
HCL OneDB 2.0.1

JSON compatibility

ii

Contents
Chapter 1. JSON compatibility..3

About the HCL OneDB™ JSON compatibility..................3
Requirements for JSON compatibility.....................5
Support for dots in field names...............................6
Manipulate BSON data with SQL statements......... 7

Wire listener..8
Configuring the wire listener for the first time........ 9
The wire listener configuration file........................10
Wire listener command line options..................... 39
User authentication with the wire listener............ 44
Encryption for wire listener communications.......47
High availability support in the wire listener......... 48

JSON data sharding...49
Preparing shard servers...49
Creating a shard cluster with MongoDB
commands.. 50
Shard-cluster definitions for distributing data...... 51
Shard cluster management................................... 55

MongoDB API...60
Getting Started with HCL OneDB™'s MongoDB
Solution... 61
MongoDB to HCL OneDB™ term mapping............ 64
Language drivers..65
Command utilities and tools................................. 65
Collection methods.. 66
Index creation... 67
Database commands...70
HCL OneDB™ JSON commands............................ 79
Running HCL OneDB™ queries through the
MongoDB API... 88
Operators...92
Change Streams...100

Manage time series through the wire listener............101
Creating a time series through the wire
listener...101
Example queries of time series data by using the
wire listener.. 109
Aggregate or slice time series data.................... 111

Troubleshooting HCL OneDB™ JSON
compatibility...118

Index...120

Chapter 1. JSON compatibility
Applications that rely on JSON data can interact with the relational and non-relational data that is stored in HCL OneDB™

databases.

The HCL OneDB™ wire listener provides JSON access to HCL OneDB™ through its MongoDB API compatibility, its REST API,

and its MQTT protocol, all of which allow application developers to write applications accessing HCL OneDB™ data from any

of those paradigms.

In addition to the wire listener providing an API compatibility layer for MongoDB, REST, and MQTT, the HCL OneDB™ database

server also provides built-in JSON and BSON (binary JSON) data types which can also be accessed directly through SQL.

About the HCL OneDB™ JSON compatibility
You can access and combine relational and JSON data into a single application by using the HCL OneDB™ JSON

compatibility features.

Applications that rely on JSON data can interact with the relational and non-relational data that is stored in HCL OneDB™

databases by using the wire listener or the REST API. The HCL OneDB™ database server also provides built-in JSON and

BSON (binary JSON) data types.

The JSON document format provides a way to transfer object information in a way that is language neutral, similar to XML.

Language-neutral data transmission is a requirement for working in a web application environment, where data comes

from various sources and software is written in various languages. With HCL OneDB™, you can choose which parts of your

application data are better suited to unstructured, non-relational storage, and which parts are better suited in a traditional

relational framework.

You have the following options for accessing relational tables, including time series tables, and JSON collections:

SQL API

You can insert, update, and query data relational tables through the SQL language and standard ODBC,

JDBC, .NET, OData, and other clients.

You can access JSON collections through direct SQL access and the JDBC driver. You can use the SQL BSON

processing functions to convert JSON collections to relational data types for use with ODBC, .NET, OData, and

other clients.

For more information about accessing JSON data through SQL statements, see BSON and JSON built-in

opaque data types and Manipulate BSON data with SQL statements on page 7.

MongoDB API

You can insert, update, and query data in relational tables and JSON collections through MongoDB APIs for

Java™, JavaScript™, C++, C#, Python, and other clients.

For more information, see MongoDB API on page 60.

3

JSON compatibility

4

REST API

You can insert, update, and query data relational tables and JSON collections through the driverless REST API.

You can run command documents that include MongoDB API commands or SQL queries. You can use the

REST API to load time series data from sensor devices.

For more information, see the HCL OneDB REST API Guide.

You can enable dynamic scaling and high-availability for data-intensive applications by taking the following steps:

• Define a sharded cluster to easily add or remove servers as your requirements change.

• Use shard keys to distribute subsets of data across multiple servers in a sharded cluster.

• Query servers in a sharded cluster and return the consolidated results to the client application.

• Use secondary servers (similar to subordinates in MongoDB) in the sharded cluster to maximize availability and

throughput. Secondary servers also have update capability.

You can choose to authenticate users through the wire listener or in the database server.

The following illustration shows the architecture of the wire listener and the database server.

Chapter 1. JSON compatibility

Requirements for JSON compatibility
HCL OneDB™ JSON compatibility has specific software dependencies and database server requirements.

5

JSON compatibility

6

Java requirements

If you are using the wire listener for MongoDB access to your HCL OneDB™ data, you must use a supported Java™ runtime

environment. Java version 1.8 is recommended.

MongoDB version

Informix JSON compatibility is based on MongoDB version 4.0 by default. You can configure the wire listener to use a

different MongoDB API compatibility version by setting the mongo.api.version on page 23 parameter in the wire listener

configuration file.

Database server requirements

JSON and BSON data is stored in sbspaces. You can specify the sbspace for JSON and BSON storage in the PUT clause of

the INSERT statement when doing direct SQL access. However, you must set a default sbspace with the SBSPACENAME

configuration parameter. When you insert JSON or BSON data that exceeds 4 K in size, the data is temporarily saved in the

default sbspace for processing before being saved in the sbspace that you specified.

Support for dots in field names
Unlike MongoDB, which does not allow dots, (.), in JSON or BSON field names, HCL OneDB™ conforms to the JSON

standard and allows dots. For example: {"user.fn" : "Jake"}. However, you cannot run a query or an operation directly on a field

that has a dot in its name. In queries, a dot in between field names indicates a hierarchy.

Here the rules of using field names with dots in them with HCL OneDB™:

• You can insert a document that has a field name with a dot in it. You do not get an error.

• You cannot use a field name with a dot in it in a query or operation. HCL OneDB™ ignores the field. The query does not

return the matching document. The operation does not affect the value of the field.

• You can return a document that includes a field name with a dot in it by querying on a field name in the same

document that does not have a dot in it.

Allowing dots in field names is useful when you do not have control over the field names because your data comes from

external sources, for example, the Google API. You still want to store those documents in your database, even though some

fields might have dots in their names.

The following examples to illustrate how dots in field names work in HCL OneDB™. The table name is tab1 and the column

that contains JSON data is named data.

Suppose that you have the following document:

 {user : {fn : "Bob", ln : "Smith"}, "user.fn" : "Jake"}

You run the following statement to update a field:

SELECT data::json FROM tab1 WHERE BSON_UPDATE(data, '$set : {"user.fn" :
 "John:}}');

The following document is returned:

Chapter 1. JSON compatibility

{user : {fn : "John", ln : "Smith"}, "user.fn" : "Jake"}

The value of the fn field that is in a subdocument to the user field is updated. The value of the user.fn field is not updated, but

the value is returned. You cannot update the value of a field with a dot in its name, but you can retrieve the value.

Suppose that you have the following document:

{"user.firstname" : "Jake"}

You run this query to return the value of the user.firstname field:

SELECT data::json FROM tab1 WHERE BSON_KEYS_EXIST(data,
 "user.firstname");

No documents are returned.

If you have documents where all the fields have dots in their names, you must run a query to return all documents in the

database to see them: for example:

SELECT data::json FROM tab1;

Manipulate BSON data with SQL statements
As an alternative to using the MongoDB API, you can use HCL OneDB™ SQL to manipulate BSON data. However, if you plan

to query JSON and BSON data through the wire listener, you must create your database objects, such as collections and

indexes, through the wire listener. You can use SQL statements to query JSON and BSON data whether you created your

database objects through the wire listener or with SQL statements.

You might have an existing application on relational tables that uses SQL to access the data, but you want to add BSON data

to your database. You can create a table with a BSON column, insert the data, and manipulate the data with SQL statements.

BSON documents that you insert through SQL statements or HCL OneDB™ utilities do not contain generated ObjectId field-

value pairs or other MongoDB metadata.

Alternatively, you might use a MongoDB client for daily data processing, but need the querying capabilities of SQL for data

analysis. For example, you can use SQL statements to join tables that have BSON columns with other tables based on BSON

field values. You can create views that have columns of BSON field values. You can run warehouse queries on BSON data

with . If you have time series data, you can use the corresponding specialized SQL routines to analyze the data.

You can use BSON processing functions to manipulate BSON data in SQL statements. The BSON value functions convert

BSON field values to standard SQL data types, such as INTEGER and LVARCHAR. The BSON_GET function retrieves field-

value pairs and the BSON_UPDATE function manipulates field-value pairs. You can convert all or part of a relational table to a

BSON document with the genBSON function.

Example: Using SQL to query a collection

In the following example, a JSON collection table that is named people is created with name and age fields that are inserted

by using the interactive JavaScript™ shell interface to MongoDB:

db.createCollection("people");
db.people.insert({"name":"Anne","age":31});

7

JSON compatibility

8

db.people.insert({"name":"Bob","age":39});
db.people.insert({"name":"Charlie","age":29});

For SQL statements, the table name is people and the BSON column name is data. When you create a collection through a

MongoDB API command, the name of the BSON column is always set to data.

The following statement selects the name and age fields with dot notation and displays the results in a readable format by

casting the results to JSON:

> SELECT data.name::JSON, data.age::JSON FROM people;

(expression) {"name":"Anne"}
(expression) {"age":31}

(expression) {"name":"Bob"}
(expression) {"age":39}

(expression) {"name":"Charlie"}
(expression) {"age":29}

3 row(s) retrieved.

Wire listener
The wire listener is a mid-tier gateway server that enables communication between MongoDB clients and the HCL OneDB™

database server.

The wire listener is a Java™ application and is provided as an executable JAR file as part of the HCL OneDB™ APIs package.

The JAR file provides access to the MongoDB API.

MongoDB API access

The wire listener implements the MongoDB Wire Protocol. This allows you to connect MongoDB applications

and client drivers to the HCL OneDB™ database through the wire listener. The MongoDB applications send

MongoDB operations and commands to the wire listener, which automatically translates those commands to

SQL which it runs against the HCL OneDB™ database using JDBC.

You can use the MongoDB API to access HCL OneDB™ JSON/BSON collections, relational tables, or TimeSeries

tables.

The wire listener configuration properties file on page 10 defines every operational characteristic. By default, when you

create a database or a table through the wire listener, automatic location and fragmentation are enabled. Databases are

stored in the dbspace that is chosen by the server. Tables are fragmented among dbspaces that are chosen by the server.

More fragments are added when tables grow.

Chapter 1. JSON compatibility

Configuring the wire listener for the first time
Before starting the wire listener, you must customize the wire listener configuration file.

Before you begin

The wire listener JAR file is included in the HCL OneDB™ APIs package.

To configure the wire listener for the first time:

1. Choose an authorized user.

An authorized user is required in wire listener connections to the database server. The authorized user must have

access to the databases and tables that are accessed through the wire listener.

Choose from:

◦ Windows™: Specify an operating system user.

◦ UNIX™ or Linux™: Specify an operating system user or a database user. For example, here is the command to

create a database user in UNIX™ or Linux™:

CREATE USER userID WITH PASSWORD 'password' ACCOUNT unlock PROPERTIES
 USER daemon;

2. Optional: If you want to shard data by using wire listener commands, grant the user REPLICATION privilege by

running the admin or task SQL administration API command with the grant admin argument.

Example

For example:

EXECUTE FUNCTION task('grant admin','userID','replication');

3. Create a wire listener configuration with the .properties file extension. You can use the example properties file in

the HCL OneDB™ APIs package as a template.

For more information, see The wire listener configuration file on page 10.

4. Customize the wire listener configuration file to your needs.

To include parameters in the wire listener, uncomment the row and customize the parameter. The url parameter

is required. Specifiy the authorized user created in step 1 in the url string. All other wire listener configuration

parameters are optional.

9

JSON compatibility

10

Tip: Review the defaults for the following properties and verify that they are appropriate for your environment:

mongo.api.version, authentication.enable, listener.port, listener.hostName, and listener.ssl.enable.

5. If you are using a Dynamic Host Configuration Protocol (DHCP) on your IPv6 host, you must verify that the connection

information between JDBC and HCL OneDB™ is compatible.

For example, you can connect from the IPv6 host through an IPv4 connection by using the following steps:

a. Add a server alias to the DBSERVERALIASES configuration parameter for the wire listener on the local host.

Example

For example: lo_onedb.

b. Add an entry to the sqlhosts file for the database server alias to the loopback address 127.0.0.1.

Example

For example:

lo_onedb onsoctcp 127.0.0.1 9090

c. In the wire listener configuration file, update the url entry with the wire listener alias.

Example

For example:

url=jdbc:onedb://localhost:9090/sysmaster;
ONEDB_SERVER=lo_onedb;

What to do next

Start the wire listener on page 41.

The wire listener configuration file
The wire listener is configured through a properties file. This properties file contains, among other things, settings for the

connection between the wire listener and the database server.

A sample properties file is provided in the HCL OneDB™ APIs package. In the sample properties file, all of the parameters are

commented out by default. To enable a parameter, you must uncomment the row and customize the parameter.

To modify the wire listener configuration file once the listener is started, you must first stop the wire listener, then update the

configuration file and restart the wire listener for the changes to take affect.

Wire listener configuration properties

Important: The url parameter is required. All other parameters are optional.

