
HCL OneDB Containerized Deployment

ii

Contents
Chapter 1. Deploying HCL OneDB using Helm charts.........1

Charts 0.4.27..2
What’s New in this Helm Chart Version.................. 2
Supported Platforms..3
Architectural Overview... 3
Prerequisites... 7
Overview of Installation... 15
OneDB Configuration..25
Configuring TLS..37
Accessing OneDB...38
Administering OneDB...49
OneDB Explore..56
High Availability.. 58
Upgrading OneDB helm charts..............................66
Configuring On Disk Encryption for database
server...69
Troubleshooting OneDB...70

Charts 0.4.16..75
What’s New in this Helm Chart Version................ 75
Supported Platforms..75
Architectural Overview... 75
Prerequisites... 79
Overview of Installation... 86
OneDB Configuration..95
Configuring TLS..106
Accessing OneDB...107
Administering OneDB...118
OneDB Explore..125
High Availability..127
Upgrading OneDB helm charts............................133
Upgrading from 2.0.0.0 version to current
version...135
Troubleshooting OneDB.......................................136

Charts 0.4.12..141
What’s New in this Helm Chart Version.............. 141
Supported Platforms..141
Architectural Overview... 141
Prerequisites...145
Overview of Installation....................................... 152
OneDB Configuration..161
Configuring TLS..171
Accessing OneDB...172
Administering OneDB...180
OneDB Explore..187
High Availability..189
Upgrading OneDB helm charts............................195

Upgrading from 2.0.0.0 version to current
version...197
Troubleshooting OneDB.......................................198

Index...203

Chapter 1. Deploying HCL OneDB using Helm charts
The OneDB Database server as well as OneDB Connect, OneDB Mongo Wire Listener, OneDB Rest Wire Listener and OneDB

Explore have all been designed to work in a kubernetes environment.

This topic lists information about the enhanced/new features and a compatibility matrix for the available Helm Charts :

• What's new in 0.4.27 chart version on page 1

• What’s new in 0.4.16 Chart Version on page 1

• What’s new in 0.4.12 Chart Version on page 1

• Compatibility Matrix on page 2

What's new in 0.4.27 chart version

This version includes the following enhancements:

• Removal of NFS dependency.

• Helm upgrade now supports “OnDelete” update strategy.

What’s new in 0.4.16 Chart Version

This version includes the following enhancements:

• Ability to create custom Environment for Mongo container on page 104.

• Ability to create custom Environment for REST container on page 103.

• Ability to create custom Environment for Explore container on page 105.

• OneDB Product Configuration on page 106.

• Added a new External Connection Manager Service on page 115.

What’s new in 0.4.12 Chart Version

This version includes the following enhancements:

• Connection Manager on page 172

• HA Scale out on page 192

• Automatic Failover on page 190

• Automatic Backups on page 183

• Support Multiple PVs for Storage on page 161

• Cloud Native method for Creating Spaces on page 165

• Cloud Native method for configuration/Users on page 166

• Support custom Init Container on page 167

1

HCL OneDB Containerized Deployment

2

Compatibility Matrix

Helm Chart Version Product Versions Supported Kubernetes Version

Supported

0.4.27 onedb-server:2.0.1.2

onedb-operator:2.0.1.2

onedb-cm:2.0.1.2

onedb-mongo-connector:2.0.1.2

onedb-rest-connector:2.0.1.2

onedb-explore:2.0.1.2

1.18 - 1.22

0.4.16 onedb-server:2.0.1.0/2.0.1.1

onedb-operator:2.0.1.0

onedb-cm:2.0.1.0

onedb-mongo-connector:2.0.1.0/2.0.1.

1

onedb-rest-connector:2.0.1.0/2.0.1.1

onedb-explore:2.0.1.0/2.0.1.1

1.18 - 1.21

0.4.12 onedb-server:2.0.1.0

onedb-operator:2.0.1.0

onedb-cm:2.0.1.0

onedb-mongo-connector:2.0.1.0

onedb-rest-connector:2.0.1.0

onedb-explore:2.0.1.0

1.18 - 1.21

Charts 0.4.27
This version includes the following enhancements:

• Removal of NFS dependency. on page 7

• Helm upgrade now supports “OnDelete” update strategy. on page 66

What’s New in this Helm Chart Version
This section includes information about the new, enhanced capabilities added in this version of the helm chart :

• Removal of NFS dependency. on page 7

• Helm upgrade now supports “OnDelete” update strategy. on page 66

Supported Platforms
The OneDB Helm charts have been tested on the following platforms:

• Google Kubernetes Engine (GKE) (https://cloud.google.com/kubernetes-engine)

• AWS Elastic Kubernetes Service (EKS) (https://aws.amazon.com/eks)

• Azure Kubernetes Service (AKS) (https://azure.microsoft.com/en-us/services/kubernetes-service)

• Redhat OpenShift Container Platform (OCP) (https://www.redhat.com/en/technologies/cloud-computing/openshift/

container-platform)

Architectural Overview
Installing and deploying OneDB in a cloud-native environment is a new way of looking at things. An evolution of how OneDB

is or can be deployed has occurred: starting with on-premises, to in the cloud in Virutal machines, to in the cloud in a highly

scalable Kubernetes environment.

In the past, you would have acquired a physical machine, installed the OneDB database server on that machine and been

responsible for the maintenance and upgrades on the machine as well as maintenance of the OneDB Database server.

There was then a move to the cloud and the use of Virtual machines in that cloud. Virtual machines made it possible to start

up a machine and run a playbook that would install OneDB and configure accordingly. You might do this in your own cloud or

a public cloud.

Then more recently, there is the move to a highly scaleable Kubernetes environment. This approach uses containerization of

products and pieces of an entire solution. It allows for great flexibility with many benefits. You may use your own Kubernetes

solution or a cloud provided Kubernetes from Google, Amazon or Microsoft for example.

General Terminology
To undestand how OneDB Database server is deployed in a kubernetes environment, it is important that you have a basic

knowledge of certain terms:

• Container on page 3

• Docker on page 4

• Microservices on page 4

• OneDB HA Cluster on page 4

Container

A container image is a lightweight standalone executable package of software that includes everything to run an application

includeing system libraries, tools etc.

3

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks
https://azure.microsoft.com/en-us/services/kubernetes-service
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform

HCL OneDB Containerized Deployment

4

Docker

Docker is the leading technology for containizeration. When people think of containers they typcially think of docker.

Although it is not the only container technology.

Microservices

A microservices architecture is a method of designing an overall solution to be broken up into smaller parts instead of

a single monolithic application. Containers make this a natural path of software development as different pieces can be

represented by a different container image.

OneDB HA Cluster

This use of the term cluster refers to the High availability nature of 2 or more OneDB Database servers working together. A 2

nodes OneDB HA cluster will consist of a OneDB HA Primary server and a OneDB HA Secondary server. More servers can be

added into a OneDB HA Cluster, in this context the additional servers would be added as OneDB HA RSS nodes.

Kubernetes Terminology

• Node on page 4

• Pod on page 4

• Cluster (kubernetes) on page 4

• Service on page 4

• Helm chart on page 5

• Operator on page 5

• LoadBalancer on page 5

Node

A node is a virtual machine or phyiscal machine with CPU/RAM resources. This is the hardware component that makes up a

kubernetes cluster. Example nodes are worker nodes and master nodes.

Pod

A pod is the simplest unit that exists within kuberenetes. Typically this is 1 more more containers. It is pods that get

scheduled to run on kubernetes nodes.

Cluster (kubernetes)

Is made up of 1 or more nodes. They provide a resource for a kubernetes solution to be deployed into and managed.

Service

An abstract API object that exposes an application’s network services.

Helm chart

A helm chart is a collection of files that describe a related set of kubernetes resources. A helm chart is typically a group of

yaml files and other associated files that is used to deploy a solution into kubernetes.

Operator

A kubernetes operator is an application specific controller that extends the functionality of the kubernetes API.

LoadBalancer

A kubernetes object that allows you to expose an external IP address to outside the kubernetes cluster.

OneDB Deployment Resources
When deploying a OneDB helm chart a group of resources will be created. The resources created will depend on the specific

OneDB Helm chart that is used.

The OneDB-sql helm chart will deploy the following resources:

• onedb-operator pod

• onedb-server-X pod

• onedbcm-X pod

• onedbcm-cm-service

The OneDB-mongo helm chart will deploy the following resources:

• odbp-mongo pod

• odbp-mongo service

• OneDB-sql chart

The OneDB-rest helm chart will deploy the following resources:

• odbp-rest pod

• odbp-rest service

• OneDB-sql chart

The OneDB-explore helm chart will deploy the following resources:

• odbp-explore pod

• odbp-explore service

The OneDB-product helm chart will deploy the following resources:

• OneDB-sql chart

• OneDB-mongo chart

5

HCL OneDB Containerized Deployment

6

• OneDB-rest chart

• OneDB-explore chart

Pods
onedb-operator

The purpose of the operator pod is to manager the OneDB HA cluster. By default, a OneDB HA Cluster is started with an HDR

primary and secondary server, along with two connection managers.

onedb-server-x

This is the OneDB Database server pod. When deployed, a statefulset is used which will be assigned an ordinal index starting

with 0. So, OneDB HA cluster with a primary secondary will have onedb-server-0 and onedb-server-1.

onedbcm-x

This is the OneDB Connection manager pod. It will be assigned an ordinal index starting with 0. By default, 2 connection

managers are started. onedbcm-0 and onedbcm-1.

odbp-mongo

This is the OneDB Mongo Listener pod. It is started when the OneDB Mongo chart is deployed. It is used to connect to the

OneDB Database server using the Mongo API.

odbp-rest

This is the OneDB REST Listener pod. It is started when the OneDB REST chart is deployed. It is used to connect to the

OneDB Database esrver using RESTFUL services.

odbp-explore

This is the OneDB Explore pod. It will deploy the OneDB Explore administration and monitoring tool providing a web admin

and monitoring GUI. It can be used to administer one or more OneDB Database servers.

Services
odbp-explore

This is the OneDB Explore service that can be used to access the OneDB Explore product.

odbp-mongo

This is the OneDB Mongo service that is used to access the OneDB Database server using the Mongo API.

odbp-rest

This is the OneDB REST service that is used to access the OneDB Database server using RESTFUL services.

onedbcm-cm-service

This is the OneDB Connection Manager service that is used to access the OneDB Database server using the SQLI + DRDA

protocol. EX: JDBC, ODBC.

Prerequisites
To install OneDB into a kubernetes cluster, following prerequisites are needed:

• kubectl

• helm

• ReadWriteMany storage class

Note: To install HCL Sofy Solution into a kubernetes cluster, there may be additional requirements. For more

information on the installation instructions for HCL Sofy, see (https://hclsofy.com/ua/guides#installing-solutions-

step-by-step-instructions)

.

Kubectl
The kubernetes command line tool, kubectl, is used to run commands and interact with a kubernetes cluster. This is used for

managing and interacting with OneDB in kubernetes.

Helm
The helm tool is used to install OneDB in a kubernetes cluster. Helm is a package manager for Kubernetes and is used to

install a helm chart.

A helm chart is simply a set of kubernetes yaml manifests that are combined into a single package. This provide an easy

method to install a group of kubernetes manifests as a single package.

For installations steps and more information on helm, see: https://helm.sh

RWM Storage
ReadWriteMany(RWM) PVC is an “optional” but recommended configuration to support database backup for OneDB server

storage spaces and logical log files. RWM PVC mounted across all OneDB server pods and backup device available across

all pods. Listed are some of the available options to install RWM storage, but not limited to these. Following options have

been tested and verified to work with OneDB.

Important: Enable one and only one of the following options:

Cloud specific options that can be used for these specific cloud providers are:

7

https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions
https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions
https://helm.sh/

HCL OneDB Containerized Deployment

8

• Google FireStore on page 8

• AWS Elastic filesystem on page 8

• Azure on page 9

Cloud generic options that can be installed into an existing kubernetes cluster are:

• nfs-server-provisionser on page 10

• rook-ceph on page 11

• rook-nfs on page 12

Google FileStore Configuration

1. See the Google filestore Instructions (https://cloud.google.com/filestore/docs/quickstart-console).

2. The following OneDB helm chart configuration values need to be set to use the Google filestore:

Parameter Description Value

nfsserver.enabled Set this attribute to ‘true’ to mount

ReadWriteMany PVC across all OneDB server

pods. Required for OnBar storage space and

logical log backups. If this attribute value

is set to ‘false’ then rest of the “nfsserver”

related helm attributes are ignored.

true

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.googleFilestore.enable Set to ‘true’ to enable Google Filestore true

nfsserver.googleFilestore.filestoreIP IP address of the Filestore instance ‘’

nfsserver.googleFilestore.filestoreShare Name of the File share of the instance ‘’

AWS Elastic Filesystem Configuration

1. See AWS filesystem Instructions (https://docs.aws.amazon/eks/latest/userguide/efs-csi.html) .

2. The following OneDB helm chart configuration values need to be set to use the AWS Elastic filesystem.

Parameter Description V

a

l

u

e

https://cloud.google.com/filestore/docs/quickstart-console
https://docs.aws.amazon/eks/latest/userguide/efs-csi.html

nfsserver.ena

bled

Set this attribute to ‘true’ to mount ReadWriteMany PVC across all OneDB server pods.

Required for OnBar storage space and logical log backups. If this attribute value is set to

‘false’ then rest of the “nfsserver” related helm attributes are ignored.

tr

u

e

nfsserver.volu

meSize

Set this to a value of the NFS PV size 5

0

G

i

nfsserver.aws

EFS.enable

Set to ‘true’ to enable AWS Elastic filestore tr

u

e

nfsserver.aws

EFS.EFSServe

r

IP address of the Filestore instance ‘’

nfsserver.goo

gleFilestore.fil

estoreShare

Name of the File share of the instance ‘’

Azure File share Configuration

1. See Azure File share instructions (https://docs.microsoft.com/en-us/azure/aks/azure-files-volume).

2. Following OneDB helm chart configuration values need to be set to use the Azure File share:

Parameter Description V

a

l

u

e

nfsserver.

enabled

Set this attribute to ‘true’ to mount ReadWriteMany PVC across all OneDB server pods.

Required for OnBar storage space and logical log backups. If this attribute value is set to ‘false’

then rest of the “nfsserver” related helm attributes are ignored.

tr

u

e

nfsserver.

volumeSiz

e

Set this to a value of the NFS PV size 5

0

G

i

nfsserver.

azureFS.e

nable

Set to ‘true’ to enable Azure File share tr

u

e

9

https://docs.microsoft.com/en-us/azure/aks/azure-files-volume

HCL OneDB Containerized Deployment

10

nfsserver.

azureFS.s

ecretname

Kubernetes secret to use ‘’

nfsserver.

azureFS.s

hareName

Azure file share name ‘’

Install and Configure nfs-server-provisioner

1. Add the nfs-server-provisioner helm repo.

helm repo add kvaps https://kvaps.github.io/charts

2. Install the helm chart for the nfs-server-provisioner. Specify the following parameters:

Parameter Description Value

persistence.size Set this to a value of the NFS PV

size

50Gi

persistence.enabled Set to ‘true’ to enable NFS true

persistence.storageClass Set this to ‘standard’ standard

storageClass.create Set to ‘true’ true

storageClass.name Set thos to a unique Name onedb-nfs-<namespace>

storageClass.mountOption

s

{vers=4.1}

• storageClass.name: This is cluster wide so it is recommended to include the namespace in the name to

provide uniqueness.

• storageClass.mountOptions: Onedb has been tested with NFS V4.1

helm install onedb-nfs-server-provisioner kvaps/nfs-server-provisioner \
--version 1.3.1
--set persistence.enabled=true
--set persistence.storageClass="standard”
--set persistence.size=50Gi
--set storageClass.create=true
--set storageClass.name=-onedb-nfs-my-ns
 --set storageClass.mountOptions={vers=4.1}

3. The following OneDB helm chart configuration values need to be set to use the NFS server provisioner.

Paramete

r

Description Value

nfsserver

.enabled

Set this attribute to ‘true’ to mount ReadWriteMany PVC across all OneDB server pods.

Required for OnBar storage space and logical log backups. If this attribute value is set to

‘false’ then rest of the “nfsserver” related helm attributes are ignored.

true

nfsserver

.volumeSi

ze

Set this to a value of the NFS PV size 50Gi

nfsserver

.other.en

able

Set to ‘true’ to enable NFS true

nfsserver

.other.sto

rageClas

s

Set this to the storage class of the NFS onedb-n

fs-<nam

espace

>

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of the nfs

server provisioner

Install and Configure rook-ceph

1. See the rook-ceph Prerequisites: (https://rook.io/docs/rook/v1.7/pre-reqs.html) .

Note: Some environments you may need to provision and use Ubuntu with containerd node pool instead of

the default GKE container-Optimized OS (COS).

.

2. Follow the instructions for rook-ceph: (https://rook.io/docs/rook/v1.7/quickstart.html).

3. Configure a shared file system for rook: (https://rook.io/docs/rook/v1.7/ceph-filesystem.html).

4. Following OneDB helm chart configuration values need to be set to use rook-ceph:

Paramete

r

Description Value

nfsserver

.enabled

Set this attribute to ‘true’ to mount ReadWriteMany PVC across all OneDB server pods.

Required for OnBar storage space and logical log backups. If this attribute value is set to

‘false’ then rest of the “nfsserver” related helm attributes are ignored.

true

11

https://rook.io/docs/rook/v1.7/pre-reqs.html
https://rook.io/docs/rook/v1.7/quickstart.html
https://rook.io/docs/rook/v1.7/ceph-filesystem.html

HCL OneDB Containerized Deployment

12

nfsserver

.volumeS

ize

Set this to a value of the NFS PV size 50Gi

nfsserver

.other.en

able

Set to ‘true’ to enable NFS true

nfsserver

.other.sto

rageClas

s

Set this to the storage class of the NFS onedb-n

fs-<nam

espace

>

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of rook-ceph.

Installation of rook-nfs
Introduction to charts content to go here.

1. Follow the instructions for rook-nfs (https://github.com/rook/rook/blob/master/Documentation/nfs.md).

2. Before Installing OneDB modify the template/nfs_other_pvc.yaml file in the helm chart and change the accessModes:

value from ReadWriteMany to ReadWriteOnce.

3. After creating the Storage Class, refer to the sc.yaml file for rook-nfs. This will contain the storageclass name.

• Default: rook-nfs-share1.

• The storage name is needed when installing OneDB.

Paramete

r

Description Valu

e

nfsserver.

enabled

Set this attribute to ‘true’ to mount ReadWriteMany PVC across all OneDB server pods.

Required for OnBar storage space and logical log backups. If this attribute value is set to

‘false’ then rest of the “nfsserver” related helm attributes are ignored.

true

nfsserver.

volumeSi

ze

Set this to a value of the NFS PV size 50Gi

nfsserver.

other.ena

ble

Set to ‘true’ to enable NFS true

nfsserver.

other.stor

ageClass

Set this to the storage class of the NFS rook

-nfs

https://github.com/rook/rook/blob/master/Documentation/nfs.md

-shar

e1

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of rook-nfs.

OneDB Requirements and Recommendations
The OneDB database server is designed to be able to run on small devices like a Raspberry pi up to large Servers with

128 cores. The architecture of OneDB is flexible and allows you to run in these different environments with different

configurations.

It is important to note that these are recommendations and not requirements. As one user may be able to run their workload

on a small device like a Raspberry pi, but another user needs 32 CPUs and 100GB of memory.

When talking about recommendations, we typically refer to CPU, Memory and sometimes disk space.

OneDB Disk/Volume Recommendations
This depends on the amount of data and workload you will have in your OneDB Database server. So every database system

will be different. But if High thoughput is needed then we recommend SSD drives to be used. And for your NFS shred drive,

spinning disks are ok to use.

Below is a priority of spaces to be setup with SSD if possible. This is not required but the more spaces/volumes setup with

SSD drives the better performance can be achieved with the OneDB Database server.

Space/Volume Drive Type

Logical Log Dbspace SSD drive(s)

High Volume space SSD drive(s)

Temp Spaces SSD drive(s)

Physical Log Dbspace SSD drive(s)

Low volume space SSD/Spinning

drive(s)

RWM NFS Spinning drive(s)

The amount of disk space allocated to each of these spaces and volumes is dependent on the size of your data and

workload. It is recommended that the RWM NFS volume be approx 3-5 times the size of the total dbspaces if you plan to use

the automated backups. We retain 3 archives of the OneDB database server.

13

HCL OneDB Containerized Deployment

14

Note: It is important to note that you can use all spinning disks and if needed you can put all spaces on a single

volume, a separate volume is needed for the RWM NFS. These recommendations are given to provide the best

performance possible for a production system.

OneDB Minimum CPU/Memory Recommendations
For a OneDB solution the following can be used as guidelines for the OneDB Server, the Connection Manager, the Mongo wire

listener, and the REST wire listener. With OneDB Explore, the minimmum recommendation should be plenty.

Resou

rce

Minimmum Recommendation General

Recommendatoin

CPU 1 core 2 cores

Memory 512 MB 8 GB

As with all systems the more resources, CPU and Memory that a system has the better performance can be achieved. If

you find that your workload has a high number of quick connections using the REST or Mongo protocols you may want to

increase resources in that area.

The more CPU that is provided to the OneDB system allows you to configure more CPUvps and the more Memory that is

provided allows you to configure more memory for Buffers and other database operations.

Note: It is possible to run OneDB with less CPU and Memory. These recommendations are given to provide the best

performance possible for a production system.

OneDB Minimum Kubernetes Recommendations
When a OneDB Helm chart is deployed you can specify the minimmum and maximum amount of resources that Kuberentes

will use.

When scheduling a pod on a kubernetes node the pod specification can request minimmum resources required. If no node is

available with those resources the pod will not be scheduled.

Example: If a pod has a resource.request.cpu of 1, kubernetes will attempt to schedule the pod on a node with >= 1 cpu. If

not available, then the pod will not be scheduled.

The following are the current values set in the OneDB Helm Charts.

Pod Resou

rce

Request Limit

onedb CPU .1 CPU 24 CPU

Pod Resou

rce

Request Limit

Memory 2GB 32GB

CM CPU .1 CPU 1 CPU

Memory 100 MB 500 MB

Mongo/REST CPU .1 CPu 2.1 CPU

Memory 128MB 1GB

Explore CPU .1 CPU 2 CPU

Memory 64MB 512MB

The OneDB Helm charts are also configured by default to not allow two OneDB server pods to be scheduled on the same

node. See onedb.nodeSelectorRequired configuration parameter.

The OneDB Helm chart is also configureed to not allow two OneDB Connection Manager pods to be scheduled on the same

node. See onedbcm.nodeSelectorRequired configuration parameter.

This does not prevent a Connection manager pod from being scheduled on the same node as a OneDB server pod.

For best performance in a production system it is recommended to configure Affinity along with taints and tolerations to

have full control of where the OneDB pods will be scheduled. This will allow you to control the resources available to the

individual running pod.

Minimum Recommendation:

• 1 node per OneDB server pod

• 2 nodes for all other pods to be schedued on

General Recommendation: For best performance possible in a production system.

• Use affinity, taints and tolerations

• Configure 1 node per OneDB Server pod

• Configure 1 node per CM

• 1 node or Mongo wire listener

• 1 node for REST wire listener

• Configure 1-2 nodes for other pods

Note: It is possible to run a OneDB Helm chart with fewer nodes. These recommendations are given to provide the

best performance possible for a production system.

15

HCL OneDB Containerized Deployment

16

Overview of Installation
OneDB is deployed into a kubernetes cluster using helm charts. A helm chart is a collection of files that describe a related

set of kubernetes resources. A helm chart is typically a group of yaml files and other associated files that is used to deploy a

solution into kubernetes.

Before installing a helm chart, you need access to the cluster. The Helm CLI is used to perform the install/uninstall and

manage a helm release. Helm is commonly referred to as the package manager for kubernetes. For more information on

helm and the installation instructions see: (https://helm.sh).

The kubectl CLI is a kubernetes command line tool to interact with and manage resources in a kubernetes cluster. You can

use this tool to verify your installation. For more information on kubectl and installation, see: (https://kubernetes.io).

Previous install
If an helm install has been performed with a prior version, there may be a need to update the Custom Resource Definitions in

the kubernetes cluster. OneDB’s Custom Resource Definitions can change from release to release. You may see this with a

helm upgrade as well when moving from one helm chart version to another, where the CRD has changed.

If you perform a helm install/upgrade and receive an error similar to the error below, update the CRDs associated with

OneDB:

Error: INSTALLATION FAILED: unable to build kubernetes objects from release manifest: error validating "":
 error validating data: ValidationError(OneDB.spec): unknown field

Run kubectl get crds to find the name of the OneDB CRDs:

kubectl get crds |grep onedb

NAME CREATED AT
onedbcms.onedb.hcl 2022-03-08T17:02:44Z
onedbs.onedb.hcl 2022-03-08T17:02:44Z

Run a kubectl apply command to update the existing CRDs using the new CRDs in the new helm chart:

kubectl apply –f onedb-sql/chart/crds/onedb.hcl_onedbcms.yaml
kubectl apply –f onedb-sql/chart/crds/onedb.hcl_onedbs.yaml

OneDB Helm Charts
There are five helm charts for OneDB. These helm charts are listed below with a description of each:

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB SQL Data Store with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

https://helm.sh/
https://kubernetes.io/

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

Differences in Standalone and Solution Factory helm charts

Note: HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through

the Solution Factory (Sofy).

The Solution Factory (Sofy), is an Enterprise Kubernetes Solution catalog. Sofy allows you to pick and choose various

products to create an overall solution. You can choose one of the OneDB services or Products from the catalog and it will be

included in an overall solution with the OneDB helm chart included as a subchart in the Sofy solution. With a Sofy solution

helm chart other charts will be included as subcharts like prometheius and grafana and the Sofy UI and of course any

product chosen in the catalog.

The main difference between a OneDB helm chart that is installed with a Sofy solution and installed on its own are:

1. Other products/subcharts are included in the Sofy chart.

2. Helm chart overrides at a different level.

helm install
Helm install is used to install a helm chart. This command can point to a path of a directory of an unpacked chart, or a

packaged chart. Ex. (chart.tgz).

HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through the Solution

Factory (Sofy).

helm install [NAME] [CHART] [flags]

Installing an unpacked directory chart:

 helm install onedb1 onedb-sql

Installing a packaged chart (tgz):

helm install onedb1 onedb-sql.tgz

helm overrides
To override default values in the helm chart you can use --set on the command line. Or you can specify a file with a list of

overrides.

Installing with set overrides:

17

HCL OneDB Containerized Deployment

18

 helm install onedb2 --set hclFlexnetURL=flex-net-xxxxx --set hclFlexnetID=xxxxxxx onedb-sql

Installing with a overrides in a file:

helm install onedb2–f myvalues.yaml onedb-sql

File: myvalues.yaml

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

Verify Installation
After performing a helm install you can use the kubectl tool to verify the installation. The following resources are some of the

items to verify within your kubernetes cluster.

• pods

• services

• deployments

• statefulsets

kubectl get pods

kubectl get services

kubectl get deployments

kubectl get statefulsets

These commands will show the status of each of these resources. For example, the pods need to be in a running state.

If any of these resources are not in a functioning running state you can use kubectl to diagnose. See the kubernetes

documentation for more information on kubectl.

Install a Standalone helm chart
HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through the Solution

Factory (Sofy).

Install a Solution Factory helm chart
When installing OneDB in a Sofy solution, it will be included as a subchart in the helm chart that is created from the Sofy

catalog along with other Solution factory charts like Prometheus, grafana, Sofy console, etc. For more information about

Solution Factory see: (https://hclsofy.com/ua/guides).

Before a Sofy helm chart can be installed, there are required steps to be taken. See the step by step instructions for installing

a Sofy solution: (https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions) .

https://hclsofy.com/ua/guides
https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions

License Requirements
The OneDB database server requires a license to be used. This is set using hclFlexnetURL and hclFlexnetID values in the helm

chart. Below is a values override file that sets these parameter values. This values to be used for these parameters will be

obtained from HCL.

File: myvalues.yaml

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

A Sofy solution uses a service named anchor. This service is used for license management. The OneDB helm charts use

anchor but don’t need the amount of resources set by default in a Sofy solution helm chart.

You can override the resources used by this anchor service by using the following values override file.

File: anchor.yaml

anchor:
 resources:
 cpu: 250m

Install OneDB SQL Data Store (onedb-sql)
The OneDB SQL Data Store helm chart will install the HCL OneDB database.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB SQL Data Store is through the native SQLI protocol. HCL OneDB provides drivers for different programming

languages to provide this connectivity. Ex. Java, Python, NodeJS, ODBC.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install sql-v1 -f myvalues.yaml -f anchor.yaml production-onedb-sql

Install OneDB RESTful Data Store (onedb-rest)
The OneDB RESTful Data Store helm chart will install the HCL OneDB database along with the OneDB REST listener.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

19

HCL OneDB Containerized Deployment

20

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB RESTful Data store is through the REST API. This allows you to use language of choice that supports

RESTful services.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install rest-v1 -f myvalues.yaml -f anchor.yaml production-onedb-rest

Install OneDB Document Data Store (onedb-mongo)
The OneDB Document Data Store helm chart will install the HCL OneDB database along with the OneDB Mongo Listener.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB Document Data store is through the MongoDB protocol. This allows you to use any language that supports

a MongoDB driver.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install mongo-v1 -f myvalues.yaml -f anchor.yaml production-onedb-mongo

Install OneDB Explore (onedb-explore)
The OneDB Explore helm chart will install the OneDB Explore web console. The web console is used for visualizing,

monitoring, alerting and administering an HCL OneDB server instances.

HCL OneDB Explore features include:

• Purpose built for ease-of-use, scaling out, and optimizing DevOps needs.

• Provides critical performance management capabilities and monitoring of OneDB data store servers.

• The monitoring system feeds directly into a customizable alerting system so alerts can be immediately sent via

email, Twilio, or PagerDuty.

• User and permission management for restricted access to dashboard of certain servers or group of servers.

The default login credentials for HCL OneDB Explore are:

• Username: admin

• Password: testPassw0rd

To override the admin password use a values override file and provide that at install time.

File: myvalues.yaml

onedb-explore:
 adminPassword: newPassw0rd

helm install expl-v1 -f myvalues.yaml production-onedb-explore

Install OneDB Product (onedb-product)
The OneDB Product helm chart will install the HCL OneDB database. This helm chart will include as subcharts the other

OneDB helm charts:

• OneDB SQL Data Store

• OneDB Mongo Data Store

• OneDB RESTful Data Store

• OneDB Explore

This chart is an all-inclusive chart that includes all the OneDB charts for full functionality.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB Product is through:

• The native SQLI protocol. HCL OneDB provides drivers for different programming languages to provide this

connectivity. Ex. Java, Python, NodeJS, ODBC

• The REST API. This allows you to use language of choice that supports RESTful services.

• The MongoDB protocol. This allows you to use any language that supports a MongoDB driver.

OneDB Explore is included as a UI to interact with and administer the OneDB Database server(s).

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

Following file overrides multiple parameters and is provided an installation time:

File: myvalues.yaml

21

HCL OneDB Containerized Deployment

22

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

anchor:
 resources:
 cpu: 250m

onedb-product:
 onedb-explore:
 adminPassword: newPassw0rd

helm install prod-v1 -f myvalues.yaml production-onedb-product

Pod Scheduling
As a best practice when deploying OneDB SQL Data store into kubernetes in production isolate the OneDB Database server

pods to a specific set of nodes. Also, make sure no two database server pods are scheduled on the save node.

OneDB Server pod scheduling is controlled with the helm chart parameters:

• onedb.nodeSelectorRequired

• onedb.nodeSelector

• onedb.tolerations

To understand how OneDB handles pod scheduling it is import to understand a few concepts.

• Assigning Pods to Nodes (Affinity / Anti-affinity)

• Taints and Tolerations

For more information on Pod scheduling, see kubernetes https://kubernetes.io/.

Assigning Pods to Nodes (Affinity/ Anti-Affinity)
Node Affinity allows you to constrain which nodes your pods are eligible to be scheduled on based on labels that have been

defined for the nodes. There are two types of node affinity that are used with OneDB.

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

requiredDuringSchedulingIgnoredDuringExecution: This is a hard requirement in that the pod “must” be scheduled on the node

with the defined set of rules.

preferredDuringSchedulingIgnonredDuringExecution: This is a soft requirement in that the pod will prefer or try to schedule on

nodes with the defined rules but it is not guaranteed.

https://kubernetes.io/

Note: OneDB uses these rules to force a pod to be scheduled on a specific set of nodes or prefer to be scheduled on

a specific set of nodes.

Pod anti-affinity allows you to constrain which nodes your pod is eligible to be scheduled on based on pods that are already

running on the node. As with node affinity OneDB uses two types of pod anti-affinity.

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

requiredDuringSchedulingIgnoredDuringExecution: This is a hard requirement in that the pod “must” be scheduled on the node

with the defined set of rules.

preferredDuringSchedulingIgnonredDuringExecution: This is a soft requirement in that the pod will prefer or try to schedule on

nodes with the defined rules but it is not guaranteed.

Note: OneDB uses these rules to force a OneDB pod to not schedule on nodes already running a OneDB pod or prefer

to not be scheduled on that same node.

Labeling Nodes
Your kubernetes administrator will perform this task. They can label a single node or a group of nodes (node pool) with a

specific designation with a key/value pair. This is needed to use affinity/anti-affinity capabilities with kubernetes.

To label a node the following command is used:

kubectl label nodes <nodename> key=value –overwrite

The key/value pair that is defined here is arbitrary. It is a key/value pair that would then be used with helm chart parameter

overrides to specify the affinity/anti-affinity.

Example with an arbitrary key/value pair of type=database looks like this:

kubectl label nodes gke-worker4 type=database –overwrite

Configure OneDB Affinity/Anti-Affinity
We have two helm chart parameters that can be set with OneDB SQL Data store. The OneDB SQL Data store uses these helm

chart parameters for both the onedb and onedbcm sections of the helm chart.

onedb:
 nodeSelectorRequired: true
 #nodeSelector:
 #type: database
. . .
onedbcm:
 nodeSelectorRequired: true

23

HCL OneDB Containerized Deployment

24

 #nodeSelector:
 #type: cm

The default values for onedb/onedbcm nodeSelectorRequired is true. When this is set to true the

requiredDuringSchedulingIgnoredDuringExecution is used for Pod anti-affinity.

The effect of this is that, a OneDB Database server will not be scheduled on the same node where another OneDB Database

server pod is running. And a OneDB Connection manager will not be scheduled on the same node where another OneDB

Connection manager pod is running.

When we set the nodeSelector helm chart parameter for either onedb or onedbcm OneDB will use

requiredDuringSchedulingIgnoredDuringExecution and Node affinity is enabled. This will require that all Pods be scheduled

on nodes that have been labeled accordingly.

Example Labeling of Nodes:

kubectl label nodes gke-worker2 type=database –overwrite
kubectl label nodes gke-worker4 type=database –overwrite

kubectl label nodes gke-worker3 type=cm –overwrite
kubectl label nodes gke-worker5 type=cm –overwrite

With the above helm chart values set the OneDB Database server pods must run on a kubernetes nodes that are labled with

type:database, and OneDB Connection manager pods must run on kubernetes nodes that are labeled with type:cm.

OneDB SQL Data store sets up an HA cluster with an HDR primary and HDR secondary. If nodeSelectorRequired is set to true,

then we must have more than 1 node labeled when use nodeSelector. The same applies to the OneDB Connection manager

based on how many replicas are running.

Note: When configuring pod scheduling it is important to have a good understanding of how this works or you may

run into a situation where a pod is not able to be scheduled.

Taints and Toleration
While Node affinity is a property of a pod that attracts them to a set of nodes either as a preference or hard requirement.

Taints are the opposite, in that the allow a node to repel a set of pods. A taint is defined on a pod.

kubectl taint nodes gke-worker2 type=onedb:NoSchedule

This uses a key/value pair in this example we used type=onedb, with the NoSchedule effect. This means that no pod will be

able to schedule onto the node (gke-worker2) unless it has a matching toleration.

You would then need to use the tolerations helm chart parameter override and set the following:

tolerations:
- key: “type”
 operator: “Exists”
 effect: “NoSchedule”

Note: Using a combination of Affinity/Anti-Affinity and taints and tolerations, you can control what nodes OneDB SQL

Data store will be schedule on and dictate that those nodes are only used for OneDB.

OneDB Configuration
There are five helm charts for OneDB.

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

Each chart has a list of configuration options that can be set to specify how the OneDB Helm chart will be installed, setup

and configured.

OneDB SQL Data Store Configuration
To customize the installation and configurations, see the list of configuration parameters available to the OneDB SQL Data

Store.

List of OneDB SQL Data Store Configuration Parameters

Parameter Description Value

global.hclI

magePullS

ecret

Your own secret with your credentials to HCL’s Docker repository. Required when

deploying solution in your own cluster.

‘’

global.isOp

enShift

Set to true if using Openshift false

hclFlexnetU

RL

Your HCL FlexNet license server URL for your HCL entitlements. Required when

deploying in your own cluster

‘’

hclFlexnetI

D

Your HCL FlexNet license ID fo ryour HCL entitlements. Required when deploying

solution in your own cluster.

‘’

25

HCL OneDB Containerized Deployment

26

Parameter Description Value

nfsserver.e

nabled

Set this attribute to ‘true’ to mount ReadWriteMany PVC across all OneDB server pods.

Required for OnBar storage space and logical log backups. If this attribute value is set to

‘false’, then rest of the “nfsserver” related helm attributes are ignored.

false

nfsserver.v

olumeSize

Size of the Volume used for backups and other shared files. 50G

nfsserver.g

oogleFilest

ore.enable

Set to true to enable Google Filestore false

nfsserver.g

oogleFilest

ore.filestor

eIP

IP address of the Filestore instance ‘’

nfsserver.g

oogleFilest

ore.filestor

eShare

Name of the File share on the instance ‘’

nfsserver.a

wsEFS.ena

ble

Set to true to enable AWS Elastic filestore false

nfsserver.a

wsEFS.EFS

Server

DNS name of the file system fs-XXXXX.efs

-us-west-2.am

azonaws.com

nfsserver.a

wsEFS.EFS

Path

NFS Mount path /

nfsserver.a

zureFS.ena

ble

Set to true to enable Azure File share false

nfsserver.a

zureFS.secr

etName

Kubernetes secret name to use ‘’

nfsserver.a

zureFS.shar

eName

Azure file share name ‘’

Parameter Description Value

nfsserver.o

ther.enable

Set to true to enable true

nfsserver.o

ther.storag

eClass

Set this to the storageClass of the NFS nfs

tls.config Set to true to enable TLS communication false

tls.tlskey Base64 value of server private key tlskey:

LS0tLS1CRUd

JTiBDRVJUS

UZJQ0FURS ..

