Guide

Display maximum call level

When selected, the target deployment port records the highest level attained by the call

stack during the trace. This information is displayed at the end of the UML sequence

diagram in the runtime tracing viewer as Maximum calling level reached.

Runtime options

Disable on-the-fly mode

When selected, this setting stops on-the-fly updating of the dynamic .tdf file. This option

is primarily for target deployment ports that use printf output.

Runtime tracing buffer and Partial Runtime Tracing flush

See Advanced runtime tracing on page 102 for more information about these settings.

Maximum buffer size (events)

The maximum number of events recorded in the buffer before it is flushed.

User signal action

Specify an action to be performed when a user signal is detected:

• No action: nothing.

• Flush call stack: the call stack is flushed to the trace file.

• Runtime tracing on/off: toggles the runtime tracing feature on or off.

Record and display time stamp

This setting adds timestamp information to each element in the UML sequence diagram

generated by runtime tracing.

Record and display heap size

This setting enables the heap size bar in the UML sequence diagram generated by runtime

tracing.

Record and display thread info

This setting enables the Thread Bar in the UML sequence diagram generated by runtime

tracing.

Static Metrics

One level metrics

By default, .met static metric files are produced for source files as well as all dependency files that are

found when parsing the source code. Set to Yes to restrict the calculation of static metrics only to the

source files displayed in the navigator.

Analyzed directories

This setting allows you to restrict the generation of .met metric files only to files which are located in

the specified directories.

989

HCL® OneTest™ Embedded

990

Generate metrics in source directories

By default, all .met files are generated in the project directory, and use the same name as the source

file. Select Yes on this setting to compute metrics for source files that have the same name but are

located in different directories. In this case, each .met is generated in the source directory of each file.

Additional options

Use this setting to specify extra command line options. In most cases, this should be empty.

Code Review

Rule configuration

This setting specifies the file containing the rules for the code review tool. Click Browse ... to select

another rule configuration file. Click the Edit button to edit the rule configuration or to create a new rule

configuration. See Configuring code review rules on page 110 for more information.

Additional included system directories

This setting specifies system include directories that are to be ignored during the code review.

Review included system files

Select Yes to extend code review to system files that are #included in the source files.

Naming script file

This setting allows you to specify a perl script that can check your own naming rules.

Include files

Specify a list of files to preinclude. This is similar to the -include=<files> option in gcc.

Display errors/warnings

Specify the maximum number of errors and warnings that you want to display in the report. By default,

All errors and warnings are displayed.

Related reference

TDP configuration settings on page 977

Related information

Target deployment port overview on page 17

Data pool editor reference
The data pool editor enables you to link a data pool to a CSV file located in the workspace or in the file system.

Select

Click this button to select the CSV file that is referred to by the current data pool.

Chapter 7. Reference Guide

Import

Character set

Specify the character set used to generate the CSV file.

Language

Specify the locale used to generate the CSV file. This defines the characters used to note

decimals or thousands.

First row as column names

Select this option to use the first row as titles for the columns. Test data starts on the

second row.

First row

Specify the first row to use for test data.

Activate line range

Select this option to limit the number of rows used for test data. When selected, use

Range row count to specify the number of rows to use.

Text delimiter

Specify whether to use a quote or a double-quote for text.

Separator options

Specify one or several characters to use as a column separator. If you select Other, type a character to

use as a separator.

UML sequence diagram reference
The runtime tracing viewer produces Unified Modeling Language (UML) sequence diagrams of the execution of your

source code.

A sequence diagram is a UML diagram that provides a view of the chronological sequence of messages between

instances (objects or classifier roles) that work together in an interaction or interaction instance. A sequence

diagram consists of a group of instances (represented by lifelines) and the messages that they exchange during the

interaction. You line up instances participating in the interaction in any order from left to right, and then you position

the messages that they exchange in sequential order from top to bottom. Activations sometimes appear on the

lifelines.

A sequence diagram belongs to an interaction in a collaboration or an interaction instance in a collaboration instance.

Memory profiling errors
Error messages indicate invalid program behavior. These are serious issues that you should address before you

check in code.

991

HCL® OneTest™ Embedded

992

Freeing Freed Memory (FFM)

An FFM message indicates that the program is trying to free memory that has previously been freed.

This message can occur when one function frees the memory, but a data structure retains a pointer to that memory

and later a different function tries to free the same memory. This message can also occur if the heap is corrupted.

Memory profiling maintains a free queue, whose role is to actually delay memory free calls in order to compare with

upcoming free calls. The length of the delay depends on the Free queue length and Free queue threshold, which are

specified in the memory profiling configuration settings. A large deferred free queue length and threshold increases

the chances of catching FFM errors long after the block has been freed. A smaller deferred free queue length and

threshold limits the amount of memory on the deferred free queue, taking up less memory at run time but providing a

lower level of error detection.

Freeing Unallocated Memory (FUM)

An FUM message indicates that the program is trying to free unallocated memory. This message can occur when the

memory is not yours to free. In addition, trying to free the following types of memory causes a FUM error:

• Memory on the stack

• Program code and data sections

Freeing Invalid Memory (FIM)

An FIM message indicates that the program is trying to free allocated memory with the wrong instruction.

This message can occur when the memory free instruction mismatches the memory allocation instruction. For

example, a FIM occurs when memory is freed with a free instruction when it was allocated with a new instruction.

Late Detect Array Bounds Write (ABWL)

An ABWL message indicates that the program wrote a value before the beginning or after the end of an allocated

block of memory. HCL OneTest™ Embedded checks for ABWL errors whenever free() or dump() routines are called, or

whenever the free queue is actually flushed. This message can occur in the following situations:

• An array is too small. For example, you fail to account for the terminating NULL in a string.

• You forgot to multiply by sizeof(type) when you allocate an array of objects.

• Code uses an array index that is too large or is negative.

• Fail to NULL terminate a string.

• Code is off by one when copying elements up or down an array.

Memory profiling actually allocates a larger block by adding a red zone at the beginning and end of each allocated

block of memory in the program. These red zones are monitored to detect ABWL errors. Increasing the size of the

red zone helps catch bound errors before or beyond the block, at the expense of increased memory usage. You can

change the red zone size in the memory profiling configuration settings. The ABWL error does not apply to local

arrays allocated on the stack.

Chapter 7. Reference Guide

Note: Unlike UNICOM PurifyPlus™, the ABWL error in the HCL OneTest™ Embedded tool only applies to heap

memory zones and not to global or local tables.

Late Detect Free Memory Write (FMWL)

An FMWL message indicates that the program wrote to memory that was freed. This message can occur when in the

following situations:

• There is a dangling pointer to a block of memory that has already been freed (caused by retaining the pointer

too long or freeing the memory too soon).

• Index is far off the end of a valid block.

• A completely random pointer happens to fall within a freed block of memory.

Memory Profiling maintains a free queue, whose role is to actually delay memory free calls in order to compare with

upcoming free calls. The length of the delay depends on the Free queue length and Free queue threshold Memory

Profiling Settings. A large deferred free queue length and threshold increases the chances of catching FMWL errors. A

smaller deferred free queue length and threshold limits the amount of memory on the deferred free queue, taking up

less memory at run time but providing a lower level of error detection.

Memory Allocation Failure (MAF)

An MAF message indicates that a memory allocation call failed. This message typically indicates that the program

ran out of paging file space for a heap to grow. This message can also occur when a non-spreadable heap is

saturated. After displaying the MAF message, a memory allocation call returns NULL in the normal manner. Ideally,

programs should handle allocation failures.

Core Dump (COR)

A COR message indicates that the program generated a UNIX™ core dump. This message can only occur when the

program is running on a UNIX™ target platform.

Related reference

Memory profiling warnings on page 993

Build configuration settings on page 980

Related information

Memory profiling overview on page 87

Memory profiling warnings
Warning messages indicate a situation in which the program might not fail immediately, but might later fail

sporadically, often without any apparent reason and with unexpected results. Warning messages often pinpoint

serious issues you should investigate before you check in code.

993

HCL® OneTest™ Embedded

994

Memory in Use (MIU)

An MIU message indicates heap allocations to which the program has a pointer.

Note: On exit, small amounts of memory in use in programs that run for a short time are not significant.

However, you should fix large amounts of memory in use in long running programs to avoid out-of-memory

problems.

Memory profiling generates a list of memory blocks in use when you activate the MIU Memory In Use option in the

memory profiling configuration settings.

Late Detect Array Bounds Write (ABWL)

An MLK warning describes leaked heap memory. There are no pointers to this block or to anywhere within this block.

Memory Profiling generates a list of leaked memory blocks when you activate the MLK Memory Leak option in the

Memory Profiling Settings.

This message can occur when you allocate memory locally in some function and exit the function without first freeing

the memory. This message can also occur when the last pointer referencing a block of memory is cleared, changed,

or goes out of scope. If the section of the program where the memory is allocated and leaked is executed repeatedly,

you might eventually run out of swap space, causing slow downs and crashes. This is a serious problem for long-

running, interactive programs. To track memory leaks, examine the allocation location call stack where the memory

was allocated and determine where it should have been freed.

You can ignore memory leaks that do not have a call stack, for memory allocations that occur before the application

starts by changing the following configuration setting: Runtime Analysis > Memory Profiling > Instrumentation

control > Only show memory leaks with call stack.

Memory Potential Leak (MPK)

An MPK warning describes heap memory that might leak. There are no pointers to the start of the block, but there

appear to be pointers pointing towards somewhere within the block. In order to free this memory, the program must

subtract an offset from the pointer to the interior of the block. In general, you should consider a potential leak to be an

actual leak until you can prove that it is not by identifying the code that performs this subtraction.

Memory in use can appear as an MPK if the pointer returned by some allocation function is offset. This message

can also occur when you reference a substring within a large string. In rare cases, leaked memory might cause

an MPK warning if some non-pointer integer within the program space, when interpreted as a pointer, points to an

otherwise leaked block of memory. Inspection of the code should easily differentiate between different causes of

MPK messages.

Memory profiling generates a list of potentially leaked memory blocks when you activate the MPK Memory Potential

Leak option in the memory profiling configuration settings.

Chapter 7. Reference Guide

File in Use (FIU)

An FIU message indicates a file that was opened, but never closed. An FIU message can indicate that the program

has a resource leak.

Memory profiling generates a list of files in use when you activate the FIU Files In Use option in the memory profiling

configuration settings.

Signal Handled (SIG)

A SIG message indicates that a system signal has been received.

Memory profiling generates a list of received signals when you activate the SIG Signal Handled option in the memory

profiling configuration settings.

Related reference

Memory profiling errors on page 991

Build configuration settings on page 980

Related information

Memory profiling overview on page 87

Command line reference
HCL OneTest™ Embedded was designed ground-up to provide seamless integration with your development process.

To achieve this versatility, the entire set of features are available as command line tools.

In most cases when a CLI is necessary, the easiest method is to develop, set up and configure your project in the

graphical user interface and to use the studio command line to launch the GUI and run the corresponding project

node.

When not using the GUI to execute a node, you must create source files that can execute HCL OneTest™ Embedded

tests or acquire runtime analysis data without conflicting with the your native compiler and linker. In both cases – that

is, regardless of whether you are attempting to execute a Test or Application node – the native compiler and linker do

the true work.

For Test nodes, the following commands convert HCL OneTest™ Embedded test scripts into source files supported by

your native compiler and linker:

• attolpreproC for the C language

• atoprepro for the C++ language

• attolpreproADA for the Ada language

995

HCL® OneTest™ Embedded

996

For Runtime Analysis, the primary choice is whether or not you wish to perform source code insertion (SCI) as an

independent activity or as part of the compilation and linkage process. Of course, if no runtime analysis is required,

source code insertion is unnecessary and should not be performed. To simply perform source code insertion, use the

binaries:

• attolcc1 for the C language

• attolccp or attolcc4 for the C++ language

• attolada for the Ada language

However, if the user would like compilation and linkage to immediately follow source code insertion, use the binaries:

• attolcc for the C and C++ language

• inclusion of the javic.jar library, and calls to javic.jar classes, as part of an ant-facilitated build process

The following sections provide details about the most common use cases.

To learn about See

Launching the GUI with the studio command and running a

node from the command line

Running a Node from the Command Line on

page 996

Preparing your environment for command line usage Setting Environment Variables on page 734

Code coverage, runtime tracing, memory and performance

profiling from the command line

Performing runtime analysis on C or C++ source code

on page 998

Testing C, C++ and Ada source code components from the

command line

Performing Component Testing for C, Ada and C++ on

page 999

Testing message-based systems from the command line Using System Testing to test message-based systems

and subsystems written in C on page 999

Using the Command Line Interface through a set of exam­

ples

Command Line Examples on page 1000

Related Topics

Using the Graphical User Interface on page 689 | Automated Testing | Runtime Analysis on page 335

Running a Studio Node from the Command line interface

This feature applies to HCL OneTest™ Embedded Studio only.

Chapter 7. Reference Guide

Although the product contains a full series of command line tools, it is usually much easier to create and configure

your runtime analysis specifications inside the graphical user interface (GUI). The CLI would then be used to simply

launch the GUI with a project or project node as a parameter.

By doing this, you combine the ease and simplicity of the GUI with the ability to execute project nodes from a CLI.

Note: This functionality can be used to execute any node in a project, including group nodes, application

nodes, test nodes or the entire project. You can also run your tests from the command line interface.

An HTML output option produces a set of HTML reports in a specified directory. The output is the same as exporting

to HTML from the original reports. With this option, it is not necessary to open the GUI to view the reports.

• To run a specific node from a command line:

1. Set up and configure your project in the GUI.

2. Save your project and close the GUI.

3. Type the following command:

studio -r <node>.{[.<node>]} <project_file> [-html <directory>]

where:

• <node> is the node to be executed.

• <project> is the .rtp project file.

• <directory> is the output directory for the optional HTML output.

The <node> hierarchy must be specified from the highest node in the project (excluding the actual project node) to the

target node to be executed, with periods ('.') separating each item:

<node>{[. <node>]}

Example: The following command opens the project.rtp project in the GUI, and runs the app2 application

node, located in group1 of the sub-project subproject1:

studio -r subproject1.group1.app2 project.rtp -html project/output

• To run an existing test in an headless mode, use the test launcher TestRT_test. Run the testrt_test -help

command to have the list of options that you can use to execute your test. You get the following usage and

list of options:

testrt_test <launcher options> <instrum options> --<settings> <testScriptFile> <source files> -I<include
 directory> -D<macro> [-- <cflags>] [-CPPFLAGS- <CPPFLAGS>] [-PPFLAGS- <PPFLAGS>] [-LDFLAGS- <ldflags>]

Related Topics

997

HCL® OneTest™ Embedded

998

Graphical User Interface - studio on page 1088

Using Command line Runtime Analysis for C or C++

Command Line Interface

The runtime analysis tools for C and C++ include:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

These features use Source Code Insertion (SCI) technology. When analyzing C and C++ code, the easiest way to

implement SCI features from the command line is to use the C and C++ Instrumentation Launcher.

The Instrumentation Launcher is designed to fit directly into your compilation sequence; simply add the attolcc

command in front of your usual compilation or link command line.

Note The attolcc binary is located in the /cmd directory of the applicable Target Deployment Port.

To perform runtime analysis on C or C++ source code:

1. First, set up the necessary environment variables. See Setting Environment Variables on page 734.

2. Edit your usual makefile with the following command line:

attolcc [-options] [--settings] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke to build your application.

Examples:

attolcc -- cc -I../include -o appli appli.c bibli.c -lm

attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c -lm

3. After execution of your application, in order to process SCI dump information (i.e. the runtime analysis

results), you need to separate the single output file into separate, feature-specific, result files. See Splitting the

SCI Dump File on page 1011.

4. Finally, launch the Graphical User Interface to view the test reports. See Opening Reports from the Command

Line on page 1012.

Related Topics

Chapter 7. Reference Guide

Runtime Analysis on page 335 | Source code instrumentation overview on page 16 | C and C++ Instrumentation

Launcher - attolcc on page 1101

Using Command line Component Testing for C, Ada and C++

Command Line Interface

Use Component Testing for C and Ada and Component Testing for C++ to test individual components of your C, C++

and Ada source code.

To perform component testing on C, C++ or Ada source code:

1. First, set up the necessary environment variables. See Setting Environment Variables on page 734.

2. Generate a set of test script templates based on your source files by using the Source Code Parser. See

corresponding Source Code Parser command line section in the Reference section.

3. Use the generated .ptu, .otc or .otd templates to write a test script. See the Reference section for test script

syntax.

4. If you are using an .otc Contract Check script, set up an options.h header file. See Preparing an Options

Header File on page 1004.

5. Compile the generated test harness source file. See Compiling the Test Harness on page 1008

6. If you are using any of the runtime analysis tools, instrument and compile the source code. See Instrumenting

and Compiling the Source Code on page 1005.

Note: If not, simply compile your source code with your usual compiler.

7. Set up the TDP configuration file, called product.h. See Preparing a Products Header File on page 1005.

8. Compile the TDP Library. See Compiling the TDP Library on page 1006.

9. Link the compiled files together to create an executable test binary. See Linking the Application on

page 1008.

10. Execute the test binary. See Running the Test Harness or Application on page 1009.

11. After execution, to obtain the final test results, as well as any SCI dump information, you need to separate the

output file into separate result files. See Splitting the SCI Dump File on page 1011.

12. Run the Report Generator to produce a test report. See the Reference section.

13. Finally, launch the Graphical User Interface to view the test reports. See Opening Reports from the Command

Line on page 1012.

Related Topics

Using the Command Line Interface on page 995|

Using Command line System Testing for C

Command Line Interface

Use System Testing to test message-based systems and subsystems written in C.

999

HCL® OneTest™ Embedded

1000

To perform message based testing on a system:

1. First, set up the necessary environment variables. See Setting Environment Variables on page 734.

2. Write a System Testing .pts test script. See System Testing language reference on page 926.

3. Write a System Testing .spv supervisor script. See System Testing language reference on page 926.

Note Manually created supervisor scripts may be overwritten by the HCL OneTest™ Embedded graphical user

interface.

1. Compile the generated test harness source file. See Compiling the Test Harness on page 1008.

2. If you are using any of the runtime analysis tools, instrument and compile the source code. See Instrumenting

and Compiling the Source Code on page 1005.

Note: If not, simply compile your source code with your usual compiler.

3. Set up the TDP configuration file, called product.h. See Preparing a Products Header File on page 1005.

4. Compile the TDP Library. See Compiling the TDP Library on page 1006.

5. Link the compiled files together to create an executable test binary. See Linking the Application on

page 1008.

6. Ensure that the System Testing agents are running on all remote target hosts. See Installing System Testing

Agents on page 619.

7. Run the supervisor script on the supervisor machine (the machine running HCL OneTest™ Embedded) with the

following command:

atsspv <supervisor.spv>

where supervisor is the name of the .spv supervisor script.

8. Run theSystem Testing Report Generatorto produce a test report. See System Testing Report Generator -

atsmerge on page 1145.

9. Finally, launch theGraphical User Interfaceto view the test reports. See Opening Reports from the Command

Line on page 1012.

Related Topics

Command Line Interface on page 995 | About System Testing for C on page 618 | System Testing Supervisor -

atsspv on page 1142 | System Testing Report Generator - atsmerge on page 1145

Command line examples

Command Line Interface

This section describes an example of using HCL OneTest™ Embedded Runtime Analysis tools through the Command

Line Interface:

Note This example is for UNIX platforms only.

Chapter 7. Reference Guide

This example demonstrates using Runtime Analysis tools through the attolcc Instrumentation Launcher. The example

application is the Apache Web Server, which is widely available for most platforms.

Additionally, the Apache Web Server is a multi-process, multi-tasking application written in C where particular

attention must be paid to tracking memory leaks.

To prepare for the example:

1. Download the apache_1.3.37.tar.gz archive of the Apache web server source code from http://

www.apache.org/dist/httpd/

2. Copy the archive file to the directory where you will perform the tests (for example, /projects/Apache_Test)

and untar the archive:

cp /projects/download/apache_1.3.37.tar.gz .
tar zxvf apache_1.3.37.tar.gz
cd apache_1.3.37

3. To set up the HCL OneTest™ Embedded environment, enter the following command:

. <install_dir>/TestRealTime/testrtinit.sh

where <install_dir> is the installation directory of the product.

See the Installation overview section for information about setting up and starting the product.

Compiling the application with the Runtime Analysis features:

1. To configure the Apache release, enter the following command:

./configure --prefix=`pwd`

2. To compile the Apache server with instrumentation, enter the following commands:

REP=`pwd`
make -C src/main gen_test_char
make CC="attolcc -mempro -perfpro -trace -proc=ret -block=l -keep --atl_multi_process=1
 --atl_traces_file=$REP/atlout.spt -- gcc"

The application is compiled with the following options:

• ◦ Memory Profiling instrumentation enabled

◦ Performance Profiling instrumentation enabled

◦ Runtime Tracing instrumentation enabled

◦ Instrumentation of procedure inputs, outputs, and terminal instructions

1001

http://www.apache.org/dist/httpd/
http://www.apache.org/dist/httpd/

HCL® OneTest™ Embedded

1002

◦ Instrumentation of simple, implicit and logical blocks (loops)

◦ Keep instrumented files

◦ Multi-process support

To install the Apache server, type the following command:

make install

A message indicates that you have successfully built and installed the Apache 1.3 HTTP server.

To run the application and view runtime analysis results:

1. Optionally, edit the configuration file apache_1.3.37/conf/httpd.conf.

2. Enter the following command to start the Apache server:

 /projects/Apache_Test/apache_1.3.37/bin/apachectl start

3. Start a web browser on port 8080 (see the httpd.conf file), type the following command:

firefox <IP Address>:8080

where <IP Address> is the IP address of the machine hosting the Apache server.

To stop the Apache server, type the following command:

 /projects/Apache_Test/apache_1.3.37/bin/apachectl stop

To split the results, type the following command:

atlsplit *.spt

To start the HCL OneTest™ Embedded GUI to view the results, type the following command:

studio `find . -name "*.fdc"` `find . -name "*.tsf"` *.tio *.tpf *.tqf *.tdf

Related Topics

Command Line Runtime Analysis for C and C++ on page 998 | Command Line Interface on page 995

Setting Environment Variables

The command line interface (CLI) tools require several environment variables to be set.

These variables determine, for example, the Target Deployment Port (TDP) that you are going to use. The available

TDPs are located in the product installation directory, under targets. Each TDP is contained in its own sub-directory.

Prior to running any of the CLI tools, the following environment variables must be set:

Chapter 7. Reference Guide

• TESTRTDIR indicates the installation directory of the product

• ATLTGT and ATUTGT specify the location of the current TDP: $TESTRTDIR/targets/ <tdp>, where <tdp> is the

name of the TDP.

• PATH must include an entry to $TESTRTDIR/bin/ <platform> / <os>, where <platform> is the hardware

platform and <os> is the current operating system.

You must also add the product installation bin directory to your PATH.

Note Some command-line tools may require additional environment variables. See the pages dedicated to each

command in Reference section of the help.

Most of these environment variables are set during installation of the product. Under Linux, use the testrtinit.sh script

to set these variables. See the Reference on page 1016 section for more information about these scripts.

Automated Testing

If you are using Component Testing or System Testing features, the following additional environment variables must

be set:

• ATUDIRfor Component Testing, points to$TESTRTDIR/lib

• ATS_DIR, for System Testing, points to$TESTRTDIR/bin/ <platform> / <os>, where<platform>is the hardware

platform and<os>is the current operating system.

Library Paths

UNIX platforms require the following additional environment variable:

• On Solaris and Linux platforms: LD_LIBRARY_PATHpoints to$TESTRTDIR/lib/ <platform> / <os>

• On HP-UX platforms:SHLIB_PATHpoints to$TESTRTDIR/lib/ <platform> / <os>

• On AIX platforms: LIB_PATH points to $TESTRTDIR/lib/ <platform> / <os>

where <platform> is the hardware platform and <os> is the current operating system.

Example

The following example shows how to set these variables for HCL OneTest™ Embedded with a sh shell on a Suse Linux

system. The selected Target Deployment Port is clinuxgnu .

TESTRTDIR=/opt/HCL OneTest™ Embedded/TestRealTime.v2002R2

ATCDIR=$TESTRTDIR/bin/intel/linux_suse

ATUDIR=$TESTRTDIR/lib

1003

HCL® OneTest™ Embedded

1004

ATS_DIR=$TESTRTDIR/bin/intel/linux_suse

ATLTGT=$TESTRTDIR/targets/clinuxgnu

ATUTGT=$TESTRTDIR/targets/clinuxgnu

LD_LIBRARY_PATH=$TESTRTDIR/lib/intel/linux_suse

PATH=$TESTRTDIR/bin/intel/linux_suse:$PATH

export TESTRTDIR

export ATCDIR

export ATUDIR

export ATS_DIR

export ATLTGT

export ATUTGT

export LD_LIBRARY_PATH

export PATH

Preparing an Options Header File

Command Line Interface

This step is necessary if you are using:

• System Testing for C

• or Testing component for C++

Use attolcc instrumentor launcher to create an options.h file and compile the generated source files.

To create the options.h file:

From the attolcc launcher, type the following command:

attolcc -otc=<mycontract.otc> <options> <settings> -- $CC $CFLAGS $<

<options> and <settings> are used to generate the content of the options.h file.

Related Topics

Preparing a Products Header File on page 1005 | Command Line Component Testing for C, Ada and C++ on

page 999 | Command Line System Testing for C on page 999

Chapter 7. Reference Guide

Preparing a products header file

Command Line Interface

Before you can compile the TDP library source files, you must set up a header file named products.h for C and C++.

Usually this file is generated by the Instrumentation Launcher (attolcc) and contains the options that describe how the

TDP library files are to be compiled.

If you instrument your application using the command line, you need to produce the file before instrumenting. To set

up a products header file, use the following command line:

attolcc -env_ATL_NO_TDP_COMPILE=1 -force_tdp_cc [--ATUMODE] [--ATOMODE] [--ATSMODE] <coverage options>

[-trace] [-mempro] [-perpro]

Where:

• -env_ATL_NO_TDP_COMPILE=1 -force_tdp_cc are mandatory to force the generation of products.h without

compiling

• Choose option –ATUMODE, --ATOMODE or –ATSMODE if you use runtime analysis with respectively unit test,

object test or system test. Use none of them is you use runtime analysis is standalone mode.

• Coverage options and the following options, see C and C++ Instrumentor on page 1110

Note: Type attolcc --help to list a comprehensive list of options, including those of the C and C++

Instrumentor (attolccp or attolcc4 and attolcc1), for use with the instrumentation launcher.

For example:

attolcc -env_ATL_NO_TDP_COMPILE=1 -force_tdp_cc --ATUMODE -pr=ret -bl=l -trace -mempro -perpro

This command line generates products.h for unit test with coverage, trace and performance profiling.

Related Topics

Preparing an Options Header File on page 1004 | C and C++ Instrumentation Launcher - attolcc or attolcc4 on

page 1101 | C and C++ Instrumentor - attolcc1 and attolccp on page 1110

Instrumenting and Compiling the Source Code

Command Line Interface

The runtime analysis tools (Memory Profiling, Performance Profiling, Code Coverage and Runtime Tracing) as well as

Component Testing for C++ Contract Check all use SCI instrumentation technology to insert analysis and SCI dump

routines into your source code.

Requirements

Before compiling an SCI-instrumented source file, you must make sure that:

1005

HCL® OneTest™ Embedded

1006

• A working C, Ada or C++ compiler is installed on your system

• If you use Component Testing for C++, you have prepared a valid options.h file on page 1004

• If you compile on a target different from the host where the generated file has been produced, the

instrumented file must have been produced using option -NOPATH, and the sub-directory lib of the selected

Target Deployment Port directory must be copied onto the target.

There are two alternatives to instrument and compile your source code:

• Using the Instrumentation Launcher in your standard makefile

• Using the Instrumentor and Compiler separately.

Instrumentation Launcher

The Instrumentation Launcher replaces your actual compiler command in your makefiles. This launcher transparently

takes care of source code preprocessing, instrumentation and compiling.

See the reference section:

• C and C++ Instrumentation Launcher - attolcc on page 1101

Instrumentation and Compilation

Alternatively, you can use the actual Instrumentor command line tools to instrument the source files.

See the reference section:

• C and C++ Instrumentor - attolcc1, attolccp or attolcc4 on page 1110

• Ada Instrumentor - attolada on page 1123

If you are compiling on a different target, you must copy the TDP /lib directory over to that target.

Add to the include search path the /lib sub-directory that you have copied onto the target. In C and C++, use the -I

compiler option.

After this, simply compile the instrumented source file with your compiler.

Compiling the TDP Library

Command Line Interface

Before you can link your test harness or your instrumented application, you must compile the Target Deployment Port

library. This section describes how to do this.

Chapter 7. Reference Guide

Requirements

To compile the Target Deployment Port library, make sure that:

• A working C or C++ Test Script Compiler is installed on your system

• You have prepared a valid Products file on page 1005

Compilation

Depending on the language of your source file:

• For C: compile the TP.c file

• For C++: compile the TP.cpp file

• For Ada: compile the contents of the /lib directory

Do not forget to add to the include search path the directory where the products.h file is located (usually with option -I

or /I, depending on the compiler).

Configuration Settings

A wide variety of compilation flags can be used by the command line tools, allowing you to select sub-components

of the application under test. These flags are equivalent to the Test Configuration Settings dialog box of the graphical

user interface and are covered in the Reference on page 1016 section.

Default settings are contained in the following Perl script. You can use this file to define your own customized

configuration settings.

<InstallDir>/lib/scripts/BatchCCDefaults.pl

To run this script, type the following command:

$TESTRTDIR/bin/<cpu>/<os>/perl -I$TESTRTDIR/lib/perl

$TESTRTDIR/lib/scripts/TDPBatchCC.pl <my_env.pl>

where <cpu> is the architecture platform of the machine, <os> is the operating system, and <my_env.pl> is your

customized copy of the BatchCCDefaults.pl file

The TESTRTDIR and ATLTGT environment variables must have been previously set.

Related Topics

Preparing a Products Header File on page 1005 | Setting Environment Variables on page 734

1007

HCL® OneTest™ Embedded

1008

Compiling the Test Harness

Command Line Interface

Each of the Test Script Compilers converts a test script into test harness source code. This section explains how to

compile the test harness source file.

Requirements

In order to compile a generated source file, you must check that:

• A working C, C++ or Ada compiler is installed on your system

• If you are using System Testing, you have prepared a valid options.h file on page 1004

• If you are compiling on a target different from the host where the file was generated, the generated file must

have been produced using the -NOPATH option (available with every Test Script Compiler), and the /lib sub-

directory of the Target Deployment Port directory must be copied onto the target.

Compilation

If you are using Component Testing, System Testing or Component Testing for C++ alone without any of the runtime

analysis tools, then simply compile the generated test harness source file with your C or C++ compiler.

If you are compiling on a remote target, do not forget to add to the include search path the /lib sub-directory that you

have copied onto the target.

If you are using SCI instrumentation features (Memory Profiling, Performance Profiling, Code Coverage, Runtime

Tracing and C++ .otc contract check), use the specific command line options for the Instrumentor in the Reference on

page 1016 section:

• C and C++ Instrumentor - attolcc1 and attolccp on page 1110

• Ada Instrumentor - attolada on page 1123

• Java Instrumentor - javi on page 1129

Related Topics

Instrumenting and Compiling the Source Code on page 1005 | Command Line Interface on page 995

Linking the Application

Command Line Interface

Once you have compiled all your source files, you need to link them to build an executable. This section describes

linkage specifics when using a test or runtime analysis feature.

Chapter 7. Reference Guide

Requirements

In order to compile an instrumented source file, you must check that:

• A working C, C++ or Ada linker is installed on your system

• You have compiled every source file, including any instrumented source files, of your application under test

• If using a Component Testing for C, Ada or C++, or System Testing, you have compiled the test harness.

• You have compiled the Target Deployment Port library.

Linking

If you are using only runtime analysis feature (Runtime Tracing, Code Coverage, Memory Profiling, Performance

Profiling, C++ Contract Check), you just have to add the Target Deployment Port library object to the object files linked

together. If you are using a test feature, you also have to add the tester object to the linked files.

You just have to add the Target Deployment Port library object to the object files linked together.

Related Topics

Compiling the TDP Library on page 1006 | Instrumenting and Compiling the Source Code on page 1005

Running the Test Harness or Application

Command Line Interface

Once you have produced a binary tester or instrumented application, you want to run it in order to obtain test or SCI

analysis information.

By default, the generated SCI dump file is named atlout.spt.

To run the test application binary:

1. Check that the current directory is correct, relatively to the previously specified trace file, if the trace files was

specified with a relative path.

2. Run the binary. When the application terminates, the trace file should be available.

Related Topics

Splitting the SCI Dump File on page 1011

Troubleshooting Command Line Usage

Command Line Interface

The following information might help if you encounter any problems when using the command line tools.

1009

HCL® OneTest™ Embedded

1010

Failure Response

Compilation

fails

Ensure that the selected Target Deployment Port matches your compiler; there may be several Target

Deployment Ports for one OS, each of which targets a different compiler. If you are unsure, you can

check the full name of a Target Deployment Port by opening any of the .ini files located in the Target

Deployment Port directory.

Compiler re­

ports that

options.h is

missing

Ensure that you have correctly prepared the options.h file on page 1004, and that this file is locat­

ed in a directory that is searched by your compiler (this is usually specified with -I or /I option on the

compiler command line).

Compiler re­

ports that

TP.h file is

missing

If you are compiling on a target different from the host where the generated file has been produced,

double-check the above specific requirements to compilation on a different target.

If the compiler and C/C++ Test Script Compiler are executed on the same machine, ensure you have

not used the -NOPATH option on the Test Script Compiler command line, and that the ATLTGT envi­

ronment variable was correctly set while the Test Script Compiler was executed.

Compilation

fails

Ensure that the selected Target Deployment Port matches your compiler; there may be several Target

Deployment Ports for one OS, each of which targets a different compiler. If you are unsure, you can

check the full name of a Target Deployment Port by opening any of the .ini files located in the Target

Deployment Port directory.

TDP compi­

lation fails
When using the -I- linker option, the TDP fails to compile. This is because the following line is added

to the instrumented file:

﷓include "<path to target directory>/TP.h"

where TP.h includes other files using the #include syntax, such as:

﷓include "atlclock.h"

where atlclock.h is in the same directory as "TP.h". If you use the -I- flag, the compiler no longer

searches the same directory as the current file (TP.h) and therefore cannot find atlclock.h. If you can­

not remove the -I- flag, you must add a -I flag for the compiler to find the include files required by the

TDP.

Linkage fails

because of

undefined

references

Ensure you have successfully compiled the Target Deployment Port library object, and have included

it in your linked files

Ensure you have correctly configured the products.h options file on page 1005.

If you are using a test feature, ensure that you are linking both source under test and additional files.

You may also want to add some stubs in your .ptu or .otd test script.

Chapter 7. Reference Guide

Ensure the options set in options.h on page 1004 (if required) are coherent with the options set in

products.h.

Errors are

reported

through #er­

ror directives

You may have selected a combination of options in products.h which is incompatible. The error mes­

sages help you to locate the inconsistencies.

Splitting the trace dump file

Command Line Interface

When you use several features together, the executable produces a multiplexed trace file, containing several outputs

targeting different features from HCL OneTest™ Embedded.

You must split the atlout.spt SCI dump file.

Splitting an SCI dump file

In most cases, you must split the atlout.spt trace file into several files for use with each particular Report Generator or

the product GUI.

To do this, you must have a working perl interpreter. You can use the perl interpreter provided with the product in the /

bin directory.

To split the trace file:

1. Use the atlsplit tool supplied in the /bin directory of HCL OneTest™ Embedded:

atlsplit atlout.spt

After the split, depending on the selected runtime analysis tools, the following file types are generated:

• .rio test result files: process with a Report Generator

• .tio Code Coverage report files: view with Code Coverage Viewer

• .tdf dynamic trace files: view with UML/SD Viewer

• .tpf Memory Profiling report files: view with Memory Profiling Viewer

• .tqf Performance Profiling report files:view with Performance Profiling Viewer

Related Topics

TDF Splitter - attsplit on page 1135

1011

HCL® OneTest™ Embedded

1012

Opening Reports from the Command Line

Command Line Interface

Once the test harness or application has been successfully run, you will want to view the test result files in the HCL

OneTest™ Embedded. To do this, simply invoke the studio binary with the corresponding result files. Some reports

require at least two files to be opened simultaneously.

• Code Coverage: .fdc and .tio files

• Memory Profiling for C and C++: .tsf and .tpf files

• Performance Profiling: .tsf and .tqf files

• Runtime Tracing: .tsf and .tdf files

• Test Reports: .xrd files

Alternatively, you can launch the GUI (studio) and use the Browse Reports feature to open the report files. See

Opening a Report on page 715.

Report Viewers

The GUI opens the report viewer adapted to the type of report:

• The UML/SD Viewer displays UML sequence diagram reports.

• The Report Viewer displays test reports

• The Code Coverage Viewer on page 379 displays code coverage reports.

• The Memory Profiling Viewer on page 407 and Performance Profiling Viewer on page 421 display Memory

Profiling for Cand C++ and Performance Profiling results.

Examples

To open the Runtime Tracing UML sequence diagram:

studio MyApp.tsf MyApp.tdf

To open a Test Report file

studio MyTest.xrd

Related Topics

Opening a Report on page 715 | Splitting the Trace Dump File on page 1011

Chapter 7. Reference Guide

RTistFdcConv command line
RTist is used to create models of the software system based on the Unified Modeling Language (UML) constructs, to

generate the implementation code, compile, then run and debug the application. It is used from a command line.

Overview

• RTist is a UML modeling tool for embedded applications. HCL OneTest™ Embedded supports two new

coverage levels related to the UML State Diagram. A state diagram is used to represent the condition of the

system or part of the system at finite time instances. State diagrams are also referred to as State machines or

State-chart Diagrams:

◦ State coverage: Verifies that all the states of a diagram has been reached at least at once.

◦ Transition coverage: Verifies that all the transitions between states have been executed at least at

once.

• HCL OneTest™ Embedded integrates a new tool to translate .fdc files (static files resulting from

instrumentation process) into new .fdc files. These files filter the generated code and add state and transition

coverage information.

• The coverage result viewer has been updated to display this new coverage level. In this view, the report

contains the list of states and transitions with the user code.

Command line to launch RTist
To launch RTist, run the following command:

RTistFdcConv <fdcFilesFolders> <convertedFdcFilesFolder> <RtistModelFiles>

<fdcFilesFolders> is the folder(s) containing fdc file generated by attolcc. If there are multiple folders, use a comma

between each folder name: For example: folder1,folder2,....

<convertedFdcFilesFolder> is the folder used to generate the converted fdc.

<RtistModelFiles> is a .emx file or list of .emx files contaning the RTist model. if there are multiple files, use a comma

between each file name: For example: model1.emx,model2.emx,...

Using commands to generate HTML reports
You can use commands to generate HTML reports.

Code Coverage HTML Report Generator
The HTML Report Generator creates Code Coverage reports in an HTML format from the coverage data that are

collated during the execution of the application under analysis.

Syntax

On Windows:

java -Djava.library.path=<installation folder>/bin/intel/linux_64 -jar <installation
 folder>/bin/intel/linux_64/CoverageHTMLReport.jar -files { <file>} -report <report> -template
 <template> -version

1013

HCL® OneTest™ Embedded

1014

On Linux:

java -Djava.library.path=<installation folder>/bin/intel/linux_64 -jar <installation
 folder>/bin/intel/linux_64/CoverageHTMLReport.jar -files { <file>} -report <report> -template
 <template> -version

Where:

• file are the input files. It could be .fdc, .tio, .xtp. At least, one .fdc or .xtp is required.

• report is the output HTML file.

• template is the template file used for the report.

The -version option is used for the version of the Coverage HTML Report Generator.

HTML Report Generator
You can launch the HTML Report Generator from the command line to generate Control and Data Coupling, Worst

Stack Size, Performance, and Worst Case Execution Time reports.

The HTML Report Generator - HTMLReportGenerator.jar generates HTML reports from a template, using

traces files that are generated after execution. It can be used for Control Coupling, Data Coupling, Worst Stack Size,

Performance Profiling, Worst Case Execution Time HTML reports.

Syntax

java -cp <bin>/HTMLReportGenerator.jar <kind> { <options> }

Where:

• <bin> is the folder that contains all the binary files in the installation.

• <kind> is the kind of report to generate. This value is:

◦ com.hcl.onetest.embedded.report.CCFreport for Control Coupling with Function as Module.

◦ com.hcl.onetest.embedded.report.CCreport for Control Coupling with Compilation Unit as Module.

◦ com.hcl.onetest.embedded.report.DCreport for Data Coupling.

◦ com.hcl.onetest.embedded.report.WSSreport for Worst Stack Size.