• Required

◦ url on page 13

• Setup and configuration

Chapter 1. JSON compatibility

◦ documentIdAlgorithm on page 14

◦ include on page 14

◦ listener.onException on page 15

◦ listener.hostName on page 15

◦ listener.port on page 15

◦ listener.timezone on page 16

◦ response.documents.count.default on page 16

◦ response.documents.count.maximum on page 16

◦ response.documents.size.maximum on page 16

◦ sharding.enable on page 16

◦ sharding.parallel.query.enable on page 17

• High availability

◦ failover.retry.enable on page 17

◦ failover.retry.delay on page 18

◦ failover.retry.errorCodes on page 18

◦ failover.retry.maxRetries on page 18

• Command and operation configuration

◦ collection.onedb.options on page 18

◦ command.listDatabases.sizeStrategy on page 19

◦ update.client.strategy on page 20

◦ update.mode on page 20

• Database resource management

◦ database.buffer.enable on page 21

◦ database.create.enable on page 21

◦ database.dbspace on page 21

◦ database.locale.default on page 21

◦ database.log.enable on page 22

◦ database.onException.errorCodes on page 22

◦ dbspace.strategy on page 22

◦ fragment.count on page 23

◦ jdbc.afterNewConnectionCreation on page 23

• MongoDB compatibility

◦ compatible.maxBsonObjectSize.enable on page 23

◦ mongo.api.version on page 23

◦ update.one.enable on page 24

• Performance

◦ delete.preparedStatement.cache.enable on page 24

◦ insert.batch.enable on page 24

◦ insert.batch.queue.enable on page 25

◦ insert.batch.queue.flush.interval on page 25

◦ index.cache.enable on page 25

◦ index.cache.update.interval on page 26

11

JSON compatibility

12

◦ insert.preparedStatement.cache.enable on page 26

◦ preparedStatement.cache.enable on page 26

◦ preparedStatement.cache.size on page 26

• Security

◦ authentication.enable on page 26

◦ authentication.localhost.bypass.enable on page 27

◦ command.blocklist on page 27

◦ db.authentication on page 27

◦ listener.admin.ipAddress on page 28

◦ listener.authentication.timeout on page 28

◦ listener.ssl.algorithm on page 28

◦ listener.ssl.ciphers on page 28

◦ listener.ssl.enable on page 29

◦ listener.ssl.key.alias on page 29

◦ listener.ssl.key.password on page 29

◦ listener.ssl.keyStore.file on page 30

◦ listener.ssl.keyStore.password on page 30

◦ listener.ssl.keyStore.type on page 30

◦ listener.ssl.protocol on page 30

◦ security.sql.passthrough on page 30

• Wire listener resource management

◦ cursor.idle.timeout on page 31

◦ listener.connectionPool.closeDelay.time on page 31

◦ listener.connectionPool.closeDelay.timeUnit on page 31

◦ listener.idle.timeout on page 31

◦ listener.idle.timeout.minimum on page 31

◦ listener.input.buffer.size on page 32

◦ listener.memoryMonitor.enable on page 32

◦ listener.memoryMonitor.allPoint on page 32

◦ listener.memoryMonitor.diagnosticPoint on page 32

◦ listener.memoryMonitor.zeroPoint on page 32

◦ listener.output.buffer.size on page 33

◦ listener.pool.admin.enable on page 33

◦ listener.pool.keepAliveTime on page 33

◦ listener.pool.queue.size on page 33

◦ listener.pool.size.core on page 34

◦ listener.pool.size.maximum on page 34

◦ listener.socket.accept.timeout on page 34

◦ listener.socket.read.timeout on page 34

◦ pool.connections.maximum on page 34

◦ pool.idle.timeout on page 34

◦ pool.idle.timeunit on page 35

Chapter 1. JSON compatibility

◦ pool.lenient.return.enable on page 35

◦ pool.lenient.dispose.enable on page 36

◦ pool.semaphore.timeout on page 36

◦ pool.semaphore.timeunit on page 36

◦ pool.service.interval on page 37

◦ pool.service.threads on page 37

◦ pool.service.timeunit on page 37

◦ pool.size.initial on page 38

◦ pool.size.minimum on page 38

◦ pool.size.maximum on page 38

◦ pool.type on page 38

◦ pool.typeMap.strategy on page 38

◦ response.documents.size.minimum on page 39

Required parameter
You must configure the url parameter before using the wire listener.

url

This required parameter specifies the host name, port number, user ID, and password that are used in

connections to the database server.

You must specify the sysmaster database in the url parameter. That database is used for administrative

purposes by the wire listener.

url = jdbc : onedb : // hostname : portnum / sysmaster ; [USER = userid ; PASSWORD = password NONCE = value]

You can include additional JDBC properties in the url parameter such as CONNECT_TIMEOUT,

CONNECT_RETRIES, LOGINTIMEOUT, and IFX_SOC_TIMEOUT. For a list of HCL OneDB™ environment variables

that are supported by the JDBC driver, see HCL OneDB™ environment variables with the HCL OneDB™ JDBC

Driver on page .

hostname:portnum

The host name and port number of your computer. For example, localhost:9090.

USER=userid

This optional attribute specifies the user ID that is used in connections to the HCL OneDB™

database server. If you plan to use this connection to establish or modify collection shards by

using the HCL OneDB™ sharding capability, the specified user must be granted the REPLICATION

privilege group access.

If you do not specify the user ID and password, the JDBC driver uses operating system

authentication and all wire listener actions are run by using the user ID and password of the

operating system user who runs the wire listener start command.

13

../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040
../com.ibm.jdbc_pg.doc/ids_jdbc_040.html#ids_jdbc_040

JSON compatibility

14

PASSWORD=password

This optional attribute specifies the password for the specified user ID.

NONCE=value

This optional attribute specifies a 16-character value that consists of numbers and the letters a, b,

c, d, e, and f. This property triggers password encoding when a pluggable authentication module

is configured for the wire listener. Applicable only if the db.authentication parameter is set to

onedb-mongodb-cr.

Setup and configuration
These parameters provide setup and configuration options.

documentIdAlgorithm

This optional parameter determines the algorithm that is used to generate the unique HCL OneDB™ identifier

for the ID column that is the primary key on the collection table. The _id field of the document is used as the

input to the algorithm. The default value is documentIdAlgorithm=ObjectId.

documentIdAlgorithm= { ObjectId | SHA-256 | SHA-512 }

ObjectId

Indicates that the string representation of the ObjectId is used if the _id field is of type ObjectId;

otherwise, the MD5 algorithm is used to compute the hash of the contents of the _id field.

• The string representation of an ObjectId is the hexadecimal representation of the 12 bytes

that comprise an ObjectId.

• The MD5 algorithm provides better performance than the secure hashing algorithms

(SHA).

ObjectId is the default value and it is suitable for most situations.

Important: Use the default unless a unique constraint violation is reported even though

all documents have a unique _id field. In that case, you might need to use a non-default

algorithm, such as SHA-256 or SHA-512.

SHA-256

Indicates that the SHA-256 hashing algorithm is used to derive an identifier from the _id field.

SHA-512

Indicates that the SHA-512 hashing algorithm is used to derive an identifier from the _id field. This

option generates the most unique values, but uses the most processor resources.

include

This optional parameter specifies the properties file to reference. The path can be absolute or relative.

Chapter 1. JSON compatibility

include= properties_file

listener.onException

This optional parameter specifies an ordered list of actions to take if an exception occurs that is not handled by

the processing layer.

listener.onException = { reply | closeSession | shutdownListener }

reply

When an unhandled exception occurs, reply with the exception message. This is the default value.

closeSession

When an unhandled exception occurs, close the session.

shutdownListener

When an unhandled exception occurs, shut down the wire listener.

listener.hostName

This optional parameter specifies the host name of the wire listener. The host name determines the network

adapter or interface that the wire listener binds the server socket to.

Tip: If you enable the wire listener to be accessed by clients on remote hosts, turn on authentication by

using the authentication.enable parameter.

listener.hostName= { localhost | hostname | * }

localhost

Bind the wire listener to the localhost address. The wire listener is not accessible from clients on

remote machines. This is the default value.

hostname

The host name or IP address of host machine where the wire listener binds to.

*

The wire listener can bind to all interfaces or addresses.

listener.port

This optional parameter specifies the port number to listen on for incoming connections from clients. This

value can be overridden from the command line by using the -port argument. The default value is 27017.

15

JSON compatibility

16

Important: If you specify a port number that is less than 1024, the user that starts the wire listener

might require additional operating system privileges.

listener.port= { 27017 | port_number }

listener.timezone

This parameter specifies the timezone of the listener java JVM. This will override any system or user configured

default timezone. The timezone property affects the timezone of date values that are used outside of BSON

documents.

Important: It is recommended that the listener timezone be set to UTC (or GMT). You should change

this property only if you are using the listener to interact with relational tables that store dates in a

timezone other than UTC/GMT.

Possible values: UTC, GMT, GMT+1, GMT+2, GMT-1, GMT-2, EST, CST, etc. Set this property to null to use the

system's default timezone.

listener.timezone = { UTC | timezone }

response.documents.count.default

This optional parameter specifies the default number of documents in a single response to a query. The default

value is 100.

response.documents.count.default = { 100 | default_docs }

response.documents.count.maximum

This optional parameter specifies the maximum number of documents in a single response to a query. The

default value is 10000.

response.documents.count.maximum= { 10000 | max_docs }

response.documents.size.maximum

This optional parameter specifies the maximum size, in bytes, of all documents in a single response to a query.

The default value is 1048576.

response.documents.size.maximum= { 1048576 | max_size }

sharding.enable

This optional parameter indicates whether to enable the use of commands and queries on sharded data.

sharding.enable= { false | true }

Chapter 1. JSON compatibility

false

Do not enable the use of commands and queries on sharded data. This is the default value.

true

Enable the use of commands and queries on sharded data.

sharding.parallel.query.enable

This optional parameter indicates whether to enable the use of parallel sharded queries. Parallel sharded

queries require that the SHARD_ID configuration parameter be set to unique IDs on all shard servers. The

sharding.enable parameter must also be set to true.

sharding.parallel.query.enable = { false | true }

false

Do not enable parallel sharded queries. This is the default value.

true

Enable parallel sharded queries.

High Availability
These parameters provide configuration options for ensuring high availability and transaction survivability to your MongoDB

applications in case of a database server failover.

failover.retry.enable

Enables the listener to automatically retry client requests if a possible server failover is detected.

In the case of a server failover, the wire listener can be automatically rerouted by the Connection Manager to

the new primary in the high-availability cluster, or to any other online server in the cluster, depending on how

the service level agreement rules are configured. In such a scenario, you may choose to enable the wire listener

to monitor for failover error codes from the server. If such a failure is detected, the wire listener will attempt

to automatically reconnect through the Connection Manager to another server in the cluster and retry the

client operations there. The wire listener will only return an error to the client application if it cannot establish

a new connection to the cluster. This automatic retry provides seamless high availability to MongoDB client

applications with the wire listener and the Connection Manager automatically handling the rerouting of client

operations in the event of a database server failover.

If failover.retry.enable is set to true, the url property must point to a OneDB Connection Manager.

failover.retry.enable = { false | true }

true

Enable automatic retry of client requests if a possible server failover is detected.

false

Disable automatic retry of client requests.

17

JSON compatibility

18

failover.retry.delay

This optional parameter specifies the delay in milliseconds that the wire listener waits before trying to

reestablish a connection after a failover error code is received from the database server. This parameter only

takes effect if failover.retry.enable=true.

failover.retry.delay = { 10000 | milliseconds }

failover.retry.errorCodes

This optional parameter specifies the list of database server error codes that will be considered an indication of

a possible failover.

If failover.retry.enable is set to true, this list provides the list of error codes that will trigger the wire listener

to attempt to reestablish a connection from the Connection Manager and retry the client request again. This

parameter only takes effect if failover.retry.enable=true.

failover.retry.errorCodes = { [-908, -930, -931, -404, -1803, -25582, -27002, -27009, -79716, -79730,

-79735] | list of error codes }

failover.retry.maxRetries

This optional parameter specifies the maximum number of times the wire listener will retry an client request

after a potential failover error is received from the database server.

If the wire listener is connected to a Connection Manager that can automatically reroute the wire listener when

a server failover occurs, this failover.retry.maxRetries parameter controls how many times the wire listener

will attempt to reestablish a connection and retry the client operation that failed. This parameter only takes

effect if failover.retry.enable=true.

failover.retry.maxRetries = { 12 | number of retries }

Command and operation configuration
These parameters provide configuration options for JSON commands and operations.

collection.onedb.options

This optional parameter specifies which table options for shadow columns or auditing to use when creating a

JSON collection.

collection.onedb.options = [{ [{ | " audit " | " crcols " | " erkey " | " replcheck " | " vercols " }] }]

audit

Use the AUDIT option of the CREATE TABLE statement to create a table to be included in the set

of tables that are audited at the row level if selective row-level is enabled.

Chapter 1. JSON compatibility

crcols

Use the CRCOLS option of the CREATE TABLE statement to create two shadow columns that

Enterprise Replication uses for conflict resolution.

erkey

Use the ERKEY option of the CREATE TABLE statement to create the ERKEY shadow columns that

Enterprise Replication uses for a replication key.

replcheck

Use the REPLCHECK option of the CREATE TABLE statement to create the ifx_replcheck shadow

column that Enterprise Replication uses for consistency checking.

vercols

Use the VERCOLS option of the CREATE TABLE statement to create two shadow columns that

HCL OneDB™ uses to support update operations on secondary servers.

command.listDatabases.sizeStrategy

This optional parameter specifies a strategy for calculating the size of your database when the MongoDB

listDatabases command is run. The listDatabases command estimates the size of all collections and collection

indexes for each database. However, relational tables and indexes are excluded from this size calculation.