.

tls.tlscert Base64 value of signed server certificate tlscert:

LS0tLS1CRUd

JTiBDRVJUS

EDFRQ0FURS

 ...

tls.tlscacert Base64 value of certificate authority root certificate tlscacert:

LS0tLS1CRUd

JTiBDRVJUS

UZJQ0FURS ..

.

autoscaling

.enabled

Set to true to enable auto scaling. To use auto scaling make sure to set

onedb.serverReplicaCount, onedb.maxReplicaCount and onedb.resources appropriately.

false

autoscaling

.targetCPU

UtilizationP

ercentage

Set to the Percentage when autoscaling should occur. 70

onedb.serv

erReplicaC

ount

Set to the number of servers to start for an HA cluster 2

onedb.max

ReplicaCou

nt

Set to the max value of servers you would want to configure in the HA cluster 10

onedb.dbsa

pwd

OneDB Server DBSA (onedbsa) user password onedb4ever

27

HCL OneDB Containerized Deployment

28

Parameter Description Value

onedb.back

upTag

Set to unique value in case the backup device is shared with other OneDB HA Cluster onedbbackup

-myuniquetag

onedb.encr

yptionAtRe

st

Set to true to enable Encryption at rest false

onedb.expl

oreAgent

Set to true to start the OneDB Explore Agent on each server false

onedb.data

StorageCla

ss

Set to the cloud vendor default storage class. Low latency disk I/O storage is

recommended. For GKE “standard” is the default

""

onedb.data

StorageSiz

e

Set the persistent Volume Size 10gi

onedb.data

StorageCou

nt

Number of persistent volume’s to provision 2

onedb.rest

oreFromBa

ckup

Set to true when a restore from last backup is needed false

onedb.rest

oreTimesta

mp

set to specific point in time to perform a point in time restore. Ex 2021-05-11 11:35:00 ‘’

onedb.node

SelectorRe

quired

Set to true to enforce that no two OneDB Server pods are scheduled on the same K8s

node

true

onedb.node

Selector

Set to a node label to schedule OneDB server pods on preconfigured set of K8s nodes.

Set your own keyvalue pair for the node selector

‘’

onedb.toler

ations

Used to assist the K8s schedule {}

onedb.reso

urces

Resources like cpu and memory requested from the cluster. {}

onedb.cust

omServerE

nv

Allows you to set additional environment variables to be used by the database server. ‘’

Parameter Description Value

onedb.cust

omConfig

Allows you to set ONCONFIG parameters to be used by the Database server. MULTIPROCE

SSOR: 1

onedb.cust

omSpace

Allows you to create custom Dbspaces in the database server ‘’

onedb.app

Users

Allows you to create custom Users in the database server ‘’

onedb.cust

omInitSQL

Allows you to create a script of SQL statements that is run after server initialization. ‘’

onedb.cust

omInitImag

e

Allows you to create an Init Container image ‘’

onedb.cust

omInitImag

eCmd

The command to run from the custom Init container ‘’

onedb.grou

pName

Unique name for each cluster if Setting up Enterprise Replication g_cdr1

onedb.grou

pID

Unique ID for each cluster if setting up Enterprise Replication 1

onedb.upda

teStrategyT

ype

This attribute controls OneDB server statefulset update strategy. Supported values are

“RollingUpdate” and “OnDelete”.

OnDelete

With OnDelete update strategy, the StatefulSet controller will not automatically update

the Pods in a StatefulSet. Users must manually delete Pods to cause the controller to

create new Pods that reflect modifications made to a StatefulSet.

RollingUpdate

The RollingUpdate update strategy implements automated, rolling update for the Pods

in a StatefulSet. This is the default update strategy. The RollingUpdate process will

start from the highest pod ordinal index to the lowest pod ordinal index. For example,

onedb-server-1 is updated before onedb-server-0.

RollingUpdate

onedbcmR

eplicaCount

Number of Connection Managers to start for the HA cluster 2

onedbcm.s

erviceType

Set the service type of the connection manager. (ClusterIP, LoadBalancer or NodePort) ClusterIP

29

HCL OneDB Containerized Deployment

30

Parameter Description Value

onedbcm.sl

a_policy

Set the service level agreement of the connection manager. (ROUNDROBIN, WORKLOAD) ROUNDROBIN

onedbcm.a

utofailover

If set to false then autofailover is disabled true

onedbcm.n

odeSelecto

rRequired

Set to true to enforce that no two OneDB CM pods are scheduled on the same K8s node. true

onedbcm.n

odeSelecto

r

Set to a node label to schedule OneDB pods on preconfigured set of K8s nodes. Set your

own keyvalue pair.

‘’

onedbcm.t

olerations

Used to assist the K8s schedule {}

onedbcm.r

esources

Resources like cpu and memory, requested from the cluster {}

onedbcm.u

pdateStrate

gyType

This attribute controls OneDB Connect (Connection Manager) statefulset update

strategy. Supported values are “RollingUpdate” and “OnDelete”.

OnDelete

With OnDelete update strategy, the StatefulSet controller will not automatically update

the Pods in a StatefulSet. Users must manually delete Pods to cause the controller to

create new Pods that reflect modifications made to a StatefulSet.

RollingUpdate

The RollingUpdate update strategy implements automated, rolling update for the Pods

in a StatefulSet. This is the default update strategy. The RollingUpdate process will

start from the highest pod ordinal index to the lowest pod ordinal index. For example,

onedbcm-1 is updated before onedbcm-0.

RollingUpdate

Customize Server configuration
The ONCONFIG file is used by the database server during initialization to setup the data store server. Use the customConfig

helm chart configuration parameter to specify ONCONFIG parameters. It can be configured as follows. With parameters that

are not unique specify a number after the parameter as seen below with BUFFERPOOL# .

onedb:
 customconfig:
 MULTIPROCESSOR: “1”
 BUFFERPOOL1: “size=8k,buffers=50000,lrus=8,lru_min_dirty=50,lru_max_dirty=60.5”
 BUFFERPOOL2: “size=2k,buffers=200000,lrus=8,lru_min_dirty=50,lru_max_dirty=60.5”
 LOGSIZE: “10000”

Create Initialization SQL script
The helm chart configuration parameter customInitSQL can be used to create an SQL scrpit that will run by the OneDB server

after first initialization. This script can be used to perform needed setup tasks, creation of databases, etc.

onedb:
 customInitSQL: |-
 database sysadmin;
 create database test with log;
 create table t1 (col1 int, col2 int);

Creating custom spaces
The helm chart configuration parameter customSpace can be used to create and setup spaces. Following table details the

options available for the creation of spaces. When defining the customSpace parameter, you must create a well formed json

document.

Param

eter

Description Example Value

name The name of the space my_data_dbspace

type The type of space to create. Supported values are:

dbspace: normal dbspace

llog : logical log dbspace

plog: physical log dbspace

sbspace: smart blobspace

tempdbspace: temporary dbspace

tempsbspace: temporary smart blobspace

dbspace

pagesize The size of the space, supported values are 2k,4k,6k,8k,16k 4k

size Size of the space, supported values are GB, MB, KB 10GB

logging Used for smart blobspaces to enable loging

1: enable logging

0: disable logging

1

onedb:
 customSpace: >-
 [
 {“name”:”datadbs”, “type”: “dbspace”, “pagesize”: “4k”, “size”: “4GB” },
 {“name”:”logdbs”, “type”: “llog”, “size”: “2GB” },
 {“name”:”plogdbs”, “type”: “plog”, “size”: “4GB” },
 {“name”:”sbspace1”, “type”: “sbspace”, “size”: “1GB” , “logging”: 1},

31

HCL OneDB Containerized Deployment

32

 {“name”:”tmpdbspace1”, “type”: “tempdbspace”,”pagesize”: “4k”, “size”: “1GB” },
 {“name”:”tmpsbsp1”, “type”: “tempsbspace”, “size”: “500MB” }
]

Creating custom users
The helm chart configuration parameter appUsers can be used to create additional users. Following table details the options

available for the creation of users. Currently, the only type of user support is an operating system user account. When using

appUsers, you must create a well formed json document.

Param

eter

Description Example

Value

user The name of the user appuser1

password The password of the user passw0rd

group A group name to create for the user. dev

uid The user id number to use for the user 1003

gid The group id number to to use for the group 2000

type The type of user to create. Currently only osuser is

supported

osuser

onedb:
 appUsers: >-
 [
 { “user”:”appuser1”, “password”: “passw0rd”, “group”:”dev”,
 “uid”:1003,”gid”:2000,”type”:”osuser” },
 { “user”:”appuser2”, “password”: “passw0rd”, “group”:”dev”,
 “uid”:1003,”gid”:2000,”type”:”osuser” }
]

Setting additional server Environment
The helm chart configuration parameter customServerEnv can be used to set additional server environment variables. This

will be set in the environment script when initialization and starting the OneDB database server.

onedb:
 customServerEnv:
 DB_LOCALE: “en_us.utf8”
 DBTEMP: “/tmp”

Using an Init container

The helm chart configuration parameters customInitImage and customInitImageCmd can be used to create an Init container

to perform setup steps prior to the startup of the OneDB server container image. The customInitimage parameter is used to

specify an image to use and the customInitImageCmd is the command to run inside the image.

The Init container image can be a purposely built image with scripts built in. Or it can be a generic image with specific OS

commands to run.

onedb:
 customInitImage: “gcr.io/<my-images>/busybox-custom:latest”
 customInitImageCmd: “/bin/initSetup.sh”

Scheduling of K8s pods
The helm chart configuration parameter nodeSelector for onedb and onedbcm are used to support Node affinity. It allows

you to select a preconfigured set of K8s nodes to run on.

The following example will run the OneDB server on nodes labeled as onedb and the OneDB Connection manager on nodes

labeled as onedbcm.

onedb:
 nodeSelector:
 database: onedb
onedbcm:
 nodeSelector:
 cm: onedbcm

The helm charts have an unconfigured parameter tolerations to allow for full configuration of taints and tolerations for K8s

scheduling of pods. This can be used to specify a node taint, which means no pod can be scheduled on the node unless it

has a matching toleration. Then a OneDB server is labeled with a toleration to allow it to run on the tainted nodes.

kubectl taint nodes node1 tainted4onedb=onedb-only:NoSchedule

onedb:
 tolerations:
 - key: “tainted4onedb”
 operator: “Exists”
 effect: “NoSchedule”

Sample helm override file

When specifying helm chart parameters, you can specify them on the command line. When specifying a number of

parameters it is sometimes more convenient to create a file with the override parameters. The following example shows a

single file that uses customServerEnv, appUsers and customInitSQL in a single file.

FILE: onedb.override.yaml
onedb:
 customServerEnv:
 ONEDB_USER_MANAGEMENT: “true”
 ONEDB_USER: “user1”

 appUsers: >-
 {“user”:”user1”, “password”:”Passw0rd”, “group”:”dba”, “uid”: 1005, “gid”:2001,

33

HCL OneDB Containerized Deployment

34

 “type”:”osuser”}

 customInitSQL: |-
 create database stores with log;
 create user dbauser with password ‘Passw0rd’ account unlock properties user ‘user1’
 authorization(dbsa);

The above yaml file sets two environment variable that are used in the container Image to enable database users. It then

creates one os user to be used as the operating system user that the created database user will have permissions as.

OneDB REST Data Store Configuration
To customize the installation and configurations see the list of configuration parameters available to the OneDB REST Data

Store.

List of OneDB REST Data Store Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

hclFlexnetURL Your HCL FlexNet license server URL for your HCL entitlements.

Required when deploying in your own cluster

‘’

hclFlexnetID Your HCL FlexNet license ID for your HCL entitlements. Required when

deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster. requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file. ‘’

customEnv Allows you to set additional environment variables to be used by the

OneDB REST container image.

‘’

externalDBUrl A custom external JDBC style URL if you want to connect to a OneDB

server that is not part of the solution

‘’

databaseuser The user the REST API will use to connect to the OneDB Database

Server

onedbsa

databasePass

word

The password the REST API will use to connect to the OneDB Database

Server

onedb4ever

Custom REST Configuration

Additional configuration can be added to the REST service as follows. Review the product documentation for all available

options for the REST configuration file.

onedb-rest:
 config: |-
 rest.session.timeout 600000
 security.csrf.token.enable: true

onedb-rest:
 customEnv:
 TZ: CST2

OneDB Document Data Store Configuration
To customize the installation and configurations see the list of configuration parameters available to the OneDB Document

Data Store.

List of OneDB Document Data Store Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

hclFlexnetURL Your HCL FlexNet license server URL for your HCL entitlements.

Required when deploying in your own cluster

‘’

hclFlexnetID Your HCL FlexNet license ID for your HCL entitlements. Required when

deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file ‘’

customEnv Allows you to set additional environment variables to be used by the

OneDB Mongo container image.

‘’

externalDBUrl A custom external JDBC style URL if you want to connect to a OneDB

server that is not part of the solution

‘’

mongoUser The mongo username mongo

mongoPasswo

rd

Password for the mongo user mongoPassword

databaseuser The user the MongoDB API will use to connect to the OneDB Database

Server

onedbsa

databasePass

word

The password the MongoDB API will use to connect to the OneDB

Database Server

onedb4ever

35

HCL OneDB Containerized Deployment

36

Custom Mongo Configuration
Additional configuration can be added to the Document Data Store (Mongo) service as follows. Review the product

documentation for all available options for the Mongo configuration file.

onedb-mongo:
 config: |-
 security.sql.passthrough=true

onedb-mongo:
 customEnv:
 TZ: CST2

OneDB Explore Data Configuration
To customize the installation and configurations see the list of configuration parameters available to OneDB Explore Data.

List of OneDB Explore Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file ‘’

customEnv Allows you to set additional environment variables to be used by the

OneDB Explore container image.

‘’

adminPasswor

d

Initial admin password testPassw0rd

Custom Explore Configuration
Additional configuration can be added to the Explore service as follows. Review the product documentation for all available

options for the Explore configuration file.

onedb-explore:
 config: |-
 key=value

onedb-explore:
 customEnv:
 TZ: CST2

OneDB Product Configuration
The majority of configuration will happen through the helm charts for OneDB SQL Data store, OneDB Document Data

store, OneDB Rest Data Store or OneDB Explore. To customize the installation and configurations, following is the list of

configuration parameters:

Table 1. List of OneDB Product Configuration Parameters

Parameter Description Val

ue

enableChart.onedbMongo Enable or disable the onedb-mongo chart for installation. Default: true ‘true’

enableChart.onedbRest Enable or disable the onedb-rest chart for installation. Default: true ‘true’

enableChart.onedbExplore Enable or disable the onedb-explore chart for installation. Default: true ‘true’

enableChart.onedbSql Enable or disable the onedb-product chart for installation. Default: true ‘true’

Configuring TLS
Use transport layer security (TLS) to create secure connections from OneDB clients to the OneDB database server. By

default, TLS is disabled. To enable TLS connections, set the tls.tlsconfig helm chart parameter value to true.

The following helm chart parameters also need to be set:

• tlskey: The base64 encoded value of the private key.

• tlscert: The base64 encoded value for the Public signed server certificate.

• tlscacert: The base64 encoded value of the certificate authority root certificate.

Example tls configuration:

tls:
 tlsconfig: true
 tlskey: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0t....
 tlscert: LS0tLS1CRUdJTiBABEFUSUZJQ0FURS0tLS0t...
 tlscacert: LS0tLS1CRUdJTiBDRVJUSUEEFZFURS0tLS0t....

Create TLS Certificates

About this task

You can obtain your own certificates from a certificate authority or you can create your own with the following steps using

openssl:

1. Generate root CA private key PEM file:

openssl genrsa -out rootCA.key.pem

37

HCL OneDB Containerized Deployment

38

2. Create a self signed root CA certificate in PEM file:

openssl req -new -x509 -key rootCA.key.pem -subj "/C=US/ST=Kansas/L=Olathe/O=HCL/OU=OneDB" -days 3650
 -out
 rootCA.cert.pem

3. Generate server private key:

openssl genrsa -out server.key.pem

4. Generate a certificate signing request (CSR) for OneDB Server:

openssl req -new -key server.key.pem -subj
 "/C=US/ST=Kansas/L=Olathe/O=HCL/OU=OneDB/CN=Server/emailAddress=onedb@hcl.com" -out server.req.pem

5. Sign certificate with root CA:

openssl x509 -req -inform PEM -in server.req.pem -set_serial 1 -CA
rootCA.cert.pem -CAkey rootCA.key.pem -days 3650 -extensions usr_cert -outform PEM -out server.cert.pem

6. Convert rootCA.cert.pem to base64 -> tlscacert:

base64 rootCA.cert.pem -w 0 > tlscacert

7. Convert server.cert.pem to base64 -> tlscert:

base64 server.cert.pem -w 0 > tlscert

8. Convert server.key.pem to base64 -> tlskey:

base64 server.key.pem -w 0 > tlskey

Connect from Java client with TLS

About this task

To connect to the OneDB Databaser server with a Java client (JDBC) with TLS you must create a keystore for the client

application to use. You need the root CA certificate and will use this file rootCA.cert.pem to generate the kesytore.

Create the keystore:

keytool –import –file rootCA.cert.pem -keystore ssl.keystore

Example

Example OneDB JDBC URL to connect to a OneDB Database server using TLS:

jdbc:onedb://XX.XXX.XXX.XX.nip.io:10001/sysmaster;user=onedbsa;password=xxxxxxx;ENCRYPT=true;TRUSTSTORE=./ssl.k
eystore;TRUSTSTOREPASSWORD=xxxxxxx;
CERTIFICATEVERIFICATION=false;loginTimeout=0

For more information on connecting JDBC applications with TLS, see HCL OneDB JDBC Driver Guide.

Accessing OneDB
Connecting to the OneDB database server is essential. OneDB allows for connections from Mongo Clients, REST Clients and

Native SQLI clients. Ex. JDBC, ODBC, ESQL/C

Connectivity can occur from inside the cluster or from outside the cluster. By default, connections from outside the cluster

are not enabled.

Connectivity will be different based on the installation. The two basic installations are:

1. Installation of the Standalone Helm Chart of OneDB

2. Installation of a Solution Factory Helm Chart of OneDB

The OneDB Connection Manager is used for Native SQLI Connections to the Database server. There is a Kubernetes service

provided to handle this connectivity.

REST, Mongo and OneDB Explore will each have a Kubernetes service to handle their own connections.

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP 19m

With the OneDB Connection Manager you will see a pattern emerge that will describe what type of connection will occur.

Port Number Description

10XXX Internal (Redirected) Connection

20XXX External (Proxied) Connection

XXXX0 Connection to the HA Primary Server

XXXX1 Connection to the HDR Secondary Server

XXXX2 Connection to any server in the HA

Cluster

XXXX3 Connection to the RS Secondary Server

XXX2X Connection that uses SSL

Example: Port 10021 is an internal Connection (10XXX) to the HA Secondary server (XXXX1) using SSL (XXX2X).

Standalone OneDB Chart
A standalone OneDB helm chart does not include elements of a Solution Factory helm chart. There are mutliple different

Standalone helm charts.

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

39

HCL OneDB Containerized Deployment

40

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

The OneDB helm(s) chart can be configured to only allow connections from within the cluster itself, or they can be configured

to allow for connections from outside the cluster.

To allow for connections from outside the cluster the kubernetes service types should be configured as Loadbalancer, or

an extra piece of software can be used to provide a single point of ingress into the cluster. Some commonly used ingress/

loadbalancer’s are Ambassodor, NGINX.

Setting up Ambassador or NGINX is outside the scope of this documentation, instead we will use a Loadbalancer service

type.

Connecting from Inside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. A kubernetes service is created for the non-SQLI types

as well.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP 19m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For internal connections it is

recommended to use “Redirected” connections. The following table shows the Internal connection string to use for each

driver type. From within the cluster the .{namespace}.svc.cluster.local may not be needed from the URL below.

Driver URL Example URL

OneDB driver (SQLI-Primary) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10000

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10001

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10002

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Primary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10020

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10021

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any-SSL) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10022

jdbc:onedb://{url}/sysmaster

Mongo combatible driver <Release-Name>-odbp-mongo:27017 mongodb://<release-name>-odbp-mon

go:27017

REST <Release-Name>-odbp-rest:8080 http://<release-name>-odbp-rest:8080

Explore <Release-Name>-odbp-explore:8080 http://<release-name>-odbp-explore:80

80

Connecting from Outside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. A kubernetes service is created for the non-SQLI types

as well.

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
helm-1-odbp-explore LoadBalancer 10.96.220.30 172.19.255.202 8080/TCP 20m
helm-1-odbp-mongo LoadBalancer 10.96.44.208 172.19.255.201 27017/TCP 20m
helm-1-odbp-rest LoadBalancer 10.96.90.21 172.19.255.200 8080/TCP 20m
onedbcm-cm-service LoadBalancer 10.96.159.103 172.19.255.203 10000/TCP,20000/TCP 19m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For external connections you must use

the “Proxied” connections. The following table shows the external connection string to use for each driver type.

Driver URL Example URL

OneDB driver (SQLI-Primary) {LoadBalancer External IP

address}:20000

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary) {LoadBalancer External IP

address}:20001

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any) {LoadBalancer External IP

address}:20002

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Primary-SSL) {LoadBalancer External IP

address}:20020

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary-SSL) {LoadBalancer External IP

address}:20021

jdbc:onedb://{url}/sysmaste

r

41

HCL OneDB Containerized Deployment

42

OneDB driver (SQLI-Any-SSL) {LoadBalancer External IP

address}:20022

jdbc:onedb://{url}/sysmaste

r

Mongo combatible driver {LoadBalancer External IP

address}:27017

mongodb://{url}:27017

REST {LoadBalancer External IP address}:8080 http://{url}:8080

Explore {LoadBalancer External IP address}:8080 http://{url}:8080

Setting LoadBalancer Type
The default setting for each service type is ClusterIP. This will only allow internal connections. The OneDB helm chart service

types of interest are listed below. NOTE: The names of the services may be slightly different when installing onedb-mongo,

onedb-rest, onedb-sql chart.

• onedbcm-cm-service

• <Release.Name>-odbp-explore

• <Release.Name>-odbp-mongo

• <Release.Name>-odbp-rest

Each of these service types can be configured as a LoadBalancer to provide external connectivity.

To set Loadbalancer for the Connection Manager:

onedb-sql:
 onedbcm:
 serviceType: LoadBalancer

To set LoadBalancer for Mongo

onedb-mongo:
 service:
 type: LoadBalancer

To set LoadBalancer for REST

onedb-rest:
 service:
 type: LoadBalancer

To set LoadBalancer for Explore

onedb-explore:
 service:
 type: LoadBalancer

Solution Factory OneDB Chart
A Solution factory OneDB helm chart contains elements of the Solution factory including things like a Console UI, grafana,

prometheus. The OneDB helm chart is included as a subchart of the overall Helm chart. There are multiple different Solution

Factory charts that include different aspects of OneDB.

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

The Solution Factory OneDB helm(s) chart can be configured to only allow connections from within the cluster itself, or they

can be configured to allow for connections from outside the cluster.

To allow for connections from outside the cluster, a Solution factory OneDB helm chart includes and configures Ambassador.

The ambassador LoadBalancer will handle connectivity into the kubernetes cluster for Mongo, REST and Explore. The OneDB

Connection Manager will handle connections into the kubernetes cluster for Native SQLI clients (ex. JDBC, ODBC, ESQL/C)

By default, OneDB Connection Manager does not allow for external connections.

Connecting from Inside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. The ambassador service is created for the non-SQLI

connections. The ambassador service is setup as a Loadbalancer type where as the OneDB Connection Manager has a

default setting of ClusterIP.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
sofy-1-ambassador LoadBalancer 10.96.224.175 172.19.255.200 80:32653/TCP,44
 68m
sofy-1-odbp-mongo ClusterIP 10.96.183.135 <none> 27017/TCP
 69m
sofy-1-odbp-rest ClusterIP 10.96.173.88 <none> 8080/TCP
 69m
sofy-1-odbp-explore ClusterIP 10.96.66.46 <none> 8080/TCP
 71m
onedbcm-cm-service ClusterIP 10.96.33.166 <none> 10000:30248/TCP
 77m

43

HCL OneDB Containerized Deployment

44

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For internal connections it is

recommended to use “Redirected” connections. The following table shows the Internal connection string to use for each

driver type. From within the cluster the .{namespace}.svc.cluster.local may not be needed from the URL below:

Driver URL Example URL

OneDB driver (SQLI-Primary) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10000

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10001

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10002

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Primary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10020

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10021

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any-SSL) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10022

jdbc:onedb://{url}/sysmaster

Mongo combatible driver <Release-Name>-odbp-mongo:27017 mongodb://<release-name>-odbp-mon

go:27017

REST <Release-Name>-odbp-rest:8080 http://<release-name>-odbp-rest:8080

Explore <Release-Name>-odbp-explore:8080 http://<release-name>-odbp-explore:80

80

Connecting from Outside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. The ambassador service is created for the non-SQLI

connections. The ambassador service is setup as a Loadbalancer type where as the OneDB Connection Manager has a

default setting of ClusterIP. To allow external SQLI connectivity you must set the service type to LoadBalancer.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
sofy-1-ambassador LoadBalancer 10.96.224.175 172.19.255.200 80:32653/TCP,44 68m
sofy-1-odbp-mongo ClusterIP 10.96.183.135 <none> 27017/TCP 69m
sofy-1-odbp-rest ClusterIP 10.96.173.88 <none> 8080/TCP 69m
sofy-1-odbp-explore ClusterIP 10.96.66.46 <none> 8080/TCP 71m
onedbcm-cm-service LoadBalancer 10.96.33.166 172.19.255.201 10000:30248/TCP 77m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For external connections you must use

the “Proxied” connections. The following table shows the external connection string to use for each driver type.

Driver URL Example URL

OneDB driver (SQLI-Primary) {LoadBalancer External IP

address}:20000

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary) {LoadBalancer External IP

address}:20001

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any) {LoadBalancer External IP

address}:20002

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Primary-SSL) {LoadBalancer External IP

address}:20020

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary-SSL) {LoadBalancer External IP

address}:20021

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any-SSL) {LoadBalancer External IP

address}:20022

jdbc:onedb://{url}/sysmaste

r

Mongo combatible driver {LoadBalancer External IP

address}:27017

mongodb://{url}:27017

REST {LoadBalancer External IP address}:8080 http://{url}:8080

Explore {LoadBalancer External IP address}:8080 http://{url}:8080

Setting LoadBalancer Type
The default setting for the OneDB Connection Manager service type is ClusterIP. This will only allow internal connections.

To allow for connectivity from outside the cluster you must set the service type for the OneDB Connection Manager to

LoadBalancer.

To set Loadbalancer for the Connection Manager:

onedb-product:
 onedbcm:
 serviceType: Loadbalancer

Connection credentials
The following table shows the default connection credentials. This can be changed accordingly.

Product/Driver User Password

Explore admin testPassw0rd

REST - -

45

HCL OneDB Containerized Deployment

46

Mongo mongo mongoPasswor

d

SQL Data

Store

onedbsa onedb4ever

The REST connection uses a database connection. You can connect with onedbsa or any other use that was created in the

OneDB SQL Data Store.

To change the onedbsa password for the OneDB SQL Data Store use the following configuration override values. If you

change this password it is important that you make changes to mongo, rest and explore.

onedb-sql:
 onedb:
 dbsapwd: one1dba4ever

If you change the passowrd for OneDB SQL Datastore (onedb-sql), you must tell the mongo,rest and explore charts how to

connect to the OneDB SQL Datastore (onedb-sql). See the following configuration overrides.

onedb-mongo:
 databasePassword: one1dba4ever

onedb-rest:
 databasePassword: one1dba4ever

onedb-explore:
 serverConnection:
 password: one1dba4ever

To change the user and password for OneDB Mongo use the following configuration override values. If you change this

password it is important that you make changes to mongo, rest and explore.

onedb-mongo:
 mongoUser: mymongo
 mongoPassword: mongoPassword

To change the admin password for OneDB Explore. Use the following configuration override values. If you change this

password it is important that you make changes to mongo, rest and explore.

onedb-explore:
 adminPassword: newPassw0rd

OneDB Connection Manager External Service

Purpose of External CM Service
When you designate the default onedbcm-cm-service as a LoadBalancer you expose all ports outside the cluster. This may

not be desirable because the non-SSL ports are also exposed outside the cluster.

onedb-sql:
 onedbcm:
 serviceType: Loadbalancer

Configuration of External CM Service
The following configuration options are available for the external CM service:

Parameter Description Value

onedbcm_ext.enabled Set to true to enable the External CM service ‘false’

onedbcm_ext.serviceType Set the serviceType for this Service. LoadBalancer or NodePort 2000

0

onedbcm_ext.ports.olttp Proxy mode Connection to Primary Server 2000

0

onedbcm_ext.ports.reportp Proxy mode Connection to Secondary Server 2000

1

onedbcm_ext.ports.oltpanyp Proxy mode Connection to ANY Server 2000

2

onedbcm_ext.ports.reportrssp Proxy mode Connection to RSS Server 2000

3

onedbcm_ext.ports.oltpdrdap Proxy mode Connection to Primary Server with DRDA protocol 2001

0

onedbcm_ext.ports.reportdrdap Proxy mode Connection to Secondary Server with DRDA protocol 2001

1

onedbcm_ext.ports.oltpdrdaanyp Proxy mode Connection to ANY Server with DRDA protocol 2001

2

onedbcm_ext.ports.reportrssdrdap Proxy mode Connection to RSS Server with DRDA protocol 2001

3

onedbcm_ext.ports.oltpsslp Proxy mode Connection to Primary Server using SSL 2002

0

onedbcm_ext.ports.reportsslp Proxy mode Connection to Secondary Server using SSL 2002

1

47

HCL OneDB Containerized Deployment

48

Parameter Description Value

onedbcm_ext.ports.oltpanysslp Proxy mode Connection to ANY Server using SSL 2002

2

onedbcm_ext.ports.reportrsssslp Proxy mode Connection to RSS Server using SSL 2002

3

onedbcm_ext.ports.oltpdrdasslp Proxy mode Connection to Primary Server with DRDA protocol using SSL 2003

0

onedbcm_ext.ports.reportdrdasslp Proxy mode Connection to Secondary Server with DRDA protocol using

SSL

2003

1

onedbcm_ext.ports.oltpdrdaanysslp Proxy mode Connection to ANY Server with DRDA protocol using SSL 2003

2

onedbcm_ext.ports.reportrssdrdassl

p

Proxy mode Connection to RSS Server with DRDA protocol using SSL 2003

3

Example Setup of External CM Service (LoadBalancer)

To setup the OneDB External CM service you would typically set the original onedbcm service so that it can only be accessed

from within the cluster. This is done by setting the serviceType to ClusterIP.

Then configure the External CM serivce accordingly. The configuration below exposes only the SSL ports for the traditional

SQLI protocol.

onedb-sql:
 onedbcm:
 serviceType: ClusterIP

 onedbcm_ext:
 enabled: true
 serviceType: LoadBalancer
 ports:
 oltpsslp: 20020
 reportsslp: 20021
 oltpanysslp: 20022
 reportrsssslp: 20023

Below is a list of services showing the onedbcm-cm-service defined as ClusterIP and the onedbcm-ext-service defined as

LoadBalancer. You can then access the external IP address from outside the cluster for the configured ports.

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP
 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP
 20m

helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP
 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP
 19m
onedbcm-ext-service LoadBalancer 10.96.159.103 172.19.255.203 20020/TCP,20021/TCP
 19m

Example Setup of External CM Service (NodePort)

To setup the OneDB External CM service as a NodePort you would typically set the original onedbcm service so that it can

only be accessed from within the cluster. This is done by setting the serviceType to ClusterIP.

Then, configure the External CM serivce accordingly. The configuration below exposes only the SSL ports for the traditional

SQLI protocol. Depending on the kubernetes platform being used the port numbers from a NodePort service may need to be

in a specific range. You can change the port numbers accordingly to fit with the required range.

onedb-sql:
 onedbcm:
 serviceType: ClusterIP

 onedbcm_ext:
 enabled: true
 serviceType: NodePort
 ports:
 oltpsslp: 30020
 reportsslp: 30021
 oltpanysslp: 30022
 reportrsssslp: 30023

Below is the list of services showing the onedbcm-cm-service defined as ClusterIP and the onedbcm-ext-service defined as

NodePort. You can access the configured ports through each Nodes IP address.

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP
 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP
 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP
 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP
 19m
onedbcm-ext-service NodePort 10.96.159.103 <none> 30020:30020/TCP
 19m

Administering OneDB
The following information describes the common tasks that an administrator may perform for a OneDB Database server in a

kubernetes environment.

49

HCL OneDB Containerized Deployment

50

• Exec into OneDB pod.

For some administration tasks, you may need to login to the OneDB pod and run commands. To do this, you must

have authorization to run kubectl exec.

• Starting and Stopping OneDB.

Starting and stopping the OneDB pod from kubernetes

• Viewing OneDB Log files.

To view the OneDB logs in the different pods.

• Backup and Restore.

To backup and restore the OneDB database server

Exec into OneDB Pod
There may be a need to login to the kuberneres pod to perform administration tasks. First identify the pod you need to login

to.

kubectl get pods |grep onedb
onedb-operator-67f5d6cd9b-wxcg2 1/1 Running 0 42h
onedb-server-0 1/1 Running 0 42h
onedb-server-1 1/1 Running 0 42h
onedbcm-0 1/1 Running 0 42h
onedbcm-1 1/1 Running 0 42h

Run the kubectl command to login to the kubernetes pod:

kubectl exec --stdin --tty onedb-server-0 -- bash

You will be logged in as user “informix” and your environment will be set for the OneDB Database server. Which can be

verified with the onstat - command:

onstat -
HCL OneDB Server Version 2.0.1.0 -- On-Line (Prim)
 -- Up 1 days 18:42:25 -- 793248 Kbytes
2021-12-01 17:37:54

Stop/Start OneDB Database Server
Use one of the following methods to stop and restart the OneDB database server:

1. Delete the kubernetes pod

2. Login to Pod and take the OneDB server offline

Delete Pod

About this task

Deleting a pod is a method that can be used to restart the pod. When a pod is deleted or dies, kubernetes will force the pod

to be restarted.

1. Delete the pod of interest.

kubectl delete pod onedb-server-0

2. Monitor the pod that was deleted, as it is restarted. After performing the kubectl delete pod the pod will terminate. As

it restarts, it will go back into the initialization and eventually a Running state.

onedb-server-0 0/1 Terminating 0 42h
onedb-server-0 0/1 Init:0/1 0 1s
onedb-server-0 1/1 Running 0 43s

Login Pod

1. First annotate the pod so kubernetes does not restart the pod while you are performing administration tasks:

kubectl annotate pod onedb-server-0 livenessprobe=disabled --overwrite=true

2. Use the command to take the OneDB Database server offline:

onmode -kuy

3. Perform any adminstration tasks needed with the server offline.

4. Run the command to bring the OneDB Database server back online.

oninit

5. Re-enable the liveness probe:

kubectl annotate pod onedb-server-0 livenessprobe=enabled --overwrite=true

Note: If you do not disable the liveness probe, once you take the OneDB Databaser server offline. The

kubernetes liveness probe will begin to fail. After 3 failures of the liveness probe, kubernetes will restart the

pod on its own.

Viewing log files

About this task

Use one of the following methods to view the OneDB Database server logs:

1. Use kubectl to view the pod logs

kubectl logs onedb-server-0

2. View the log files from inside the pod. The example below shows a tail of the online.log. With this method you can

view any log file associated with the OneDB Database Server.

51

HCL OneDB Containerized Deployment

52

Exec into the pod
cd $ONEDB_DATA_DIR/logs
tail –f onedb*.logs

3. When a pod starts up it will sometimes use an init container to perform setup work prior to the main pod starting.

kubectl logs onedb-server-0 –c onedb-init

Backup and Restore

For zero data loss configuration, and to protect server from data corruption, OneDB storage spaces must be backed up on a

nightly basis, and logical log files must be backed up continuously as and when they get full.

For OneDB backup functionality to work across all available pods, it is recommended to configure ReadWriteMany storage

and specify storage configuration details using “nfsserver” helm attributes. If ReadWriteMany storage is not configured, then

pod specific ReadWriteOnce storage is used for backup storage.

Backup Schedule

The default behavior is for a level 0 archive to occur every night at 2:30am. The last three backups are retained, and any prior

archives are cleaned up and removed.

A restore should only be needed if both the OneDB HA primary and OneDB HA secondary servers are corrupted. If just one or

the other is corrupted, then a failover scenario can occur to bring the two servers back into sync.

Change Backup Schedule

About this task

Backups are scheduled by the OneDB Scheduler. Cloud Backup scheduler task determines what days and what time the level

0 backups occur.

This can be changed by modifying the Scheduler task. You can modify the archive schedule from the command line or you

can do this through OneDB Explore.

Using Command Line

1. Exec into onedb-server-0 pod.

2. Use dbaccess run an update statement against the sysadmin database.

• update sysadmin:ph_task set …..... where tk_name=”Cloud Backup”;

Using OneDB Explore

1. Login to OneDB Explore.

2. Select onedb-server-0.

3. From the Left Panel choose Server Administration -> Task Scheduler.

4. Search for the Cloud Backup Task.

5. Select the Cloud Backup task and Edit accordingly.

In the above example, the archive time is changed to 05:00 and to occur on Monday, Wednesday and Friday.