◦ com.hcl.onetest.embedded.report.WCETreport for Performance and Worst Case Execution Time.

• <options> are the different options depending on the kind of report to generate.

Common options

The following options are common to any kind of report to generate:

Chapter 7. Reference Guide

• -files <file>{,<file>} are the files used to generate the HTML report. The required format for these files are the

following ones:

◦ .fdc, .tio, .tdc, .test_harness for Control Coupling with Function as Module. The .tdc and

.test_harness files are optional as they are used only for adding the requirements in the report.

◦ .tsf, .tgf, .tdc, .test_harness for Control Coupling with Compilation Unit as Module. The .tdc

and .test_harness files are optional as they are used only for adding the requirements in the report.

◦ .fdc, .tio, .tdc, .test_harness for Data Coupling. The .tdc and .test_harness files are

optional as they are used only for adding the requirements in the report.

◦ .tsf, .tsfe, and .tzf for Worst Stack Size.

◦ .tsf, .fdc, .tqf, .tqfe for Performance and Worst Case Execution Time.

Note: Any extension applies to these files in case of merge (see option -merge). These files are

generated with the option -output when generating the previous reports.

• -report <file> gives the name of the HTML report file to generate. This option is required.

• -template <file> gives the name of the template file that is used to generate the report. This option is required.

Default templates are delivered under <installation folder>/lib/reports.

• -output <file> gives the name of a file that is used to generate raw data in a JSON format. This file is

compressed. The raw data can be used in an internal tool.

• -version is used to display the version of the HTML Report Generator. When this option is used, no report is

generated.

Specific options for Control Coupling with Function as Module

The following options are specific to Control Coupling with Function as Module report generation.

• -merge when the report to generate is a merge of several reports previously generated. In such case, the

files provided with the option -files are those generated by the option -output when generating the previous

reports.

• -noccext is used to not add the control coupling with external files (external files are those for which no .fdc

file is provided)

Specific options for Control Coupling with Compilation Unit as Module

The following options are specific to Control Coupling with Compilation Unit as Module report generation.

• -merge when the report to generate is a merge of several reports that are previously generated. In this case,

the files that are provided with the option -files are those generated by the option -output when generating the

previous reports.

• -noccext does not add the control coupling to external files. External files are those for which no .tsf file is

provided.

• -shortest to consider only the shortest paths in the calling compilation units.

• -longest to consider only the longest paths in the calling compilation units.

1015

HCL® OneTest™ Embedded

1016

• -components <file> is used for grouping several compilation units in a component if the compilation units

can be logically grouped together. The format of this file is JSON. The file contains the list of components as

follows:

{
 “<component name>” : [“<C file>”,“<C file>”,“<C file>”…],
 …
}

Specific options for Worst Stack Size

The following options are used to generate Worst Stack Size report.

• The -entrypoints <function>,{function} option gives the list of entry points when using a multi-threaded

application. In this case, the stack size is computed from each entry point and the total stack size is the sum

of the stack sizes for each entry point. If this option is not used, the stack size is the biggest stack size found

in all the paths.

• -max <max> is the maximum stack size allowed for the application (in bytes).

• -security <percentage> is the percentage of security to avoid going over the maximum stack size. This option

requires the option -max to be provided.

Specific options for Performance and Worst Case Execution Time

The following options are specific to Performance and Worst Case Execution Time report generation.

• -entrypoints <function>,{function} gives the list of entry points if using a multi-threaded application. In this

case, the WCET is computed from each entry point.

◦ -level<level> value is the following one:

▪ 0 to generate a minimal performance report without maximum execution time and WCET.

▪ 1 to generate a performance report without WCET.

▪ 2 to generate a complete performance report.

Studio Reference
This section contains reference material for using classic HCL OneTest Embedded Studio command line tools and

test script languages with your existing projects. This reference materiel does not applies to HCL OneTest Embedded

for Eclipse IDE.

To learn about See

General command line tools, configuration settings and HCL OneTest Embedded GUI

components

User interface reference

on page 1017

Test script languages, component test and system test command line tools Testing tools reference

on page 747

Chapter 7. Reference Guide

Runtime analysis command line tools, trace probes and pragma macros Runtime Analysis refer­

ence on page 1075

Reference Topics

Target deployment technology overview on page 17

User interface reference

This section contains advanced reference material for configuration settings and HCL OneTest™ Embedded GUI

components.

To learn about See

Configuration settings Configuration settings refer­

ence on page 1017

HCL OneTest™ Embedded GUI compo­

nents

GUI elements on page 1055

Macros for configuring the Tools

menu

GUI macro variables on

page 1064

UML sequence diagram elements UML sequence diagrams on

page 426

Files used by HCL OneTest™ Embed­

ded

File types on page 1067

Environment variables Environment variables on

page 1070

Configuration settings reference

Each configuration has its own set of configuration settings which are applied on each node of the test project. You

can change these settings in the Configuration Settings dialog box.

The Configuration Settings provides access to the following settings families:

• General

• Build

• Runtime Analysis

• Testing

1017

HCL® OneTest™ Embedded

1018

The actual settings available for each node depend on the type of node and the language of the selected

Configuration.

General Settings

To learn about See

Configuring the compiler and linker options Build Settings on

page 1019

General project settings General Settings on

page 1022

Adding a user-specified command line to the

project

External Command Settings

on page 1042

Controlling System Testing Probes Probe Control Settings on

page 1041

Checking compliance to coding guidelines Code review settings on

page 1043

Runtime Analysis

The Runtime Analysis setting family covers Configuration Settings for Memory Profiling, Performance Profiling, Code

Coverage and Runtime Tracing.

To learn about See

Setting up instrumentation and file storage locations General Runtime Analysis Set­

tings on page 1024

Configuring Memory Profiling error and warning detection Memory Profiling Settings on

page 1030

Specifying a trace file name for Performance Profiling Performance Profiling Settings on

page 1032

Setting coverage levels and instrumentation options for Code Cover­

age

Code Coverage Settings on

page 1027

Configuring sequence diagram output Runtime Tracing Control Settings

on page 1032

Automated Testing Settings

This setting family covers Configuration Settings for Component Testing and System Testing features.

Chapter 7. Reference Guide

To learn about See

Setting up C and Ada test execu­

tion

Component Testing for C and Ada Set­

tings on page 1034

Setting up C++ test execution Component Testing for C++ Settings on

page 1036

Setting up system test execution System Testing Settings on page 1038

Related Topics

Modifying Configurations on page 694 | Selecting Configurations on page 231 | Project Explorer on page 1056

Build Settings

The Build settings are part of the Configuration Settings dialog box, which allows you to configure settings for each

node.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Build options settings

• Target Deployment Port: This setting allows you to override the TDP of the entire configuration for a specific

node. Use this for example if you are mixing different languages or compilers within a single project. Any child

nodes will use the default Configuration Settings from this Target Deployment Port, such as compilation flags.

When you change the TDP within a Configuration, the settings are overwritten using the default settings of the

new TDP.

• Build options: Build options allow you to specify how the test is built and executed. This is also where you

enable the Runtime Analysis tools. See Selecting Build Options for a Node on page 731.

• Environment variables:This section allows you to specify any environment variables that can be used by the

application under test. Click the "..." button to edit environment variables. String values must be entered with

quotes ("").

You can enter GUI macro variables as values for environment variables. These will be interpreted by the GUI

and replaced with the actual values for the current node. SeeGUI macro variables on page 1064.

• Ignored files (for Eclipse CDT only):Specifies a list of files that are ignored by the instrumentor. Click the ...

button and use the Add and Remove buttons to select the files to be excluded.

• Instrumented files (for Eclipse CDT only):Specifies a list of files that are to be explicitly instrumented. Any

other files are ignored.Click the...button and use theAddandRemovebuttons to select the files to be excluded.

1019

HCL® OneTest™ Embedded

1020

• Clean result history:SelectYesto clear results before the application starts. This ensures that displayed results

are for the last execution only.

• L ist tested files versions: Select the configuration management tool to be used to handle file versioning in the

test report.

Compiler settings

• Assembler flags: Specify any additional command line options to be sent to the assembler for assembler

source files.

• Preprocessing-only flags: Specific compilation flags used only for preprocessing. If no preprocessing is

performed, these flags are used as compiler flags.

• Preprocessor flags: Specific compilation flags to be sent to the compiler.

• Compiler flags: Specify any additional command line options to be sent to the compiler.

• Preprocessor macro definitions: Specify any macro definition that are to be sent to both the compiler

preprocessor (if used) and the Test Script Compilers. Several generation conditions must be separated by

a comma ',' with no space. You can use a comma inside a condition, preceded a backslash character. For

example:

semTake(x\,y)=TestRTsemTake(x\,y),WIN32,_DEBUG

• Default include directories: Use this setting to specify include directories that are specific to the current

TDP (if you change the TDP, these directories will be lost). Click the ... button to create or modify a list of

directories for included files when the include statement is encountered in source code and test scripts. In

the directory selection box, use the Up and Down buttons to indicate the order in which the directories are

searched.

• User include directories: Use this setting to specify include directories that are independent of the current

TDP (if you change the TDP, these directories will be retained). Click the ... button to create or modify a list

of directories for included files when the include statement is encountered in source code and test scripts.

In the directory selection box, use the Up and Down buttons to indicate the order in which the directories are

searched.

• User link file (for Ada only): When using the Ada Instrumentor, you must provide a link file. See Ada Link Files

on page 352 for more information.

Linker settings

This area contains parameters to be sent to the linker during the build of the current node.

Chapter 7. Reference Guide

• Additional objects or libraries: A list of object libraries to be linked to the generated executable. Enter

the command line option as required by your linker. Please refer to the documentation provided with your

development tool for the correct syntax.

• Library path:Click the ... button to create or modify a list of directories for library link files. In the directory

selection box, use the Up and Down buttons to indicate the order in which the directories are searched.

• Link flags: Flags to be sent to the linker.

• Test driver filename : The name of the generated test driver binary. By default, HCL OneTest™ Embedded uses

the name of the test or application node.

Execution settings

These settings apply to Component Testing and System Testing nodes only.

• Command line arguments:Specifies any command line arguments that are to be sent to the application under

test upon execution.

• M ain procedure (for Ada only):Ada requires an entry point in the source code.

Target Deployment Port build settings

This area relates to the parameters of the Target Deployment Port on which is based the Configuration:

• Output buffer size:Sets the size of the output buffer. A smaller output buffer can save memory when

resources are limited. A larger buffer improves performance.

The default setting for the output buffer is1024bytes.

• Time measurement:Selects between a real-timeOperating system clockor aProcess or task clockfor time

measurement, if both options are available in the current Target Deployment Port. Otherwise, this setting is

ignored.

• Multi-threaded application:This box, when selected, protects Target Deployment Port global variables against

concurrent access when you are working in a multi-threaded environment such as Windows. This can cause

an increase in size of the Target Port as-well-as an impact on performance, therefore select this option only

when necessary.

• Multi-processed application:When selected, this option produces a different output file for each process in

forked applications.

• Maximum number of threads:When the multi-thread option is enabled, this setting sets the maximum number

threads that can be run at the same time by the application.

• Override compiler flags:By default, the TDP is compiled with the build compiler flags. Use this setting to

override the Build compiler flags with specific flags for compiling the TDP.

1021

HCL® OneTest™ Embedded

1022

• TDP output format:This setting specifies how the TDP is linked to the application.

• ◦ None:No TDP is generated. Use this setting if the TDP is already included in another section of the

application.

◦ Object file (.obj, .o):Default setting. Use this setting if your application does not use shared libraries.

◦ Static library (.lib, .a):Use this setting to link the TDP as a static library.

◦ Dynamic library (.dll, .so):Use this setting to link the TDP as a dynamic library for most cases when

shared libraries are involved.

• Link flags for library format (for library nodes only):Link flags for generating the TDP as a shared library or

DLL.

• Use source compiler flags (for Eclipse only):SelectYesto use the source build compiler flags to compile the

test driver. SelectNoto use the default TDP settings.

• Use of unloadable libraries:Use the setting if your application uses shared libraries that can be unloaded

dynamically from memory. See Unloadable libraries on page 717 for details.

• ◦ None:The application does not dynamically unload libraries during execution.

◦ This is an unloaded library:Select this if the selected node is a library node that can be dynamically

unloaded during execution.

◦ Uses unloaded libraries:Select this if the selected node is an application or test node that can use

unloadable libraries.

To edit the Build settings for a node:

1. In theProject Explorer, click theSettings button.

2. Select a node in theProject Explorerpane.

3. In theConfiguration Settingslist, expandBuild.

4. SelectCompiler,Linker,ExecutionorTarget Deployment Port.

5. When you have finished, clickOKto validate the changes.

Related Topics

Configuration Settings on page 690

General Settings

The General settings are part Configuration Settings dialog box, which allows you to configure settings for each node.

Chapter 7. Reference Guide

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Host configuration settings

The Host Configuration area lets you specify any information about the machine on which the Target Deployment Port

is to be compiled.

• Hostname: The hostname of the machine. By default this is the local host.

• Address: The IP address of the local machine. By default this is 127.0.0.1. Leave this field blank to

dynamically retrieve the actual IP address of the machine each time this setting is used.

• System Testing agent TCP/IP port: The port number used by System Testing Agents. The default is 10000.

• Socket upload port: The default value is 7777.

Directories settings

• Temporary: Enter the location for any temporary files created during the Build process

• Report: Specify the directory where test and analysis results are created.

Target Deployment Port data

The Target Deployment Port (TDP) Settings allow you to override the TDP used for a particular node in the current

Configuration. By default, the TDP used is that of the current Configuration.

• Name: Displays the name of the TDP.

• Directory: Specifies the TDP directory name or relative path. By default, HCL OneTest™ Embedded searches

for the TDP directory in the directories that are declared in the project preferences.

• Use Directory as relative: This option enables you to specify the TDP directory as a relative path from the

project file (for example: ../TDP/clinuxgnu). To use this option, select True and then, in the Directory setting,

click ... to browse to the relative TDP directory. When this option is selected, the TDP directories declared in

the project preferences are no longer searched.

• Initial definition file: Points to the default .ini file in the TDP directory.

• Source file language: Specifies the language of the TDP.

• Object File Extension: Specifies the default extension for object files produced with the current TDP.

• Dynamic library file extension: Specifies the file extension used for dynamic library files.

• Static library file extension: Specifies the file extension used for static library files.

1023

HCL® OneTest™ Embedded

1024

• Binary file extension: Specifies the default extension for executable binaries produced with the current TDP

(for example: .exe).

• Source File Extension: Specifies the default extension for source files used with the current TDP.

Source file information settings

The Source File Information settings are only available on the project node as they apply to how HCL OneTest™

Embedded extracts source file information and dependency files to be displayed in the Asset Browser view of the

Project Explorer. These setting apply to the entire project and cannot be overridden at the node level.

• Directories for include files: Specifies a list of include directories for the file tagging facility.

• Get struct definition like a class: Extracts struct definitions and display them as classes in the Asset Browser.

CSV format settings

The CSV format settings allow you to specify options for importing a test data table from a .csv table file. The default

values are inherited from the local settings of your operating system. See Importing a Data Table (.csv File) on

page 724 for more information.

• CSV separator: Specifies the character used to separate table columns.

• CSV decimal separator: Specifies the character used as a decimal separator.

• CSV thousand separator: Specifies the character used to mark thousands.

To edit the General settings for a node:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand General.

4. Select Host Configuration, Directories or Target Deployment Port.

5. When you have finished, click OK to validate the changes.

Related Topics

About Configuration Settings on page 690

Runtime Analysis settings

General runtime Analysis Settings

The General Runtime Analysis settings are part of the Configuration Settings dialog box, which allows you to

configure settings for each node.

Chapter 7. Reference Guide

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Selective instrumentation

By default, runtime analysis tools instrument all components of source code under analysis.

The Selective Instrumentation settings allow you to more finely define which units (classes or functions) you want to

instrument and trace.

• Instrument inline methods: Extends instrumentation to inline methods.

• Instrument included methods or functions: Extends instrumentation to included methods or functions.

• Selective unit instrumentation:Click the...button to access a list of units (classes and functions) that can

be explicitly selected for instrumentation. Click a unit to select or clear a unit. Use theSelect FileandClear

Filebuttons to select and clear all units from a source file.

• Excluded files:Specifies a list of files that are parsed by the instrumentor, but are not instrumented. Click the

... button and use the Add and Remove buttons to select the files to be excluded.

• Excluded directories: Click the ... button and use the Add and Remove buttons to select the files to be

excluded.

Advanced options

• Identification header: Select this option to add an identification header to files generated by the Instrumentor,

including the command line used to generate the file, the version of the product, date and operating system

information.

• Full template instrumentation: By default unused methods within a template are ignored by the Instrumentor.

Set this option to Yes to analyze and instrument all template methods, even if they are not used.

• Application includes system files: Set this option to Yes if the application includes system files such as

windows.h in Windows or pthread.h in UNIX.

• Internal data allocation: Select either Static declaration or Dynamic allocation as the memory allocation

method for storing intermediate variables in the instrumented source code.

• Additional instrumentor options: This setting allows you to add command line options for the Instrumentor.

Normally, this line should be left blank.

• Use alternate checksum: Select Yes to calculate a more unambiguous checksum for .fdc and .tsf files. Select

No to remain compatible with existing .fdc and .tsf files. Before using this option, you must delete existing fdc

and tsf files, which will be re-created with the new checksum. File keys are not changed by this option.

1025

HCL® OneTest™ Embedded

1026

• Check internal data before use: Set this option to Yes if you are experiencing crashes of the application when

Runtime Analysis is engaged. This option improves compatibility but increases memory usage.

• Generate TPM files: Set this option to Yes if you want to generate metrics for the test process monitor.

Snapshot settings

In some case, such as with applications that never terminate or when working with timing or memory-sensitive

targets, you might need to dump traces at specifics points in your code.

• On function entry: Allows you to specify a list of function names, from your source code, that will dump traces

at the beginning of the function.

• On function return: Allows you to specify a list of function names, from your source code, that will dump

traces at the end of the function.

• On function call: Allows you to specify a list of function names, from your source code, that will dump traces

before the function is called.

For each tab, click the ... button to open the function name selection box. Use the Add and Remove buttons to create

a list of function names.

See Generating SCI Dumps on page 1086 for more information.

Static file storage

Depending on the runtime analysis feature, the product generates .tsf or .fdc temporary static data files during source

code instrumentation of the application under analysis.

• Code Coverage static file storage (.fdc): These settings apply to Code Coverage .fdc static trace files:

• ◦ Build Directory: Select this option to use the current directory for all generated files.

◦ Other Directory: Select this option to define a specific directory.

◦ Source Directory: Select this option to use the same directory as the source under analysis.

◦ Use Single Temporary File (.fdc): By default, Code Coverage produces one .fdc file for each

instrumented source file. Select this option to use a single .fdc file for all instrumented source files,

and specify its location.

• FDC Directory or Name: When using the Use single temporary file (.fdc)option in the previous setting, specify

a location for the.fdcfile.

• Memory Profiling, Performance Profiling, and Runtime Tracing storage: This setting applies to Memory

Profiling, Performance Profiling and Runtime Tracing .tsf static trace files.

Chapter 7. Reference Guide

• ◦ Build directory: Select this option to use the current directory for all generated files.

◦ Other directory: Select this option to define a specific directory.

◦ Source directory: Select this option to use the same directory as the source under analysis.

◦ Use single temporary file (.tsf): By default, Memory Profiling, Performance Profiling and Runtime

Tracing produces one .tsf file for each instrumented source file. Select this option to use a single .tsf

file for all instrumented source files, and specify its location.

• TSF directory or name: When using the Use single temporary file (.tsf)option in the previous setting, specify a

location for the.tsffile.

To edit the General Runtime Analysis settings for a node:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Runtime Analysis and select General.

4. Select Snapshot, Selective Instrumentation, Static File Storage or Miscellaneous.

5. When you have finished, click OK to validate the changes.

Related Topics

Using Runtime Analysis Features on page 336 | Configuration Settings on page 690

Code Coverage Settings

The Code Coverage settings are part of the Runtime Analysis node of the Configuration Settings dialog box, which

allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Instrumentation control settings

You can use the Coverage Type settings to declare various types of coverage.

• Coverage level functions : select between function Entries, With exits, or None.

• Coverage Level Blocks: select the desired block code coverage type. Please see Selecting Coverage Types on

page 340 for details on using each coverage type with each language.

1027

HCL® OneTest™ Embedded

1028

You can combine, enable, or disable any of these coverage types before running the application node. All coverage

types selected for instrumentation can be filtered out in the Code Coverage Viewer on page 379.

• Coverage level calls: select Yes or No to toggle call code coverage. For Ada and C only.

• Coverage level conditions: select the condition level of code coverage to be included in the report. For Ada

and C only:

• ◦ None: The coverage report ignores conditons.

◦ Basic: Only basic conditions are included in the coverage report.

◦ Modified (MC/DC): Only modified conditions are included in the coverage section of the test report.

◦ Modified and Multiple: Both modified and multiple conditions are included in the coverage report.

◦ Forced Modified (MC/DC): The report includes modified conditions where all operators are replaced

with bitwise operators.

◦ Forced Modified and Multiple: The report includes modified and multiple conditions where all

operators are replaced with bitwise operators.

See Condition coverage (C) on page 360, Condition coverage (Ada) on page 346, and Bitwise MC/DC coverage on

page 385 for more information about coverage levels.

• Condition in expression: Select Yes to consider relational operators in an expression (for example: y = (a>0))

as conditions.

• Ternary coverage (for C and C++ only): For C and C++, when this option is selected, Code Coverage is

extended to ternary expressions as statement blocks.

• Information Mode: This setting specifies the Instrumentation Modes on page 339 to be used by Code

Coverage.

• ◦ Default (Optimized for Code Size and Speed): This setting uses one byte per branch to indicate branch

coverage.

◦ Compact (Optimized for Memory): This setting uses one bit per branch. This method saves target

memory but uses more CPU time.

◦ Report Hit Count: This adds information about the number of times each branch was executed. This

method uses one integer per branch.

• Ada specification (For Ada only): Selecting this option extends instrumentation to Ada package

specifications. Specifications can contain calls and conditions. In this case, the specification file must be

included in the application node.

Chapter 7. Reference Guide

• Excluded function calls: Specifies a list of functions to be excluded from the call coverage instrumentation

type, such as printf or fopen. Use the Add, Remove buttons to tell Code Coverage the functions to be

excluded.

• Exclude for loops (for C and C++ only): Select Yes to exclude for loops from instrumentation. Only while and

do loops are instrumented.

• Bitwise as logical (for C and C++ only): Select Yes to instrument bitwise operators as logical when both

operands are booleans. SeeBitwise MC/DC coverage on page 385.

• Not returning Functions (for C and C++ only): Type the identifiers (not signatures) of the functions that do not

return (functions that execute a longjmp or exit).

• Generated package prefix (for Ada only): Add a new prefix to Ada packages if the default Code Coverage

prefix (atc_) generates conflicts.

• Generated package suffix (for Ada only): Specifies how Code Coverage names the instrumented Ada

packages:

• ◦ Select Standard to use the your package name as a suffix

◦ Select Short to reduce the size of the generated package name for compilers that have a package

name length limit.

Advanced Options

• Trace file name (.tio): this allows you to specify a path and filename for the .tio dynamic coverage trace file.

• Key ignores source file path: Identifies source files based only on the filename instead of the complete path.

Use this option to consolidate test results when a same file can be located in different paths. This can be

useful in some multi-user environments that use source control. If you use this option, make sure that the

source file names used by your application are unique.

• Compute deprecated metrics: This setting is for compatibility with third party tools designed for earlier

versions of the product (before v2002.05). Set this to No in most cases.

• User comment: This adds a comment to the Code Coverage Report. This can be useful for identifying reports

produced under different Configurations. To view the comment, click the a magnifying glass symbol that is

displayed at the top of your source code in the Code Coverage Viewer on page 379.

• Report summary: Select Yes to add the coverage summary to the summary text file of the selected node.

• On the fly frequency dump (for C and C++ only): Specify the function call number after which the coverage

results are updated dynamically during execution. 0 means no update during execution.

To change the Code Coverage Instrumentation Control setting for an application or test node.

1029

HCL® OneTest™ Embedded

1030

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Runtime Analysis and select Coverage.

4. Select Instrumentation Control.

5. When you have finished, click OK to validate the changes.

Related Topics

Using Runtime Analysis Features on page 336 | Configuration Settings on page 690 | Selecting Coverage Types on

page 340

Memory Profiling settings

The Memory Profiling settings are part of the Runtime Analysis node of the Configuration Settings dialog box, which

allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Instrumentation control

• Detect File in Use (FIU): When the application exits, this option reports any files left open. See File in Use (FIU)

on page 401.

• Detect Memory in use (MIU): When the application exits, this option reports allocated memory that is still

referenced. See Memory in Use (MIU) on page 400.

• Free Invalid Memory (FIM): This option activates the detection of invalid free memory instructions. See

Freeing Invalid Memory (FIM) on page 397.

• Detect Signal (SIG): This option indicates the signal number received by the application forcing it to exit. See

Signal Handled (SIG) on page 402.

• Detect Freeing Freed Memory (FFM) and Detect Free Memory Write (FMWL): Select Yes to activate detection

of these errors. See Freeing Freed Memory (FFM) on page 396 and Late Detect Free Memory Write (FMWL) on

page 398.

• Free queue length (blocks): specifies the number of memory blocks that are kept free.

• Free queue size (bytes): specifies the total buffer size for free queue blocks. See Freeing Freed Memory (FFM)

on page 396 and Late Detect Free Memory Write (FMWL) on page 398.

• Largest free queue block size (bytes): Specifies the size of the largest block to be kept in the free queue.

Chapter 7. Reference Guide

• Detect Array Bounds Write (ABWL): Select Yes to activate detection of this error. See Late Detect Array

Bounds Write (ABWL) on page 397.

• Red zone length (bytes) specifies the number of bytes added by Memory Profiling around the memory range

for bounds detection.

• Number of functions in call stack: specifies the maximum number of functions reported from the end of the

CPU call stack. The default value is 6.

• Only show memory leaks with call stack: select this option to only record memory leaks that are associated

with a call stack. Memory allocations that occurred before the application started do not have a call stack and

are not included in the Memory Profiling report.

• Line number link: Select Statement to link the line number in the report to the corresponding allocation or free

statement in the function. Select Function to link only to the function entry and to improve performance.

• Only show new memory leaks in each dump: In multi-dump report, Memory leaks (MLK) and potential leaks

(MPK) are only reported once.

Advanced options

• Trace File Name (.tpf): This setting allows you to specify a filename for the generated .tpf trace file.

• Exclude block tracking before init: This setting disables memory profiling for any memory blocks allocated

before the first execution of instrumented code. Use this option to prevent crashes when the system uses

memory allocations that cannot be tracked.

• Excluded global variables: Specifies a list of global variables that are not to be inspected for memory leaks.

This option can be useful to save time and instrumentation overhead on trusted code. Use the Add and

Remove buttons to add and remove global variables.

• Exclude variables from directories: Specifies a list of directories from which any variables found in files are

not to be inspected for memory leaks.

• Break on error: Use this option to break the execution when an error is encountered. The break point must be

set to priv_check_failed in debug mode.

• ABWL and FMWL check frequency: Use this to check for ABWL and FMWL errors:

• ◦ Each time the memory is dumped (by default).

◦ Each time a manual check macro is encountered in the code.

◦ Each function return.

These checks can be performed either on all memory blocks or only a selection of memory blocks. See Checking for

ABWL and FMWL errors on page 408 for more information.

1031

HCL® OneTest™ Embedded

1032

• Preserve block content: Set this setting to Yes to preserve the content of memory blocks freed by the

application. Use this setting to avoid application crashes with Memory Profiling is engaged. However, reads to

freed blocks of memory are no longer detected.

Related Topics

About Memory Profiling on page 393 | JVMPI Technology on page 412 | About Configuration Settings on page 690

Performance Profiling settings

The Performance Profiling settings are part of the Runtime Analysis node of the Configuration Settings dialog box,

which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

• Trace file name (.tqf): This box allows you to specify a filename for the generated .tqf trace file for

Performance Profiling.

• Compute min max times: This setting specifies whether you want to record minimum and maximum function

execution times. By default this setting is disabled because the option can use a large amount of memory,

which may cause issues on embedded systems.

To edit the Performance Profiling settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Runtime Analysis and select Performance Profiling.

4. When you have finished, click OK to validate the changes.

Related Topics

About Performance Profiling on page 414 | Performance Profiling Results on page 96 | About Configuration Settings

on page 690

Runtime Tracing settings

The Runtime Tracing Control settings are part of the Runtime Analysis node of the Configuration Settings dialog box,

which allows you to configure settings for each node.

Chapter 7. Reference Guide

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Instrumentation Control

• Runtime Tracing file name (.tdf): This allows you to force a filename and path for the dynamic .tdf file. By

default, the .tdf carries the name of the application node.

• Show unnamed classes: For C++ only. When this option is disabled, unnamed class are not instrumented.

• Show data classes: When this option is disabled, structures or classes that do not contain methods are

excluded from instrumentation. Disable this option to reduce instrumentation overhead.

• Display one note for class templates: For C++ only. With this option, the UML/SD Viewer will not display notes

for each instance of template classes.

• Display return functions as sequence: For C only. With this option, the UML/SD Viewer displays calls located

in return expressions as if they were executed sequentially and not in a nested manner.

Trace Control

• Split trace file: See Splitting trace files for more information on this setting.

• Maximum size (Kbytes): This specifies the maximum size for a split .tdf file. When this size is reached, a new

split .tdf file is created.

• File name prefix: By default, split files are named as att_ <number> .tdf, where <number> is a 4-digit sequence

number. This setting allows you to replace the att_ prefix with the prefix of your choice.

• Automatic loop detection: Loop detection simplifies UML sequence diagrams by summarizing repeating

traces into a loop symbol. Loops are an extension to the UML sequence diagram standard and are not

supported by UML.

• Additional options: This setting allows you to add command line options. Normally, this line should be left

blank.

• Display maximum call level: When selected, the Target Deployment Port records the highest level attained by

the call stack during the trace. This information is displayed at the end of the UML Sequence Diagram in the

UML/SD Viewer as Maximum Calling Level Reached.

Runtime options

These settings allow you to set compilation flags that define how the Runtime Tracing feature interacts with the

Target Deployment Port. These are general settings for the Target Deployment Port.

1033

HCL® OneTest™ Embedded

1034

• Disable on-the-fly mode: When selected, this setting stops on-the-fly updating of the dynamic .tdf file. This

option is primarily for Target Deployment Ports that use printf output.

• Runtime tracing buffer and Partial Runtime Tracing flush: Please see Trace Item Buffer on page 443 and

Partial Trace Flush on page 442 for more information about these settings.

• M aximum buffer size (events): Maximum number of events recorded in the buffer before it is flushed.

• User signal action: Specify an action to be performed when a user signal is detected: No action, Flush call

stack, Runtime Tracing on/off

• Record and display time stamp: This setting adds time stamp information to each element in the UML

sequence diagram generated by Runtime Tracing.

• Record and display heap size: This setting enables the Heap Size Bar in the UML sequence diagram produced

by Runtime Tracing.

• Record and display thread info: This setting enables the Thread Bar in the UML sequence diagram produced

by Runtime Tracing.

To edit the Runtime Tracing settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. In the Configuration Settings list, select Instrumentation Control, Trace Control or Target Deployment Port

Settings.

5. When you have finished, click OK to validate the changes.

Related Topics

About Configuration Settings on page 690 | Multi-Thread Support on page 441 | Partial Trace Flush on page 442 |

Trace Item Buffer on page 443 | Splitting Trace Files

Studio automated Testing settings

Component Testing Settings for C and Ada

The Component Testing settings are part of the Component Testing for C and Ada node of the Configuration Settings

dialog box, which allows you to configure settings for each node.

Chapter 7. Reference Guide

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Test Script Compiler

• Intermediate test result file name (.rio): Specifies the filename of the files produced during test execution.

Changing this setting will modify the name of the intermediate .rio file, the tester (.c in C or .adb in Ada), and

the generated main procedure/package name (in Ada).

• Continue test build despite warnings: Select this option to ignore warning during the test compilation phase.

• Break on error: Select this option to call a breakpoint function whenever a test failure occurs in a .ptu Test

Driver script. To use this feature, you must set a breakpoint on the function priv_check_failed (), located in the

<target_deployment_port> /lib/priv.c, file. You can use this option for debugging purposes.

• Authorize stubbing: This setting determines the conditional generation of code in the test program when

using SIMUL blocks in the .ptu test script.

• Allow stubbing of module functions:Set this option to Yes to allow stubbing of functions that are in the same

source file as the functions under test.

• Enable additional options: Set this option to Yes if you want to specify additional command line options. In

most cases this should be set to No.

• Additional options: Use this setting to specify extra command line options. In most cases this should be

empty.

• Test point name (for Ada only): Entry point for the test program. The default entry point is ATTOL_TEST.

• Test point packages (for Ada only): List of packages containing the test program entry point.

Report generator

• Display variables: lets you select the level of detail of the Component Testing output report:

• ◦ Collapse tests: collapses 'test loop' and 'init in' tests into one block.

◦ Incorrect: shows only incorrect variables.

◦ Only for failed tests: shows all variables for failed tests."

• Displays initial and expected values: the way in which the values assigned to each variable are displayed in

the report. See Initial and Expected Values on page 491.

• Display arrays and structures: indicates the way in which Component Testing processes variable array and

structure statements. See Array and Structure Display on page 542 for more information.

1035

HCL® OneTest™ Embedded

1036

• Generate report without coverage: This setting hides coverage information in the Component Testing Report.

• Generate graphics report: This setting generates a graphics report when value arrays are produced by loop,

for and init in statements.

• Max tests per report: When large reports are generated, this option allows you to split the results into multiple

report files that contain the specified number of tests per Service in test script (PTU).

• Compare two test runs: This setting activates the comparison option. See Comparing C Test Reports on

page 541 or Comparing Ada Test Reports on page 616.

• Enable additional options: Set this option to Yes if you want to specify additional command line options. In

most cases this should be set to No.

• Additional options: Use this setting to specify extra command line options. In most cases this should be

empty.

Related Topics

About Configuration Settings on page 690 | Stub Simulation Overview on page 507

Component Testing for C++ settings

The Component Testing settings for C++ are part of the Configuration Settings dialog box, which allows you to

configure settings for each node in your workspace.

The Component Testing for C++ node settings lets you to customize the parameters for the Component Testing for C

++ feature of HCL OneTest™ Embedded.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Contract Check Options

These options are used by the C++ Contract-Check Script on page 545.

• Break on assertion failure:Select this option to call a breakpoint function whenever an assertion fails in

an.otcContract Check script. To use this feature, you must set a breakpoint on the functionpriv_check_failure

(), located in the <target_deployment_port>/lib/priv.c, file. You can use this option, for example, to debug your

application when an assertion fails.

• Report only failed assertions: Select this option to hide passed assertions in the UML Sequence Diagram

generated by Component Testing for C++. Only failed assertions are displayed. This option also reduces the

size of the intermediate trace file.

Chapter 7. Reference Guide

• Trace unchanged states: Select this option to report states in UML Sequence Diagram generated by

Component Testing for C++ each time states are evaluated. If the option is disabled, states are reported in

UML Sequence Diagram only when they change. This affects both trace size and UML Sequence Diagram

display size, but has no impact on execution time.

• Check 'const' methods: Usually C++ const methods are not checked for state changes because they cannot

modify a field of the this object. Instead, const methods are only evaluated once for invariants. In some

cases, however, the this object may change even if the method is qualified with const (by assembler code,

or by calling another method that casts the this parameter to a non-const type). There may also be pointer

fields to objects which logically belong to the object, but the C++ Test Script Compiler will not enforce

that these pointed sub-objects are not modified. Select this option only if your code contains such code

implementations.

• Reentrant objects:Select this option if your application is multi-threaded and objects are shared by several

threads. This ensures granularity for state evaluation. This option has no effect if multi-thread support is not

activated in the Target Deployment Compilation Settings.

• Enforce 'const' assertions: When this option is selected, the compiler requires that invariant and state

expressions are constant. Disable this option if you do not use the const qualifier on methods that are actually

constant.

Testing Options

These options are used for the C++ Test Driver Script on page 546.

• Add #line directive into instrumented source file:This option allows use of#linestatements in the source code

generated by Component Testing for C++. Disable this option in environments where the generated source

code cannot use the#linemechanism. By default#linestatements are generated.

• Application includes system files: Set this option to Yes if the application includes system files such as

windows.h in Windows or pthread.h in UNIX.

• Break on CHECK failure:Select this option to call a breakpoint function whenever a check failure occurs in

an .otd Test Driver script. To use this feature, you must set a breakpoint on the function priv_check_failed (),

located in the <target_deployment_port>/lib/priv.c, file. You can use this option for debugging purposes.

• Test class friend of class under test:Set this setting toYes if you want the test to access any private or

protected members (friend classes) of the components under test. The class must be mentioned in an OTC

file to be recognized as a friend of the test class.

• Instances stack size: This value defines the maximum level for C++ Test Driver Script calls that you expect to

reach when running an .otd Test Driver script. The C++ Test Driver Script calling stack includes RUN, CALL and

STUBs. The default value is 256 and should be large enough for most cases. When using recursive stubs, you

may need to increase this value.

1037

HCL® OneTest™ Embedded

1038

• Display only failed CHECKs:Select this option to hide notes related to passed CHECK statements in the

UML Sequence Diagram generated by Component Testing for C++. Failed checks are still displayed. The

component testing report is not affected by this option. This option also reduces the size of the intermediate

trace file.

• Display all PRINT arguments in a single note:Select this option to display only one UML note for all

arguments of aPRINTstatement in the Component Testing for C++ UML Sequence Diagram. This option

requires use of aPRINTbuffer, which uses memory on the target machine. Disable this option if memory on

the target is an issue. In this case, Component Testing for C++ generates one UML note for each argument of

eachPRINTstatement.

• PRINT buffer size (bytes):With the previous option selected, this option defines the size, in bytes, of the buffer

devoted to thePRINTinstructions during the execution. This buffer should be large enough to handle the

complete result of aPRINTinstruction. You may have to increase this value if yourPRINTstatements contain

many arguments, or if arguments are long strings.

Advanced options

This area specifies the path and filenames for the intermediate files generated by the Component Testing for C++

feature during the test execution.

• Test driver file name:contains the location and name of a .cppsource file generated from the C++ Test scripts

by Component Testing for C++

• Contract check file name:contains the path and file name of a temporary.otifile created during source code

instrumentation by Component Testing for C++

• Test report file name (.xrd):contains the location and name of the.xrdreport file generated by Component

Testing for C++

• Maximum test compilation errors displayed:Specifies the maximum number of error messages that can be

displayed by the C++ Test Script Compiler. The default value is 30.

Related Topics

About Configuration Settings on page 690 | C++ Test Driver Script on page 546 | C++ Contract-Check Script on

page 545

System Testing for C Settings

The Test Script Compiler settings are part of the System Testing node of the Configuration Settings dialog box, which

allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Chapter 7. Reference Guide

Test Script Compiler

• Message definition files: Use the Add and Remove buttons to create a list of message definition files. These

are source files that define the structure declarations required by Virtual Testers.

• Generate virtual testers as threads: By default, virtual testers are generated as processes. Use this setting with

multi-threaded applications.

• Multi-thread entry point: Specifies the name of a main function to act as an entry point in multi-threaded

applications.

• Virtual Tester Memory Allocation Method: Allows you to allocate memory to the Virtual Tester for internal

data storage.

• ◦ Static - use global static variables for internal data storage. This allows the Virtual Tester to run on

systems that do not support dynamic memory allocation or that have limited execution stacks.

◦ Stack - store internal data in a local variable of the main() function. Necessary memory is then

allocated on the execution stack.

◦ Heap - allocate memory through a Target Deployment Port dynamic allocation function, which is

configurable.

• Duplicate user-defined static global variables: When using multiple Virtual Tester threads, this setting allows

you to duplicate static global variables for each thread. This allows multiple instances of a virtual tester to all

run in the same process with their own variables.

• Use TDP thread launcher: Specify Yes if the current TDP supports launching virtual tester threads. If not, then

you must write a specific program to perform this task, and set this option to No. See Launching virtual tester

threads on page 629 for more information.

• Additional options: Use this setting to specify extra command line options. In most cases this should be

empty.

• Continue en WAITTIL error: Select Yes to force the scenario to resume after encountering an error in a

WAITTIL statement. You can use this setting to debug virtual testers.

• Trace Buffer Optimization: See Optimizing Execution Traces on page 627.

• ◦ Select Time stamp only to generate a normal trace file.

◦ Select Block start/end only to generate traces for each scenario beginning and end, all events, and for

error cases.

◦ Select Errors only to generate traces only if an error is detected during execution of the application.

1039

HCL® OneTest™ Embedded

1040

• Circular buffer: Select this option to activate the Circular Trace Buffer on page 687.