Important: The MongoDB listDatabases command performs expensive and CPU-intensive

computations on the size of each database in the database server instance. You can decrease the

expense by using the command.listDatabases.sizeStrategy parameter.

command.listDatabases.sizeStrategy= { { estimate | { estimate:n} | compute | none | perDatabaseSpace } }

estimate

Estimate the size of the database by sampling documents in every collection. This is the default

value. This strategy is the equivalent of {estimate: 1000}, which takes a sample size of 0.1% of the

documents in every collection. This is the default value.

command.listDatabases.sizeStrategy=estimate

estimate: n

Estimate the size of the database by sampling one document for every n documents in every

collection. The following example estimates the collection size by using sample size of 0.5% or

1/200th of the documents:

command.listDatabases.sizeStrategy={estimate:200}

compute

Compute the exact size of the database.

command.listDatabases.sizeStrategy=compute

19

JSON compatibility

20

none

List the databases but do not compute the size. The database size is listed as 0.

command.listDatabases.sizeStrategy=none

perDatabaseSpace

Calculate the size of a database by adding the sizes for all dbspaces, sbspaces, and blobspaces

that are assigned to the tenant database.

Important: The perDatabaseSpace option applies only to tenant databases that are

created by the multi-tenancy feature.

update.client.strategy

This optional parameter specifies the method that is used by the wire listener to send updates to the database

server. When the wire listener does the update processing, it queries the server for the existing document and

then updates the document.

update.client.strategy= { { updatableCursor | deleteInsert } }

updatableCursor

Updates are sent to the database server by using an updatable cursor. This is the default value.

deleteInsert

The original document is deleted when the updated document is inserted.

Important: If the collection is sharded, you must use this method.

update.mode

This optional parameter determines where document updates are processed. The default value is

update.mode=mixed.

update.mode= { { mixed | client } }

client

Use the wire listener to process updates. You must use this mode if you enable sharding and

want to allow the updating of shard key field values.

mixed

Attempt to process updates on the database server first, then fallback to the wire listener. This is

the default value.

Database resource management
These parameters provide database resource management options.

Chapter 1. JSON compatibility

database.buffer.enable

Prerequisite: database.log.enable=true

This optional parameter indicates whether to enable buffered logging when you create a database by using the

wire listener.

database.buffer.enable = { true | false }

true

Enable buffered logging.

false

Do not enable buffered logging. This is the default value.

database.create.enable

This optional parameter indicates whether to enable the automatic creation of a database, if a database does

not exist.

database.create.enable = { true | false }

true

If a database does not exist, create a database. This is the default value.

false

If a database does not exist, do not create a database. With this option, you can access only

existing databases.

database.dbspace

Prerequisite: dbspace.strategy=fixed

This optional parameter specifies the name of the dbspace databases that are created. The default value is

database.dbspace=rootdbs.

database.dbspace = { rootdbs | dbspace_name }

database.locale.default

This optional parameter specifies the default locale to use when a database is created by using the wire

listener. The default value is en_US.utf8.

database.locale.default = { en_US.utf8 | locale }

21

JSON compatibility

22

database.log.enable

This optional parameter indicates whether to create databases that are enabled for logging.

database.log.enable = { true | false }

true

Create databases that are enabled for logging. This is the default value. Use the

database.buffer.enable parameter to enable buffered logging.

false

Do not create databases that are enabled for logging.

database.onException.errorCodes

A JSON document describing what actions to take on specific database error codes. Each action should be

followed by an array of the database's integer error codes that should trigger the specified action.

closePools

Error codes that should trigger the listener to close the existing connection pools.

disposeOfConnections

Error codes that indicate the current connection is stale and should be disposed of.

removeCollectionFromCache

Error codes that indicate that the listener's currently cached information about the collection is

stale and should be refreshed.

reprepareStatement

Error codes that indicate that the prepared statement should be re-prepared.

retryStatement

Error codes that indicate that an insert, update, delete or query statement should be retried once

before the error/result is returned to the client.

These lists of error codes are the default values for each statement, and can be changed or added as you

desire. For example:

database.onException.errorCodes={
 "closePools":[-79716, -79730, -79735],
 "disposeOfConnection":[-349, -79716, -79730, -79735],
 "removeCollectionFromCache":[-710, -206],
 "reprepareStatement":[-208, -267, -285, -79716],
 "retryStatement":[]
}

dbspace.strategy

This optional parameter specifies the strategy to use when determining the location of new databases, tables,

and indexes.

Chapter 1. JSON compatibility

dbspace.strategy = { autolocate | fixed }

autolocate

The database server automatically determines the dbspace for the new databases, tables, and

indexes. This is the default value.

fixed

Use a specific dbspace, as specified by the database.dbspace property.

fragment.count

This optional parameter specifies the number of fragments to use when creating a collection. If you specify 0,

the database server determines the number of fragments to create. If you specify a fragment_num greater than

0, that number of fragments are created when the collection is created. The default value is 0.

fragment.count = { 0 | fragment_num }

jdbc.afterNewConnectionCreation

This optional parameter specifies one or more SQL commands to run after a new connection to the database is

created.

jdbc.afterNewConnectionCreation = [" sql_command "]

MongoDB compatibility
These parameters provide options for MongoDB compatibility.

compatible.maxBsonObjectSize.enable

This optional parameter indicates whether the maximum BSON object size is compatible with MongoDB.

Tip: If you insert a BSON document by using an SQL operation, HCL OneDB™ supports a maximum

document size of 2 GB.

compatible.maxBsonObjectSize.enable = { false | true }

false

Use a maximum document size of 256 MB with the wire listener. This is the default value.

true

Use a maximum document size of 16 MB. The maximum document size for MongoDB is 16 MB.

mongo.api.version

This optional parameter specifies the MongoDB API version with which the wire listener is compatible. The

version affects authentication methods as well as MongoDB commands.

mongo.api.version = { 4.0 | 4.2 }

23

JSON compatibility

24

Note: 4.0 is the default value.

update.one.enable

This optional parameter indicates whether to enable support for updating a single JSON document.

Important: The update.one.enable parameter applies to JSON collections only. For relational tables, the

MongoDB multi-parameter is ignored and all documents that meet the query criteria are updated.

update.one.enable = { false | true }

false

All collection updates are treated as multiple JSON document updates. This is the default value.

With the update.one.enable=false setting, the MongoDB db.collection.update multi-parameter is

ignored and all documents that meet the query criteria are updated.

true

Allow updates on collections to a single document or multiple documents.

With the update.one.enable=true setting, the MongoDB db.collection.update multi-parameter is

accepted. The db.collection.update multi-parameter controls whether you can update a single

document or multiple documents.

Performance
These parameters provide performance options for databases and collections.

delete.preparedStatement.cache.enable

This optional parameter indicates whether to cache prepared statements that delete documents for reuse.

delete.preparedStatement.cache.enable = { true | false }

true

Use a prepared statement cache for statements that delete documents. This is the default value.

false

Do not use a prepared statement cache for statements that delete documents. A new statement

is prepared for each query.

insert.batch.enable

If multiple documents are sent as a part of a single INSERT statement, this optional parameter indicates

whether to batch document inserts operations into collections.

insert.batch.enable = { true | false }

Chapter 1. JSON compatibility

true

Batch document inserts into collections by using JDBC batch calls to perform the insert

operations. This is the default value.

false

Do not batch document insert operations into collections.

insert.batch.queue.enable

This optional parameter indicates whether to queue INSERT statements into larger batches. You can improve

insert performance by queuing INSERT statements, however, there is decreased durability.

This parameter batches all INSERT statements, even a single INSERT statement. These batched INSERT

statements are flushed at the interval that is specified by the insert.batch.queue.flush.interval parameter,

unless another operation arrives on the same collection. If another operation arrives on the same collection, the

batch inserts are immediately flushed to the database server before proceeding with the next operation.

insert.batch.queue.enable = { false | true }

false

Do not queue INSERT statements. This is the default.

true

Queue INSERT statements into larger batches. Use the insert.batch.queue.flush.interval

parameter to specify the amount of time between insert queue flushes.

insert.batch.queue.flush.interval

Prerequisite: insert.batch.queue.enable=true

This optional parameter specifies the number of milliseconds between flushes of the insert queue to the

database server. The default value is insert.batch.queue.flush.interval=100.

insert.batch.queue.flush.interval = { 100 | flush_interval_time }

index.cache.enable

This optional parameter indicates whether to enable index caching on collections. To write the most efficient

queries, the wire listener must be aware of the existing BSON indexes on your collections.

index.cache.enable = { true | false }

true

Cache indexes on collections. This is the default value.

25

JSON compatibility

26

false

Do not cache indexes on collections. The wire listener queries the database for indexes each time

a collection query is translated to SQL.

index.cache.update.interval

This optional parameter specifies the amount of time, in seconds, between updates to the index cache on a

collection table. The default value is index.cache.update.interval=120.

index.cache.update.interval = { 120 | cache_update_interval }

insert.preparedStatement.cache.enable

This optional parameter indicates whether to cache the prepared statements that are used to insert

documents.

insert.preparedStatement.cache.enable = { true | false }

true

Cache the prepared statements that are used to insert documents. This is the default value.

false

Do not cache the prepared statements that are used to insert documents.

preparedStatement.cache.enable

This optional parameter indicates whether to cache prepared statements for reuse.

preparedStatement.cache.enable = { true | false }

true

Use a prepared statement cache. This is the default value.

false

Do not use a prepared statement cache. A new statement is prepared for each query.

preparedStatement.cache.size

This optional parameter specifies the size of the least-recently used (LRU) map that is used to cache prepared

statements. The default value is preparedStatement.cache.size=20.

preparedStatement.cache.enable = { 20 | LRU_size }

Security
The parameters provide security enablement options.

authentication.enable

This optional parameter indicates whether to enable user authentication.

Chapter 1. JSON compatibility

You can choose to authenticate users through the wire listener or in the database server.

authentication.enable= { false | true }

false

Do not authenticate users. This is the default value.

true

Authenticate users. Use the authentication.localhost.bypass.enable parameter to control the type

of authentication.

authentication.localhost.bypass.enable

Prerequisite: authentication.enable=true

If you connect from the localhost to the HCL OneDB™ admin database, and the admin database contains no

users, this optional parameter indicates whether to grant full administrative access.

The HCL OneDB™ admin database is similar to the MongoDB admin database. The HCL OneDB™

authentication.localhost.bypass.enable parameter is similar to the MongoDB enableLocalhostAuthBypass

parameter.

authentication.localhost.bypass.enable= { true | false }

true

Grant full administrative access to the user. This is the default value.

false

Do not grant full administrative access to the user.

command.blocklist

This optional parameter lists commands that are removed from the command registry and cannot be called. By

default, the block list is empty.

command.blocklist = [command]

db.authentication

This optional parameter specifies the user authentication method. See User authentication with the wire

listener on page 44 for more information.

db.authentication = { mongodb-scram | onedb-mongodb-cr }

27

JSON compatibility

28

mongdb-scram

Authenticate through the wire listener with the MongoDB SCRAM-SHA-256 algorithm. MongoDB

SCRAM-SHA-256 authentication is only supported on Mongo listeners. This is the default value .

onedb-mongodb-cr

Authenticate through the database server with a pluggable authentication module (PAM) using

the MongoDB Challenge Response (MONGODB-CR) authentication algorithm.

listener.admin.ipAddress

This optional parameter specifies the IP address for the administrative host. Must be a loopback IP address.

The default value is 127.0.0.1.

Important: If you specify an address that is not a loopback IP address, an attacker might perform a

remote privilege escalation and obtain administrative privileges without knowing a user password.

listener.admin.ipAddress = ip_address

listener.authentication.timeout

This optional parameter specifies the number of milliseconds that the wire listener waits for a client connection

to authenticate. The default value is 0, which indicates that the wire listener waits indefinitely for client

connections to authenticate.

listener.authentication.timeout = milliseconds

listener.ssl.algorithm

This optional parameter specifies the Service Provider Interface (SPI) for the KeyManagerFactory that is used

to access the network encryption keystore. On an Oracle Java Virtual Machine (JVM), this value is typically

SunX509. On an IBM JVM, this value is typically IbmX509. The default value is no SPI.

Important: Do not set this property if you are not familiar with Java Cryptography Extension (JCE).

listener.ssl.algorithm = SPI

listener.ssl.ciphers

This optional parameter specifies a list of Secure Sockets Layer (SSL) or Transport Layer Security (TLS) ciphers

to use with network encryption. The default value is no ciphers, which means that the default list of enabled

ciphers for the JVM are used.

Chapter 1. JSON compatibility

Important: Do not set this property if you are not familiar with Java Cryptography Extension (JCE) and

the implications of using multiple ciphers. Consult a security expert for advice.

listener.ssl.ciphers = cipher

You can include spaces between ciphers.