Restore an archive

About this task

To restore from an archive or a backup:

1. Scale back the server to a single server pod;

a. Set serverReplicaCount helm parameter to 1:

count.yaml

onedb:
 serverReplicaCount: 1

b. Run a helm upgrade:

helm upgrade <release.name> –f count.yaml -f <previous values> onedb/onedb-production

2. Remove PVC’s related to deleted server pods. onedb-server-1 and higher. This should be done by your kubernetes

administrator:

kubectl get pvcs

onedb-onedb-server-1 Bound pvc-bce5170 10Gi RWO standard 68m
onedb-onedb-server-2 Bound pvc-ba34270 10Gi RWO standard 68m

53

HCL OneDB Containerized Deployment

54

kubectl delete pvc <pvc’s for onedb-server-1 and higher>

3. Set the restoreFromBackup helm parameter and run a helm upgrade to initiate the database restore:

a. Set restoreFromBackup to true:

restore.yaml

onedb:
 restoreFromBackup: true

b. Run the helm upgrade:

helm upgrade <release.name> –f count.yaml -f <previous values> onedb/onedb-production

4. After restore is complete set restoreFromBackup helm parameter back to false and update serverReplicaCount to

appropriate values and run helm upgrade to scale out the HA cluster.

a. Set restoreFromBackup to false and serverReplicaCount to desired value:

after.yaml

onedb:
 restoreFromBackup: false
 serverReplicaCount: 2

b. Run helm upgrade:

helm upgrade <release.name> –f after.yaml -f <previous values> onedb/onedb-production

Disable OneDB archives

About this task

You can disable the OneDB backups at deployment time by providing the following configuration override values:

onedb:
 customConfig:
 LOG_BACKUP_MODE: “NONE”

 customInitSQL: |-
 database sysadmin;
 update sysadmin:ph_task set tk_enable=’f’ where tk_name=”Cloud Backup”;

You can also disable the archives after OneDB helm charts have already been installed. You can do this from the command

line or you can do this through OneDB Explore.

Using Command Line

1. Exec into onedb-server-0 pod.

2. vi $ONEDB_HOME/etc/$ONCONFIG.

3. Change LOG_BACKUP_MODE to NONE.

4. Use dbaccess run an update statement against the sysadmin database.

• update sysadmin:ph_task set tk_enable=’f’ where tk_name=”Cloud Backup”;

Using OneDB Explore

1. Login to OneDB Explore.

2. Select onedb-server-0.

3. From the Left Panel choose Server Administration -> Task Scheduler.

4. Search for the Cloud Backup Task.

5. Select the Cloud Backup task and Edit accordingly.

6. Uncheck the Enable Task button and Save.

7. Select Configuration from the Left Panel.

8. Search for the LOG_BACKUP_MODE parameter.

55

HCL OneDB Containerized Deployment

56

9. Edit this value and change to NONE.

Recover Failing pod
If you are running OneDB as an HA cluster. A primary and secondary and you have a failure of a single pod that doesn’t

recover, you don’t need to perform a restore. Instead you can recover only the failing pod.

To force the pod to be recovered set an annotation to start the recovery:

kubectl annotate pod onedb-server-1 onedb_force_ifxclone=true –overwrite=true

Once the pod has successfully be cloned disable this annotation:

kubectl annotate pod onedb-server-1 onedb_force_ifxclone=false –overwrite=true

Note: This shows a recovery of pod onedb-server-0.

Archive with Kubernetes Solution
If you prefer to do your own backups with a kubernetes solution you can do this. First disable the OneDB backups. And when

performing the non-OneDB backup it is important to flush all Database activity to disk. This can be performed using External

backup and Restore (EBR).

For more information on performing a backup using EBR, see External backup and restore overview.

OneDB Explore
OneDB Explore as a graphical User Interface that can be deployed in the OneDB helm charts. It can be used to monitor and

administer one or more OneDB Database servers.

The OneDB Explore helm chart can be deployed separately or as part of OneDB Product. When deploying the OneDB Explore

helm chart on its own it is left up to the user to configure and setup. If you use the OneDB Explore with a OneDB Product

deployment, then it will be configured and setup automatically for the OneDB HA cluster.

Below are the two OneDB helm charts that OneDB Explore is included with. The default admin user password is

testPassw0rd. For information on changing this default, see Accessing OneDB on page 45.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

Configuration
This topic explain the specifics of OneDB Explore in a kubernetes environment. For more information on OneDB Explore and

its functionality and capabilities, see OneDB Explore guide.

In the image below, 6 servers have been pre-configured:

57

HCL OneDB Containerized Deployment

58

A default deployment of OneDB SQL Data Store will create an HA Primary/Secondary Cluster. The deployment will pre-

configure 6 servers with OneDB Explore. If you need more than those configured you can add additional servers. If you want

to remove any unused servers, you can delete them.

Monitoring
By default, the OneDB Explore agent is enabled on each OneDB Database server. In the following figure, you can see that the

first two servers have a green Agent status. This indicates that monitoring is enabled.

To disable the Agent on the OneDB Database server set the configuration override values:

onedb-product:
 onedb:
 exploreAgent: false

High Availability
When deploying the OneDB SQL Data Store helm chart or one of the charts that includes this as a subchart the default

behavior is that you will get an HA cluster with a primary and secondary server. The primary server will be running in onedb-

server-0 pod and the updatable HDR secondary will be running in onedb-server-1 pod. HDR replication is configured to use

NEAR_SYNC replication mode to avoid data loss.

The OneDB database server cluster is deployed using onedb-server statefulset. There will be a second statefulset onedbcm

deployed using two connection manager pods, onedbcm-0 and onedbcm-1.

The connection manager SLA definitions are configured to use ROUNDROBIN policy. This can be changed to WORKLOAD by

setting the onedbcm.sla_policy helm parameter.

Note: OneDB current primary server pod name details are saved using annotations on a ConfigMap <Helm

Release.name>-onedb-clusterinfo. Pod restart logic looks up annotation details on this configmap to decide

whether to start OneDB server as primary or HDR secondary server. Command helm uninstall does not delete this

configmap as helm install command could re-use content from the existing configmap, if OneDB server pods are

restarted using pre-existing PVCs.

Failover
The OneDB SQL Data store HA cluster supports automatic failover and manual failover. The default is set for automatic

failover of the HA cluster. When the HDR primary server becomes non-responsive the HDR secondary needs to take over the

primary responsibilities. This can happen automatically, or it can be configured to require manual intervention.

Auto failover functionality is designated by using the onedbcm.autofailover helm parameter in the OneDB SQL Data Store

helm chart. By default, this value is set to true. If manual failover is preferred this can be set to false.

When failover is performed whether its automatic or manual the roles will toggle between pods onedb-server-0 and onedb-

server-1. When a pod is restarted it will restart the OneDB database server as primary or secondary based on the peer pod

and current state of that OneDB server.

Manual Failover

Manual Failover
When the HDR primary server is non-responsive the kubernetes health scripts will fail and the HDR primary server pod will

restart. The pod will be restarted as an HDR primary. If the server comes back to a healthy state, then no failover is required.

59

HCL OneDB Containerized Deployment

60

If the restart of the HDR primary does not come back to a healthy state then manual intervention is needed. You must login

to the HDR Secondary, onedb-server-1 pod, and switch it to the HDR primary. The onedb-server-0 pod will not become healthy

and will restart as the HDR secondary.

onmode –d make primary onedb1

If TLS encryption is being used the name of the server is onedb1_ssl. So, the command would be:

onmode –d make primary onedb1_ssl

Automatic Failover

Automatic Failover
When the HDR primary server is non-responsive the connection manager will switch the HDR secondary to become the HDR

primary. When the old primary server is restarted it will restart as the HDR secondary server.

Automatic failure occurs and onedb-server-1 will be made the HDR Primary, and onedb-server-0 restarts as an HDR

secondary.

61

HCL OneDB Containerized Deployment

62

Manual Failover
When the HDR primary server is non-responsive the kubernetes health scripts will fail and the HDR primary server pod will

restart. The pod will be restarted as an HDR primary. If the server comes back to a healthy state, then no failover is required.

If the restart of the HDR primary does not come back to a healthy state then manual intervention is needed. You must login

to the HDR Secondary, onedb-server-1 pod, and switch it to the HDR primary. The onedb-server-0 pod will not become healthy

and will restart as the HDR secondary.

onmode –d make primary onedb1

If TLS encryption is being used the name of the server is onedb1_ssl. So, the command would be:

onmode –d make primary onedb1_ssl

Scale-Out
The OneDB SQL Data Store by default will start an HDR Primary + Secondary HA cluster. OneDB SQL Data Store allows

the scaling of the OneDB Database server and the OneDB Connection manager. The default settings for both the

onedb.serverReplicaCount / onedbcm.cmReplicaCount helm parameters are 2.

Another helm chart parameter, onedb.maxReplicacount, controls the maximum number of servers that can be used. The

default setting for this parameter is 10 and the max supported value is 10. This is an immutable value and once it is set its

value cannot be changed.

The OneDB server pods are as follows:

• onedb-server-0: HDR Primary

• onedb-server-1: HDR Secondary

• onedb-server-[2-9]: HDR RSS

When an HDR secondary or RSS is created, ifxclone is used to clone the new server from the current HDR primary server.

This applies to an initial setup or a scale out scenario.

The maximum number of replicas for the OneDB Connection manager (onedbcm.cmReplicaCount) is

onedb.maxReplicaCount.

Manual Scale-Out
OneDB supports manual scale out for the OneDB server and the OneDB Connection Manager.

For the OneDB Server to scale out the number of servers manually set the his is accomplished by set the helm parameter

onedb.serverReplicaCount.

For the OneDB Connection manager to scale out the number of connection managers manually set the his is accomplished

by set the helm parameter onedbcm.cmReplicaCount.

Manual Scale out of Connection Manager
The onedbcm.cmReplicaCount helm chart parameter can be changed at any time with the helm upgrade command. You can

increase or decrease the number of connection managers in the HA cluster by changing this value.

helm upgrade onedb-v1 –set onedbcm.cmReplicaCount=3 –f myvalues.yaml onedb-product

The pods for the connection manager are onedbcm-0, onedbcm-1, onedbcm-2, and so on.

Automatic Scale-out

The OneDB SQL Data store uses the kubernetes resource Horizontal Pod Autoscaler (HPA) to control how scaling will occur

automatically. For more information on HPA refer to the kubernetes documentation here: (https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale).

Auto-scale is based on CPU usage and this is disabled by default. To enable auto-scaling set the autoscale.enabled helm

chart parameter to true and set autoscale.targetCPUUtilizationPercentage to a percentage value where you want scaling to

occur.

The minimum pods for auto scaling would be the helm chart parameter onedb.serverReplicaCount for the OneDB

Server and onedbcm.cmReplicaCount for the Connection manager. The maximum pods for auto scaling would be the

onedb.maxReplicaCount helm chart parameter.

Important: When enabling auto scaling OneDB Server and Connection Manager resources should be explicitly

configured. See onedb.resources and onedbcm.resources helm chart parameters.

Following table shows the HPA resource in kubernetes:

63

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

HCL OneDB Containerized Deployment

64

Table 2. $ kubectl get hpa Output

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

onedb-c5abcd

-hpa

StatefulSet/on

edb-server

8%/90% 2 10 2 3h34m

onedbcm-c5ab

cd-hpa

StatefulSet/on

edbcm

5%/90% 2 10 2 3h34m

In the above output the onedb-c5abcd-hpa is for the OneDB server and onedbcm-c5abcd-hpa is for the Connection

Manager. The CPU threshold is set to 90% for each and we see minimum pods is set to 2 with maximum set to 10. Currently

there are 2 of each.

Automatic Scale-out

The OneDB SQL Data store uses the kubernetes resource Horizontal Pod Autoscaler (HPA) to control how scaling will occur

automatically. For more information on HPA refer to the kubernetes documentation here: (https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale).

Auto-scale is based on CPU usage and this is disabled by default. To enable auto-scaling set the autoscale.enabled helm

chart parameter to true and set autoscale.targetCPUUtilizationPercentage to a percentage value where you want scaling to

occur.

The minimum pods for auto scaling would be the helm chart parameter onedb.serverReplicaCount for the OneDB

Server and onedbcm.cmReplicaCount for the Connection manager. The maximum pods for auto scaling would be the

onedb.maxReplicaCount helm chart parameter.

Important: When enabling auto scaling OneDB Server and Connection Manager resources should be explicitly

configured. See onedb.resources and onedbcm.resources helm chart parameters.

Following table shows the HPA resource in kubernetes:

Table 3. $ kubectl get hpa Output

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

onedb-c5abcd

-hpa

StatefulSet/on

edb-server

8%/90% 2 10 2 3h34m

onedbcm-c5ab

cd-hpa

StatefulSet/on

edbcm

5%/90% 2 10 2 3h34m

In the above output the onedb-c5abcd-hpa is for the OneDB server and onedbcm-c5abcd-hpa is for the Connection

Manager. The CPU threshold is set to 90% for each and we see minimum pods is set to 2 with maximum set to 10. Currently

there are 2 of each.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

Archive Restore Considerations
When an archive restore is initiated OneDB it will occur on onedb-server-0, pod #0. When a restore occurs OneDb will try to

salvage the logical logs, backup up the current logical log.

If the primary is on onedb-server-1 and the onedb-server-0 pod is the secondary, then no salvaging of logical logs will

happen. Which means the current logical log will not be archived and available for the restore.

To prevent this from occurring it is recommended to have onedb-server-0 be the Primary server in the HA cluster. If you are in

a situation where the HDR primary is on onedb-server-1 you can force a switch over.

Manual Switch Over
If the onedb-server-1 server is the HDR primary and onedb-server-0 server is the HDR secondary you can switch these two

roles when automatic failover is disabled by doing the following. Login to the onedb-server-0 server (current HDR Secondary)

and perform the failover operation by running the following command:

onmode –d make primary onedb0

If TLS is enabled for the OneDB HA cluster use the following command:

onmode –d make primary onedb0_ssl

Configuring On Disk Encryption for database server

Setting helm attribute “onedb.encryptionAtRest” to true enables disk encryption for OneDB database server storage

spaces. Encryption key and stash file content is stored in pod specific Kubernetes secret object. K8s Secret object naming

convention: <helm release.name>-ear-onedb0 for onedb-server-0 pod and <helm release.name>-ear-onedb1 for onedb-

server-1 pod.

Important: Make sure to backup content of these Kubernetes secret objects. Without data from these Kubernetes

secret objects, OneDB storage space content cannot be decrypted, and data must be restored from database

backup.

helm uninstall command do not delete these Kubernetes secret objects, and helm install command re-use content of these

secret objects if OneDB server pods were started using pre-existing PVCs. These secret objects must be manually deleted if

they are no longer needed.

Example:
$ kubectl get secrets
NAME TYPE DATA AGE
onedb-ear-onedb0 Opaque 2 3h40m

onedb-ear-onedb1 Opaque 2 3h43m

$ kubectl describe secret onedb-ear-onedb0
Name: onedb-ear-onedb0

65

HCL OneDB Containerized Deployment

66

Namespace: onedb-nagaraju

Labels: app=OneDB

 type=ear

Annotations: <none>

Type: Opaque

Data

====

p12: 5291 bytes

stl: 32 bytes

Automatic Switch Over
If the onedb-server-1 server is the HDR primary and onedb-server-0 server is the HDR secondary you can switch these two

roles when automatic failover is enabled by doing the following.

During a planned downtime login to the onedb-server-1 (current HDR primary) and run the following commands:

onmode –c
Wait for checkpoint to complete on primary & secondary
onmode –ky

After forcing a checkpoint (onmode –c) verify the checkpoint has completed on the primary and secondary servers by

logging in to each and running onstat –m, looking for Checkpoint completed message. After verification of checkpoint, then

run the onmode –ky command.

This will cause the HDR primary on onedb-server-1 to go offline. The onedb-server-0 will automatically failover from HDR

secondary to HDR primary. And when onedb-server-1 comes back up it will restart as the HDR secondary.

Upgrading OneDB helm charts
When upgrading your helm chart, it is always recommended to take a database backup before upgrading the product. The

helm upgrade command is used to upgrade the current release with new configuration. Or, it can be used to upgrade the

current version of the chart to a new helm chart version.

OneDB SQL Data Store and the Connection Manager statefulsets support “RollingUpdate” and “OnDelete” update strategies.

RollingUpdate is the default update strategy. The RollingUpdate process will start from the highest pod ordinal index to the

lowest pod ordinal index. For example, onedb-server-1 is updated before onedb-server-0.

With “OnDelete” update strategy, after ‘helm update’ operation, pod definition will not be updated till user manually deletes

the old pod. “OnDelete” update strategy is recommended when database conversion is required or in a situation where user

would like to manually control the upgrade procedure.

Note: While upgrading 0.4.16 or earlier helm chart version to chart 0.4.27 or later version, make sure to set

‘nfsserver.enabled’ chart attribute value to ‘true’ before performing ‘helm upgrade’ operation. ‘nfsserver.enabled’

attribute must be set to ‘true’ to mount ReadWriteMany NFS PVC on all OneDB server pods, and perform necessary

steps required to convert OneDB container pod on-disk storage to newer version format.

Important: OneDB Explore Container has upgraded its H2 (embedded database) version due to security

vulnerabilities present in the older versions of H2. When upgrading your helm chart to 0.4.27 version for 2.0.1.2, H2

Database needs to be updated manually. For more information, see Upgrading OneDB Explore.

The goal of OneDB’s upgrade process is to have as little interruption as possible. During an upgrade, kubernetes pods are

restarted which will cause a slight interruption in write activity.

If the OneDB Database server does not need to perform a database conversion, then read activity can continue throughout

the upgrade process. If a database conversion has to occur then there will be a slight interruption in read activity as well.

To maintain read activity during the upgrade process, your application must be designed with retry logic in it. When a pod

is taken down so that it can be upgraded your application should retry its connection so it can connect to and use another

server in the cluster.

Upgrading Current release
There may be times when you need to make changes to an existing running release of OneDB in kubernetes. This is

performed using helm upgrade and providing the same installed chart with any new values. Parameter values you can

change are:

• Set ReplicaCount

• Change container image

• Initiate onbar restore

• Change Connection Manager Service Type: Loadbalancer, ClusterIP, NodePort

• Enable/Disable Automatic failover using Connection Manager

• Change Connection Manager SLA policy: Workload, Round Robin

If the initial installation was performed with this:

helm install onedb-v1 -f myvalues.yaml production-onedb

The default installation of the helm chart will install an HA cluster with a primary and secondary OneDB server. If you wanted

to manually scale the HA cluster to a 3rd server (RSS), you can use helm upgrade and specify a new serverReplicaCount

value.

File: newvalues.yaml

onedb-product:
 onedb-sql:
 onedb:
 serverReplicaCount: 3

Issue the helm upgrade with the original and new values overrides.

67

HCL OneDB Containerized Deployment

68

helm upgrade onedb-v1 -f myvalues.yaml -f newvalues.yaml production-onedb

Upgrading 1.x.x.x to 2.x.x.x
A helm upgrade is not supported from OneDB 1.0.0.0 helm chart to a OneDB 2.x helm chart. There are major differences

between these two helm chart versions that would prevent a helm upgrade.

When upgrading from a helm chart version using OneDB 1.x to 2.x then you must perform a data migration. It is

recommended to use the dbexport.

Note: It is recommended to use the dbexport and dbimport utilities.

Upgrading from 2.0.0.0 version to current version
When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

helm install onedb-v1 -f myvalues.yaml production-onedb-0.3.52

To upgrade to helm chart production-onedb-0.4.12, helm chart version 0.4.12 running OneDB 2.0.1.0, run the following helm

upgrade command.

helm upgrade onedb-v1 -f myvalues.yaml production-onedb-0.4.12

In the above example, the helm chart production-onedb-0.3.52 is used for the OneDB 2.0.0.0 OneDB product. And the helm

upgrade command upgrades the helm chart to production-onedb-0.4.12 which the helm chart running OneDB 2.0.1.0.

Rollback from 2.0.1.2 version to previous 2.0.x.x version

About this task

To roll back from OneDB version 2.0.1.2 (helm chart version 0.4.27) to previous 2.0.x.x version, helm rollback command is

not supported . Follow these steps to rollback to previous release:

1. Identify current primary server pod name. For this, login to both onedb-server-0 and onedb-server-1 pods to check on

current primary server pod name:

Example:
$ kubectl exec -it onedb-server-0 bash
[informix@onedb-server-0 ~]$ onstat -

HCL OneDB Server Version 2.0.1.2 -- On-Line (Prim) -- Up 1 days 14:09:24 -- 793248 Kbytes
2022-03-25 19:37:34

If onstat banner show that it’s a primary server(Prim), then note down the pod name.

Alternate method to get primary server pod name:

$ kubectl describe configmap <helm release name>-onedb-clusterinfo |grep holderIdentity

 {"holderIdentity":"onedb-server-0","leaseDurationSeconds":360000,"acquireTime":"2022-03-25T19:21:10Z","
renewTime":"2022-03-25T19:21:10Z","...

2. Create /opt/hcl/backup/${ONEDB_BACKUPTAG}/primaryhost file and add pod name to the primaryhost file:

Example:
$ kubectl exec -it onedb-server-0 bash
$ echo "onedb-server-0" > /opt/hcl/backup/${ONEDB_BACKUPTAG}/primaryhost

3. Uninstall 0.4.27 helm chart and wait for all pods to be terminated:

Example:
$ helm uninstall <helm release name>

4. Install previous release chart using command ‘helm install <helm release name> …’ and wait for the OneDB pods to be

in “Running” state and verify OneDB server and replication state using onstat -g dri command.

Configuring On Disk Encryption for database server

Setting helm attribute “onedb.encryptionAtRest” to true enables disk encryption for OneDB database server storage

spaces. Encryption key and stash file content is stored in pod specific Kubernetes secret object. K8s Secret object naming

convention: <helm release.name>-ear-onedb0 for onedb-server-0 pod and <helm release.name>-ear-onedb1 for onedb-

server-1 pod.

Important: Make sure to backup content of these Kubernetes secret objects. Without data from these Kubernetes

secret objects, OneDB storage space content cannot be decrypted, and data must be restored from database

backup.

helm uninstall command do not delete these Kubernetes secret objects, and helm install command re-use content of these

secret objects if OneDB server pods were started using pre-existing PVCs. These secret objects must be manually deleted if

they are no longer needed.

Example:
$ kubectl get secrets
NAME TYPE DATA AGE
onedb-ear-onedb0 Opaque 2 3h40m

onedb-ear-onedb1 Opaque 2 3h43m

$ kubectl describe secret onedb-ear-onedb0
Name: onedb-ear-onedb0

Namespace: onedb-nagaraju

Labels: app=OneDB

 type=ear

Annotations: <none>

69

HCL OneDB Containerized Deployment

70

Type: Opaque

Data

====

p12: 5291 bytes

stl: 32 bytes

Troubleshooting OneDB
The following documentation talks about some troubleshooting techniques that you might use with OneDB in a kubernetes

environment.

From the viewing of log files, to enabling a higher level of logging. To disabling the liveness, probe for the OneDB server pod

to prevent kubernetes from automatically restarting the OneDB server pods.

Contact OneDB Support with the diagnostic logs and data mentioned in this section as needed.

Troubleshooting Pods
Each pod that is started by kubernetes goes through a series of steps. Some of the common steps you might see are

PodInitializing, Container Creating, Pending, Init, Running, ImagePullBackoff.

If a pod seems to be stuck in a state for a period, some of the following techniques can be used:

kubectl get pods

NAME READY STATUS RESTARTS AGE
my-nfs-server-provisioner-0 1/1 Running 0 103s
onedb-operator-86d899b5bf-hklq9 0/1 ImagePullBackOff 0 43s
sofy-1-grafana-b7b5f958d-lxcxf 0/2 PodInitializing 0 44s
sofy-1-ksmetrics-6d4677b7d5-zhtmh 1/1 Running 0 44s
sofy-1-odbp-explore-55c9db47c4-nqx8p 0/1 ErrImagePull 0 42s
sofy-1-odbp-mongo-6f6df887df-gn896 0/1 Init:0/1 0 43s
sofy-1-odbp-rest-64f94dfd98-bzj7x 0/1 Init:0/1 0 43s

Troubleshooting ImagePullBackoff, Pending pods
When a pod doesn’t make it to the Init/Running state kubectl describe pod is commonly used to try to gather more

information as to what the problem might be. In the above output we see a few pods in ErrImagePull/ImagePullbackOff.

You can see here that we failed to pull the image. This gives us some direction in trying to diagnose this issue.

Troubleshooting init pods
OneDB uses init containers to perform setup functions before a specific pod is fully functional. When a pod is in the init state

you can run a kubectl logs command to get information about the pod. When running the kubectl logs command on an init-

container you need to know the name of the init-container. This can be obtained from the kubectl describe command.

Once you find the name of the init container, you can run a kubectl logs command. You specify the pod and the name of the

init container in the kubectl logs command.

kubectl logs sofy-1-odbp-mongo-6f6df887df-gn896 –c onedb-mongo-init

Below is a sample output and we can see there is a problem connecting to the OneDB Database server.

Running Main

71

HCL OneDB Containerized Deployment

72

SQL Service Test Unsuccessful. Server not ready
-908 : com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.

Troubleshooting running pods
A pod’s desired state is to get to a running state with a Ready of 1/1. If you see a Ready Status of 0/1 or see several Restarts

for the pod, then you may need to investigate further. The kubectl log command can be used to get more information on

what the container/pod is doing.

Pod onedb-sever-0 hasn’t moved into a running state yet and we want to dig deeper into what is going on with this specific

pod.

kubectl logs onedb-server-0

20:59:00 Peer node onedb1 has version 131077
20:59:00 RSS Server onedb1 - state is now connected
20:59:00 setting version information for onedb1 131077
2022-01-08 20:59:03 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:03 LICENSING: <Information> Processing current Capability
2022-01-08 20:59:13 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:13 LICENSING: <Information> Processing current Capability
20:59:13 HDR TIMEOUT - log buffers being sent to onedb1

20:59:13 Error receiving a buffer from RSS onedb1 - shutting down

20:59:14 RSS Server onedb1 - state is now disconnected
20:59:14 RSS onedb1 deleted
2022-01-08 20:59:23 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:23 LICENSING: <Information> Processing current Capability

Enable/Disable Liveness probe
When doing any type of diagnostic work on a container/pod, it is important that the liveness probe does not take effect and

restart the pod. To prevent this from happening you can disable the liveness probe for the OneDB Database server.

To disable use the following kubectl annotation:

kubectl annotate pod onedb-server-0 livenessprobe=disabled –overwrite=true

Once you are done with your diagnostic work you should re-enable the liveness probe.

To enable, use the following kubectl annotation:

kubectl annotate pod onedb-server-0 livenessprobe=enabled –overwrite=true

Kubernetes events
Another log of events that can be reviewed/monitored is the Kubernetes events. Run the kubectl get events command and

sort or filter this data accordingly.

kubectl get events

Log in to pod
There may be a need to login to a pod or the init container to obtain more diagnostic information than you get with

kubernetes commands. First identify the pod you need to login.

Run the kubectl command to login to the kubernetes pod:

kubectl exec --stdin --tty onedb-server-0 -- bash

Once you’ve logged in to the pod/container, you can move around and view log files as you would on any Linux system.

73

HCL OneDB Containerized Deployment

74

Log in to init container
To login to an init container, you must first find the name of the init container. This is done using the kubectl describe pod

command.

kubectl describe pod onedb-server-1

Once you find the name of the init container, you can run the kubectl exec command and login to the init container.

Once you find the name of the init container you can run the kubectl exec command and login to the init
 container.

Once you’ve logged in to the pod/container, you can move around and view log files as you would on any Linux system.

Custom init container
Creating a custom init container is a more advanced topic for kubernetes users. An init container is designed to run before

starting the main container.

Potential use for custom init container:

• Debug/patch container storage

• Custom container to load data spaces

• Perform any operation on the container/pod prior to starting the container

To use a customer init container, use the following helm parameter override values:

onedb:
 customInitImage: gcr.io/google-containers/busybox:latest
 customInitImageCmd: /bin/customization.sh

If you needed to login to this container, the name of the init container is onedb-custom-init, although we could use the

kubectl describe pod command to determine this.

Charts 0.4.16
This version includes the following enhancements:

• Ability to create custom Environment for Mongo container on page 104.

• Ability to create custom Environment for REST container on page 103.

• Ability to create custom Environment for Explore container on page 105.

• Ability to disable/enable specific functionality in OneDB-Product chart on page 106.

• Added a new External Connection Manager Service on page 115.

What’s New in this Helm Chart Version
This section includes information about the new, enhanced capabilities added in this version of the helm chart :

• Ability to create custom Environment for Mongo container on page 104.

• Ability to create custom Environment for REST container on page 103.

• Ability to create custom Environment for Explore container on page 105.

• Ability to disable/enable specific functionality in OneDB-Product chart on page 106.

• Added a new External Connection Manager Service on page 115.

Supported Platforms
The OneDB Helm charts have been tested on the following platforms:

• Google Kubernetes Engine (GKE) (https://cloud.google.com/kubernetes-engine)

• AWS Elastic Kubernetes Service (EKS) (https://aws.amazon.com/eks)

• Azure Kubernetes Service (AKS) (https://azure.microsoft.com/en-us/services/kubernetes-service)

• Redhat OpenShift Container Platform (OCP) (https://www.redhat.com/en/technologies/cloud-computing/openshift/

container-platform)

Architectural Overview
Installing and deploying OneDB in a cloud-native environment is a new way of looking at things. An evolution of how OneDB

is or can be deployed has occurred: starting with on-premises, to in the cloud in Virutal machines, to in the cloud in a highly

scalable Kubernetes environment.

In the past, you would have acquired a physical machine, installed the OneDB database server on that machine and been

responsible for the maintenance and upgrades on the machine as well as maintenance of the OneDB Database server.

75

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks
https://azure.microsoft.com/en-us/services/kubernetes-service
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform

HCL OneDB Containerized Deployment

76

There was then a move to the cloud and the use of Virtual machines in that cloud. Virtual machines made it possible to start

up a machine and run a playbook that would install OneDB and configure accordingly. You might do this in your own cloud or

a public cloud.

Then more recently, there is the move to a highly scaleable Kubernetes environment. This approach uses containerization of

products and pieces of an entire solution. It allows for great flexibility with many benefits. You may use your own Kubernetes

solution or a cloud provided Kubernetes from Google, Amazon or Microsoft for example.

General Terminology
To undestand how OneDB Database server is deployed in a kubernetes environment, it is important that you have a basic

knowledge of certain terms:

• Container on page 76

• Docker on page 76

• Microservices on page 76

• OneDB HA Cluster on page 76

Container

A container image is a lightweight standalone executable package of software that includes everything to run an application

includeing system libraries, tools etc.

Docker

Docker is the leading technology for containizeration. When people think of containers they typcially think of docker.

Although it is not the only container technology.

Microservices

A microservices architecture is a method of designing an overall solution to be broken up into smaller parts instead of

a single monolithic application. Containers make this a natural path of software development as different pieces can be

represented by a different container image.

OneDB HA Cluster

This use of the term cluster refers to the High availability nature of 2 or more OneDB Database servers working together. A 2

nodes OneDB HA cluster will consist of a OneDB HA Primary server and a OneDB HA Secondary server. More servers can be

added into a OneDB HA Cluster, in this context the additional servers would be added as OneDB HA RSS nodes.

Kubernetes Terminology

• Node on page 77

• Pod on page 77

• Cluster (kubernetes) on page 77

• Service on page 77

• Helm chart on page 77

• Operator on page 77

• LoadBalancer on page 77

Node

A node is a virtual machine or phyiscal machine with CPU/RAM resources. This is the hardware component that makes up a

kubernetes cluster. Example nodes are worker nodes and master nodes.

Pod

A pod is the simplest unit that exists within kuberenetes. Typically this is 1 more more containers. It is pods that get

scheduled to run on kubernetes nodes.

Cluster (kubernetes)

Is made up of 1 or more nodes. They provide a resource for a kubernetes solution to be deployed into and managed.

Service

An abstract API object that exposes an application’s network services.

Helm chart

A helm chart is a collection of files that describe a related set of kubernetes resources. A helm chart is typically a group of

yaml files and other associated files that is used to deploy a solution into kubernetes.

Operator

A kubernetes operator is an application specific controller that extends the functionality of the kubernetes API.

LoadBalancer

A kubernetes object that allows you to expose an external IP address to outside the kubernetes cluster.

OneDB Deployment Resources
When deploying a OneDB helm chart a group of resources will be created. The resources created will depend on the specific

OneDB Helm chart that is used.

The OneDB-sql helm chart will deploy the following resources:

• onedb-operator pod

• onedb-server-X pod

• onedbcm-X pod

• onedbcm-cm-service

The OneDB-mongo helm chart will deploy the following resources:

77

HCL OneDB Containerized Deployment

78

• odbp-mongo pod

• odbp-mongo service

• OneDB-sql chart

The OneDB-rest helm chart will deploy the following resources:

• odbp-rest pod

• odbp-rest service

• OneDB-sql chart

The OneDB-explore helm chart will deploy the following resources:

• odbp-explore pod

• odbp-explore service

The OneDB-product helm chart will deploy the following resources:

• OneDB-sql chart

• OneDB-mongo chart

• OneDB-rest chart

• OneDB-explore chart

Pods
onedb-operator

The purpose of the operator pod is to manager the OneDB HA cluster. By default, a OneDB HA Cluster is started with an HDR

primary and secondary server, along with two connection managers.

onedb-server-x

This is the OneDB Database server pod. When deployed, a statefulset is used which will be assigned an ordinal index starting

with 0. So, OneDB HA cluster with a primary secondary will have onedb-server-0 and onedb-server-1.

onedbcm-x

This is the OneDB Connection manager pod. It will be assigned an ordinal index starting with 0. By default, 2 connection

managers are started. onedbcm-0 and onedbcm-1.

odbp-mongo

This is the OneDB Mongo Listener pod. It is started when the OneDB Mongo chart is deployed. It is used to connect to the

OneDB Database server using the Mongo API.

odbp-rest

This is the OneDB REST Listener pod. It is started when the OneDB REST chart is deployed. It is used to connect to the

OneDB Database esrver using RESTFUL services.

odbp-explore

This is the OneDB Explore pod. It will deploy the OneDB Explore administration and monitoring tool providing a web admin

and monitoring GUI. It can be used to administer one or more OneDB Database servers.

Services
odbp-explore

This is the OneDB Explore service that can be used to access the OneDB Explore product.

odbp-mongo

This is the OneDB Mongo service that is used to access the OneDB Database server using the Mongo API.

odbp-rest

This is the OneDB REST service that is used to access the OneDB Database server using RESTFUL services.

onedbcm-cm-service

This is the OneDB Connection Manager service that is used to access the OneDB Database server using the SQLI + DRDA

protocol. EX: JDBC, ODBC.

Prerequisites
To install OneDB into a kubernetes cluster, following prerequisites are needed:

• kubectl

• helm

• ReadWriteMany storage class

Note: To install HCL Sofy Solution into a kubernetes cluster, there may be additional requirements. For more

information on the installation instructions for HCL Sofy, see (https://hclsofy.com/ua/guides#installing-solutions-

step-by-step-instructions)

.

Kubectl
The kubernetes command line tool, kubectl, is used to run commands and interact with a kubernetes cluster. This is used for

managing and interacting with OneDB in kubernetes.

79

https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions
https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions

HCL OneDB Containerized Deployment

80

Helm
The helm tool is used to install OneDB in a kubernetes cluster. Helm is a package manager for Kubernetes and is used to

install a helm chart.

A helm chart is simply a set of kubernetes yaml manifests that are combined into a single package. This provide an easy

method to install a group of kubernetes manifests as a single package.

For installations steps and more information on helm, see: https://helm.sh

RWM Storage
RWM storage is needed to support High availability cluster options with OneDB. Listed are some available options to install

RWM storage, but not limited to these. Following options have been tested and verified to work with OneDB.

Enable one and only one of the following options:

Cloud specific options that can be used for these specific cloud providers are:

• Google FireStore on page 80

• AWS Elastic filesystem on page 80

• Azure on page 81

Cloud generic options that can be installed into an existing kubernetes cluster are:

• nfs-server-provisionser on page 81

• rook-ceph on page 82

• rook-nfs on page 83

Google FileStore Configuration

1. See the Google filestore Instructions (https://cloud.google.com/filestore/docs/quickstart-console).

2. The following OneDB helm chart configuration values need to be set to use the Google filestore:

Parameter Description Value

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.googleFilestore.enable Set to ‘true’ to enable Google Filestore true

nfsserver.googleFilestore.filestoreIP IP address of the Filestore instance ‘’

nfsserver.googleFilestore.filestoreShare Name of the File share of the instance ‘’

https://helm.sh/
https://cloud.google.com/filestore/docs/quickstart-console

AWS Elastic Filesystem Configuration

1. See AWS filesystem Instructions (https://docs.aws.amazon/eks/latest/userguide/efs-csi.html) .

2. The following OneDB helm chart configuration values need to be set to use the AWS Elastic filesystem.

Parameter Description Valu

e

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.awsEFS.enable Set to ‘true’ to enable AWS Elastic

filestore

true

nfsserver.awsEFS.EFSServer IP address of the Filestore instance ‘’

nfsserver.googleFilestore.filestoreShar

e

Name of the File share of the instance ‘’

Azure File share Configuration

1. See Azure File share instructions (https://docs.microsoft.com/en-us/azure/aks/azure-files-volume).

2. Following OneDB helm chart configuration values need to be set to use the Azure File share:

Parameter Description Valu

e

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.azureFS.enable Set to ‘true’ to enable Azure File

share

true

nfsserver.azureFS.secretnam

e

Kubernetes secret to use ‘’

nfsserver.azureFS.shareName Azure file share name ‘’

Install and Configure nfs-server-provisioner

1. Add the nfs-server-provisioner helm repo.

helm repo add kvaps https://kvaps.github.io/charts

2. Install the helm chart for the nfs-server-provisioner. Specify the following parameters:

Parameter Description Value

81

https://docs.aws.amazon/eks/latest/userguide/efs-csi.html
https://docs.microsoft.com/en-us/azure/aks/azure-files-volume

HCL OneDB Containerized Deployment

82

persistence.size Set this to a value of the NFS PV

size

50Gi

persistence.enabled Set to ‘true’ to enable NFS true

persistence.storageClass Set this to ‘standard’ standard

storageClass.create Set to ‘true’ true

storageClass.name Set thos to a unique Name onedb-nfs-<namespace>

storageClass.mountOption

s

{vers=4.1}

• storageClass.name: This is cluster wide so it is recommended to include the namespace in the name to

provide uniqueness.