• Trace buffer size (Kbytes): This box specifies the size - in kilobytes - of the circular trace buffer. The default

setting is 10Kb.

Report generator settings

• Display initial and expected values: the way in which the values assigned to each variable are displayed in the

report. See Initial and Expected Values on page 491.

• Report generated form: This option specifies the form of the report generated.

• ◦ Full: provides a full report of all variables for each test.

◦ All failed test variables: All the variables that are in a failed test are displayed. If all tests are passed,

then the report is empty.

◦ Only failed variables: Only failed variables are displayed. If all tests are passed, then the report is

empty.

• Sort by time stamp: By default, the report is sorted by test script structure blocks. Select this option to force

the report to follow a fully chronological order.

Advanced for System Testing Settings

• Kill VT when RENDEZVOUS fails: Enable this setting to force the supervisor to kill any remaining virtual

testers each time a RENDEZVOUS fails. This prevents uncontrollable processes from running on the

computer.

• RENDEZVOUS timeout (seconds): This specifies the timeout associated to RENDEZVOUS statements.

• INTERRECV timeout (seconds): This specifies the timeout associated to inter-tester communications on

page 653.

• Agent target directory: Specifies the directory where system testing agent is located.

• Run without deployment: This allows you to launch the test execution without going through the deployment

phase.

• Compress trace data: This option performs internal compression of trace data. Select this for hard real-time

constraints. If you select NO, no compression of trace data is performed.

• Trace data buffer size (bytes): Specifies the size of the trace data buffer.

• On-the-fly tracing: This option enables on-the-fly tracing on page 688 at Target Deployment Port level.

• On-the-fly tracing buffer size (bytes): This specifies the size of the trace buffer for on-the-fly tracing. By

default the buffer size is 4096 bytes.

Chapter 7. Reference Guide

Related Topics

About Configuration Settings on page 690 | About System Testing for C on page 618

Probe Control Settings

The Probe Control settings are part of the Configuration Settings dialog box, which allows you to configure settings

for each node.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Probe Control Settings

• Probe enable: This setting enables or disables the Trace Probe feature as implemented with System Testing

for C. See Trace Probes on page 445.

• Probe settings: These settings allow you to select the Trace Probe output mode. See Trace Probe output

modes on page 447.

• USER custom files directory: Specifies the location of the user-defined probecst.c and probecst.h files when

the USER output mode is selected. See Customizing the USER output mode on page 449.

• Message definition files: Use the Add and Remove buttons to create a list of message definition files. These

are source files that define the structure declarations required by Virtual Testers.

• Script generation flags: Use this setting to send command line arguments to the Probe Processor for

generating a .pts test script for use with System Testing for C. See Traces Probes and System Testing for C on

page 448.

• Compress trace data:

• Trace data buffer size (bytes):

• On-the-fly tracing:

• On-the-fly tracing buffer size (bytes):

To edit the Probe Control settings for a node:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, select Probe Control.

4. When you have finished, click OK to validate the changes.

1041

HCL® OneTest™ Embedded

1042

Related Topics

About Configuration Settings on page 690 | Trace Probes on page 445

External command settings

The External Command settings are part of the Configuration Settings dialog box, which allows you to configure

settings for each node.

Use the External Command setting to set a command line for External Command nodes. An External Command is a

command line that can be included at any point in your workspace. External Commands can contain HCL OneTest™

Embedded Graphical User Interface macro variables, making them context-sensitive. See the GUI Macro Variables

chapter in the Reference Manual.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

To edit the External Command settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, select External Command and enter a Command line.

4. When you have finished, click OK to validate the changes.

Related Topics

About Configuration Settings on page 690 | Creating an External Command Node on page 713

Static Metric Settings

The Static Metric settings are part of the Configuration Settings dialog box, which allows you to configure settings for

each node.

Use the Static Metric settings to change any project settings related to the calculation of static metrics.

By default, the settings of each node are inherited from those of the parent node. When you override the settings of a

parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields are displayed

in bold.

Chapter 7. Reference Guide

• One level metrics (for C and C++ only) : By default, .met static metric files are produced for source files as

well as all dependency files that are found by the Source Code Parser. Set One level metrics to Yes to restrict

the calculation of static metrics only to the source files displayed in the Project Browser. In Ada, this setting is

ignored.

• Analyzed directories: This setting allows you to restrict the generation of .met metric files only to files which

are located in the specified directories.

• Generate metrics in source directories: By default, all .met files are generated in the project directory, and use

the same name as the source file. Select Yes on this setting to compute metrics for source files that have the

same name but are located in different directories. In this case, each .met is generated in the source directory

of each file.

• Additional options: Use this setting to specify extra command line options. In most cases this should be

empty.

To edit the Static Metrics settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, select Static Metrics.

4. When you have finished, click OK to validate the changes.

Related Topics

About Configuration Settings on page 690 | About Static Metrics on page 252

Code Review settings

The Code Review settings are part of the Configuration Settings dialog box, which allows you to configure settings for

each node.

Use the Code Review settings to change any project settings related to the code review tool.

By default, the settings of each node of a project are inherited from those of the parent node. When you override the

settings of a parent node, changes are propagated to all child nodes within the same Configuration. Overridden fields

are displayed in bold.

1043

HCL® OneTest™ Embedded

1044

• Rule configuration: This setting specifies the file containing the rules for the code review tool. Click Browse

... to select another rule configuration file. Click the Edit button to edit the rule configuration or to create a

new rule configuration. See Configuring code review rules on page 322 for more information.

• Additional included system directories: This setting specifies system include directories that are to be

ignored during the code review.

• Review included system files: Select Yes to extend code review to system files that are ﷓included in the source

files.

• Naming script file: This setting allows you to specify a perl script that can check your own naming rules. See

How to customize a naming script file. on page 113 for more information.

• Include Files: Specify a list of files to preinclude, like gcc would do with the -include= <files> option .

• Display Errors/Warnings: Specify the maximum number of errors and warnings that you want to display in the

report. By default, All errors and warnings are displayed.

To edit the Code Review settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, select Code Review.

4. When you have finished, click OK to validate the changes.

Related Topics

About Configuration Settings on page 690 | About Static Metrics on page 252 | Configuring code review rules on

page 322

User interface preferences

HCL OneTest™ Embedded has many Preference settings that allow you to configure various components of the

graphical user interface.

To learn about See

General GUI-related preferences Project preferences on page 1050

Changing data table defaults. Data table preferences on page 1046

Changing preferences for source control software. CMS preferences on page 1046

Chapter 7. Reference Guide

Changing the behavior of the text editor. Text Editor preferences on page 1047 and Text Edi­

tor Syntax Coloring on page 729

ClearQuest Preferences ClearQuest preferences on page 1047

Changing the appearance of the Memory Profiling Viewer Memory Profiling Viewer preferences on page 1054

Changing the appearance of the Report Viewer. Report Viewer preferences on page 1054

Changing the appearance of the Metrics Viewer. Metrics Viewer preferences on page 1052

Changing the appearance of the UML/SD Viewer. UML/SD Viewer preferences on page 1052

Changing the appearance of the Code Coverage Viewer. Code Coverage Viewer preferences on page 1049

Changing the appearance of the Performance Profiling View­

er.

Performance Profiling Viewer preferences on

page 1048

HCL OneTest™ Embedded preferences in the Eclipse work­

bench.

Eclipse CDT HCL OneTest™ Embeddedpreferences on

page 975

Changing the appearance of the Code Review viewer. Code Review viewer preferences on page 1049

To edit product preferences:

1. From the Edit menu, select Preferences.

2. In the tree-view, select the component that you want to configure.

3. Make any changes to the preferences.

4. Click OK.

Related Topics

Using the Graphical User Interface on page 689

General

Connection Preferences

The Preferences dialog box allows you to customize HCL OneTest™ Embedded.

The Connections node of the Preferences dialog box lets you set the network parameters for the graphical user

interface.

• Allow remote connections: This allows external commands and tools to send messages to the GUI over a

network. For example, this enables the Runtime Tracing on-the-fly capability on remote hosts.

• For information only, the Current TCP/IP port is automatically selected by GUI.

Related Topics

1045

HCL® OneTest™ Embedded

1046

Editing Preferences on page 1044

Output window preferences
The general colors and font preferences panel allows you to specify the colors and fonts used in the output window.

This panel opens from menu Edit > Preferences. You can choose Output Window style or Output Window Error style.

Output window/Output window errors

In this panel, you can change the color and the font style used to display the build output messages or the standard

error messages in the Output window. This windows opens from the menu View > Other windowsOutput Window.

Source control (CMS) preferences

The Preferences dialog box allows you to change the settings related to the integration of the product with Rational®

ClearCase® or other configuration management software (CMS).

• Repository directory: Use this box to specify the location of the vault directory for the CMS tool.

• Selected Configuration Management System: Use this box to select Rational® ClearCase® or a different

CMS tool. Before setting this option, make sure that the CMS system has been configured in Tools menu.

Related Topics

Editing Preferences on page 1044 | Working with Rational ClearCase on page 50 | Customizing Configuration

Management

Data table preferences

The Data table preferences dialog box lets you specify how HCL OneTest™ Embedded handles the import of .csv data

tables into the project by default.

These options define the default behavior, which can be overridden at the project or node level by changing the data

table settings in the General Settings on page 1022.

The Project preferences contain a main page and two additional pages:

• CSV Decimal Separator: Specifies the character used as a decimal separator.

• CSV Separator: Specifies the character used to separate table columns.

• CSV Thousand Separator: Specifies the character used to mark thousands.

See Importing a Data Table (.csv File) on page 724 for more information.

Related Topics

Importing a Data Table (.csv File) on page 724 | General Settings on page 1022

Chapter 7. Reference Guide

Internationalization preferences

The Internationalization preferences allow you to specify the codec that HCL OneTest™ Embedded uses to handle

international character sets.

• Codec for the locale: Specifies the character set to be used. Change this setting if some international

character sets are not displayed properly in HCL OneTest™ Embedded. In most cases, select Auto Detect.

Related Topics

User interface preferences on page 1044

Environment preferences

The Environment preferences allow you to add, remove and modify environment variables that can be required for

HCL OneTest™ Embedded.

To add an environment variable, type the name of the variable and the value, and click Add.

Related Topics

User interface preferences on page 1044

ClearQuest preferences

The Preferences dialog box allows you to specify the location of the Rational® ClearQuest® database.

Please refer to the documentation provided with Rational® ClearQuest® for more information.

• Schema Repository:Use this box to select the schema repository you want to use.

• Database: Use this box to enter the location of the ClearQuest database.

• User Name and Password: Enter the user information provided by your ClearQuest administrator.

Related Topics

Editing Preferences on page 1044 | Working with Rational ClearQuest on page 51

Editor preferences

The Preferences dialog box allows you to change the appearance of the source code and scripts in the text editor.

1047

HCL® OneTest™ Embedded

1048

Editor

• Font: This allows you to change the general font type and size for Editor.

• Global Colors: This is where you select background colors for text categorized as Normal, Information or

Error as well as the general background color. Click a color to open a standard color palette.

• Autodetect parenthesis and bracket mismatch - When this option is selected, the Error color is used when the

Editor detects a missing bracket "[]" or parenthesis "()".

• Tabulation length: This specifies the tabulation length, which is equivalent to a number of inserted spaces.

Syntax Colors

• Elements: This list allows you to select one or several styles that you want to change. To change several

styles at the same time, you can perform multiple selections in the style list.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

Related Topics

Editing Preferences on page 1044 | About the Text Editor on page 725

Performance Profiling viewer preferences

The Preferences dialog box allows you to change the appearance of your Performance Profiling reports.

To choose Performance Profiling report colors and attributes:

Performance Profiling Viewer

• Background color: This allows you to choose a background color for the Performance Profiling Viewer

window.

• Automatic raise viewer on tree selection change: Specifies that the viewer is give focus when an code review

element is selected.

Styles

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

Chapter 7. Reference Guide

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

Related Topics

Editing Preferences on page 1044 | Using the Performance Profiling Viewer on page 421

Performance Profiling viewer preferences

Performance Profiling for C and C++

The Preferences dialog box allows you to change the appearance of your code review reports.

Code Review Viewer

• Background color: This allows you to choose a background color for the Code Review viewer window.

• Automatic raise viewer on tree selection change: Specifies that the viewer is give focus when an code review

element is selected.

• Report Contents Depth Open: Specifies the depth of the report tree.

Styles

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

Related Topics

Editing Preferences on page 1044 | Using the code review viewer on page 328

Code Coverage viewer preferences

The Preferences dialog box allows you to change the appearance of your Code Coverage reports.

1049

HCL® OneTest™ Embedded

1050

Code Coverage Viewer

• Background color: This allows you to choose a background color for the Code Coverage Viewer window.

• Choose the display value type for rates: This allows you to choose the format of the rates in your Code

Coverage reports. You can choose between absolute, percentage or both. The setting is taken into account

when the reports are generated.

Styles

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

Related Topics

Editing Preferences on page 1044 | About the Code Coverage Viewer on page 379

Project preferences

The Project Preferences dialog box lets you set parameters for the HCL OneTest™ Embedded project.

The Project preferences contain a main page and two additional pages:

• Source File Types

• TDP Directories

In the Preferences dialog box, select Project to change the project preferences.

• Automatic file tagging: Select this option to activate the Project Explorer's automatic parsing mode, in which

all source code and script components are automatically listed. If disabled, you will have to manually refresh

the File View on page 711 each time you modify the structure of a file.

Note If the structure of a source files has changed since the last file refresh, metrics calculation cannot be performed.

This impacts the Component Testing Wizard, where the Unit Selection view will be disabled.

Chapter 7. Reference Guide

• Compute static metrics for Component Testing Wizard:Select this option so that when you open the

Component Testing Wizard, the static metrics are recalculated whenever a new activity is created (file added,

modified or refreshed). To open the Component Testing Wizard, click in the main toolbar File > New > New

activity > Component testing.

• Verbose output:Select this option to prompt the HCL OneTest™ Embedded GUI to report detailed information

to the Output Window during execution. Use this option to debug any compilation issues.

• Show result nodes in Project Explorer:Select this option to display test and runtime analysis reports in

the Project Browser once they have been successfully generated. Result nodes appear inside their test or

application nodes. If the option is not selected, the result nodes do not display.

• Use Automatic Relative Project’s Path computing in the settings file selectors:Select this option to calculate

the relative path to the project in configuration settings. If the option i snot selected, this is the absolute path

that is calculated.

• Keep the execution node results between two sessions:Select this option to save the node results for the

current project so that it is available in another session. When a test is executed in a project's node, a green

check is displayed on the left of the node if the result is successful, or a red cross if it failed. If this option is

enabled, when you exit HCL OneTest™ Embedded Studio, the node status is saved in the project file and when

you open the project in another session, you can see that the status on the last build executed is kept. If the

preference is not enabled, the status is not saved.

The Project Preferences contains two additional pages:

• Source File Types

• TDP Directories

Source File Types

Use this page to specify any new file types that you want to use in HCL OneTest™ Embedded projects.

Click the New button to add a new line. In the extension column, enter the file extension in wildcard format, for

example: *.asm. In the Description column, enter a description for the file type, for example: Assembler source files.

TDP Directories

If you have used the TDP Editor to generate Target Deployment Ports (TDPs) in locations other than the default

target directory, use this page to specify a list of directories where HCL OneTest™ Embedded will search for TDPs.

Directories are searched in the order defined in this list.

Select to Use default Target Deployment Port directory to use the default targets directory only, which is located in the

HCL OneTest™ Embedded installation directory.

Related Topics

1051

HCL® OneTest™ Embedded

1052

Editing Preferences on page 1044

UML/SD viewer preferences

The Preferences dialog box allows you to change the appearance of the UML Sequence Diagram reports.

UML/SD Viewer

• Background: This allows you to choose a background color for the UML sequence diagram.

• Panel: This allows you to choose a background color for panels in the UML sequence diagram.

• Panel Background: This allows you to choose a background color for selected panels.

• Coverage Bar: This allows you to choose a background color for thecoverage bar.

• Memory Usage: This allows you to choose a background color forthe memory usage bar.

• Print Page header: Select this option to print a page header.

• Print Page footer: Select this option to print a page footer.

• Display Page Breaks: When this option is selected, the UML/SD Viewer displays horizontal and vertical dash

lines representing the page size for printing.

• Show tooltip in UML/SD Viewer: Use this option to hide or show the information tooltip in the UML/SD Viewer.

• Time Stamp Format: Use the editable box to select the format in which time stamps are displayed in the UML/

SD Viewer. See Time Stamping on page 433.

Styles or Styles System Test:

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

Related Topics

Editing Preferences | About the UML/SD Viewer | Time Stamping on page 433

Metrics viewer preferences

Static Metrics for C, C++ and Ada

Chapter 7. Reference Guide

The Preferences dialog box allows you to change the appearance of the Static Metrics reports.

Metrics Viewer

• Background color: This allows you to choose a background color for the Metrics Viewer window.

• Stroud number: This parameter modifies the results of Halstead Metrics on page 258.

Styles

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

Related Topics

Editing Preferences on page 1044 | Viewing Static Metrics on page 253 | Halstead Metrics on page 258

Graphics viewer preferences

The Preferences dialog box allows you to change the appearance of graphs produced by HCL OneTest™ Embedded.

Graphics Viewer

• Background color: This allows you to choose a background color for the Graphics Viewer window.

• Color and Background Color: This allows you to choose the color and background color for the Graphics

Viewer panel.

Styles

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

1053

HCL® OneTest™ Embedded

1054

Report viewer preferences

The Preferences dialog box allows you to change the appearance of your Test and Runtime Analysis reports.

Report Viewer

• Background color: This allows you to choose a background color for the Report Viewer window.

Syntax Color

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

Related Topics

Editing Preferences on page 1044 | Using the Report Viewer on page 737

Memory Profiling viewer preferences

Memory Profiling for C and C++

The Preferences dialog box allows you to change the appearance of your Memory Profiling reports for C and C++.

Memory Profiling Viewer

• Background color: This allows you to choose a background color for the Memory Profiling Viewer window.

Styles

• Styles: This list allows you to select one or several styles that you want to change. To change several styles at

the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected style. This

opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

Related Topics

Editing Preferences on page 1044 | Using the Memory Profiling Viewer on page 407

Chapter 7. Reference Guide

Studio GUI elements

When you launch the HCL OneTest™ Embedded Graphical User Interface (GUI), you are first greeted with the Start

Page and a series of windows. Click the elements below to learn how to use them:

• The Start Page on page 1055 is your main starting point when you launch the GUI

• The Project Explorer on page 1056 is where you create, develop and execute your project nodes

• The Properties Window on page 1058 provides information about node properties

• The Output Window on page 1056 displays the output of command line tools and compilers

• The Standard Toolbars on page 1060 provide quick and convenient access to the most commonly used

features

• The Report Explorer on page 1059 allows you to navigate through analysis reports

Related Topics

Using the Graphical User Interface on page 689 | Activity Wizards on page 695 | GUI Components and Tools on

page 690

Start Page

When you launch the graphical user interface, the first element that appears is theHCL OneTest™ Embedded Start

Page.

The Start Page is the central location of the application. From here, you can create a new project, start a new activity

and navigate through existing project reports.

The Start Page contains the following sections:

• Welcome:General information for first-time users of the product.

• Get Started:This section lists your recent projects as well as a series of sample projects provided with HCL

OneTest™ Embedded.

• Activities:This section displays a series of new activities. Click a new activity to launch the corresponding

activity wizard. A project must be open before you can select a new activity.

• Examples:A set of sample projects for tutorial or demonstration purposes. You can use these projects to get

familiar with the product.

• Support:Links to Customer Support and online documentation.

1055

HCL® OneTest™ Embedded

1056

To reset the recent files list, select the Start page and click the Reset toolbar button, and then click the Reload

toolbar button to reload the Start page.

Related Topics

Using the Graphical User Interface on page 689 | Activity Wizards on page 695

Output Window

The Output Window displays messages issued by product components or custom features.

The first tab, labelled Build, is the standard output for messages and errors. Other tabs are specific to the built-in

features of the product or any user defined tool that you may have added.

To switch from one console window to another, click the corresponding tab. When any of the Output Window tabs

receives a message, that tab is automatically activated.

When a console message contains a filename, double-click the line to open the file in the Text Editor. Similarly when a

test report appears in the Output Window, double-click the line to view the report.

Output Window Actions

Right-click the Output Window to bring up a pop-up menu with the following options:

• Edit Selected File: Opens the editor with the currently selected filename.

• Copy: Copies the selection to the clipboard.

• Clear Window: Clears the contents of the Output Window.

To hide or show the Output Window, from the View menu, select Other Windows and Output Window.

Related Topics

Project Explorer on page 1056 | Using the Tools Menu on page 744

Project Explorer

The Project Explorer allows you to navigate, construct and execute the components of your project. The Project

Explorer organizes your workspace from two viewpoints:

• Project Browser: This tab displays your project as a tree view, as it is to be executed.

• Asset Browser: Source code and test script components are displayed on an object or elementary level.

To change views, select the corresponding tab in the lower section of the Project Explorer window.

Chapter 7. Reference Guide

Project Browser

The Project Browser displays the following hierarchy of nodes:

• Projects: the Project Explorer's root node. Each project can contain one or more sub-projects.

• Results: after execution, this node can be expanded to display the resulting report sub-nodes and files,

allowing you to control those files through a CMS system such as Rational ClearCase.

• Test groups: provide a way to group and organize test or application nodes into one or more test campaigns

• Test nodes:these contain test scripts and source files:

• Test Scripts:for Component Testing or System Testing

• Source files: for code-under-test as well as additional source files

• Any other test related files

• Application nodes:represent your application, to which you can apply SCI instrumentation for Memory

Profiling, Performance Profiling, Code Coverage and Runtime Tracing.Application nodes can also contain

Contract Check scripts for C++.

• Library nodes:allow you to specify library files that can be used by anytest orapplication node.

• External Command nodes: these allow you to add shell command lines at any point in the Test Campaign.

After execution of a test or applicationan application node, double-click the node to open all associated available

reports.

When you run a Build command in the Project Browser, the product parses and executes each node from the inside-

out and from top to bottom. This means that the contents of a parent node are executed in sequence before the

actual parent node.

Asset Browser

The Asset Browser displays all the files contained in your project. The product parses the files and displays individual

components of your source files and test scripts, such as classes, methods, procedures, functions, units and

packages.

Use the Asset Browser to easily navigate through your source files and test scripts.

In Asset Browser, you can select the type of Asset Browser in the Sort Method box at the top of the Project Explorer

window. Each view type can be more or less relevant depending on the programming language used:

1057

HCL® OneTest™ Embedded

1058

• By File: This view displays a classic source file and dependency structure

• By Object: Primarily for C++, this view type presents objects and methods independently from the file

structure

• By Directory:Displays packages and components

Use the Sort button to activate or disable the alphabetical sort.

Double-click a node in the Asset Browser to open the source file or test script in the text editor at the corresponding

line.

To switch Project Explorer views, click the Project Browser or Asset Browser tab.

To hide or show the Project Explorer, right-click an empty area within the toolbar, and then select or clear the Project

Window menu item; or from the View menu, select Other Windows and Project Window.

Related Topics

Report Explorer on page 1059 | Discovering the GUI on page 1055

Properties Window

The Properties Window box contains information about the node selected in the Project Explorer. It also allows you

to modify this information. The information available in the Properties Window depends on the view selected in the

Project Explorer:

• Project Browser

• Asset Browser

When relevant, the properties can use environment variables.

Project Browser

Depending on the node selected, any of the following relevant information may be displayed:

• Name: Is the name carried by the node in the Project Explorer.

• Exclude from Build: Excludes the node from the Build process. When this option is selected a cross is

displayed next to the node in the Project Explorer.

• Execute in background: Enables the build and execution of more than one test or application node at the

same time.

• Relative path: Indicates the relative path of the file.

Chapter 7. Reference Guide

• Full path: Indicates the entire path of the file.

• Instrumented: Indicates whether the source file is instrumented or not. You can select either Yes or No.

Note The Instrumented property is ignored for Component Testing for C++ if the .otd test script contains a

CHECK METHOD statement or if an .otc contract check script is used. In these cases, the source files are always

instrumented.

Asset Browser

Select the type of Object View in the Sort Method box at the top of the Project Explorer window: By Object, By Files,

or By Packages. Depending on the sort method selected, and the type of object or file, any of the following relevant

information may be displayed:

• Name: is the name carried of the file, object or package.

• Filters (for folders): is the file extension filter for files in that folder. See Creating a Source File Folder on

page 716.

• Name: is the name carried of the file or package.

• Relative path: indicates the relative path of the file.

• Full path: indicates the entire path of the file.

To open the Properties window, in the Project Explorer, right-click a node, and then select Properties... in the pop-up

menu.

To hide or show the Properties window, right-click an empty area within the toolbar, and then select or clear the

<object> Property menu item; or from the View menu, select Other Windows and <object> Property.

Related Topics

Report Explorer on page 1059 | Project Explorer on page 1056 | Excluding a Node from a Build on page 732

Report Explorer

The Report Explorer allows you to navigate through all text and graphical reports, including:

• Test reports generated by Component or System Testing

• Memory Profiling, Performance Profiling and Code Coverage reports

• UML Sequence Diagram reports from the Runtime Tracing feature

• Metrics produced by the Metrics Viewer

1059

HCL® OneTest™ Embedded

1060

The actual appearance of the Report Explorer contents depends on the nature of the report that is currently displayed,

but generally the Report Explorer offers a dynamic hierarchical view of the items encountered in the report.

Click an item in the Report Explorer to locate and select it in the Report Viewer or UML/SD Viewer window.

To hide or show the Report Explorer, right-click an empty area within the toolbar, and then select or clear the Report

Explorer menu item.

Related Topics

Using the Report Viewer on page 737 | About the Code Coverage Viewer on page 379 | Using the Memory Profiling

Viewer on page 407 | Using the Performance Profiling Viewer on page 421 | Viewing Static Metrics on page 253

Toolbars

The toolbars provide shortcut buttons for the most common tasks.

To hide or show a toolbar, right-click an empty area within the toolbar, select and clear those toolbars you want to

display or hide, and then click OK; or from the View menu, select Toolbars and the toolbars that you want to display or

hide.

Main Toolbar

The main toolbar is available at all times:

• The New File button creates a new blank text file in the Text Editor on page 725.

• The Open button allows you to load any project, source file, test script or report file supported by the

product.

• The Save File button saves the contents of the current window.

• The Save All button saves the current workspace as well as all open files.

• The Cut , Copy and Paste buttons provide the standard clipboard functionality.

• The Undo and Redo buttons allow you undo or redo the last command.

• The Find button allows you to locate a text string in the active Text Editor or report window.

View Toolbar

The View toolbar provides shortcut buttons for the Text Editor and report viewers.

Chapter 7. Reference Guide

• The Choose zoom Level box and the Zoom In and Zoom Out buttons are classic Zoom controls.

• The Reload button refreshes the current report in the report viewer. This is useful when a new report has

been generated.

• The Reset Observation Traces button clears cumulative reports such as those from Code Coverage,

Memory Profiling or Performance Profiling.

Build Toolbar

The build toolbar provides shortcut buttons to build and run the application or test.

• The Configuration box allows you to select the target configuration on page 231 on which the test will be

based.

• The Build button launches the build and executes the node selected in the Project Explorer. You can

configure the Build Options for the workspace by selecting the Options button.

• The Stop button stops the build or execution.

• The Clean Parent Node button removes files created by previous tests.

• The Execute Node button executes the node selected in the Project Explorer.

Status Bar

The Status bar is located at the bottom of the main GUI window. It includes a Build Clock which displays execution

time, and the Green LED which flashes when work is in progress.

Text Editor Toolbar

The text editor toolbar provides shortcut buttons for editing source files and test scripts. Some buttons may only be

available when editing certain file types.

• The Comment (-- or //) button allows you to add the comment prefix for the corresponding language to the

selected lines.

• The Comment (-- or //) button removes the comment prefix for the corresponding language.

• The Add Test (T) button adds a TEST ... END TEST statement block to a .ptu test script.

• The Add Note button inserts the _ATT_USER_NOTE instrumentation pragma into your source code to

produce notes in the UML sequence diagram of the execution.

• the Insert Dump button inserts the _ATCPQ_DUMP instrumentation pragma into your source code to

introduce a manual trace dump when required for runtime analysis tools.

1061

HCL® OneTest™ Embedded

1062

Report Viewer Toolbar

The Report toolbar eases report navigation with the Report Viewer.

Report Viewer commands are available when a Report Viewer window is open:

• The Previous Failed Test and Next Failed Test buttons allow you to quickly navigate through the Failed items.

• The Failed Tests Only or All Tests button toggles between the two display modes.

Code Coverage Toolbar

The Code Coverage toolbar is useful for navigating through code coverage reports generated by the Code Coverage

tool.

These buttons are available when the Code Coverage viewer is active.

• The Previous Link and Next Link buttons allow you to quickly navigate through the Failed items.

• The Previous Uncovered Line and Next Uncovered Line buttons allow you to quickly navigate through the

Failed items.

• The Failed Tests Only or All Tests button toggles between the two display modes.

• The F button allows you to hide or show functions

• The E button allows you to hide or show function exits

• The B button allows you to hide or show statement blocks

• The I button allows you to hide or show implicit blocks

• The L button allows you to hide or show loops.

UML/SD Viewer Toolbar

The UML/SD Viewer toolbar provides shortcut buttons to commands related to viewing graphical test reports and

UML sequence diagrams.

UML/SD Viewer commands are only available when a UML sequence diagram is open.

• The Filter button allows you to define a sequence diagram filter.

• The Trigger button sets sequence diagram triggers.

The following buttons are only available when using the Step-by-Step mode.

• The Step button moves the UML/SD Viewer to the next selected event.

• The Select button allows you to select the type of event to trace.

Chapter 7. Reference Guide

• The Continue button draws everything to the end of the trace diagram.

• The Restart button restarts Step-by Step mode.

• The Pause button pauses the On-the-Fly display mode. The application continues to run.

The TDF file selector is only available when using the Split TDF File feature.

• Click the button to select a .tdf dynamic trace file from the list.

• Click the Previous and Next buttons to select the previous or next file in the list.

Test process monitor toolbar

The test process monitor (TPM) toolbar is useful for navigating through TPM charts.

These buttons are available when a TPM window is open:

• The Clear button removes all curves from the chart.

• The Hide Event button hides the displayed event markers.

• The Floating Schedule button toggles the automatic location of new curves.

Related Topics

Report Explorer on page 1059 | Start Page on page 1055 | GUI elements on page 1055

UML/SD Viewer Toolbar

The UML/SD Viewer toolbar provides shortcut buttons to commands related to viewing graphical test reports and

UML sequence diagrams.

UML/SD Viewer commands are only available when a UML sequence diagram is open.

• The Filter button allows you to define a sequence diagram filter.

• The Trigger button sets sequence diagram triggers.

The following buttons are only available when using the Step-by-Step mode.

• The Step button moves the UML/SD Viewer to the next selected event.

• The Select button allows you to select the type of event to trace.

• The Continue button draws everything to the end of the trace diagram.

• The Restart button restarts Step-by Step mode.

• The Pause button pauses the On-the-Fly display mode. The application continues to run.

1063

HCL® OneTest™ Embedded

1064

The TDF file selector is only available when using the Split TDF File feature.

• Click the button to select a .tdf dynamic trace file from the list.

• Click the and buttons to select the previous or next file in the list.

Related Topics

Standard Toolbars on page 1060 | About the UML/SD Viewer on page 431

GUI macro variables

Some parts of the graphical user interface (GUI) allow you to specify command lines, such as in the Tools menu or in

User Command nodes.

To enhance the usability of this feature, the product includes a macro language, allowing you to pass system and

application variables to the command line.

Usage

Macro variables are preceded by $$ (for example: $$WSPNAME).

Macro functions are preceded by @@ (for example: @@PROMPT).

Environment variables are also accessible, and start with $ (for example: $DISPLAY).

When specifying a command line, variables and functions are replaced with their value.

In Windows, when long filenames are involved, it is necessary to add double quotes (" ") around filename variables.

For example:

"C:\Program Files\Internet Explorer\IEXPLORE.EXE" "$$NODEPATH"

Node variables are context-sensitive: the variable returned relates to the node selected in the File or Test Browser.

Multiple selections are supported. If a node variable is invoked when there is no selection, no value is returned by the

variables.

Macro variables and functions are case-insensitive. For clarity, they are represented in this document in upper case

characters.

Language Reference

• Global variables: not node-related, include Workspace and application parameters.

• Node attribute variables: general attributes of a node.

• Functions: return a value to the command line after an action has been performed.

Chapter 7. Reference Guide

Global Variables

Global variables always return the same value throughout the Workspace.

Environ­

ment Vari­

able

Description

$$PRJ­

NAME

Returns the name of the current .rtp Project file

$$PRJDIR Returns the directory name of the current .rtp Project file

$$PRJ­

PATH

Returns the absolute path of the current .rtp Project file

$$VCSDIR Returns the local repository for files retrieved from Rational ClearCase, as specified in the ClearCase

Preferences dialog box

$$CPPIN­

CLUDES

Returns the directory of C and C++ include files, as specified in the Directories Preferences dialog box

$$PERL
Returns the full command-line to run the PERL interpreter included with the product.

$$PERL allows to execute any perl script when its absolute or relative (from project) path is specified.

If no path is specified, then the script will be searched in the following locations:

1. Current project path ($$PRJPATH)

2. $TESTRTDIR/lib/scripts

Examples:

To remove foo.txt and bar.obj from project directory by using the script perlrm.pl:

$$PERL perlrm foo.txt bar.obj

To copy file to target directory by using the script perlcp.pl:

$$PERL perlcp file.txt

$$CLIP­

BOARD

Returns the text content of the clipboard

$

$VCSITEMS

Returns a list of files managed by the CMS tool. If a single source file is selected, $$VCSITEMS returns

the absolute path of the file. If a group or test node is selected, $$VCSITEMS returns a list of all files

that must be registered in the configuration database (test script and reports).

1065

HCL® OneTest™ Embedded

1066

$$OUTDIR Returns the INTDIR perl value, as specified in the temporary directory, where the temporary files are

created during the Build process are located.

$$REPORT­

DIR

Returns the OUTDIR perl value, as specified in the report directory, where test and analysis results are

created.

Node Attribute Variables

These variables represent the attributes of a selected node. If no node is selected, these variables return an empty

string.

Environment Vari­

able

Description

$$NODENAME Returns the name of the node. In the case of files, this is the node's short filename

$$NODEPATH Returns the absolute path and filename of the selected node

$$CFLAGS Returns the compilation flags

$$LDLIBS Returns the filenames of link definition libraries

$$LDFLAGS Returns the flags used for link definition

$$ARGS Returns all arguments sent to the command line

$$OUTDIR Returns the name of the product features output directory

$$REPORTDIR Returns name of the text report output directory

$$TARGETDIR Returns the absolute path to the current Target Deployment Port

$$BINDIR Returns the binary directory where the product is installed

$$OBJECTS Returns a list of .o or .obj object files generated by the compiler

$$TIO Returns the name of the current .tio trace file generated by Code Coverage

$$TSF Returns the name of the current UML/SD .tsf static file generated by Runtime Tracing

$$TDF Returns the name of the current UML/SD .tdf dynamic file generated by Runtime Trac­

ing

$$TDC Returns the name of the current Code Coverage .tdc correspondence file

$$ROD Returns the name of the current .rod report file

$$FDC Returns the name of the current .fdc correspondence files for Code Coverage

Functions

Functions process an input value and return a result. Input values are typically a global or node variable.

Chapter 7. Reference Guide

Environment Vari­

able

Description

@@PROMPT('

<message> ')
Opens a prompt dialog box, allowing the user to enter a line of text.

The optional <message> parameter allows you to define a prompt message, surrounded by sin­

gle quotes (').

@@EDITOR(<file­

name>)

Opens the product Text Editor.

@@OPEN(<file­

name>)

Opens <filename>. <filename> must be a file type recognized by the product. This is the equiva­

lent of selecting Open from the File menu.

File types

This table summarizes all the file types generated and used by HCL OneTest™ Embedded.

File Type
De­

fault

Ex­

ten­

sion

Generated By Used By

Component Testing for C++

Declaration Files

.dcl C++ Source code Parser on page 1167* C++ Test Script Com­

piler on page 1166

Component Testing for Ada

Intermediate File

.ddt Ada Test Script Compiler on page 1176 Ada Test Report Gen­

erator on page 1181

Code Coverage

Correspondence File

.fdc Instrumented application (Code Coverage) Code Coverage Re­

port Generator on

page 1137

System Testing .hts

Component Testing for Ada

Intermediate File

.mdt Ada Test Script Compiler on page 1176 Ada Test Report Gen­

erator on page 1181

1067

HCL® OneTest™ Embedded

1068

Static Metrics File .met
C++ Source code Parser on page 1167

C Source Code Parser on page 1153

Ada Source Code Parser on page 1173

GUI Metrics Viewer

Component Testing for C++

Contract Check Script

.otc C++ Source code Parser on page 1167* C++ Test Script Com­

piler on page 1166

Component Testing for C++

Test Driver Script

.otd C++ Source code Parser on page 1167* C++ Test Script Com­

piler on page 1166

Component Testing for C++

Instrumentation File

.oti C++ Test Script Compiler on page 1166 C and C++ In­

strumentor on

page 1110

Component Testing for C++

Intermediate File

.ots C++ Test Script Compiler on page 1166 C++ Test Report Gen­

erator on page 1165

System Testing for C Test Script .pts User System Testing

Script Compiler on

page 1147

Component Testing for C and

Ada Test Script

.ptu C Source Code Parser on page 1153* C Test Script Compil­

er on page 1157

System Testing for C Result File

Component Testing for C and

Ada Result File

.rio
Test Driver

(System Testing for C)

Test Driver

(Component Testing for C and Ada)

System Testing Re­

port Generator on

page 1145

C Test Report Gener­

ator on page 1162

Ada Test Report Gen­

erator on page 1181

Project File .rtp GUI GUI

Project Model File .rtpl GUI GUI

Workspace File .rtw GUI GUI

Graphic Report .rtx
C Test Report Generator on page 1162

GUI Report Viewer

Chapter 7. Reference Guide

Ada Test Report Generator on page 1181

System Testing for C Supervision

Script

.spv
User (via CLI) or

Virtual Tester Deployment Wizard

System Testing for C

Supervisor

Target Output File .spt Target Deployment Port GUI

Component Testing for C++

Stub Files

.stb C++ Source Code Parser on page 1167* C++ Test Script Com­

piler on page 1166

System Testing for C Intermedi­

ate File

Component Testing for C and

Ada Intermediate File

.tdc
System Testing Script Compiler on page 1147

C Test Script Compiler on page 1157

Ada Test Script Compiler on page 1176

System Testing Re­

port Generator on

page 1145

C Test Report Gener­

ator on page 1162

Ada Test Report Gen­

erator on page 1181

UML/SD

Dynamic Trace File

.tdf Instrumented application (Runtime Tracing and

Component Testing for C++)

GUI UML/SD Viewer

Code Coverage

Intermediate File

.tio Instrumented application (Code Coverage) Code Coverage Re­

port Generator on

page 1137

Memory Profiling for C and C++

Dynamic Trace File

.tpf Instrumented application (Memory Profiling) GUI Memory Profiling

Viewer

Performance Profiling

Dynamic Trace File

.tqf Instrumented application (Performance Profiling) GUI Performance

Profiling Viewer

Static Trace File .tsf
C++ Test Script Compiler on page 1166

C and C++ Instrumentor on page 1110

GUI UML/SD Viewer

Target Deployment Port Cus­

tomization File

.xdp TDP Editor TDP Editor

1069

HCL® OneTest™ Embedded

1070

XML Report File .xrd
C Test Report Generator on page 1162 Ada Test

Report Generator on page 1181 C++ Test Report

Generator on page 1165

System Testing Report Generator on page 1145

GUI Report Viewer

Report Viewer Summary File .xtp TestRTcc (eclipse)
TestRT eclipse view­

er

GUI Report Viewer

* Indicates files that are generated test script templates. Use these files to write your own test scripts.

Environment variables

Mandatory environment variables

The following environment variables MUST be set to run the product:

• TESTRTDIR for the graphical user interface

• ATUDIR for Component Testing for C and Ada

• ATS_DIR for System Testing for C

• ATLTGT in the command line interface

Environment variable list

Environment Vari­

able

Description

TESTRTDIR A mandatory environment variable that points to the installation directory of the product.

ATTOLSTUDIO_­

VERBOSE

Setting this variable to 1 forces the product GUI to display verbose messages, including file

paths, in the Build Message Window.

Runtime Analysis features

The Runtime Analysis Features use the following environment variables:

Chapter 7. Reference Guide

Envi­

ron­

ment

Vari­

able

Description

ATLT­

GT
A mandatory environment variable that points to the Target Deployment Port directory when you are using

the product in the command line interface.