For example, you can set the following ciphers:

listener.ssl.ciphers=TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_EMPTY_RENEGOTIATION_INFO_SCSV

listener.ssl.enable

This optional parameter enables SSL or TLS network encryption on the socket for client connections. See

Configuring SSL connections between the wire listener and client applications on page 48.

listener.ssl.enable = { false | true }

false

Disable network encryption. This is the default.

true

Allow network encryption.

listener.ssl.key.alias

This optional parameter specifies the alias, or identifier, of the entry into the keystore. The default value is no

alias, which indicates that the keystore contains one entry. If the keystore contain more than one entry and a

key password is needed to unlock the keystore, set this parameter to the alias of the entry that unlocks the

keystore.

listener.ssl.key.alias = alias

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.key.password

This optional parameter specifies the password to unlock the entry into the keystore, which is identified

by the listener.ssl.key.alias parameter. The default value is no password, which means to use the keystore

password. If the entry into the keystore requires a password that is different from the keystore password, set

this parameter to the entry password.

listener.ssl.key.password = password

This parameter is effective when the listener.ssl.enable parameter is set to true.

29

JSON compatibility

30

listener.ssl.keyStore.file

This optional parameter specifies the fully-qualified path and file name of the Java keystore file to use for

network encryption. The default value is no file.

listener.ssl.keyStore.file = file_path

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.keyStore.password

This optional parameter specifies the password to unlock the Java keystore file for network encryption. The

default value is no password.

listener.ssl.keyStore.password = password

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.keyStore.type

This optional property specifies the provider identifier for the network encryption keystore SPI. The default

value is JKS.

Important: Do not set this property if you are not familiar with Java Cryptography Extension (JCE).

listener.ssl.keyStore.type = SPI

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.protocol

This optional parameter specifies the SSL or TLS protocols. The default value is TLS.

listener.ssl.protocol = protocol

This parameter is effective when the listener.ssl.enable parameter is set to true.

security.sql.passthrough

This optional parameter indicates whether to enable support for issuing SQL statements by using JSON

documents.

security.sql.passthrough = { false | true }

false

Disable the ability to issue SQL statements by using the MongoDB API. This is the default.

true

Allow SQL statements to be issued by using the MongoDB API.

Chapter 1. JSON compatibility

Wire listener resource management
These parameters provide wire listener resource management options.

cursor.idle.timeout

This optional parameter specifies the number of milliseconds that a cursor can be idle before it is closed. The

default value is 30000. A positive integer value for time specifies the number of milliseconds before an idle

timeout.

cursor.idle.timeout = { 30000 | time }

listener.connectionPool.closeDelay.time

This optional parameter specifies the amount of time to keep a connection pool open after the last client

disconnects. When the existing connection pool is open, the next connection can connect faster by reusing

the existing pool instead of creating a new connection pool. The default value is 0, which indicates that

the connection pool is closed immediately after the last client disconnects. A positive integer value for

time specifies the number of time units to keep the connection pool open. The unit of time is set by the

listener.connectionPool.closeDelay.timeUnit parameter.

listener.connectionPool.closeDelay.time = { 0 | time }

listener.connectionPool.closeDelay.timeUnit

This optional parameter specifies the time unit for the listener.connectionPool.closeDelay.time parameter. The

unit can be NANOSECONDS, MICROSECONDS, MILLISECONDS, SECONDS, MINUTES, HOURS, or DAYS. The

default value is SECONDS.

listener.connectionPool.closeDelay.timeUnit = { SECONDS | unit }

listener.idle.timeout

This optional parameter specifies the amount of time, in milliseconds, that a client connection to the wire

listener can idle before it is forcibly closed. You can use this parameter to close connections and free

associated resources when clients are idle. The default value is 300000 milliseconds. The value of 0 indicates

that client connections are never timed out.

Important: When set to a nonzero value, the wire listener socket that is used to communicate with a

MongoDB client is forcibly closed after the specified time. To the client, the forcible closure appears as

an unexpected disconnection from the server the next time there is an attempt to write to the socket.

listener.idle.timeout = { 300000 | idle_time }

listener.idle.timeout.minimum

This optional parameter specifies the lower threshold, in milliseconds, of the listener idle timeout, which is set

by the low memory monitor. The default value is 10000 milliseconds. This property has no effect when the

heap size is sufficiently large to not need a reduction in idle timeout.

31

JSON compatibility

32

listener.idle.timeout.minimum = { 10000 | idle_time }

This parameter is effective when the listener.memoryMonitor.enable parameter is set to true.

listener.input.buffer.size

This optional parameter specifies the size, in MB, of the input buffer for each wire listener socket. The default

value is 8192 bytes.

listener.input.buffer.size = { 8192 | input_buffer_size }

listener.memoryMonitor.enable

This optional parameter enables the wire listener memory monitor. When memory usage for the wire listener is

high, the memory monitor attempts to reduce resources, such as removing cached JDBC prepared statements,

removing idle JDBC connections from the connection pools, and reducing the maximum size of responses.

listener.memoryMonitor.enable = { true | false }

true

Enable the memory monitor. This is the default.

false

Disable the memory monitor.

listener.memoryMonitor.allPoint

This optional parameter specifies the maximum percentage of heap usage before the memory monitor reduces

resources. The default value is 80.

listener.memoryMonitor.allPoint = percentage

This parameter is effective when the listener.memoryMonitor.enable parameter is set to true.

listener.memoryMonitor.diagnosticPoint

This optional parameter specifies the percentage of heap usage before diagnostic information about memory

usage is logged. The default value is 99.

listener.memoryMonitor.diagnosticPoint = percentage

This parameter is effective when the listener.memoryMonitor.enable parameter is set to true.

listener.memoryMonitor.zeroPoint

This optional parameter specifies the percentage of heap usage before the memory manager reduces resource

usage to the lowest possible levels. The default value is 95.

listener.memoryMonitor.zeroPoint = percentage

Chapter 1. JSON compatibility

This parameter is effective when the listener.memoryMonitor.enable parameter is set to true.

listener.output.buffer.size

This optional parameter specifies the size, in MB, of the output buffer for each listener socket. The default

value is 8192 bytes.

listener.output.buffer.size = { 8192 | output_buffer_size }

listener.pool.admin.enable

This optional parameter enables a separate thread pool for connections from the administrative IP address,

which is set by the listener.admin.ipAddress parameter. The default value is false. A separate thread pool

ensures that administrative connections succeed even if the listener thread pool lacks available resources.

listener.pool.admin.enable = { false | true }

false

Prevents a separate thread pool. This is the default.

false

Creates a separate thread pool for administrative connections.

listener.pool.keepAliveTime

This optional parameter specifies the amount of time, in seconds, that threads above the core pool size are

allowed to idle before they are removed from the wire listener JDBC connection pool. The default value is 60

seconds.

listener.pool.keepAliveTime = { 60 | thread_idle }

listener.pool.queue.size

This optional parameter specifies the number of requests to queue above the core wire listener pool size

before expanding the pool size up to the maximum. A positive integer specifies the queue size to use before

expanding the pool size up to the maximum.

listener.pool.queue.size = { 0 | -1 }

0

Do not allocate a queue size for tasks. All new sessions are either run on an available or new

thread up to the maximum pool size, or are rejected if the maximum pool size is reached. This is

the default value.

-1

Allocate an unlimited queue size for tasks.

33

JSON compatibility

34

listener.pool.size.core

This optional parameter specifies the maximum sustained size of the thread pool that listens for incoming

connections from clients. The default value is 128.

listener.pool.size.core = { 128 | max_thread_size }

listener.pool.size.maximum

This optional parameter specifies the maximum peak size of the thread pool that listens for incoming

connections from clients. The default value is 1024.

listener.pool.size.maximum = { 1024 | max_peak_thread_size }

listener.socket.accept.timeout

This optional parameter specifies the number of milliseconds that a server socket waits for an accept()

function. The default value is 1024. The value of 0 indicates to wait indefinitely. The value of this parameter can

affect how quickly the wire listener shuts down.

listener.socket.accept.timeout = milliseconds

listener.socket.read.timeout

This optional parameter specifies the number of milliseconds to block when calling a read() function on the

socket input stream. The default value is 1024. A value of 0 might prevent the wire listener from shutting down

because the threads that poll the socket might never unblock.

listener.socket.read.timeout = milliseconds

pool.connections.maximum

This optional parameter specifies the maximum number of active connections to a database. The default value

is 50.

pool.connections.maximum = { 50 | max_active_connect }

pool.idle.timeout

This optional parameter specifies the minimum amount of time that an idle connection is in the idle pool before

it is closed. The default value is 60 and the default time unit is seconds.

Important: Set the unit of time in the pool.idle.timeunit parameter. The default value is seconds.

pool.idle.timeout = { 60 | min_idle_pool }

Chapter 1. JSON compatibility

pool.idle.timeunit

Prerequisite: pool.idle.timeout=time

This optional parameter specifies the unit of time that is used to scale the pool.idle.timeout parameter.

pool.idle.timeunit = { SECONDS | NANOSECONDS | MICROSECONDS | MILLISECONDS | MINUTES | HOURS | DAYS }

SECONDS

Use seconds as the unit of time. This is the default value.

NANOSECONDS

Use nanoseconds as the unit of time.

MICROSECONDS

Use microseconds as the unit of time.

MILLISECONDS

Use milliseconds as the unit of time.

MINUTES

Use minutes as the unit of time.

HOURS

Use hours as the unit of time.

DAYS

Use days as the unit of time.

pool.lenient.return.enable

This optional parameter suppresses the following checks on a connection that is being returned that might

throw exceptions:

• An attempt to return a pooled connection that is already returned.

• An attempt to return a pooled connection that is owned by another pool.

• An attempt to return a pooled connection that is an incorrect type.

pool.lenient.return.enable = { false | true }

false

Connection checks are enabled. This is the default.

false

Connection checks are disabled.

35

JSON compatibility

36

pool.lenient.dispose.enable

This optional parameter suppresses the checks on a connection that is being disposed of that might throw

exceptions.

pool.lenient.dispose.enable = { false | true }

false

Connection checks are enabled. This is the default.

false

Connection checks are disabled.

pool.semaphore.timeout

This optional parameter specifies the amount of time to wait to acquire a permit for a database connection.

The default value is 5 and the default time unit is seconds.

Important: Set the unit of time in the pool.semaphore.timeunit parameter.

pool.semaphore.timeout = { 5 | wait_time }

pool.semaphore.timeunit

Prerequisite: pool.semaphore.timeout=wait_time

This optional parameter specifies the unit of time that is used to scale the pool.semaphore.timeout parameter.

pool.semaphore.timeunit = { SECONDS | NANOSECONDS | MICROSECONDS | MILLISECONDS | MINUTES | HOURS | DAYS }

SECONDS

Use seconds as the unit of time. This is the default value.

NANOSECONDS

Use nanoseconds as the unit of time.

MICROSECONDS

Use microseconds as the unit of time.

MILLISECONDS

Use milliseconds as the unit of time.

MINUTES

Use minutes as the unit of time.

Chapter 1. JSON compatibility

HOURS

Use hours as the unit of time.

DAYS

Use days as the unit of time.

pool.service.interval

This optional parameter specifies the amount of time to wait between scans of the idle connection pool.

The idle connection pool is scanned for connections that can be closed because they have exceeded their

maximum idle time. The default value is 30.

Important: Set the unit of time in the pool.service.timeunit parameter.

pool.service.interval = { 30 | wait_time }

pool.service.threads

This optional parameter specifies the number of threads to use for the maintenance of connection pools that

share a common service thread pool. The default value is 1.

pool.service.threads = number

pool.service.timeunit

Prerequisite: pool.service.interval=wait_time

This optional parameter specifies the unit of time that is used to scale the pool.service.interval parameter.

pool.service.timeunit = { SECONDS | NANOSECONDS | MICROSECONDS | MILLISECONDS | MINUTES | HOURS | DAYS }

SECONDS

Use seconds as the unit of time. This is the default value.

NANOSECONDS

Use nanoseconds as the unit of time.

MICROSECONDS

Use microseconds as the unit of time.

MILLISECONDS

Use milliseconds as the unit of time.

MINUTES

Use minutes as the unit of time.

37

JSON compatibility

38

HOURS

Use hours as the unit of time.

DAYS

Use days as the unit of time.

pool.size.initial

This optional parameter specifies the initial size of the idle connection pool. The default value is 0.

pool.size.initial = { 0 | idle_pool_initial_size }

pool.size.minimum

This optional parameter specifies the minimum size of the idle connection pool. The default value is 0.

pool.size.minimum = { 0 | idle_pool_min_size }

pool.size.maximum

This optional parameter specifies the maximum size of the idle connection pool. The default value is 50.

pool.size.maximum = { 50 | idle_pool_max_size }

pool.type

This optional parameter specifies the type of pool to use for JDBC connections. The available pool types are:

pool.type = { basic | none | advanced | perThread }

basic

Thread pool maintenance of idle threads is run each time that a connection is returned. This is

the default value.

none

No thread pooling occurs. Use this type for debugging purposes.

advanced

Thread pool maintenance is run by a separate thread.

perThread

Each thread is allocated a connection for its exclusive use.

pool.typeMap.strategy

This optional parameter specifies the strategy to use for distribution and synchronization of the JDBC type map

for each connection in the pool.

pool.typeMap.strategy = { copy | clone | share }

Chapter 1. JSON compatibility

copy

Copy the connection pool type map for each connection. This is the default value.

clone

Clone the connection pool type map for each connection.

share

Share a single type map between all connections. You must use this strategy with a thread-safe

type map.

response.documents.size.minimum

This optional parameter specifies the number of bytes for the lower threshold for the maximum response size,

which is set by the response.documents.size.maximum parameter. The memory manager can reduce the

response size to this size when resources are low. The default value is 65536 bytes.

response.documents.size.minimum = bytes

This parameter is effective when the listener.memoryMonitor.enable parameter is set to true.