• storageClass.mountOptions: Onedb has been tested with NFS V4.1

helm install onedb-nfs-server-provisioner kvaps/nfs-server-provisioner \
--version 1.3.1
--set persistence.enabled=true
--set persistence.storageClass="standard”
--set persistence.size=50Gi
--set storageClass.create=true
--set storageClass.name=-onedb-nfs-my-ns
 --set storageClass.mountOptions={vers=4.1}

3. The following OneDB helm chart configuration values need to be set to use the NFS server provisioner.

Parameter Description Value

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.other.enable Set to ‘true’ to enable NFS true

nfsserver.other.storageClas

s

Set this to the storage class of the

NFS

onedb-nfs-<namespace>

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of the nfs

server provisioner

Install and Configure rook-ceph

1. See the rook-ceph Prerequisites: (https://rook.io/docs/rook/v1.7/pre-reqs.html) .

Note: Some environments you may need to provision and use Ubuntu with containerd node pool instead of

the default GKE container-Optimized OS (COS).

.

2. Follow the instructions for rook-ceph: (https://rook.io/docs/rook/v1.7/quickstart.html).

3. Configure a shared file system for rook: (https://rook.io/docs/rook/v1.7/ceph-filesystem.html).

4. Following OneDB helm chart configuration values need to be set to use rook-ceph:

Parameter Description Value

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.other.enable Set to ‘true’ to enable NFS true

nfsserver.other.storageClas

s

Set this to the storage class of the

NFS

onedb-nfs-<namespace>

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of rook-ceph.

Installation of rook-nfs
Introduction to charts content to go here.

1. Follow the instructions for rook-nfs (https://github.com/rook/rook/blob/master/Documentation/nfs.md).

2. Before Installing OneDB modify the template/nfs_other_pvc.yaml file in the helm chart and change the accessModes:

value from ReadWriteMany to ReadWriteOnce.

3. After creating the Storage Class, refer to the sc.yaml file for rook-nfs. This will contain the storageclass name.

• Default: rook-nfs-share1.

• The storage name is needed when installing OneDB.

Parameter Description Value

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.other.enable Set to ‘true’ to enable NFS true

nfsserver.other.storageClas

s

Set this to the storage class of the

NFS

rook-nfs-share

1

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of rook-nfs.

83

https://rook.io/docs/rook/v1.7/pre-reqs.html
https://rook.io/docs/rook/v1.7/quickstart.html
https://rook.io/docs/rook/v1.7/ceph-filesystem.html
https://github.com/rook/rook/blob/master/Documentation/nfs.md

HCL OneDB Containerized Deployment

84

OneDB Requirements and Recommendations
The OneDB database server is designed to be able to run on small devices like a Raspberry pi up to large Servers with

128 cores. The architecture of OneDB is flexible and allows you to run in these different environments with different

configurations.

It is important to note that these are recommendations and not requirements. As one user may be able to run their workload

on a small device like a Raspberry pi, but another user needs 32 CPUs and 100GB of memory.

When talking about recommendations, we typically refer to CPU, Memory and sometimes disk space.

OneDB Disk/Volume Recommendations
This depends on the amount of data and workload you will have in your OneDB Database server. So every database system

will be different. But if High thoughput is needed then we recommend SSD drives to be used. And for your NFS shred drive,

spinning disks are ok to use.

Below is a priority of spaces to be setup with SSD if possible. This is not required but the more spaces/volumes setup with

SSD drives the better performance can be achieved with the OneDB Database server.

Space/Volume Drive Type

Logical Log Dbspace SSD drive(s)

High Volume space SSD drive(s)

Temp Spaces SSD drive(s)

Physical Log Dbspace SSD drive(s)

Low volume space SSD/Spinning

drive(s)

RWM NFS Spinning drive(s)

The amount of disk space allocated to each of these spaces and volumes is dependent on the size of your data and

workload. It is recommended that the RWM NFS volume be approx 3-5 times the size of the total dbspaces if you plan to use

the automated backups. We retain 3 archives of the OneDB database server.

Note: It is important to note that you can use all spinning disks and if needed you can put all spaces on a single

volume, a separate volume is needed for the RWM NFS. These recommendations are given to provide the best

performance possible for a production system.

OneDB Minimum CPU/Memory Recommendations

For a OneDB solution the following can be used as guidelines for the OneDB Server, the Connection Manager, the Mongo wire

listener, and the REST wire listener. With OneDB Explore, the minimmum recommendation should be plenty.

Resou

rce

Minimmum Recommendation General

Recommendatoin

CPU 1 core 2 cores

Memory 512 MB 8 GB

As with all systems the more resources, CPU and Memory that a system has the better performance can be achieved. If

you find that your workload has a high number of quick connections using the REST or Mongo protocols you may want to

increase resources in that area.

The more CPU that is provided to the OneDB system allows you to configure more CPUvps and the more Memory that is

provided allows you to configure more memory for Buffers and other database operations.

Note: It is possible to run OneDB with less CPU and Memory. These recommendations are given to provide the best

performance possible for a production system.

OneDB Minimum Kubernetes Recommendations
When a OneDB Helm chart is deployed you can specify the minimmum and maximum amount of resources that Kuberentes

will use.

When scheduling a pod on a kubernetes node the pod specification can request minimmum resources required. If no node is

available with those resources the pod will not be scheduled.

Example: If a pod has a resource.request.cpu of 1, kubernetes will attempt to schedule the pod on a node with >= 1 cpu. If

not available, then the pod will not be scheduled.

The following are the current values set in the OneDB Helm Charts.

Pod Resou

rce

Request Limit

onedb CPU .1 CPU 24 CPU

Memory 2GB 32GB

CM CPU .1 CPU 1 CPU

Memory 100 MB 500 MB

Mongo/REST CPU .1 CPu 2.1 CPU

Memory 128MB 1GB

85

HCL OneDB Containerized Deployment

86

Pod Resou

rce

Request Limit

Explore CPU .1 CPU 2 CPU

Memory 64MB 512MB

The OneDB Helm charts are also configured by default to not allow two OneDB server pods to be scheduled on the same

node. See onedb.nodeSelectorRequired configuration parameter.

The OneDB Helm chart is also configureed to not allow two OneDB Connection Manager pods to be scheduled on the same

node. See onedbcm.nodeSelectorRequired configuration parameter.

This does not prevent a Connection manager pod from being scheduled on the same node as a OneDB server pod.

For best performance in a production system it is recommended to configure Affinity along with taints and tolerations to

have full control of where the OneDB pods will be scheduled. This will allow you to control the resources available to the

individual running pod.

Minimum Recommendation:

• 1 node per OneDB server pod

• 2 nodes for all other pods to be schedued on

General Recommendation: For best performance possible in a production system.

• Use affinity, taints and tolerations

• Configure 1 node per OneDB Server pod

• Configure 1 node per CM

• 1 node or Mongo wire listener

• 1 node for REST wire listener

• Configure 1-2 nodes for other pods

Note: It is possible to run a OneDB Helm chart with fewer nodes. These recommendations are given to provide the

best performance possible for a production system.

Overview of Installation
OneDB is deployed into a kubernetes cluster using helm charts. A helm chart is a collection of files that describe a related

set of kubernetes resources. A helm chart is typically a group of yaml files and other associated files that is used to deploy a

solution into kubernetes.

Before installing a helm chart, you need access to the cluster. The Helm CLI is used to perform the install/uninstall and

manage a helm release. Helm is commonly referred to as the package manager for kubernetes. For more information on

helm and the installation instructions see: (https://helm.sh).

https://helm.sh/

The kubectl CLI is a kubernetes command line tool to interact with and manage resources in a kubernetes cluster. You can

use this tool to verify your installation. For more information on kubectl and installation, see: (https://kubernetes.io).

Previous install
If an helm install has been performed with a prior version, there may be a need to update the Custom Resource Definitions in

the kubernetes cluster. OneDB’s Custom Resource Definitions can change from release to release. You may see this with a

helm upgrade as well when moving from one helm chart version to another, where the CRD has changed.

If you perform a helm install/upgrade and receive an error similar to the error below, update the CRDs associated with

OneDB:

Error: INSTALLATION FAILED: unable to build kubernetes objects from release manifest: error validating "":
 error validating data: ValidationError(OneDB.spec): unknown field

Run kubectl get crds to find the name of the OneDB CRDs:

kubectl get crds |grep onedb

NAME CREATED AT
onedbcms.onedb.hcl 2022-03-08T17:02:44Z
onedbs.onedb.hcl 2022-03-08T17:02:44Z

Run a kubectl apply command to update the existing CRDs using the new CRDs in the new helm chart:

kubectl apply –f onedb-sql/chart/crds/onedb.hcl_onedbcms.yaml
kubectl apply –f onedb-sql/chart/crds/onedb.hcl_onedbs.yaml

OneDB Helm Charts
There are five helm charts for OneDB. These helm charts are listed below with a description of each:

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB SQL Data Store with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

87

https://kubernetes.io/

HCL OneDB Containerized Deployment

88

Differences in Standalone and Solution Factory helm charts

Note: HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through

the Solution Factory (Sofy).

The Solution Factory (Sofy), is an Enterprise Kubernetes Solution catalog. Sofy allows you to pick and choose various

products to create an overall solution. You can choose one of the OneDB services or Products from the catalog and it will be

included in an overall solution with the OneDB helm chart included as a subchart in the Sofy solution. With a Sofy solution

helm chart other charts will be included as subcharts like prometheius and grafana and the Sofy UI and of course any

product chosen in the catalog.

The main difference between a OneDB helm chart that is installed with a Sofy solution and installed on its own are:

1. Other products/subcharts are included in the Sofy chart.

2. Helm chart overrides at a different level.

helm install
Helm install is used to install a helm chart. This command can point to a path of a directory of an unpacked chart, or a

packaged chart. Ex. (chart.tgz).

HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through the Solution

Factory (Sofy).

helm install [NAME] [CHART] [flags]

Installing an unpacked directory chart:

 helm install onedb1 onedb-sql

Installing a packaged chart (tgz):

helm install onedb1 onedb-sql.tgz

helm overrides
To override default values in the helm chart you can use --set on the command line. Or you can specify a file with a list of

overrides.

Installing with set overrides:

 helm install onedb2 --set hclFlexnetURL=flex-net-xxxxx --set hclFlexnetID=xxxxxxx onedb-sql

Installing with a overrides in a file:

helm install onedb2–f myvalues.yaml onedb-sql

File: myvalues.yaml

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

Verify Installation
After performing a helm install you can use the kubectl tool to verify the installation. The following resources are some of the

items to verify within your kubernetes cluster.

• pods

• services

• deployments

• statefulsets

kubectl get pods

kubectl get services

kubectl get deployments

kubectl get statefulsets

These commands will show the status of each of these resources. For example, the pods need to be in a running state.

If any of these resources are not in a functioning running state you can use kubectl to diagnose. See the kubernetes

documentation for more information on kubectl.

Install a Standalone helm chart
HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through the Solution

Factory (Sofy).

Install a Solution Factory helm chart
When installing OneDB in a Sofy solution, it will be included as a subchart in the helm chart that is created from the Sofy

catalog along with other Solution factory charts like Prometheus, grafana, Sofy console, etc. For more information about

Solution Factory see: (https://hclsofy.com/ua/guides).

Before a Sofy helm chart can be installed, there are required steps to be taken. See the step by step instructions for installing

a Sofy solution: (https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions) .

License Requirements
The OneDB database server requires a license to be used. This is set using hclFlexnetURL and hclFlexnetID values in the helm

chart. Below is a values override file that sets these parameter values. This values to be used for these parameters will be

obtained from HCL.

89

https://hclsofy.com/ua/guides
https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions

HCL OneDB Containerized Deployment

90

File: myvalues.yaml

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

A Sofy solution uses a service named anchor. This service is used for license management. The OneDB helm charts use

anchor but don’t need the amount of resources set by default in a Sofy solution helm chart.

You can override the resources used by this anchor service by using the following values override file.

File: anchor.yaml

anchor:
 resources:
 cpu: 250m

Install OneDB SQL Data Store (onedb-sql)
The OneDB SQL Data Store helm chart will install the HCL OneDB database.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB SQL Data Store is through the native SQLI protocol. HCL OneDB provides drivers for different programming

languages to provide this connectivity. Ex. Java, Python, NodeJS, ODBC.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install sql-v1 -f myvalues.yaml -f anchor.yaml production-onedb-sql

Install OneDB RESTful Data Store (onedb-rest)
The OneDB RESTful Data Store helm chart will install the HCL OneDB database along with the OneDB REST listener.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB RESTful Data store is through the REST API. This allows you to use language of choice that supports

RESTful services.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install rest-v1 -f myvalues.yaml -f anchor.yaml production-onedb-rest

Install OneDB Document Data Store (onedb-mongo)
The OneDB Document Data Store helm chart will install the HCL OneDB database along with the OneDB Mongo Listener.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB Document Data store is through the MongoDB protocol. This allows you to use any language that supports

a MongoDB driver.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install mongo-v1 -f myvalues.yaml -f anchor.yaml production-onedb-mongo

Install OneDB Explore (onedb-explore)
The OneDB Explore helm chart will install the OneDB Explore web console. The web console is used for visualizing,

monitoring, alerting and administering an HCL OneDB server instances.

HCL OneDB Explore features include:

• Purpose built for ease-of-use, scaling out, and optimizing DevOps needs.

• Provides critical performance management capabilities and monitoring of OneDB data store servers.

• The monitoring system feeds directly into a customizable alerting system so alerts can be immediately sent via

email, Twilio, or PagerDuty.

• User and permission management for restricted access to dashboard of certain servers or group of servers.

The default login credentials for HCL OneDB Explore are:

• Username: admin

• Password: testPassw0rd

To override the admin password use a values override file and provide that at install time.

91

HCL OneDB Containerized Deployment

92

File: myvalues.yaml

onedb-explore:
 adminPassword: newPassw0rd

helm install expl-v1 -f myvalues.yaml production-onedb-explore

Install OneDB Product (onedb-product)
The OneDB Product helm chart will install the HCL OneDB database. This helm chart will include as subcharts the other

OneDB helm charts:

• OneDB SQL Data Store

• OneDB Mongo Data Store

• OneDB RESTful Data Store

• OneDB Explore

This chart is an all-inclusive chart that includes all the OneDB charts for full functionality.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB Product is through:

• The native SQLI protocol. HCL OneDB provides drivers for different programming languages to provide this

connectivity. Ex. Java, Python, NodeJS, ODBC

• The REST API. This allows you to use language of choice that supports RESTful services.

• The MongoDB protocol. This allows you to use any language that supports a MongoDB driver.

OneDB Explore is included as a UI to interact with and administer the OneDB Database server(s).

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

Following file overrides multiple parameters and is provided an installation time:

File: myvalues.yaml

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

anchor:
 resources:
 cpu: 250m

onedb-product:
 onedb-explore:
 adminPassword: newPassw0rd

helm install prod-v1 -f myvalues.yaml production-onedb-product

Pod Scheduling
As a best practice when deploying OneDB SQL Data store into kubernetes in production isolate the OneDB Database server

pods to a specific set of nodes. Also, make sure no two database server pods are scheduled on the save node.

OneDB Server pod scheduling is controlled with the helm chart parameters:

• onedb.nodeSelectorRequired

• onedb.nodeSelector

• onedb.tolerations

To understand how OneDB handles pod scheduling it is import to understand a few concepts.

• Assigning Pods to Nodes (Affinity / Anti-affinity)

• Taints and Tolerations

For more information on Pod scheduling, see kubernetes https://kubernetes.io/.

Assigning Pods to Nodes (Affinity/ Anti-Affinity)
Node Affinity allows you to constrain which nodes your pods are eligible to be scheduled on based on labels that have been

defined for the nodes. There are two types of node affinity that are used with OneDB.

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

requiredDuringSchedulingIgnoredDuringExecution: This is a hard requirement in that the pod “must” be scheduled on the node

with the defined set of rules.

preferredDuringSchedulingIgnonredDuringExecution: This is a soft requirement in that the pod will prefer or try to schedule on

nodes with the defined rules but it is not guaranteed.

Note: OneDB uses these rules to force a pod to be scheduled on a specific set of nodes or prefer to be scheduled on

a specific set of nodes.

Pod anti-affinity allows you to constrain which nodes your pod is eligible to be scheduled on based on pods that are already

running on the node. As with node affinity OneDB uses two types of pod anti-affinity.

93

https://kubernetes.io/

HCL OneDB Containerized Deployment

94

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

requiredDuringSchedulingIgnoredDuringExecution: This is a hard requirement in that the pod “must” be scheduled on the node

with the defined set of rules.

preferredDuringSchedulingIgnonredDuringExecution: This is a soft requirement in that the pod will prefer or try to schedule on

nodes with the defined rules but it is not guaranteed.

Note: OneDB uses these rules to force a OneDB pod to not schedule on nodes already running a OneDB pod or prefer

to not be scheduled on that same node.

Labeling Nodes
Your kubernetes administrator will perform this task. They can label a single node or a group of nodes (node pool) with a

specific designation with a key/value pair. This is needed to use affinity/anti-affinity capabilities with kubernetes.

To label a node the following command is used:

kubectl label nodes <nodename> key=value –overwrite

The key/value pair that is defined here is arbitrary. It is a key/value pair that would then be used with helm chart parameter

overrides to specify the affinity/anti-affinity.

Example with an arbitrary key/value pair of type=database looks like this:

kubectl label nodes gke-worker4 type=database –overwrite

Configure OneDB Affinity/Anti-Affinity
We have two helm chart parameters that can be set with OneDB SQL Data store. The OneDB SQL Data store uses these helm

chart parameters for both the onedb and onedbcm sections of the helm chart.

onedb:
 nodeSelectorRequired: true
 nodeSelector:
 type: database
. . .
onedbcm:
 nodeSelectorRequired: true
 nodeSelector:
 type: cm

The default values for onedb/onedbcm nodeSelectorRequired is true. When this is set to true the

requiredDuringSchedulingIgnoredDuringExecution is used for Pod anti-affinity.

The effect of this is that, a OneDB Database server will not be scheduled on the same node where another OneDB Database

server pod is running. And a OneDB Connection manager will not be scheduled on the same node where another OneDB

Connection manager pod is running.

When we set the nodeSelector helm chart parameter for either onedb or onedbcm OneDB will use

requiredDuringSchedulingIgnoredDuringExecution and Node affinity is enabled. This will require that all Pods be scheduled

on nodes that have been labeled accordingly.

Example Labeling of Nodes:

kubectl label nodes gke-worker2 type=database –overwrite
kubectl label nodes gke-worker4 type=database –overwrite

kubectl label nodes gke-worker3 type=cm –overwrite
kubectl label nodes gke-worker5 type=cm –overwrite

With the above helm chart values set the OneDB Database server pods must run on a kubernetes nodes that are labled with

type:database, and OneDB Connection manager pods must run on kubernetes nodes that are labeled with type:cm.

OneDB SQL Data store sets up an HA cluster with an HDR primary and HDR secondary. If nodeSelectorRequired is set to true,

then we must have more than 1 node labeled when use nodeSelector. The same applies to the OneDB Connection manager

based on how many replicas are running.

Note: When configuring pod scheduling it is important to have a good understanding of how this works or you may

run into a situation where a pod is not able to be scheduled.

Taints and Toleration
While Node affinity is a property of a pod that attracts them to a set of nodes either as a preference or hard requirement.

Taints are the opposite, in that the allow a node to repel a set of pods. A taint is defined on a pod.

kubectl taint nodes gke-worker2 type=onedb:NoSchedule

This uses a key/value pair in this example we used type=onedb, with the NoSchedule effect. This means that no pod will be

able to schedule onto the node (gke-worker2) unless it has a matching toleration.

You would then need to use the tolerations helm chart parameter override and set the following:

tolerations:
- key: “type”
 operator: “Exists”
 effect: “NoSchedule”

Note: Using a combination of Affinity/Anti-Affinity and taints and tolerations, you can control what nodes OneDB SQL

Data store will be schedule on and dictate that those nodes are only used for OneDB.

OneDB Configuration
There are five helm charts for OneDB.

95

HCL OneDB Containerized Deployment

96

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

Each chart has a list of configuration options that can be set to specify how the OneDB Helm chart will be installed, setup

and configured.

OneDB SQL Data Store Configuration
To customize the installation and configurations, see the list of configuration parameters available to the OneDB SQL Data

Store.

List of OneDB SQL Data Store Configuration Parameters

Parameter Description Value

global.hclImagePul

lSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

hclFlexnetURL Your HCL FlexNet license server URL for your HCL entitlements.

Required when deploying in your own cluster

‘’

hclFlexnetID Your HCL FlexNet license ID fo ryour HCL entitlements. Required when

deploying solution in your own cluster.

‘’

isOpenShift Set to true if using Openshift false

nfsserver.volumeSi

ze

Size of the Volume used for backups and other shared files. 50G

nfsserver.googleFil

estore.enable

Set to true to enable Google Filestore false

nfsserver.googleFil

estore.filestoreIP

IP address of the Filestore instance ‘’

nfsserver.googleFil

estore.filestoreSha

re

Name of the File share on the instance ‘’

Parameter Description Value

nfsserver.awsEFS.

enable

Set to true to enable AWS Elastic filestore false

nfsserver.awsEFS.

EFSServer

DNS name of the file system fs-XXXXX.efs-us-west-

2.amazonaws.com

nfsserver.awsEFS.

EFSPath

NFS Mount path /

nfsserver.azureFS.

enable

Set to true to enable Azure File share false

nfsserver.azureFS.

secretName

Kubernetes secret name to use ‘’

nfsserver.azureFS.

shareName

Azure file share name ‘’

nfsserver.other.ena

ble

Set to true to enable true

nfsserver.other.sto

rageClass

Set this to the storageClass of the NFS nfs

tls.config Set to true to enable TLS communication false

tls.tlskey Base64 value of server private key tlskey:

LS0tLS1CRUdJTiBDRV

JUSUZJQ0FURS ...

tls.tlscert Base64 value of signed server certificate tlscert:

LS0tLS1CRUdJTiBDRV

JUSEDFRQ0FURS ...

tls.tlscacert Base64 value of certificate authority root certificate tlscacert:

LS0tLS1CRUdJTiBDRV

JUSUZJQ0FURS ...

autoscaling.enable

d

Set to true to enable auto scaling. To use auto scaling make sure

to set onedb.serverReplicaCount, onedb.maxReplicaCount and

onedb.resources appropriately.

false

autoscaling.target

CPUUtilizationPerc

entage

Set to the Percentage when autoscaling should occur. 70

onedb.serverReplic

aCount

Set to the number of servers to start for an HA cluster 2

97

HCL OneDB Containerized Deployment

98

Parameter Description Value

onedb.maxReplica

Count

Set to the max value of servers you would want to configure in the HA

cluster

10

onedb.dbsapwd OneDB Server DBSA (onedbsa) user password onedb4ever

onedb.backupTag Set to unique value in case the backup device is shared with other

OneDB HA Cluster

onedbbackup-myuniqu

etag

onedb.encryptionA

tRest

Set to true to enable Encryption at rest false

onedb.exploreAgen

t

Set to true to start the OneDB Explore Agent on each server false

onedb.dataStorage

Class

Set to the cloud vendor default storage class. Low latency disk I/O

storage is recommended. For GKE “standard” is the default

""

onedb.dataStorage

Size

Set the persistent Volume Size 10gi

onedb.dataStorage

Count

Number of persistent volume’s to provision 2

onedb.restoreFrom

Backup

Set to true when a restore from last backup is needed false

onedb.restoreTime

stamp

set to specific point in time to perform a point in time restore. Ex

2021-05-11 11:35:00

‘’

onedb.nodeSelecto

rRequired

Set to true to enforce that no two OneDB Server pods are scheduled on

the same K8s node

true

onedb.nodeSelecto

r

Set to a node label to schedule OneDB server pods on preconfigured set

of K8s nodes. Set your own keyvalue pair for the node selector

‘’

onedb.tolerations Used to assist the K8s schedule {}

onedb.resources Resources like cpu and memory requested from the cluster. {}

onedb.customServ

erEnv

Allows you to set additional environment variables to be used by the

database server.

‘’

onedb.customConf

ig

Allows you to set ONCONFIG parameters to be used by the Database

server.

MULTIPROCESSOR: 1

onedb.customSpac

e

Allows you to create custom Dbspaces in the database server ‘’

onedb.appUsers Allows you to create custom Users in the database server ‘’

Parameter Description Value

onedb.customInitS

QL

Allows you to create a script of SQL statements that is run after server

initialization.

‘’

onedb.customInitI

mage

Allows you to create an Init Container image ‘’

onedb.customInitI

mageCmd

The command to run from the custom Init container ‘’

onedb.groupName Unique name for each cluster if Setting up Enterprise Replication g_cdr1

onedb.groupID Unique ID for each cluster if setting up Enterprise Replication 1

onedbcmReplicaC

ount

Number of Connection Managers to start for the HA cluster 2

onedbcm.serviceT

ype

Set the service type of the connection manager. (ClusterIP,

LoadBalancer or NodePort)

ClusterIP

onedbcm.sla_polic

y

Set the service level agreement of the connection manager.

(ROUNDROBIN, WORKLOAD)

ROUNDROBIN

onedbcm.autofailo

ver

If set to false then autofailover is disabled true

onedbcm.nodeSele

ctorRequired

Set to true to enforce that no two OneDB CM pods are scheduled on the

same K8s node.

true

onedbcm.nodeSele

ctor

Set to a node label to schedule OneDB pods on preconfigured set of K8s

nodes. Set your own keyvalue pair.

‘’

onedbcm.toleratio

ns

Used to assist the K8s schedule {}

onedbcm.resource

s

Resources like cpu and memory, requested from the cluster {}

Customize Server configuration
The ONCONFIG file is used by the database server during initialization to setup the data store server. Use the customConfig

helm chart configuration parameter to specify ONCONFIG parameters. It can be configured as follows. With parameters that

are not unique specify a number after the parameter as seen below with BUFFERPOOL# .

onedb:
 customconfig:
 MULTIPROCESSOR: “1”
 BUFFERPOOL1: “size=8k,buffers=50000,lrus=8,lru_min_dirty=50,lru_max_dirty=60.5”

99

HCL OneDB Containerized Deployment

100

 BUFFERPOOL2: “size=2k,buffers=200000,lrus=8,lru_min_dirty=50,lru_max_dirty=60.5”
 LOGSIZE: “10000”

Create Initialization SQL script
The helm chart configuration parameter customInitSQL can be used to create an SQL scrpit that will run by the OneDB server

after first initialization. This script can be used to perform needed setup tasks, creation of databases, etc.

onedb:
 customInitSQL: |-
 database sysadmin;
 create database test with log;
 create table t1 (col1 int, col2 int);

Creating custom spaces
The helm chart configuration parameter customSpace can be used to create and setup spaces. Following table details the

options available for the creation of spaces. When defining the customSpace parameter, you must create a well formed json

document.

Param

eter

Description Example Value

name The name of the space my_data_dbspace

type The type of space to create. Supported values are:

dbspace: normal dbspace

llog : logical log dbspace

plog: physical log dbspace

sbspace: smart blobspace

tempdbspace: temporary dbspace

tempsbspace: temporary smart blobspace

dbspace

pagesize The size of the space, supported values are 2k,4k,6k,8k,16k 4k

size Size of the space, supported values are GB, MB, KB 10GB

logging Used for smart blobspaces to enable loging

1: enable logging

0: disable logging

1

onedb:
 customSpace: >-
 [
 {“name”:”datadbs”, “type”: “dbspace”, “pagesize”: “4k”, “size”: “4GB” },

 {“name”:”logdbs”, “type”: “llog”, “size”: “2GB” },
 {“name”:”plogdbs”, “type”: “plog”, “size”: “4GB” },
 {“name”:”sbspace1”, “type”: “sbspace”, “size”: “1GB” , “logging”: 1},
 {“name”:”tmpdbspace1”, “type”: “tempdbspace”,”pagesize”: “4k”, “size”: “1GB” },
 {“name”:”tmpsbsp1”, “type”: “tempsbspace”, “size”: “500MB” }
]

Creating custom users
The helm chart configuration parameter appUsers can be used to create additional users. Following table details the options

available for the creation of users. Currently, the only type of user support is an operating system user account. When using

appUsers, you must create a well formed json document.

Param

eter

Description Example

Value

user The name of the user appuser1

password The password of the user passw0rd

group A group name to create for the user. dev

uid The user id number to use for the user 1003

gid The group id number to to use for the group 2000

type The type of user to create. Currently only osuser is

supported

osuser

onedb:
 appUsers: >-
 [
 { “user”:”appuser1”, “password”: “passw0rd”, “group”:”dev”,
 “uid”:1003,”gid”:2000,”type”:”osuser” },
 { “user”:”appuser2”, “password”: “passw0rd”, “group”:”dev”,
 “uid”:1003,”gid”:2000,”type”:”osuser” }
]

Setting additional server Environment
The helm chart configuration parameter customServerEnv can be used to set additional server environment variables. This

will be set in the environment script when initialization and starting the OneDB database server.

onedb:
 customServerEnv:
 DB_LOCALE: “en_us.utf8”
 DBTEMP: “/tmp”

101

HCL OneDB Containerized Deployment

102

Using an Init container
The helm chart configuration parameters customInitImage and customInitImageCmd can be used to create an Init container

to perform setup steps prior to the startup of the OneDB server container image. The customInitimage parameter is used to

specify an image to use and the customInitImageCmd is the command to run inside the image.

The Init container image can be a purposely built image with scripts built in. Or it can be a generic image with specific OS

commands to run.

onedb:
 customInitImage: “gcr.io/<my-images>/busybox-custom:latest”
 customInitImageCmd: “/bin/initSetup.sh”

Scheduling of K8s pods
The helm chart configuration parameter nodeSelector for onedb and onedbcm are used to support Node affinity. It allows

you to select a preconfigured set of K8s nodes to run on.

The following example will run the OneDB server on nodes labeled as onedb and the OneDB Connection manager on nodes

labeled as onedbcm.

onedb:
 nodeSelector:
 database: onedb
onedbcm:
 nodeSelector:
 cm: onedbcm

The helm charts have an unconfigured parameter tolerations to allow for full configuration of taints and tolerations for K8s

scheduling of pods. This can be used to specify a node taint, which means no pod can be scheduled on the node unless it

has a matching toleration. Then a OneDB server is labeled with a toleration to allow it to run on the tainted nodes.

kubectl taint nodes node1 tainted4onedb=onedb-only:NoSchedule

onedb:
 tolerations:
 - key: “tainted4onedb”
 operator: “Exists”
 effect: “NoSchedule”

Sample helm override file

When specifying helm chart parameters, you can specify them on the command line. When specifying a number of

parameters it is sometimes more convenient to create a file with the override parameters. The following example shows a

single file that uses customServerEnv, appUsers and customInitSQL in a single file.

FILE: onedb.override.yaml
onedb:
 customServerEnv:
 ONEDB_USER_MANAGEMENT: “true”
 ONEDB_USER: “user1”

 appUsers: >-
 {“user”:”user1”, “password”:”Passw0rd”, “group”:”dba”, “uid”: 1005, “gid”:2001,
 “type”:”osuser”}

 customInitSQL: |-
 create database stores with log;
 create user dbauser with password ‘Passw0rd’ account unlock properties user ‘user1’
 authorization(dbsa);

The above yaml file sets two environment variable that are used in the container Image to enable database users. It then

creates one os user to be used as the operating system user that the created database user will have permissions as.

OneDB REST Data Store Configuration
To customize the installation and configurations see the list of configuration parameters available to the OneDB REST Data

Store.

List of OneDB REST Data Store Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

hclFlexnetURL Your HCL FlexNet license server URL for your HCL entitlements.

Required when deploying in your own cluster

‘’

hclFlexnetID Your HCL FlexNet license ID for your HCL entitlements. Required when

deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster. requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file. ‘’

customEnv Allows you to set additional environment variables to be used by the

OneDB REST container image.

‘’

externalDBUrl A custom external JDBC style URL if you want to connect to a OneDB

server that is not part of the solution

‘’

databaseuser The user the REST API will use to connect to the OneDB Database

Server

onedbsa

databasePass

word

The password the REST API will use to connect to the OneDB Database

Server

onedb4ever

103

HCL OneDB Containerized Deployment

104

Custom REST Configuration

Additional configuration can be added to the REST service as follows. Review the product documentation for all available

options for the REST configuration file.

onedb-rest:
 config: |-
 rest.session.timeout 600000
 security.csrf.token.enable: true

onedb-rest:
 customEnv:
 TZ: CST2

OneDB Document Data Store Configuration
To customize the installation and configurations see the list of configuration parameters available to the OneDB Document

Data Store.

List of OneDB Document Data Store Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

hclFlexnetURL Your HCL FlexNet license server URL for your HCL entitlements.

Required when deploying in your own cluster

‘’

hclFlexnetID Your HCL FlexNet license ID for your HCL entitlements. Required when

deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file ‘’

customEnv Allows you to set additional environment variables to be used by the

OneDB Mongo container image.

‘’

externalDBUrl A custom external JDBC style URL if you want to connect to a OneDB

server that is not part of the solution

‘’

mongoUser The mongo username mongo

mongoPasswo

rd

Password for the mongo user mongoPassword

databaseuser The user the MongoDB API will use to connect to the OneDB Database

Server

onedbsa

databasePass

word

The password the MongoDB API will use to connect to the OneDB

Database Server

onedb4ever

Custom Mongo Configuration
Additional configuration can be added to the Document Data Store (Mongo) service as follows. Review the product

documentation for all available options for the Mongo configuration file.

onedb-mongo:
 config: |-
 security.sql.passthrough=true

onedb-mongo:
 customEnv:
 TZ: CST2

OneDB Explore Data Configuration
To customize the installation and configurations see the list of configuration parameters available to OneDB Explore Data.

List of OneDB Explore Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file ‘’

customEnv Allows you to set additional environment variables to be used by the

OneDB Explore container image.

‘’

adminPasswor

d

Initial admin password testPassw0rd

Custom Explore Configuration
Additional configuration can be added to the Explore service as follows. Review the product documentation for all available

options for the Explore configuration file.

onedb-explore:
 config: |-
 key=value

105

HCL OneDB Containerized Deployment

106

onedb-explore:
 customEnv:
 TZ: CST2

OneDB Product Configuration
The majority of configuration will happen through the helm charts for OneDB SQL Data store, OneDB Document Data

store, OneDB Rest Data Store or OneDB Explore. To customize the installation and configurations, following is the list of

configuration parameters:

Table 4. List of OneDB Product Configuration Parameters

Parameter Description Val

ue

enableChart.onedbMongo Enable or disable the onedb-mongo chart for installation. Default: true ‘true’

enableChart.onedbRest Enable or disable the onedb-rest chart for installation. Default: true ‘true’

enableChart.onedbExplore Enable or disable the onedb-explore chart for installation. Default: true ‘true’

enableChart.onedbSql Enable or disable the onedb-product chart for installation. Default: true ‘true’

Configuring TLS
Use transport layer security (TLS) to create secure connections from OneDB clients to the OneDB database server. By

default, TLS is disabled. To enable TLS connections, set the tls.tlsconfig helm chart parameter value to true.

The following helm chart parameters also need to be set:

• tlskey: The base64 encoded value of the private key.

• tlscert: The base64 encoded value for the Public signed server certificate.

• tlscacert: The base64 encoded value of the certificate authority root certificate.

Example tls configuration:

tls:
 tlsconfig: true
 tlskey: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0t....
 tlscert: LS0tLS1CRUdJTiBABEFUSUZJQ0FURS0tLS0t...
 tlscacert: LS0tLS1CRUdJTiBDRVJUSUEEFZFURS0tLS0t....

Create TLS Certificates

About this task

You can obtain your own certificates from a certificate authority or you can create your own with the following steps using

openssl:

1. Generate root CA private key PEM file:

openssl genrsa -out rootCA.key.pem

2. Create a self signed root CA certificate in PEM file:

openssl req -new -x509 -key rootCA.key.pem -subj "/C=US/ST=Kansas/L=Olathe/O=HCL/OU=OneDB" -days 3650
 -out
 rootCA.cert.pem

3. Generate server private key:

openssl genrsa -out server.key.pem

4. Generate a certificate signing request (CSR) for OneDB Server:

openssl req -new -key server.key.pem -subj
 "/C=US/ST=Kansas/L=Olathe/O=HCL/OU=OneDB/CN=Server/emailAddress=onedb@hcl.com" -out server.req.pem

5. Sign certificate with root CA:

openssl x509 -req -inform PEM -in server.req.pem -set_serial 1 -CA
rootCA.cert.pem -CAkey rootCA.key.pem -days 3650 -extensions usr_cert -outform PEM -out server.cert.pem

6. Convert rootCA.cert.pem to base64 -> tlscacert:

base64 rootCA.cert.pem -w 0 > tlscacert

7. Convert server.cert.pem to base64 -> tlscert:

base64 server.cert.pem -w 0 > tlscert

8. Convert server.key.pem to base64 -> tlskey:

base64 server.key.pem -w 0 > tlskey

Connect from Java client with TLS

About this task

To connect to the OneDB Databaser server with a Java client (JDBC) with TLS you must create a keystore for the client

application to use. You need the root CA certificate and will use this file rootCA.cert.pem to generate the kesytore.

Create the keystore:

keytool –import –file rootCA.cert.pem -keystore ssl.keystore

Example

Example OneDB JDBC URL to connect to a OneDB Database server using TLS:

jdbc:onedb://XX.XXX.XXX.XX.nip.io:10001/sysmaster;user=onedbsa;password=xxxxxxx;ENCRYPT=true;TRUSTSTORE=./ssl.k
eystore;TRUSTSTOREPASSWORD=xxxxxxx;
CERTIFICATEVERIFICATION=false;loginTimeout=0

For more information on connecting JDBC applications with TLS, see HCL OneDB JDBC Driver Guide.

107

HCL OneDB Containerized Deployment

108

Accessing OneDB
Connecting to the OneDB database server is essential. OneDB allows for connections from Mongo Clients, REST Clients and

Native SQLI clients. Ex. JDBC, ODBC, ESQL/C

Connectivity can occur from inside the cluster or from outside the cluster. By default, connections from outside the cluster

are not enabled.

Connectivity will be different based on the installation. The two basic installations are:

1. Installation of the Standalone Helm Chart of OneDB

2. Installation of a Solution Factory Helm Chart of OneDB

The OneDB Connection Manager is used for Native SQLI Connections to the Database server. There is a Kubernetes service

provided to handle this connectivity.

REST, Mongo and OneDB Explore will each have a Kubernetes service to handle their own connections.

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP 19m

With the OneDB Connection Manager you will see a pattern emerge that will describe what type of connection will occur.