When you are using the Instrumentation Launcher or the product GUI, you do not need to set ATLTGT man­

ually, as it is calculated automatically.

ATL_­

TMP_­

DIR

Indicates the location for temporary files. By default, they are placed in /tmpfor UNIX or the current directo­

ry for Windows.

ATL_­

EXT_­

SRC

This variable allows you to instrument additional files with filename extensions other than the defaults (.c

and .i). The .c extension is reserved for C source files that require preprocessing, while .i is for already pre­

processed files. All other extensions supported by this variable are assumed to be of source files that need

to be preprocessed.

ATL_­

EXT_­

OBJ

Lets you specify an alternative extension to .o(UNIX) or.obj(DOS) for object files.

ATL_­

EXT_­

ASM

Lets you specify more than .s extension for assembler source files when the compiler offers an option to

generate an assembler listing without compiling it to the object file.

ATL_­

EXT_­

TMP_­

CMD

Windows only. Lets you specify an alternative extension to the Windows temporary options file. Defaults to

._@@.

ATL_­

EXT_­

SRCCP

The variable lets you add C++ source file extensions (defaults are .C, .cpp, .c++, .cxx, .cc, and .i) to specify

the C++ source files to be instrumented. Extensions .C to .cc in the list are reserved for source files under

analysis. The .i extension is reserved for those to be processed, if the ATL_FORCE_CPLUSPLUS variable is

set to ON. Any other extension implies that pre-processing is to be performed.

ATL_­

FORCE_­

CPLUS­

PLUS

If set to ON, this variable allows you to force C++ instrumentation whether the file extension is .c, .i, or any

added extension.

1071

HCL® OneTest™ Embedded

1072

Component Testing for C and Ada

Component Testing for C and Ada uses the following environment variables:

Environment Vari­

able

Description

ATUDIR Points to the /lib directory in the product installation directory.

ATUTGT Points to the Target Deployment Port directory for Component Testing for C and

Ada.

You can change default extensions for Component Testing for C and Ada through the use of environment variables

when the Test Script Compiler or Test Report Generator is started.

The following table summarizes these environment variables and the extensions they modify.

Environment Vari­

able

File Default extension

ATTOLPTU Test script .ptu

ATTOLTDC Table of correspondence

file

.tdc

ATTOLLIS List of errors .lis

ATTOLRIO Trace file .rio

ATTOLRO Test report .ro

ATTOLROD Unformatted test report .rod

ATTOLDEF Standard definitions file .def

ATTOLSMB Symbol table file .smb

The rule whereby a "2" is added to the extension of the .rio trace file when the -compare option is used still applies if

the default extension is changed in the ATTOLRIO environment variable.

System Testing for C

System Testing for C uses the following environment variable:

Environment Vari­

able

Description

Chapter 7. Reference Guide

ATS_DIR Points to the directory containing the System Testing binaries for

C.

Test Process Monitor

The Test Process Monitor uses the following environment variables.

Envi­

ron­

ment

Vari­

able

Description

AT­

TOL_­

TPM_­

ROOT

This variable indicates the directory where Test Process Monitor databases are located for a project. AT­

TOL_TPM_ROOT is a mandatory variable and must be set when a project is created. It should be a shared

directory accessible by all users who work on a project.

AT­

TOL_­

TPM_­

USER

This optional variable specifies the name of the user. If this variable is not set, the Test Process Monitor us­

es the current user, if possible.

C and C++ Instrumentation Launcher

The Instrumentation Launcher uses the following additional variables:

Environ­

ment

Variable

Description

ATTOL­

BIN

If set, this variable must contain the path to the Instrumentor binaries. If not, this path is determined au­

tomatically from the PATH variable. This variable can be useful if the Target Deployment Port has been

moved to a non-standard location.

AT­

TOLOBJ

If set, this variable points to a valid directory where the products.h file is generated and the Target Deploy­

ment Port (TP.oorTDP.obj) is compiled. By default, these files are generated in the current directory.

ATL_­

OVER_­

SET

This variable must indicate the path to a copy of the BatchCCDefaults.pl file if you want to change any

Target Deployment Port compilation flags contained in that file.

ATL_EX­

T_LIB

Lets you specify additional alternative extensions for library files. By default .a or .lib are used.

1073

HCL® OneTest™ Embedded

1074

ATL_­

FORCE_­

C_TDP

If set to ON, the tp.ini file is used instead of the tpcpp.ini file (used for C++ language). If the Target Deploy­

ment Port supports only C language, the tp.ini file is always used.

ATL_­

OVER_­

SET

As an alternative to using the --settings of the Instrumentation Launcher, you can copy and modify the

<InstallDir> /lib/scripts/BatchCCDefaults.pl file. In this case, set ATL_OVER_SET to the directory and file­

name of the new copy of this file.

Ada tools

The Ada Link File Generator and Ada Unit Maker use the following additional variables:

Environment

Variable

Description

ATTOLCHOP
Selects the default naming convention. The following values can be used:

ATTOLCHOP="APEX" : for Apex naming

ATTOLCHOP="GNAT" : for Gnat naming

All other values end with a fatal error. By default, Gnat naming is used.

ATTOLALK_­

EXT
Specifies allowed extensions separated by the semicolon (':') character on UNIX systems and (';') on

Windows.

By default, the allowed extension list is ".ada:.ads:.adb"

ATTOLALK_­

NOEXT
Specifies forbidden extensions separated by the ':' character on UNIX systems and ';' on Windows.

By default, the forbidden extension list is empty.

LD_­

LIBRARY_­

PATH

Specifies the location of libraries required by the Ada Link File Generator on page 1183. By default,

these libraries are located in the /lib directory of the installation directory.

Related Topics

Setting Environment Variables on page 734

Target Deployment Port window
From HCL OneTest™ Embedded Studio, you can see the list of Target Deployment Ports installed on your platform

and reload the list if any TDP had been updated.

Chapter 7. Reference Guide

To open the Target Deployment Port window in , click Project > Target Deployment Port in the main menu toolbar.

Installed TDP list

This panel displays the list of all Target Deployment Ports installed. To have more information on a TDP, select one of

them in the list and click Details. The name of the TDP, its path, and other details show up in another pane. If any TDP

has been modified, click Reload to refresh the list.

Runtime and static analysis reference

The command line interface allows you to integrate HCL OneTest™ Embedded runtime analysis tools into your build

process.

To learn about See

Using the command line tools for Runtime Analysis Command line interface refer­

ence on page 1100

Inserting trace probes in your code Trace probe macros on

page 1075

Inserting instrumentation macro commands in your code Instrumentation pragmas on

page 1081

Related Topics

Using the command line interface on page 995 | Command line Runtime Analysis for C and C++ on page 998

Trace probe macros

Trace probe macros

Trace Probes for C

Trace Probes macros allow you to manually instrument your source code under test to add message tracing

capability to your test binary. This feature is only available for C.

Upon execution of the instrumented binary, the probes write trace information on the exchange of specified

messages to the .rio output file.

Please refer to the section about Trace Probes for C in the User Guide for more information about using this feature.

Using Probe Macros

Before adding Trace Probe macros to your source code, add the following #include statement to each source file that

will contain a probe:

﷓include "atlprobe.h"

1075

HCL® OneTest™ Embedded

1076

The atl_start_ trace() on page 1076 and atl_end_trace() on page 1080 macros must be called respectively when the

application under test starts and terminates.

Other macros must be placed in your source code in locations that are relevant for the messages that you want to

trace.

Trace Probe macros

• atl_dump_trace() on page 1079

• atl_end_trace() on page 1080

• atl_recv_trace() on page 1077

• atl_select_trace() on page 1078

• atl_send_trace() on page 1078

• atl_start_trace() on page 1076

• atl_format_trace() on page 1081

atl_start_trace()

Trace Probes for C

Purpose

Initializes the environment of an instance trace. This macro must be executed before any other probe macro. Ideally, it

can be placed at the start of the application.

Syntax

atl_start_trace(<handle >, "<path>", <instance>, <size>)

where:

• <handle> is the handle of the media storage and the handle of the result file (.rio). It relates to the instance

name. This handle is used by other macros for all messages sent or received by this instance. This parameter

must be in a valid variable name format and a non existing variable.

• <path> is the path to the .rio file to which the traces are to be written (with quotes ""). It can be used to open

the intermediate binary file.

• <instance> is the logical name of the life line showing messages sent or received by the application instance.

it could be the process/thread name or the layer name.

• <size> specifies the memory size used in bytes in FIFO or USER mode.

Chapter 7. Reference Guide

Example

int main(int argc, char** argv)

{

...

atl_start_trace(atl_client, "../res/", client, 0);

atl_start_trace(atl_serv, "../res/", serv, 0);

...

atl_end_trace(atl_client);

atl_end_trace(atl_serv);

...

}

Related Topics

Probe macros on page 1075 | atl_end_trace() on page 1080

atl_recv_trace()

Trace Probes for C

Purpose

Traces the reception of message.

Syntax

atl_recv_trace(<handle >, <dist>, <msg>, <type>, <msgname>)

where:

• <handle> is the handle linked to an instance.

• <dist> is the identifier of the emitter of a message.

• <msg> is the message address to trace.

• <type> is the message type as defined in the header files.

• <msgname> is the logical name of the message traced in the report.

Example

1077

HCL® OneTest™ Embedded

1078

atl_recv_trace(atl_client,f1,serv,t_cost,cost);

atl_send_trace

Related Topics

Probe macros on page 1075 | atl_send_trace() on page 1078

atl_select_trace()

Trace Probes for C

Purpose

Specifies for a given union type, the field to use for a message instance.

Syntax

atl_select_trace(<handle>, <idx>, <rank>)

where:

• <handle> is the handle linked to an instance.

• <idx> is a union type name.

• <rank> is the rank of the field used in the union type, starting at 0 for the first rank.

Example

atl_recv_trace(atl_client,f1,serv,t_cost,cost);

atl_send_trace

Related Topics

Probe macros on page 1075 | atl_send_trace() on page 1078

atl_send_trace()

Trace Probes for C

Purpose

Traces a message sent.

Syntax

atl_send_trace(< ctx>, <dist>, <msg>, <type>, <msgname>)

Chapter 7. Reference Guide

where:

• <handle> is the handle linked to an instance.

• <dist> is the identifier of the receiver of a message.

• <msg> is the message identifier.

• <type> is the message type as defined in the msg_type.h file.

• <msgname> is the name of the message traced in the report.

Example

atl_send_trace(atl_client,f1,serv,t_cost,cost);

Related Topics

Probe macros on page 1075 | atl_start_trace() on page 1076 | atl_recv_trace() on page 1077

atl_dump_trace()

Trace Probes for C

Purpose

Writes traces from the custom location to the .rio result file, when FIFO, FILE or USER buffer mode is selected in the

Probe settings.

This macro is ignored in DEFAULT mode.

Syntax

atl_dump_trace()

Example

int main(int argc, char** argv)

{

...

atl_start_trace(atl_client, "../res/", client, 0);

atl_start_trace(atl_serv, "../res/", serv, 0);

...

atl_end_trace(atl_client);atl_end_trace(atl_serv);

1079

HCL® OneTest™ Embedded

1080

atl_dump_trace();

...

}

Related Topics

Probe macros on page 1075 | atl_end_trace() on page 1080

atl_end_trace()

atl_end_trace()

Trace Probes for C

Purpose

Closes the trace environment of an instance. This macro must be executed before the application terminates.

Syntax

atl_end_trace(< ctx>)

where:

• <handle> is the handle linked to an instance.

Example

int main(int argc, char** argv)

{

...

atl_start_trace(atl_client,"client.rio",client,1000);

atl_start_trace(atl_serv, "serv.rio", serv, 2000);

...

atl_end_trace(atl_client);

atl_end_trace(atl_serv);

...

}

Related Topics

Chapter 7. Reference Guide

Probe macros on page 1075 | atl_start_trace() on page 1076

atl_format_trace()

Trace Probes for C

Description

This macro allows you to include a format file for the trace output.

Syntax

atl_format_trace(<file>)

where:

• <file> is the name of a format file, containing System Testing FORMAT instructions for C.

Example

int main(int argc, char** argv)
{
...
 atl_start_trace(atl_client,"client.rio",client,1000);
atl_start_trace(atl_serv, "serv.rio", serv, 2000);
...
atl_format_trace("atl_format.hts");
...
atl_end_trace(atl_client);
atl_end_trace(atl_serv);
...
}

Related Topics

Probe macros on page 1075 | atl_start_trace() on page 1076 | FORMAT on page 886

Instrumentation pragmas

The Runtime Tracing feature allows the user to add special directives to the source code under test, known as

instrumentation pragma directives. When the source code is instrumented, the Instrumentor replaces instrumentation

pragma directives with dedicated code.

Usage

#pragma attol <pragma name> <directive>

Example

int f (int a)

1081

HCL® OneTest™ Embedded

1082

{

﷓pragma attol att_insert if (a == 0) _ATT_DUMP_STACK

return a;

}

This code will be replaced, after instrumentation, with the following line:

/*﷓pragma attol att_insert*/ if (a == 0) _ATT_DUMP_STACK

Note Pragma directives are implemented only if the routine in which it is used is instrumented.

Instrumentation Pragma Names
#pragma attol insert <directive>

This code must be replaced with the following instrumentation if any of Code Coverage, Runtime Tracing, Memory

Profiling or Performance Profiling is/are selected:

/*﷓pragma attol insert*/ <directive>

#pragma attol atc_insert <directive>

This code must be replaced with the following instrumentation if Code Coverage is selected:

/*﷓pragma attol atc_insert*/ <directive>

#pragma attol att_insert <directive>

This code must be replaced with the following instrumentation if Runtime Tracing is selected:

/*﷓pragma attol att_insert*/ <directive>

#pragma attol atp_insert <directive>

This code must be replaced with the following instrumentation if Memory Profiling is selected.

/*﷓pragma attol atp_insert*/ <directive>

#pragma attol atq_insert <directive>

This code must be replaced with the following instrumentation if Performance Profiling is selected.

/*﷓pragma attol atq_insert*/ <directive>

#pragma attol type_boolean= <myType>

Chapter 7. Reference Guide

For Code Coverage, this code declares the variable type <myType> as a Boolean for MC/DC coverage of bit-wise

operations.

#pragma attol type_modifier= <keyword

This pragma indicates a specific type modifier to the parser. For example:

﷓pragma attol type_modifier = __far

﷓pragma attol type_modifier = __pascal

will analyze silently :

int __pascal func (int) { /* ... */ }

char __far *pointer;

#pragma attol stop_analyze #pragma attol start_analyze

#pragma attol stop_instr #pragma attol start_instr

These pragmas can be used to start and stop analysis or instrumentation.

Stopping analysis also stops instrumentation. Starting instrumentation also starts analysis.

#pragma attol rename_local_var = <FuncName>:<localVarName>

This pragma allows the user to change the declaration name of the local variable named <localVarName> into the

method <FuncName> in the source code. This instrumentation pragma directive can be used in a test to get access to

the <localVarName> variable.

In the following example, the prama is used to change the name of the local declaration var 'tata' into the translate

method. The following code that uses this variable will search for an external variable method instead of the local

one.

﷓pragma attol rename_local_var = translate:tata

int Point::translate(void)

{

static int tata=4;

return tata++; //

tata is a local variable that cannot be modified or read outside the method

becomes

int Point::translate(void)

1083

HCL® OneTest™ Embedded

1084

{

static int _atu_stub_tata=4;

return tata++; //

This 'tata' variable is now a global variable that can be created from the test driver script.

#pragma attol cov_justify <directive>

This pragma allows the user to add a justification statement for non-coverage of a branch of code.

For more details on the directives, see Justification of non-covered lines of code on page 76.

As this branch of code is covered, the code coverage percentage is computed. The coverage report highlights the

branch in blue. The justification is displayed in the coverage viewer when you hover over this branch with your mouse.

If this branch is covered, an error is reported in the coverage report.

Code Review Directives

In some cases, it can be useful to temporarily ignore a rule non-conformance on a short portion of source code, while

providing a justification of why you are allowing the non-conformance.

#pragma attol crc_justify (<rule>[,<lines>],"<text>")

This macro justifies a deviation on the first non-conformance to a rule that follows the pragma, where:

<rule> is the name of the code review rule (for example: "Rule M8.5").

<lines> is the optional number of lines (including blank lines), after the current pragma line, that are covered by the

deviation. The default value is 1 meaning that the deviation only applies to the next line. Specify the 'all' value to apply

the deviation to all lines until the end of the file.

<text> is the justification of why the deviation applies here.

#pragma attol crc_justify_all (<rule>,<lines>,"<text>")

This macro justifies all non-conformance instances to a rule that follows the pragma statement, where:

<rule> is the name of the code review rule (for example: "Rule M8.5").

<lines> is the number of lines (mandatory)

<text> is the justification of why the rule is ignored here.

#pragma attol crc_justify_everywhere (<rule>[,<lines>],"<text>")

This macro justifies all non-conformance instances to a rule for all source files in the current project, including if they

are located before the pragma statement, where:

<rule> is the name of the code review rule (for example: "Rule M8.5").

Chapter 7. Reference Guide

<lines> is an ignored parameter.

<text> is the justification of why the rule is ignored here.

The recommended usage for crc_justify_everywhere is to create a specific source file containing only the list of

pragma statements and to add this file to the project.

Code Coverage, Memory Profiling and Performance Profiling Directives

The following macros must be used only with Memory Profiling and Performance Profiling.

_ATCPQ_DUMP(<reset>)

where <reset> can be one or more of the following values:

• _ATCPQ_COV to dump coverage results.

• _ATCPQ_RESET_COV to reset the coverage status after the dump.

• _ATCPQ_QTF to dump performance results.

• _ATCPQ_RESET_QTF to reset the performance status after the dump.

• _ATCPQ_FREE_FRQ to free all old memory blocks after the dump.

• _ATCPQ_PRF to dump memory profiling results.

• _ATCPQ_CHK_WL to dump ABWL and FMWL results.

• _ATCPQ_ALL to dump everything.

By default, _ATCPQ_RESET is set to _ATCPQ_ALL but can be redefined with a compilation command. Values of 0 or 1

are equivalent to _ATCPQ_ALL.

_ATCPQ_CLOSE closes the result file at the end of the requested dump so that an open action can be done on the

next result dump using the runtime priv_open method.

_ATCPQ_DUMP can be automatically inserted by clicking the Insert Dump button in the Text Editor toolbar.

_ATP_CHECK(@REFLINE)

This macro indicates a manual dump point in the source code for checking for ADWL or FMWL errors when using

Memory Profiling. The corresponding setting must be selected.

The @REFLINE parameter is mandatory.

_ATP_TRACK(<pointer>)

This macro adds <pointer> to a list of selected memory blocks to check for ABWL or FMWL errors. A manual dump

point in the source code is used for checking for ADWL or FMWL errors when using Memory Profiling.

1085

HCL® OneTest™ Embedded

1086

Runtime Tracing Directives

When using this mode, the Target Deployment Package only sends messages related to an instance creation and

destruction, or user notes. All other events are ignored. See Partial message dump for more information about this

feature.

_ATT_START_DUMP

_ATT_STOP_DUMP

These directives enable and disable the partial message dump mode.

_ATT_TOGGLE_DUMP

This directive toggles the dump mode on and off. _ATT_TOGGLE_DUMP can be used instead of _ATT_START_DUMP

and _ATT_STOP_DUMP.

_ATT_DUMP_STACK

When invoked, this directive dumps the contents of the call stack at that moment.

_ATT_FLUSH_ITEMS

When entered in Target Deployment Package buffer mode, this directive flushes the buffer. All buffered trace

information is dumped. Flushing the buffer is useful before entering a time-critical phase of the trace.

_ATT_USER_NOTE(<text>)

This directive associates a text note to the function or method instance. <text> is a user-specified alphanumeric string

containing the note text of type char*. The length of <text> must be within the maximum note length specified in the

Runtime Tracing Settings dialog box. This pragma statement can be automatically inserted by clicking the Add Note

 button in the Text Editor toolbar.

Generating SCI Dumps

By default, the system call atexit() or on_exit() invokes the Target Deployment Port (TDP) function that dumps the

trace data. You can therefore instrument either all or a portion of the application as required.

When instrumenting embedded or specialized applications that never terminate, it is sometimes impractical to

generate a dump on the atexit() or on_exit() functions. If you exit such applications unexpectedly, traces may not be

generated.

In this case, you must either:

Chapter 7. Reference Guide

• Specify one or several explicit dump points in your source code, or

• Use an external signal to call a dump routine, or

• Produce an snapshot when a specific function is encountered.

Explicit Dump

Code Coverage, Memory Profiling and Performance Profiling allow you to explicitly invoke the TDP dump function by

inserting a call to the _ATCPQ_DUMP(1) instrumentation pragma (the parameter 1 is ignored).

Explicit dumps should not be placed in the main loop of the application. The best location for an explicit dump call is

in a secondary function, for example called by the user when sending a specific event to the application.

The explicit dump method is sometimes incompatible with watchdog constraints. If such incompatibilities occur, you

must:

• Deactivate any hardware or software watchdog interruptions

• Acknowledge the watchdog during the dump process, by adding a specific call to the Data Retrieval

customization point of the TDP.

You can automatically add an explicit dump your C and C++ source code by clicking the Add Dump button in the

text editor. This inserts the _ATCPQ_DUMP instrumentation pragma into your source code.

Dump on Signal

Code Coverage allows you to dump the traces at any point in the source code by using the _ATC_SIGNAL_DUMP

environment variable.

When the signal specified by _ATC_SIGNAL_DUMP is received, the Target Deployment Port function dumps the trace

data and resets the signal so that the same signal can be used to perform several trace dumps.

Before starting your tests, set _ATC_SIGNAL_DUMP to the number of the signal that is to trigger the trace dump.

The signal must be redirectable signal, such as SIGUSR1 or SIGINT for example.

Instrumentor Snapshot

The Instrumentor snapshot option enables you to specify the functions of your application that will dump the trace

information on entry, return or call.

In snapshot mode, the Runtime Tracing feature starts dumping messages only if the Partial Message Dump setting is

activated. Code Coverage, Memory Profiling and Performance Profiling features all dump their internal trace data.

1087

HCL® OneTest™ Embedded

1088

Frequency Dump

when all functions listed in DUMPRETURNING, DUMPENTERING and DUMPCALLING are executed too often by the

application, a call divider number can be used to get a result dump less frequent than the functions call frequency,

after multiple dump requests.

_ATL_OBSTOOLS_DUMP_FREQ: perl variable used in envNode.pl

• 0 is used to specified that the additional code is disabled.

• 1 is used to specified that the dump is made on each call of the methods listed in snapshot method lists.

• 10 is used to specified that the dump is made every 10 calls of the methods listed in snapshot method lists.

Related Topics

General Runtime Analysis Settings on page 1024 | Instrumentation pragmas on page 1081

Command line interface
This section contains advanced reference material for the general command tools, the runtime analysis command

line interface, the C system testing command line interface and the component testing command line interface.

General command line tools

Graphical User Interface - studio

The HCL OneTest™ Embedded Graphical User Interface (GUI) is an integrated environment that provides access to all

of the capabilities packaged with the product Studio.

Syntax

studio [<options>] [<filename>{ <filename>}]

studio<.jpt file><.txf file><.tpf file>

where:

• <filename> can be an .rtp project or .rtw workspace file, as well as source files (.c, .cpp, .h, .ada) or any report

files that can be opened by the GUI, such as .tdf, .tsf, .tpf, .tqf, .xrd files.

Options
-r<node>

where <node> is a project node to be executed.

The -r option launches Studio without the User interface and automatically executes the specified node. Use the

following syntax to indicate the path in the Project Explorer to the specified node:

Chapter 7. Reference Guide

<workspace_node>{[.<child_node>]}

Nodes in the path are separated by period ('.') symbols. If no node is specified, the GUI executes the entire project.

When using the -r option, an .rtp project file must be specified.

-html <directory>

where <directory> is an output directory for HTML reports.

When used with the -r option, the -html option directly outputs all reports in HTML format to the specified directory.

-config <configuration>

where <configuration> is a valid Configuration name.

The -config option allows you to specify a particular Configuration which is used when the studio GUI is opened.

When combined with the -r option, you can build and execute any particular node with any particular Configuration.

Example

The following command opens the project.rtp project file in the GUI, and runs the app_2 node, located in app_group_1

of user_workspace:

studio -r user_workspace.app_group_1.app_2 project.rtp

The following example opens a UML sequence diagram created by Runtime Tracing.

studio my_app.tsf my_app.tdf

Return Codes

After execution, the program exits with the following return codes

Code Description

0 The run process, the build run and the post-processing phases have completed but some of the tests have

status failed.

1 The run process, the build run and the post-processing phases have completed and all the unit tests are cor­

rect.

5 The run process was interrupted before the end. This indicates a failure during the build/execution or post-

processing phase.

These codes help you decide on a course of action after Studio has finished running the test. You can obtain these

return codes after execution with the following methods:

Windows:

1089

HCL® OneTest™ Embedded

1090

studio -r -config "C GNU" test.rtp

echo "Build Result : " %ERRORLEVEL%

UNIX:

studio -r -config "C GNU" test.rtp

echo "Build Result : " $?

All messages are sent to the standard error output device.

Trace Receiver - trtpd

Purpose

The Trace Receiver is a graphical client that receives and splits trace dump data through a socket.

Syntax

trtpd [<options>] [<file> [, <file>]]

where:

• <file> is one or several dynamic trace output files

<options> is a set of optional parameters

Description

If a set of user-defined I/O functions uses sockets in a customized Target Deployment Port (TDP), the Trace Receiver

can be used to receive the dump data and to split the trace files on-the-fly. Use the Target Deployment Port Editor to

customize the TDP.

The Trace Receiver uses its own graphical user interface to display reception and split progression.

To use the Trace Receiver, you must:

• Customize the TDP to produce trace buffer output through a socket by setting the SOCKET_UPLOAD setting of

the TDP to True

Specify a delimiter character in the SOCKET_UPLOAD_DELIMITER setting of the TDP

The Runtime Trace Receptor uses the delimiter to find useful trace data and directs the output to the trace file

formats. If no filenames are provided, the following files are produced:

• testing.rio for Component Testing output to be processed by a Report Generator

purifylt.tpf for Memory Profiling data

Chapter 7. Reference Guide

quantifylt.tqf for Performance Profiling data

attolcov.tio for Code Coverage data

tracer.tdf for Runtime Tracing data

Options

-p|--port <number>

Port number. Specifies the decimal number of the port. The default port number is 7777.

-d|--delimiter <delimiter-byte>

Delimiter byte. Specified the decimal number of the delimiter byte. The default number is 94 ("^" in ASCII).

-o|--oneshot

Oneshot. Exits the Trace Receiver when the first client closes.

Example

The following trace dump is sent to the socket, using the "^" character as a delimiter:

...

^TU "ms"

SF 1 1dch 9527b66bh

TI 1 1 5

TM 726h

HS 95fch

ME 3 1

NI 6 1

SF 2 10edh 72cbacbch

TM b68h

HS bea4h

^ ...

Use the following command line to receive and split the trace dump into the correct output file formats.

1091

HCL® OneTest™ Embedded

1092

trtpd --port 7778 --delimiter 95 -o c:\\temp\\coverage.tio

c:\\temp\\trace.tdf c:\\temp\\profiling.tqf

You can also launch the Trace Receiver with no parameters. In this case, default parameters are assumed:

trtpd

Related Topics

Dump File Splitter on page 1092

Dump File Splitter - atlsplit

Purpose

The dump file splitter (atlsplit) tool separates the unique multiplexed trace data file generated by the runtime analysis

command line tools into specific trace files that can be processed by the runtime analysis and test feature Report

Generators.

Syntax

atlsplit [<options>]<trace_file>

where:

1. <trace_file> is the name of the generated trace file (atlout.spt)

Description

The dump file splitter actually launches a perl script. You must therefore have a working perl interpreter such as the

one provided with the product in the /bin directory.

Alternatively, you could use the following command line:

perl -I<installdir>/lib/perl <installdir>/lib/scripts/BatchSplit.pl atlout.spt

where <install_dir> is the installation directory of the product.

The script automatically detects which test or runtime analysis feature were used to generate the file and produces as

many output files.

After the split, depending on the data contained in the trace file, the following files are generated:

Chapter 7. Reference Guide

• .rio test result files: process with C Test Report Generator on page 1162, Ada Test Report Generator on

page 1162 or System Testing Report Generator on page 1145

.tio Code Coverage report files: view with Code Coverage Viewer

.tdf Dynamic trace files: view with UML/SD Viewer

.tpf Memory Profiling report files: view with Memory Profiling Viewer

.tqf Performance Profiling report files: view with Performance Profiling Viewer

Options

-verbose

Runs the program with verbose output.

-﷓

Runs the program with verbose output but does not split the trace data file.

-check

Verifies files before performing splitting the trace data file. Defective files are ignored.

-studio_log= <log-file>

This option is for internal usage only.

Uprint Localization Utility - uprint

Purpose

The Uprint is a utility that can help if you are experiencing localization issues with HCL OneTest™ Embedded.

Syntax

uprint

uprint <hex_min>..<hex_max>

uprint --mimename

uprint --utf8 <string>

where:

• <hex_min> and <hex_max> specify a range of 16-bit unicode characters expressed in hexadecimal notation.

<string> is a character string encoded in the current locale.

1093

HCL® OneTest™ Embedded

1094

Description

When used with no argument, uprint returns the following information about the current locale:

• Mib name

• mimeName

• Locale name

When used with a <hex_min>..<hex_max> argument, uprint also returns a list of locale-encoded characters from

<hex_min> to <hex_max>.

When used with the --utf8 option, uprint translates a specified locale-encoded <string> into a UTF-8 compliant

backslashed hexadecimal string for use in C or C++ source code.

When used with the --mimename option, uprint returns the name of the Unicode Mime encoding.

Examples

The following command returns information about the current locale:

>uprint

Mib:111 mimeName:"ISO-8859-15" locale:"fr_FR@euro"

The following command translates the word "éric" into a UTF-8 compliant string:

>uprint --utf8 éric\xc3\xa9\x72\x69\x63

Test Process Monitor - tpm_add

Purpose

Use the Test Process Monitor tool (tpm_add) to create and update Test Process Monitor databases from a command

line.

Syntax

tpm_add -metric= <metric> [-file=<filename>] [-user=<user>] {[<value_field>]}

where:

• <metric> is the name of the metric.

• <filename > contains the name of the file under test to which the metric applies. This allows metrics for

several files to be saved within the same database.

Chapter 7. Reference Guide

• <user> is the name of the product user who performed the measured value.

• <value_field> are the values attributed to each field

Description

The Test Process Monitor (TPM) provides an integrated monitoring feature that helps project managers and test

engineers obtain a statistical analysis of the progress of their development effort.

Metrics generated by a test or runtime analysis feature are stored in their own database. Each database is actually a

three-dimensional table containing:

• Fields: Each database contains a fixed number of fields. For example a typical Code Coverage database

records.

• Values: Each field contains a series of values.

• Filenames: Values can be attributed to a filename, such as the name of the file under analysis. This way,

the TPM Viewer can display result graphs for any single filename as well as for all files, allowing detailed

statistical analysis.

Each field contains a set of values.

Note Although you specify a filename for the file under analysis, the TPM Viewer currently only displays a unique

FileID number for each file.

The TPM database is made of two files that use the following naming convention:

<metric> . <user> . <nb_fields>.idx

<metric> . <user> . <nb_fields>.tpm

where <nb_fields> is the number of fields contained in the database.

In the GUI, the Test Process Monitor gathers the statistical data from these database file and generates a graphical

chart based on each field.

There are 3 steps to using TPM:

• Creating a database for the metric

• Updating the database

• Viewing the results in the GUI

Creating a Database

Before opening the Test Process Monitor in the product, you must create a database.

1095

HCL® OneTest™ Embedded

1096

Database files are created by using the tpm_add command line tool.

If you are using Code Coverage from the GUI, it automatically creates and updates a TPM code-coverage database.

If you are using the product in the command line interface you can invoke tpm_add from your own scripts.

To create a new metric database with tpm_add:

1. Type the following command:

tpm_add -metric=<name> -file=<filename> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the initial value of each field in the database.

<filename> is the name of the source file to which these values are related.

Updating a Database

The Test Process Monitor adds a record to the database each time it encounters an existing database.

To add a new record to this database:

1. Type the tpm_add command:

tpm_add -metric=<name> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the initial value of each field in the database. The

number of values must be the consistent with the number of fields in the table.

Note It is important to remain consistent and supply the correct number of fields for your database. If you run the

tpm_add command on an existing metric, but with a different number of fields, the feature creates a new database.

tpm_add -metric=stats 5 -6 5.4 3 0

Viewing TPM Reports

Use the Test Process Monitor menu in the product to display database. Please refer to the User Guide for further

information.

Examples

The following command creates a user metric called stats, made up of five fields, containing initial values 1, 0.03, 0, 3

and -4.7.

tpm_add -metric=stats -file=/project/src/myapp.c 1 0.03 0 3 -4.7

The new database is contained in the following files:

Chapter 7. Reference Guide

stats.user.5.idx

stats.user.5.tpm

The following line adds a new record to the stats database, pertaining to the myapp.c source file:

tpm_add -metric=stats -file=/project/src/myapp.c 5 -6 5.4 3 0

The following line adds a new set of values to the stats database, this time related to the mylib.c source file:

tpm_add -metric=stats -file=/project/src/mylib.c 5 -6 5.4 3 0

The metrics related to myapp.c and mylib.c are stored in the same database and can be viewed either jointly or

separately in the product Test Process Monitor Viewer.

If the following command is issued:

tpm_add -metric=stats -file=myapp.c 5 -6 3 0

A new database is created with four fields:

stats.user.4.idx

stats.user.4.tpm

TDP Generator - tdpgen

Purpose

Use the TDP Generator tool (tdpgen) to generate target deployment ports (TDP) from an .xdp file from a command

line.

Syntax

tdpgen <XDP filename> <target directory>

where:

• <XDP filename> is the name of the .xdp target deployment port file.

• <target directory > is the name of the location where the TDP will be created.

Description

The purpose of this tool is to generate a TDP from a command line without using the TDP Editor.

1097

HCL® OneTest™ Embedded

1098

Examples

The following command generates a TDP for GNU C++ in the targets directory.

tdpgen "%TESTRTDIR%\targets\xml\cpcgnu.xdp" "%TESTRTDIR%\targets"

Studio Report - studioreport

Purpose

Creates a temporary project with the test result files passed as parameter. These results can then be exported to

HTML.

Syntax

studioreport [-help] [-html <dir>] [-keep] [-clean[All]] [-verbose] [<report files>]

where:

• <dir> is the name of the output directory for the HTML reports.

• <report files> is a list of file names separated by space characters. Only test result files are accepted.

Description

Report files must have the following extensions

• .spt global result file generated by the execution

• .xrd Component testing report file

• .rtx Graphical report file

• .crc Rule checker report file

• .met Static Metric report file

• .fdc, .tio Code coverage report files

• .tsf, .tpf Memory profiling report files

• .tsf, .tqf Performance profiling report files

• .tsf, .tdf Runtime tracing report file

• .log, .xtp file providing the listing of files like attolccReport.xtp

Files must have absolute paths or be relative to the current directory.

Chapter 7. Reference Guide

When no parameters are specified, studioreport looks for attolccfiles.log, TestRTccfiles.log, TestRTccfiles.xtp, or

attolccReport.xtp in the current directory.

Note attolcc generates attolccReport.xtp after the application linkage.

Typing the studioreport command with the .spt file path, if it has not been generated locally, starts the viewer for the

instrumented application.

Options

-help

Displays the help message

-html <dir>

Creates the directory for HTML exports

-keep

Keeps the temporary project that was generated

-clean

Removes all dynamic results, -cleanAll removes all report files

-verbose

Shows all files listed as studio parameters

Binary Version Lister - binList

Purpose

The Binary Version Lister is a utility that lists the versions of all the binaries of HCL OneTest™ Embedded.

Syntax

binList

Description

When invoked, the Binary Version Lister (binList.sh in UNIX and binList.bat in Windows) lists the versions of all the

command line tools that are part of HCL OneTest™ Embedded.

ROD Converter - rod2xrd

Purpose

1099

HCL® OneTest™ Embedded

1100

This command line tool converts a .rod file produced by the C or Ada Test Report Generator (attolpostpro and

attolpostproada) into an .xrd file that can be viewed in HCL OneTest Embedded Studio.

Syntax

rod2xrd <.rod_file>

where <rod file> is the name of the .rod file to convert.

Options

-o < log-file>

This option allows you to specify the name of the output file. By default, the generated .xrd has the same name as

the .rod file.

-h <header file>

This option allows you to specify the customized header file for the report. See REPORTHEADER in the TDP Editor

help for more information.

-g

If the .ptu test script contains loops, this option generates graph data with the test results.

-s <max_nb_of_tests>

When large reports are generated, this option allows you to split the results into multiple report files that contain the

specified number of tests.

Runtime Analysis command line interface reference

The command line interface allows you to integrate HCL OneTest™ Embedded runtime analysis tools into your build

process.

To learn about See

Using TestRealTime instrumentation in your standard C and C++ build pro­

cedure.

C and C++ Instrumentation Launcher -

attolcc on page 1101

Instrumenting your C and C++ source code from the command line for

runtime analysis and testing.

C and C++ Instrumentor - attolcc1, attol­

ccp or attolcc4 on page 1110

Instrumenting your Ada source code from the command line for runtime

analysis and testing.

Ada Instrumentor - attolada on

page 1123

Producing static metrics of your Ada source files. Ada Metrics Generator - metada on

page 1135

Producing reports from a .tdf trace dump file. TDF Splitter - attsplit on page 1135

Chapter 7. Reference Guide

Producing reports for Code Coverage. Code Coverage Report Generator - attol­

cov on page 1137

Parsing code for trace probes. Probe Code Parser - parsecode.pl on

page 1140

Related Topics

Runtime Analysis reference on page 1075 | Using the command line interface on page 995 | Command line

Runtime Analysis for C and C++ on page 998

C and C++ Instrumentation Launcher - attolcc
The Instrumentation Launcher instruments and compiles C and C++ source files. The Instrumentation Launcher is

used by Memory Profiling, Performance Profiling, Runtime Tracing and Code Coverage, as well as the Component

Testing Contract Check feature for C++.

Syntax

attolcc [{<-options>}] [{<-settings>}] -- <compilation_command>

attolcc --help

where:

• <compilation_command> is the standard compiler command line that you would use to launch the compiler if

you are not using the product.

• "--" is the command separator preceded and followed by spaces.

• <options> is a series of optional parameters settings is a series of optional instrumentation settings.

Description

The Instrumentation Launcher fits into your compilation sequence with minimal changes.

The Instrumentation Launcher is suitable for use with only one compiler and only one Target Deployment Port. To

view information about the driver, run attolcc with no parameters.

The attolcc binary is located in the /cmd directory of the Target Deployment Port.

Note: Some Target Deployment Ports do not have an attolcc binary. In this case, you must manually run the

instrumentor, compiler and linker.

General Options

The Instrumentation Launcher accepts all command line parameters for either the C or C++ Instrumentor on

page 1110, including runtime analysis feature options. This allows the Instrumentation Launcher to automatically

compile the selected Target Deployment Port.

1101

HCL® OneTest™ Embedded

1102

In addition to Instrumentor parameters and Code Coverage parameters, the following options are specific to the

Instrumentation Launcher. Command line options can be abbreviated to their shortest unambiguous number of

characters and are not case-sensitive.

--HELP

Type attolcc --help to list a comprehensive list of options, including those of the C and C++ Instrumentor (attolccp or

attolcc4, and attolcc1), for use with the instrumentation launcher.

-VERBOSE | -#

The -VERBOSE option shows commands and runs them. The "-#" option shows commands but does not execute

them.

-TRACE

-MEMPRO

-PERFPRO

These options activate specific instrumentation for respectively the Runtime Tracing, Memory Profiling and

Performance Profiling runtime analysis feature.

-OTIFILE=<file>[{,<file>}]

When using the Contract Check capability of Component Testing for C++, the -OTIFILE option allows you to specify

one or several Component Testing .oti instrumentation files for C++. These files are generated by the C++ Test Script

Compiler and contain the Component Testing instrumentation rules for C++.

-AUTO_OTI

When using the Contract Check capability of Component Testing for C++, this option specifies that Component

Testing instrumentation files (.oti) for C++ are to be searched and loaded from the directory specified with option

-OTIDIR, or in current directory if this option is not used. .oti files are searched according to the source file names. For

instance, if class A is found in file myfile.h, the .oti searched will be myfile.oti. An information message is issued for

each .oti file loaded automatically.$

 -FORCE_TDP_CC

This option forces the Instrumentation Launcher to attempt to compile the Target Deployment Port even if the link

phase has not yet been reached before the TP.o or TP.obj is built.