Wire listener command line options
You can use command line options to control the wire listener.

Syntax

java -jar pathToListener -config properties_file { -start [-port { 27017 | port_number }] | -stop [-wait { 10 |

wait_time }] } [-version] [-buildInformation]

>>-java-- -jar pathToListener---- -config properties_file-+----->

>--+- -start-+---------------------+-+-------------------------+-+-->
 | '- -logfile--log_file-' | .-27017-------. | |
 | '- -port--+-port_number-+-' |
 '- -stop-+-----------------------+-------------------------------'
 | .-10--------. |
 '- -wait--+-wait_time-+-'

>--+-----------+--+--------------------+-----------------------><
 '- -version-' '- -buildInformation-'

Argument Purpose

-config properties_file Specifies the name of the wire listener configuration file to run. This argument is required to

start or stop the wire listener.

-start Starts the wire listener. You must also specify the configuration file.

-stop Stops the wire listener. You must also specify the configuration file. The stop command is

similar to the MongoDB shutdown command.

39

JSON compatibility

40

Argument Purpose

-logfile log_file Specifies the name of the log file that is used. If this option is not specified, the log messages

are sent to std.out.

Important: From version 2.0.1.1 and newer -loglevel and -logfile command line

options are ignored. Use the XML configuration file to specify log levels and log file

locations.

-loglevel Specifies the logging level.

error

Errors are sent to the log file. This is the default value.

warn

Errors and warnings are sent to the log file.

info

Informational messages, warnings, and errors are sent to the log file.

debug

Debug, informational messages, warnings, and errors are sent to the log file.

trace

Trace, debug, informational messages, warnings, and errors are sent to the log

file.

Important: From version 2.0.1.1 and newer -loglevel and -logfile command line

options are ignored. Use the XML configuration file to specify log levels and log file

locations.

-port port_number Specifies the port number. If a port is specified on the command line, it overrides the port

properties set in the wire listener configuration file. The default port is 27017.

-wait wait_time Specifies the amount of time, in seconds, to wait for any active sessions to complete before

the wire listener is stopped. The default is 10 seconds. To force an immediate shutdown, set

the wait_time to 0 seconds.

-version Prints the wire listener version.

-buildInformation Prints the wire listener build information.

Example

Chapter 1. JSON compatibility

Examples

In this example, the wire listener is started :

java -jar onedb-wire-listener.jar -config onedb-wire-listener.properties -start

In this example, port 6388 is specified:

java -jar onedb-wire-listener.jar
-config onedb-wire-listener.properties
-port 6388 -start

In this example, the wire listener is paused 10 seconds before the wire listener is stopped:

java -jar onedb-wire-listener.jar
-config onedb-wire-listener.properties
-wait 10 -stop

In this example, the wire listener version is printed:

java -jar onedb-wire-listener.jar -version

In this example, the wire listener build information is printed:

java -jar onedb-wire-listener.jar -buildInformation

Starting the wire listener
You can start the wire listener for the MongoDB API by using the start command.

Before you begin

• Stop all wire listeners that are currently running.

• If you plan to customize the Logback logger or another custom Simple Logging Facade for Java (SLF4J) logger, you

must configure the logger before starting the wire listener.

• Configuring the wire listener for the first time on page 9

• Requirements for JSON compatibility on page 5

To start the wire listener, run the wire listener command with the -start option.

Example

For example:

java -jar onedb-wire-listener.jar
-config onedb-wire-listener.properties -start

Results

The wire listener starts.

Example

41

JSON compatibility

42

Example

In the following example, the wire listener is started with the configuration file specified as onedb-mongo.properties, the

log file specified as onedb-mongo.log, and the log level specified as info:

java -jar onedb-wire-listener.jar
-config onedb-mongo.properties
-logfile onedb-mongo.log
-loglevel info -start

Here is the output from starting the wire listener:

starting mongo listener on port 27017

Stopping the wire listener
You can stop the wire listener by terminating the java process or by using the stop command.

About this task

You must stop the wire listener before you modify any configuration settings.

You can stop the wire listener at any time by terminating the java process that is running the wire listener.

You can also stop the wire listener by running the stop command with the configuration file specified. This stop command

only works if authentication.enable=true or authentication.localhost.bypass.enable=true.

To run the stop command for a MongoDB listener.

java -jar onedb-wire-listener.jar -config
 onedb-wire-listener.properties -stop

Important: You must specify the -config argument to stop the wire listener from the command line.

Results

The wire listener is stopped.

Wire listener logging
The wire listener can output informational messages, warnings, and errors as well as debug and trace information to a log.

The default logging mechanism for the wire listener is Log4j. Log4j uses a configuration file to customize the level, style

and target location for log messages. You can customize the logging output to fit your needs or to provide diagnostics for a

technical support representative.

Below is a generic example log4j2.xml file which allows you control logging for the Wire Listener using the Java system

properties specified in the table.

-Dlog4j2.configurationFile Specify the location of the XML configuration file

-Dapp.logtarget Specify 'console' or 'file'

Chapter 1. JSON compatibility

-Dapp.logfile If logtarget is 'file' give a file path here

-Dapp.loglevel Specify the log level of the application

-Djdbc.loglevel Specifiy the log level of the underlying JDBC driver

<?xml version="1.0" encoding="UTF-8"?>

<!--

 Generic Log4j2 configuration file that gives custom

 levels for JDBC and the application itself

-->

<Configuration monitorInterval="30" status="WARN">

 <Properties>

 <Property name="lgtarget">$${sys:app.logtarget:-console}</Property>

 <Property name="lgfile">$${sys:app.logfile:-app.log}</Property>

 <Property name="app">$${sys:app.loglevel:-info}</Property>

 <Property name="jdbc">$${sys:jdbc.loglevel:-error}</Property>

 <Property name="pattern">%d{yyyy-MM-dd HH:mm:ss.SSS} | %-5level | %t | %c{1} | %method | %marker

 | %msg%n</Property>

 </Properties>

 <Appenders>

 <Routing name="Router">

 <Routes pattern="${lgtarget}">

 <Route ref="Console" key="console" />

 <Route ref="File" key="file" />

 </Routes>

 </Routing>

 <Console name="Console">

 <PatternLayout pattern="${pattern}" />

 </Console>

 <File name="File" fileName="${lgfile}">

 <PatternLayout pattern="${pattern}" />

 </File>

 </Appenders>

 <Loggers>

 <!-- JDBC Driver packages -->

 <Logger name="com.informix" level="${jdbc}" />

 <Logger name="com.onedb.jdbc" level="${jdbc}" />

 <Logger name="com.onedb.jdbcx" level="${jdbc}" />

 <!-- Disable arcs/hikari logging except for errors -->

 <Logger name="com.informix.arcs" level="error" />

 <Logger name="com.zaxxer.hikari" level="warn" />

 <Root level="${app}">

 <AppenderRef ref="Router"/>

 </Root>

 </Loggers>

</Configuration>

43

JSON compatibility

44

Important: From version 2.0.1.1 and newer -loglevel and -logfile command line options are ignored. Use the XML

configuration file to specify log levels and log file locations.

User authentication with the wire listener
When connecting to the wire listener, you can authenticate users directly with the database server or through the wire listener

with MongoDB SCRAM-SHA-256 authentication.

You can use the following types of authentication methods with the wire listener:

SCRAM-SHA-256 two-step authentication

The wire listener authenticates users with the MongoDB SCRAM-SHA-256 authentication method outside

of the HCL OneDB™ database server environment. You create users with the MongoDB API create user

commands. User information and privileges are stored in the system.users collection in the admin database.

Clients connect to the wire listener as MongoDB users and the wire listener authenticates the users. The wire

listener connects to the database server as the user that is specified by the url parameter in the wire listener

configuration file. The database server cannot access MongoDB user account information.

Database server authentication with a PAM (UNIX, Linux)

The PAM implements the MONGODB-CR challenge-response method. The wire listener connects to the

database server using the user and password that is provided by clients and the database server authenticates

the user through PAM. The database server controls all user accounts and privileges. You can audit user

activities and configure fine-grained access control.

When connecting to the wire listener with MongoDB client drivers, you will need to specify that the

authentication mechanism used as MONGODB-CR. For most Mongo drivers, you do this by specifying

authMechanism=MONGODB-CR in the MongoDB url. Check the documentation for your MongoDB client driver for

more information.

Which type of authentication that you can use depends on the type of client and the mongo.api.version on page 23

specified in your wire listener configuration file.

MongoDB clients

Table 1. Authentication types for the MongoDB API

Authentication type Supported Details

SCRAM-SHA-256 Yes Follow the instructions on page 45 for configuring MongoDB

authentication.

HCL OneDB™ user

password

No Database server authentication with a user and password is not

supported for MongoDB clients because of the way MongoDB drivers

hash the password.

Chapter 1. JSON compatibility

Table 1. Authentication types for the MongoDB API (continued)

Authentication type Supported Details

PAM (MONGODB-CR) Yes Follow the instructions on page 45 for configuring database server

authentication with PAM.

Configuring MongoDB authentication
You can configure the wire listener to use MongoDB authentication.

To configure MongoDB SCRAM-SHA-256 authentication:

1. Set the following parameters in the wire listener configuration file:

◦ Enable authentication: Set authentication.enable=true.

◦ Specify MongoDB authentication: Set db.authentication=mongodb-scram.

◦ Set the MongoDB version: Set mongo.api.version to the version that you want.

◦ Optional. Require authetntication even from clients on the localhost: Set the

authentication.localhost.bypass.enable=false

◦ Optional. Specify the authentication timeout period: Set the listener.authentication.timeout parameter to the

number of milliseconds for authentication timeout.

2. Restart the wire listener.

Adding MongoDB users
To add the initial MongoDB authorized users:

1. Start the wire listener with authentication turned off: Set authentication.enable=false in the wire listener configuration

file.

2. Add users by running the createUser command through any MongoDB client.

3. Turn on authentication: Set authentication.enable=true in the wire listener configuration file.

4. Restart the wire listener.

Configuring database server authentication with PAM (UNIX™, Linux™)
You can configure the database server to authenticate wire listener users with a pluggable authentication module (PAM).

About this task

You create a user for the wire listener for PAM connections. The wire listener uses the PAM user to look up system catalog-

related information before sending client connection requests to the database server for authentication. The database server

authenticates the client users through PAM.

To configure PAM authentication for MongoDB clients:

1. Set the IFMXMONGOAUTH environment variable.

Example

For example:

45

JSON compatibility

46

setenv IFMXMONGOAUTH 1

2. Create a PAM service file that is named /etc/pam.d/pam_mongo and has the following contents:

auth required $ONEDB_HOME/lib/pam_mongo.so file=mongohash
account required $ONEDB_HOME/lib/pam_mongo.so

Replace $ONEDB_HOME with the value of the $ONEDB_HOME environment variable.

3. On AIX® 64-bit computers, create a symbolic link that is named 64 that points to the lib directory by running the

following commands:

cd $ONEDB_HOME/lib
ln -s . 64

4. Edit the sqlhosts file to add a connection that uses PAM. Include the s=4 option. Specify the PAM service

pam_mongo with the pam_serv option. Specify the password authentication mode with the pamauth option.

For example:

ol_onedb onsoctcp myhost 40000 s=4,pam_serv=pam_mongo,pamauth=password

5. Enable connections from mapped users by setting the USERMAPPING configuration parameter to BASIC or ADMIN in

the onconfig file.

6. Set up mapping to an operating system user that has no privileges.

Example

For example, on a typical Linux™ system, the user nobody is appropriate. Add the following line to the /etc/onedb/

allowed.surrogates file:

users:nobody

7. Restart the database server.

8. Create a PAM user for the wire listener. The user must be internally authenticated and map to the user nobody.

Example

For example, create a user that is named mongo by running the following SQL in the sysmaster database:

CREATE USER 'mongo' WITH PASSWORD 'aPassword'
 PROPERTIES USER 'nobody';
GRANT CONNECT TO 'mongo';

9. Verify the creation of the user by running the following statement:

Example

SELECT * FROM sysuser:sysmongousers
 WHERE username='mongo';

The result of the query shows the user and hashed password:

username mongo
hashed_password bbb8f9630d5c6e094b9aedd945893faf

10. Set the following parameters in the wire listener configuration file:

◦ Enable authentication: Set authentication.enable=true.

◦ Specify PAM authentication: Set db.authentication=onedb-mongodb-cr.

◦ Optional. Specify the authentication timeout period: Set the listener.authentication.timeout parameter to the

number of milliseconds for authentication timeout.

Chapter 1. JSON compatibility

◦ Specify the mapped user and password for connections and specify to encode and hash the password: Set

the url parameter. Include the NONCE property set to any 16 character string that contains only the digits 0-9

and the lower-case characters a-f (extended grep: [0-9a-f]{16}). For example:

url=jdbc:onedb://10.168.8.135:40000/sysmaster;USER=mongo;
 PASSWORD=aPassword;NONCE=0123456789abcdef

11. Restart the wire listener.

12. Create users that the database server authenticates with PAM by running the SQL statement CREATE USER.

If you have existing MongoDB users, you must re-create those users in the database server.

Encryption for wire listener communications
You can use Secure Sockets Layer (SSL) protocol to encrypt communication for the wire listener.

You can encrypt wire listener communications in one or both of the following ways:

• Configure SSL connections between the wire listener and the database server.

• Configure SSL connections between the wire listener and all client applications.