Port Number Description

10XXX Internal (Redirected) Connection

20XXX External (Proxied) Connection

XXXX0 Connection to the HA Primary Server

XXXX1 Connection to the HDR Secondary Server

XXXX2 Connection to any server in the HA

Cluster

XXXX3 Connection to the RS Secondary Server

XXX2X Connection that uses SSL

Example: Port 10021 is an internal Connection (10XXX) to the HA Secondary server (XXXX1) using SSL (XXX2X).

Standalone OneDB Chart
A standalone OneDB helm chart does not include elements of a Solution Factory helm chart. There are mutliple different

Standalone helm charts.

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

The OneDB helm(s) chart can be configured to only allow connections from within the cluster itself, or they can be configured

to allow for connections from outside the cluster.

To allow for connections from outside the cluster the kubernetes service types should be configured as Loadbalancer, or

an extra piece of software can be used to provide a single point of ingress into the cluster. Some commonly used ingress/

loadbalancer’s are Ambassodor, NGINX.

Setting up Ambassador or NGINX is outside the scope of this documentation, instead we will use a Loadbalancer service

type.

Connecting from Inside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. A kubernetes service is created for the non-SQLI types

as well.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP 19m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For internal connections it is

recommended to use “Redirected” connections. The following table shows the Internal connection string to use for each

driver type. From within the cluster the .{namespace}.svc.cluster.local may not be needed from the URL below.

Driver URL Example URL

OneDB driver (SQLI-Primary) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10000

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10001

jdbc:onedb://{url}/sysmaster

109

HCL OneDB Containerized Deployment

110

OneDB driver (SQLI-Any) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10002

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Primary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10020

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10021

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any-SSL) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10022

jdbc:onedb://{url}/sysmaster

Mongo combatible driver <Release-Name>-odbp-mongo:27017 mongodb://<release-name>-odbp-mon

go:27017

REST <Release-Name>-odbp-rest:8080 http://<release-name>-odbp-rest:8080

Explore <Release-Name>-odbp-explore:8080 http://<release-name>-odbp-explore:80

80

Connecting from Outside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. A kubernetes service is created for the non-SQLI types

as well.

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
helm-1-odbp-explore LoadBalancer 10.96.220.30 172.19.255.202 8080/TCP 20m
helm-1-odbp-mongo LoadBalancer 10.96.44.208 172.19.255.201 27017/TCP 20m
helm-1-odbp-rest LoadBalancer 10.96.90.21 172.19.255.200 8080/TCP 20m
onedbcm-cm-service LoadBalancer 10.96.159.103 172.19.255.203 10000/TCP,20000/TCP 19m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For external connections you must use

the “Proxied” connections. The following table shows the external connection string to use for each driver type.

Driver URL Example URL

OneDB driver (SQLI-Primary) {LoadBalancer External IP

address}:20000

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary) {LoadBalancer External IP

address}:20001

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any) {LoadBalancer External IP

address}:20002

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Primary-SSL) {LoadBalancer External IP

address}:20020

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary-SSL) {LoadBalancer External IP

address}:20021

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any-SSL) {LoadBalancer External IP

address}:20022

jdbc:onedb://{url}/sysmaste

r

Mongo combatible driver {LoadBalancer External IP

address}:27017

mongodb://{url}:27017

REST {LoadBalancer External IP address}:8080 http://{url}:8080

Explore {LoadBalancer External IP address}:8080 http://{url}:8080

Setting LoadBalancer Type
The default setting for each service type is ClusterIP. This will only allow internal connections. The OneDB helm chart service

types of interest are listed below. NOTE: The names of the services may be slightly different when installing onedb-mongo,

onedb-rest, onedb-sql chart.

• onedbcm-cm-service

• <Release.Name>-odbp-explore

• <Release.Name>-odbp-mongo

• <Release.Name>-odbp-rest

Each of these service types can be configured as a LoadBalancer to provide external connectivity.

To set Loadbalancer for the Connection Manager:

onedb-sql:
 onedbcm:
 serviceType: LoadBalancer

To set LoadBalancer for Mongo

onedb-mongo:
 service:
 type: LoadBalancer

To set LoadBalancer for REST

onedb-rest:
 service:
 type: LoadBalancer

To set LoadBalancer for Explore

111

HCL OneDB Containerized Deployment

112

onedb-explore:
 service:
 type: LoadBalancer

Solution Factory OneDB Chart
A Solution factory OneDB helm chart contains elements of the Solution factory including things like a Console UI, grafana,

prometheus. The OneDB helm chart is included as a subchart of the overall Helm chart. There are multiple different Solution

Factory charts that include different aspects of OneDB.

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

The Solution Factory OneDB helm(s) chart can be configured to only allow connections from within the cluster itself, or they

can be configured to allow for connections from outside the cluster.

To allow for connections from outside the cluster, a Solution factory OneDB helm chart includes and configures Ambassador.

The ambassador LoadBalancer will handle connectivity into the kubernetes cluster for Mongo, REST and Explore. The OneDB

Connection Manager will handle connections into the kubernetes cluster for Native SQLI clients (ex. JDBC, ODBC, ESQL/C)

By default, OneDB Connection Manager does not allow for external connections.

Connecting from Inside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. The ambassador service is created for the non-SQLI

connections. The ambassador service is setup as a Loadbalancer type where as the OneDB Connection Manager has a

default setting of ClusterIP.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
sofy-1-ambassador LoadBalancer 10.96.224.175 172.19.255.200 80:32653/TCP,44
 68m
sofy-1-odbp-mongo ClusterIP 10.96.183.135 <none> 27017/TCP
 69m
sofy-1-odbp-rest ClusterIP 10.96.173.88 <none> 8080/TCP
 69m

sofy-1-odbp-explore ClusterIP 10.96.66.46 <none> 8080/TCP
 71m
onedbcm-cm-service ClusterIP 10.96.33.166 <none> 10000:30248/TCP
 77m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For internal connections it is

recommended to use “Redirected” connections. The following table shows the Internal connection string to use for each

driver type. From within the cluster the .{namespace}.svc.cluster.local may not be needed from the URL below:

Driver URL Example URL

OneDB driver (SQLI-Primary) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10000

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10001

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10002

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Primary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10020

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10021

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any-SSL) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10022

jdbc:onedb://{url}/sysmaster

Mongo combatible driver <Release-Name>-odbp-mongo:27017 mongodb://<release-name>-odbp-mon

go:27017

REST <Release-Name>-odbp-rest:8080 http://<release-name>-odbp-rest:8080

Explore <Release-Name>-odbp-explore:8080 http://<release-name>-odbp-explore:80

80

Connecting from Outside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. The ambassador service is created for the non-SQLI

connections. The ambassador service is setup as a Loadbalancer type where as the OneDB Connection Manager has a

default setting of ClusterIP. To allow external SQLI connectivity you must set the service type to LoadBalancer.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
sofy-1-ambassador LoadBalancer 10.96.224.175 172.19.255.200 80:32653/TCP,44 68m
sofy-1-odbp-mongo ClusterIP 10.96.183.135 <none> 27017/TCP 69m
sofy-1-odbp-rest ClusterIP 10.96.173.88 <none> 8080/TCP 69m
sofy-1-odbp-explore ClusterIP 10.96.66.46 <none> 8080/TCP 71m

113

HCL OneDB Containerized Deployment

114

onedbcm-cm-service LoadBalancer 10.96.33.166 172.19.255.201 10000:30248/TCP 77m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For external connections you must use

the “Proxied” connections. The following table shows the external connection string to use for each driver type.

Driver URL Example URL

OneDB driver (SQLI-Primary) {LoadBalancer External IP

address}:20000

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary) {LoadBalancer External IP

address}:20001

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any) {LoadBalancer External IP

address}:20002

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Primary-SSL) {LoadBalancer External IP

address}:20020

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary-SSL) {LoadBalancer External IP

address}:20021

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any-SSL) {LoadBalancer External IP

address}:20022

jdbc:onedb://{url}/sysmaste

r

Mongo combatible driver {LoadBalancer External IP

address}:27017

mongodb://{url}:27017

REST {LoadBalancer External IP address}:8080 http://{url}:8080

Explore {LoadBalancer External IP address}:8080 http://{url}:8080

Setting LoadBalancer Type
The default setting for the OneDB Connection Manager service type is ClusterIP. This will only allow internal connections.

To allow for connectivity from outside the cluster you must set the service type for the OneDB Connection Manager to

LoadBalancer.

To set Loadbalancer for the Connection Manager:

onedb-product:
 onedbcm:
 serviceType: Loadbalancer

Connection credentials
The following table shows the default connection credentials. This can be changed accordingly.

Product/Driver User Password

Explore admin testPassw0rd

REST - -

Mongo mongo mongoPasswor

d

SQL Data

Store

onedbsa onedb4ever

The REST connection uses a database connection. You can connect with onedbsa or any other use that was created in the

OneDB SQL Data Store.

To change the onedbsa password for the OneDB SQL Data Store use the following configuration override values. If you

change this password it is important that you make changes to mongo, rest and explore.

onedb-sql:
 onedb:
 dbsapwd: one1dba4ever

If you change the passowrd for OneDB SQL Datastore (onedb-sql), you must tell the mongo,rest and explore charts how to

connect to the OneDB SQL Datastore (onedb-sql). See the following configuration overrides.

onedb-mongo:
 databasePassword: one1dba4ever

onedb-rest:
 databasePassword: one1dba4ever

onedb-explore:
 serverConnection:
 password: one1dba4ever

To change the user and password for OneDB Mongo use the following configuration override values. If you change this

password it is important that you make changes to mongo, rest and explore.

onedb-mongo:
 mongoUser: mymongo
 mongoPassword: mongoPassword

To change the admin password for OneDB Explore. Use the following configuration override values. If you change this

password it is important that you make changes to mongo, rest and explore.

onedb-explore:
 adminPassword: newPassw0rd

115

HCL OneDB Containerized Deployment

116

OneDB Connection Manager External Service

Purpose of External CM Service
When you designate the default onedbcm-cm-service as a LoadBalancer you expose all ports outside the cluster. This may

not be desirable because the non-SSL ports are also exposed outside the cluster.

onedb-sql:
 onedbcm:
 serviceType: Loadbalancer

Configuration of External CM Service
The following configuration options are available for the external CM service:

Parameter Description Value

onedbcm_ext.enabled Set to true to enable the External CM service ‘false’

onedbcm_ext.serviceType Set the serviceType for this Service. LoadBalancer or NodePort 2000

0

onedbcm_ext.ports.olttp Proxy mode Connection to Primary Server 2000

0

onedbcm_ext.ports.reportp Proxy mode Connection to Secondary Server 2000

1

onedbcm_ext.ports.oltpanyp Proxy mode Connection to ANY Server 2000

2

onedbcm_ext.ports.reportrssp Proxy mode Connection to RSS Server 2000

3

onedbcm_ext.ports.oltpdrdap Proxy mode Connection to Primary Server with DRDA protocol 2001

0

onedbcm_ext.ports.reportdrdap Proxy mode Connection to Secondary Server with DRDA protocol 2001

1

onedbcm_ext.ports.oltpdrdaanyp Proxy mode Connection to ANY Server with DRDA protocol 2001

2

onedbcm_ext.ports.reportrssdrdap Proxy mode Connection to RSS Server with DRDA protocol 2001

3

onedbcm_ext.ports.oltpsslp Proxy mode Connection to Primary Server using SSL 2002

0

Parameter Description Value

onedbcm_ext.ports.reportsslp Proxy mode Connection to Secondary Server using SSL 2002

1

onedbcm_ext.ports.oltpanysslp Proxy mode Connection to ANY Server using SSL 2002

2

onedbcm_ext.ports.reportrsssslp Proxy mode Connection to RSS Server using SSL 2002

3

onedbcm_ext.ports.oltpdrdasslp Proxy mode Connection to Primary Server with DRDA protocol using SSL 2003

0

onedbcm_ext.ports.reportdrdasslp Proxy mode Connection to Secondary Server with DRDA protocol using

SSL

2003

1

onedbcm_ext.ports.oltpdrdaanysslp Proxy mode Connection to ANY Server with DRDA protocol using SSL 2003

2

onedbcm_ext.ports.reportrssdrdassl

p

Proxy mode Connection to RSS Server with DRDA protocol using SSL 2003

3

Example Setup of External CM Service (Load Balancer)

To setup the OneDB External CM service you would typically set the original onedbcm service so that it can only be accessed

from within the cluster. This is done by setting the serviceType to ClusterIP.

Then configure the External CM serivce accordingly. The configuration below exposes only the SSL ports for the traditional

SQLI protocol.

onedb-sql:
 onedbcm:
 serviceType: ClusterIP

 onedbcm_ext:
 enabled: true
 serviceType: LoadBalancer
 ports:
 oltpsslp: 20020
 reportsslp: 20021
 oltpanysslp: 20022
 reportrsssslp: 20023

Below is a list of services showing the onedbcm-cm-service defined as ClusterIP and the onedbcm-ext-service defined as

LoadBalancer. You can then access the external IP address from outside the cluster for the configured ports.

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP
 20m

117

HCL OneDB Containerized Deployment

118

helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP
 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP
 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP
 19m
onedbcm-ext-service LoadBalancer 10.96.159.103 172.19.255.203 20020/TCP,20021/TCP
 19m

Example Setup of External CM Service (NodePort)

To setup the OneDB External CM service as a NodePort you would typically set the original onedbcm service so that it can

only be accessed from within the cluster. This is done by setting the serviceType to ClusterIP.

Then, configure the External CM serivce accordingly. The configuration below exposes only the SSL ports for the traditional

SQLI protocol. Depending on the kubernetes platform being used the port numbers from a NodePort service may need to be

in a specific range. You can change the port numbers accordingly to fit with the required range.

onedb-sql:
 onedbcm:
 serviceType: ClusterIP

 onedbcm_ext:
 enabled: true
 serviceType: NodePort
 ports:
 oltpsslp: 30020
 reportsslp: 30021
 oltpanysslp: 30022
 reportrsssslp: 30023

Below is the list of services showing the onedbcm-cm-service defined as ClusterIP and the onedbcm-ext-service defined as

NodePort. You can access the configured ports through each Nodes IP address.

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP
 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TC
 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP
 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP
 19m
onedbcm-ext-service NodePort 10.96.159.103 <none> 30020:30020/TCP
 19m

Administering OneDB
The following information describes the common tasks that an administrator may perform for a OneDB Database server in a

kubernetes environment.

• Exec into OneDB pod.

For some administration tasks, you may need to login to the OneDB pod and run commands. To do this, you must

have authorization to run kubectl exec.

• Starting and Stopping OneDB.

Starting and stopping the OneDB pod from kubernetes

• Viewing OneDB Log files.

To view the OneDB logs in the different pods.

• Backup and Restore.

To backup and restore the OneDB database server

Exec into OneDB Pod
There may be a need to login to the kuberneres pod to perform administration tasks. First identify the pod you need to login

to.

kubectl get pods |grep onedb
onedb-operator-67f5d6cd9b-wxcg2 1/1 Running 0 42h
onedb-server-0 1/1 Running 0 42h
onedb-server-1 1/1 Running 0 42h
onedbcm-0 1/1 Running 0 42h
onedbcm-1 1/1 Running 0 42h

Run the kubectl command to login to the kubernetes pod:

kubectl exec --stdin --tty onedb-server-0 -- bash

You will be logged in as user “informix” and your environment will be set for the OneDB Database server. Which can be

verified with the onstat - command:

onstat -
HCL OneDB Server Version 2.0.1.0 -- On-Line (Prim)
 -- Up 1 days 18:42:25 -- 793248 Kbytes
2021-12-01 17:37:54

Stop/Start OneDB Database Server
Use one of the following methods to stop and restart the OneDB database server:

1. Delete the kubernetes pod

2. Login to Pod and take the OneDB server offline

Delete Pod

About this task

119

HCL OneDB Containerized Deployment

120

Deleting a pod is a method that can be used to restart the pod. When a pod is deleted or dies, kubernetes will force the pod

to be restarted.

1. Delete the pod of interest.

kubectl delete pod onedb-server-0

2. Monitor the pod that was deleted, as it is restarted. After performing the kubectl delete pod the pod will terminate. As

it restarts, it will go back into the initialization and eventually a Running state.

onedb-server-0 0/1 Terminating 0 42h
onedb-server-0 0/1 Init:0/1 0 1s
onedb-server-0 1/1 Running 0 43s

Login Pod

1. First annotate the pod so kubernetes does not restart the pod while you are performing administration tasks:

kubectl annotate pod onedb-server-0 livenessprobe=disabled --overwrite=true

2. Use the command to take the OneDB Database server offline:

onmode -kuy

3. Perform any adminstration tasks needed with the server offline.

4. Run the command to bring the OneDB Database server back online.

oninit

5. Re-enable the liveness probe:

kubectl annotate pod onedb-server-0 livenessprobe=enabled --overwrite=true

Note: If you do not disable the liveness probe, once you take the OneDB Databaser server offline. The

kubernetes liveness probe will begin to fail. After 3 failures of the liveness probe, kubernetes will restart the

pod on its own.

Viewing log files

About this task

Use one of the following methods to view the OneDB Database server logs:

1. Use kubectl to view the pod logs

kubectl logs onedb-server-0

2. View the log files from inside the pod. The example below shows a tail of the online.log. With this method you can

view any log file associated with the OneDB Database Server.

Exec into the pod
cd $ONEDB_DATA_DIR/logs
tail –f onedb*.logs

3. When a pod starts up it will sometimes use an init container to perform setup work prior to the main pod starting.

kubectl logs onedb-server-0 –c onedb-init

Backup and Restore
The OneDB SQL Datastore supports an HA cluster setup. To do this one of the requirements is that a shared RWM storage is

available for use. When setting up HA with OneDB an archive is taken from the OneDB HA Primary Server and restored to a

OneDB HA Secondary or OneDB HA RSS system.

The shared volume provides all pods access to the archive’s. When deploying a OneDB helm chart one of the initial steps is

to take an archive to be used to setup the Secondary and any RSS nodes.

The default behavior is for a level 0 archive to occur every night at 2:30am. The last three backups are retained and any prior

archives are cleaned up and removed.

A restore should only be needed if both the OneDB HA primary and OneDB HA secondary servers are corrupted. If just one or

ther other is corrupted then a failove scenario can occur to bring the two servers back into sync with one another.

Change Backup Schedule

About this task

Backups are scheduled by the OneDB Scheduler. Cloud Backup scheduler task determines what days and what time the level

0 backups occur.

This can be changed by modifying the Scheduler task. You can modify the archive schedule from the command line or you

can do this through OneDB Explore.

Using Command Line

1. Exec into onedb-server-0 pod.

2. Use dbaccess run an update statement against the sysadmin database.

• update sysadmin:ph_task set …..... where tk_name=”Cloud Backup”;

Using OneDB Explore

1. Login to OneDB Explore.

2. Select onedb-server-0.

121

HCL OneDB Containerized Deployment

122

3. From the Left Panel choose Server Administration -> Task Scheduler.

4. Search for the Cloud Backup Task.

5. Select the Cloud Backup task and Edit accordingly.

In the above example, the archive time is changed to 05:00 and to occur on Monday, Wednesday and Friday.

Restore an archive

About this task

To restore from an archive or a backup:

1. Scale back the server to a single server pod;

a. Set serverReplicaCount helm parameter to 1:

count.yaml

onedb:
 serverReplicaCount: 1

b. Run a helm upgrade:

helm upgrade <release.name> –f count.yaml -f <previous values> onedb/onedb-production

2. Remove PVC’s related to deleted server pods. onedb-server-1 and higher. This should be done by your kubernetes

administrator:

kubectl get pvcs

onedb-onedb-server-1 Bound pvc-bce5170 10Gi RWO standard 68m
onedb-onedb-server-2 Bound pvc-ba34270 10Gi RWO standard 68m

kubectl delete pvc <pvc’s for onedb-server-1 and higher>

3. Set the restoreFromBackup helm parameter and run a helm upgrade to initiate the database restore:

a. Set restoreFromBackup to true:

restore.yaml

onedb:
 restoreFromBackup: true

b. Run the helm upgrade:

helm upgrade <release.name> –f count.yaml -f <previous values> onedb/onedb-production

4. After restore is complete set restoreFromBackup helm parameter back to false and update serverReplicaCount to

appropriate values and run helm upgrade to scale out the HA cluster.

a. Set restoreFromBackup to false and serverReplicaCount to desired value:

after.yaml

onedb:
 restoreFromBackup: false
 serverReplicaCount: 2

b. Run helm upgrade:

helm upgrade <release.name> –f after.yaml -f <previous values> onedb/onedb-production

Disable OneDB archives

About this task

You can disable the OneDB backups at deployment time by providing the following configuration override values:

onedb:
 customConfig:
 LOG_BACKUP_MODE: “NONE”

 customInitSQL: |-
 database sysadmin;
 update sysadmin:ph_task set tk_enable=’f’ where tk_name=”Cloud Backup”;

You can also disable the archives after OneDB helm charts have already been installed. You can do this from the command

line or you can do this through OneDB Explore.

Using Command Line

1. Exec into onedb-server-0 pod.

2. vi $ONEDB_HOME/etc/$ONCONFIG.

3. Change LOG_BACKUP_MODE to NONE.

4. Use dbaccess run an update statement against the sysadmin database.

• update sysadmin:ph_task set tk_enable=’f’ where tk_name=”Cloud Backup”;

123

HCL OneDB Containerized Deployment

124

Using OneDB Explore

1. Login to OneDB Explore.

2. Select onedb-server-0.

3. From the Left Panel choose Server Administration -> Task Scheduler.

4. Search for the Cloud Backup Task.

5. Select the Cloud Backup task and Edit accordingly.

6. Uncheck the Enable Task button and Save.

7. Select Configuration from the Left Panel.

8. Search for the LOG_BACKUP_MODE parameter.

9. Edit this value and change to NONE.

Recover Failing pod
If you are running OneDB as an HA cluster. A primary and secondary and you have a failure of a single pod that doesn’t

recover, you don’t need to perform a restore. Instead you can recover only the failing pod.

To force the pod to be recovered set an annotation to start the recovery:

kubectl annotate pod onedb-server-1 onedb_force_ifxclone=true –overwrite=true

Once the pod has successfully be cloned disable this annotation:

kubectl annotate pod onedb-server-1 onedb_force_ifxclone=false –overwrite=true

Note: This shows a recovery of pod onedb-server-0.

Archive with Kubernetes Solution
If you prefer to do your own backups with a kubernetes solution you can do this. First disable the OneDB backups. And when

performing the non-OneDB backup it is important to flush all Database activity to disk. This can be performed using External

backup and Restore (EBR).

For more information on performing a backup using EBR, see External backup and restore overview.

OneDB Explore
OneDB Explore as a graphical User Interface that can be deployed in the OneDB helm charts. It can be used to monitor and

administer one or more OneDB Database servers.

The OneDB Explore helm chart can be deployed separately or as part of OneDB Product. When deploying the OneDB Explore

helm chart on its own it is left up to the user to configure and setup. If you use the OneDB Explore with a OneDB Product

deployment, then it will be configured and setup automatically for the OneDB HA cluster.

Below are the two OneDB helm charts that OneDB Explore is included with. The default admin user password is

testPassw0rd. For information on changing this default, see Accessing OneDB on page 114.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

125

HCL OneDB Containerized Deployment

126

Configuration
This topic explain the specifics of OneDB Explore in a kubernetes environment. For more information on OneDB Explore and

its functionality and capabilities, see OneDB Explore guide.

In the image below, 6 servers have been pre-configured:

A default deployment of OneDB SQL Data Store will create an HA Primary/Secondary Cluster. The deployment will pre-

configure 6 servers with OneDB Explore. If you need more than those configured you can add additional servers. If you want

to remove any unused servers, you can delete them.

Monitoring
By default, the OneDB Explore agent is enabled on each OneDB Database server. In the following figure, you can see that the

first two servers have a green Agent status. This indicates that monitoring is enabled.

To disable the Agent on the OneDB Database server set the configuration override values:

onedb-product:
 onedb:
 exploreAgent: false

High Availability
When deploying the OneDB SQL Data Store helm chart or one of the charts that includes this as a subchart the default

behavior is that you will get an HA cluster with a primary and secondary server. The primary server will be running in onedb-

server-0 pod and the updatable HDR secondary will be running in onedb-server-1 pod. HDR replication is configured to use

NEAR_SYNC replication mode to avoid data loss.

The OneDB database server cluster is deployed using onedb-server statefulset. There will be a second statefulset onedbcm

deployed using two connection manager pods, onedbcm-0 and onedbcm-1.

The connection manager SLA definitions are configured to use ROUNDROBIN policy. This can be changed to WORKLOAD by

setting the onedbcm.sla_policy helm parameter.

Failover
The OneDB SQL Data store HA cluster supports automatic failover and manual failover. The default is set for automatic

failover of the HA cluster. When the HDR primary server becomes non-responsive the HDR secondary needs to take over the

primary responsibilities. This can happen automatically, or it can be configured to require manual intervention.

Auto failover functionality is designated by using the onedbcm.autofailover helm parameter in the OneDB SQL Data Store

helm chart. By default, this value is set to true. If manual failover is preferred this can be set to false.

When failover is performed whether its automatic or manual the roles will toggle between pods onedb-server-0 and onedb-

server-1. When a pod is restarted it will restart the OneDB database server as primary or secondary based on the peer pod

and current state of that OneDB server.

127

HCL OneDB Containerized Deployment

128

Manual Failover

Manual Failover
When the HDR primary server is non-responsive the kubernetes health scripts will fail and the HDR primary server pod will

restart. The pod will be restarted as an HDR primary. If the server comes back to a healthy state, then no failover is required.

If the restart of the HDR primary does not come back to a healthy state then manual intervention is needed. You must login

to the HDR Secondary, onedb-server-1 pod, and switch it to the HDR primary. The onedb-server-0 pod will not become healthy

and will restart as the HDR secondary.

onmode –d make primary onedb1

If TLS encryption is being used the name of the server is onedb1_ssl. So, the command would be:

onmode –d make primary onedb1_ssl

Automatic Failover

Automatic Failover
When the HDR primary server is non-responsive the connection manager will switch the HDR secondary to become the HDR

primary. When the old primary server is restarted it will restart as the HDR secondary server.

Automatic failure occurs and onedb-server-1 will be made the HDR Primary, and onedb-server-0 restarts as an HDR

secondary.

129

HCL OneDB Containerized Deployment

130

Manual Failover
When the HDR primary server is non-responsive the kubernetes health scripts will fail and the HDR primary server pod will

restart. The pod will be restarted as an HDR primary. If the server comes back to a healthy state, then no failover is required.

If the restart of the HDR primary does not come back to a healthy state then manual intervention is needed. You must login

to the HDR Secondary, onedb-server-1 pod, and switch it to the HDR primary. The onedb-server-0 pod will not become healthy

and will restart as the HDR secondary.

onmode –d make primary onedb1

If TLS encryption is being used the name of the server is onedb1_ssl. So, the command would be:

onmode –d make primary onedb1_ssl

Scale-Out
The OneDB SQL Data Store by default will start an HDR Primary + Secondary HA cluster. OneDB SQL Data Store allows

the scaling of the OneDB Database server and the OneDB Connection manager. The default settings for both the

onedb.serverReplicaCount / onedbcm.cmReplicaCount helm parameters are 2.

Another helm chart parameter, onedb.maxReplicacount, controls the maximum number of servers that can be used. The

default setting for this parameter is 10 and the max supported value is 10. This is an immutable value and once it is set its

value cannot be changed.

The OneDB server pods are as follows:

• onedb-server-0: HDR Primary

• onedb-server-1: HDR Secondary

• onedb-server-[2-9]: HDR RSS

When an HDR secondary or RSS is created, ifxclone is used to clone the new server from the current HDR primary server.

This applies to an initial setup or a scale out scenario.

The maximum number of replicas for the OneDB Connection manager (onedbcm.cmReplicaCount) is

onedb.maxReplicaCount.

Manual Scale-Out
OneDB supports manual scale out for the OneDB server and the OneDB Connection Manager.

For the OneDB Server to scale out the number of servers manually set the his is accomplished by set the helm parameter

onedb.serverReplicaCount.

For the OneDB Connection manager to scale out the number of connection managers manually set the his is accomplished

by set the helm parameter onedbcm.cmReplicaCount.

Manual Scale out of Connection Manager
The onedbcm.cmReplicaCount helm chart parameter can be changed at any time with the helm upgrade command. You can

increase or decrease the number of connection managers in the HA cluster by changing this value.

helm upgrade onedb-v1 –set onedbcm.cmReplicaCount=3 –f myvalues.yaml onedb-product

The pods for the connection manager are onedbcm-0, onedbcm-1, onedbcm-2, and so on.

Automatic Scale-out

The OneDB SQL Data store uses the kubernetes resource Horizontal Pod Autoscaler (HPA) to control how scaling will occur

automatically. For more information on HPA refer to the kubernetes documentation here: (https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale).

Auto-scale is based on CPU usage and this is disabled by default. To enable auto-scaling set the autoscale.enabled helm

chart parameter to true and set autoscale.targetCPUUtilizationPercentage to a percentage value where you want scaling to

occur.

The minimum pods for auto scaling would be the helm chart parameter onedb.serverReplicaCount for the OneDB

Server and onedbcm.cmReplicaCount for the Connection manager. The maximum pods for auto scaling would be the

onedb.maxReplicaCount helm chart parameter.

Important: When enabling auto scaling OneDB Server and Connection Manager resources should be explicitly

configured. See onedb.resources and onedbcm.resources helm chart parameters.

Following table shows the HPA resource in kubernetes:

131

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

HCL OneDB Containerized Deployment

132

Table 5. $ kubectl get hpa Output

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

onedb-c5abcd

-hpa

StatefulSet/on

edb-server

8%/90% 2 10 2 3h34m

onedbcm-c5ab

cd-hpa

StatefulSet/on

edbcm

5%/90% 2 10 2 3h34m

In the above output the onedb-c5abcd-hpa is for the OneDB server and onedbcm-c5abcd-hpa is for the Connection

Manager. The CPU threshold is set to 90% for each and we see minimum pods is set to 2 with maximum set to 10. Currently

there are 2 of each.

Automatic Scale-out

The OneDB SQL Data store uses the kubernetes resource Horizontal Pod Autoscaler (HPA) to control how scaling will occur

automatically. For more information on HPA refer to the kubernetes documentation here: (https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale).

Auto-scale is based on CPU usage and this is disabled by default. To enable auto-scaling set the autoscale.enabled helm

chart parameter to true and set autoscale.targetCPUUtilizationPercentage to a percentage value where you want scaling to

occur.

The minimum pods for auto scaling would be the helm chart parameter onedb.serverReplicaCount for the OneDB

Server and onedbcm.cmReplicaCount for the Connection manager. The maximum pods for auto scaling would be the

onedb.maxReplicaCount helm chart parameter.

Important: When enabling auto scaling OneDB Server and Connection Manager resources should be explicitly

configured. See onedb.resources and onedbcm.resources helm chart parameters.

Following table shows the HPA resource in kubernetes:

Table 6. $ kubectl get hpa Output

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

onedb-c5abcd

-hpa

StatefulSet/on

edb-server

8%/90% 2 10 2 3h34m

onedbcm-c5ab

cd-hpa

StatefulSet/on

edbcm

5%/90% 2 10 2 3h34m

In the above output the onedb-c5abcd-hpa is for the OneDB server and onedbcm-c5abcd-hpa is for the Connection

Manager. The CPU threshold is set to 90% for each and we see minimum pods is set to 2 with maximum set to 10. Currently

there are 2 of each.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

Archive Restore Considerations
When an archive restore is initiated OneDB it will occur on onedb-server-0, pod #0. When a restore occurs OneDb will try to

salvage the logical logs, backup up the current logical log.

If the primary is on onedb-server-1 and the onedb-server-0 pod is the secondary, then no salvaging of logical logs will

happen. Which means the current logical log will not be archived and available for the restore.

To prevent this from occurring it is recommended to have onedb-server-0 be the Primary server in the HA cluster. If you are in

a situation where the HDR primary is on onedb-server-1 you can force a switch over.

Manual Switch Over
If the onedb-server-1 server is the HDR primary and onedb-server-0 server is the HDR secondary you can switch these two

roles when automatic failover is disabled by doing the following. Login to the onedb-server-0 server (current HDR Secondary)

and perform the failover operation by running the following command:

onmode –d make primary onedb0

If TLS is enabled for the OneDB HA cluster use the following command:

onmode –d make primary onedb0_ssl

Automatic Switch Over
If the onedb-server-1 server is the HDR primary and onedb-server-0 server is the HDR secondary you can switch these two

roles when automatic failover is enabled by doing the following.

During a planned downtime login to the onedb-server-1 (current HDR primary) and run the following commands:

onmode –c
Wait for checkpoint to complete on primary & secondary
onmode –ky

After forcing a checkpoint (onmode –c) verify the checkpoint has completed on the primary and secondary servers by

logging in to each and running onstat –m, looking for Checkpoint completed message. After verification of checkpoint, then

run the onmode –ky command.

This will cause the HDR primary on onedb-server-1 to go offline. The onedb-server-0 will automatically failover from HDR

secondary to HDR primary. And when onedb-server-1 comes back up it will restart as the HDR secondary.

Upgrading OneDB helm charts
When upgrading your helm chart, it is always recommended to take a database backup before upgrading the product. The

helm upgrade command is used to upgrade the current release with new configuration. Or, it can be used to upgrade the

current version of the chart to a new helm chart version.

133

HCL OneDB Containerized Deployment

134

OneDB SQL Data Store and the Connection Manager statefulsets support rolling upgrade. The upgrade process will start

from the highest pod ordinal index to the lowest pod ordinal index. For example, onedb-server-1 is updated before onedb-

server-0.

The goal of OneDB’s upgrade process is to have as little interruption as possible. During an upgrade, kubernetes pods are

restarted which will cause a slight interruption in write activity.

If the OneDB Database server does not need to perform a database conversion, then read activity can continue throughout

the upgrade process. If a database conversion has to occur then there will be a slight interruption in read activity as well.

To maintain read activity during the upgrade process, your application must be designed with retry logic in it. When a pod

is taken down so that it can be upgraded your application should retry its connection so it can connect to and use another

server in the cluster.

Upgrading Current release
There may be times when you need to make changes to an existing running release of OneDB in kubernetes. This is

performed using helm upgrade and providing the same installed chart with any new values. Parameter values you can

change are:

• Set ReplicaCount

• Change container image

• Initiate onbar restore

• Change Connection Manager Service Type: Loadbalancer, ClusterIP, NodePort

• Enable/Disable Automatic failover using Connection Manager

• Change Connection Manager SLA policy: Workload, Round Robin

If the initial installation was performed with this:

helm install onedb-v1 -f myvalues.yaml production-onedb

The default installation of the helm chart will install an HA cluster with a primary and secondary OneDB server. If you wanted

to manually scale the HA cluster to a 3rd server (RSS), you can use helm upgrade and specify a new serverReplicaCount

value.

File: newvalues.yaml

onedb-product:
 onedb-sql:
 onedb:
 serverReplicaCount: 3

Issue the helm upgrade with the original and new values overrides.

helm upgrade onedb-v1 -f myvalues.yaml -f newvalues.yaml production-onedb

Upgrading 1.x.x.x to 2.x.x.x
A helm upgrade is not supported from OneDB 1.0.0.0 helm chart to a OneDB 2.x helm chart. There are major differences

between these two helm chart versions that would prevent a helm upgrade.

When upgrading from a helm chart version using OneDB 1.x to 2.x then you must perform a data migration. It is

recommended to use the dbexport.

Note: It is recommended to use the dbexport and dbimport utilities.

Upgrading from 2.0.0.0 version to current version
When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

helm install onedb-v1 -f myvalues.yaml production-onedb-0.3.52

To upgrade to helm chart production-onedb-0.4.12, helm chart version 0.4.12 running OneDB 2.0.1.0, run the following helm

upgrade command.

helm upgrade onedb-v1 -f myvalues.yaml production-onedb-0.4.12

In the above example, the helm chart production-onedb-0.3.52 is used for the OneDB 2.0.0.0 OneDB product. And the helm

upgrade command upgrades the helm chart to production-onedb-0.4.12 which the helm chart running OneDB 2.0.1.0.

Upgrading from 2.0.0.0 version to current version
When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

helm install onedb-v1 -f myvalues.yaml production-onedb-0.3.52

To upgrade to helm chart production-onedb-0.4.12, helm chart version 0.4.12 running OneDB 2.0.1.0, run the following helm

upgrade command.

helm upgrade onedb-v1 -f myvalues.yaml production-onedb-0.4.12

In the above example, the helm chart production-onedb-0.3.52 is used for the OneDB 2.0.0.0 OneDB product. And the helm

upgrade command upgrades the helm chart to production-onedb-0.4.12 which the helm chart running OneDB 2.0.1.0.

135

HCL OneDB Containerized Deployment

136

Troubleshooting OneDB
The following documentation talks about some troubleshooting techniques that you might use with OneDB in a kubernetes

environment.

From the viewing of log files, to enabling a higher level of logging. To disabling the liveness, probe for the OneDB server pod

to prevent kubernetes from automatically restarting the OneDB server pods.

Contact OneDB Support with the diagnostic logs and data mentioned in this section as needed.

Troubleshooting Pods
Each pod that is started by kubernetes goes through a series of steps. Some of the common steps you might see are

PodInitializing, Container Creating, Pending, Init, Running, ImagePullBackoff.

If a pod seems to be stuck in a state for a period, some of the following techniques can be used:

kubectl get pods

NAME READY STATUS RESTARTS AGE
my-nfs-server-provisioner-0 1/1 Running 0 103s
onedb-operator-86d899b5bf-hklq9 0/1 ImagePullBackOff 0 43s
sofy-1-grafana-b7b5f958d-lxcxf 0/2 PodInitializing 0 44s
sofy-1-ksmetrics-6d4677b7d5-zhtmh 1/1 Running 0 44s
sofy-1-odbp-explore-55c9db47c4-nqx8p 0/1 ErrImagePull 0 42s
sofy-1-odbp-mongo-6f6df887df-gn896 0/1 Init:0/1 0 43s
sofy-1-odbp-rest-64f94dfd98-bzj7x 0/1 Init:0/1 0 43s

Troubleshooting ImagePullBackoff, Pending pods
When a pod doesn’t make it to the Init/Running state kubectl describe pod is commonly used to try to gather more

information as to what the problem might be. In the above output we see a few pods in ErrImagePull/ImagePullbackOff.

You can see here that we failed to pull the image. This gives us some direction in trying to diagnose this issue.