-NOSTOP

This option forces the initial command to resume when a failure occurs during preprocessing, instrumentation,

compilation or link. This means that the build chain is not interrupted by errors, but the resulting binary may not be

fully instrumented. Use this option when debugging instrumentation issues on large projects.

Each error is logged in an attolcc.log file located in the directory where the error occurred.

Chapter 7. Reference Guide

Code Coverage Options

The following parameters are specific to the Code Coverage runtime analysis feature. These options do not activate

Code Coverage. To activate Code Coverage, use the Code Coverage Level options (-PROC, -CALL, -COND and

-BLOCK).

-PASS | -COUNT | -COMPACT

Pass mode only indicates whether a branch has been hit. The default setting is pass mode.

Count mode keeps track of the number of times each branch is exercised. The results shown in the code coverage

report include the number of hits as well as the pass mode information.

Compact mode is equivalent to pass mode, but each branch is stored in one bit, instead of one byte as in pass mode.

This reduces the overhead on data size.

-COMMENT | -NOCOMMENT

The comment option lets the user associate a comment string with the source in the code coverage reports and in

Code Coverage Viewer.

By default, the Instrumentation Launcher sends the preprocessing command as a comment. This allows you to

distinguish the source file that was preprocessed and compiled more than once with distinct options.

Use -NOCOMMENT to disable the comment setting.

-IGNORE=<filename>[{,<filename>}]

-IGNORE explicitely specifies the files that are to be ignored both by preprocessing and instrumentation, where

<filename> is a C or C++ source file. All other source files are instrumented. Files that are ignored are not analyzed.

Use this option to avoid errors that may occur with a file using the -EXFILE option.

<filename> may contain a path (absolute or relative from the current working directory). If no path is provided, the

current working directory is used.

-NO_SYS_INCLUDE

Use this option if the application includes system files, for example: windows.h or pthread.h.

Metrics Options

-metrics=<output directory>

Generates static metrics for the specified source files in the specified <output directory>. This option replaces the

metcc command line tool, which is deprecated.

-one_level_metrics

1103

HCL® OneTest™ Embedded

1104

By default, the calculation of static metrics is applied to the specified source files, and extended to any files included

in those source files. Use the -one_level_metrics option to ignore included files when calculating static metrics.

-restrict_dir_metrics<directory>

Use the the -restrict_dir_metrics option to calculate static metrics of the specified source files, extended to any files

included in those source files but limited to those files located in the specified <directory>.

-studio_log

This option is for internal use only.

Instrumentation Settings

The instrumentation settings apply to the compilation of the Target Deployment Port Library.

The 0 or 1 values for many conditional settings mean false for 0 and 1 for true.

Compiler Settings

--cflags=<compilation flags>

--cppflags=<preprocessing flags>

--include_paths=<comma separated list of include paths>

--defines=<comma separated list of defines>

Enclose the flags with quotes ("") if you specify more than one. These flags are used while compiling the Target

Deployment Port Library.

By default, the corresponding DEFAULT_CPPFLAGS, DEFAULT_CFLAGS, DEFAULT_INCLUDE_PATHS and

DEFAULT_DEFINES from the <ATLTGT>/tp.ini or <ATLTGT>/tpcpp.ini file are used.

General Settings

--atl_multi_threads=01|

To be set to 1 if your application is multi-threads (default 0).

--atl_threads_max=<number>

Maximum number of threads at the same time (default 64).

--atl_multi_process=0|1

To be set to 1 if your application uses fork/exec to run itself or another instrumented application (default 0). Traces

files are named atlout.<pid>.spt.

--atl_buffer_size=<bytes>

Chapter 7. Reference Guide

Size of the Dump Buffer in bytes (default 16384).

--atl_traces_file=<file-name>

Name of the file that is flushed by execution and to be split (default atlout.spt).

Memory Profiling Settings

--atp_call_stack_size=<number of frames>

Number of functions from the stack associated to any tracked memory block or to any error (default 6).

--atp_reports_fiu=0|1

File In Use detection and reporting (default 1)

--atp_reports_sig=0|1

POSIX Signal detection and reporting (default 1)

--atp_reports_miu=0|1

Memory In Use detection and reporting, ie: not leaked memory blocks (default 0).

--atp_reports_ffm_fmwl=0|1

Freeing Freed Memory and Late Detect Free Memory Write detection and reporting (default 1).

--atp_max_freeq_length=<number of tracked memory blocks>

Free queue length, ie: maximum number of tracked memory blocks whom actual free is delayed (default 100).

--atp_max_freeq_size=<bytes number>

Sets the free queue size, ie: the maximum number of bytes actually unfreed (default 1048576 = 1Mb)

--atp_reports_abwl=0|1

Late Detect Array Bounds Write detection and reporting (default 1).

--atp_red_zone_size=<bytes number>

Size of each of the two Red Zones placed before and after the user space of the tracked memory blocks (default 16).

--atp_dump_unfreed_only_with_stack

Use this option to only record memory leaks that are associated with a call stack. Memory allocations that occurred

before the application started do not have a call stack and are not included in the Memory Profiling report.

--linenumoptim

By default, memory profiling reports the exact line number where the memory allocation statement is located, which

requires extensive instrumentation and can cause performance issues. Use this option to reduce instrumentation

overhead by reporting only the function in which the memory allocation occurs.

1105

HCL® OneTest™ Embedded

1106

Performance Profiling Settings

--atq_dump_driver=0|1

Enable the Performance Profiling Dump Driver API atqapi.h (default 0).

Code Coverage Settings

--atc_dump_driver=0|1

Enables the Coverage Dump Driver API apiatc.h (default 0).

Runtime Tracing Settings

--att_on_the_fly=0|1

If set to 1, implies that each tdf lines are flushed immediatly in order to be read on-the-fly by the UML/SD Viewer in

Studio (default 0).

--att_item_buffer=0|1

Enable Trace Buffer (not Dump Buffer) if set to 1 (default 0).

--att_item_buffer_size=<bytes>

Maximum number of recorded Trace elements before Trace Buffer flush (default 100).

--att_partial_dump=0|1

Partial Message Dump is on if set to 1 (default 0).

--att_signal_action=0|1|2

• 0 means no action when handling a signal (default)

• 1 means toggling dump of messages

• 2 means only flushing the current call stack

--att_record_max_stack=0|1

Display largest call stack length in a note (default 1).

--att_timestamp=0|1

If enabled, record and display time stamp (default 0).

--att_thread_info=0|1

If 1 record and display thread information (default 1).

Chapter 7. Reference Guide

Component Testing for C++ Contract Check Settings

--atk_stop_on_error=0|1

Call breakpoint function on assertion failure (default 0).

--atk_dump_success=0|1

By default (0), only failed assertions are reported. If enabled, both failed and passed assertions are reported.

--atk_report_reflexive_states=0|1

Trace unchanged states (default 1).

Example

attolcc -- cc -I../include -o appli appli.c bibli.c -lm

attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c -lm

Return codes

The return code from the Instrumentation Launcher is either the first non-zero code received from one of the

commands it has executed, or 0 if all commands ran successfully. Due to this, the Instrumentation Launcher is fully

compatible with the make mechanism.

If an error occurs while the Instrumentation Launcher - or one of the commands it handles - is running, the following

message is generated:

ERROR : Error during C pre-processing

All messages are sent to the standard error output device.

Command line to launch code coverage for assembler files
You can launch code coverage for assembler files with a command.

COMMAND AND OPTIONS

The command used to launch code coverage for assembler files is the following one:

attolgas <lst> <instr> <asmopt> [options]

The only supported modes instructions are BLOCK, PROC and CALL. The values that are supported and enabled for

the options parameter are the following ones:

• [-PROC[=<RET>]]

• [-BLOCK[=<IMPLICIT|DECISION|LOGICAL>]]

1107

HCL® OneTest™ Embedded

1108

Note: The parameters added after the option -BLOCK are not active.

• [-NOPROC]

• [-CALL|-NOCALL]

• [-NOBLOCK]

• [-NOINLINE]

• [-NOINCLUDE]

• [-COMPACT]

• [-COUNT]

• [-COMMENT=<text>]

• [-NOPATH]

• [-NOFULLPATHKEY]

• [-ALTCHECKSUM]

• [-NOCVI]

• [-NOSOURCE]

• [-NOINFO]

• [-MAIN=<service>]

• [-EXCALL=<file>]

• [-RENAME=<name>[,name]]

• [-REMOVE=<name>[,name]]

• [-NOINSTRDIR=<directory>[,directory]]

• [-FDCNAME=<file>]

• [-FDCDIR[=<directory>]]

• [-NOWARNINGS]

• [-SHOWINFO]

• [-STUDIO_LOG[=<log-file>]] (for Studio only)

Other options values can be entered but there are not active:

Chapter 7. Reference Guide

• [-NOTERNARY]

• [-CALLMAYTERMINATE=<service>[,service]]

• [-WHILEONLY]

• [-CONSTLOOP]

• [-COND[=<MODIFIED|COMPOUND|FORCEEVALUATION|FORCEBITWISE|BITWISE>]]

• [-NOCOND]

• [-CONDEXPRESSION]

• [-KEEP]

• [-METRICS|-NOMETRICS]

• [-DUMPCALLING=<service>[,service]]

• [-DUMPINCOMING=<service>[,service]]

• [-DUMPRETURNING=<service>[,service]]

• [-FILE=<file>[,file]]

• [-EXFILE=<file>[,file]]

• [-UNIT=<name>[,name]]

• [-EXUNIT=<name>[,name]]

• [-SERVICE=<name>[,name]]

• [-EXSERVICE=<name>[,name]]

• [-INSTANTIATIONMODE=<USED|ALL>]

• [-PCHMODE[=<CREATE|USE>]]

• [-OTIFILE=<file>[,file]]

• [-BODY=<MAP_FILE|NAME_CONV|INLINE>]

• [-AUTO_OTI]

• [-OTIDIR[=<directory>]]

• [-NO_OTC]

• [-NO_OTD]

• [-MAPFILE[=<file>]]

• [-INSTR_CONST]

• [-MTSUPPORT]

• [-FRIEND_TEST_CLASS[=<name>][,name]]

1109

HCL® OneTest™ Embedded

1110

• [-TRACE|-NOTRACE]

• [-NO_DATA_TRACE]

• [-NO_UNNAMED_TRACE]

• [-NO_TEMPLATE_NOTE]

• [-MEMPRO]

• [-PURIFYLT]

• [-NOINSPECT[=<variable>][,variable]]

• [-NOINSPECTDIR=<directory>[,directory]]

• [-PERFPRO[=<OS|PROCESS>]]

• [-QUANTIFYLT[=<OS|PROCESS>]]

• [-TSFNAME=<file>]

• [-TSFDIR[=<directory>]]

• [-NODLINE]

• [-SET=<name>[,name]]

• [-APPSTACK]

• [-CCOUPLING]

• [-STACKSIZE]

• [-FEOPT=<name>[,name]]

• [-C99]

• [-BEFORE_RETURN_EXPR]

C and C++ Instrumentor

C/C++ Instrumentor - attolcc1, attolccp and attolcc4

Purpose

The Instrumentor for C and C++ inserts functions from a Target Deployment Port library into the C or C++ source code

under test. The C/C++ Instrumentor is used for:

• Memory Profiling

• Performance Profiling

Chapter 7. Reference Guide

• Code Coverage

• Runtime Tracing

• Monitoring applications

Note: The attolccp or attolcc4 binary replaces the attolcc1 binary, which is still provided for legacy projects

and does not support C++ source files. The attolccp or attolcc4 binary instruments both C and C++ source

files and should be preferred for all new projects. If you want to use the legacy attolcc1 binary on new

projects, you must edit the Target Deployment Port Basic Settings and define the USE_ATTOLCC1 setting.

Syntax

attolccp or attolcc4 <src> <instr> <def> <opp> [{ <-options> }]
 attolccp or attolcc4 <src> <instr> <hpp> <opp> [{ <-options> }]
 attolcc1 <src> <instr> <def> [{ <-options> }]

Where:

• <src> is the preprocessed source file (input)

• <instr> is the instrumented file (output)

• <def> is the standard definition file atus_c.def for C.

• <hpp> is the standard definition file atl.hpp for C++

• <opp> is the parser options file atl.opp for C and C++.

The usage of either the atus_c.def or the atl.hpp file defines whether the Instrumentor runs in C or C++ mode.

The <src> input file must be preprocessed beforehand with macro definitions expanded, include files included, #if and

directives processed.

The instrumentor expects atus_c.def, atl.hpp, and atl.opp files to be located in the $ATLTGT directory.

When using the Instrumentor in C language mode, all arguments are functions. When using the Instrumentor in C++

mode, arguments are qualified functions, methods, classes, and namespaces, for example: void C::B::f(int).

Description
The C/C++ Instrumentor builds an output source file from an input source file, by adding special calls to the Target

Deployment Port function definitions.

The Runtime Analysis tools are activated by selecting the command line options:

• -MEMPRO for Memory Profiling

• -PERFPRO for Performance Profiling

1111

HCL® OneTest™ Embedded

1112

• -TRACE for Runtime Tracing

• -PROC , -CALL, -COND and -BLOCK for Code Coverage (code coverage levels)

• -MONITORING to enable application monitoring

Note: there is no -COVERAGE option; the following rules apply for the Code Coverage feature:

• If no code coverage level is specified, nor Runtime Tracing, Memory Profiling, or Performance Profiling

or C++ Component Testing Contract Check, then the default is to have code coverage analysis at the

-PROC and -BLOCK=DECISION level.

• If no code coverage level is specified while one or more of the mentioned features are selected, then

code coverage analysis is not performed.

Detailed information about command line options for each feature are available in the sections below.

The C/C++ Instrumentor attolccp or attolcc4 supports preprocessed C files ANSI 89, ANSI 99, or K&R C standard

source code, and preprocessed C++ files compliant with the ISO/IEC 14882:1998 standard. Depending on the Target

Deployment Port, attolccp or attolcc4 can also accept the C ISO/IEC 9899:1990 standard, the ISO/IEC 9899:1999

(C99) standard, and other C or C++ dialects.

The legacy C Instrumentor (attolcc1) supports preprocessed C files ANSI 89, ANSI 99, or K&R C standard source

code.

For C99 support, you must you use the -C99 option.

The C/C++ Instrumentor accepts either C or C++-style comments.

Attol pragmas start with the ﷓ character in the first column and end at the next line break.

The <def> and <header> parameters must not contain absolute or relative paths. The Code Coverage Instrumentor

looks for these files in the directory specified by the ATLTGT environment variable, which must be set.

You can select one or more types of coverage at the instrumentation stage.

When you generate reports, results from some or all of the subset of selected coverage types are available.

General options

-FILE= <filename>[{,<filename>}] | -EXFILE= <filename>[{,<filename>}]

-FILE specifies the only files that are to be explicitly instrumented, where <filename> is a C or C++ source file. All other

source files are ignored. Use this option with multiple C or C++files that can be found in a preprocessed file (﷓includes

of files containing the bodies of C or C++ functions, lex and yacc outputs, and so forth).

Chapter 7. Reference Guide

-EXFILE explicitely specifies the files that are to be excluded from the instrumentation, where <filename> is a C or C+

+ source file. All other source files are instrumented. You cannot use this option with the option -FILE. Files that are

excluded from the instrumentation process are still analyzed. Any errors found in those files are still reported.

<filename> may contain a path (absolute or relative from the current working directory). If no path is provided, the

current working directory is used.

-FILE and -EXFILE cannot be used together.

-UNIT= <name>[{, <name>}] | -EXUNIT= <name>[{, <name>}]

-UNIT specifies code units (functions, procedures, classes or methods) whose bodies are to be instrumented, where

<name> is a unit which is to be explicitly instrumented. All other functions are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All other units are instrumented.

Functions, procedures, classes or methods that are excluded from the instrumentation process with the -EXUNIT

option are still analyzed. Any errors found in those units are still reported.

If <name> contains commas (","), these must be preceded by a backslash character. For example: "\,"

-UNIT and -EXUNIT cannot be used together.

Note These options replace the -SERVICE and -EXSERVICE options from previous releases of the product.

In C++, if a method is defined in several files, you can specify <name> by preceding the method name with a filename,

separated by a dot ("."). For example: -EXUNIT=class.cpp.method. If the filename does not contain an extension, then

the option will apply to all files that use the base filename. For example: -UNIT=class.method instruments method

from class.cpp and class.h. The <name> parameter cannot contain directory paths.

-MAIN= <service>

Specifies that the return of the main function, which is identified as <service>, will be instrumented to dump the

complete results. This is useful in cases where the main entry is not called "main".

-RENAME= <function>[, <function>]

For C only. The -RENAME option allows you to change the name of C functions <function> defined in the file to be

instrumented. Doing so, the f function will be changed to _atu_stub_ f . Only definitions are changed, not declarations

(prototypes) or calls. Component Testing for C can then define stubs to some functions inside the source file under

test.

If you used the -RENAME option of the C Test Script Compiler (attolpreproC), then you can pass the stub renaming

information contained in the generated file with the syntax attolccp @ or attolcc4 <filename> .

-REMOVE= <name>[, <name>]

1113

HCL® OneTest™ Embedded

1114

This option removes the definition of the function (or method) <name> in the instrumented source code. This allows

you to replace one or several functions (or methods) with specialized custom functions (or methods) from the TDP.

-NOFULLPATHKEY

Identifies source files based only on the filename instead of the complete path. Use this option to consolidate test

results when a same file can be located in different paths. This can be useful in some multi-user environments that

use source control. If you use this option, make sure that the source file names used by your application are unique.

-ALTCHECKSUM

Use this option to calculate a more unambiguous checksum for .fdc and .tsf files. Before using this option, you must

delete existing fdc and tsf files, which will be re-created with the new checksum. File keys are not changed by this

option.

-NOWARNING

This option deactivates the warning display for signature analysis. The Instrumentor's signature analyzer accepts any

non-ambiguous signature, and more permissive ones than most compilers. Warning messages indicate that some of

the signatures accepted by the instrumentor might be rejected by the compilers.

-NO_DATA_TRACE

For C++ only. Excludes from instrumentation structures or classes that do not contain methods. This reduces

instrumentation overhead.

-NOINSTRDIR= <directory>[, <directory>]

Specifies that any C or C++ function found in a file in any of the <directories> or a sub-directory are not instrumented.

Note You can also use the attol incl_std pragma with the same effect in the standard definitions file.

-NOINSPECTDIR= <directory>[, <directory>]

Specifies directories excluded from inspection of variables found in include files. Use this option to avoid the

inspection of variables from 3rd party libraries.

-INSTANTIATIONMODE=ALL

For C++ only. When set to ALL, this option enables instantiation of unused methods in template classes. By default,

these methods are not instantiated by the Instrumentor.

-DUMPCALLING= <name>[{,<name>]]

-DUMPINCOMING=[<class> ::]<name>[{,[<class> ::]<name>}]

-DUMPRETURNING= <name>[{,<name>}]

Chapter 7. Reference Guide

In some cases, such as with applications that never terminate or when working with timing or memory-sensitive

targets, you might need to dump traces at specifics points in your code. These options allow you to explicitly define

upon which incoming, returning or calling functions the trace dump must be performed.

• -DUMPINCOMING: Allows you to specify a list of function names, from your source code, that will dump

traces at the beginning of the function.

• -DUMPRETURNING (for C and C++ only): Allows you to specify a list of function names, from your source

code, that will dump traces at the end of the function. In C++, you can use the following syntax to specify a

method within a class: -dumpreturning=class::name

• -DUMPCALLING: Allows you to specify a list of function names, from your source code, that will dump traces

before the function is called.

See Generating SCI Dumps on page 1086 for more information.

-NOPATH

Disables generation of the path to the Target Deployment Package directory in the ﷓include directive. This lets you

instrument and compile on different computers.

-NOINFO

Prohibits the Instrumentor from generating the identification header. This header is normally written at the beginning

of the instrumented file, to strictly identify the instrument used.

-NODLINE

Prohibits the Instrumentor from generating #line statements which are not supported by all compilers. Use this option

if you are using such a compiler.

-TSFDIR[= <directory>]

Not applicable to Code Coverage (see FDCDIR). Specifies the destination <directory> for the .tsf static trace file

which is generated following instrumentation for each source code file. If <directory> is not specified, each .fdc file

is generated in the corresponding source file's directory. If you do not use this option, the .tsf directory is the current

working directory (the attolcc1 or attolccp or attolcc4 execution directory). You cannot use this option with the

-TSFNAME option.

-TSFNAME= <name>

Not applicable to Code Coverage (see FDCNAME). Specifies the .tsf file name <name> to receive the static traces

produced by the instrumentation. You cannot use this option with the -TSFDIR option.

-NOINCLUDE

This option excludes all included files from the instrumentation process. Use this option if there are too many

excluded files to use the -EXFILE option.

1115

HCL® OneTest™ Embedded

1116

-C99

This option enables support for the C99 specification (ISO/IEC 9899:1999).

Code coverage options

The following parameters are specific to the Code Coverage runtime analysis feature.

-PROC[=RET]

This option enables coverage of procedure inputs (C/C++ functions). This is the default setting.

The -PROC=RET option enables coverage of procedure inputs, outputs, and terminal instructions.

The -NOPROC option specifies that procedure coverage is disabled.

The -BLOCK=IMPLICIT | DECISION | LOGICAL option enables coverage of simple blocks only.

The IMPLICIT or DECISION option (these are equivalent) enables coverage of implicit blocks (unwritten else

instructions), as well as simple blocks.

The LOGICAL option enables coverage of logical blocks (loops), as well as simple and implicit blocks.

By default, the Instrumentor instruments implicit blocks.

The -NOBLOCK option specifies that block coverage is disabled.

The -CALL option enables coverage of C or C++ function calls.

The -EXCALL=<filename> option applies to C language only. It excludes from coverage all calls to the C functions

whose names are listed in <filename>. The names of functions (identifiers) must be separated by space characters,

tab characters, or line breaks. No other types of separator can be used.

The -NOCALL option specifies that call coverage is disabled.

The -COND[=MODIFIED | =COMPOUND | =FORCEEVALUATION] option specifies the level of condition coverage. When

-COND is used with no parameter, Code Coverage enables coverage of basic conditions.

The MODIFIED option enables coverage of modified conditions.

The COMPOUND option enables coverage of multiple (or compound) conditions.

The FORCEEVALUATION option enables coverage of forced conditions. This includes coverage of modified

conditions.

The -NOCOND option specifies that condition coverage is disabled.

The -CONDEXPRESSION option causes relational operators in an expression (for example: y = (a>0)) to be

considered as conditions.

Chapter 7. Reference Guide

The -COUNT option specifies count mode.

The -COMPACT option specifies compact mode.

The -FDCDIR= <directory> option specifies the destination <directory> for the .fdc static correspondence file, which

is generated for Code Coverage after the instrumentation for each source file. Correspondence files contain static

information about each enumerated branch and are used as inputs to the Code Coverage Report Generator. If

<directory> is not specified, each .fdc file is generated in the directory of the corresponding source file. If you do not

use this option, the default .fdc files directory is the working directory (the attolcc execution directory). You cannot

use this option with the -FDCNAME option.

With the -FDCNAME= <name> option, by default, the instrumentor generates one .fdc static correspondence file for

each source file involved in the code to be instrumented. Use this option to specify a single static file for all source

files in order to avoid file access conflicts, for example when a parallel build is involved. When this option is specified,

the generated .fdc file contains one FDC section per source file. You cannot use this option with the -FDCDIR option.

-NOCVI: Disables generation of a Code Coverage report that can be displayed in the Code Coverage Viewer.

-METRICS: Provides static metric data for compatibility with old versions of the product. Use the static metrics

features of the Test Script Compiler tools instead. By default no static metrics are produced by the Instrumentors.

-NOSOURCE: Replaces the generation of the colorized viewer source listing by a colorized viewer pre-annotated

report containing line number references.

-COMMENT= <comment>: Associates the text from either the Instrumentation Launcher (preprocessing command

line) or from the source file under analysis and stores it in the .fdc correspondence file to be mentioned in Code

Coverage reports. In the Code Coverage Viewer, a magnifying glass appears next to the source file, allowing you to

display the comments in a separate window. The comment text must not contain commas or non-alphanumeric

characters.

-NOTERNARY: Specifies that ternary statements are not instrumented.

-CALLMAYTERMINATE= <service>[,<service>]: This option specifies a list of functions that may not return.

-WHILEONLY: This option specifies that for loops are not instrumented as loops.

Memory Profiling Specific Options

The following parameters are specific to the Memory Profiling runtime analysis feature.

-MEMPRO: Enables the memory profiling feature.

-NOINSPECT= <variable>[, <variable>]: Specifies global variables that are not to be inspected for memory leaks. This

option can be useful to save time and instrumentation overhead on trusted code.

Performance Profiling Specific Options

The following parameters are specific to the Performance Profiling runtime analysis feature.

1117

HCL® OneTest™ Embedded

1118

-PERFPRO[=<os>|<process>]: Enables the performance profiling feature.

The optional <os> parameter allows you to specify a clock type. By default the standard operating system clock is

used.

The <process> parameter specifies the total CPU time used by the process.

The <os> and <process> options depend on target availability.

Runtime Tracing Specific Options

The following parameters are specific to the Runtime Tracing analysis feature.

-TRACE: Enables the Runtime Tracing analysis feature.

-NO_UNNAMED_TRACE: For C++ only. With this option, unnamed structs and unions are not instrumented.

-NO_TEMPLATE_NOTE: For C++ only. With this option, the UML/SD Viewer will not display notes for template

instances for each template class instance.

-BEFORE_RETURN_EXPR: For C only. With this option, the UML/SD Viewer displays calls located in return expressions

as if they were executed sequentially and not in a nested manner.

Component Testing Options for C++

The following parameters are specific to Component Testing for C++.

-OTIFILE= <filename>[{, <filename>}]: Name of one or several Component Testing .oti instrumentation files for C++.

These files contain rules for Component Testing instrumentation for C++ (they are generated by the C++ Test Script

Compiler).

-AUTO_OTI: If this option is specified, Component Testing .oti instrumentation files for C++ will be searched and

loaded in the directory specified with option -OTIDIR, or in current directory if this option is not used. .oti files are

searched according to the source file names. For instance, if class A is found in file myfile.h, the .oti searched will be

myfile.oti. An information message is issued for each .oti file loaded automatically.

-OTIDIR=[<directory>]: This option specifies, when option -AUTO_OTI is active, which directory is to be searched. If no

directory is specified (i.e. -OTIDIR= is specified), .oti files will be searched in the same directory as the source file they

are matching.

-FRIEND_TEST_CLASS: Use this option if you want the test to access any private or protected members (friend

classes) of the components under test. The class must be mentioned in the OTC file to be recognized as a friend of

the test class.

-BODY=MAP_FILE|NAME_CONV|INLINE: This option specifies where generated methods body should be generated.

Chapter 7. Reference Guide

Use INLINE to generate method bodies in each instrumented source file as inline routines. This is the default, since

there is little chance that the generated code cannot be accepted by a compiler, except with template classes on

some compilers.

Use NAME_CONV to generate routine bodies in the .cpp, .cc or .C file whose name matches the .h file that contains

the class definition of the generated method.

Use MAP_FILE when you provide a map file with the option -MAPFILE. This generates method bodies according to

the map file.

-MAPFILE= <filename> : When you add the -BODY=MAP_FILE option, this option must be provided. The -MAPFILE

option specifies a user-created map file, describing where the methods of each class are to be generated.

This file must have the following format:

<source file>
 <class name>
 <class name>
 ...
<source file>
 <class name>
 ...
 ...

Note: The character before a class name MUST be a tabulation.

Example

a.cpp
 A
b.cpp
 B

This specifies that class A methods bodies have to be generated in file a.cpp, and B methods bodies have to be

generated in file b.cpp.

The options -NO_OTC and -NO_OTD specify that Component Testing instrumentation rules for C++ issued from,

respectively, an .otc contract check test script, or an .otd test driver script should be ignored.

The option -SHOWINFO activates a diagnosis for each signature analysis. Usually, analysis of ill-formed signatures is

silent. This option allows you to find ignored signatures

Note: A signature is a string describing a class, a method, or a function, and is used in .otc and .otd files.

-INSTR_CONST: Usually a C++ const method cannot modify any field of the this object. That's why the const methods

are not checked for state changes, and are only evaluated once for invariants. But in some cases, the this object may

change even if the method is qualified with const (by assembler code or by calling another method with casting the

this parameter to a non-const type).

1119

HCL® OneTest™ Embedded

1120

There may also be pointers fields to objects which logically belong to the object, but the C++ compiler does not

guarantee that these pointed sub-objects are not modified. Use this option if the source code contains such pointers.

-MTSUPPORT: Use this option if your application is multi-threaded and objects are shared by several threads. This

will ensure the specificity of each object for state evaluation.

Note: To use multi-thread support in the product, you must also compile the Target Deployment Port with

multi-thread support.

-STUDIO_LOG: This option is for internal usage only.

-MONITORING

You must enter this option to enable application monitoring.

Return codes

After the test execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal er­

ror

All messages are sent to the standard error output device.

C Code Review Compiler - crccc

Purpose

The C Code Review Compiler compiles C source files for code review static analysis. It produces an .xob output file,

which must be linked by using the C Code Review Linker crcld.

Syntax

crccc <source> <xob> <def> <opp> [<options>]

where:

• <source> is the C source file under analysis

• <xob> is the name of the generated object file

Chapter 7. Reference Guide

• <def> is the standard definitions file. This file is searched in the $ATLTGT directory.

• <opp> is the parser options file. This file is searched in the $ATLTGT directory.

Description

Analyses the code and produces an .xob object file for use with the C Code Review Linker (crcld).

Options

Command line options can be abbreviated to their shortest unambiguous number of characters and are not case-

sensitive.

[-RULE= <file>]

Specifies the code review rule configuration file. By default, a default internal configuration rule set is used

[-INCL= <directory>{[,<directory>]}]

Specifies the locations of included files.

[-STD_INCL= <directory>[,<directory>]]

Specifies the location of additional system include directories.

[-CHECKSYSINCLUDE]

By default, files from system include directories are not analyzed by Code Review. Use this options to force the

analysis of system include files.

[-DEFINE= <ident>[= <value>] {[, <ident>[= <value>]}]

This option specifies conditions to be applied when the Code Review Compiler starts. These conditions allow you to

define C symbols that apply conditions to the generation of any IF ... ELSE ... END IF blocks in the test script.

If the option is used with one of the conditions specified in the IF instruction, the IF ... ELSE block (if ELSE is

present) or the ELSE ... END IF block (if ELSE is not present) is analyzed and generated. The ELSE ... END IF block is

eliminated.

If the option is not used or if none of the conditions specified in the IF instruction are satisfied, the ELSE ... END IF

block is analyzed and generated.

All symbols defined by this option are equivalent to the following line in C

-define <ident> [<value>]

By default, the ELSE ... END IF blocks are analyzed and generated.

1121

HCL® OneTest™ Embedded

1122

[-UNDEF= <identifier>[, <identifier>]]

Allows you to undefine symbols. This is equivalent to the -U option of the compiler.

Example

crccc mysource.c output.xob atus_c.def atl.opp

-rule=$TESTRT_DIR/plugins/Common/lib/confrule.xml

Related Topics

Code review overview on page 260 | Running a code review on page 326 | C Code Review Linker - crcld on page 1122

C Code Review Linker - crcld
The C Code Review Linker links and analyzes the files produced by the C Code Review Compiler (crccc) for code

review static analysis. It produces a .crc code review file that can be displayed in HCL OneTest™ Embedded.

Syntax

crcld <xob>[<xob>] -CRC=<output> [<options>]

where:

• <xob> is the name of the object file generated by the Code Review Compiler.

• <output> is the generated .crc code review report file.

Descrition

The C Code Review Compiler fits into your compilation sequence with minimal changes.

Options

Command line options can be abbreviated to their shortest unambiguous number of characters and are not case-

sensitive.

[-RULE=<file>]

Specifies the code review rule configuration file. By default, a default internal configuration rule set is used

[-TEST]

Disables the verification of undefined symbols when using the code review link checker in test mode from HCL

OneTest™ Embedded. So some of the MISRA rules are not verified. To verify these rules, they must be directly run

from an application node in HCL OneTest™ Embedded.

List of rules that are not verified when the code review is run in test mode with the link checker:

Chapter 7. Reference Guide

FOR MISRA -C:2004

• ◦ Rule M8.7: Global object should not be declared if they are used only from within a single function.

◦ Rule M8.9.2: The global object or function <name> should have exactly one external definition. No

definition found.

◦ Rule M8.10.1: The global object <name> that is used only within the same file should be declared using

the static storage-class specifier.

◦ Rule M8.10.2 : The global function <name> that is used only within the same file should be declared

using the static storage-class specifier.

◦ Rule E8.51: The object <name> is never referenced.

◦ Rule E16.50: The function <name> is never referenced.

FOR MISRA C:2012

• M8.9: An object should be defined at block scope if its identifier only appears in a single function

• E8.10: The global object or function <name> should have exactly one external definition. No definition found.

• M8.7.1 : Global object <name> that is only used within the same file should be declared using the static

storage-class specifier.

• M8.7.2: Global function <name> that is only used within the same file should be declared using the static

storage-class specifier.

• E8.12: The object <name> is never referenced.

• M2.2.2: The function <name> is never referenced.

Example

crcld object.xob main.xob -crc=main.crc

Related Topics

Code review overview on page 260 | Running a code review on page 326 | C Code Review Compiler - crccc on

page 1120

Ada Instrumentor - attolada

Purpose

The source code insertion (SCI) Instrumentor for Ada inserts functions from a Target Deployment Port library into the

Ada source code under test. The Ada Instrumentor is used for Code Coverage only.

1123

HCL® OneTest™ Embedded

1124

Syntax

attolada <src> <instr> [<options>]

where:

• <src> is the source file (input)

<instr> is the instrumented output file

Description

The Instrumentor builds an output source file from an input source file, by adding special calls to the Target

Deployment Port function definitions.

The Ada Instrumentor (attolada) supports Ada83 and Ada95 standard source code without distinction.

You can select one or more types of coverage at the instrumentation stage (see the User Guide for more information).

When you generate reports, results from some or all of the subset of selected coverage types are available.

Options

-PROC [=RET]

-PROC alone instruments procedure, function, package, and task entries. This is the default setting.

The -PROC=RET option instruments both entries and exits.

-CALL

Instruments Ada functions or procedures.

-BLOCK [=IMPLICIT | DECISION | LOGICAL | ATC]

This option specifies how blocks are to be instrumented.

• The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION option to instrument implicit blocks (unwritten else instructions), as well as

simple blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as the simple and implicit blocks.

Use the ATC parameter to extend the instrumentation to asynchronous transfer control (ATC) blocks.

By default, the Instrumentor instruments implicit blocks.

Chapter 7. Reference Guide

-COND [=MODIFIED | COMPOUND | FORCEEVALUATION]

When -COND is used with no parameter, the Instrumentor instruments basic conditions.

• MODIFIED or COMPOUND are equivalent settings that allow measuring the modified and compound

conditions.

FORCEEVALUATION modifies the code to force the execution of all conditions in the decision.

-NOPROC

Disables instrumentation of procedure inputs, outputs, or returns, etc.

-NOCALL

Disables instrumentation of calls.

-NOBLOCK

Disables instrumentation of simple, implicit, or logical blocks.

-NOCOND

Disables instrumentation of basic conditions.

-NOFULLPATHKEY

This option forces the product to ignore the full path of files. Use this option if you need to consolidate test results

when a same file can be identified with various paths, for example in a multi-user development environment using

source control.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Ada units (packages or functions or procedures in packages) whose bodies are to be instrumented,

where <name> is an Ada unit which is to be explicitly instrumented. All other functions are ignored.

-EXUNIT specifies packages, or functions or procedures in packages that are to be excluded from the

instrumentation. All other Ada units are instrumented. Units that are excluded from the instrumentation process

with the -EXUNIT option are still analyzed. Any errors found in those files are still reported. For example:

-EXUNIT=MYPACKAGE or -EXUNIT=MYPACKAGE.MYFUNCTION

-UNIT and -EXUNIT cannot be used together.

-LINK= <filename>[{,<filename>]]

1125

HCL® OneTest™ Embedded

1126

Provides a set of link files to the Instrumentor.

-INJECT= <unit>[{,<unit>]]

-NAMEINJECT[=<name>]

These options allow you to inject a procedure definition into the instrumented source code. -INJECT specifies the

package(s) that contain the procedure definition. -NAMEINJECT specifies the name of the procedure that is injected.

If <name> is not specified, then the procedure name ATTOL_TEST is assumed. These options must be used together.

-STDLINK= <filename>

Provides a standard link file to the Instrumentor.

-FDCDIR= <directory>

Specifies the destination <directory> for the .fdc correspondence file, which is generated for Code Coverage after

the instrumentation for each source file. Correspondence files contain static information about each enumerated

branch and are used as inputs to the Code Coverage Report Generator. If <directory> is not specified, each .fdc file is

generated in the directory of the corresponding source file. If you do not use this option, the default .fdc files directory

is the working directory (the attolada execution directory). You cannot use this option with the -FDCNAME option.

-FDCNAME= <name>

By default, the instrumentor generates one .fdc static correspondence file for each source file involved in the code to

be instrumented. Use this option to specify a single static file for all source files in order to avoid file access conflicts,

for example when a parallel build is involved. When this option is specified, the generated .fdc file contains one FDC

section per source file. You cannot use this option with the -FDCDIR option.

-DUMPINCOMING= <name>[{,<name>}]

-DUMPRETURNING= <name>[{,<name>}]

These options allow you to explicitly define upon which incoming or returning function(s) the trace dump must be

performed. Please refer to General Runtime Analysis Settings in the User Guide for further details.

-COMMENT= <comment>

Associates the text from either the Code Coverage Launcher (preprocessing command line) or from you with the

source file and stores it in the FDC file to be mentioned in coverage reports. In Code Coverage Viewer, a magnifying

glass is put in front of the source file. Clicking on this magnifying glass, shows this text in a separate window. The

comment text must not contain commas or non-alphanumeric characters.

-NOMETRICS

Chapter 7. Reference Guide

Saves the metrics basic data calculation time.

-RESTRICTION =NOEXCEPTION|NOGENERIC|CSMART

Use this option to set a restriction.

• NOEXCEPTION deactivates instrumentation of exception block branches encountered in the source file. When

this option is active, no coverage information is available on exception blocks or on instructions contained in

exception blocks.

NOGENERIC deactivates the instrumentation using a generic Target Deployment Port call. When this option is

active, the generated source code may contain uninstrumentable calls. If used with the -CALL option, this can

generate compilation errors depending on your application if, for example, you use private packages as well

as private sub-packages.

CSMART generates CSMART compliant code.

-NOSOURCE

Replaces the generation of the colorized viewer source listing by a colorized viewer pre-annotated report containing

line number references.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code Coverage Viewer.

-METRICS

Provides static metric data for compatibility with old versions of the product. Use the static metrics features of the

Test Script Compiler tools instead. By default no static metrics are produced by the Instrumentors.

-GENERATEDNAME = CHECKSUM | <filename>

-USERNAME = <NAME>

Use these options to add a package to the header of the generated file to store coverage traces. You can specify the

name of the generated package using one of the following three options:

• -GENERATEDNAME=CHECKSUM uses a checksum calculated on the instrumented file to create a package

name under the form ATC_ <checksum>, where <checksum> has a maximum of four letters.

-GENERATEDNAME= <filename> uses the name of the file to be instrumented, this name is transformed into

an Ada identifier and prefixed by ATC_.

-USERNAME= <username>: A name you choose freely by the user and provide on the command line.

1127

HCL® OneTest™ Embedded

1128

<File> is used without checking whether it is a valid Ada identifier.

By default, the -GENERATEDNAME=<FILE> option is used.

-ALTCHECKSUM

Use this option to calculate a more unambiguous checksum for .fdc and .tsf files. Before using this option, you must

delete existing fdc and tsf files, which will be re-created with the new checksum. File keys are not changed by this

option.

-PREFIX= <prefix>

You can prefix some instrumentations (name of the generated package, variables, etc.) if there are any semantic

ambiguities. Thus, packages generated by attolada can be recognized by giving them a known prefix.

By default, no prefix is used.

Note The prefix you provide is used, without checking whether it is a valid Ada identifier.

-SPECIFICATION

Extends instrumentation of calls and conditions to source code inside package specifications.

-MAIN= <unit>[{, <unit>}]

Forces a trace dump at the end of the main unit of your application.

-EXCALL= <unit>[{, <unit>}]

Only applies when -CALL is used. Excludes all specified calls to the function or procedure units from the

instrumentation. The <unit> names must be fully qualified names, for example: package.procedure

-ADA83 | -ADA95

Choose specifies the Ada language used by the Instrumentor. This language is applied to the analyzed and generated

file.