If you configure SSL communication for both the database server and client applications, you can use the same or different

keystore files on the wire listener for each type of connection.

Configuring SSL connections between the wire listener and the database server
You can encrypt the connections between the wire listener and the database server with the Secure Sockets Layer (SSL)

protocol.

Before you begin

You must have SSL configured for the database server. See Configuring a server instance for secure sockets layer

connections on page .

About this task

The wire listener must use the same public key certificate file as the database server.

To configure SSL connections between the wire listener and the database server:

1. Use the keytool utility that comes with your Java runtime environment to import a client-side keystore database and

add the public key certificate to the keystore:

C:\work>keytool -importcert -file server_keystore_file -keystore client_keystore_name

The server_keystore_file is the name of the server key certificate file.

2. Edit the wire listener properties file to update the url property to use the SSL port that you configured for the database

server and add the SSLCONNECTION=true property to the end of the URL.

3. Start the listener with the javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword system properties set:

47

../sec/ids_ssl_002.html
../sec/ids_ssl_002.html
../sec/ids_ssl_002.html
../sec/ids_ssl_002.html
../sec/ids_ssl_002.html

JSON compatibility

48

java -Djavax.net.ssl.trustStore="client_keystore_path"
-Djavax.net.ssl.trustStorePassword="password" -jar jsonListener.jar
-config jsonListener.properties -logfile jsonListener.log -start

The client_keystore_path is the full path and file name of the client keystore file. The password is the keystore

password.

Configuring SSL connections between the wire listener and client applications
You can encrypt the connections between the wire listener and the client applications with the Secure Sockets Layer (SSL)

protocol.

About this task

All client applications must use the same public key certificate file as the wire listener.

To configure SSL connections between the wire listener and client applications:

1. Create a keystore and certificate for the wire listener.

Use the method that best fits your type of client application and programming language. For example, you can use

OpenSSL or the Java keytool utility.

2. Edit the wire listener properties file to configure the wire listener SSL properties and restart the listener.

Set the following SSL properties:

◦ Set the listener.ssl.enable parameter to true to enable SSL.

◦ Set the listener.ssl.keyStore.file parameter to the path of the keystore file.

◦ Set the listener.ssl.keyStore.password parameter to the password to unlock the keystore file.

◦ Set the listener.ssl.key.alias parameter to the alias or identifier of the keystore entry. If the keystore contains

only one entry, this parameter does not need to be set.

◦ Set the listener.ssl.key.password parameter to the password to unlock the entry from the keystore. If this

parameter is not set, the listener uses the listener.ssl.keyStore.password parameter.

◦ Set listener.ssl.keyStore.type parameter if the keystore is not of type JKS (Java keystore).

3. Configure client applications to connect to the listener over SSL.

High availability support in the wire listener
The wire listener provides high availability support.

To provide high availability for MongoDB client applications, use a high-availability cluster configuration for your HCL

OneDB™ database servers. For each database server in the cluster, run a wire listener that is directly connected to that

database server. Each wire listener must be on the same computer as the database server that it is connected to and all

wire listeners must run on the port 27017. For more information, see http://docs.mongodb.org/meta-driver/latest/legacy/

connect-driver-to-replica-set/.

To provide high availability between the wire listener and the HCL OneDB™ database server, use one of the following

methods:

http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-replica-set/
http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-replica-set/

Chapter 1. JSON compatibility

• Route the connection between the wire listener and the database server through the Connection Manager.

• Configure the url parameter in the wire listener configuration file to use one of the OneDB® JDBC Driver methods of

connecting to a high-availability cluster. For more information, see Dynamically reading the HCL OneDB™ sqlhosts file

on page or Properties for connecting directly to an HDR pair of servers on page .

JSON data sharding
You can shard data with HCL OneDB™. Documents from a collection or rows from a table can be sharded across a cluster

of database servers, reducing the number of documents or rows and the size of the index for the database of each server.

When you shard data across multiple database servers, you also distribute performance across hardware. As your database

grows in size, you can scale up by adding more shard servers to your shard cluster.

Documents or rows that are inserted on a shard server are distributed to the appropriate shard servers in a shard cluster

based on the sharding schema. Queries on a sharded table automatically retrieve data from all relevant shard servers in a

shard cluster. When data is sharded based on a field or column that specifies certain segmentation characteristics, queries

can skip shard servers that do not contain relevant data.

A shard cluster of HCL OneDB™ database servers is a special form of Enterprise Replication. You can create a shard cluster

with Enterprise Replication commands or with MongoDB commands.

HCL OneDB™ shard cluster architecture is very flexible:

• Shard servers can run on different hardware and operating systems.

• Shard servers can run different version of HCL OneDB™. For example, you can upgrade HCL OneDB™ on shard servers

individually.

• Shard servers can have high-availability secondary servers from which users can query the sharded table.

To start sharding data:

1. Prepare shard servers for sharding.

2. Create a shard cluster.

3. Define a schema for sharding data against an existing table.

Preparing shard servers
You must prepare shard servers before you can shard data.

To set up shard servers:

1. On each shard server, set the SHARD_ID configuration parameter to a positive integer value that is unique in the shard

cluster by running the following command:

onmode -wf SHARD_ID=unique_positive_integer

If the SHARD_ID configuration parameter is already set to a positive integer, you can change the value by editing the

onconfig file and then restarting the database server. You can also set the SHARD_MEM configuration parameter to

customize the number of memory pools that are used during shard queries.

49

../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_041.html
../jdbc/ids_jdbc_049.html
../jdbc/ids_jdbc_049.html
../jdbc/ids_jdbc_049.html
../jdbc/ids_jdbc_049.html

JSON compatibility

50

2. Specify trusted hosts information for all shard servers.

On each shard server, run the SQL administration API task() or admin() function with the cdr add trustedhost

argument and include the appropriate host values for all the other shard servers. You must be a Database Server

Administrator (DBSA) to run these functions.

3. On each shard server, edit the wire listener configuration file:

a. Set the sharding.enable parameter to true.

b. Set the sharding.query.parallel.enable parameter to true.

c. Set the update.client.strategy parameter to deleteInsert.

d. If you want to allow shard key field values to be updated, set the update.mode parameter to client. If you

do not want to allow the updating of shard key field values, you can leave the setting of the update.mode

parameter as the default value of mixed.

e. Set the USER attribute in the url parameter to a user who has the REPLICATION privilege. Otherwise, see

Configuring the wire listener for the first time on page 9 for instructions.

4. On each shard server, restart the wire listener.

What to do next

When applications that do not use the wire listener connect to shard servers, enable sharded queries to run against data

across all shard servers by setting the USE_SHARDING session environment variable:

SET ENVIRONMENT USE_SHARDING ON;

For applications that use the wire listener with sharding.enable=true, this environment variable is set automatically by the

wire listener.

Creating a shard cluster with MongoDB commands
You create a shard cluster by adding shard servers with the MongoDB shell command sh.addShard command or the

db.runCommand command with the addShard syntax.

Before you begin

The shard servers must be prepared for sharding. See Preparing shard servers on page 49.

To create a shard cluster from the MongoDB shell:

1. Run the mongo command to start the MongoDB shell.

2. Run one of the following commands with the host name and port that is specified for the HCL OneDB™ server that

you want to add. The specified port must run the HCL OneDB™ network-based listener, for example the onsoctcp

protocol.

a. Run the sh.addShard command.

b. Run the db.runCommand with the addShard command syntax. You can include the fully qualified domain name of

the server instead of the host name. You can specify multiple servers.

Results

A shard cluster is created with the specified shard servers. Each shard server is set up with Enterprise Replication and

assigned an Enterprise Replication group name in its sqlhosts file. The default Enterprise Replication group name for a

Chapter 1. JSON compatibility

database server is the database server name with a suffix of g_. For example, the default Enterprise Replication group name

for a database server that is named myserver is g_myserver.

Example

Examples

Add a server to a shard cluster with addShard

The following command adds the database server that is at port 9202 of myhost2.hcl.com to a shard cluster:

> sh.addShard("myhost2.hcl.com:9202")

Add a server to a shard cluster with db.runCommand and addShard

The following command adds the database server that is at port 9204 of myhost4.hcl.com to a shard cluster.

> db.runCommand({"addShard":"myhost4.hcl.com:9204"})

Add multiple servers to a shard cluster

This example adds the database servers that are at port 9205 of myhost5.hcl.com, port 9206 of

myhost6.hcl.com, and port 9207 of myhost7.hcl.com to a shard cluster.

> db.runCommand({"addShard":["myhost5.hcl.com:9205",
 "myhost6.hcl.com:9206","myhost7.hcl.com:9207"]})

Shard-cluster definitions for distributing data
A cluster of shard servers uses a definition to distribute data across shard servers.

You must create a shard-cluster definition to distribute data across the shard servers. The definition contains the following

information:

• The HCL OneDB™ Enterprise Replication group name of each participating shard server.

• The name of the database and collection or table that is distributed across the shard servers of a shard cluster.

• The field or column that is used as a shard key for distributing data. Shard key values determine which shard server a

document or row is stored on.

• The sharding method by which documents or rows are distributed to specific shard servers. The sharding method is

either a hash-based or expression-based.

Defining a sharding schema with a hash algorithm
The shardCollection command in the MongoDB shell creates a definition for distributing data across the database servers of

a shard cluster.

To create a shard-cluster definition that uses a hash algorithm for distributing data across database servers:

1. Run the mongo command.

Result

The command starts the MongoDB shell.

2. Run the shardCollection command.

51

JSON compatibility

52

There are two ways to run the command:

Choose from:

◦ Run the sh.shardCollection MongoDB command. For example:

> sh.shardCollection("database1.collection1",
 {customer_name:"hashed"})

◦ Run the db.runCommand from the MongoDB shell, with shardCollection command syntax. For example:

> db.runCommand({"shardCollection":"database2.collection_2",
 key:{customer_name:"hashed"}})

The shardCollection command syntax for using a hash algorithm is shown in the following diagram:

db.runCommand ({"shardCollection":" database. { collection | table } ", key:{ { field | column } :"hashed"}})

Element Description Restrictions

database The name of the database that contains the

collection that is distributed across database

servers.

The database must

exist.

collection The name of the collection that is distributed across

database servers.

The collection must

exist.

column The shard key that is used to distribute data across

the database servers of a shard cluster.

The column must exist.

Composite shard keys

are not supported.

field The shard key that is used to distribute data across

the database servers of a shard cluster.

The field must exist.

Composite shard keys

are not supported.

table The name of the table that is distributed across

database servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the MongoDB ensureIndex command on the

shard key of each of a cluster's shard servers. The ensureIndex command ensures that an index for the collection or

table is created on the shard server.

Results

The name of a shard-cluster definition that is created by a shardCollection command that is run through the wire listener is:

sh_database_ { collection | table }

Example

Chapter 1. JSON compatibility

Example

The following command defines a shard cluster that uses a hash algorithm on the shard key value year to distribute data

across multiple database servers.

> sh.shardCollection("mydatabase.mytable",{year:"hashed"})

The name of the created shard-cluster definition is sh_mydatabase_mytable.

Defining a sharding schema with an expression
The MongoDB shell db.runCommand command with shardCollection command syntax creates a definition for distributing data

across the database servers of a shard cluster.

To create a shard-cluster definition that uses an expression for distributing data across database servers:

1. Run the mongo command.

Result

The command starts the MongoDB shell.

2. Run the db.runCommand from the MongoDB shell, with shardCollection command syntax.

The shardCollection command syntax for using an expression is shown in the following diagram:

db.runCommand ({"shardCollection":" database. { collection | table } ", key:{ { column | field } :1},expressions :{

"ER_group_name":expression " "ER_group_name ":"remainder" })

Element Description Restrictions

collection The name of the collection that is distributed

across database servers.

The collection must exist.

column The shard key that is used to distribute data across

the database servers of a shard cluster.

The column must exist.

Composite shard keys are

not supported.

database The name of the database that contains the

collection that is distributed across database

servers.

The database must exist.

ER_group_name The Enterprise Replication group name of a

database server that receives copied data.

The default Enterprise Replication group name

for a database server is the database server's

name prepended with g_. For example, the default

Enterprise Replication group name for a database

server that is named myserver is g_myserver.

None.

53

JSON compatibility

54

Element Description Restrictions

expression The expression that is used to select documents by

shard key value.

None.

field The shard key that is used to distribute data across

the database servers of a shard cluster.

The field must exist.

Composite shard keys are

not supported.

remainder Specifies a database server that receives

documents with shard key values that are not

selected by expressions. The remainder expression

is required.

table The name of the table that is distributed across

database servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the MongoDB ensureIndex command on the

shard key of each of a cluster's shard servers. The ensureIndex command ensures that an index is created for the

collection or table on the shard server.

Results

The name of a shard-cluster definition that is created by a shardCollection command that is run through the wire listener is:

sh_database_ { collection | table }

Example

Examples

Define a shard cluster that uses an expression to distribute data across multiple database servers

The following command defines a shard cluster that uses an expression on the field value state for distributing

collection1 across multiple database servers.

> db.runCommand({"shardCollection":"database1.collection1",
 key:{state:1},expressions:{"g_shard_server_1":"in ('KS','MO')",
 "g_shard_server_2":"in ('CA','WA')","g_shard_server_3":"remainder"}})

The name of the created shard-cluster definition is sh_database1_collection1.

• Inserted documents with KS and MO values in the state field are sent to g_shard_server_1.