Troubleshooting init pods
OneDB uses init containers to perform setup functions before a specific pod is fully functional. When a pod is in the init state

you can run a kubectl logs command to get information about the pod. When running the kubectl logs command on an init-

container you need to know the name of the init-container. This can be obtained from the kubectl describe command.

Once you find the name of the init container, you can run a kubectl logs command. You specify the pod and the name of the

init container in the kubectl logs command.

kubectl logs sofy-1-odbp-mongo-6f6df887df-gn896 –c onedb-mongo-init

Below is a sample output and we can see there is a problem connecting to the OneDB Database server.

Running Main

137

HCL OneDB Containerized Deployment

138

SQL Service Test Unsuccessful. Server not ready
-908 : com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.

Troubleshooting running pods
A pod’s desired state is to get to a running state with a Ready of 1/1. If you see a Ready Status of 0/1 or see several Restarts

for the pod, then you may need to investigate further. The kubectl log command can be used to get more information on

what the container/pod is doing.

Pod onedb-sever-0 hasn’t moved into a running state yet and we want to dig deeper into what is going on with this specific

pod.

kubectl logs onedb-server-0

20:59:00 Peer node onedb1 has version 131077
20:59:00 RSS Server onedb1 - state is now connected
20:59:00 setting version information for onedb1 131077
2022-01-08 20:59:03 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:03 LICENSING: <Information> Processing current Capability
2022-01-08 20:59:13 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:13 LICENSING: <Information> Processing current Capability
20:59:13 HDR TIMEOUT - log buffers being sent to onedb1

20:59:13 Error receiving a buffer from RSS onedb1 - shutting down

20:59:14 RSS Server onedb1 - state is now disconnected
20:59:14 RSS onedb1 deleted
2022-01-08 20:59:23 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:23 LICENSING: <Information> Processing current Capability

Enable/Disable Liveness probe
When doing any type of diagnostic work on a container/pod, it is important that the liveness probe does not take effect and

restart the pod. To prevent this from happening you can disable the liveness probe for the OneDB Database server.

To disable use the following kubectl annotation:

kubectl annotate pod onedb-server-0 livenessprobe=disabled –overwrite=true

Once you are done with your diagnostic work you should re-enable the liveness probe.

To enable, use the following kubectl annotation:

kubectl annotate pod onedb-server-0 livenessprobe=enabled –overwrite=true

Kubernetes events
Another log of events that can be reviewed/monitored is the Kubernetes events. Run the kubectl get events command and

sort or filter this data accordingly.

kubectl get events

Log in to pod
There may be a need to login to a pod or the init container to obtain more diagnostic information than you get with

kubernetes commands. First identify the pod you need to login.

Run the kubectl command to login to the kubernetes pod:

kubectl exec --stdin --tty onedb-server-0 -- bash

Once you’ve logged in to the pod/container, you can move around and view log files as you would on any Linux system.

139

HCL OneDB Containerized Deployment

140

Log in to init container
To login to an init container, you must first find the name of the init container. This is done using the kubectl describe pod

command.

kubectl describe pod onedb-server-1

Once you find the name of the init container, you can run the kubectl exec command and login to the init container.

Once you find the name of the init container you can run the kubectl exec command and login to the init
 container.

Once you’ve logged in to the pod/container, you can move around and view log files as you would on any Linux system.

Custom init container
Creating a custom init container is a more advanced topic for kubernetes users. An init container is designed to run before

starting the main container.

Potential use for custom init container:

• Debug/patch container storage

• Custom container to load data spaces

• Perform any operation on the container/pod prior to starting the container

To use a customer init container, use the following helm parameter override values:

onedb:
 customInitImage: gcr.io/google-containers/busybox:latest
 customInitImageCmd: /bin/customization.sh

If you needed to login to this container, the name of the init container is onedb-custom-init, although we could use the

kubectl describe pod command to determine this.

Charts 0.4.12
This version includes the following enhancements:

• Connection Manager on page 172

• HA Scale out on page 192

• Automatic Failover on page 190

• Automatic Backups on page 183

• Support Multiple PVs for Storage on page 161

• Cloud Native method for Creating Spaces on page 165

• Cloud Native method for configuration/Users on page 166

• Support custom Init Container on page 167

What’s New in this Helm Chart Version
This section includes information about the new, enhanced capabilities added in this version of the helm chart :

• Connection Manager on page 172

• HA Scale out on page 192

• Automatic Failover on page 190

• Automatic Backups on page 183

• Support Multiple PVs for Storage on page 161

• Cloud Native method for Creating Spaces on page 165

• Cloud Native method for configuration/Users on page 166

• Support custom Init Container on page 167

Supported Platforms
The OneDB Helm charts have been tested on the following platforms:

• Google Kubernetes Engine (GKE) (https://cloud.google.com/kubernetes-engine)

• AWS Elastic Kubernetes Service (EKS) (https://aws.amazon.com/eks)

• Azure Kubernetes Service (AKS) (https://azure.microsoft.com/en-us/services/kubernetes-service)

• Redhat OpenShift Container Platform (OCP) (https://www.redhat.com/en/technologies/cloud-computing/openshift/

container-platform)

Architectural Overview
Installing and deploying OneDB in a cloud-native environment is a new way of looking at things. An evolution of how OneDB

is or can be deployed has occurred: starting with on-premises, to in the cloud in Virutal machines, to in the cloud in a highly

scalable Kubernetes environment.

141

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks
https://azure.microsoft.com/en-us/services/kubernetes-service
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform

HCL OneDB Containerized Deployment

142

In the past, you would have acquired a physical machine, installed the OneDB database server on that machine and been

responsible for the maintenance and upgrades on the machine as well as maintenance of the OneDB Database server.

There was then a move to the cloud and the use of Virtual machines in that cloud. Virtual machines made it possible to start

up a machine and run a playbook that would install OneDB and configure accordingly. You might do this in your own cloud or

a public cloud.

Then more recently, there is the move to a highly scaleable Kubernetes environment. This approach uses containerization of

products and pieces of an entire solution. It allows for great flexibility with many benefits. You may use your own Kubernetes

solution or a cloud provided Kubernetes from Google, Amazon or Microsoft for example.

General Terminology
To undestand how OneDB Database server is deployed in a kubernetes environment, it is important that you have a basic

knowledge of certain terms:

• Container on page 142

• Docker on page 142

• Microservices on page 142

• OneDB HA Cluster on page 142

Container

A container image is a lightweight standalone executable package of software that includes everything to run an application

includeing system libraries, tools etc.

Docker

Docker is the leading technology for containizeration. When people think of containers they typcially think of docker.

Although it is not the only container technology.

Microservices

A microservices architecture is a method of designing an overall solution to be broken up into smaller parts instead of

a single monolithic application. Containers make this a natural path of software development as different pieces can be

represented by a different container image.

OneDB HA Cluster

This use of the term cluster refers to the High availability nature of 2 or more OneDB Database servers working together. A 2

nodes OneDB HA cluster will consist of a OneDB HA Primary server and a OneDB HA Secondary server. More servers can be

added into a OneDB HA Cluster, in this context the additional servers would be added as OneDB HA RSS nodes.

Kubernetes Terminology

• Node on page 143

• Pod on page 143

• Cluster (kubernetes) on page 143

• Service on page 143

• Helm chart on page 143

• Operator on page 143

• LoadBalancer on page 143

Node

A node is a virtual machine or phyiscal machine with CPU/RAM resources. This is the hardware component that makes up a

kubernetes cluster. Example nodes are worker nodes and master nodes.

Pod

A pod is the simplest unit that exists within kuberenetes. Typically this is 1 more more containers. It is pods that get

scheduled to run on kubernetes nodes.

Cluster (kubernetes)

Is made up of 1 or more nodes. They provide a resource for a kubernetes solution to be deployed into and managed.

Service

An abstract API object that exposes an application’s network services.

Helm chart

A helm chart is a collection of files that describe a related set of kubernetes resources. A helm chart is typically a group of

yaml files and other associated files that is used to deploy a solution into kubernetes.

Operator

A kubernetes operator is an application specific controller that extends the functionality of the kubernetes API.

LoadBalancer

A kubernetes object that allows you to expose an external IP address to outside the kubernetes cluster.

OneDB Deployment Resources
When deploying a OneDB helm chart a group of resources will be created. The resources created will depend on the specific

OneDB Helm chart that is used.

The OneDB-sql helm chart will deploy the following resources:

• onedb-operator pod

• onedb-server-X pod

143

HCL OneDB Containerized Deployment

144

• onedbcm-X pod

• onedbcm-cm-service

The OneDB-mongo helm chart will deploy the following resources:

• odbp-mongo pod

• odbp-mongo service

• OneDB-sql chart

The OneDB-rest helm chart will deploy the following resources:

• odbp-rest pod

• odbp-rest service

• OneDB-sql chart

The OneDB-explore helm chart will deploy the following resources:

• odbp-explore pod

• odbp-explore service

The OneDB-product helm chart will deploy the following resources:

• OneDB-sql chart

• OneDB-mongo chart

• OneDB-rest chart

• OneDB-explore chart

Pods
onedb-operator

The purpose of the operator pod is to manager the OneDB HA cluster. By default, a OneDB HA Cluster is started with an HDR

primary and secondary server, along with two connection managers.

onedb-server-x

This is the OneDB Database server pod. When deployed, a statefulset is used which will be assigned an ordinal index starting

with 0. So, OneDB HA cluster with a primary secondary will have onedb-server-0 and onedb-server-1.

onedbcm-x

This is the OneDB Connection manager pod. It will be assigned an ordinal index starting with 0. By default, 2 connection

managers are started. onedbcm-0 and onedbcm-1.

odbp-mongo

This is the OneDB Mongo Listener pod. It is started when the OneDB Mongo chart is deployed. It is used to connect to the

OneDB Database server using the Mongo API.

odbp-rest

This is the OneDB REST Listener pod. It is started when the OneDB REST chart is deployed. It is used to connect to the

OneDB Database esrver using RESTFUL services.

odbp-explore

This is the OneDB Explore pod. It will deploy the OneDB Explore administration and monitoring tool providing a web admin

and monitoring GUI. It can be used to administer one or more OneDB Database servers.

Services
odbp-explore

This is the OneDB Explore service that can be used to access the OneDB Explore product.

odbp-mongo

This is the OneDB Mongo service that is used to access the OneDB Database server using the Mongo API.

odbp-rest

This is the OneDB REST service that is used to access the OneDB Database server using RESTFUL services.

onedbcm-cm-service

This is the OneDB Connection Manager service that is used to access the OneDB Database server using the SQLI + DRDA

protocol. EX: JDBC, ODBC.

Prerequisites
To install OneDB into a kubernetes cluster, following prerequisites are needed:

• kubectl

• helm

• ReadWriteMany storage class

Note: To install HCL Sofy Solution into a kubernetes cluster, there may be additional requirements. For more

information on the installation instructions for HCL Sofy, see (https://hclsofy.com/ua/guides#installing-solutions-

step-by-step-instructions)

.

145

https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions
https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions

HCL OneDB Containerized Deployment

146

Kubectl
The kubernetes command line tool, kubectl, is used to run commands and interact with a kubernetes cluster. This is used for

managing and interacting with OneDB in kubernetes.

Helm
The helm tool is used to install OneDB in a kubernetes cluster. Helm is a package manager for Kubernetes and is used to

install a helm chart.

A helm chart is simply a set of kubernetes yaml manifests that are combined into a single package. This provide an easy

method to install a group of kubernetes manifests as a single package.

For installations steps and more information on helm, see: https://helm.sh

RWM Storage
RWM storage is needed to support High availability cluster options with OneDB. Listed are some available options to install

RWM storage, but not limited to these. Following options have been tested and verified to work with OneDB.

Enable one and only one of the following options:

Cloud specific options that can be used for these specific cloud providers are:

• Google FireStore on page 146

• AWS Elastic filesystem on page 147

• Azure on page 147

Cloud generic options that can be installed into an existing kubernetes cluster are:

• nfs-server-provisionser on page 147

• rook-ceph on page 149

• rook-nfs on page 149

Google FileStore Configuration

1. See the Google filestore Instructions (https://cloud.google.com/filestore/docs/quickstart-console).

2. The following OneDB helm chart configuration values need to be set to use the Google filestore:

Parameter Description Value

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.googleFilestore.enable Set to ‘true’ to enable Google Filestore true

https://helm.sh/
https://cloud.google.com/filestore/docs/quickstart-console

nfsserver.googleFilestore.filestoreIP IP address of the Filestore instance ‘’

nfsserver.googleFilestore.filestoreShare Name of the File share of the instance ‘’

AWS Elastic Filesystem Configuration

1. See AWS filesystem Instructions (https://docs.aws.amazon/eks/latest/userguide/efs-csi.html) .

2. The following OneDB helm chart configuration values need to be set to use the AWS Elastic filesystem.

Parameter Description Valu

e

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.awsEFS.enable Set to ‘true’ to enable AWS Elastic

filestore

true

nfsserver.awsEFS.EFSServer IP address of the Filestore instance ‘’

nfsserver.googleFilestore.filestoreShar

e

Name of the File share of the instance ‘’

Azure File share Configuration

1. See Azure File share instructions (https://docs.microsoft.com/en-us/azure/aks/azure-files-volume).

2. Following OneDB helm chart configuration values need to be set to use the Azure File share:

Parameter Description Valu

e

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.azureFS.enable Set to ‘true’ to enable Azure File

share

true

nfsserver.azureFS.secretnam

e

Kubernetes secret to use ‘’

nfsserver.azureFS.shareName Azure file share name ‘’

147

https://docs.aws.amazon/eks/latest/userguide/efs-csi.html
https://docs.microsoft.com/en-us/azure/aks/azure-files-volume

HCL OneDB Containerized Deployment

148

Install and Configure nfs-server-provisioner

1. Add the nfs-server-provisioner helm repo.

helm repo add kvaps https://kvaps.github.io/charts

2. Install the helm chart for the nfs-server-provisioner. Specify the following parameters:

Parameter Description Value

persistence.size Set this to a value of the NFS PV

size

50Gi

persistence.enabled Set to ‘true’ to enable NFS true

persistence.storageClass Set this to ‘standard’ standard

storageClass.create Set to ‘true’ true

storageClass.name Set thos to a unique Name onedb-nfs-<namespace>

storageClass.mountOption

s

{vers=4.1}

• storageClass.name: This is cluster wide so it is recommended to include the namespace in the name to

provide uniqueness.

• storageClass.mountOptions: Onedb has been tested with NFS V4.1

helm install onedb-nfs-server-provisioner kvaps/nfs-server-provisioner \
--version 1.3.1
--set persistence.enabled=true
--set persistence.storageClass="standard”
--set persistence.size=50Gi
--set storageClass.create=true
--set storageClass.name=-onedb-nfs-my-ns
 --set storageClass.mountOptions={vers=4.1}

3. The following OneDB helm chart configuration values need to be set to use the NFS server provisioner.

Parameter Description Value

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.other.enable Set to ‘true’ to enable NFS true

nfsserver.other.storageClas

s

Set this to the storage class of the

NFS

onedb-nfs-<namespace>

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of the nfs

server provisioner

Install and Configure rook-ceph

1. See the rook-ceph Prerequisites: (https://rook.io/docs/rook/v1.7/pre-reqs.html) .

Note: Some environments you may need to provision and use Ubuntu with containerd node pool instead of

the default GKE container-Optimized OS (COS).

.

2. Follow the instructions for rook-ceph: (https://rook.io/docs/rook/v1.7/quickstart.html).

3. Configure a shared file system for rook: (https://rook.io/docs/rook/v1.7/ceph-filesystem.html).

4. Following OneDB helm chart configuration values need to be set to use rook-ceph:

Parameter Description Value

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.other.enable Set to ‘true’ to enable NFS true

nfsserver.other.storageClas

s

Set this to the storage class of the

NFS

onedb-nfs-<namespace>

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of rook-ceph.

Installation of rook-nfs

1. Follow the instructions for rook-nfs (https://github.com/rook/rook/blob/master/Documentation/nfs.md).

2. Before Installing OneDB modify the template/nfs_other_pvc.yaml file in the helm chart and change the accessModes:

value from ReadWriteMany to ReadWriteOnce.

3. After creating the Storage Class, refer to the sc.yaml file for rook-nfs. This will contain the storageclass name.

• Default: rook-nfs-share1.

• The storage name is needed when installing OneDB.

Parameter Description Value

nfsserver.volumeSize Set this to a value of the NFS PV size 50Gi

nfsserver.other.enable Set to ‘true’ to enable NFS true

nfsserver.other.storageClas

s

Set this to the storage class of the

NFS

rook-nfs-share

1

• nfsserver.other.storageClass: This is set to the the storageClass name specified in the creation of rook-nfs.

149

https://rook.io/docs/rook/v1.7/pre-reqs.html
https://rook.io/docs/rook/v1.7/quickstart.html
https://rook.io/docs/rook/v1.7/ceph-filesystem.html
https://github.com/rook/rook/blob/master/Documentation/nfs.md

HCL OneDB Containerized Deployment

150

OneDB Requirements and Recommendations
The OneDB database server is designed to be able to run on small devices like a Raspberry pi up to large Servers with

128 cores. The architecture of OneDB is flexible and allows you to run in these different environments with different

configurations.

It is important to note that these are recommendations and not requirements. As one user may be able to run their workload

on a small device like a Raspberry pi, but another user needs 32 CPUs and 100GB of memory.

When talking about recommendations, we typically refer to CPU, Memory and sometimes disk space.

OneDB Disk/Volume Recommendations
This depends on the amount of data and workload you will have in your OneDB Database server. So every database system

will be different. But if High thoughput is needed then we recommend SSD drives to be used. And for your NFS shred drive,

spinning disks are ok to use.

Below is a priority of spaces to be setup with SSD if possible. This is not required but the more spaces/volumes setup with

SSD drives the better performance can be achieved with the OneDB Database server.

Space/Volume Drive Type

Logical Log Dbspace SSD drive(s)

High Volume space SSD drive(s)

Temp Spaces SSD drive(s)

Physical Log Dbspace SSD drive(s)

Low volume space SSD/Spinning

drive(s)

RWM NFS Spinning drive(s)

The amount of disk space allocated to each of these spaces and volumes is dependent on the size of your data and

workload. It is recommended that the RWM NFS volume be approx 3-5 times the size of the total dbspaces if you plan to use

the automated backups. We retain 3 archives of the OneDB database server.

Note: It is important to note that you can use all spinning disks and if needed you can put all spaces on a single

volume, a separate volume is needed for the RWM NFS. These recommendations are given to provide the best

performance possible for a production system.

OneDB Minimum CPU/Memory Recommendations

For a OneDB solution the following can be used as guidelines for the OneDB Server, the Connection Manager, the Mongo wire

listener, and the REST wire listener. With OneDB Explore, the minimmum recommendation should be plenty.

Resou

rce

Minimmum Recommendation General

Recommendatoin

CPU 1 core 2 cores

Memory 512 MB 8 GB

As with all systems the more resources, CPU and Memory that a system has the better performance can be achieved. If

you find that your workload has a high number of quick connections using the REST or Mongo protocols you may want to

increase resources in that area.

The more CPU that is provided to the OneDB system allows you to configure more CPUvps and the more Memory that is

provided allows you to configure more memory for Buffers and other database operations.

Note: It is possible to run OneDB with less CPU and Memory. These recommendations are given to provide the best

performance possible for a production system.

OneDB Minimum Kubernetes Recommendations
When a OneDB Helm chart is deployed you can specify the minimmum and maximum amount of resources that Kuberentes

will use.

When scheduling a pod on a kubernetes node the pod specification can request minimmum resources required. If no node is

available with those resources the pod will not be scheduled.

Example: If a pod has a resource.request.cpu of 1, kubernetes will attempt to schedule the pod on a node with >= 1 cpu. If

not available, then the pod will not be scheduled.

The following are the current values set in the OneDB Helm Charts.

Pod Resou

rce

Request Limit

onedb CPU .1 CPU 24 CPU

Memory 2GB 32GB

CM CPU .1 CPU 1 CPU

Memory 100 MB 500 MB

Mongo/REST CPU .1 CPu 2.1 CPU

Memory 128MB 1GB

151

HCL OneDB Containerized Deployment

152

Pod Resou

rce

Request Limit

Explore CPU .1 CPU 2 CPU

Memory 64MB 512MB

The OneDB Helm charts are also configured by default to not allow two OneDB server pods to be scheduled on the same

node. See onedb.nodeSelectorRequired configuration parameter.

The OneDB Helm chart is also configureed to not allow two OneDB Connection Manager pods to be scheduled on the same

node. See onedbcm.nodeSelectorRequired configuration parameter.

This does not prevent a Connection manager pod from being scheduled on the same node as a OneDB server pod.

For best performance in a production system it is recommended to configure Affinity along with taints and tolerations to

have full control of where the OneDB pods will be scheduled. This will allow you to control the resources available to the

individual running pod.

Minimum Recommendation:

• 1 node per OneDB server pod

• 2 nodes for all other pods to be schedued on

General Recommendation: For best performance possible in a production system.

• Use affinity, taints and tolerations

• Configure 1 node per OneDB Server pod

• Configure 1 node per CM

• 1 node or Mongo wire listener

• 1 node for REST wire listener

• Configure 1-2 nodes for other pods

Note: It is possible to run a OneDB Helm chart with fewer nodes. These recommendations are given to provide the

best performance possible for a production system.

Overview of Installation
OneDB is deployed into a kubernetes cluster using helm charts. A helm chart is a collection of files that describe a related

set of kubernetes resources. A helm chart is typically a group of yaml files and other associated files that is used to deploy a

solution into kubernetes.

Before installing a helm chart, you need access to the cluster. The Helm CLI is used to perform the install/uninstall and

manage a helm release. Helm is commonly referred to as the package manager for kubernetes. For more information on

helm and the installation instructions see: (https://helm.sh).

https://helm.sh/

The kubectl CLI is a kubernetes command line tool to interact with and manage resources in a kubernetes cluster. You can

use this tool to verify your installation. For more information on kubectl and installation, see: (https://kubernetes.io).

OneDB Helm Charts
There are five helm charts for OneDB. These helm charts are listed below with a description of each:

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB SQL Data Store with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

Differences in Standalone and Solution Factory helm charts

Note: HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through

the Solution Factory (Sofy).

The Solution Factory (Sofy), is an Enterprise Kubernetes Solution catalog. Sofy allows you to pick and choose various

products to create an overall solution. You can choose one of the OneDB services or Products from the catalog and it will be

included in an overall solution with the OneDB helm chart included as a subchart in the Sofy solution. With a Sofy solution

helm chart other charts will be included as subcharts like prometheius and grafana and the Sofy UI and of course any

product chosen in the catalog.

The main difference between a OneDB helm chart that is installed with a Sofy solution and installed on its own are:

1. Other products/subcharts are included in the Sofy chart.

2. Helm chart overrides at a different level.

helm install
Helm install is used to install a helm chart. This command can point to a path of a directory of an unpacked chart, or a

packaged chart. Ex. (chart.tgz).

HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through the Solution

Factory (Sofy).

153

https://kubernetes.io/

HCL OneDB Containerized Deployment

154

helm install [NAME] [CHART] [flags]

Installing an unpacked directory chart:

 helm install onedb1 onedb-sql

Installing a packaged chart (tgz):

helm install onedb1 onedb-sql.tgz

helm overrides
To override default values in the helm chart you can use --set on the command line. Or you can specify a file with a list of

overrides.

Installing with set overrides:

 helm install onedb2 --set hclFlexnetURL=flex-net-xxxxx --set hclFlexnetID=xxxxxxx onedb-sql

Installing with a overrides in a file:

helm install onedb2–f myvalues.yaml onedb-sql

File: myvalues.yaml

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

Verify Installation
After performing a helm install you can use the kubectl tool to verify the installation. The following resources are some of the

items to verify within your kubernetes cluster.

• pods

• services

• deployments

• statefulsets

kubectl get pods

kubectl get services

kubectl get deployments

kubectl get statefulsets

These commands will show the status of each of these resources. For example, the pods need to be in a running state.

If any of these resources are not in a functioning running state you can use kubectl to diagnose. See the kubernetes

documentation for more information on kubectl.

Install a Standalone helm chart
HCL does not currently provide standalone helm charts the only way to get a helm chart for OneDB is through the Solution

Factory (Sofy).

Install a Solution Factory helm chart
When installing OneDB in a Sofy solution, it will be included as a subchart in the helm chart that is created from the Sofy

catalog along with other Solution factory charts like Prometheus, grafana, Sofy console, etc. For more information about

Solution Factory see: (https://hclsofy.com/ua/guides).

Before a Sofy helm chart can be installed, there are required steps to be taken. See the step by step instructions for installing

a Sofy solution: (https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions) .

License Requirements
The OneDB database server requires a license to be used. This is set using hclFlexnetURL and hclFlexnetID values in the helm

chart. Below is a values override file that sets these parameter values. This values to be used for these parameters will be

obtained from HCL.

File: myvalues.yaml

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

A Sofy solution uses a service named anchor. This service is used for license management. The OneDB helm charts use

anchor but don’t need the amount of resources set by default in a Sofy solution helm chart.

You can override the resources used by this anchor service by using the following values override file.

File: anchor.yaml

anchor:
 resources:
 cpu: 250m

Install OneDB SQL Data Store (onedb-sql)
The OneDB SQL Data Store helm chart will install the HCL OneDB database.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

155

https://hclsofy.com/ua/guides
https://hclsofy.com/ua/guides#installing-solutions-step-by-step-instructions

HCL OneDB Containerized Deployment

156

Access to OneDB SQL Data Store is through the native SQLI protocol. HCL OneDB provides drivers for different programming

languages to provide this connectivity. Ex. Java, Python, NodeJS, ODBC.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install sql-v1 -f myvalues.yaml -f anchor.yaml production-onedb-sql

Install OneDB RESTful Data Store (onedb-rest)
The OneDB RESTful Data Store helm chart will install the HCL OneDB database along with the OneDB REST listener.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB RESTful Data store is through the REST API. This allows you to use language of choice that supports

RESTful services.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install rest-v1 -f myvalues.yaml -f anchor.yaml production-onedb-rest

Install OneDB Document Data Store (onedb-mongo)
The OneDB Document Data Store helm chart will install the HCL OneDB database along with the OneDB Mongo Listener.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB Document Data store is through the MongoDB protocol. This allows you to use any language that supports

a MongoDB driver.

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

helm install mongo-v1 -f myvalues.yaml -f anchor.yaml production-onedb-mongo

Install OneDB Explore (onedb-explore)
The OneDB Explore helm chart will install the OneDB Explore web console. The web console is used for visualizing,

monitoring, alerting and administering an HCL OneDB server instances.

HCL OneDB Explore features include:

• Purpose built for ease-of-use, scaling out, and optimizing DevOps needs.

• Provides critical performance management capabilities and monitoring of OneDB data store servers.

• The monitoring system feeds directly into a customizable alerting system so alerts can be immediately sent via

email, Twilio, or PagerDuty.

• User and permission management for restricted access to dashboard of certain servers or group of servers.

The default login credentials for HCL OneDB Explore are:

• Username: admin

• Password: testPassw0rd

To override the admin password use a values override file and provide that at install time.

File: myvalues.yaml

onedb-explore:
 adminPassword: newPassw0rd

helm install expl-v1 -f myvalues.yaml production-onedb-explore

Install OneDB Product (onedb-product)
The OneDB Product helm chart will install the HCL OneDB database. This helm chart will include as subcharts the other

OneDB helm charts:

• OneDB SQL Data Store

• OneDB Mongo Data Store

• OneDB RESTful Data Store

• OneDB Explore

This chart is an all-inclusive chart that includes all the OneDB charts for full functionality.

HCL OneDB is an enterprise grade database for storing and processing the following types of data:

• Relational (Table based)

• Document (Json Based)

157

HCL OneDB Containerized Deployment

158

• Timeseries (Time based)

• Spatial (Coordinate based)

Access to OneDB Product is through:

• The native SQLI protocol. HCL OneDB provides drivers for different programming languages to provide this

connectivity. Ex. Java, Python, NodeJS, ODBC

• The REST API. This allows you to use language of choice that supports RESTful services.

• The MongoDB protocol. This allows you to use any language that supports a MongoDB driver.

OneDB Explore is included as a UI to interact with and administer the OneDB Database server(s).

After all system requirements and prerequisites have been addressed you are ready to install the Sofy helm chart. The

command below is a sample install that uses a file named myvales.yaml to provide any overrides to the helm chart values

and anchor.yaml to set the anchor service’s resources.

Following file overrides multiple parameters and is provided an installation time:

File: myvalues.yaml

hclFlexnetURL: flex-net-xxxxx
hclFlexnetID: xxxxxx

anchor:
 resources:
 cpu: 250m

onedb-product:
 onedb-explore:
 adminPassword: newPassw0rd

helm install prod-v1 -f myvalues.yaml production-onedb-product

Pod Scheduling
As a best practice when deploying OneDB SQL Data store into kubernetes in production isolate the OneDB Database server

pods to a specific set of nodes. Also, make sure no two database server pods are scheduled on the save node.

OneDB Server pod scheduling is controlled with the helm chart parameters:

• onedb.nodeSelectorRequired

• onedb.nodeSelector

• onedb.tolerations

To understand how OneDB handles pod scheduling it is import to understand a few concepts.

• Assigning Pods to Nodes (Affinity / Anti-affinity)

• Taints and Tolerations

For more information on Pod scheduling, see kubernetes https://kubernetes.io/.

Assigning Pods to Nodes (Affinity/ Anti-Affinity)
Node Affinity allows you to constrain which nodes your pods are eligible to be scheduled on based on labels that have been

defined for the nodes. There are two types of node affinity that are used with OneDB.

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

requiredDuringSchedulingIgnoredDuringExecution: This is a hard requirement in that the pod “must” be scheduled on the node

with the defined set of rules.

preferredDuringSchedulingIgnonredDuringExecution: This is a soft requirement in that the pod will prefer or try to schedule on

nodes with the defined rules but it is not guaranteed.

Note: OneDB uses these rules to force a pod to be scheduled on a specific set of nodes or prefer to be scheduled on

a specific set of nodes.

Pod anti-affinity allows you to constrain which nodes your pod is eligible to be scheduled on based on pods that are already

running on the node. As with node affinity OneDB uses two types of pod anti-affinity.

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

requiredDuringSchedulingIgnoredDuringExecution: This is a hard requirement in that the pod “must” be scheduled on the node

with the defined set of rules.

preferredDuringSchedulingIgnonredDuringExecution: This is a soft requirement in that the pod will prefer or try to schedule on

nodes with the defined rules but it is not guaranteed.

Note: OneDB uses these rules to force a OneDB pod to not schedule on nodes already running a OneDB pod or prefer

to not be scheduled on that same node.

Labeling Nodes
Your kubernetes administrator will perform this task. They can label a single node or a group of nodes (node pool) with a

specific designation with a key/value pair. This is needed to use affinity/anti-affinity capabilities with kubernetes.

To label a node the following command is used:

kubectl label nodes <nodename> key=value –overwrite

159

https://kubernetes.io/

HCL OneDB Containerized Deployment

160

The key/value pair that is defined here is arbitrary. It is a key/value pair that would then be used with helm chart parameter

overrides to specify the affinity/anti-affinity.

Example with an arbitrary key/value pair of type=database looks like this:

kubectl label nodes gke-worker4 type=database –overwrite

Configure OneDB Affinity/Anti-Affinity
We have two helm chart parameters that can be set with OneDB SQL Data store. The OneDB SQL Data store uses these helm

chart parameters for both the onedb and onedbcm sections of the helm chart.

onedb:
 nodeSelectorRequired: true
 nodeSelector:
 type: database
. . .
onedbcm:
 nodeSelectorRequired: true
 nodeSelector:
 type: cm

The default values for onedb/onedbcm nodeSelectorRequired is true. When this is set to true the

requiredDuringSchedulingIgnoredDuringExecution is used for Pod anti-affinity.

The effect of this is that, a OneDB Database server will not be scheduled on the same node where another OneDB Database

server pod is running. And a OneDB Connection manager will not be scheduled on the same node where another OneDB

Connection manager pod is running.

When we set the nodeSelector helm chart parameter for either onedb or onedbcm OneDB will use

requiredDuringSchedulingIgnoredDuringExecution and Node affinity is enabled. This will require that all Pods be scheduled

on nodes that have been labeled accordingly.

Example Labeling of Nodes:

kubectl label nodes gke-worker2 type=database –overwrite
kubectl label nodes gke-worker4 type=database –overwrite

kubectl label nodes gke-worker3 type=cm –overwrite
kubectl label nodes gke-worker5 type=cm –overwrite

With the above helm chart values set the OneDB Database server pods must run on a kubernetes nodes that are labled with

type:database, and OneDB Connection manager pods must run on kubernetes nodes that are labeled with type:cm.

OneDB SQL Data store sets up an HA cluster with an HDR primary and HDR secondary. If nodeSelectorRequired is set to true,

then we must have more than 1 node labeled when use nodeSelector. The same applies to the OneDB Connection manager

based on how many replicas are running.

Note: When configuring pod scheduling it is important to have a good understanding of how this works or you may

run into a situation where a pod is not able to be scheduled.

Taints and Toleration
While Node affinity is a property of a pod that attracts them to a set of nodes either as a preference or hard requirement.

Taints are the opposite, in that the allow a node to repel a set of pods. A taint is defined on a pod.

kubectl taint nodes gke-worker2 type=onedb:NoSchedule

This uses a key/value pair in this example we used type=onedb, with the NoSchedule effect. This means that no pod will be

able to schedule onto the node (gke-worker2) unless it has a matching toleration.

You would then need to use the tolerations helm chart parameter override and set the following:

tolerations:
- key: “type”
 operator: “Exists”
 effect: “NoSchedule”

Note: Using a combination of Affinity/Anti-Affinity and taints and tolerations, you can control what nodes OneDB SQL

Data store will be schedule on and dictate that those nodes are only used for OneDB.

OneDB Configuration
There are five helm charts for OneDB.

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

Each chart has a list of configuration options that can be set to specify how the OneDB Helm chart will be installed, setup

and configured.

OneDB SQL Data Store Configuration
To customize the installation and configurations, see the list of configuration parameters available to the OneDB SQL Data

Store.

161

HCL OneDB Containerized Deployment

162

List of OneDB SQL Data Store Configuration Parameters

Parameter Description Value

global.hclImagePul

lSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

hclFlexnetURL Your HCL FlexNet license server URL for your HCL entitlements.

Required when deploying in your own cluster

‘’

hclFlexnetID Your HCL FlexNet license ID fo ryour HCL entitlements. Required when

deploying solution in your own cluster.

‘’

isOpenShift Set to true if using Openshift false

nfsserver.volumeSi

ze

Size of the Volume used for backups and other shared files. 50G

nfsserver.googleFil

estore.enable

Set to true to enable Google Filestore false

nfsserver.googleFil

estore.filestoreIP

IP address of the Filestore instance ‘’

nfsserver.googleFil

estore.filestoreSha

re

Name of the File share on the instance ‘’

nfsserver.awsEFS.

enable

Set to true to enable AWS Elastic filestore false

nfsserver.awsEFS.

EFSServer

DNS name of the file system fs-XXXXX.efs-us-west-

2.amazonaws.com

nfsserver.awsEFS.

EFSPath

NFS Mount path /

nfsserver.azureFS.

enable

Set to true to enable Azure File share false

nfsserver.azureFS.

secretName

Kubernetes secret name to use ‘’

nfsserver.azureFS.

shareName

Azure file share name ‘’

nfsserver.other.ena

ble

Set to true to enable true

nfsserver.other.sto

rageClass

Set this to the storageClass of the NFS nfs

Parameter Description Value

tls.config Set to true to enable TLS communication false

tls.tlskey Base64 value of server private key tlskey:

LS0tLS1CRUdJTiBDRV

JUSUZJQ0FURS ...

tls.tlscert Base64 value of signed server certificate tlscert:

LS0tLS1CRUdJTiBDRV

JUSEDFRQ0FURS ...

tls.tlscacert Base64 value of certificate authority root certificate tlscacert:

LS0tLS1CRUdJTiBDRV

JUSUZJQ0FURS ...

autoscaling.enable

d

Set to true to enable auto scaling. To use auto scaling make sure

to set onedb.serverReplicaCount, onedb.maxReplicaCount and

onedb.resources appropriately.

false

autoscaling.target

CPUUtilizationPerc

entage

Set to the Percentage when autoscaling should occur. 70

onedb.serverReplic

aCount

Set to the number of servers to start for an HA cluster 2

onedb.maxReplica

Count

Set to the max value of servers you would want to configure in the HA

cluster

10

onedb.dbsapwd OneDB Server DBSA (onedbsa) user password onedb4ever

onedb.backupTag Set to unique value in case the backup device is shared with other

OneDB HA Cluster

onedbbackup-myuniqu

etag

onedb.encryptionA

tRest

Set to true to enable Encryption at rest false

onedb.exploreAgen

t

Set to true to start the OneDB Explore Agent on each server false

onedb.dataStorage

Class

Set to the cloud vendor default storage class. Low latency disk I/O

storage is recommended. For GKE “standard” is the default

""

onedb.dataStorage

Size

Set the persistent Volume Size 10gi

onedb.dataStorage

Count

Number of persistent volume’s to provision 2

163

HCL OneDB Containerized Deployment

164

Parameter Description Value

onedb.restoreFrom

Backup

Set to true when a restore from last backup is needed false

onedb.restoreTime

stamp

set to specific point in time to perform a point in time restore. Ex

2021-05-11 11:35:00

‘’

onedb.nodeSelecto

rRequired

Set to true to enforce that no two OneDB Server pods are scheduled on

the same K8s node

true

onedb.nodeSelecto

r

Set to a node label to schedule OneDB server pods on preconfigured set

of K8s nodes. Set your own keyvalue pair for the node selector

‘’

onedb.tolerations Used to assist the K8s schedule {}

onedb.resources Resources like cpu and memory requested from the cluster. {}

onedb.customServ

erEnv

Allows you to set additional environment variables to be used by the

database server.

‘’

onedb.customConf

ig

Allows you to set ONCONFIG parameters to be used by the Database

server.

MULTIPROCESSOR: 1

onedb.customSpac

e

Allows you to create custom Dbspaces in the database server ‘’

onedb.appUsers Allows you to create custom Users in the database server ‘’

onedb.customInitS

QL

Allows you to create a script of SQL statements that is run after server

initialization.