-INSTRUMENTATION=[COUNT|INLINE]

Specifies the Instrumentation Mode:

Chapter 7. Reference Guide

• COUNT: Default Pass mode, each branch generates in 32 bits for profiling purposes. This offers the best

compromise between code size and speed overhead.

• INLINE: Compact mode. functionally equivalent to Pass mode, except that each branch needs only one bit of

storage instead of one byte. This implies a smaller requirement for data storage in memory, but produces a

noticeable increase in code size (shift/bits masks) and execution time.

By default, count mode is used, which is a compromise between the flow mode (everything is a call to the Target

Deployment Package) and the inline mode (when possible, the code is directly inserted into the generated file).

-NOINFO

Asks the Instrumentor not to generate the identification header. This header is normally written at the beginning of the

instrumented file, to strictly identify the instrument used.

-STUDIO_LOG

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal er­

ror

All messages are sent to the standard error output device.

Java Instrumentor - javi

Purpose

The SCI Instrumentor for Java inserts methods from a Target Deployment Port library into the Java source code

under test. The Java Instrumentor is used for:

• Performance Profiling

Code Coverage

Runtime Tracing

1129

HCL® OneTest™ Embedded

1130

Memory Profiling for Java uses the JVMPI Agent instead of source code insertion (SCI) technology as for other

languages.

Syntax

javi <src> {[,<src>]} [<options>]

where:

• <src> is one or several Java source files (input)

Description

The SCI Instrumentor builds an output source file from each input source file by adding specific calls to the Target

Deployment Port method definitions. These calls are used by the product's runtime analysis features when the Java

application is built and executed.

The Runtime Analysis tools are activated by selecting the command line options:

• -MEMPRO for Memory Profiling

• -PERFPRO for Performance Profiling

• -TRACE for Runtime Tracing

• -PROC and -BLOCK for Code Coverage (code coverage levels).

Note that there is no -COVERAGE option; the following rules apply for the Code Coverage feature:

• If no code coverage level is specified, nor Runtime Tracing, Memory Profiling, or Performance Profiling, then

the default is to have code coverage analysis at the -PROC and -BLOCK=DECISION level.

• If no code coverage level is specified while one or more of the aforementioned features are selected, then

code coverage analysis is not performed.

Detailed information about command line options for each feature are available in the sections below.

The Java Instrumentor creates the output files in a javi.jir directory, which is located inside the current directory. By

default, this directory is cleaned and rewritten each time the Instrumentor is executed.

Although the Java Instrumentor can take several input source files on the command line, you only need to provide the

file containing a main method for the Instrumentor to locate and instrument all dependencies.

The $CLASSPATH or $EDG_CLASSPATH environment variable must point to the native classes required by the

Instrumentor. Alternatively, you can specify one or several additional classpaths by using the -CLASSPATH option of

the Java Instrumentor. The -CLASSPATH option overrides the $CLASSPATH and $EDG_CLASSPATH environment

variables -in that order- during instrumentation.

Chapter 7. Reference Guide

When using the Code Coverage feature, you can select one or more types of coverage at the instrumentation stage

(see the User Guide for more information). When you generate reports, results from some or all of the subset of

selected coverage types are available.

Options

-FILE= <filename>[{,<filename>}] | -EXFILE= <filename>[{,<filename>}]

-FILE specifies the only files that are to be explicitly instrumented, where <filename> is a Java source file. All other

source files are ignored.

-EXFILE explicitely specifies the files that are to be excluded from the instrumentation, where <filename> is a Java

source file. All other source files are instrumented.

Files that are excluded from the instrumentation process with the -EXFILE option are still analyzed. Any errors found

in those files are still reported.

<filename> may contain a path (absolute or relative from the current working directory). If no path is provided, the

current working directory is used.

-FILE and -EXFILE cannot be used together.

-NOFULLPATHKEY

This option forces the product to ignore the full path of files. Use this option if you need to consolidate test results

when a same file can be identified with various paths, for example in a multi-user development environment using

source control.

-CLASSPATH=<classpath>

The -CLASSPATH option overrides the $CLASSPATH and $EDG_CLASSPATH environment variables -in that order-

during instrumentation.

In <classpath>, each path is separated by a colon (":") on UNIX systems and a semicolon (";") in Windows.

-OPP=<filename>

The -OPP option allows you to specify an optional definition file. The <filename> parameter is a relative or absolute

filename.

-DESTDIR= <directory>

The -DESTDIR option specifies the location where the javi.jir output directory containing the instrumented Java

source files is to be created. By default, the output directory is created in the current directory.

-PROC [=RET]

1131

HCL® OneTest™ Embedded

1132

The -PROC option alone causes instrumentation of all classes and method entries. This is the default setting.

The -PROC=RET option instruments procedure inputs, outputs, and terminal instructions.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to instrument implicit blocks (unwritten else

instructions), as well as simple blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as the simple and implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you select simple block coverage, those found

in ternary expressions are not considered as branches.

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and so forth.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-COUNT

Specifies count mode. By default, the Instrumentor uses pass mode. See the User Guide.

-COMPACT

Specifies compact mode. By default, the Instrumentor uses pass mode. See the User Guide.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Java units whose bodies are to be instrumented, where <name> is an Java package, class or method

which is to be explicitly instrumented. All other units are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All other Java units are instrumented.

-UNIT and -EXUNIT cannot be used together.

Chapter 7. Reference Guide

-DUMPINCOMING= <service>[{,<service>}]

-DUMPRETURNING= <service>[{,<service>}]

-MAIN= <service>

These options allow you to precisely specify where the SCI dump must occur. -MAIN is equivalent to

-DUMPRETURNING.

-COMMENT= <comment>

Associates the text from either the Code Coverage Launcher (preprocessing command line) or from you with the

source file and stores it in the FDC file to be mentioned in coverage reports. In Code Coverage Viewer, a magnifying

glass is put in front of the source file. Clicking this magnifying glass shows this text in a separate window.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code Coverage Viewer.

-JTEST | -NOJTEST

The -JTEST option provides UML sequence diagram output for Component Testing for Java with HCL OneTest

Embedded. -NOJTEST disables this output.

-NOCLEAN

When this option is set, the Instrumentor does not clear the javi.jir directory before generating new files.

-FDCDIR= <directory>

Specifies the destination <directory> for the .fdc correspondence file, which is generated for Code Coverage after

the instrumentation for each source file. Correspondence files contain static information about each enumerated

branch and are used as inputs to the Code Coverage Report Generator. If <directory> is not specified, each .fdc file is

generated in the directory of the corresponding source file. If you do not use this option, the default .fdc files directory

is the current working directory. You cannot use this option with the -FDCNAME option.

-FDCNAME= <name>

By default, the instrumentor generates one .fdc static correspondence file for each source file involved in the code to

be instrumented. Use this option to specify a single static file for all source files in order to avoid file access conflicts,

for example when a parallel build is involved. When this option is specified, the generated .fdc file contains one FDC

section per source file. You cannot use this option with the -FDCDIR option.

-NO_UNNAMED_TRACE

With this option, anonymous classes are not instrumented.

-PERFPRO

1133

HCL® OneTest™ Embedded

1134

This option activates Performance Profiling instrumentation. This produces output for a Performance Profile report.

-TRACE

This option activates Runtime Tracing instrumentation. This produces output for a UML sequence diagram.

-TSFDIR=<directory>

Specifies the destination <directory> for the .tsf static trace file, which is generated for Code Coverage after the

instrumentation of each source file. If <directory> is not specified, each .tsf static trace file is generated in the

directory of the corresponding source file. If you do not use this option, the default .tsf static trace file directory is the

current working directory. You cannot use this option with the -TSFNAME option.

-TSFNAME=<filename>

Specifies the <name> of the .tsf static trace file that is to be produced by the instrumentation. You cannot use this

option with the -TSFDIR option.

-INSTRUMENTATION=[FLOW|COUNT|INLINE]

Choose specifies the instrumentation mode. By default, count mode is used, which is a compromise between the flow

mode (everything is a call to the Target Deployment Package) and the inline mode (when possible, the code is directly

inserted into the generated file).

Warning: Inline mode must be used only in pass mode. Do not use this option if you want to know how many times a

branch is reached.

-NOINFO

Asks the Instrumentor not to generate the identification header. This header is normally written at the beginning of the

instrumented file.

-STUDIO_LOG

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal er­

ror

Chapter 7. Reference Guide

All messages are sent to the standard error output device.

Ada Metrics Generator - metada

Purpose

The Ada Metrics Generator produces .met static metric files for the specified source files.

Syntax

metada <source_file> [-output_dir= <output_directory>]

metada @ <options_file>

where:

• <source_file> is the name of the source file to be analyzed.

<output directory> is the absolute path of the location where the .met static metric file is to be generated.

<options_file> points to a plain text file containing a list of options.

Description

The Ada Metrics Calculator analyzes a specified Ada source file and produces a .met static metric file, which can be

opened with the HCL OneTest Embedded GUI.

Note For other languages, the .met static metric files are produced by the C and C++ Source Code Parsers.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

TDF Splitter - attsplit

Purpose

1135

HCL® OneTest™ Embedded

1136

For use with Runtime Tracing. The .tdf splitter (attsplit) tool allows you to separate large .tdf dynamic trace files into

smaller—more manageable—files.

Syntax

attsplit [<options>] <tcf file> <tsf_file> <tdf file>

where:

• <tcf_file> is always $TESTRTDIR/lib/tracer.tcf

<tsf_file> is the name of the generated .tsf static trace file

<tdf file> is the name of the original .tdf dynamic trace file

Description

Trace .tdf files that contain loops cannot be split.

Options

-p <prefix>

Specifies the filename prefix for the split .tdf files. By default, split .tdf filenames start with att.

-s <bytes>

Sets the maximum file size for the split .tdf files. By default, the original .tdf dynamic trace file is split into 1000 byte

split .tdf files

Specifies

-v | -vw

Activates verbose mode (-v) or verbose mode for written files only (-vw).

-nt

Disables the writing of time information. By default, time information is written to the split .tdf files.

-fopt <filename>

Uses a text file to pass options to the attsplit command line.

-studio_log

This option is for internal usage only.

Chapter 7. Reference Guide

Code Coverage Report Generator - attolcov

Purpose

The Report Generator creates Code Coverage reports from the coverage data gathered during the execution of the

application under analysis.

Syntax

attolcov {<fdc file>} {<traces>} [<options>]

where:

• <fdc files> The list of correspondence files for the application under test, with one file generated for each

source file during instrumentation

<traces> is a list of trace files. (default name attolcov.tio)

<options> represents a set of options described below.

Parameters can use wild-card characters ('*' and '?') to specify multiple files. They can also contain absolute or

relative paths.

Description

Trace files are generated when an instrumented program is run. A trace file contains the list of branches exercised

during the run.

You can select one or more coverage types at the instrumentation stage.

All or some of the selected coverage types are then available when reports are generated.

The Report Generator supports the following coverage type options:

-PROC[=RET]

The -PROC option, with no parameter, reports procedure inputs.

Use the RET parameter to reports procedure inputs, outputs, and terminal instructions.

-CALL

Reports call coverage.

-BLOCK[=IMPLICIT | DECISION | LOGICAL | ATC]

The -BLOCK option, with no parameter, reports statement blocks only.

1137

HCL® OneTest™ Embedded

1138

• IMPLICIT or DECISION (equivalent) reports implicit blocks (unwritten else and default blocks), as well as

statement blocks.

LOGICAL Reports logical blocks (loops, as well as statement and implicit blocks.

ATC Reports asynchronous transfer control (ATC) blocks, as well as statement blocks, implicit blocks, and

logical blocks.

-COND[=MODIFIED|COMPOUND]

The -COND option, with no parameter, reports basic conditions only.

MODIFIED reports modified conditions as well as basic conditions.

COMPOUND reports compound conditions as well as basic and modified conditions.

Explicitly Excluded Options

Each coverage type can also be explicitly excluded.

-NOPROC

Procedure inputs, outputs, or returns are not reported.

-NOCALL

Calls are not reported.

-NOBLOCK

Simple, implicit, or logical blocks are not reported.

-NOCOND

Basic conditions are not reported.

Additional Options

The following options are also available:

-FILE= <file>{[, <file>]} | -EXFILE= <file>{[, <file>]}

Specifies which files are reported or not. Use -FILE to report only the files that are explicitly specified or -EXFILE to

report all files except those that are explicitly specified. Both -FILE and -EXFILE cannot be used together.

-SERVICE=<service>{[, <service>]} | -EXSERVICE=<service>{[, <service>]}

Chapter 7. Reference Guide

Specifies which functions, methods, and procedures are to be reported or not. Use -SERVICE to report only the

functions, methods and procedures that are explicitly specified or -EXSERVICE to report all functions, methods, and

procedures except those that are explicitly specified. Both -SERVICE and -EXSERVICE cannot be used together.

-TEST= <test>{[, <test>]} | -EXTEST= <test>{[, <test>]}

Specifies which tests are reported or not. Use -TEST to report only the tests that are explicitly specified or -EXTEST to

report all tests except those that are explicitly specified. Both -TEST and -EXTEST cannot be used together.

-OUTPUT= <file>

Specifies the name of the report file (<file>) to be generated. You can specify any filename extension and can include

an absolute or relative path.

-LISTING[=<directory>]

This option requires annotated listings to be generated from the source files. Annotated listings carry the same name

as their corresponding source files, but with the extension .lsc. The optional parameter <directory> is the absolute

or relative path to the directory where the listings are to be generated. By default, a listing file is generated in the

directory where its corresponding source file is located.

-NOGLOBAL

Reports the results of each test found in the trace file, followed by a conclusion summarizing all the tests. If a test

has no name, it is identified as "﷓" in the report. A test is an execution of an instrumented application, a TEST as

defined for Component Testing for C and Ada, or a dump-on-signal. By default, the report is not structured in terms of

tests.

-BRANCH=COV

Reports branches covered rather than branches not covered. It does not affect listings, where only branches not

covered are indicated with the source code line where they appear.

-CLEAN=<file.tio>

Generates a new cleaned up .tio file that takes up less disk space. You can delete the original .tio file after using this

option.

-MERGETESTS

When using the -CLEAN option, merges previous results in order to produce a more compact file.

-SUMMARY=CONCLUSION | FILE | SERVICE

This option sets the verbosity of the summary:

1139

HCL® OneTest™ Embedded

1140

• CONCLUSION reports only the overall conclusion.

FILE reports only the conclusion for each source file, and the overall conclusion.

SERVICE reports only the levels of coverage for each source file, each C function, and overall. The list of

branches covered or not covered is not included.

-STUDIO_LOG

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal er­

ror

All messages are sent to the standard error output device.

Trace Probe Processor - parsecode.pl

When using the Probe runtime analysis feature of the product, the Probe Processor takes C source files and message

definition files and generates a set of source files containing the message trace functions called by the probe macros.

Syntax

parsecode.pl [<options>] {<msg_files> [, <msg_files>]} {<source> [, <source>]}

where:

1. <msg_files> are .h message type definition files

<source> are probed C source files

<options> is a set of optional parameters among those described below.

Definition

The Probe Processor is is only available for the C language.

Chapter 7. Reference Guide

The message traces are written to a .rio output file, one for each instance. The probed binary is produced by

compiling the atlprobe.c file, which is generated by the Probe Processor, and linked to the application object files with

the Target Deployment Port.

Optional Parameters

[-mode=DEFAULT|CUSTOM]

Default mode writes the .rio output file on-the-fly. In this case, the atl_dump_trace macro is not required.

Custom mode allows the probes to write traces to a temporary location, such as memory, a stack or a buffer file. In

custom mode, the traces are flushed to the .rio file only when an atl_dump_trace macro is encountered.

The I/O functions for probe trace output to the temporary location are defined in the probecst.c source file delivered

with the product. You can modify this file to adapt the probe mechanism to your application and platform.

In custom mode, the compilation and link phase generates write operations from the probed application and the

probecst.c file, and read operations from the atlprobe.c, probecst.c files and the TP.o Target Deployment Port file.

[-preopts=-INCL= <include directories>]

The -preopts option allows you to send a list of include directories specified with a C Test Script Compiler -INCL

option. See the C Test Script Compiler on page 1147 -INCL option.

[-outdir= <output directory>]

This option allows you to specify the target directory for the atlp.

[-accuracy= <time>]

This option expressed the desired accuracy to be used if you are generating a .pts test script for use with System

Testing for C, where <time> is expressed in milliseconds (ms).

[-polling= <time>]

This option expressed the desired polling interval to be used if you are generating a .pts test script for use with

System Testing for C, where <time> is expressed in milliseconds (ms).

[-studio_log]

This option is for internal usage only.

Related Topics

Probe Macros on page 1075 | C Test Script Compiler on page 1147 | System Testing Report Generator on

page 1145

1141

HCL® OneTest™ Embedded

1142

C system testing command line interface

System Testing Supervisor - atsspv
The System Testing Supervisor executes .spv supervisor script files.

Syntax
atsspv spv_script options

Where

spv_script is the .spv supervisor script to execute.

options is a series of command line options. See the section Options.

Description

System Testing manages the simultaneous execution of Virtual Testers distributed over a network. When using

System Testing, the job of the Supervisor is to:

• Set up target hosts to run the test.

• Launch the Virtual Testers, the system under test and any other tools.

• Synchronize Virtual Testers during execution.

• Retrieve the execution traces after test execution.

The System Testing Supervisor uses a .spv supervisor deployment script to control System Testing Agents installed

on each distributed target host. Agents can launch either applications or Virtual Testers.

While the agent-spawned processes are running, their standard and error outputs are redirected to the supervisor.

Note: You must install and configure the agents on the target machines before execution.

The Supervisor generates traces during analysis and execution. These traces are displayed on the screen and written

to a log file named as spv_script.lis.

Confirmation with telnet interface

You can check that the System Testing Agent is correctly configured by using the telnet interface. Launch a telnet

session to the computer on which the Agent is running, on the System Testing port (by default 10000) and type Jef

username after the welcome prompt. The exchange should be the same as follows:

> telnet <computer> 10000

210 hello, pleased to meet you.>

Jef <username>

The answer should provide the status of the user on the computer.

Chapter 7. Reference Guide

Options

• -CHECK

This option specifies that the scenario is to be analyzed but not executed. This allows you to check for errors

in the .spv script.

• -NOLOG

Disables supervisor output of error messages and warnings to the screen. Traces are still written to the .lis log

file.

• STUDIO_MACH=localhost

By default, the supervisor uses the IP address 127.0.0.1 to connect to the HCL OneTest™ EmbeddedGraphical

User Interface. Use -STUDIO_MACH= localhost to resolve problems when the supervisor fails to connect.

• -STUDIO_LOG

This option is for internal usage only.

Return Codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

System Testing Load Report Generator - atsload

Purpose

The Load Report Generator produces a report describing messages and execution time.

Syntax

atsload -SEPARATOR=' <sep_string> ' [-TITLE] <rdd file> {[, <rdd file>]}

where:

• <rdd_file> is an .rdd output file generated by the Report Generator.

<sep_string> is the separator string.

<options> is a set of optional parameters among those described below.

1143

HCL® OneTest™ Embedded

1144

Description

The System Testing Load Report Generator tool processes .rdd file of a virtual tester from the Report Generator and

produces the following output:

• TITLE: The optional header for each column of the report.

• SCENARIO: total execution time

• SEND: timestamp of a SEND message relative to the beginning of the SCENARIO

• MESSAGE: timestamp of a WAITTIL relative to the beginning of the SCENARIO

• PRINT: value of the numeric parameter

You can use the Load Report Generator to compare between several virtual testers. Data is presented in columns,

separated by a separator string. Each column represents a particular virtual tester.

There must be one .rdd file for each virtual tester.

Optional Parameters

-TITLE

This option adds a TITLE line to the report, containing the name of the virtual tester for each column.

-STUDIO_LOG

This option is for internal usage only.

Example

atsload -SEPARATOR=':' vt1.rod vt2.rod vt2.rod

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

7 End of execution due to a fatal error

9 End of execution due to an internal er­

ror

All messages are sent to the standard error output device.

Chapter 7. Reference Guide

System Testing Report Generator - atsmerge

Syntax

atsmerge <file> {[, <file>]} [<options>]

where:

1. <file> lists the .rio intermediate result files generated during the virtual tester execution phase and the .tdc

correspondence table files generated during compilation.

<options> is a list of options described below.

Description

The system generates a .rod result file for each .rio file, which is saved in the rio directory. The .rod filename uses the

.rio filename with a .rod extension.

If one of the files cannot be found, the Report Generator produces a fatal error. The Report Generator does not

support spaces in a filename.

The Report Generator produces a warning message each time it encounters any incorrect data.

If the report contains any synchronization errors between the .tdc and the .rio file, the Report Generator produces a

fatal error.

Options

The options can be in any order. They may be upper or lower case and written in an incomplete form, provided the

selected option is clear.

-TIME

This option enables you to merge reports that do not contain structure instructions. Structural instructions are

beginning and ending block instructions (scenario, initialization, exception, termination).

If the .rio and .tdc files come from different test scripts, the -TIME option is enabled.

-RDD = <RDD report filename>

This option enables you to specify the output report filename.

By default, the report is names atsrdd.rdd and generated in the current directory.

-RA [=ERR | =TEST]

This option specifies the form of the report generated.

With -RA = TEST, only variables that are in a failed test are displayed.

1145

HCL® OneTest™ Embedded

1146

With -RA = ERR, no variables are displayed.

In both cases, if the test is correct, only general information on this test is displayed.

The default option is -RA (with no parameters), which provides a full report of all variables for each test.

-VA =EVAL | NOEVAL | COMBINE

This option lets you specify the way in which initial and expected values of each variable is displayed in the test

report.

1. With -VA = EVAL, the initial, expected value of each variable evaluated during execution is displayed in the

report. This option is only visible for variables whose initialization or expected value is not reduced in the test

script.

Note: For structures in which one of the fields is an array, this evaluation is not given for the initial values. For

expected values, it is only given for incorrect elements.

1. With -VA = NOEVAL, for each variable, the report generator displays in the test report the initial and expected

values described in the test script.

Use -VA = COMBINE to combines the previous two options, that is, for each variable, the report generator

displays in the test report the initial and expected values described in the test script as well as the initial and

expected values evaluated during execution.

By default -VA = EVAL is used.

-SUMMARY | NOSUMMARY

This option produces a summary of the test execution in the test report.

This option gives a quick overview of the execution of the set of test scenarios. It only summarizes the execution of

the test scenarios.

The default option is -NOSUMMARY.

-COMMENT | -NOCOMMENT

In the System Testing Language, the COMMENT keyword displays a comment in the test report. You can use

-NOCOMMENT to disable these comments, and -COMMENT to make them visible.

By default comments are displayed.

-STUDIO_LOG

This option is for internal usage only.

Log File

Chapter 7. Reference Guide

-LOG | -NOLOG

With the -LOG option, errors found during analysis of .rio and .tdc files are displayed on screen. Use the -NOLOG

option to disable this behavior.

By default the -LOG option is used.

Example

atsmerge fic01.rio fic02.rio fic01.tdc fic02.tdc ...

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

System Testing Script Compiler - atspreproC

The System Testing Script Compiler preprocesses the Test Script and converts it into a native source test harness.

Syntax

atspreproC <test script> <interface_file> {[,<interface_file>]} <file name> [<options>]

where:

• <test script> is the test script to be compiled.

<interface file> lists interface files that contain event structure definitions, includes for interface prototypes,

and their types. These files may have any extension.

Note If read access to these files is denied, System Testing for C produces a fatal error.

1147

HCL® OneTest™ Embedded

1148

• <file name> is the name of the C code file generated from the test script. If you do not specify an extension,

the system uses the ATS_SRC environment variable extension, or the default extension .c.

<options> is a set of optional parameters among those described below.

Description

If you do not specify an extension, the system uses the ATS_PTS environment variable extension or the default .pts

extension.

If an input file is absent or read access is denied, System Testing for C produces a fatal error.

After execution, the code is generated in the code.c file. If it is not possible to create the file, you will receive a fatal

error.

If the Report Generator detects incorrect tests, System Testing for C produces a warning message.

If the report detects a synchronization error between the .tdc and the .rio file, System Testing for C produces a fatal

error.

Optional Parameters

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

-ALLOCATION[=STACK | =DYNAMIC]

This option allows you to specify the method for allocating the work of the test program in the compiler.

If this option is present, the test program uses only allocated data on the execution stack (=STACK).

By default, the work context is global static data.

-BUFSIZE= <size>

This option sets the size of the trace buffer in kilobytes. The trace buffer is only used with the -TRACE option.

The default buffer size is 10KB.

-DEFINE= <list of conditions>

This option lets you specify the conditions to apply during test compilation. This option is equivalent to compiler

option -D.

You can specify particular conditions or give them a value (-define=condition=value). Symbols defined with this option

are equivalent to the following line in C:

﷓define <symbol> [<value>]

Chapter 7. Reference Guide

-FAMILY= <family> {[, <family>]} | -EXFAMILY= <family> {[, <family>]}

-FAMILY specifies the only test families that are to be explicitly executed. Any other test families are ignored.

-EXFAMILY explicitly specifies the families that are to be ignored. All other families are executed.

-FAMILY and -EXFAMILY cannot be used together. The Test Script Compiler generates a warning message if no

scenarios are generated.

By default, all test families are executed.

-SCN= <scenario> {[,<scenario>]} | -EXSCN= <scenario> {[,<scenario>]}

-SCN specifies the only scenarios that are to be explicitly executed. Any other scenarios are ignored.

-EXSCN explicitely specifies the scenarios that are to be ignored. All other scenarios are executed.

-SCN and -EXSCN cannot be used together.

To specify a sub-scenario, name the set of scenarios in which it is included and separate with full stops. If you

exclude a scenario that contains sub-scenarios, all its sub-scenarios are also excluded.

The Test Script Compiler generates a warning message if no scenarios are generated.

-FAST | -NOFAST

The -FAST option tells the Test Script Compiler to analyze only those scenarios that you want to generate. This option

accelerates execution of the Test Script Compiler if you use a selection option. The option is useful when using -SCN,

-EXSCN, -FAMILY, -EXFAMILY.

The -NOFAST option disables this behavior.

By default, the -FAST option is used.

-INCL= <directory> {[, <directory>]}

This option lists directories where included files are located. Using this option enables you to:

• Establish the list of include files in the tested source file

Execute the INCLUDE instructions

Execute the C ﷓include instruction

The system first searches the current directory, next in the directories specified with the -INCL option, and finally the

default C system files directory.

1149

HCL® OneTest™ Embedded

1150

-LANG=C

This option allows you to select the language of the generated code. You can generate C virtual testers.

By default, virtual testers are generated in C.

-LOG | -NOLOG

With the -LOG option, the system displays and stores errors found during the analysis of interface files and test script.

The name of the log file is the name of the test script with the .lis extension.

If you select -NOLOG, these errors are not displayed.

By default, the -LOG option is used.

-NOCOMMENT

Use this option to deactivate the processing of COMMENT statements in order to improve performance issues.

-NOTSHARED

This option allows you to disable sharing of global static data between instances. When using this option, you must

apply different names to all global variables within a test script. No local variable, constant, or function parameter

should have the same name as a global static variable in the test script.

This used only by the -ALLOCATION and -THREAD options.

By default global variables of the test script are shared by all instances.

-STD_DEFINE= <standard definitions file>

This option provides the C parser with a C source file describing the characteristics of the compiler used.

If the specified file cannot be found, the Test Script Compiler stops and you will receive a fatal error.

By default, no compiler characteristics are specified.

-THREAD [=<function name>]

This option allows you to create a test function with a name other than main.

If <function name> is omitted, the function name becomes the source file name appended with _start.

By default, the generated function is called main.

-TRACE=CIRCULAR | ERROR | SCN | TIME

Chapter 7. Reference Guide

The Test Script Compiler uses a buffer to store the result of the test script execution. This buffer is saved on disk

each time selected events (ERROR, SCN, TIME) occur. This option reduces the size of the virtual tester execution file.

It is most useful during an endurance test.

• -TRACE=CIRCULAR tells the virtual tester to use a circular buffer to store execution traces. The circular buffer

stores the execution traces in memory. Traces are flushed into the .rio file only after virtual tester execution or

if explicitly requested in the test script (see the FLUSH_TRACE on page 886 keyword).

-TRACE=ERROR saves the buffer each time a test script error occurs.

-TRACE=SCN has the same functionality as the ERROR parameter, and additionally saves scenario begin and

end marks.

-TRACE=TIME has the same functionality as the SCN parameter; and additionally saves timed events

(WAITTIL and PRINT).

These options generate incomplete reports - some information is filtered - but the report always includes plan test

errors.

If the buffer is too small, some traces are lost and the generated report is incomplete. You can change buffer size

with the -BUFSIZE option.

-STUDIO_LOG

This option is for internal usage only.

-SPVGEN

This option is for internal usage only.

Examples

atsprepro gen.pts interface.h code -EXSCN=Main.send.test_1, Main.receive.test_1

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

1151

HCL® OneTest™ Embedded

1152

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

Virtual Tester

Syntax

<virtual tester> [-INSTANCE= <instance>] [-OCCID= <id_number>] [-RIO= <trace_file>]

Description

Virtual testers are multiple contextual incarnations of a single .pts System Testing test script.

One virtual tester can be deployed simultaneously on one or several targets, with different test configurations. A same

virtual tester can also have multiple clones on the same target host machine.

Deployment of virtual testers is controlled by either the GUI or a System Testing .spv supervisor script when running

in the command line interface. Do not edit .spv scripts when using the GUI.

System Testing for C generates virtual testers from a test script according to the declared instances.

Note A System Testing Agent for C must be installed and running on each target host before deploying virtual testers

to those targets.

Following the execution architecture and constraints needed to comply, the System Testing Script Compiler provides

several ways to generate the virtual testers.

Options

Virtual testers can take the following command line options:

-INSTANCE=<instance>

If the .pts test script contains DECLARE_INSTANCE instructions, this option specifies which behavioral instance the

virtual tester is to initiate. By default, the virtual tester generates all behaviors contained in the test script, but on

execution, only one instance is adopted.

If no instances are selected even though instances do exist in the test script, the virtual tester stops with a fatal error

message.

-RIO= <trace_file>

This syntax specifies the name of the execution trace file to be generated by the virtual tester.

If you do not define a trace filename, the name <virtual tester> .rio will be used.

Chapter 7. Reference Guide

-OCCID= <occurrence_id_number>

This allows you to specify the occurrence identification number to use in the virtual tester identifier when using

communication between virtual testers. See the INTERSEND on page 892 and INTERRECV on page 893 statements

for more information.

-STUDIO_LOG

This option is for internal usage only.

Component testing command line interface

Component testing for C

The Component Testing for C feature of HCL OneTest™ Embedded provides a unique, fully automated, and proven

solution for applications written in C, dramatically increasing test productivity.

To learn about See

C component test script keywords C Component Testing script language

on page 748

Using the Source Code Parser to generate test scripts C Source Code Parser - attolstartC on

page 1153

Using the Test Script Compiler C Test Script Compiler - attolpreproC

on page 1157

Using the Test Report Generator C Test Report Generator - attolpost­

pro on page 1162

Using the C Instrumentor and Instrumentation Launch­

er

Runtime analysis tools reference on

page 1075

Related Topics

Component Testing for C overview on page 478 | Writing a test script on page 481 | Command line component testing

for C, Ada and C++ on page 999

C Source Code Parser - attolstartC
When creating a new Component Testing test campaign for C, the C Source Code Parser creates a C test script

template based on the analysis of the source code under test.

1153

HCL® OneTest™ Embedded

1154

Syntax

attolstartC<source_file> <test_script> [{<-option>}]

attolstartC<source_file> -metrics [{<-option>}]

attolstartC@<option file >

where:

• <source under test> this required parameter is the name of the source file to be tested.

<test script> is the name of the test script that is generated

<options> is a list of options as defined below.

<option file> is the name of a plain-text file containing a list of options.

Description

The C Source Code Parser analyzes the source file to be tested in order to extract global variables and testable

functions.

Each global variable is automatically declared as external, if this has not already been done at the beginning of the

test script. Then, an environment is created to contain all these variables with default tests. This environment has the

name of the file (without the extension).

For each function under test, the generator creates a SERVICE which contains the C declaration of the variables to

use as parameters of the function.

Parameters passed by reference are declared according to the following rule:

• char* <param> causes the generation of char <param>[200]

<type>* <param> causes the generation of <type> <param> passing by reference

It is sometimes necessary to modify this declaration if it is unsuitable for the tested function, where <type>* <param>

can entail the following declarations:

• <type>* <param> passing-by-value,

<type> <param> passing-by-reference,

<type> <param>[10] passing-by-reference.

File names can be related or absolute. Path names must not contain commas or non-alphanumeric characters.

Chapter 7. Reference Guide

If the generated file name does not have an extension, the C Source Code Parser automatically attaches .ptu or the

extension specified by the ATTOLPTU environment variable. This name may be specified relatively, in relation to the

current directory, or as an absolute path.

If the test script cannot be created, the C Source Code Parser issues a fatal error and stops.

If the test script already exists, the previous version is saved under the name <generated test script>_bck and a

warning message is generated.

When the -metrics option is specified, the Source Code Parser produces static metrics for the specified source files.

In this case, no other output is produced.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

If attolstartC is invoked without parameters, the binary returns a list of options. Some of those options are deprecated

and listed only for legacy purposes.

Included Files

-insert

With this option the source file under test is included into the test script with an ﷓include directive, ensuring that all

the internal functions and variables (declared static) are visible to the test script. The C Source Code Parser adds the

﷓include directive before the BEGIN instruction and after any ﷓includes added by the -use option.

-use=<file used>{[,<file used>]}

This option gives the C Source Code Parser a list of header files to include in the test script before the BEGIN

instruction. This avoids declaring variables or functions that have already been declared in a C header file of the

application under test.

The C Source Code Parser adds the ﷓include directive before the BEGIN instruction. Then, for each file, an

environment is created, containing all variables with a default test. This environment has the name of the included

file.

By default, no files are included in the test script.

Integrated Files

-integrate=<additional file>{[,<additional file>]}

This option provides a list of additional source files whose objects are integrated into the test program after linking.

1155

HCL® OneTest™ Embedded

1156

The C Source Code Parser analyzes the additional files to extract any global variables that are visible from outside.

For each global variable the Parser declares an external variable and creates a default test which is added to an

environment named after the corresponding additional file.

By default, any symbols and types that could be exported from the source file under test are declared again in the test

script.

Simulated Files

-simulate=<simulated file>{[,<simulated file>]}

This option gives the C Source Code Parser a list of source files to simulate upon execution of the test. List elements

are separated by commas and may be specified relatively, in relation to the current directory, or as an absolute path.

The Parser analyzes the simulated files to extract the global variables and functions that are visible from outside. For

each file, a DEFINE STUB block, which contains the simulation of the file's external global variables and functions, is

generated.

Example:

attolstart add.c add.ptu -SIMULATE="source.c" -USE="source.c"

By default, if attolstart detects that a function is not used, the stub block is commented out in the code and no

simulation instructions are generated. If this function is needed, uncomment the stub block in the code so that the

stub can be generated.

Static Metrics

-metrics=<output directory>

This option generates static metrics for the specified source files. Resulting .met static metric files are produced

in specified <output directory>. When the -metrics option is used, no other action is performed by the Source Code

Parser.

-one_level_metrics: For use with the -metrics option only. When the -metrics option is used, by default, the

calculation of static metrics is applied to the specified source files, and extended to any files included in those source

files. Use the -one_level_metrics option to ignore included files when calculating static metrics.

-restrict_dir_metrics<directory>: For use with the -metrics option only. Use the the -restrict_dir_metrics option to

calculate static metrics of the specified source files, extended to any files included in those source files but limited to

those files located in the specified <directory>.

Other Option

-studio_log: This option is for internal usage only.

Chapter 7. Reference Guide

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

C Test Script Compiler - attolpreproC

Purpose

The C Test Script Compiler tool pre-processes a .ptu test script and converts it into a native source code test harness.

Syntax

attolpreproC <test_script> <generated_file> [<target_directory>] {[<-options>]}

attolpreproC @<option_file>

where:

1. <test_script> is a required parameter that specifies the name of the test program to be generated.

<generated_file> is a required parameter that specifies the name of the test harness that is generated from the

test script.

<target_directory> is an optional parameter. It specifies the location where Component Testing for C will

generate the trace file. By default, the trace file is generated in the workspace directory.

<options> is a set of optional command line parameters as specified in the following section.

<option_file> is the name of a plain-text file containing a list of options.

Description

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

1157

HCL® OneTest™ Embedded

1158

Source File Under Test

-source= <source file>

This option specifies the name of the source file being tested, allowing the Test Script Compiler to:

• Maintain the source file name in the table of correspondence files so that the Test Report Generator can

display this name in the header of the results obtained file.

• Establish the list of include files in the tested source file.

The name of the tested source file may be specified with a relative or absolute directory in a syntax recognized by the

operating system, or, in UNIX, by an environment variable.

By default, the list of include files in the tested source file and the source file name are not displayed in the Results

Obtained file.

Condition Definition

-define= <ident>[= <value>] {[, <ident>[= <value>]}

This option specifies conditions to be applied when the Test Script Compiler starts. These conditions allow you to

define C symbols that apply conditions to the generation of any IF ... ELSE ... END IF blocks in the test script.

If the option is used with one of the conditions specified in the IF instruction, the IF ... ELSE block (if ELSE is

present) or the ELSE ... END IF block (if ELSE is not present) is analyzed and generated. The ELSE ... END IF block is

eliminated.

If the option is not used or if none of the conditions specified in the IF instruction are satisfied, the ELSE ... END IF

block is analyzed and generated.

All symbols defined by this option are equivalent to the following line in C

-define <ident> [<value>]

By default, the ELSE ... END IF blocks are analyzed and generated.

Specifying Tests, Families, and Services

-test= <test>{[, <test>]} | -extest= <test>{[, <test>]}

This option specifies a list of tests to be executed.

Use -test to only generate the source code related to the specified tests, and -extest to specify the tests for which you

do not want to generate source code.

Both -test and -extest cannot be used together.

By default, all tests are selected.

Chapter 7. Reference Guide

-family=<family>{, <family>} | -exfamily=<family>{, <family>}

Use -family to only generate the source code related to the specified families, and -exfamily to specify the families for

which you do not want to generate source code.

Both -family and -exfamily cannot be used together.

By default, all families are selected.

-service=<service>{[, <service>]} | -exservice= <service>{[, <service>]}

Use -service to only generate the source code related to the specified services, and -exservice family to specify the

services for which you do not want to generate source code.

Both -service and -exservice cannot be used together.

By default, all services are selected.

-STD_DEFINE= <TDP definition file>

This option allows you to specify a TDP definition file that enables compatibility with the compiler. Typically, this is

<targetPath>/ana/atus_c.def

-RENAME= <stub rename file>

Use this option to stub methods that are located within the source code. <stub rename file> specifies the name of a

generated file that contains the stub renaming options for the C/C++ Instrumentor. You can pass this filename as a

parameter for the C/C++ Instrumentor (attolccp or attolcc4/attolcc1) with the syntax attolccp (or attolcc4)@ <stub

rename file> .

Test Script Parsing

-fast | -nofast

The -fast option tells the C Test Script Compiler to analyze only those tests that you want to generate. This setting

considerably speeds up the Test Script Compiler when you use the -service,-exservice,-family, -exfamily,-test, or -extest

options.

The -fast option is selected by default.

If you want a full test script analysis, this option can be de-selected using the -nofast option.

-noanalyse

This option disables the native language parser.

By default, native language lines are analyzed. This option enables you to disable this parsing.

-noedit

1159

HCL® OneTest™ Embedded

1160

This option limits unit test code generation to the initialization of variables, making it possible to generate tighter

code for special purposes such as debugging. If you specify the -noedit option, you cannot generate a test report.

By default, code is generated normally.

-nopath

Use this option if you do not want to generate long pathnames on the open and close execution trace file call, and

on the Target Deployment Port header file include directive. This can be useful, for example, to preserve memory on

embedded targets.

By default, full pathnames are generated.

-nosimulation

This option determines the conditional generation related to simulation in the source file generated by the Test Script

Compiler. Blocks delimited by the keywords SIMUL ... ELSE_SIMUL ... END SIMUL can be included in the test scripts.

See SIMUL on page 766 blocks in the C Test Script Language Reference on page 748.

-restriction=ANSI | KR | NOEXCEPTION | NOIMAGE | NOPOS | SEPAR

This option lets you modify the behavior of test script parser.

1. ANSI enables C native code to be analyzed according to the ANSI standard (C only).

KR enables C native code to be analyzed according to the KERNIGHAN & RITCHIE version 2 standard (C only).