• Inserted documents with CA and WA values in the state field are sent to g_shard_server_2.

• All inserted documents that do not have KS, MO, CA, or WA values in the state field are sent to

g_shard_server_3.

Chapter 1. JSON compatibility

Define a shard cluster that uses an expression to distribute data across multiple database servers

The following command defines a shard cluster that uses an expression on the column value animal for

distributing table2 across multiple database servers.

> db.runCommand({"shardCollection":"database1.table2",
 key:{animal:1},expressions:{"g_shard_server_1":"in ('dog','coyote')",
 "g_shard_server_2":"in ('cat')","g_shard_server_3":"in ('rat')",
 "g_shard_server_4":"remainder"}})

The name of the created shard-cluster definition is sh_database2_table2.

• Inserted rows with dog or coyote values in the animal column are sent to g_shard_server_1.

• Inserted rows with cat values in the animal column are sent to g_shard_server_2.

• Inserted rows with rat data values in the animal column are sent to g_shard_server_3.

• All inserted rows that do not have dog, coyote, cat, or rat values in the animal column are sent to

g_shard_server_4.

Define a shard cluster that uses an expression to distribute collections across multiple database servers

The following command defines a shard cluster that uses an expression on the field value year for distributing

collection3 across multiple database servers.

> db.runCommand({"shardCollection":"database1.collection3",
 key:{year:1},expressions:{"g_shard_server_1":"between 1980 and 1989",
 "g_shard_server_2":"between 1990 and 1999",
 "g_shard_server_3":"between 2000 and 2009",
 "g_shard_server_4":"remainder"}})

The name of the created shard-cluster definition is sh_database3_collection3.

• Inserted documents with values of 1980 to 1989 in the year field are sent to g_shard_server_1.

• Inserted documents with values of 1990 to 1999 in the year field are sent to g_shard_server_2.

• Inserted documents with values of 1980 to 1989 in the year field are sent to g_shard_server_3.

• Inserted documents with values below 1980 or above 2009 in the year field are sent to

g_shard_server_4.

Shard cluster management
You can display information about shard cluster participants and about the shard cache on each shard server. You can add

or remove shard servers from a shard cluster.

To display information about shard cluster participants, run the db.runCommand from the MongoDB shell, with listShard

command syntax.

To display information about shard caches, run the onstat -g shard command.

55

JSON compatibility

56

Add a shard server

To add a shard server to the shard cluster, prepare the new shard server and add it to the shard cluster with the addShard

command. Make sure to add the trusted host information for the new shard server to the existing shard servers.

Remove a shard server

To remove a shard server, run the db.runCommand from the MongoDB shell, with removeShard command syntax.

Change the sharding definition

After you add or remove a shard server, you might need to update the sharding definition:

• A definition that uses a hash algorithm to shard data is modified automatically.

• You must modify a sharding definition that uses an expression by running the changeShardCollection command.

When you change the sharding definition, existing data on shard servers is redistributed to match the new definition.

Changing the definition for a shard cluster
The db.runCommand command with changeShardCollection command syntax changes the definition for a shard cluster.

Before you begin

If the shard cluster uses an expression for distributing data across multiple database servers, you must add database

servers to a shard cluster and remove database servers from a shard cluster by running the changeShardCollection

command. If the shard-cluster definition uses a hash algorithm, database servers are automatically added to the shard

cluster when you run the sh.addShard MongoDB shell command.

If you change a shard-cluster definition to include a new shard server, that server must first be added to a shard cluster by

running the db.runCommand command with addShard command syntax.

When a shard-cluster definition changes, existing data on shard servers is redistributed to match the new definition.

About this task

The following steps apply to changing the definition for shard cluster that uses an expression for distributing documents in a

collection across multiple database servers.

To change the definition for a shard cluster:

1. Run the mongo command.

Result

The command starts the MongoDB shell.

2. Change the shard-cluster definition by running the changeShardCollection command. You must redefine all

expressions for all shard servers, not just newly added or changed shard servers.

Chapter 1. JSON compatibility

db.runCommand ({"changeShardCollection":" database. { collection | table } ", expressions:{ "ER_group_name":"

expression" ,"ER_group_name":" remainder" })

Element Description Restrictions

collection The name of the collection that is distributed across database

servers.

The collection must

exist.

database The name of the database that contains the collection that is

distributed across database servers.

The database must

exist.

ER_group_name The Enterprise Replication group name of a database server

that receives copied data.

The default Enterprise Replication group name for a database

server is the database server's name prepended with g_. For

example, the default Enterprise Replication group name for a

database server that is named myserver is g_myserver.

None.

expression The expression that is used to select documents by shard key

value.

None.

remainder The database server that receives documents with shard key

values that are not selected by expressions.

table The name of the table that is distributed across database

servers.

The table must

exist.

3. For optimal query performance, connect to the wire listener and run the MongoDB ensureIndex command on the

shard key each of a cluster's shard servers. The ensureIndex command ensures that an index for the collection or

table is created on the shard server.

Example

Example
You have a shard cluster that is composed of three database servers, and the shard cluster is defined by the following

command:

> db.runCommand({"shardCollection":"database1.collection1",
 expressions:{"g_shard_server_1":"in ('KS','MO')",
 "g_shard_server_2":"in ('CA','WA')","g_shard_server_3":"remainder"})

To add g_shard_server_4 and g_shard_server_5 to the shard cluster and change where data is sent to, run the following

command:

> db.runCommand({"changeShardCollection":"database1.collection1",
 expressions:{"g_shard_server_1":"in ('KS','MO')",
 "g_shard_server_2":"in ('TX','OK')","g_shard_server_3":"in ('CA','WA')",
 "g_shard_server_4":"in ('OR','ID')","g_shard_server_5":"remainder"})

57

JSON compatibility

58

The new shard cluster contains five database servers:

• Inserted documents with a state field value of KS or MO are sent to g_shard_server_1.

• Inserted documents with a state field value of TX or OK are sent to g_shard_server_2.

• Inserted documents with a state field value of CA or WA are sent to g_shard_server_3.

• Inserted documents with a state field value of OR or ID are sent to g_shard_server_4.

• Inserted documents with a state field value that is not in the expression are sent to g_shard_server_5.

To then remove g_shard_server_2 and change where the data that was on g_shard_server_2 is sent to, run the following

command:

> db.runCommand({"changeShardCollection":"database1.collection1",
 expressions:{"g_shard_server_1":"in ('KS','MO')",
 "g_shard_server_3":"in ('TX','CA','WA')",
 "g_shard_server_4":"in ('OK','OR','ID')",
 "g_shard_server_5":"remainder"})

The new shard cluster contains four database servers.

• Inserted documents with a state field value of TX are now sent to g_shard_server_3.

• Inserted documents with a state field value of OK are now sent to g_shard_server_4.

Existing data on shard servers is redistributed to match the new definition.

Viewing shard-cluster participants
Run the db.runCommand MongoDB shell command with listShards syntax to list the Enterprise Replication group names,

hosts, and port numbers of all shard servers in a shard cluster.

1. Run the mongo command.

Result

The command starts the MongoDB shell.

2. Run the listShards command:

Example

db.runCommand({listShards:1})

Results

The listShards command produces output in the following structure:

{
 "serverUsed" : "server_host/IP_address",
 "shards" : [
 {
 "_id" : "ER_group_name_1",
 "host" : "host_1:port_1"
 },
 {
 "_id" : "ER_group_name_2",
 "host" : "host_2:port_2"

Chapter 1. JSON compatibility

 },
 {
 "_id" : "ER_group_name_x",
 "host" : "host_x:port_x"
 }
],
 "ok" : 1
}

ER_group_name

The Enterprise Replication group name of a shard server.

host

The host for a shard-cluster participant. The host can be a localhost name or a full domain name.

IP_address

The IP address of the database server that the listener is connected to.

port

The port number that a shard-cluster participant uses to communicate with other shard-cluster participants.

server_host

The host for the database server that the listener is connected to. The host can be a localhost name or a full

domain name.

Example

Example

For this example, you have a shard cluster defined by the following command:

prompt> db.runCommand({"addShard":["myhost1.ibm.com:9201",
 "myhost2.ibm.com:9202","myhost3.ibm.com:9203",
 "myhost4.ibm.com:9204","myhost5.ibm.com:9205"]})

The following example output is shown when the listShards command is run in the MongoDB shell, and the listener is

connected to the database server at myhost1.ibm.com.

59

JSON compatibility

60

Figure 1. listShards command output for a shard cluster

{
 "serverUsed" : "myhost1.ibm.com/192.0.2.0:9200",
 "shards" : [
 {
 "_id" : "g_myserver1",
 "host" : "myhost1.ibm.com:9200"
 },
 {
 "_id" : "g_myserver2",
 "host" : "myhost2.ibm.com:9202"
 },
 {
 "_id" : "g_myserver3",
 "host" : "myhost3.ibm.com:9203"
 }
 {
 "_id" : "g_myserver4",
 "host" : "myhost4.ibm.com:9204"
 }
 {
 "_id" : "g_myserver5",
 "host" : "myhost5.ibm.com:9205"
 }
],
 "ok" : 1
}

MongoDB API
The HCL OneDB™ support for MongoDB application programming interfaces and commands is described here.

The wire listener implements the MongoDB Wire Protocol. This allows you to connect MongoDB applications and client

drivers to the HCL OneDB™ database through the wire listener. The MongoDB applications send MongoDB operations and

commands to the wire listener, which automatically translates those commands to SQL which it runs against the HCL

OneDB™ database using JDBC.

You can use the MongoDB API to access HCL OneDB™ JSON/BSON collections, relational tables, or TimeSeries tables.

Chapter 1. JSON compatibility

Getting Started with HCL OneDB™'s MongoDB Solution
This topic covers the basics of getting started with using MongoDB API with HCL OneDB™.

How does HCL OneDB™ support the MongoDB API?

The HCL OneDB™ wire listener implements the MongoDB wire protocol. This allows MongoDB applications to connect to

the HCL OneDB™ wire listener and its associated HCL OneDB™ database server. These applications communicate with HCL

OneDB™ as if it was a MongoDB server, with the wire listener acting as a translation layer between theMongoDB wire protocol

and the SQL understood by the HCL OneDB™ database server.

What are the components of the HCL OneDB™ MongoDB solution?

There are three main components: the OneDB® server, the wire listener, and a MongoDB client. The wire listener is a mid-tier

gateway server that enables communication between the MongoDB client and the OneDB® server.

61

JSON compatibility

62

How are JSON collections different from relational tables?

A JSON collection holds BSON (binary JSON) data. BSON documents have a flexible schema and can be used with

unstructed data, meaning the structure and contents of BSON documents can differ from one document to another. This

differs from relational tables where all rows must following the same predefined structure.

HCL OneDB™ fully supports JSON collections, which can be created through the wire listener. Additionally, the wire listener

also makes it possible to run MongoDB queries against your traditional relational tables, using the same MongoDB API that

you would use with JSON collections.

How do MongoDB commands map to SQL features?

MongoDB collection methods Informix SQL statements

find SELECT

save/insert INSERT

remove DELETE

update UPDATE

ensureIndex CREATE INDEX

sort ORDER BY

limit LIMIT/FIRST

Commonly customizable wire listener properties

The properties that control the wire listener and the connection between the client and database server are set in the wire

listener configuration on page 10. The url parameter is required, but all other parameters are optional. Here are the

commonly customized parameters.

url

This required parameter specifies the host name, database server, user ID, and password that are used in connections to the

HCL OneDB™ database server.

authentication.enable

This optional parameter indicates whether to enable user authentication. The default value is false.

listener.port

This optional parameter specifies the port number to listen on for incoming connections from MongoDB clients. The default

value is 27017.

security.sql.passthrough

Chapter 1. JSON compatibility

This optional parameter indicates whether to enable support for issuing SQL statements through the MongoDB API. The

default value is false.

sharding.enable

This optional parameter indicates whether to enable the use of commands and queries on sharded data. The default value is

false.

Starting the wire listener from the command line

You can start the wire listener on page 41 by using a system command. For example:

java -jar onedb-wire-listener.jar
 -config onedb-wire-listener.properties
 -logFile onedb-wire-listener.log -loglevel info -start

MongoDB Create, read, update, and delete (CRUD) operations on collections and tables

These standard MongoDB CRUD operations are supported by HCL OneDB™:

• insert

• find

• update

• remove

This table shows an example of MongoDB operations and comparable SQL statements against relational tables. In the

example, the retirement age of a customer is queried:

MongoDB operation Informix SQL statement

db.customer.insert({ name: “John", age: 65 }) INSERT INTO customer (name, age) VALUES

(“John”,65)

db.customer.find() SELECT * FROM customer

db.customer.find({age: { $gt:65 } }) SELECT * FROM customer WHERE age > 65

db.customer.drop() DROP TABLE customer

db.customer.ensureIndex({ name : 1, age : -1 }) CREATE INDEX idx_1 on customer(name, age

DESC)

db.customer.remove({age: { $gt:65 } }) DELETE FROM customer where age > 65

db.customer.update({ age: { $gt: 64 } }, { $set: { status:

“Retire" } }, { multi: true })

UPDATE customer SET status = “Retire"

WHERE age > 64

Implicit operations for JSON collections and databases

If you insert into a non-existent JSON collection, a collection is implicitly created.

63

JSON compatibility

64

If you create a JSON collection in a non-existent database, a database is implicitly created.