‘’

onedb.customInitI

mage

Allows you to create an Init Container image ‘’

onedb.customInitI

mageCmd

The command to run from the custom Init container ‘’

onedb.groupName Unique name for each cluster if Setting up Enterprise Replication g_cdr1

onedb.groupID Unique ID for each cluster if setting up Enterprise Replication 1

onedbcmReplicaC

ount

Number of Connection Managers to start for the HA cluster 2

onedbcm.serviceT

ype

Set the service type of the connection manager. (ClusterIP,

LoadBalancer or NodePort)

ClusterIP

onedbcm.sla_polic

y

Set the service level agreement of the connection manager.

(ROUNDROBIN, WORKLOAD)

ROUNDROBIN

onedbcm.autofailo

ver

If set to false then autofailover is disabled true

Parameter Description Value

onedbcm.nodeSele

ctorRequired

Set to true to enforce that no two OneDB CM pods are scheduled on the

same K8s node.

true

onedbcm.nodeSele

ctor

Set to a node label to schedule OneDB pods on preconfigured set of K8s

nodes. Set your own keyvalue pair.

‘’

onedbcm.toleratio

ns

Used to assist the K8s schedule {}

onedbcm.resource

s

Resources like cpu and memory, requested from the cluster {}

Customize Server configuration
The ONCONFIG file is used by the database server during initialization to setup the data store server. Use the customConfig

helm chart configuration parameter to specify ONCONFIG parameters. It can be configured as follows. With parameters that

are not unique specify a number after the parameter as seen below with BUFFERPOOL# .

onedb:
 customconfig:
 MULTIPROCESSOR: “1”
 BUFFERPOOL1: “size=8k,buffers=50000,lrus=8,lru_min_dirty=50,lru_max_dirty=60.5”
 BUFFERPOOL2: “size=2k,buffers=200000,lrus=8,lru_min_dirty=50,lru_max_dirty=60.5”
 LOGSIZE: “10000”

Create Initialization SQL script
The helm chart configuration parameter customInitSQL can be used to create an SQL scrpit that will run by the OneDB server

after first initialization. This script can be used to perform needed setup tasks, creation of databases, etc.

onedb:
 customInitSQL: |-
 database sysadmin;
 create database test with log;
 create table t1 (col1 int, col2 int);

Creating custom spaces
The helm chart configuration parameter customSpace can be used to create and setup spaces. Following table details the

options available for the creation of spaces. When defining the customSpace parameter, you must create a well formed json

document.

165

HCL OneDB Containerized Deployment

166

Param

eter

Description Example Value

name The name of the space my_data_dbspace

type The type of space to create. Supported values are:

dbspace: normal dbspace

llog : logical log dbspace

plog: physical log dbspace

sbspace: smart blobspace

tempdbspace: temporary dbspace

tempsbspace: temporary smart blobspace

dbspace

pagesize The size of the space, supported values are 2k,4k,6k,8k,16k 4k

size Size of the space, supported values are GB, MB, KB 10GB

logging Used for smart blobspaces to enable loging

1: enable logging

0: disable logging

1

onedb:
 customSpace: >-
 [
 {“name”:”datadbs”, “type”: “dbspace”, “pagesize”: “4k”, “size”: “4GB” },
 {“name”:”logdbs”, “type”: “llog”, “size”: “2GB” },
 {“name”:”plogdbs”, “type”: “plog”, “size”: “4GB” },
 {“name”:”sbspace1”, “type”: “sbspace”, “size”: “1GB” , “logging”: 1},
 {“name”:”tmpdbspace1”, “type”: “tempdbspace”,”pagesize”: “4k”, “size”: “1GB” },
 {“name”:”tmpsbsp1”, “type”: “tempsbspace”, “size”: “500MB” }
]

Creating custom users
The helm chart configuration parameter appUsers can be used to create additional users. Following table details the options

available for the creation of users. Currently, the only type of user support is an operating system user account. When using

appUsers, you must create a well formed json document.

Param

eter

Description Example

Value

user The name of the user appuser1

password The password of the user passw0rd

group A group name to create for the user. dev

Param

eter

Description Example

Value

uid The user id number to use for the user 1003

gid The group id number to to use for the group 2000

type The type of user to create. Currently only osuser is

supported

osuser

onedb:
 appUsers: >-
 [
 { “user”:”appuser1”, “password”: “passw0rd”, “group”:”dev”,
 “uid”:1003,”gid”:2000,”type”:”osuser” },
 { “user”:”appuser2”, “password”: “passw0rd”, “group”:”dev”,
 “uid”:1003,”gid”:2000,”type”:”osuser” }
]

Setting additional server Environment
The helm chart configuration parameter customServerEnv can be used to set additional server environment variables. This

will be set in the environment script when initialization and starting the OneDB database server.

onedb:
 customServerEnv:
 DB_LOCALE: “en_us.utf8”
 DBTEMP: “/tmp”

Using an Init container
The helm chart configuration parameters customInitImage and customInitImageCmd can be used to create an Init container

to perform setup steps prior to the startup of the OneDB server container image. The customInitimage parameter is used to

specify an image to use and the customInitImageCmd is the command to run inside the image.

The Init container image can be a purposely built image with scripts built in. Or it can be a generic image with specific OS

commands to run.

onedb:
 customInitImage: “gcr.io/<my-images>/busybox-custom:latest”
 customInitImageCmd: “/bin/initSetup.sh”

Scheduling of K8s pods
The helm chart configuration parameter nodeSelector for onedb and onedbcm are used to support Node affinity. It allows

you to select a preconfigured set of K8s nodes to run on.

167

HCL OneDB Containerized Deployment

168

The following example will run the OneDB server on nodes labeled as onedb and the OneDB Connection manager on nodes

labeled as onedbcm.

onedb:
 nodeSelector:
 database: onedb
onedbcm:
 nodeSelector:
 cm: onedbcm

The helm charts have an unconfigured parameter tolerations to allow for full configuration of taints and tolerations for K8s

scheduling of pods. This can be used to specify a node taint, which means no pod can be scheduled on the node unless it

has a matching toleration. Then a OneDB server is labeled with a toleration to allow it to run on the tainted nodes.

kubectl taint nodes node1 tainted4onedb=onedb-only:NoSchedule

onedb:
 tolerations:
 - key: “tainted4onedb”
 operator: “Exists”
 effect: “NoSchedule”

Sample helm override file

When specifying helm chart parameters, you can specify them on the command line. When specifying a number of

parameters it is sometimes more convenient to create a file with the override parameters. The following example shows a

single file that uses customServerEnv, appUsers and customInitSQL in a single file.

FILE: onedb.override.yaml
onedb:
 customServerEnv:
 ONEDB_USER_MANAGEMENT: “true”
 ONEDB_USER: “user1”

 appUsers: >-
 {“user”:”user1”, “password”:”Passw0rd”, “group”:”dba”, “uid”: 1005, “gid”:2001,
 “type”:”osuser”}

 customInitSQL: |-
 create database stores with log;
 create user dbauser with password ‘Passw0rd’ account unlock properties user ‘user1’
 authorization(dbsa);

The above yaml file sets two environment variable that are used in the container Image to enable database users. It then

creates one os user to be used as the operating system user that the created database user will have permissions as.

OneDB REST Data Store Configuration
To customize the installation and configurations see the list of configuration parameters available to the OneDB REST Data

Store.

List of OneDB REST Data Store Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

hclFlexnetURL Your HCL FlexNet license server URL for your HCL entitlements.

Required when deploying in your own cluster

‘’

hclFlexnetID Your HCL FlexNet license ID for your HCL entitlements. Required when

deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file ‘’

externalDBUrl A custom external JDBC style URL if you want to connect to a OneDB

server that is not part of the solution

‘’

databaseuser The user the REST API will use to connect to the OneDB Database

Server

onedbsa

databasePass

word

The password the REST API will use to connect to the OneDB Database

Server

onedb4ever

Custom REST Configuration

Additional configuration can be added to the REST service as follows. Review the product documentation for all available

options for the REST configuration file.

onedb-rest:
 config: |-
 rest.session.timeout 600000
 security.csrf.token.enable: true

OneDB Document Data Store Configuration
To customize the installation and configurations see the list of configuration parameters available to the OneDB Document

Data Store.

169

HCL OneDB Containerized Deployment

170

List of OneDB Document Data Store Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

hclFlexnetURL Your HCL FlexNet license server URL for your HCL entitlements.

Required when deploying in your own cluster

‘’

hclFlexnetID Your HCL FlexNet license ID for your HCL entitlements. Required when

deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file ‘’

externalDBUrl A custom external JDBC style URL if you want to connect to a OneDB

server that is not part of the solution

‘’

mongoUser The mongo username mongo

mongoPasswo

rd

Password for the mongo user mongoPassword

databaseuser The user the MongoDB API will use to connect to the OneDB Database

Server

onedbsa

databasePass

word

The password the MongoDB API will use to connect to the OneDB

Database Server

onedb4ever

Custom Mongo Configuration
Additional configuration can be added to the Document Data Store (Mongo) service as follows. Review the product

documentation for all available options for the Mongo configuration file.

onedb-mongo:
 config: |-
 security.sql.passthrough=true

OneDB Explore Data Configuration
To customize the installation and configurations see the list of configuration parameters available to OneDB Explore Data.

List of OneDB Explore Configuration Parameters

Parameter Description Value

global.hclImag

ePullSecret

Your own secret with your credentials to HCL’s Docker repository.

Required when deploying solution in your own cluster.

‘’

resources Resources like cpu and memory, requested from the cluster requests.cpu: “100m”,

requests.memory: “128mi”

config Setting advanced options in the application’s yaml configuration file ‘’

adminPasswor

d

Initial admin password testPassw0rd

Custom Explore Configuration
Additional configuration can be added to the Explore service as follows. Review the product documentation for all available

options for the Explore configuration file.

onedb-explore:
 config: |-
 key=value

Configuring TLS
Use transport layer security (TLS) to create secure connections from OneDB clients to the OneDB database server. By

default, TLS is disabled. To enable TLS connections, set the tls.tlsconfig helm chart parameter value to true.

The following helm chart parameters also need to be set:

• tlskey: The base64 encoded value of the private key.

• tlscert: The base64 encoded value for the Public signed server certificate.

• tlscacert: The base64 encoded value of the certificate authority root certificate.

Example tls configuration:

tls:
 tlsconfig: true
 tlskey: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0t....
 tlscert: LS0tLS1CRUdJTiBABEFUSUZJQ0FURS0tLS0t...
 tlscacert: LS0tLS1CRUdJTiBDRVJUSUEEFZFURS0tLS0t....

Create TLS Certificates

About this task

You can obtain your own certificates from a certificate authority or you can create your own with the following steps using

openssl:

171

HCL OneDB Containerized Deployment

172

1. Generate root CA private key PEM file:

openssl genrsa -out rootCA.key.pem

2. Create a self signed root CA certificate in PEM file:

openssl req -new -x509 -key rootCA.key.pem -subj "/C=US/ST=Kansas/L=Olathe/O=HCL/OU=OneDB" -days 3650
 -out
 rootCA.cert.pem

3. Generate server private key:

openssl genrsa -out server.key.pem

4. Generate a certificate signing request (CSR) for OneDB Server:

openssl req -new -key server.key.pem -subj
 "/C=US/ST=Kansas/L=Olathe/O=HCL/OU=OneDB/CN=Server/emailAddress=onedb@hcl.com" -out server.req.pem

5. Sign certificate with root CA:

openssl x509 -req -inform PEM -in server.req.pem -set_serial 1 -CA
rootCA.cert.pem -CAkey rootCA.key.pem -days 3650 -extensions usr_cert -outform PEM -out server.cert.pem

6. Convert rootCA.cert.pem to base64 -> tlscacert:

base64 rootCA.cert.pem -w 0 > tlscacert

7. Convert server.cert.pem to base64 -> tlscert:

base64 server.cert.pem -w 0 > tlscert

8. Convert server.key.pem to base64 -> tlskey:

base64 server.key.pem -w 0 > tlskey

Connect from Java client with TLS

About this task

To connect to the OneDB Databaser server with a Java client (JDBC) with TLS you must create a keystore for the client

application to use. You need the root CA certificate and will use this file rootCA.cert.pem to generate the kesytore.

Create the keystore:

keytool –import –file rootCA.cert.pem -keystore ssl.keystore

Example

Example OneDB JDBC URL to connect to a OneDB Database server using TLS:

jdbc:onedb://XX.XXX.XXX.XX.nip.io:10001/sysmaster;user=onedbsa;password=xxxxxxx;ENCRYPT=true;TRUSTSTORE=./ssl.k
eystore;TRUSTSTOREPASSWORD=xxxxxxx;
CERTIFICATEVERIFICATION=false;loginTimeout=0

For more information on connecting JDBC applications with TLS, see HCL OneDB JDBC Driver Guide.

Accessing OneDB

Connecting to the OneDB database server is essential. OneDB allows for connections from Mongo Clients, REST Clients and

Native SQLI clients. Ex. JDBC, ODBC, ESQL/C

Connectivity can occur from inside the cluster or from outside the cluster. By default, connections from outside the cluster

are not enabled.

Connectivity will be different based on the installation. The two basic installations are:

1. Installation of the Standalone Helm Chart of OneDB

2. Installation of a Solution Factory Helm Chart of OneDB

The OneDB Connection Manager is used for Native SQLI Connections to the Database server. There is a Kubernetes service

provided to handle this connectivity.

REST, Mongo and OneDB Explore will each have a Kubernetes service to handle their own connections.

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP 19m

With the OneDB Connection Manager you will see a pattern emerge that will describe what type of connection will occur.

Port Number Description

10XXX Internal (Redirected) Connection

20XXX External (Proxied) Connection

XXXX1 Connection to the HA Primary Server

XXXX2 Connection to the HA Secondary Server

XXXX3 Connection to any server in the HA

Cluster

XXX2X Connection that uses SSL

Example: Port 10021 is an internal Connection (10XXX) to the HA Secondary server (XXXX1) using SSL (XXX2X).

Standalone OneDB Chart
A standalone OneDB helm chart does not include elements of a Solution Factory helm chart. There are mutliple different

Standalone helm charts.

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

173

HCL OneDB Containerized Deployment

174

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

The OneDB helm(s) chart can be configured to only allow connections from within the cluster itself, or they can be configured

to allow for connections from outside the cluster.

To allow for connections from outside the cluster the kubernetes service types should be configured as Loadbalancer, or

an extra piece of software can be used to provide a single point of ingress into the cluster. Some commonly used ingress/

loadbalancer’s are Ambassodor, NGINX.

Setting up Ambassador or NGINX is outside the scope of this documentation, instead we will use a Loadbalancer service

type.

Connecting from Inside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. A kubernetes service is created for the non-SQLI types

as well.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
helm-1-odbp-explore ClusterIP 10.96.220.30 <none> 8080/TCP 20m
helm-1-odbp-mongo ClusterIP 10.96.44.208 <none> 27017/TCP 20m
helm-1-odbp-rest ClusterIP 10.96.90.21 <none> 8080/TCP 20m
onedbcm-cm-service ClusterIP 10.96.159.103 <none> 10000/TCP,20000/TCP 19m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For internal connections it is

recommended to use “Redirected” connections. The following table shows the Internal connection string to use for each

driver type. From within the cluster the .{namespace}.svc.cluster.local may not be needed from the URL below.

Driver URL Example URL

OneDB driver (SQLI-Primary) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10000

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10001

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10002

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Primary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10020

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10021

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any-SSL) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10022

jdbc:onedb://{url}/sysmaster

Mongo combatible driver <Release-Name>-odbp-mongo:27017 mongodb://<release-name>-odbp-mon

go:27017

REST <Release-Name>-odbp-rest:8080 http://<release-name>-odbp-rest:8080

Explore <Release-Name>-odbp-explore:8080 http://<release-name>-odbp-explore:80

80

Connecting from Outside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. A kubernetes service is created for the non-SQLI types

as well.

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
helm-1-odbp-explore LoadBalancer 10.96.220.30 172.19.255.202 8080/TCP 20m
helm-1-odbp-mongo LoadBalancer 10.96.44.208 172.19.255.201 27017/TCP 20m
helm-1-odbp-rest LoadBalancer 10.96.90.21 172.19.255.200 8080/TCP 20m
onedbcm-cm-service LoadBalancer 10.96.159.103 172.19.255.203 10000/TCP,20000/TCP 19m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For external connections you must use

the “Proxied” connections. The following table shows the external connection string to use for each driver type.

Driver URL Example URL

OneDB driver (SQLI-Primary) {LoadBalancer External IP

address}:20000

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary) {LoadBalancer External IP

address}:20001

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any) {LoadBalancer External IP

address}:20002

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Primary-SSL) {LoadBalancer External IP

address}:20020

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary-SSL) {LoadBalancer External IP

address}:20021

jdbc:onedb://{url}/sysmaste

r

175

HCL OneDB Containerized Deployment

176

OneDB driver (SQLI-Any-SSL) {LoadBalancer External IP

address}:20022

jdbc:onedb://{url}/sysmaste

r

Mongo combatible driver {LoadBalancer External IP

address}:27017

mongodb://{url}:27017

REST {LoadBalancer External IP address}:8080 http://{url}:8080

Explore {LoadBalancer External IP address}:8080 http://{url}:8080

Setting LoadBalancer Type
The default setting for each service type is ClusterIP. This will only allow internal connections. The OneDB helm chart service

types of interest are listed below. NOTE: The names of the services may be slightly different when installing onedb-mongo,

onedb-rest, onedb-sql chart.

• onedbcm-cm-service

• <Release.Name>-odbp-explore

• <Release.Name>-odbp-mongo

• <Release.Name>-odbp-rest

Each of these service types can be configured as a LoadBalancer to provide external connectivity.

To set Loadbalancer for the Connection Manager:

onedb-sql:
 onedbcm:
 serviceType: LoadBalancer

To set LoadBalancer for Mongo

onedb-mongo:
 service:
 type: LoadBalancer

To set LoadBalancer for REST

onedb-rest:
 service:
 type: LoadBalancer

To set LoadBalancer for Explore

onedb-explore:
 service:
 type: LoadBalancer

Solution Factory OneDB Chart
A Solution factory OneDB helm chart contains elements of the Solution factory including things like a Console UI, grafana,

prometheus. The OneDB helm chart is included as a subchart of the overall Helm chart. There are multiple different Solution

Factory charts that include different aspects of OneDB.

• OneDB SQL Data Store (onedb-sql): This is the Helm chart that contains the OneDB Database server. It uses a

kubernetes operator to deploy a statefulset in a kubernetes environment.

• OneDB Rest Data Store (onedb-rest): This is a helm chart that deploys the OneDB Database server with the REST

listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Document Data Store (onedb-mongo): This is a helm chart that deploys the OneDB Database server with the

Mongo listener. The OneDB SQL Data Store is a subchart in this chart.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

The Solution Factory OneDB helm(s) chart can be configured to only allow connections from within the cluster itself, or they

can be configured to allow for connections from outside the cluster.

To allow for connections from outside the cluster, a Solution factory OneDB helm chart includes and configures Ambassador.

The ambassador LoadBalancer will handle connectivity into the kubernetes cluster for Mongo, REST and Explore. The OneDB

Connection Manager will handle connections into the kubernetes cluster for Native SQLI clients (ex. JDBC, ODBC, ESQL/C)

By default, OneDB Connection Manager does not allow for external connections.

Connecting from Inside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. The ambassador service is created for the non-SQLI

connections. The ambassador service is setup as a Loadbalancer type where as the OneDB Connection Manager has a

default setting of ClusterIP.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
sofy-1-ambassador LoadBalancer 10.96.224.175 172.19.255.200 80:32653/TCP,44
 68m
sofy-1-odbp-mongo ClusterIP 10.96.183.135 <none> 27017/TCP
 69m
sofy-1-odbp-rest ClusterIP 10.96.173.88 <none> 8080/TCP
 69m
sofy-1-odbp-explore ClusterIP 10.96.66.46 <none> 8080/TCP
 71m
onedbcm-cm-service ClusterIP 10.96.33.166 <none> 10000:30248/TCP
 77m

177

HCL OneDB Containerized Deployment

178

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For internal connections it is

recommended to use “Redirected” connections. The following table shows the Internal connection string to use for each

driver type. From within the cluster the .{namespace}.svc.cluster.local may not be needed from the URL below:

Driver URL Example URL

OneDB driver (SQLI-Primary) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10000

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10001

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10002

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Primary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10020

jdbc:onedb://{url}/sysmaster

OneDB driver

(SQLI-Secondary-SSL)

onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10021

jdbc:onedb://{url}/sysmaster

OneDB driver (SQLI-Any-SSL) onedbcm-cm-service.{namespace}.svc.cluster.l

ocal:10022

jdbc:onedb://{url}/sysmaster

Mongo combatible driver <Release-Name>-odbp-mongo:27017 mongodb://<release-name>-odbp-mon

go:27017

REST <Release-Name>-odbp-rest:8080 http://<release-name>-odbp-rest:8080

Explore <Release-Name>-odbp-explore:8080 http://<release-name>-odbp-explore:80

80

Connecting from Outside the cluster
OneDB Native SQLI connection are accessible through the OneDB Connection Manager. A kubernetes service will be created

with the deployment and that service name is used for connections. The ambassador service is created for the non-SQLI

connections. The ambassador service is setup as a Loadbalancer type where as the OneDB Connection Manager has a

default setting of ClusterIP. To allow external SQLI connectivity you must set the service type to LoadBalancer.

kubectl get services

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
sofy-1-ambassador LoadBalancer 10.96.224.175 172.19.255.200 80:32653/TCP,44 68m
sofy-1-odbp-mongo ClusterIP 10.96.183.135 <none> 27017/TCP 69m
sofy-1-odbp-rest ClusterIP 10.96.173.88 <none> 8080/TCP 69m
sofy-1-odbp-explore ClusterIP 10.96.66.46 <none> 8080/TCP 71m
onedbcm-cm-service LoadBalancer 10.96.33.166 172.19.255.201 10000:30248/TCP 77m

The OneDB Connection manager supports “Redirected” and “Proxied” connections. For external connections you must use

the “Proxied” connections. The following table shows the external connection string to use for each driver type.

Driver URL Example URL

OneDB driver (SQLI-Primary) {LoadBalancer External IP

address}:20000

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary) {LoadBalancer External IP

address}:20001

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any) {LoadBalancer External IP

address}:20002

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Primary-SSL) {LoadBalancer External IP

address}:20020

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Secondary-SSL) {LoadBalancer External IP

address}:20021

jdbc:onedb://{url}/sysmaste

r

OneDB driver (SQLI-Any-SSL) {LoadBalancer External IP

address}:20022

jdbc:onedb://{url}/sysmaste

r

Mongo combatible driver {LoadBalancer External IP

address}:27017

mongodb://{url}:27017

REST {LoadBalancer External IP address}:8080 http://{url}:8080

Explore {LoadBalancer External IP address}:8080 http://{url}:8080

Setting LoadBalancer Type
The default setting for the OneDB Connection Manager service type is ClusterIP. This will only allow internal connections.

To allow for connectivity from outside the cluster you must set the service type for the OneDB Connection Manager to

LoadBalancer.

To set Loadbalancer for the Connection Manager:

onedb-sql:
 onedbcm:
 serviceType: Loadbalancer

Connection credentials
The following table shows the default connection credentials. This can be changed accordingly.

Product/Driver User Password

Explore admin testPassw0rd

REST - -

179

HCL OneDB Containerized Deployment

180

Mongo mongo mongoPasswor

d

SQL Data

Store

onedbsa onedb4ever

The REST connection uses a database connection. You can connect with onedbsa or any other use that was created in the

OneDB SQL Data Store.

To change the onedbsa password for the OneDB SQL Data Store use the following configuration override values. If you

change this password it is important that you make changes to mongo, rest and explore.

onedb-sql:
 onedb:
 dbsapwd: one1dba4ever

If you change the passowrd for OneDB SQL Datastore (onedb-sql), you must tell the mongo,rest and explore charts how to

connect to the OneDB SQL Datastore (onedb-sql). See the following configuration overrides.

onedb-mongo:
 databasePassword: one1dba4ever

onedb-rest:
 databasePassword: one1dba4ever

onedb-explore:
 serverConnection:
 password: one1dba4ever

To change the user and password for OneDB Mongo use the following configuration override values. If you change this

password it is important that you make changes to mongo, rest and explore.

onedb-mongo:
 mongoUser: mymongo
 mongoPassword: mongoPassword

To change the admin password for OneDB Explore. Use the following configuration override values. If you change this

password it is important that you make changes to mongo, rest and explore.

onedb-explore:
 adminPassword: newPassw0rd

Administering OneDB
The following information describes the common tasks that an administrator may perform for a OneDB Database server in a

kubernetes environment.

• Exec into OneDB pod.

For some administration tasks, you may need to login to the OneDB pod and run commands. To do this, you must

have authorization to run kubectl exec.

• Starting and Stopping OneDB.

Starting and stopping the OneDB pod from kubernetes

• Viewing OneDB Log files.

To view the OneDB logs in the different pods.

• Backup and Restore.

To backup and restore the OneDB database server

Exec into OneDB Pod
There may be a need to login to the kuberneres pod to perform administration tasks. First identify the pod you need to login

to.

kubectl get pods |grep onedb
onedb-operator-67f5d6cd9b-wxcg2 1/1 Running 0 42h
onedb-server-0 1/1 Running 0 42h
onedb-server-1 1/1 Running 0 42h
onedbcm-0 1/1 Running 0 42h
onedbcm-1 1/1 Running 0 42h

Run the kubectl command to login to the kubernetes pod:

kubectl exec --stdin --tty onedb-server-0 -- bash

You will be logged in as user “informix” and your environment will be set for the OneDB Database server. Which can be

verified with the onstat - command:

onstat -
HCL OneDB Server Version 2.0.1.0 -- On-Line (Prim)
 -- Up 1 days 18:42:25 -- 793248 Kbytes
2021-12-01 17:37:54

Stop/Start OneDB Database Server
Use one of the following methods to stop and restart the OneDB database server:

1. Delete the kubernetes pod

2. Login to Pod and take the OneDB server offline

Delete Pod

About this task

181

HCL OneDB Containerized Deployment

182

Deleting a pod is a method that can be used to restart the pod. When a pod is deleted or dies, kubernetes will force the pod

to be restarted.

1. Delete the pod of interest.

kubectl delete pod onedb-server-0

2. Monitor the pod that was deleted, as it is restarted. After performing the kubectl delete pod the pod will terminate. As

it restarts, it will go back into the initialization and eventually a Running state.

onedb-server-0 0/1 Terminating 0 42h
onedb-server-0 0/1 Init:0/1 0 1s
onedb-server-0 1/1 Running 0 43s

Login Pod

1. First annotate the pod so kubernetes does not restart the pod while you are performing administration tasks:

kubectl annotate pod onedb-server-0 livenessprobe=disabled --overwrite=true

2. Use the command to take the OneDB Database server offline:

onmode -kuy

3. Perform any adminstration tasks needed with the server offline.

4. Run the command to bring the OneDB Database server back online.

oninit

5. Re-enable the liveness probe:

kubectl annotate pod onedb-server-0 livenessprobe=enabled --overwrite=true

Note: If you do not disable the liveness probe, once you take the OneDB Databaser server offline. The

kubernetes liveness probe will begin to fail. After 3 failures of the liveness probe, kubernetes will restart the

pod on its own.

Viewing log files

About this task

Use one of the following methods to view the OneDB Database server logs:

1. Use kubectl to view the pod logs

kubectl logs onedb-server-0

2. View the log files from inside the pod. The example below shows a tail of the online.log. With this method you can

view any log file associated with the OneDB Database Server.

Exec into the pod
cd $ONEDB_DATA_DIR/logs
tail –f onedb*.logs

3. When a pod starts up it will sometimes use an init container to perform setup work prior to the main pod starting.

kubectl logs onedb-server-0 –c onedb-init

Backup and Restore
The OneDB SQL Datastore supports an HA cluster setup. To do this one of the requirements is that a shared RWM storage is

available for use. When setting up HA with OneDB an archive is taken from the OneDB HA Primary Server and restored to a

OneDB HA Secondary or OneDB HA RSS system.

The shared volume provides all pods access to the archive’s. When deploying a OneDB helm chart one of the initial steps is

to take an archive to be used to setup the Secondary and any RSS nodes.

The default behavior is for a level 0 archive to occur every night at 2:30am. The last three backups are retained and any prior

archives are cleaned up and removed.

A restore should only be needed if both the OneDB HA primary and OneDB HA secondary servers are corrupted. If just one or

ther other is corrupted then a failove scenario can occur to bring the two servers back into sync with one another.

Change Backup Schedule

About this task

Backups are scheduled by the OneDB Scheduler. Cloud Backup scheduler task determines what days and what time the level

0 backups occur.

This can be changed by modifying the Scheduler task. You can modify the archive schedule from the command line or you

can do this through OneDB Explore.

Using Command Line

1. Exec into onedb-server-0 pod.

2. Use dbaccess run an update statement against the sysadmin database.

• update sysadmin:ph_task set …..... where tk_name=”Cloud Backup”;

Using OneDB Explore

1. Login to OneDB Explore.

2. Select onedb-server-0.

183

HCL OneDB Containerized Deployment

184

3. From the Left Panel choose Server Administration -> Task Scheduler.

4. Search for the Cloud Backup Task.

5. Select the Cloud Backup task and Edit accordingly.

In the above example, the archive time is changed to 05:00 and to occur on Monday, Wednesday and Friday.

Restore an archive

About this task

To restore from an archive or a backup:

1. Scale back the server to a single server pod;

a. Set serverReplicaCount helm parameter to 1:

count.yaml

onedb:
 serverReplicaCount: 1

b. Run a helm upgrade:

helm upgrade <release.name> –f count.yaml -f <previous values> onedb/onedb-production

2. Remove PVC’s related to deleted server pods. onedb-server-1 and higher. This should be done by your kubernetes

administrator:

kubectl get pvcs

onedb-onedb-server-1 Bound pvc-bce5170 10Gi RWO standard 68m
onedb-onedb-server-2 Bound pvc-ba34270 10Gi RWO standard 68m

kubectl delete pvc <pvc’s for onedb-server-1 and higher>

3. Set the restoreFromBackup helm parameter and run a helm upgrade to initiate the database restore:

a. Set restoreFromBackup to true:

restore.yaml

onedb:
 restoreFromBackup: true

b. Run the helm upgrade:

helm upgrade <release.name> –f count.yaml -f <previous values> onedb/onedb-production

4. After restore is complete set restoreFromBackup helm parameter back to false and update serverReplicaCount to

appropriate values and run helm upgrade to scale out the HA cluster.

a. Set restoreFromBackup to false and serverReplicaCount to desired value:

after.yaml

onedb:
 restoreFromBackup: false
 serverReplicaCount: 2

b. Run helm upgrade:

helm upgrade <release.name> –f after.yaml -f <previous values> onedb/onedb-production

Disable OneDB archives

About this task

You can disable the OneDB backups at deployment time by providing the following configuration override values:

onedb:
 customConfig:
 LOG_BACKUP_MODE: “NONE”

 customInitSQL: |-
 database sysadmin;
 update sysadmin:ph_task set tk_enable=’f’ where tk_name=”Cloud Backup”;

You can also disable the archives after OneDB helm charts have already been installed. You can do this from the command

line or you can do this through OneDB Explore.

Using Command Line

1. Exec into onedb-server-0 pod.

2. vi $ONEDB_HOME/etc/$ONCONFIG.

3. Change LOG_BACKUP_MODE to NONE.

4. Use dbaccess run an update statement against the sysadmin database.

• update sysadmin:ph_task set tk_enable=’f’ where tk_name=”Cloud Backup”;

185

HCL OneDB Containerized Deployment

186

Using OneDB Explore

1. Login to OneDB Explore.

2. Select onedb-server-0.

3. From the Left Panel choose Server Administration -> Task Scheduler.

4. Search for the Cloud Backup Task.

5. Select the Cloud Backup task and Edit accordingly.

6. Uncheck the Enable Task button and Save.

7. Select Configuration from the Left Panel.

8. Search for the LOG_BACKUP_MODE parameter.

9. Edit this value and change to NONE.

Recover Failing pod
If you are running OneDB as an HA cluster. A primary and secondary and you have a failure of a single pod that doesn’t

recover, you don’t need to perform a restore. Instead you can recover only the failing pod.

To force the pod to be recovered set an annotation to start the recovery:

kubectl annotate pod onedb-server-1 onedb_force_ifxclone=true –overwrite=true

Once the pod has successfully be cloned disable this annotation:

kubectl annotate pod onedb-server-1 onedb_force_ifxclone=false –overwrite=true

Note: This shows a recovery of pod onedb-server-0.

Archive with Kubernetes Solution
If you prefer to do your own backups with a kubernetes solution you can do this. First disable the OneDB backups. And when

performing the non-OneDB backup it is important to flush all Database activity to disk. This can be performed using External

backup and Restore (EBR).

For more information on performing a backup using EBR, see External backup and restore overview.

OneDB Explore
OneDB Explore as a graphical User Interface that can be deployed in the OneDB helm charts. It can be used to monitor and

administer one or more OneDB Database servers.

The OneDB Explore helm chart can be deployed separately or as part of OneDB Product. When deploying the OneDB Explore

helm chart on its own it is left up to the user to configure and setup. If you use the OneDB Explore with a OneDB Product

deployment, then it will be configured and setup automatically for the OneDB HA cluster.

Below are the two OneDB helm charts that OneDB Explore is included with. The default admin user password is

testPassw0rd. For information on changing this default, see Accessing OneDB on page 179.

• OneDB Explore (onedb-explore): This is a Helm chart that contains only the OneDB Explore UI.

• OneDB Product (onedb-product): This is a Helm chart that contains OneDB SQL Data Store, OneDB Rest, OneDB

Document and OneDB Explore all as subcharts.

187

HCL OneDB Containerized Deployment

188

Configuration
This topic explain the specifics of OneDB Explore in a kubernetes environment. For more information on OneDB Explore and

its functionality and capabilities, see OneDB Explore guide.

In the image below, 6 servers have been pre-configured:

A default deployment of OneDB SQL Data Store will create an HA Primary/Secondary Cluster. The deployment will pre-

configure 6 servers with OneDB Explore. If you need more than those configured you can add additional servers. If you want

to remove any unused servers, you can delete them.

Monitoring
By default, the OneDB Explore agent is enabled on each OneDB Database server. In the following figure, you can see that the

first two servers have a green Agent status. This indicates that monitoring is enabled.

To disable the Agent on the OneDB Database server set the configuration override values:

onedb-product:
 onedb:
 exploreAgent: false

High Availability
When deploying the OneDB SQL Data Store helm chart or one of the charts that includes this as a subchart the default

behavior is that you will get an HA cluster with a primary and secondary server. The primary server will be running in onedb-

server-0 pod and the updatable HDR secondary will be running in onedb-server-1 pod. HDR replication is configured to use

NEAR_SYNC replication mode to avoid data loss.

The OneDB database server cluster is deployed using onedb-server statefulset. There will be a second statefulset onedbcm

deployed using two connection manager pods, onedbcm-0 and onedbcm-1.

The connection manager SLA definitions are configured to use ROUNDROBIN policy. This can be changed to WORKLOAD by

setting the onedbcm.sla_policy helm parameter.

Failover
The OneDB SQL Data store HA cluster supports automatic failover and manual failover. The default is set for automatic

failover of the HA cluster. When the HDR primary server becomes non-responsive the HDR secondary needs to take over the

primary responsibilities. This can happen automatically, or it can be configured to require manual intervention.

Auto failover functionality is designated by using the onedbcm.autofailover helm parameter in the OneDB SQL Data Store

helm chart. By default, this value is set to true. If manual failover is preferred this can be set to false.

When failover is performed whether its automatic or manual the roles will toggle between pods onedb-server-0 and onedb-

server-1. When a pod is restarted it will restart the OneDB database server as primary or secondary based on the peer pod

and current state of that OneDB server.

189

HCL OneDB Containerized Deployment

190

Manual Failover

Manual Failover
When the HDR primary server is non-responsive the kubernetes health scripts will fail and the HDR primary server pod will

restart. The pod will be restarted as an HDR primary. If the server comes back to a healthy state, then no failover is required.

If the restart of the HDR primary does not come back to a healthy state then manual intervention is needed. You must login

to the HDR Secondary, onedb-server-1 pod, and switch it to the HDR primary. The onedb-server-0 pod will not become healthy

and will restart as the HDR secondary.

onmode –d make primary onedb1

If TLS encryption is being used the name of the server is onedb1_ssl. So, the command would be:

onmode –d make primary onedb1_ssl

Automatic Failover

Automatic Failover
When the HDR primary server is non-responsive the connection manager will switch the HDR secondary to become the HDR

primary. When the old primary server is restarted it will restart as the HDR secondary server.

Automatic failure occurs and onedb-server-1 will be made the HDR Primary, and onedb-server-0 restarts as an HDR

secondary.

191

HCL OneDB Containerized Deployment

192

Manual Failover
When the HDR primary server is non-responsive the kubernetes health scripts will fail and the HDR primary server pod will

restart. The pod will be restarted as an HDR primary. If the server comes back to a healthy state, then no failover is required.

If the restart of the HDR primary does not come back to a healthy state then manual intervention is needed. You must login

to the HDR Secondary, onedb-server-1 pod, and switch it to the HDR primary. The onedb-server-0 pod will not become healthy

and will restart as the HDR secondary.

onmode –d make primary onedb1

If TLS encryption is being used the name of the server is onedb1_ssl. So, the command would be:

onmode –d make primary onedb1_ssl

Scale-Out
The OneDB SQL Data Store by default will start an HDR Primary + Secondary HA cluster. OneDB SQL Data Store allows

the scaling of the OneDB Database server and the OneDB Connection manager. The default settings for both the

onedb.serverReplicaCount / onedbcm.cmReplicaCount helm parameters are 2.

Another helm chart parameter, onedb.maxReplicacount, controls the maximum number of servers that can be used. The

default setting for this parameter is 10 and the max supported value is 10. This is an immutable value and once it is set its

value cannot be changed.

The OneDB server pods are as follows:

• onedb-server-0: HDR Primary

• onedb-server-1: HDR Secondary

• onedb-server-[2-9]: HDR RSS

When an HDR secondary or RSS is created, ifxclone is used to clone the new server from the current HDR primary server.

This applies to an initial setup or a scale out scenario.

The maximum number of replicas for the OneDB Connection manager (onedbcm.cmReplicaCount) is

onedb.maxReplicaCount.

Manual Scale-Out
OneDB supports manual scale out for the OneDB server and the OneDB Connection Manager.