1. noexception: tells the Test Script Compiler to skip EXCEPTION blocks when generating a test harness. This

allows the use of compilers that do not implement exception handling. By default, EXCEPTION blocks are

generated in the test program.

noimage: initialization, expected, and obtained values display as integers instead of character strings. By

default, reports are generated with IMAGE attributes.

nopos: modifies the way enumerated variables are displayed in the test report by not generating any POS

or IMAGE attributes. Initialization and expected values are displayed as they are written in the test script,

whereas obtained values do not appear (although they are tested). Use this option to save memory on

restricted target platforms. By default, reports are is generated with IMAGE attributes.

separ: modifies the format of the generated test program. In place of a main procedure including a sub-

procedure for each service, the C Test Script Compiler generates one separate procedure for each service.

With this restriction, the Test Script Compiler generates several compilation units and avoids overflow errors

on compilation. By default, code is generated normally.

Several -restriction options can be used on the same command line. The ANSI and KR parameters, however, cannot

be used together.

Chapter 7. Reference Guide

Other options

-STUDIO_LOG

This option is for internal usage only.

-TARGET

This option is deprecated.

Using an Option File

@<parameter file>

This syntax allows the compiler to pass options to the preprocessor through a file. The parameter file name can be

written in absolute or relative format.

The format of the file must follow these rules:

1. One or more options can occur per line.

Each option must follow the same syntax as the command line version, with the character that usually

introduces the option being '-' under UNIX and '/' under Windows.

You may not use both an option file and command line options.

By default, no file is taken into account.

If the option file is not found, a fatal error is generated and the preprocessor stops.

Examples

attolprepro C add.ptu Tadd.cpp -service=add -test=1,2,3 -family=nominal

attolprepro CPP @add.opt

In this case, the parameter file add.opt would contains:

add.ptu Tadd.cpp

-service=add

-test=1,2,3

-family=nominal

Return Codes

After execution, the program exits with the following return codes

1161

HCL® OneTest™ Embedded

1162

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

These codes help you decide on a course of action once the Test Script Compiler has finished test execution. For

example, if the return code in the command file shows there have been incorrect tests, you can save certain files in

order to analyze them later.

All messages are sent to the standard error output device.

Related Topics

C++ Test Script Compiler on page 1166 | System Testing Script Compiler on page 1147

C Test Report Generator - attolpostpro

Purpose

The C Test Report Generator processes a trace file produced during test execution, and generates a test report.

Syntax

attolpostpro <trace_filename> <report_filename> [<options>]

attolpostpro @ <option file>

where:

1. <trace_filename> specifies the root (filename without extension) of the trace file that is generated when the

program runs.

<report_filename> specifies the name of the .rod compact report file produced by the Test Report Generator.

<options> can be any of the optional parameters specified below.

<option_file> is the name of a plain-text file containing a list of options.

Description

Chapter 7. Reference Guide

The Test Report Generator uses <trace_filename> to find the names of both the .rio trace file and the .tdc table of

correspondence file that are generated by the Test Script Compiler.

If <report_filename> is provided without an extension, the Test Report Generator attaches .rod.

If either <trace_filename> or <report_filename> are omitted, the Test Report Generator produces an error message and

terminates.

If the either <trace_filename> .rio or <trace_filename> .tdc do not exist, cannot be read, or contain synchronization

errors, the Test Report Generator produces an error message and terminates.

If the Test Report Generator cannot create the .rod compact report file, generation of the report is terminated. If the

file already exists, the newly generated file replaces the existing report.

The .rod compact report file is an intermediate low-footprint format that can be stored on remote targets. The .rod

files must be converted to the .xrd report file format to be displayed by theHCL OneTest™ Embedded GUI with the

rod2xrd command line tool.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

-cio= <coverage result file>

This option allows you to insert coverage results in the report file. This option must be used only in conjunction with

the Code Coverage feature.

-compare[=strict]

This option lets you compare the results from two test runs. A trace file generated during the first run has a .rio

extension, and the one generated during the second run has a .ri2 extension.

When making a comparison, the Test Report Generator generates the test report from:

1. The .tdc table of correspondence file

The .rio trace file generated during the first run

The .ri2 trace file generated during the second run

The same root name is used for the names of the three files.

When comparing values, a variable will only be deemed correct if the two obtained values are the same as the

expected value, or within the specified validity interval for that variable. With the compare=strict option, the two

results must have the same value.

1163

HCL® OneTest™ Embedded

1164

-ra[=test | error]

This option specifies the form of the output report generated by the Test Report Generator.

Use -ra with no parameter, to display ALL test variables and mark any variables that are incorrect for a given test. This

option is used by default.

Use the -ra=test option to display ALL test variables, with incorrect variables marked. This option provides a

comprehensive display of variables for an incorrect test, which can prove useful in a complex test environment.

Use -ra=error to to display only erroneous test variables.

For both -ra=test and -ra=error, if no errors are detected in the test, only general information about the test is

produced.

-va=eval | noeval | combined

This option lets you specify the way in which initial and expected values of each variable are displayed in the test

report.

Use -va=eval if you want the test report to show the initial and expected value of each variable evaluated during

execution of the test. This is only relevant for variables whose initial or expected value expressions are not reducible

in the test script.

Note: For arrays and structures in which one of the members is an array, the initial values are not evaluated. For the

expected values, only incorrect elements are evaluated.

Use -va=noeval if you want the test report to show the initial and expected values described in the test script.

The -va=combined option combines both eval and noeval parameters. For each variable, the Report Generator

includes the initial and expected values described in the test script, as well as the initial and expected values

evaluated during execution, if these values differ.

By default, the -va=eval parameter is used.

-studio_log

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

Chapter 7. Reference Guide

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

Component testing for C++

C++ Test Report Generator - atopospro

Purpose

The C++ Test Report Generator processes a trace file produced during test execution, and generates a test report that

can be viewed in the GUI.

Syntax

atopospro -ots {<ots files>} -tdf <tdf file> -xrd <xrd file>

where:

• <ots files> is a list of .ots intermediate files generated by the C++ Test Script Compiler on page 1166.

<tdf file> is the .tdf dynamic trace file generated during the execution of the application under test.

<xrd file> is the .xrd report file to be generated by the Report Generator.

Example

atopospro -ots script.ots contract1.ots contract2.ots -tdf bar.tdf -xrd report.xrd

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no er­

rors

1 Abnormal termination

All messages are sent to the standard error output device.

1165

HCL® OneTest™ Embedded

1166

C++ Test Script Compiler - atoprepro

Purpose

The C++ Test Script Compiler compiles the .otd C ++ Test Driver Script and .otc C++ Contract Check Scripts into C++

source code.

Syntax

atoprepro [<OTD Script>]|[<OTC Scripts>] -G C++ -O <cpp file> -OTI <oti file> -TDF <tdf file>

where:

• <otd script> is an .otd C++ Test Driver Script file.

<otc scripts> is a set of one or more .otc C++ Contract Check Script files.

• <cpp file> is the name of the.ccor.cppsource file to be generated by Component Testing for C++ and linked to

the application under test.

• <oti file> is the name of the.otiinstrumentation file to be generated. This file is used by the C++ Instrumentor

on page 1110.

• <tdf file> is the.tdfdynamic trace file to be generated during the execution of the application under test.

Options

The C++ Source Code Parser supports the following options:

-E <number of errors>

Specifies the maximum number of error messages that can be displayed by the C++ Test Script Compiler. The default

value is 30.

-NODLINE

Deactivates the generation of #line statements. This can be useful in environments where the generated source code

cannot use the #line mechanism. By default #line statements are generated.

-NOPATH

This option tells the C++ Test Script Compiler not to use the full path to the TDP from the $ATLTGT environment

variable before the name of TP.h in the #include directive.

This option is useful for embedded targets when compilation of the generated source does not occur on the same

host as the C++ test compilation.

-STUDIO_LOG

Chapter 7. Reference Guide

This option is for internal usage only.

Example

atoprepro script.otd contract1.otc contract2.otc -G C++ -O app.cc -OTI foo.oti -TDF bar.tdf -E 60

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no er­

rors

1 Abnormal termination

All messages are sent to the standard error output device.

C++ Source Code Parser - atostart

Purpose

The C++ Source Code Parser takes a set of C++ source files containing classes to generate template .otd C++ Test

Driver Scripts and .otc C++ Contract Check Scripts to fully cover the application under test.

Syntax

atostart {[-i] <source file>} <options>

atostart {<source file>} -metrics <options>

where:

• <tested file> is the list of files containing classes to be tested. If no class if specified with the option

-test_class, the tested classes will be either the classes defined in a file under test, or the classes for which a

method is defined in a tested file.

• <options> is a series of command line options. See the section Options.

If a tested file is specified with option -i, this file will be included by the generated .otd script. As a consequence

everything defined in this tested file will be available in the script (especially types, classes, static variables, and

functions). This option is ignored if you choose not to generate an .otd C++ Test Driver Script.

Description

1167

HCL® OneTest™ Embedded

1168

The tested files and additional files (see option -integrate) are parsed by the integrated C++ analyzer. A candidate

classes list is automatically deduced from the content of tested files (this list can be viewed in the header of the

generated .otd and .otc scripts). If no -test_class or -do_not_test_class option is used, then all the candidate classes

will have generated code to test them.

The C++ Source Code Parser generates only one .otd C++ Test Driver Script that contains all classes under test. It

also generates two files associated to this test script: a .dcl declaration file (declaring and including every resource

needed to compile the test script) and a .stb stub file (containing stub declarations deduced from used but not

defined entities found in the parsed files).

The C++ Source Code Parser generates one .otc C++ Contract Check Script per encountered .h file defining a class.

When the -metrics option is specified, the Source Code Parser produces static metrics for the specified source files.

Options

The C++ Source Code Parser supports the following options:

{-integrate <additional file>}

Specifies additional files or directories to be analyzed. These files do not contain any classes under test, but they do

contain code which is to be linked with the tested application. Basically, this option tells the C++ Source Code Parser

which files not to stub.

Three types of additional files or directories are supported :

• body files: Only the entities defined within the file are considered defined.

• header files: Every declaration within the file is considered as having a matching definition in a non-provided

body file or in a library. Use additional header files when linking to code for which the source is not available.

• directories: Every declaration found in a file belonging to an additional directory is considered as having

a matching definition in a non-provided body file or in a library (an additional directory can be viewed as a

collection of additional header files).

Note A header file is recognized as such from its content, and not from its extension. A header file does not contain

any definition, other than inline functions, and template functions, or else it is considered as a body file.

This option is ignored when no .otd generation is required. This option can be used more than once to specify

multiple files.

{-insert|-i <included file>}

Specifies included files. These are source files which, instead of being compiled separately during the test, are

included and compiled with the .otd test driver script.

In most cases, you do not have to specify files to be included. Header files are automatically considered as included

files, even if they are not specified as such.

Chapter 7. Reference Guide

Source files under test should be specified as included when:

• The file contains the class definition of a class you want to test

• A function or a variable definition depends upon a type which is defined in the file under test itself

• You need access in your test script to a static variable or function, defined in the file under test

This option is ignored when no .otd generation is required. This option can be used more than once to specify

multiple files.

-o|-otd <test script>

Specifies the name of the generated .otd script. Two associated files are also generated with the same name, but with

extension .dcl and .stb. If the filename extension of <test script> is not .otd, then a warning is issued.

This option is ignored when no .otd generation is required.

-otc <test script>

Specifies the name of the generated .otc script. If the filename extension of <test script> is not .otc, then a warning is

issued.

This option is ignored when no .otc generation is required.

-otcdir <OTC directory>

Specifies the directory where .otc files are to be generated.

This option is ignored when no .otc generation is required.

-opp <compiler option file>

Specifies the name of the Target Deployment Port C++ parser option file. This file is searched for in /ana subdirectory

of the current Target Deployment Port (see ATLTGT environment variable on page 1070), and should not include any

path.

If this option is not provided, the default filename atl.opp will be searched for.

-hpp <compiler configuration file>

Specifies the name of the Target Deployment Port C++ parser configuration file. This file is searched for in /ana

subdirectory of the current Target Deployment Port (see ATLTGT environment variable on page 1070), and should not

include any path.

If this option is not provided, the default filename atl.hpp will be searched for.

1169

HCL® OneTest™ Embedded

1170

{-test_class|-tc <class under test>}

Specifies the classes to be explicitly tested. The classes must belong to the candidate classes. This option cannot be

used simultaneously with the options -do_not_test_class (-dtc).

This option can be used more than once to specify multiple classes.

{-do_not_test_class|-dtc) <excluded class>}

Specifies the classes, among the candidate classes, which should not be tested. This option cannot be used

simultaneously with the options -test_class (-tc).

This option can be used more than once to specify multiple classes.

-test_struct

Specifies whether structs and unions should be treated as classes, and therefore should be considered as potential

tested classes. This option is not significant when -test_class option is used (you can specify structs or unions as

classes to be tested).

-test_method|-tm <method name> <line>

Specifies the methods to be explicitly tested. <method_name> is the fully qualified name of the method (fully qualified

class name with method name, without return values or parameters). <line> is the line number of the method. For

example:

-test_method "class::method1" "50" "class::method2" "70"

This option can be used more than once to specify multiple methods.

-test_class_prefix <prefix>

Specifies the prefix used to name the generated test classes. By default, atostart uses 'Test'.

-test_each_instance

By default, a template class is tested as a generic template class. Use this option if you want to generate a specific

test for each found instance of a template class.

{-force_template <template instance>}

This option forces the instantiation of the specified templates classes. Use it if no automatic template instantiation

occurs while parsing the code. This option is useful only in conjunction with -test_each_instance option.

This option can be used more than once to specify multiple templates.

Chapter 7. Reference Guide

-overwrite

By default, the Test Template Generator creates a backup file of every file it overwrites. Use this option if you really

intend to overwrite these files without backing up them.

-ignore_line_directives

Although the C++ test generator includes a preprocessor and can parse unpreprocessed source code, preprocessed

code is also accepted. In the case of preprocessed source code, the test generator tries to detect included header

files by looking at ﷓line directives. In some cases, such as code generated by a code generator (for example lex or

yacc), relying on ﷓line directives does not produce effective test code. In this case, use -ignore_line_directives to

have the generator ignore ﷓line directives found in the source code.

Note In most cases, this option has no effect because unpreprocessed code does not usually contain ﷓line directives.

This option is ignored when no .otd generation is required.

{-I<include directory>}

This option specifies directories where included files are to be searched for. You can use the option -I- to introduce

the system includes: only directories specified after -I- will be looked up when the include directives use angular

brackets (#include <…>).

This option can be used more than once to specify multiple directories.

{-D <macro>[=<value>]}

This option adds a predefinition for <macro> to <value>.

This option can be used more than once to specify multiple macros.

-E

This options generates preprocessing output to standard output. This option is mainly for debugging purpose.

-include={relative|absolute|copy}

This option specifies how #include directives should be generated in the test script. When relative is chosen, includes

use relative path to the directory where the generated script is put. When absolute is chosen, absolute paths are

generated. When copy is chosen, the way files are included in the test script is the same as they are included in the

tested files, you should in this case ensure that the test script is generated in the same directory than the source files.

This option is ignored when no .otd generation is required.

-no_otc

1171

HCL® OneTest™ Embedded

1172

This option deactivates .otc script generation. Use this option if you only want an .otd test driver script.

-no_otd

This option deactivates .otd script generation. Use this option if you only want an .otc Contract-Check script.

Note If no candidate class is found, nothing will be generated.

-studio_log

This option is for internal usage only.

Static Metrics Options

-metrics <output directory>

Generates static metrics for the specified source files. Resulting .met static metric files are produced in specified

<output directory>. When the -metrics option is used, no other action is performed by the Source Code Parser.

-one_level_metrics

For use with the -metrics option only. When the -metrics option is used, by default, the calculation of static

metrics is applied to the specified source files, and extended to any files included in those source files. Use the

-one_level_metrics option to ignore included files when calculating static metrics.

-restrict_dir_metrics <directory>

For use with the -metrics option only. Use the the -restrict_dir_metrics option to calculate static metrics of the

specified source files, extended to any files included in those source files but limited to those files located in the

specified <directory>.

This option can be used more than once to specify multiple directories.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no er­

rors

1 End of execution with error

All messages are sent to the standard error output device.

Chapter 7. Reference Guide

Component testing for Ada

Ada Source Code Parser - attolstartADA

Purpose

When creating a new Component Testing test campaign for Ada, the Ada Source Code Parser creates an Ada test

script template based on the analysis of the source code under test.

When the -metrics option is specified, the Source Code Parser produces static metrics for the specified source files.

Syntax

attolstart ADA <source_under_test > <test_script> [{<-option>}]

attolstart ADA @ <option file >

where:

1. <source under test> this required parameter is the name of the source file to be tested.

<test script> is the name of the test script that is generated

<options> is a list of options as defined below.

<option file> is the name of a plain-text file containing a list of options.

Description

The Ada Source Code Parser analyzes the source file to be tested in order to extract global variables and testable

functions.

Each global variable is automatically declared as external, if this has not already been done at the beginning of the

test script. Then, an environment is created to contain all these variables with default tests. This environment has the

name of the file (without the extension).

For each function under test, the generator creates a SERVICE which contains the Ada declaration of the variables to

use as parameters of the function.

Parameters passed by reference are declared according to the following rule:

1. char* <param> causes the generation of char <param>[200]

<type>* <param> causes the generation of <type> <param> passing by reference

It is sometimes necessary to modify this declaration if it is unsuitable for the tested function, where <type>* <param>

can entail the following declarations:

1173

HCL® OneTest™ Embedded

1174

1. <type>* <param> passing-by-value,

<type> <param> passing-by-reference,

<type> <param>[10] passing-by-reference.

File names can be related or absolute.

If the generated file name does not have an extension, the Ada Source Code Parser automatically attaches .ptu or the

extension specified by the ATTOLPTU environment variable. This name may be specified relatively, in relation to the

current directory, or as an absolute path.

If the test script cannot be created, the Ada Source Code Parser issues a fatal error and stops.

If the test script already exists, the previous version is saved under the name <generated test script>_bck and a

warning message is generated.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

Static Metrics

-metrics=<output directory>

Generates static metrics for the specified source files. Resulting .met static metric files are produced in specified

<output directory>. When the -metrics option is used, no other action is performed by the Source Code Parser.

Included Files

-insert

With this option the source file under test is included into the test script with an ﷓include directive, ensuring that all

the internal functions and variables (declared static) are visible to the test script. The Ada Source Code Parser adds

the ﷓include directive before the BEGIN instruction and after any ﷓includes added by the -use option.

Additional Files

-integrate= <additional file>{[, <additional file>]}

This option provides a list of additional source files whose objects are integrated into the test program after linking.

The Ada Source Code Parser analyzes the additional files to extract any global variables that are visible from outside.

For each global variable the Parser declares an external variable and creates a default test which is added to an

environment named after the corresponding additional file.

By default, any symbols and types that could be exported from the source file under test are declared again in the test

script.

Chapter 7. Reference Guide

Simulated Files

-simulate= <simulated file>{[, <simulated file>]}

This option gives the Ada Source Code Parser a list of source files to simulate upon execution of the test. List

elements are separated by commas and may be specified relatively, in relation to the current directory, or as an

absolute path.

The Parser analyzes the simulated files to extract the global variables and functions that are visible from outside. For

each file, a DEFINE STUB block, which contains the simulation of the file's external global variables and functions, is

generated.

By default, no simulation instructions are generated.

Header Files

-use= <file used>{[, <file used>]}

This option gives the Ada Source Code Parser a list of header files to include in the test script before the BEGIN

instruction. This avoids declaring variables or functions that have already been declared in an Ada header file of the

application under test.

The Ada Source Code Parser adds the ﷓include directive before the BEGIN instruction. Then, for each file, an

environment is created, containing all variables with a default test. This environment has the name of the included

file.

By default, no files are included in the test script.

Other options

-studio_log

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

1175

HCL® OneTest™ Embedded

1176

All messages are sent to the standard error output device.

Ada Test Script Compiler - attolpreproADA

Purpose

The Ada Test Script Compiler tool pre-processes the Ada test script and converts it into a native source test harness.

Syntax

attolpreproADA <test_script> <generated_file> [<target_directory>] {[<-options>]}

attolpreproADA @<option_file>

where:

• <test_script> is a required parameter that specifies the name of the test program to be generated.

<generated_file> is a required parameter that specifies the name of the test harness that is generated from the

test script.

<target_directory> is an optional parameter. It specifies the location where Component Testing for Ada will

generate the trace file. By default, the trace file is generated in the workspace directory.

<options> is a set of optional command line parameters as specified in the following section.

<option_file> is the name of a plain-text file containing a list of options.

Description

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

The Ada Test Script Compiler produces a series of .tdc, .ddt and .mdt files, which are required by the Ada Test Report

Generator.

Source File Under Test

-source= <source file>

This option specifies the name of the source file being tested, allowing the Test Script Compiler to:

• Maintain the source file name in the table of correspondence files so that the Test Report Generator can

display this name in the header of the results obtained file.

Establish the list of include files in the tested source file.

Chapter 7. Reference Guide

The name of the tested source file may be specified with a relative or absolute directory in a syntax recognized by the

operating system, or, in UNIX, by an environment variable.

By default, the list of include files in the tested source file and the source file name are not displayed in the Results

Obtained file.

Condition Definition

-define= <ident>[= <value>] {[, <ident>[= <value>]}

This option specifies conditions to be applied when the Test Script Compiler starts. These conditions allow

conditional test harness generation as well as identifier definition for Ada.

The identifiers specified by the -define option apply conditions to the generation of any IF ... ELSE ... END IF blocks in

the test script.

If the option is used with one of the conditions specified in the IF instruction, the IF ... ELSE block (if ELSE is

present) or the ELSE ... END IF block (if ELSE is not present) is analyzed and generated. The ELSE ... END IF block is

eliminated.

If the option is not used or if none of the conditions specified in the IF instruction are satisfied, the ELSE ... END IF

block is analyzed and generated.

All symbols defined by this option are equivalent to the following line in Ada

-define <ident> [<value>]

By default, the ELSE ... END IF blocks are analyzed and generated.

Specifying Tests, Families, and Services

-test= <test>{[, <test>]} | -extest= <test>{[, <test>]}

This option specifies a list of tests to be executed.

Use -test to only generate the source code related to the specified tests, and -extest to specify the tests for which you

do not want to generate source code.

Both -test and -extest cannot be used together.

By default, all tests are selected.

-family=<family>{, <family>} | -exfamily=<family>{, <family>}

Use -family to only generate the source code related to the specified families, and -exfamily to specify the families

for which you do not want to generate source code.

Both -family and -exfamily cannot be used together.

1177

HCL® OneTest™ Embedded

1178

By default, all families are selected.

-service=<service>{[, <service>]} | -exservice= <service>{[, <service>]}

Use -service to only generate the source code related to the specified services, and -exservice family to specify the

services for which you do not want to generate source code.

Both -service and -exservice cannot be used together.

By default, all services are selected.

Test Script Parsing

-fast | -nofast

The -fast option tells the Test Script Compiler to analyze only those tests that you want to generate. This setting

considerably speeds up the Test Script Compiler when you use the -service,-exservice,-family, -exfamily,-test, or

-extest options.

The -fast option is selected by default.

If you want a full test script analysis, this option can be de-selected using the -nofast option.

-noanalyse

This option disables the native language parser.

By default, native language lines are analyzed. This option enables you to disable this parsing.

-noedit

This option limits unit test code generation to the initialization of variables, making it possible to generate tighter

code for special purposes such as debugging. If you specify the -noedit option, you cannot generate a test report.

By default, code is generated normally.

-nopath

Use this option if you do not want to generate long pathnames on the open and close execution trace file call, and

on the Target Deployment Port header file include directive. This can be useful, for example, to preserve memory on

embedded targets.

By default, full pathnames are generated.

-nosimulation

This option determines the conditional generation related to simulation in the source file generated by the Test Script

Compiler. Blocks delimited by the keywords SIMUL ... ELSE_SIMUL ... END SIMUL can be included in the test scripts.

See SIMUL on page 766 blocks in the Ada Test Script Language on page 748.

Chapter 7. Reference Guide

-restriction=ANSI | KR | NOEXCEPTION | NOIMAGE | NOPOS | SEPAR | NOALLOC

This option lets you modify the behavior of test script parser.

• noexception: tells the Test Script Compiler to skip EXCEPTION blocks when generating a test harness. This

allows the use of compilers that do not implement exception handling. By default, EXCEPTION blocks are

generated in the test program.

• noimage: initialization, expected, and obtained values display as integers instead of character strings. By

default, reports are generated with IMAGE attributes.

• nopos: modifies the way enumerated variables are displayed in the test report by not generating any POS

or IMAGE attributes. Initialization and expected values are displayed as they are written in the test script,

whereas obtained values do not appear (although they are tested). Use this option to save memory on

restricted target platforms. By default, reports are is generated with IMAGE attributes.

• separ: modifies the format of the generated test program. In place of a main procedure including a sub-

procedure for each service, the Test Script Compiler generates one separate procedure for each service. With

this restriction, the Test Script Compiler generates several compilation units and avoids overflow errors on

compilation. By default, code is generated normally.

• noalloc: disables memory allocation for non-constraint types. When using this option, you must use the

pragma ATTOL_RANGE to specify an alternate memory usage method.

Several -restriction options can be used on the same command line. The ANSI and KR parameters, however, cannot

be used together.

Other options

-studio_log

This option is for internal usage only.

-target

This option is deprecated.

Using an Option File

@<parameter file>

This syntax allows the compiler to pass options to the preprocessor through a file. The parameter file name can be

written in absolute or relative format.

The format of the file must follow these rules:

1179

HCL® OneTest™ Embedded

1180

• One or more options can occur per line.

Each option must follow the same syntax as the command line version, with the character that usually

introduces the option being '-' under UNIX and '/' under Windows.

You may not use both an option file and command line options.

By default, no file is taken into account.

If the option file is not found, a fatal error is generated and the preprocessor stops.

Examples

attolprepro C add.ptu Tadd.cpp -service=add -test=1,2,3 -family=nominal

attolprepro CPP @add.opt

In this case, the parameter file add.opt would contains:

add.ptu Tadd.cpp

-service=add

-test=1,2,3

-family=nominal

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

These codes help you decide on a course of action once the Test Script Compiler has finished test execution. For

example, if the return code in the command file shows there have been incorrect tests, you can save certain files in

order to analyze them later.

Chapter 7. Reference Guide

All messages are sent to the standard error output device.

Related Topics

C++ Test Script Compiler on page 1166 | System Testing Script Compiler on page 1147

attolpostproada

Ada Test Script Compiler - attolpostproada

Purpose

The Ada Test Report Generator processes a trace file produced during test execution, and generates a test report.

Syntax

attolpostproada <trace_filename> <report_filename> [<options>]

attolpostproada @ <option file>

where:

• <trace_filename> specifies the root (filename without extension) of the trace file that is generated when the

program runs.

<report_filename> specifies the name of the .rod compact report file produced by the Test Report Generator.

<options> can be any of the optional parameters specified below.

<option_file> is the name of a plain-text file containing a list of options.

Description

The Test Report Generator uses <trace_filename> to find the names of both the .rio trace file and the .tdc, .ddt and

.mdt files that are generated by the Test Script Compiler.

If <report_filename> is provided without an extension, the Test Report Generator attaches .rod.

If either <trace_filename> or <report_filename> are omitted, the Test Report Generator produces an error message and

terminates.

If any of the required files (.rio, .tdc, .ddt or .mdt) do not exist, cannot be read, or contain synchronization errors, the

Test Report Generator produces an error message and terminates.

If the Test Report Generator cannot create the .rod compact report file, generation of the report is terminated. If the

file already exists, the newly generated file replaces the existing report.

1181

HCL® OneTest™ Embedded

1182

The .rod compact report file is an intermediate low-footprint format that can be stored on remote targets. The .rod

files must be converted to the .xrd report file format to be displayed by the HCL OneTest™ EmbeddedGUI with the

rod2xrd command line tool.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

-cio= <coverage result file>

This option allows you to insert coverage results in the report file. This option must be used only in conjunction with

the Code Coverage feature.

-ra[=test | error]

This option specifies the form of the output report generated by the Test Report Generator.

Use -ra with no parameter, to display ALL test variables and mark any variables that are incorrect for a given test. This

option is used by default.

Use the -ra=test option to display ALL test variables, with incorrect variables marked. This option provides a

comprehensive display of variables for an incorrect test, which can prove useful in a complex test environment.

Use -ra=error to to display only erroneous test variables.

For both -ra=test and -ra=error, if no errors are detected in the test, only general information about the test is

produced.

-va=eval | noeval | combined

This option lets you specify the way in which initial and expected values of each variable are displayed in the test

report.

Use -va=eval if you want the test report to show the initial and expected value of each variable evaluated during

execution of the test. This is only relevant for variables whose initial or expected value expressions are not reducible

in the test script.

Note: For arrays and structures in which one of the members is an array, the initial values are not evaluated. For the

expected values, only incorrect elements are evaluated.

Use -va=noeval if you want the test report to show the initial and expected values described in the test script.

The -va=combined option combines both eval and noeval parameters. For each variable, the Report Generator

includes the initial and expected values described in the test script, as well as the initial and expected values

evaluated during execution, if these values differ.

By default, the -va=eval parameter is used.

Chapter 7. Reference Guide

-studio_log

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

Ada Link File Generator - attolalk

Purpose

The Ada Link File Generator (attolalk) feature automatically generates link files. It uses file name extensions that you

allow or disallow, and on the file list found in the specified directories.

Syntax

attolalk [<options>] <link file name> <directory> [<directory> ... <directory>]

where:

• <link file name> is the name of the generated link file. If attolalk cannot write this file a fatal error is generated.

<directory> is a directory name. If attolalk cannot read file from this directory, a fatal error is generated.

<options> is a set of optional command line parameters as specified in the following section.

Description

The Link File Generator requires that the LD_LIBRARY_PATH environment variable is set to the /lib directory in the

product installation directory.

File Extensions

A file extension is a character string of unconstrained positive length (greater than zero). A file name matches an

extension if its length is greater than the length of extension, and if the N last characters of the file name are identical

1183

HCL® OneTest™ Embedded

1184

to the characters of the extension (N is the length of the extension). For example, source.ada matches the .ada

extension but not .1.ada extension.

Permitted and Forbidden Extensions:

Permitted and forbidden file extensions for the Link File Generator are specified by the ATTOLALK_EXT and

ATTOLALK_NOEXT environment variables and are separated by the ':' character on UNIX systems and ';' on Windows.

Example, on UNIX:

ATTOLALK_EXT=".ada:.a:.am"

ATTOLALK_NOEXT=".1.ada"

Example, on Windows:

ATTOLALK_EXT=".ad6;.adc;.ads;.adb"

By default, the allowed extension list is ".ada:.ads:.adb" and the forbidden extension list is empty. These default

values are orverwritten by the value of the ATTOLALK_EXT variable.

Link File Generation

For each given directory, the contained file name list is loaded. Each file name is compared with the allowed

extensions. If a match is found, the file name is compared with forbidden extension. If there is no match, the file is

taken as an Ada source file. Each Ada source file is analyzed and may produce one or more lines in the generated link

file (with the syntax described above).

Command Line Parameters

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

-r

Relative paths. With the -r option, all filenames are generated with relative paths.

-s

Silent mode. With the -s option, only errors are displayed.

-f

Force all Ada files. By default, the Link File Generator only analyzes Ada source files that were changed since the last

analysis. Use the -f option to force the analysis of all Ada source files, regardless of when they were modified.

Return Codes

Chapter 7. Reference Guide

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

Related Topics

Environment Variables on page 1070 | Ada Unit Maker on page 1185 | Ada Instrumentor on page 1123

Ada Unit Maker - attolchop

Purpose

The Instrumentor generates several compilation units in the same file. Some compilers require a separate file for

each compilation unit.

To achieve this, the Ada Unit Maker feature generates one file for each compilation unit found in a specified Ada

source file as the gnatchop command, provided with the GNAT Ada compiler, does. You can choose the name of the

generated files from several naming conventions.

Syntax

attolchop [<options>] <source file name> [..<source file name>] [<directory>]

where:

• <source file name> is the source file name to analyze. If this file cannot be read or contains lexical or syntax

errors, a fatal error is generated.

• <options> is a set of optional command line parameters as specified in the following section.

• <directory> is the optional output directory.

Description

1185

HCL® OneTest™ Embedded

1186

The Ada Unit Maker feature can generate file names for Rational Apex or Gnat naming standards. To choose the

naming standard, either set the ATTOLCHOP environment variable to GNAT or APEX or use the -n command line

parameter. By default, the Ada Unit Maker uses the Gnat naming convention.

Gnat Naming

The full compilation unit name is set to lower case and all dot characters (".") are replaced with hyphens ("-"). The

feature appends the .ads extension to the name if the unit is an extension or the .adb extension if the unit is a body.

The Krunch Gnat short name mode is not supported by the Ada Unit Maker. Please refer to your Gnat documentation

for further information.

Rational Apex Naming

The full compilation unit name is set to lower case; then the feature appends a .1.ada extension to the filename if the

unit is a specification, or a .2.ada extension if the unit is a body. Please refer to your Apex documentation for further

information.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their shortest unambiguous

number of characters.

-l

This option must be placed first if it is used. This tells the Ada Unit Maker feature to send the name of the generated

file, and no other messages, to the standard output.

-w

Overwrite. By default, the Ada Unit Maker produces an error if a filename already exists. Use the -w option to overwrite

any existing files.

-v

This option returns the version number of the product.

-n APEX|GNAT

Naming standard. Use the -n option to select either the Rational Apex or Gnat naming convention. This parameter

overrides the default setting (Gnat) as well as the ATTOLCHOP environment variable if set.

Return Codes

After execution, the program exits with the following return codes:

Code Description

Chapter 7. Reference Guide

0 End of execution with no errors

3 End of execution with one or more warning mes­

sages

5 End of execution with one or more errors

7 End of execution because of a fatal error

9 End of execution because of an internal error

All messages are sent to the standard error output device.

Output window preferences
The general colors and font preferences panel allows you to specify the colors and fonts used in the output window.

This panel opens from menu Edit > Preferences. You can choose Output Window style or Output Window Error style.

Output window/Output window errors

In this panel, you can change the color and the font style used to display the build output messages or the standard

error messages in the Output window. This windows opens from the menu View > Other windowsOutput Window.

1187

mclxxxviii

Notices
This document provides information about copyright, trademarks, terms and conditions for the product

documentation.

© Copyright IBM Corporation 2000, 2016 / © Copyright HCL Technologies Limited 2016, 2021

This information was developed for products and services offered in the US.

HCL® may not offer the products, services, or features discussed in this document in other countries. Consult your

local HCL® representative for information on the products and services currently available in your area. Any reference

to an HCL® product, program, or service is not intended to state or imply that only that HCL® product, program,

or service may be used. Any functionally equivalent product, program, or service that does not infringe any HCL®

intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the

operation of any non-HCL® product, program, or service.

HCL® may have patents or pending patent applications covering subject matter described in this document. The

furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing,

to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

For license inquiries regarding double-byte character set (DBCS) information, contact the HCL® Intellectual Property

Department in your country or send inquiries, in writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the publication. HCL® may make

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time

without notice.

mclxxxix

Any references in this information to non-HCL® websites are provided for convenience only and do not in any manner

serve as an endorsement of those websites. The materials at those websites are not part of the materials for this

HCL® product and use of those websites is at your own risk.

HCL® may use or distribute any of the information you provide in any way it believes appropriate without incurring

any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this document and all licensed material available for it are provided by HCL®

under terms of the HCL® Customer Agreement, HCL® International Program License Agreement or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.

Information concerning non-HCL® products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL® has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL® products. Questions on the

capabilities of non-HCL® products should be addressed to the suppliers of those products.

Statements regarding HCL®'s future direction or intent are subject to change or withdrawal without notice, and

represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample programs in any form without

payment to HCL®, for the purposes of developing, using, marketing or distributing application programs conforming

to the application programming interface for the operating platform for which the sample programs are written. These

examples have not been thoroughly tested under all conditions. HCL®, therefore, cannot guarantee or imply reliability,

mcxc

serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind.

HCL® shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as

follows:

© (your company name) (year).

Portions of this code are derived from HCL Ltd. Sample Programs.

© Copyright HCL Ltd. 2000, 2021.

Trademarks
HCL®, the HCL® logo, and ibm.com® are trademarks or registered trademarks of HCL Technologies Ltd., registered

in many jurisdictions worldwide. Other product and service names might be trademarks of HCL® or other companies.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the HCL® website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices

are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof,

without the express consent of HCL®.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary

notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display

these publications or any portion thereof outside your enterprise, without the express consent of HCL®.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or

implied, to the publications or any information, data, software or other intellectual property contained therein.

HCL® reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the

publications is detrimental to its interest or, as determined by HCL®, the above instructions are not being properly

followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and

regulations, including all United States export laws and regulations.

mcxci

HCL® MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT

LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR

PURPOSE.

Index
Numerics

2D and 3D charts
generating 957
viewing 971

A
Activating runtime analysis 68
adding to data dictionary 222
administrator 20
Analyzing source code 65

B
Build

configuration settings 980

C
call graph

preferences 972
changing settings

code coverage 81
code review 110
memory profiling 92
runtime tracing 104, 108

code coverage
configuration settings 81

code review
configuration settings 110
overview 109

coexistence
product installation 30

command line
test suites 234

configuration settings
build 980
target deployment port 977

configurations
creating 230
switching 231, 693

configure
Rational
Quality Manager
 46

configuring 39
conventions

installation 28
create

stub 243
Create

Test case 216
creating

data pools 223
test configurations 230
test suites 228

Cygwin 23

D
data dictionary 222

adding data sets 222
data pools

creating 223
using 221

data sets 222, 222
definitions

test assets 210
dictionary

overview 222

E
editing

running
target deployment port editor 40

target deployment ports 40
editors

preferences 972
Editors

Test case editor 216, 244
Test harness editor 226

Enabling runtime analysis 68
errors

memory profiling 991
errors and warnings

preferences 973
Exuberant Ctags 22

G
generating

2D and 3D charts 957
getting started 63

guide 14
guide

getting started 14

I
importing

Rational
Quality Manager
 48

initializations
multiple values 218

installation
locations 30
terminology 28

installation
HCL
OneTest
Embedded
 20
installation log files

verifying software installation 36
Installation Manager

overview 29
uninstalling software 34

installing
Cygwin 23
Exuberant Ctags 22

installing packages
Installation Manager 29

installing products
coexistence 30

Instrumentation 16

M
memory profiling

configuration settings 92
errors 991
warnings 993

modifying packages
installation manager 29

multiple values
initializations 218

N
No Change 214
No Check 214

O
output window preferences 1046, 1187
overview

code review 109
Overview

Instrumentation 16
Runtime analysis 65
Source code insertion 16
Test cases 213

P
package groups

coexistence 30
installation locations 30

performance profiling
overview 95

preferences
call graph 972
editors 972
errors and warnings 973
report generation 974
report viewers 976
target deployment port 974
test generation 974

R
Rational
Quality Manager

configuring 46
importing 48
starting 46

Rational Quality Manager adapter
overview 46

reference 972
report generation

preferences 974
report viewers

preferences 976
reports

generating 957
running

command line 234
test suites 233

Runtime analysis 65
Enabling 68

runtime tracing
advanced information 102
configuration settings 104, 108

S
Same As Init 214
settings

build 980
target deployment port 977

shared resources directories
installation locations 30

software
updates 33

software installation
verification 36

source files
definition 210

start
Rational
Quality Manager
 46

stub
Create 243

stubs
definition 210

Studio 251
switching

1192

test configurations 231, 693

T
target deployment port

configuration settings 977
editor 40
preferences 974

Target Deployment Port 1074
TDP

preferences 974
terminology

product installation 28
Test assets

Definition 210
Test case

Create 216
Test cases

Definition 210
Editing 216, 244
Structure 213

test configurations
creating 230
switching 231, 693

test generation
preferences 974

Test harnesses
Definition 210
Editing 226

test reports
generating 957

test suites
command line 234
creating 228
definition 210
running 233

testing 63

U
uninstalling software

Installation Manager 34
updates

software 33
updating packages

Installation Manager 29
user privileges 20
using

data pools 221

V
viewing

2D and 3D charts 971

W
warnings

memory profiling 993
workbench

command line 234

1193

	HCL® OneTest™ Embedded
	Contents
	Chapter 1. Release Notes
	Contents
	Description
	What's new in HCL OneTest™ Embedded 8.3.1
	Installing the product
	Known issues
	Contacting HCL support

	Chapter 2. System Requirements
	Contents
	Disclaimers
	Hardware
	Operating systems
	Operating systems

	Prerequisites
	Contents
	Eclipse Runtime Environment
	Installation

	Development environments
	Integration environments
	Contents
	Compilers and languages
	Development Tools
	Quality Management

	Chapter 3. Getting Started Guide
	Overview
	Target deployment port technology
	DO-178B/C Qualification Kit

	Source code instrumentation overview
	Instrumentation overhead

	Target deployment port overview
	Obtaining target deployment ports
	Creating new target deployment ports

	Chapter 4. Administrator Guide
	Installing
	Installation requirements
	Hardware and Software requirements
	User privileges requirements

	Installing the product
	Installation roadmap
	Roadmap for installing HCL OneTest™ Embedded

	Pre-installation Tasks
	Installing required libraries on Ubuntu
	Pre-installation tasks for Studio
	Installing Exuberant Ctags
	Installing Cygwin
	Support for Microsoft™ Visual Studio
	Increasing the number of file handles on Linux™ workstations

	Installing stand-alone installer
	Installing the product on Windows
	Uninstalling the product on Windows
	Installing the product on Linux
	Uninstalling the product on Linux

	Installing the product by using IBM® Installation Manager
	Planning the installation
	Planning features
	Planning compilers
	Installation conventions and terminology
	Installation Manager overview
	Installation considerations
	Installation locations
	Package groups
	Shared resources directory

	Installing the product with Installation Manager
	Updating software
	Uninstalling software

	Installing in Eclipse instance
	Installing the product from an update site

	Verifying the installation
	Starting HCL OneTest™ Embedded
	Managing Licenses
	Setting up licensing

	Configuring
	Target Deployment Port Editor overview
	Target Deployment Port Editor overview
	Opening the Target Deployment Port Editor
	Creating a TDP
	Using the TDP Editor
	Editing customization points in a TDP
	Updating a Target Deployment Port
	Using a Post-generation Script
	Example

	Migrating from v2001A Target Deployment Ports
	Migrating from previous versions
	Upgrading from a previous version
	Target Deployment Ports

	Integrating
	IBM® Rational® Quality Manager integration
	Initializing the Rational® Quality Manager adapter
	Importing test suites into Rational® Quality Manager

	Configuring the Jenkins environment for running test suites
	Integrating HCL OneTest™ Embedded with other development tools
	Integrating Studio with configuration management
	Integrating Studio with IBM Rational ClearCase
	Source Control Commands.

	Integrating Studio with IBM Rational ClearQuest
	Customizing source control tools

	Working with IBM Rational Quality Manager
	Integrating Studio with IBM Rational Quality Manager
	Running the Rational Quality Manager adapter
	Importing a HCL OneTest™ Embedded project into Rational Quality Manager
	Associating Target Deployment Ports with test environments

	Integrating Studio with Microsoft Visual Studio
	Installation
	Configuration
	Code Coverage Instrumentation Options
	Other Options
	Integrating HCL OneTest™ Embedded Studio with Microsoft Visual Studio

	Chapter 5. Test Execution Specialist Guide
	Testing with HCL OneTest™ Embedded for Eclipse IDE
	Getting started with HCL OneTest™ Embedded for Eclipse IDE
	Importing C projects
	Importing HCL OneTest™ Embedded examples
	Analyzing source code
	Runtime analysis overview
	Code coverage
	Memory profiling
	Performance profiling
	Runtime tracing
	Control Coupling
	Data Coupling
	Worst Stack Size

	Enable runtime analysis tools
	Running instrumented applications
	Estimating Instrumentation Overhead
	Code Coverage Overhead
	Memory and Performance Profiling and Runtime Tracing
	Memory Profiling Overhead
	Performance Profiling Overhead
	Runtime Tracing Overhead

	Reducing Instrumentation Overhead
	Limiting Code Coverage Types
	Instrumenting Calls (C Language)
	Optimizing the Information Mode

	Code coverage
	Code coverage overview
	Information modes
	On-the-fly display

	Coverage levels
	Block coverage
	Call coverage
	Condition coverage
	Function coverage
	Additional statements

	Justification of non-covered lines of code
	Changing code coverage settings
	Code coverage for assembler source files
	CONFIGURATION

	Using the Code Coverage Viewer to view reports
	To open a Code Coverage report:
	Coverage types
	Test by test analysis mode
	Opening the HTML report

	Memory profiling
	Memory profiling overview
	Checking for ABWL and FMWL errors
	Memory profiling user heap
	Target deployment port API
	Example

	Changing memory profiling settings

	Performance profiling
	Performance profiling overview
	Performance profiling settings
	Build settings

	Performance Profiling Results
	SUMMARY
	FUNCTIONS
	Call Graph

	Customize the Performance Report
	Raw data

	Runtime tracing
	Runtime tracing overview
	UML sequence diagrams
	Step-by-step mode
	Triggers
	Notes®

	Advanced runtime tracing
	Multithreaded programs
	Partial trace flush
	Trace item buffer
	Splitting trace files

	Changing runtime tracing settings

	Installing the Recommended GNU Compiler on Windows
	Static metrics
	Static metrics overview
	Halstead metrics
	V(g) or cyclomatic number

	Changing static metric settings

	Code review
	Code review overview
	Report

	Configuring code review rules
	Using a customized Naming script file
	To set the path to a customized Naming script file:

	Code review deviations
	Code review MISRA 2004 rules
	Code Review for C - MISRA 2004 rules

	Code review MISRA 2012 rules
	Code Review - MISRA 2012 rules

	Executing the code review
	Customizing the code review report
	Data format
	Javascript functions

	Coupling Analysis overview
	Control Coupling
	How Control Coupling Works
	Set Control Coupling options
	Control Coupling

	Control Coupling Report
	Summary
	Details
	Call Graph
	Filters

	Customize Control Coupling Report
	Raw data

	Data Coupling
	How Data Coupling works
	Set Data Coupling Options
	Data Coupling report
	Customize Data Coupling Report
	Raw data

	Application Profiling
	Worst Stack Size
	Overview
	Set Worst Stack Size Options
	Multi-thread option
	Worst Stack Size options

	Worst Stack Size Report
	Summary
	Details
	Functions
	Call Graph

	Customize the Worst Stack Size Report
	Raw data

	Testing software components
	Component testing overview
	Test assets overview
	Test cases
	Stubs
	Test configurations
	Test harnesses
	Test suites

	Creating test projects
	Test cases
	Test case structure
	Activity diagram
	Initialization and stubs
	Code
	Variable checks

	Variable initial expressions
	Additional notes

	Variable expected value expressions
	Additional notes

	Creating a test case from the project explorer
	Using the test case editor
	Editing test cases
	Defining series value sets in initialization values
	Specifying multiple value sets in initialization values
	Synchronizing multiple values
	Defining ranges in expected values
	Defining a synchronized expected value
	Using values from a data pool

	Using the data dictionary
	Data dictionary overview
	The Data Dictionary view

	Adding data sets to the data dictionary

	Creating data pools

	Test harnesses
	Test harness structure
	Activity flow chart
	Test harness details

	Creating test harnesses
	Creating test harnesses from the call graph
	Editing test harnesses

	Test suites
	Creating test suites

	Test configurations
	Creating test configurations
	Switching test configurations

	Running a test
	Running a test harness
	Running a test suite
	Running test suites from the command line

	Test scripts files
	Testing with PTU test scripts
	Testing with .otd test scripts
	Configuring .ptu or .otd test scripts
	Testing with Python, Perl, Windows or Linux scripts
	Configuring Python, Perl, Windows or Linux scripts
	initreport
	addreport
	genresult
	getconfig

	Stubbing functions
	Stubbing overview
	Stub expected value expressions
	Stub return value
	Stub memory usage

	Creating stubs from the project explorer
	Editing stubs

	Application monitoring
	Prerequisites to monitoring applications
	Importing a monitoring project example
	Enabling monitoring in your application
	Configuring the build and monitoring settings
	Building a project for monitoring

	Monitoring a cyclic executive application

	Testing with Studio
	HCL OneTest™ Embedded Studio overview
	Analyzing static source code
	Checking with static analysis
	Static metrics
	About Static Metrics
	How the static metrics tool works

	Viewing Static Metrics
	Viewing static metrics
	Report Explorer
	Metrics Window

	Static metrics
	File Level Metrics
	File, Class or Package, and Root Level Metrics

	Root level file view
	Halstead Graph
	Metrics Summary

	Object view
	Root Level Summary
	Metrics Summary

	Halstead Metrics
	V(g) or Cyclomatic Number

	Code review
	Code review overview
	Code review MISRA 2004 rules
	Code Review for C - MISRA 2004 rules

	Code review MISRA 2012 rules
	Code Review - MISRA 2012 rules

	Configuring code review rules
	Using a customized naming script file
	Code review deviations
	Running a code review
	Executing the code review from a script
	Running complete verification of MISRA rules from an application node
	Viewing code review results
	Reloading a Report
	Exporting a Report to HTML

	Understanding code review reports
	Report explorer
	Report summary
	Code review details

	Customizing the code review report
	Data format
	Javascript functions

	Analyzing running applications
	Runtime analysis overview
	Profiling shared libraries
	Example

	Code coverage
	Code coverage overview
	Information modes
	On-the-fly display

	Information Modes
	Default Mode
	Compact Mode
	Hit Count Mode

	Coverage types
	Branches
	Coverage Levels
	Ada coverage
	Block coverage
	Statement blocks (or simple blocks)
	Decision coverage (implicit blocks)
	Loop coverage (logical blocks)
	Asynchronous transfer of control (ATC) blocks
	Call coverage
	Condition Coverage
	Basic Conditions
	Forced Conditions
	Modified Conditions
	Multiple Conditions
	Unit coverage
	Unit Entries
	Unit Exits and Returns
	Link files
	Link File Syntax
	Generating a Link File
	Sending the Link File to the Instrumentor
	Loading A Permanent Link File
	Additional Statements
	Terminal Statements
	Potentially Terminal Statements
	Non-coverable Statements

	C coverage
	Block coverage
	Statement Blocks (or Simple Blocks)
	Decisions (Implicit Blocks)
	Loops (Logical Blocks)
	Call coverage
	Example
	Condition coverage
	Basic Conditions
	Modified Conditions
	Multiple Conditions
	Forced Conditions
	Function coverage
	Procedure Entries
	Procedure Entries and Exits (Returns and Terminal Statements)
	Additional statements
	Terminal Statements
	Potentially Terminal Statements
	Non-coverable Statements in C

	C++ coverage
	Block coverage
	Statement Blocks
	Decisions (Implicit Blocks)
	Loops (Logical Blocks)
	Method coverage
	Inputs to Procedures
	Procedure Inputs, Outputs and Returns, and Terminal Instructions
	Potentially Terminal Statements
	Condition coverage
	Basic Conditions
	Forced Conditions
	Modified Conditions
	Multiple Conditions
	Template instrumentation
	Additional Statements
	Non-coverable Statements

	Using the Code Coverage Viewer to view reports
	Coverage types
	Test by test analysis mode
	Reloading a report
	Resetting a report

	Coverage source report
	Code colors
	Hypertext Links
	Macro Expansion
	Hit Count
	Cross Reference
	Comment

	Coverage rates report
	Bitwise MC/DC coverage
	Subheading
	Example

	On-the-fly code coverage
	Code Coverage Dump Driver
	Cleaning code coverage report files
	Justification of non-covered lines of code
	Code coverage for assembler source files
	CONFIGURATION

	Memory profiling for C and C++
	About Memory Profiling for C and C++
	How Memory Profiling for C and C++ Works

	Memory Profiling Results for C and C++
	Memory Profiling Error Messages
	Memory Profiling Error Messages
	List of Memory Profiling Error Messages

	Freeing Freed Memory (FFM)
	Freeing Unallocated Memory (FUM)
	Freeing Invalid Memory (FIM)
	Late Detect Array Bounds Write (ABWL)
	Late Detect Free Memory Write (FMWL)
	Memory Allocation Failure (MAF)
	Core Dump (COR)

	Memory Profiling Warning Messages
	Memory Profiling Warning Messages
	List of Memory Profiling Warning Messages

	Memory in Use (MIU)
	Memory Leak (MLK)
	Memory Potential Leak (MPK)
	File in Use (FIU)
	Signal Handled (SIG)

	Memory Profiling User Heap in C and C++
	Target Deployment Port API

	Using the Memory Profiling Viewer
	Error and Warning Filter
	Reloading a Report
	Resetting a Report

	Checking for ABWL and FMWL errors
	Specifying a manual check
	Selecting blocks to check

	Memory Profiling for Java
	How Memory Profiling for Java Works
	Memory Profiling Results for Java
	Report Explorer
	Method Snapshots
	Referenced Objects
	Differential Reports

	JVMPI Technology
	Garbage Collection
	JVMPI Agent

	Performance profiling
	Performance Profiling
	Performance profiling settings
	Configuration Settings

	Performance Profiling Results
	SUMMARY
	FUNCTIONS
	Call Graph

	Customize the Performance Report
	Raw data

	Performance Profiling SCI Dump Driver
	Using the Performance Profiling Viewer
	Reloading a Report
	Resetting a Report
	Exporting a Report to HTML

	Applying Performance Profile Filters
	Editing Performance Profile Filters

	Runtime tracing
	Runtime Tracing
	How Runtime Tracing Works

	UML sequence diagram overview
	UML Sequence Diagrams
	Tracing a test node
	Step-by-step tracing
	Using sequence diagram triggers
	Start and End of Runtime Tracing:

	Applying Sequence Diagram Filters
	Adding UML notes to source code
	Viewing UML sequence diagrams
	Navigating through UML Sequence Diagrams
	Time Stamping
	Coverage Bar
	Memory Usage Bar
	Thread Bar
	Thread properties
	Thread Properties Filter

	Filtering sequence diagram events
	Message Criteria
	Instance Criteria
	Note Criteria
	Synchronization Criteria
	Action Criteria
	Loop Criteria
	Boolean Operators

	Finding text in a sequence diagram
	Search Options

	Exporting a sequence diagram to a text file (.csv)
	Model Elements and Relationships in Sequence Diagrams

	Advanced runtime tracing
	Multi-thread support
	Multi thread settings:

	Partial trace flush
	Trace item buffer
	Flushing the Trace Buffer through a User Directive

	Splitting trace files

	Trace Probes for C
	Trace Probes for C
	How Trace Probes work

	Using Probe Macros
	Trace Probe output modes
	Traces Probes and System Testing for C
	Customizing the USER output mode
	atl_start_trace
	atl_end_trace
	atl_send_trace and atl_recv_trace
	atl_write_probe
	atl_dump_trace()
	atl_open_probe
	atl_close_probe
	atl_read_probe
	atl_select_trace

	Coupling Analysis overview
	Control Coupling
	How Control Coupling Works
	Set Control Coupling Options
	Execute a build with Control Coupling
	Control Coupling options

	Control Coupling Report
	Summary
	Details
	Call Graph
	Filters

	Customize Control Coupling Report
	Raw data

	Data Coupling
	How Data Coupling works
	Set Data Coupling options
	Execute a build with Data Coupling
	Data Coupling options

	Data Coupling report
	Customize Data Coupling Report
	Raw data

	Application Profiling
	Worst Stack Size
	Overview
	Set Worst Stack Size Options
	Enable Worst Stack Size
	Multi-thread option
	Stack Size options

	Worst Stack Size Report
	Summary
	Details
	Functions
	Call Graph

	Customize the Worst Stack Size Report
	Raw data

	Testing software components
	Component Testing for C overview
	How Component Testing for C Works
	Integrated, simulated and additional files
	Integrated Files
	Simulated Files
	Additional Files

	Testing shared libraries
	Example

	Writing a Test Script
	Test Script Structure
	Structure statements
	Euclidian divisions in C

	Using native C statements
	Analyzed native code - #
	Ignored native code - @
	Parsed native code - !

	Automatically updating a .ptu test script
	Testing variables
	Using C Expressions
	Testing intervals
	Testing tolerances
	Initializing without testing
	Testing expressions
	Declaring parameters
	Initial and Expected Value settings
	Variable Only
	Value Only
	Combined Evaluation
	Arrays
	Testing Arrays
	Testing Arrays with C Expressions
	Testing arrays with pseudo-variables
	Testing large arrays
	Testing arrays with lists
	Testing character arrays
	Testing arrays with other arrays
	Testing arrays of union elements
	Structured Variables
	Testing structured variables
	Testing structured variables with C expressions
	Using Field Names in Native Expressions
	Testing structured variables with other structured variables
	Omitting a Field’s Initial and Test Values
	C Unions

	Stub simulation
	Function Prototypes
	Passing Parameters
	Stub Definition
	Modifying Stub Variable Values
	Simulating Global Variables
	Using stubs
	Replacing Stubs
	Multiple stub calls
	Multiple stub calls
	No stub calls
	No testing of the maximum number of stub calls
	Stub memory usage
	Advanced stubs
	Creating complex stubs
	Excluding a Parameter from a Stub
	Stub Definition
	Stub Usage
	Functions Using _inout Mode Arrays
	Functions Containing Type Modifiers
	Functions Using const Parameters
	Simulating functions with varying parameters
	Simulating Functions with void* Parameters
	Simulating Functions with char* parameters
	Pointers
	Pointers to a Single char
	Arrays of Characters of Indeterminate Size
	C strings

	Environments
	Testing environments
	Declaring environments
	Specifying parameters for environments
	Environment override
	Using environments

	Advanced C testing
	Advanced C Testing
	Test Script Compiler Macro Definitions
	Testing Long Types
	Testing Main Functions
	Testing Pointers against Pointer Structure Elements
	Testing a String Pointer as a Pointer
	Initializing Pointer Variables while Preserving the Pointed Value
	Importing legacy component testing files
	Limitations
	Link tests to Requirements
	Testing a function with an infinite loop

	Viewing Reports
	Understanding Component Testing Reports
	Report Explorer
	Report Header
	Test Results

	Understanding Component Testing UML Sequence Diagrams
	Comparing C Test Reports
	Array and Structure Display
	Standard Array and Structure Display
	Extended Array and Structure Display
	Packed Array and Structure Display

	Component Testing for C++
	Component Testing for C++ overview
	Overview
	How Component Testing for C++ Works

	C++ testing overview
	C++ test nodes
	C++ contract check Script
	Contract Check in a Component Test
	Contract Check Runtime Analysis

	C++ Test Driver Script
	Files and classes under test
	Source Files
	Candidate Classes

	Using native C++ statements
	Analyzed native code
	Ignored native code

	Additional and included files
	Additional Files
	Included Files

	Declaration files
	Error Handling
	Template Classes
	Specialization

	Testing shared libraries
	Example

	C++ test reports
	Understanding Component Testing for C++ reports
	Report Explorer
	Report Header
	Test Script
	Test Results

	Understanding Component Testing for C++ UML Sequence Diagrams
	Illegal and multiple transitions
	Contract-Check sequence diagrams
	Methods
	Contract-Checks
	Illegal and Multiple Transitions

	Test Driver Sequence Diagrams
	Instances
	Checks
	Pre and Post-conditions
	Exceptions
	Error Handling
	Comments and Prints
	Messages

	Component Testing for Ada
	Component Testing for Ada Overview
	How Component Testing for Ada Works
	Integrated, simulated and additional Files
	Integrated Files
	Simulated Files
	Additional Files

	Initial and expected value settings
	Variable Only
	Value Only
	Combined evaluation

	Writing a Test Script
	Test Script Structure
	Structure statements

	Using native Ada statements
	Analyzed native code - #
	Ignored native code - @
	Parsed native code - !

	Testing Variables
	Testing Intervals
	Testing Tolerances
	Testing expressions
	Initializing without testing
	Declaring global variables for testing
	Declaring Global Variables
	Accessing Global Variables
	Testing arrays
	Testing an Array with Ada Expressions
	Testing arrays with pseudo-variables
	Testing Character Arrays
	Testing large arrays
	Testing arrays with lists
	Testing arrays with other arrays
	Testing Records
	Testing a Record with Ada Expressions
	Using Field Names in Native Expressions
	Testing a Record with Another Record
	Testing Records with Discriminants
	Example
	Testing Tagged Records
	No Test

	Stub Simulation
	Defining stubs
	Simulation of Generic Units
	Separate Body Stub
	Initializing variables with a stub
	Using Stubs
	Range of Values of STUB Parameters
	Raise-exception Stubs
	Compilation Sequence
	Replacing Stubs
	Multiple stub calls
	Several Calls to a Stub
	No Testing of the Number of Calls of a Stub
	Stub memory allocation
	Advanced Stubs
	Creating complex stubs
	Excluding a parameter from a stub
	Stubbing separate compilation units
	Stubbing generic units
	Simulating functions with _inout mode arrays
	Handling global variables with stubs
	Stubbing functions with varying parameters
	Stubbing a body separately

	Advanced Ada testing
	Testing Internal Procedures and Internal and Private Variables
	Testing Generic Compilation Units
	Test Program Entry Point
	Call During the Elaboration of the Unit
	Call by the Main Procedure
	Limitations
	Testing Pointer Variables while Preserving the Pointed Value
	Testing Ada Tasks
	Separate Compilation
	Generating a Separate Test Harness
	Test Script Compiler Macro Definitions
	Unexpected Exceptions
	Unknown Values
	Test Iterations
	Requirement

	Viewing Reports
	Understanding Component Testing reports
	Report Explorer
	Report Header
	Test Results

	Comparing Ada Test Reports
	Array and structure display
	Standard array and structure display
	Extended array and structure display
	Packed array and structure display

	System Testing for C
	About System Testing for C
	Agents and Virtual Testers
	About Virtual Testers
	System Testing Agents
	Installing System Testing Agents
	Installing the Agent
	Forcing IPv4 only
	Troubleshooting the agent
	System Testing Agent Access Files

	Configuring Virtual Testers
	Virtual Tester List
	General Tab
	Scenario Tab
	Family Tab

	Debugging Virtual Testers
	Deploying Virtual Testers
	Virtual Tester Deployment Table
	Advanced Options
	File System Limitations

	Editing the Deployment Script
	Optimizing Execution Traces
	Setting Up Rendezvous Members
	System Testing in a Multi-Threaded or RTOS Environment
	Virtual Tester as a Thread or Task
	Multiple Instances of a Same Virtual Tester

	Launching virtual tester threads
	TDP thread launcher from TDP
	TDP thread launcher program

	System Testing for C Test Scripts
	Flow control
	Flow Control Instructions
	Function calls
	Include Statements
	Conditions
	Iterations
	Multiple Conditions
	Procedures

	Adaptation layer
	Adaptation Layer
	Basic Declarations
	COMMTYPE Instruction
	MESSAGE Instruction
	CHANNEL Instruction
	ADD_ID Instruction
	Sending Messages
	PROCSEND Instruction
	VAR Instruction
	SEND Instruction
	Receiving Messages
	CALLBACK Instruction
	DEF_MESSAGE Instruction
	WAITTIL Instruction
	Messages and Data Management
	Reference by Name
	Communication Between Virtual Testers
	Identifier

	Instances
	Instances
	Instance Declaration
	Instance Synchronization

	Environments
	Environments
	Error Handling
	The ERROR Statement
	The EXIT Statement
	Exception Environment (Error Recovery Block)
	Initialization Environment
	Termination Environment

	Time management
	Time management
	TIME instruction
	TIMER instruction
	RESET instruction
	PRINT instruction
	PAUSE instruction

	Using native C statements
	Analyzed native code
	Ignored native code

	Understanding System Testing for C Reports
	Understanding System Testing for C Reports
	Report Explorer
	Report Header
	Main Report Sections

	Understanding System Testing UML Sequence Diagrams
	Messages
	Rendezvous
	Test Script Events and Errors
	On-the-Fly Tracing

	Actions
	Actors
	Shape
	Naming Conventions

	Activations
	Shape
	Using Activations
	Naming Conventions

	Classifier Roles
	Shape
	Using Classifier Roles
	Naming Conventions

	Exceptions
	Destruction Markers
	Shape
	Naming Conventions

	Lifelines
	Shape
	Using Lifelines
	Naming Conventions

	Loops
	Messages
	Shape
	Types of Messages
	Using Messages
	Naming Conventions

	Notes
	Objects
	Shape
	Types of Objects
	Using Objects
	Naming Conventions

	Stimuli
	Shape
	Types of Stimuli
	Naming Conventions

	Synchronizations
	Shape

	Advanced System Testing
	System Testing Supervisor
	Circular Trace Buffer
	How the Circular Buffer Works
	Contents of the Buffer
	Flushing the Buffer on the Disk

	On-the-Fly Tracing

	Using the graphical user interface
	GUI Philosophy
	GUI components and tools
	Configurations and settings
	Configurations and Settings
	Propagation Behavior of Configuration Settings
	Configuration Settings Structure
	General Settings
	Runtime Analysis
	Automated Testing Settings

	Switching test configurations
	Modifying Configurations

	Creating tests and applications
	Activity wizards overview
	Creating a new project
	Creating a runtime analysis application node
	Creating a component test
	Creating a system test
	Metrics Diagram Options
	Viewing a static metrics diagram
	Specifying advanced component test options
	Component Testing for C and Ada
	Component Testing for C++

	Working with Projects
	Project overview
	Project Nodes
	Projects and sub-projects
	Results Node

	Example projects
	Troubleshooting a project
	Refreshing the asset browser
	Manually creating an application or test node
	Creating an external command node
	Creating a group
	Deleting a node
	Opening a report
	Creating a source file folder
	Using assembler source files
	Unloadable libraries
	Using shared libraries
	Example

	Viewing node properties
	Renaming a node
	Adding files to a project
	Using project templates

	Importing files
	Importing files from a Microsoft Visual Studio project
	Importing files from a makefile or a build log
	Importing sub-projects
	Importing a data table (.csv file)
	CSV File Format

	Editing code and test scripts
	Editing code and test scripts
	Creating a text file
	Opening a text file
	Finding text in the text editor
	Search Options

	Replacing text in the text editor
	Search Options

	Locating a line and column in the text editor
	Text editor syntax coloring
	Commenting code in the text editor

	Running tests and applications
	Building and Running a Node
	Selecting Build Options for a Node
	Excluding a Node from a Build
	Excluding a Node from Instrumentation
	Enabling and disabling tests, services and families
	Cleaning Up Generated Files
	Debug mode
	Setting Environment Variables
	Automated Testing
	Library Paths
	Example

	Report Viewer
	Using the report viewer
	Exporting reports to HTML
	Understanding Reports
	Runtime analysis reports
	Static analysis reports
	Test verdict reports

	Setting the zoom level
	Displaying a report summary header
	Viewing graphical results

	Monitoring the test process
	About the test process monitor
	Changing Curve Properties
	Custom Curves
	Event markers
	Setting the time scale
	Adding a metric

	Customizing tools
	Custom tools overview
	Identification
	Actions

	Customizing the Tools menu
	Using the Tools Menu

	Test script languages
	Component Testing for C
	C test script language reference
	Notation conventions
	Split statements
	Language identifiers
	C test script structure
	Basic structure
	Structure statements

	C test script keywords
	Block Keywords
	Other Keywords

	BEGIN
	COMMENT
	DEFINE STUB ... END DEFINE
	Syntax
	Description

	ELEMENT ... END ELEMENT
	ENVIRONMENT ... END ENVIRONMENT
	Syntax
	Description

	FAMILY
	FORMAT
	Syntax
	Description
	Associated Rules
	Example

	HEADER
	IF ... ELSE ... END IF
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	NEXT_TEST
	SERVICE ... END SERVICE
	SIMUL ... ELSE_SIMUL ... END SIMUL
	STUB
	TERMINATION ... END TERMINATION
	TEST ... END TEST
	USE
	VAR, ARRAY and STR
	Purpose
	Syntax
	Description
	Example

	VAR, ARRAY and STR variable Parameter
	VAR, ARRAY and STR <initialization> Parameter
	Syntax
	Expressions
	Additional Rules
	Examples

	VAR, ARRAY and STR expected Parameter
	Purpose
	Description
	Expressions
	Additional Rules
	Example

	Requirement

	Component Testing for C++
	C++ test driver script (.otd)
	Notation conventions
	Split statements
	Language identifiers
	C++ test driver script structure
	Basic structure
	Structure statements

	C++ test driver script keywords
	CALL
	CHECK
	CHECK EXCEPTION
	CHECK METHOD
	CHECK PROPERTY
	CHECK STUB
	COMMENT
	ENSURE
	EPILOGUE
	INCLUDE
	ON ERROR
	PRINT
	PROC
	PROLOGUE
	PROPERTY
	RUN
	STUB
	TEST CASE
	TEST CLASS
	TEST SUITE
	REQUIRE
	Native Code

	C++ contract check scripts (.otc)
	Notation conventions
	Split statements
	Language identifiers
	C++ contract check script structure
	Basic structure

	C++ contract check script keywords
	Inheritance
	CLASS and SINGLE CLASS
	INVARIANT
	STATE
	TRANSITION ... TO
	WRAP

	Target Deployment Port options

	Component Testing for Ada
	Ada test script language reference
	Notation conventions
	Split statements
	Language identifiers
	Ada test script structure
	Basic structure
	Structure statements

	Ada test script keywords
	BEGIN
	COMMENT
	DEFINE STUB ... END DEFINE
	ELEMENT ... END ELEMENT
	ENVIRONMENT ... END ENVIRONMENT
	EXCEPTION
	FAMILY
	HEADER
	IF ... ELSE ... END IF
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	NEXT_TEST
	SERVICE ... END SERVICE
	SERVICE_TYPE
	SIMUL ... ELSE_SIMUL ... END SIMUL
	STUB
	TERMINATION ... END TERMINATION
	TEST ... END TEST
	VAR, ARRAY, and STR
	VAR, ARRAY and STR <variable> Parameter
	VAR, ARRAY and STR <initialization> Parameter
	Syntax
	Description
	Expressions
	Additional Rules
	Examples

	VAR, ARRAY and STR <expected> Parameter
	Purpose
	Syntax
	Description
	Expressions
	Additional rules
	Example

	Requirement

	C System Testing
	System Testing driver script (.pts)
	Split statements
	Identifiers
	System Test Script keywords (PTS)
	Basic structure
	Structuring statements

	System Testing driver script keywords
	ADD_ID
	CALL
	CALLBACK ... END CALLBACK
	CASE ... IS ... WHEN OTHERS... END CASE
	CHANNEL
	CLEAR_ID
	COMMENT
	COMMTYPE
	DECLARE_INSTANCE
	DEF_MESSAGE
	END
	ERROR
	EXCEPTION ... END EXCEPTION
	EXIT
	FAMILY
	FLUSH_TRACE
	FORMAT
	HEADER
	IF...THEN...ELSE
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	INSTANCE ... END INSTANCE
	INTERSEND
	INTERRECV
	MATCHED
	MATCHING
	MESSAGE
	MESSAGE_DATE
	NIL
	NONIL
	NOTMATCHED
	NOTMATCHING
	NO_MESSAGE
	PAUSE
	PRINT
	PROC ... END PROC
	PROCSEND
	RENDEZVOUS
	RESET
	SCENARIO ... LOOP ... END SCENARIO
	SEND
	SHARE
	TERMINATION ... END TERMINATION
	TIME
	TIMER
	TRACE_ON
	TRACE_OFF
	VAR
	VIRTUAL CALLBACK
	VIRTUAL PROCSEND
	WAITTIL
	WHILE ... END WHILE
	WTIME
	ATL_OCCID
	ATL_TIMEOUT
	ATL_NUMINSTANCE

	System Testing supervisor script reference (.spv)
	Split statements
	Identifiers

	Supervisor script structure
	Basic structure

	Supervisor script keywords
	Environment variables
	Expressions
	COPY
	CHDIR
	Purpose
	Syntax
	Description
	Example

	DELETE
	DO
	ENDOF
	ERROR
	EXECUTE
	EXIT
	HOST
	IF ... THEN ... ELSE ... END IF
	INCLUDE
	MEMBERS
	MKDIR
	PAUSE
	PRINT
	PRINTLN
	RMDIR
	UNSET
	STATUS
	SHELL
	SET
	STOP
	TRACE ... FROM
	WHILE
	Variables
	TIMEOUT
	RENDEZVOUS

	Chapter 6. Test Manager Guide
	Generating test reports
	Generating 2D and 3D chart data
	Publishing HTML reports to the Server
	Opening runtime analysis reports
	About test reports
	About coverage reports
	Source page
	Rates page

	About memory profiling reports
	Summary diagrams
	Detailed report
	Detected memory errors
	Detected memory warnings

	About performance profiling reports
	Top functions
	Performance summary

	About metrics results
	Complexity metrics
	File level metrics
	File, Class or Package, and Root Level Metrics

	Viewing 2D and 3D charts

	Chapter 7. Reference Guide
	UI reference
	HCL OneTest™ Embedded preferences
	Call graph preferences
	Editor preferences
	C Syntax coloring preferences
	Errors and warnings preferences
	Navigator preferences
	Report generation preferences
	Target deployment port preferences
	Test generation preferences
	HCL OneTest™ Embedded preferences in Eclipse
	HCL OneTest™ Embedded preferences
	Results Editor preferences

	Viewer preferences

	TDP configuration settings
	Target deployment port
	Compiler options
	Linker options
	Advanced

	Build configuration settings
	General
	Code Coverage
	Memory Profiling
	Application Profiling
	Performance Profiling
	Coupling
	Runtime Tracing
	Static Metrics
	Code Review

	Data pool editor reference
	UML sequence diagram reference
	Memory profiling errors
	Freeing Freed Memory (FFM)
	Freeing Unallocated Memory (FUM)
	Freeing Invalid Memory (FIM)
	Late Detect Array Bounds Write (ABWL)
	Late Detect Free Memory Write (FMWL)
	Memory Allocation Failure (MAF)
	Core Dump (COR)

	Memory profiling warnings
	Memory in Use (MIU)
	Late Detect Array Bounds Write (ABWL)
	Memory Potential Leak (MPK)
	File in Use (FIU)
	Signal Handled (SIG)

	Command line reference
	Running a Studio Node from the Command line interface
	Using Command line Runtime Analysis for C or C++
	Using Command line Component Testing for C, Ada and C++
	Using Command line System Testing for C
	Command line examples
	To run the application and view runtime analysis results:
	To stop the Apache server, type the following command:
	To split the results, type the following command:
	To start the HCL OneTest™ Embedded GUI to view the results, type the following command:

	Setting Environment Variables
	Automated Testing
	Library Paths
	Example

	Preparing an Options Header File
	Preparing a products header file
	Instrumenting and Compiling the Source Code
	Requirements
	Instrumentation Launcher
	Instrumentation and Compilation

	Compiling the TDP Library
	Requirements
	Compilation
	Configuration Settings

	Compiling the Test Harness
	Requirements
	Compilation

	Linking the Application
	Requirements
	Linking

	Running the Test Harness or Application
	Troubleshooting Command Line Usage
	Splitting the trace dump file
	Splitting an SCI dump file

	Opening Reports from the Command Line
	Report Viewers

	RTistFdcConv command line
	Overview
	Command line to launch RTist

	Using commands to generate HTML reports
	Code Coverage HTML Report Generator
	Syntax

	HTML Report Generator
	Syntax
	Common options
	Specific options for Control Coupling with Function as Module
	Specific options for Control Coupling with Compilation Unit as Module
	Specific options for Worst Stack Size
	Specific options for Performance and Worst Case Execution Time

	Studio Reference
	User interface reference
	Configuration settings reference
	General Settings
	Runtime Analysis
	Automated Testing Settings
	Build Settings
	Build options settings
	Compiler settings
	Linker settings
	Execution settings
	Target Deployment Port build settings

	General Settings
	Host configuration settings
	Directories settings
	Target Deployment Port data
	Source file information settings
	CSV format settings

	Runtime Analysis settings
	General runtime Analysis Settings
	Selective instrumentation
	Advanced options
	Snapshot settings
	Static file storage

	Code Coverage Settings
	Instrumentation control settings
	Advanced Options

	Memory Profiling settings
	Instrumentation control
	Advanced options

	Performance Profiling settings
	Runtime Tracing settings
	Instrumentation Control
	Trace Control
	Runtime options

	Studio automated Testing settings
	Component Testing Settings for C and Ada
	Test Script Compiler
	Report generator

	Component Testing for C++ settings
	Contract Check Options
	Testing Options
	Advanced options

	System Testing for C Settings
	Test Script Compiler
	Report generator settings
	Advanced for System Testing Settings

	Probe Control Settings
	Probe Control Settings

	External command settings
	Static Metric Settings
	Code Review settings

	User interface preferences
	General
	Connection Preferences
	Output window preferences
	Output window/Output window errors

	Source control (CMS) preferences
	Data table preferences
	Internationalization preferences
	Environment preferences
	ClearQuest preferences

	Editor preferences
	Editor
	Syntax Colors

	Performance Profiling viewer preferences
	Performance Profiling Viewer
	Styles

	Performance Profiling viewer preferences
	Code Review Viewer
	Styles

	Code Coverage viewer preferences
	Code Coverage Viewer
	Styles

	Project preferences
	Source File Types
	TDP Directories

	UML/SD viewer preferences
	UML/SD Viewer
	Styles or Styles System Test:

	Metrics viewer preferences
	Styles

	Graphics viewer preferences
	Graphics Viewer
	Styles

	Report viewer preferences
	Report Viewer
	Syntax Color

	Memory Profiling viewer preferences
	Styles

	Studio GUI elements
	Start Page
	Output Window
	Output Window Actions

	Project Explorer
	Project Browser
	Asset Browser

	Properties Window
	Project Browser
	Asset Browser

	Report Explorer
	Toolbars
	Main Toolbar
	View Toolbar
	Build Toolbar
	Status Bar
	Text Editor Toolbar
	Report Viewer Toolbar
	Code Coverage Toolbar
	UML/SD Viewer Toolbar
	Test process monitor toolbar

	UML/SD Viewer Toolbar

	GUI macro variables
	Usage
	Language Reference
	Global Variables
	Node Attribute Variables
	Functions

	File types
	Environment variables
	Mandatory environment variables
	Environment variable list
	Runtime Analysis features
	Component Testing for C and Ada
	System Testing for C
	Test Process Monitor
	C and C++ Instrumentation Launcher
	Ada tools

	Target Deployment Port window
	Installed TDP list

	Runtime and static analysis reference
	Trace probe macros
	Trace probe macros
	Using Probe Macros
	Trace Probe macros

	atl_start_trace()
	atl_recv_trace()
	atl_select_trace()
	atl_send_trace()
	atl_dump_trace()
	atl_end_trace()
	atl_format_trace()
	Description
	Syntax
	Example

	Instrumentation pragmas
	Usage
	Example
	Instrumentation Pragma Names
	Code Review Directives
	Code Coverage, Memory Profiling and Performance Profiling Directives
	Runtime Tracing Directives

	Generating SCI Dumps
	Explicit Dump
	Dump on Signal
	Instrumentor Snapshot
	Frequency Dump

	Command line interface
	General command line tools
	Graphical User Interface - studio
	Syntax
	Options
	Example

	Trace Receiver - trtpd
	Dump File Splitter - atlsplit
	Uprint Localization Utility - uprint
	Test Process Monitor - tpm_add
	TDP Generator - tdpgen
	Studio Report - studioreport
	Binary Version Lister - binList
	ROD Converter - rod2xrd

	Runtime Analysis command line interface reference
	C and C++ Instrumentation Launcher - attolcc
	Syntax
	Description
	General Options
	Code Coverage Options
	Metrics Options
	Instrumentation Settings
	Compiler Settings
	General Settings
	Memory Profiling Settings
	Performance Profiling Settings
	Code Coverage Settings
	Runtime Tracing Settings
	Component Testing for C++ Contract Check Settings
	Example
	Return codes

	Command line to launch code coverage for assembler files
	COMMAND AND OPTIONS

	C and C++ Instrumentor
	Purpose
	Syntax
	Description
	General options
	Code coverage options
	Memory Profiling Specific Options
	Performance Profiling Specific Options
	Runtime Tracing Specific Options
	Component Testing Options for C++
	Example
	Return codes

	C Code Review Compiler - crccc
	Purpose
	Syntax
	Description
	Options
	Example

	C Code Review Linker - crcld
	Syntax
	Descrition
	Options
	Example

	Ada Instrumentor - attolada
	Java Instrumentor - javi
	Ada Metrics Generator - metada
	TDF Splitter - attsplit
	Code Coverage Report Generator - attolcov
	Trace Probe Processor - parsecode.pl

	C system testing command line interface
	System Testing Supervisor - atsspv
	Syntax
	Description
	Confirmation with telnet interface
	Options
	Return Codes

	System Testing Load Report Generator - atsload
	System Testing Report Generator - atsmerge
	System Testing Script Compiler - atspreproC
	Virtual Tester

	Component testing command line interface
	Component testing for C
	C Source Code Parser - attolstartC
	Syntax
	Description
	Options
	Included Files
	Integrated Files
	Simulated Files
	Static Metrics
	Other Option
	Return Codes

	C Test Script Compiler - attolpreproC
	C Test Report Generator - attolpostpro

	Component testing for C++
	C++ Test Report Generator - atopospro
	C++ Test Script Compiler - atoprepro
	C++ Source Code Parser - atostart

	Component testing for Ada
	Ada Source Code Parser - attolstartADA
	Ada Test Script Compiler - attolpreproADA
	attolpostproada
	Ada Link File Generator - attolalk
	Ada Unit Maker - attolchop

	Output window preferences
	Output window/Output window errors

	Notices
	Trademarks
	Terms and conditions for product documentation
	Applicability
	Personal use
	Commercial use
	Rights

	Index