For the OneDB Server to scale out the number of servers manually set the his is accomplished by set the helm parameter

onedb.serverReplicaCount.

For the OneDB Connection manager to scale out the number of connection managers manually set the his is accomplished

by set the helm parameter onedbcm.cmReplicaCount.

Manual Scale out of Connection Manager
The onedbcm.cmReplicaCount helm chart parameter can be changed at any time with the helm upgrade command. You can

increase or decrease the number of connection managers in the HA cluster by changing this value.

helm upgrade onedb-v1 –set onedbcm.cmReplicaCount=3 –f myvalues.yaml onedb-product

The pods for the connection manager are onedbcm-0, onedbcm-1, onedbcm-2, and so on.

Automatic Scale-out

The OneDB SQL Data store uses the kubernetes resource Horizontal Pod Autoscaler (HPA) to control how scaling will occur

automatically. For more information on HPA refer to the kubernetes documentation here: (https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale).

Auto-scale is based on CPU usage and this is disabled by default. To enable auto-scaling set the autoscale.enabled helm

chart parameter to true and set autoscale.targetCPUUtilizationPercentage to a percentage value where you want scaling to

occur.

The minimum pods for auto scaling would be the helm chart parameter onedb.serverReplicaCount for the OneDB

Server and onedbcm.cmReplicaCount for the Connection manager. The maximum pods for auto scaling would be the

onedb.maxReplicaCount helm chart parameter.

Important: When enabling auto scaling OneDB Server and Connection Manager resources should be explicitly

configured. See onedb.resources and onedbcm.resources helm chart parameters.

Following table shows the HPA resource in kubernetes:

193

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

HCL OneDB Containerized Deployment

194

Table 7. $ kubectl get hpa Output

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

onedb-c5abcd

-hpa

StatefulSet/on

edb-server

8%/90% 2 10 2 3h34m

onedbcm-c5ab

cd-hpa

StatefulSet/on

edbcm

5%/90% 2 10 2 3h34m

In the above output the onedb-c5abcd-hpa is for the OneDB server and onedbcm-c5abcd-hpa is for the Connection

Manager. The CPU threshold is set to 90% for each and we see minimum pods is set to 2 with maximum set to 10. Currently

there are 2 of each.

Automatic Scale-out

The OneDB SQL Data store uses the kubernetes resource Horizontal Pod Autoscaler (HPA) to control how scaling will occur

automatically. For more information on HPA refer to the kubernetes documentation here: (https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale).

Auto-scale is based on CPU usage and this is disabled by default. To enable auto-scaling set the autoscale.enabled helm

chart parameter to true and set autoscale.targetCPUUtilizationPercentage to a percentage value where you want scaling to

occur.

The minimum pods for auto scaling would be the helm chart parameter onedb.serverReplicaCount for the OneDB

Server and onedbcm.cmReplicaCount for the Connection manager. The maximum pods for auto scaling would be the

onedb.maxReplicaCount helm chart parameter.

Important: When enabling auto scaling OneDB Server and Connection Manager resources should be explicitly

configured. See onedb.resources and onedbcm.resources helm chart parameters.

Following table shows the HPA resource in kubernetes:

Table 8. $ kubectl get hpa Output

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

onedb-c5abcd

-hpa

StatefulSet/on

edb-server

8%/90% 2 10 2 3h34m

onedbcm-c5ab

cd-hpa

StatefulSet/on

edbcm

5%/90% 2 10 2 3h34m

In the above output the onedb-c5abcd-hpa is for the OneDB server and onedbcm-c5abcd-hpa is for the Connection

Manager. The CPU threshold is set to 90% for each and we see minimum pods is set to 2 with maximum set to 10. Currently

there are 2 of each.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

Archive Restore Considerations
When an archive restore is initiated OneDB it will occur on onedb-server-0, pod #0. When a restore occurs OneDb will try to

salvage the logical logs, backup up the current logical log.

If the primary is on onedb-server-1 and the onedb-server-0 pod is the secondary, then no salvaging of logical logs will

happen. Which means the current logical log will not be archived and available for the restore.

To prevent this from occurring it is recommended to have onedb-server-0 be the Primary server in the HA cluster. If you are in

a situation where the HDR primary is on onedb-server-1 you can force a switch over.

Manual Switch Over
If the onedb-server-1 server is the HDR primary and onedb-server-0 server is the HDR secondary you can switch these two

roles when automatic failover is disabled by doing the following. Login to the onedb-server-0 server (current HDR Secondary)

and perform the failover operation by running the following command:

onmode –d make primary onedb0

If TLS is enabled for the OneDB HA cluster use the following command:

onmode –d make primary onedb0_ssl

Automatic Switch Over
If the onedb-server-1 server is the HDR primary and onedb-server-0 server is the HDR secondary you can switch these two

roles when automatic failover is enabled by doing the following.

During a planned downtime login to the onedb-server-1 (current HDR primary) and run the following commands:

onmode –c
Wait for checkpoint to complete on primary & secondary
onmode –ky

After forcing a checkpoint (onmode –c) verify the checkpoint has completed on the primary and secondary servers by

logging in to each and running onstat –m, looking for Checkpoint completed message. After verification of checkpoint, then

run the onmode –ky command.

This will cause the HDR primary on onedb-server-1 to go offline. The onedb-server-0 will automatically failover from HDR

secondary to HDR primary. And when onedb-server-1 comes back up it will restart as the HDR secondary.

Upgrading OneDB helm charts
When upgrading your helm chart, it is always recommended to take a database backup before upgrading the product. The

helm upgrade command is used to upgrade the current release with new configuration. Or, it can be used to upgrade the

current version of the chart to a new helm chart version.

195

HCL OneDB Containerized Deployment

196

OneDB SQL Data Store and the Connection Manager statefulsets support rolling upgrade. The upgrade process will start

from the highest pod ordinal index to the lowest pod ordinal index. For example, onedb-server-1 is updated before onedb-

server-0.

The goal of OneDB’s upgrade process is to have as little interruption as possible. During an upgrade, kubernetes pods are

restarted which will cause a slight interruption in write activity.

If the OneDB Database server does not need to perform a database conversion, then read activity can continue throughout

the upgrade process. If a database conversion has to occur then there will be a slight interruption in read activity as well.

To maintain read activity during the upgrade process, your application must be designed with retry logic in it. When a pod

is taken down so that it can be upgraded your application should retry its connection so it can connect to and use another

server in the cluster.

Upgrading Current release
There may be times when you need to make changes to an existing running release of OneDB in kubernetes. This is

performed using helm upgrade and providing the same installed chart with any new values. Parameter values you can

change are:

• Set ReplicaCount

• Change container image

• Initiate onbar restore

• Change Connection Manager Service Type: Loadbalancer, ClusterIP, NodePort

• Enable/Disable Automatic failover using Connection Manager

• Change Connection Manager SLA policy: Workload, Round Robin

If the initial installation was performed with this:

helm install onedb-v1 -f myvalues.yaml production-onedb

The default installation of the helm chart will install an HA cluster with a primary and secondary OneDB server. If you wanted

to manually scale the HA cluster to a 3rd server (RSS), you can use helm upgrade and specify a new serverReplicaCount

value.

File: newvalues.yaml

onedb-product:
 onedb-sql:
 onedb:
 serverReplicaCount: 3

Issue the helm upgrade with the original and new values overrides.

helm upgrade onedb-v1 -f myvalues.yaml -f newvalues.yaml production-onedb

Upgrading 1.x.x.x to 2.x.x.x
A helm upgrade is not supported from OneDB 1.0.0.0 helm chart to a OneDB 2.x helm chart. There are major differences

between these two helm chart versions that would prevent a helm upgrade.

When upgrading from a helm chart version using OneDB 1.x to 2.x then you must perform a data migration. It is

recommended to use the dbexport.

Note: It is recommended to use the dbexport and dbimport utilities.

Upgrading from 2.0.0.0 version to current version
When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

helm install onedb-v1 -f myvalues.yaml production-onedb-0.3.52

To upgrade to helm chart production-onedb-0.4.12, helm chart version 0.4.12 running OneDB 2.0.1.0, run the following helm

upgrade command.

helm upgrade onedb-v1 -f myvalues.yaml production-onedb-0.4.12

In the above example, the helm chart production-onedb-0.3.52 is used for the OneDB 2.0.0.0 OneDB product. And the helm

upgrade command upgrades the helm chart to production-onedb-0.4.12 which the helm chart running OneDB 2.0.1.0.

Upgrading from 2.0.0.0 version to current version
When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

When upgrading to a new helm chart version you can use the helm upgrade command. This will also most likely be

upgrading the version of OneDB database server. For example. Upgrading helm chart version 0.3.52 to 0.4.12 is an upgrade

from OneDB 2.0.0.0 to OneDB 2.0.1.0.

helm install onedb-v1 -f myvalues.yaml production-onedb-0.3.52

To upgrade to helm chart production-onedb-0.4.12, helm chart version 0.4.12 running OneDB 2.0.1.0, run the following helm

upgrade command.

helm upgrade onedb-v1 -f myvalues.yaml production-onedb-0.4.12

In the above example, the helm chart production-onedb-0.3.52 is used for the OneDB 2.0.0.0 OneDB product. And the helm

upgrade command upgrades the helm chart to production-onedb-0.4.12 which the helm chart running OneDB 2.0.1.0.

197

HCL OneDB Containerized Deployment

198

Troubleshooting OneDB
The following documentation talks about some troubleshooting techniques that you might use with OneDB in a kubernetes

environment.

From the viewing of log files, to enabling a higher level of logging. To disabling the liveness, probe for the OneDB server pod

to prevent kubernetes from automatically restarting the OneDB server pods.

Contact OneDB Support with the diagnostic logs and data mentioned in this section as needed.

Troubleshooting Pods
Each pod that is started by kubernetes goes through a series of steps. Some of the common steps you might see are

PodInitializing, Container Creating, Pending, Init, Running, ImagePullBackoff.

If a pod seems to be stuck in a state for a period, some of the following techniques can be used:

kubectl get pods

NAME READY STATUS RESTARTS AGE
my-nfs-server-provisioner-0 1/1 Running 0 103s
onedb-operator-86d899b5bf-hklq9 0/1 ImagePullBackOff 0 43s
sofy-1-grafana-b7b5f958d-lxcxf 0/2 PodInitializing 0 44s
sofy-1-ksmetrics-6d4677b7d5-zhtmh 1/1 Running 0 44s
sofy-1-odbp-explore-55c9db47c4-nqx8p 0/1 ErrImagePull 0 42s
sofy-1-odbp-mongo-6f6df887df-gn896 0/1 Init:0/1 0 43s
sofy-1-odbp-rest-64f94dfd98-bzj7x 0/1 Init:0/1 0 43s

Troubleshooting ImagePullBackoff, Pending pods
When a pod doesn’t make it to the Init/Running state kubectl describe pod is commonly used to try to gather more

information as to what the problem might be. In the above output we see a few pods in ErrImagePull/ImagePullbackOff.

You can see here that we failed to pull the image. This gives us some direction in trying to diagnose this issue.

Troubleshooting init pods
OneDB uses init containers to perform setup functions before a specific pod is fully functional. When a pod is in the init state

you can run a kubectl logs command to get information about the pod. When running the kubectl logs command on an init-

container you need to know the name of the init-container. This can be obtained from the kubectl describe command.

Once you find the name of the init container, you can run a kubectl logs command. You specify the pod and the name of the

init container in the kubectl logs command.

kubectl logs sofy-1-odbp-mongo-6f6df887df-gn896 –c onedb-mongo-init

Below is a sample output and we can see there is a problem connecting to the OneDB Database server.

Running Main

199

HCL OneDB Containerized Deployment

200

SQL Service Test Unsuccessful. Server not ready
-908 : com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.
SQL Service Test Unsuccessful. Server not ready
-908: com.informix.asf.IfxASFException: Attempt to connect to database server (null) failed.

Troubleshooting running pods
A pod’s desired state is to get to a running state with a Ready of 1/1. If you see a Ready Status of 0/1 or see several Restarts

for the pod, then you may need to investigate further. The kubectl log command can be used to get more information on

what the container/pod is doing.

Pod onedb-sever-0 hasn’t moved into a running state yet and we want to dig deeper into what is going on with this specific

pod.

kubectl logs onedb-server-0

20:59:00 Peer node onedb1 has version 131077
20:59:00 RSS Server onedb1 - state is now connected
20:59:00 setting version information for onedb1 131077
2022-01-08 20:59:03 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:03 LICENSING: <Information> Processing current Capability
2022-01-08 20:59:13 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:13 LICENSING: <Information> Processing current Capability
20:59:13 HDR TIMEOUT - log buffers being sent to onedb1

20:59:13 Error receiving a buffer from RSS onedb1 - shutting down

20:59:14 RSS Server onedb1 - state is now disconnected
20:59:14 RSS onedb1 deleted
2022-01-08 20:59:23 LICENSING: <Information> Reacquire licenses: current allocation != expected count
2022-01-08 20:59:23 LICENSING: <Information> Processing current Capability

Enable/Disable Liveness probe
When doing any type of diagnostic work on a container/pod, it is important that the liveness probe does not take effect and

restart the pod. To prevent this from happening you can disable the liveness probe for the OneDB Database server.

To disable use the following kubectl annotation:

kubectl annotate pod onedb-server-0 livenessprobe=disabled –overwrite=true

Once you are done with your diagnostic work you should re-enable the liveness probe.

To enable, use the following kubectl annotation:

kubectl annotate pod onedb-server-0 livenessprobe=enabled –overwrite=true

Kubernetes events
Another log of events that can be reviewed/monitored is the Kubernetes events. Run the kubectl get events command and

sort or filter this data accordingly.

kubectl get events

Log in to pod
There may be a need to login to a pod or the init container to obtain more diagnostic information than you get with

kubernetes commands. First identify the pod you need to login.

Run the kubectl command to login to the kubernetes pod:

kubectl exec --stdin --tty onedb-server-0 -- bash

Once you’ve logged in to the pod/container, you can move around and view log files as you would on any Linux system.

201

HCL OneDB Containerized Deployment

202

Log in to init container
To login to an init container, you must first find the name of the init container. This is done using the kubectl describe pod

command.

kubectl describe pod onedb-server-1

Once you find the name of the init container, you can run the kubectl exec command and login to the init container.

Once you find the name of the init container you can run the kubectl exec command and login to the init
 container.

Once you’ve logged in to the pod/container, you can move around and view log files as you would on any Linux system.

Custom init container
Creating a custom init container is a more advanced topic for kubernetes users. An init container is designed to run before

starting the main container.

Potential use for custom init container:

• Debug/patch container storage

• Custom container to load data spaces

• Perform any operation on the container/pod prior to starting the container

To use a customer init container, use the following helm parameter override values:

onedb:
 customInitImage: gcr.io/google-containers/busybox:latest
 customInitImageCmd: /bin/customization.sh

If you needed to login to this container, the name of the init container is onedb-custom-init, although we could use the

kubectl describe pod command to determine this.

Index
A

Accessing OneDB 38, 107, 172
Administering OneDB 49, 50, 50, 50, 51, 51,
52, 52, 52, 52, 53, 54, 54, 55, 56, 56, 58, 118,
119, 119, 119, 120, 120, 121, 121, 121, 121,
122, 123, 123, 123, 125, 125, 127, 180, 181,
181, 181, 182, 182, 183, 183, 183, 183, 184,
185, 185, 185, 187, 187, 189
Architectural Overview 3, 3, 4, 5, 6, 6, 75, 76,
76, 77, 78, 79, 141, 142, 142, 143, 144, 145
Archive Restore Considerations 65, 133, 195
Archive with Kubernetes Solution 56, 125, 187
Assigning Pods to Nodes (Affinity/ Anti-
Affinity) 22, 93, 159
Automatic Failover 60, 128, 190
Automatic Switch Over 66, 133, 195

B
Backup and Restore 52, 121, 183

C
Change Backup Schedule 52, 52, 52, 121, 121,
121, 183, 183, 183
Charts 1, 3, 3, 3, 4, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10,
11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 17, 18,
18, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24,
25, 25, 30, 31, 31, 32, 32, 32, 33, 33, 34, 34, 35,
36, 36, 36, 36, 37, 37, 38, 38, 39, 40, 41, 42, 42,
43, 44, 45, 45, 46, 46, 47, 49, 50, 50, 50, 51, 51,
52, 52, 52, 52, 53, 54, 54, 55, 56, 56, 56, 57, 58,
58, 59, 59, 60, 62, 63, 64, 65, 65, 65, 66, 66, 67,
68, 68, 68, 69, 70, 70, 70, 71, 72, 73, 73, 73, 73,
74, 75, 75, 76, 76, 77, 78, 79, 79, 79, 79, 80, 80,
80, 81, 81, 82, 83, 84, 84, 84, 85, 86, 87, 87, 87,
88, 88, 89, 89, 89, 89, 90, 90, 91, 91, 92, 93, 93,
94, 94, 95, 95, 96, 99, 100, 100, 101, 101, 101,
102, 102, 103, 103, 104, 105, 105, 105, 106,
106, 106, 107, 107, 108, 109, 110, 111, 112,
112, 113, 114, 114, 115, 116, 116, 118, 119,
119, 119, 120, 120, 121, 121, 121, 121, 122,
123, 123, 123, 125, 125, 125, 126, 126, 127,
127, 127, 128, 130, 131, 132, 133, 133, 133,
133, 134, 134, 135, 135, 136, 136, 136, 137,
138, 139, 139, 139, 139, 140, 141, 141, 142,
142, 143, 144, 145, 145, 145, 146, 146, 146,
147, 147, 147, 149, 149, 150, 150, 150, 151,
152, 153, 153, 153, 154, 154, 154, 155, 155,
155, 156, 156, 157, 157, 158, 159, 159, 160,
160, 161, 161, 165, 165, 165, 166, 167, 167,
167, 168, 168, 169, 169, 170, 170, 171, 171,
171, 172, 172, 173, 174, 175, 176, 176, 177,
178, 179, 179, 180, 181, 181, 181, 182, 182,
183, 183, 183, 183, 184, 185, 185, 185, 187,
187, 187, 188, 188, 189, 189, 189, 190, 192,
193, 194, 195, 195, 195, 195, 196, 196, 197,
197, 198, 198, 198, 199, 200, 201, 201, 201,
201, 202
Command Line 52, 54, 121, 123, 183, 185
Configuration of External CM Service 47, 116
Configure OneDB Affinity/Anti-Affinity 23, 94,
160
Configuring On Disk Encryption for database
server 65, 69
Configuring TLS 37, 37, 38, 106, 106, 107, 171,
171, 172
Connect from Java client with TLS 38, 107,
172

Connecting from Inside the cluster 40, 43,
109, 112, 174, 177
Connecting from Outside the cluster 41, 44,
110, 113, 175, 178
Connection Credentials 45, 114, 179
Connection Manager External Service 46, 115
Connection Manager Purpose of External CM
Service 46, 116
Create Initialization SQL script 31, 100, 165
Create TLS Certificates 37, 106, 171
Creating custom spaces 31, 100, 165
Creating custom users 32, 101, 166
Custom init container 74, 140, 202
Customize Server configuration 30, 99, 165

D
Delete Pod 50, 119, 181
Deploying HCL OneDB using Helm charts 1
Differences in Standalone and Solution
Factory helm charts 17, 87, 153
Disable Archive 55, 123, 185
Disable OneDB archive 54, 123, 185
Disable OneDB archives 54, 123, 185

E
Exec into OneDB Pod 50, 119, 181

F
Failover 59, 127, 189

G
General Terminology 3, 76, 142
Google FileStore Configuration 8, 80, 146

H
HCL OneDB Containerized Deployment 1, 3, 3,
3, 4, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 11, 12, 13, 13,
14, 14, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19,
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 30, 31,
31, 32, 32, 32, 33, 33, 34, 34, 35, 36, 36, 36, 36,
37, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 45,
46, 46, 47, 49, 50, 50, 50, 51, 51, 52, 52, 52, 52,
53, 54, 54, 55, 56, 56, 56, 57, 58, 58, 59, 59, 60,
62, 63, 64, 65, 65, 65, 66, 66, 67, 68, 68, 68, 69,
70, 70, 70, 71, 72, 73, 73, 73, 73, 74, 75, 75, 76,
76, 77, 78, 79, 79, 79, 79, 80, 80, 80, 81, 81, 82,
83, 84, 84, 84, 85, 86, 87, 87, 87, 88, 88, 89, 89,
89, 89, 90, 90, 91, 91, 92, 93, 93, 94, 94, 95, 95,
96, 99, 100, 100, 101, 101, 101, 102, 102, 103,
103, 104, 105, 105, 105, 106, 106, 106, 107,
107, 108, 109, 110, 111, 112, 112, 113, 114,
114, 115, 116, 116, 118, 119, 119, 119, 120,
120, 121, 121, 121, 121, 122, 123, 123, 123,
125, 125, 125, 126, 126, 127, 127, 127, 128,
130, 131, 132, 133, 133, 133, 133, 134, 134,
135, 135, 136, 136, 136, 137, 138, 139, 139,
139, 139, 140, 141, 141, 142, 142, 143, 144,
145, 145, 145, 146, 146, 146, 147, 147, 147,
149, 149, 150, 150, 150, 151, 152, 153, 153,
153, 154, 154, 154, 155, 155, 155, 156, 156,
157, 157, 158, 159, 159, 160, 160, 161, 161,
165, 165, 165, 166, 167, 167, 167, 168, 168,
169, 169, 170, 170, 171, 171, 171, 172, 172,
173, 174, 175, 176, 176, 177, 178, 179, 179,
180, 181, 181, 181, 182, 182, 183, 183, 183,
183, 184, 185, 185, 185, 187, 187, 187, 188,
188, 189, 189, 189, 190, 192, 193, 194, 195,
195, 195, 195, 196, 196, 197, 197, 198, 198,
198, 199, 200, 201, 201, 201, 201, 202

Helm Charts 0.4.16 75
Helm install 17, 88, 153
helm overrides 17, 88, 154
High Availability 59, 59, 60, 62, 63, 64, 65, 65,
66, 127, 127, 128, 130, 131, 132, 133, 133,
133, 189, 189, 190, 192, 193, 194, 195, 195,
195

I
Install a Solution Factory helm chart 18, 89,
155
Install a Standalone helm chart 18, 89, 154
Install OneDB Document Data Store (onedb-
mongo) 20, 91, 156
Install OneDB Explore(onedb-explore) 20, 91,
157
Install OneDB Product (onedb-product) 21, 92,
157
Install OneDB RESTful Data Store (onedb-
rest) 19, 90, 156
Install OneDB SQL Data Store (onedb-sql) 19,
90, 155

K
Kubernetes events 73, 139, 201
Kubernetes Terminology 4, 76, 142

L
Labeling Nodes 23, 94, 159
License Requirements 18, 89, 155
Log in to init container 73, 139, 201
Log in to pod 73, 139, 201
Login Pod 51, 120, 182

M
manual Failover 59, 127, 189
Manual Scaleout 63, 64, 131, 132, 193, 194
Manual Switch Over 65, 133, 195

O
OneDB Configuration 25, 95, 161
OneDB Custom Explore Configuration 36, 105,
171
OneDB Custom Mongo Configuration 36, 105,
170
OneDB Custom REST Configuration 34, 103,
169
OneDB Disk/Volume Recommendations 13,
84, 150
OneDB Explore 52, 55, 56, 121, 123, 125, 183,
185, 187
OneDB Explore Configuration 57, 126, 188
OneDB Explore Data Configuration 36, 105,
170
OneDB Explore Monitoring 58, 126, 188
OneDB Helm Charts 16, 16, 17, 17, 17, 18, 18,
18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 87,
87, 87, 88, 88, 89, 89, 89, 89, 90, 90, 91, 91, 92,
93, 93, 94, 94, 95, 153, 153, 153, 154, 154, 154,
155, 155, 155, 156, 156, 157, 157, 158, 159,
159, 160, 160
OneDB Memory Recommendations 14, 84, 150
OneDB Minimmum Kubernetes
Recommendations 14, 85, 151
OneDB Mongo Data Store Configuration 35,
104, 169
OneDB Product Configuration 36, 106

203

OneDB Requirements and
Recommendations 13, 13, 14, 14, 84, 84, 84,
85, 150, 150, 150, 151
OneDB REST Data Store Configuration 34,
103, 168
OneDB SQL Data Store Configuration 25, 96,
161
Overview of Installation 15, 86, 152

P
Pod Scheduling 22, 93, 158
Prerequisites 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 13,
14, 14, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 84,
84, 85, 145, 145, 146, 146, 147, 147, 147, 149,
149, 150, 150, 150, 151
Previous install 16, 87

R
Recover Failing pod 56, 125, 187
Resources 5, 6, 6, 77, 78, 79, 143, 144, 145
Restore an archive 53, 122, 184
Rollback from 2.0.1.2 version to previous
2.0.x.x version 68

S
Sample helm override file 33, 102, 168
Scaleout 62, 130, 192
Scheduling of K8s pods 33, 102, 167
Set additional server Environment 32, 101, 167
Setting LoadBalancer Type 42, 45, 111, 114,
176, 179
Sofy 43, 112, 177
Solution Factory OneDB Chart 42, 112, 176
Standalone OneDB Chart 39, 108, 173
Stop/Start OneDB Database Server 50, 119,
181
Supported platform 3, 75, 141

T
Taints and Toleration 24, 95, 160
Troubleshooting init Pods 71, 137, 199
Troubleshooting OneDB 70, 136, 198
Troubleshooting Pods 70, 70, 73, 136, 136,
139, 198, 198, 201
Troubleshooting running pods 72, 138, 200

U
Upgrade 1.x.x.x to 2.x.x.x 68, 134, 196
Upgrading Current release 67, 134, 196
Upgrading from 2.0.0.0 version to current
versions 68, 135, 135, 197, 197
Upgrading OneDB helm charts 66, 133, 195
Using an Init container 32, 101, 167

V
Verify Installation 18, 89, 154
Viewing log files 51, 120, 182

204

	HCL OneDB Containerized Deployment
	Contents
	Chapter 1. Deploying HCL OneDB using Helm charts
	What's new in 0.4.27 chart version
	What’s new in 0.4.16 Chart Version
	What’s new in 0.4.12 Chart Version
	Compatibility Matrix
	Charts 0.4.27
	What’s New in this Helm Chart Version
	Supported Platforms
	Architectural Overview
	General Terminology
	Container
	Docker
	Microservices
	OneDB HA Cluster

	Kubernetes Terminology
	Node
	Pod
	Cluster (kubernetes)
	Service
	Helm chart
	Operator
	LoadBalancer

	OneDB Deployment Resources
	Pods
	Services

	Prerequisites
	Kubectl
	Helm
	RWM Storage
	Google FileStore Configuration
	AWS Elastic Filesystem Configuration
	Azure File share Configuration
	Install and Configure nfs-server-provisioner
	Install and Configure rook-ceph
	Installation of rook-nfs

	OneDB Requirements and Recommendations
	OneDB Disk/Volume Recommendations
	OneDB Minimum CPU/Memory Recommendations
	OneDB Minimum Kubernetes Recommendations

	Overview of Installation
	Previous install
	OneDB Helm Charts
	Differences in Standalone and Solution Factory helm charts
	helm install
	helm overrides
	Verify Installation

	Install a Standalone helm chart
	Install a Solution Factory helm chart
	License Requirements
	Install OneDB SQL Data Store (onedb-sql)
	Install OneDB RESTful Data Store (onedb-rest)
	Install OneDB Document Data Store (onedb-mongo)
	Install OneDB Explore (onedb-explore)
	Install OneDB Product (onedb-product)

	Pod Scheduling
	Assigning Pods to Nodes (Affinity/ Anti-Affinity)
	Labeling Nodes
	Configure OneDB Affinity/Anti-Affinity

	Taints and Toleration

	OneDB Configuration
	OneDB SQL Data Store Configuration
	List of OneDB SQL Data Store Configuration Parameters
	Customize Server configuration
	Create Initialization SQL script
	Creating custom spaces
	Creating custom users
	Setting additional server Environment
	Using an Init container
	Scheduling of K8s pods
	Sample helm override file

	OneDB REST Data Store Configuration
	List of OneDB REST Data Store Configuration Parameters
	Custom REST Configuration

	OneDB Document Data Store Configuration
	List of OneDB Document Data Store Configuration Parameters
	Custom Mongo Configuration

	OneDB Explore Data Configuration
	List of OneDB Explore Configuration Parameters
	Custom Explore Configuration

	OneDB Product Configuration

	Configuring TLS
	Create TLS Certificates
	Connect from Java client with TLS

	Accessing OneDB
	Standalone OneDB Chart
	Connecting from Inside the cluster
	Connecting from Outside the cluster
	Setting LoadBalancer Type

	Solution Factory OneDB Chart
	Connecting from Inside the cluster
	Connecting from Outside the cluster
	Setting LoadBalancer Type

	Connection credentials
	OneDB Connection Manager External Service
	Purpose of External CM Service
	Configuration of External CM Service
	Example Setup of External CM Service (LoadBalancer)
	Example Setup of External CM Service (NodePort)

	Administering OneDB
	Exec into OneDB Pod
	Stop/Start OneDB Database Server
	Delete Pod
	Login Pod

	Viewing log files
	Backup and Restore
	Backup Schedule
	Change Backup Schedule
	Using Command Line
	Using OneDB Explore

	Restore an archive
	Disable OneDB archives
	Using Command Line
	Using OneDB Explore

	Recover Failing pod
	Archive with Kubernetes Solution

	OneDB Explore
	Configuration
	Monitoring

	High Availability
	Failover
	Manual Failover
	Manual Failover

	Automatic Failover
	Automatic Failover
	Manual Failover

	Scale-Out
	Manual Scale-Out
	Manual Scale out of Connection Manager
	Automatic Scale-out

	Automatic Scale-out

	Archive Restore Considerations
	Manual Switch Over
	Configuring On Disk Encryption for database server
	Automatic Switch Over

	Upgrading OneDB helm charts
	Upgrading Current release
	Upgrading 1.x.x.x to 2.x.x.x
	Upgrading from 2.0.0.0 version to current version
	Rollback from 2.0.1.2 version to previous 2.0.x.x version

	Configuring On Disk Encryption for database server
	Troubleshooting OneDB
	Troubleshooting Pods
	Troubleshooting ImagePullBackoff, Pending pods
	Troubleshooting init pods
	Troubleshooting running pods

	Enable/Disable Liveness probe
	Kubernetes events
	Log in to pod
	Log in to init container
	Custom init container

	Charts 0.4.16
	What’s New in this Helm Chart Version
	Supported Platforms
	Architectural Overview
	General Terminology
	Container
	Docker
	Microservices
	OneDB HA Cluster

	Kubernetes Terminology
	Node
	Pod
	Cluster (kubernetes)
	Service
	Helm chart
	Operator
	LoadBalancer

	OneDB Deployment Resources
	Pods
	Services

	Prerequisites
	Kubectl
	Helm
	RWM Storage
	Google FileStore Configuration
	AWS Elastic Filesystem Configuration
	Azure File share Configuration
	Install and Configure nfs-server-provisioner
	Install and Configure rook-ceph
	Installation of rook-nfs

	OneDB Requirements and Recommendations
	OneDB Disk/Volume Recommendations
	OneDB Minimum CPU/Memory Recommendations
	OneDB Minimum Kubernetes Recommendations

	Overview of Installation
	Previous install
	OneDB Helm Charts
	Differences in Standalone and Solution Factory helm charts
	helm install
	helm overrides
	Verify Installation

	Install a Standalone helm chart
	Install a Solution Factory helm chart
	License Requirements
	Install OneDB SQL Data Store (onedb-sql)
	Install OneDB RESTful Data Store (onedb-rest)
	Install OneDB Document Data Store (onedb-mongo)
	Install OneDB Explore (onedb-explore)
	Install OneDB Product (onedb-product)

	Pod Scheduling
	Assigning Pods to Nodes (Affinity/ Anti-Affinity)
	Labeling Nodes
	Configure OneDB Affinity/Anti-Affinity

	Taints and Toleration

	OneDB Configuration
	OneDB SQL Data Store Configuration
	List of OneDB SQL Data Store Configuration Parameters
	Customize Server configuration
	Create Initialization SQL script
	Creating custom spaces
	Creating custom users
	Setting additional server Environment
	Using an Init container
	Scheduling of K8s pods
	Sample helm override file

	OneDB REST Data Store Configuration
	List of OneDB REST Data Store Configuration Parameters
	Custom REST Configuration

	OneDB Document Data Store Configuration
	List of OneDB Document Data Store Configuration Parameters
	Custom Mongo Configuration

	OneDB Explore Data Configuration
	List of OneDB Explore Configuration Parameters
	Custom Explore Configuration

	OneDB Product Configuration

	Configuring TLS
	Create TLS Certificates
	Connect from Java client with TLS

	Accessing OneDB
	Standalone OneDB Chart
	Connecting from Inside the cluster
	Connecting from Outside the cluster
	Setting LoadBalancer Type

	Solution Factory OneDB Chart
	Connecting from Inside the cluster
	Connecting from Outside the cluster
	Setting LoadBalancer Type

	Connection credentials
	OneDB Connection Manager External Service
	Purpose of External CM Service
	Configuration of External CM Service
	Example Setup of External CM Service (Load Balancer)
	Example Setup of External CM Service (NodePort)

	Administering OneDB
	Exec into OneDB Pod
	Stop/Start OneDB Database Server
	Delete Pod
	Login Pod

	Viewing log files
	Backup and Restore
	Change Backup Schedule
	Using Command Line
	Using OneDB Explore

	Restore an archive
	Disable OneDB archives
	Using Command Line
	Using OneDB Explore

	Recover Failing pod
	Archive with Kubernetes Solution

	OneDB Explore
	Configuration
	Monitoring

	High Availability
	Failover
	Manual Failover
	Manual Failover

	Automatic Failover
	Automatic Failover
	Manual Failover

	Scale-Out
	Manual Scale-Out
	Manual Scale out of Connection Manager
	Automatic Scale-out

	Automatic Scale-out

	Archive Restore Considerations
	Manual Switch Over
	Automatic Switch Over

	Upgrading OneDB helm charts
	Upgrading Current release
	Upgrading 1.x.x.x to 2.x.x.x
	Upgrading from 2.0.0.0 version to current version

	Upgrading from 2.0.0.0 version to current version
	Troubleshooting OneDB
	Troubleshooting Pods
	Troubleshooting ImagePullBackoff, Pending pods
	Troubleshooting init pods
	Troubleshooting running pods

	Enable/Disable Liveness probe
	Kubernetes events
	Log in to pod
	Log in to init container
	Custom init container

	Charts 0.4.12
	What’s New in this Helm Chart Version
	Supported Platforms
	Architectural Overview
	General Terminology
	Container
	Docker
	Microservices
	OneDB HA Cluster

	Kubernetes Terminology
	Node
	Pod
	Cluster (kubernetes)
	Service
	Helm chart
	Operator
	LoadBalancer

	OneDB Deployment Resources
	Pods
	Services

	Prerequisites
	Kubectl
	Helm
	RWM Storage
	Google FileStore Configuration
	AWS Elastic Filesystem Configuration
	Azure File share Configuration
	Install and Configure nfs-server-provisioner
	Install and Configure rook-ceph
	Installation of rook-nfs

	OneDB Requirements and Recommendations
	OneDB Disk/Volume Recommendations
	OneDB Minimum CPU/Memory Recommendations
	OneDB Minimum Kubernetes Recommendations

	Overview of Installation
	OneDB Helm Charts
	Differences in Standalone and Solution Factory helm charts
	helm install
	helm overrides
	Verify Installation

	Install a Standalone helm chart
	Install a Solution Factory helm chart
	License Requirements
	Install OneDB SQL Data Store (onedb-sql)
	Install OneDB RESTful Data Store (onedb-rest)
	Install OneDB Document Data Store (onedb-mongo)
	Install OneDB Explore (onedb-explore)
	Install OneDB Product (onedb-product)

	Pod Scheduling
	Assigning Pods to Nodes (Affinity/ Anti-Affinity)
	Labeling Nodes
	Configure OneDB Affinity/Anti-Affinity

	Taints and Toleration

	OneDB Configuration
	OneDB SQL Data Store Configuration
	List of OneDB SQL Data Store Configuration Parameters
	Customize Server configuration
	Create Initialization SQL script
	Creating custom spaces
	Creating custom users
	Setting additional server Environment
	Using an Init container
	Scheduling of K8s pods
	Sample helm override file

	OneDB REST Data Store Configuration
	List of OneDB REST Data Store Configuration Parameters
	Custom REST Configuration

	OneDB Document Data Store Configuration
	List of OneDB Document Data Store Configuration Parameters
	Custom Mongo Configuration

	OneDB Explore Data Configuration
	List of OneDB Explore Configuration Parameters
	Custom Explore Configuration

	Configuring TLS
	Create TLS Certificates
	Connect from Java client with TLS

	Accessing OneDB
	Standalone OneDB Chart
	Connecting from Inside the cluster
	Connecting from Outside the cluster
	Setting LoadBalancer Type

	Solution Factory OneDB Chart
	Connecting from Inside the cluster
	Connecting from Outside the cluster
	Setting LoadBalancer Type

	Connection credentials

	Administering OneDB
	Exec into OneDB Pod
	Stop/Start OneDB Database Server
	Delete Pod
	Login Pod

	Viewing log files
	Backup and Restore
	Change Backup Schedule
	Using Command Line
	Using OneDB Explore

	Restore an archive
	Disable OneDB archives
	Using Command Line
	Using OneDB Explore

	Recover Failing pod
	Archive with Kubernetes Solution

	OneDB Explore
	Configuration
	Monitoring

	High Availability
	Failover
	Manual Failover
	Manual Failover

	Automatic Failover
	Automatic Failover
	Manual Failover

	Scale-Out
	Manual Scale-Out
	Manual Scale out of Connection Manager
	Automatic Scale-out

	Automatic Scale-out

	Archive Restore Considerations
	Manual Switch Over
	Automatic Switch Over

	Upgrading OneDB helm charts
	Upgrading Current release
	Upgrading 1.x.x.x to 2.x.x.x
	Upgrading from 2.0.0.0 version to current version

	Upgrading from 2.0.0.0 version to current version
	Troubleshooting OneDB
	Troubleshooting Pods
	Troubleshooting ImagePullBackoff, Pending pods
	Troubleshooting init pods
	Troubleshooting running pods

	Enable/Disable Liveness probe
	Kubernetes events
	Log in to pod
	Log in to init container
	Custom init container

	Index