Creating and listing indexes

You can use the MongoDB ensureIndex syntax to create an index that works for all data types. For example:

db.collection.ensureIndex({ zipcode: 1 })

db.collection.ensureIndex({ state: 1, zipcode: -1})

You can use the HCL OneDB™ ensureIndex syntax to create an index for a specific data type. For example:

db.collection.ensureIndex({ zipcode : [1, “$int”] })

db.collection.ensureIndex({ state: [1, “$string”], zipcode: [-1, “$int”] })

You can list indexes by running the MongoDB getIndexes command.

Accessing multiple databases per connection

In standard OneDB® JDBC connections, you must specify the database name on the connection string and you must create

one connection per database. In MongoDB, all messages include a fully qualified namespace that includes the database

name and the collection. MongoDB connections are not associated with a particular database and each individual message

or command specifies the intended database. A single MongoDB connection can switch between databases.

Moving data to and from collections and tables

You can run the MongoDB mongodump and mongoexport utilities to export data from MongoDB to OneDB®.

You can run the MongoDB mongorestore and mongoimport utilities to import data from MongoDB to OneDB®.

Viewing usage statistics

You can run the MongoDB serverStatus command to get the wire listener status information, including:

• Uptime

• Number of active and available connections

• Number of open cursors

• Total number of requests

• Counters for the number operations (queries, inserts, updates, deletes, commands, etc)

MongoDB to HCL OneDB™ term mapping
The commonly used MongoDB terminology and concepts are mapped to the equivalent HCL OneDB™ terminology and

concepts.

The following table provides a summary of commonly used MongoDB terms and their HCL OneDB™ conceptual equivalents.

Chapter 1. JSON compatibility

Table 2. MongoDB concepts mapped to one or more HCL OneDB™ concepts.

Mong

oDB

con

cept

HCL On

eDB™

concept Description

collect

ion

table In HCL OneDB™, a collection (also referred to as a JSON collection) is just a special type of table. A

JSON collection is similar to a relational database table, except it does not enforce a schema.

docu

ment

record /

row

In HCL OneDB™, a document is sometimes referred to as a JSON document and is stored as a record

or row in a JSON collection (table).

field column While JSON documents allow for the storage of unstructured data with a flexible schema, you can

also think of fields within the JSON document as similar to relational columns in that they define the

attributes contained within the record.

prima

ry /

secon

dary

primary

server /

secondary

server

The MongoDB primary and secondary is equivalent to the HCL OneDB™ primary server and secondary

server. However HCL OneDB™ secondary servers have additional capabilities. For example, data on a

secondary server can be updated and propagated to primary servers.

replica

set

high-availa

bility

cluster

The MongoDB replica set is equivalent to the HCL OneDB™ high-availability clusetr. However, when

the replica set is updated, it is then sent to all servers, not only to the primary server.

shar

ded

cluster

shard

cluster

In HCL OneDB™, a shard cluster is a group of servers (sometimes called shard servers) that contain

sharded data.

shard

key

shard key These concepts are equiavlent between MongoDB and HCL OneDB™.

Language drivers
The wire listener parses messages sent using the MongoDB Wire Protocol.

Therefore you can use any of the MongoDB community drivers to store, update, and query JSON documents with HCL

OneDB™ as your backend JSON data store. These drivers can include Java™, C/C++, Ruby, PHP, PyMongo, and so on.

Download the MongoDB drivers for the programming languages at http://docs.mongodb.org/ecosystem/drivers/.

Command utilities and tools
You can use the MongoDB shell and any of the standard MongoDB command utilities and tools with the HCL OneDB™ wire

listener.

You can use the MongoDB shell to run interactive queries and operations against HCL OneDB™. You can use any version of

the MongoDB shell that supports the mongo.api.version on page 23 configured for the wire listener.

65

http://docs.mongodb.org/ecosystem/drivers/

JSON compatibility

66

You can run the MongoDB mongoexport, mongoimport, mongodump, and mongorestore utilities to import and export data to

or from HCL OneDB™.

Collection methods
HCL OneDB™ supports a subset of the MongoDB collection methods.

The collection methods can be run on a JSON collection or a relational table. The syntax for collection methods in the

mongo shell is db.collection_name.collection_method(), where db refers to the current database, and collection_name is

the name of the JSON collection or relational table, collection_method is the MongoDB collection method. For example,

db.cartype.count() determines the number of documents that are contained in the cartype collection.

Table 3. Supported collection methods

Collection method JSON

collections

Relational

tables

Details

aggregate Yes Yes

count Yes Yes

createIndex Yes Yes
For more information, see Index creation on page 67.

dataSize Yes No

distinct Yes Yes

drop Yes Yes

dropIndex Yes Yes

dropIndexes Yes No

ensureIndex Yes Yes
For more information, see Index creation on page 67.

find Yes Yes

findAndModify Yes Yes
For relational tables, findAndModify is supported only for tables that have

a primary key. This method is not support sharded data.

findOne Yes Yes

getIndexes Yes No

getShardDistribution No No

getShardVersion No No

getIndexStats No No

group No No

Chapter 1. JSON compatibility

Table 3. Supported collection methods (continued)

Collection method JSON

collections

Relational

tables

Details

indexStats No No

insert Yes Yes

isCapped Yes Yes This command returns false because capped collections are not

supported in HCL OneDB™.

mapReduce No No

reIndex No No

remove Yes Yes The justOne option is not supported. This command deletes all

documents that match the query criteria.

renameCollection No No

save Yes No

stats Yes No

storageSize Yes No

totalSize Yes No

update Yes Yes The multi option is supported for JSON collections if

update.one.enable=true in the wire listener properties file. For relational

tables, the multi-parameter is ignored and all documents that meet the

query criteria are updated. If update.one.enable=false, all documents that

match the query criteria are updated.

validate No No

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

Index creation
HCL OneDB™ supports the creation of indexes on collections and relational tables by using the MongoDB API and the wire

listener.

• Index creation by using the MongoDB syntax on page 68

• Index creation for a specific data type by using the HCL OneDB extended syntax on page 68

• Index creation for arrays using the Informix extended syntax on page 69

• Index creation for text, geospatial, and hashed on page 70

67

http://docs.mongodb.org/manual/reference/

JSON compatibility

68

Index creation by using the MongoDB syntax

For JSON collections and relational tables, you can use the MongoDB createIndex and ensureIndex syntax to create an index

that works for all data types. For example:

db.collection.createIndex({ zipcode: 1 })
db.collection.createIndex({ state: 1, zipcode: -1})

Tip: If you are creating an index for a JSON collection on a field that has a fixed data type, you can get the best query

performance by using the HCL OneDB™ extended syntax.

The following options are supported:

• name

• unique

The following options are not supported:

• background

• default_language

• dropDups

• expireAfterSeconds

• language_override

• sparse

• v

• weights

Index creation for a specific data type by using the HCL OneDB™ extended syntax
You can use the HCL OneDB™ createIndex or ensureIndex syntax on collections to create an index for a specific data type.

For example:

db.collection.createIndex({ zipcode : [1, "$int"] })
db.collection.createIndex({ state: [1, "$string"], zipcode: [-1, "$int"] })

This syntax is supported for collections only. It not supported for relational tables.

Tip: If you are creating an index on a field that has a fixed data type, you can get better query performance by using

the HCL OneDB™ extended syntax.

The following data types are supported:

• $bigint

• $binary

• $boolean

• $date

• $double2 on page 69

Chapter 1. JSON compatibility

• $int3 on page 69

• $integer3 on page 69

• $lvarchar1 on page 69

• $number2 on page 69

• $string1 on page 69

• $timestamp

• $varchar

Notes:

1. $string and $lvarchar are aliases and create lvarchar indexes.

2. $number and $double are aliases and create double indexes.

3. $int and $integer are aliases.

Index creation for arrays using the Informix extended syntax
You can use the HCL OneDB™ createIndex or ensureIndex syntax on collections to create an index for arrays. For example:

db.collection.createIndex({ "my_array" : [1, "$array", "$int"] })

which creates an integer array index on the field named "my_array".

This syntax is similar to the Informix extended typed syntax. Specify the type of the index as "$array" and then provide a third

argument specifying the data type stored in the array.

Note: This syntax is supported for collections only. It is not supported for relational tables.

The following data types are supported with array indexes:

• $bigint

• $date

• $double1 on page 69

• $int2 on page 69

• $integer2 on page 69

• $number1 on page 69

• $varchar

Notes:

69

JSON compatibility

70

1. $number and $double are aliases and create double indexes.

2. $int and $integer are aliases.

Index creation for text, geospatial, and hashed

Text indexes

Text indexes are supported. You can search string content by using text search in documents of a collection.

You can create text indexes by using the MongoDB or HCL OneDB™ syntax. For example, here is the MongoDB

syntax:

db.articles.ensureIndex({ abstract: "text" })

The HCL OneDB™ syntax provides additional support for the HCL OneDB™ basic text search functionality. For

more information, see createTextIndex on page 79.

Geospatial indexes

2dsphere indexes are supported in HCL OneDB™ by using the GeoJSON objects, but not the MongoDB legacy

coordinate pairs.

2d indexes are not supported.

Hashed indexes

Hashed indexes are not supported. If a hashed index is specified, a regular untyped index is created.

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

Database commands
HCL OneDB™ supports a subset of the MongoDB database commands.

The basic syntax for database commands in the mongo shell is db.command(), where db refers to the current database,

and command is the database command. You can use the mongo shell helper method db.runCommand() to run database

commands on the current database.

• User commands on page 71

• Database operations on page 72

http://docs.mongodb.org/manual/reference/

Chapter 1. JSON compatibility

User commands

Aggregation commands

Table 4. Aggregation commands

MongoDB command JSON

collecti

ons

Relational

tables

Details

aggregate Yes Yes

count Yes Yes

distinct Yes Yes

group No No

mapReduce No No

Geospatial commands

Table 5. Geospatial commands

MongoDB command JSON

collecti

ons

Relational

tables

Details

geoNear Yes No Supported for the GeoJSON format. The MongoDB legacy

coordinate pairs are not supported.

geoSearch No No

geoWalk No No

Query and write operation commands

Table 6. Query and write operation commands

MongoDB command JSON

collections

Relational

tables

Details

delete Yes Yes

eval No No

find Yes Yes

findAndModify Yes Yes For relational tables, the findAndModify command is

supported only for tables that have a primary key. This

command does not support sharded data.

getLastError Yes Yes

71

JSON compatibility

72

Table 6. Query and write operation commands (continued)

MongoDB command JSON

collections

Relational

tables

Details

getMore Yes Yes

getPrevError No No

insert Yes Yes

resetError No No

update Yes Yes

Database operations

Authentication commands

Table 7. Authentication commands

Name Supported Details

authenticate Yes

logout Yes

getnonce Yes

User management commands

Table 8. User management commands

Name Supported Details

createUser Yes

dropAllUsersFromDatab

ase

Yes

dropUser Yes

grantRolesToUser Yes

revokeRolesFromUser Yes

updateUser Yes

usersInfo Yes

Chapter 1. JSON compatibility

Role management commands

Table 9. Role management commands

Name Supported Details

createRole Yes

dropAllRolesFromDatab

ase

Yes

dropRole Yes

grantPrivilegesToRole Yes

grantRolesToRole Yes

invalidateUserCache No

rolesInfo Yes

revokePrivilegesFromRole Yes

revokeRolesFromRole Yes

updateRole Yes

Diagnostic commands

Table 10. Diagnostic commands

Name Supported Details

buildInfo Yes
Whenever possible, the HCL OneDB™ output fields are identical to

MongoDB. There are additional fields that are unique to HCL OneDB™.

collStats Yes
The value of any field that is based on the collection size is an

estimate, not an exact value. For example, the value of the field 'size' is

an estimate.

connPoolStats No

cursorInfo No

dbStats Yes
The value of any field that is based on the collection size is an

estimate, not an exact value. For example, the value of the field

'dataSize' is an estimate.

features Yes

getCmdLineOpts Yes

73

JSON compatibility

74

Table 10. Diagnostic commands (continued)

Name Supported Details

getLog No

hostInfo Yes
The memSizeMB, totalMemory, and freeMemory fields indicate the amount

of memory that is available to the Java™ virtual machine (JVM) that is

running, not the operating system values.

indexStats No

listCommands Yes

listDatabases Yes
The value of any field that is based on the collection size is an

estimate, not an exact value. For example, the value of the field

'sizeOnDisk' is an estimate.

The listDatabases command estimates the size of all collections and

collection indexes for each database. However, relational tables and

indexes are excluded from this size calculation.

Important: The listDatabases command performs expensive

and CPU-intensive computations on the size of each database

in the HCL OneDB™ instance. You can decrease the expense by

using the sizeStrategy option.

sizeStrategy

You can use this option to configure the strategy for

calculating database size when the listDatabases

command is run.

sizeStrategy: { { estimate | { estimate:n} | compute | none |

perDatabaseSpace } }

estimate

Estimate the size of the documents in the collection

by using 1000 (or 0.1%) of the documents. This is the

default value.

The following example estimates the collection size by

using the default of 1000 (or 0.1%) of the documents:

db.runCommand({listDatabases:1,
 sizeStrategy:"estimate"})

Chapter 1. JSON compatibility

Table 10. Diagnostic commands (continued)

Name Supported Details

estimate: n

Estimate the size of the documents in a collection by

sampling one document for every n documents in the

collection.

The following example estimates the collection size by

using sample size of 0.5% or 1/200th of the documents:

db.runCommand({listDatabases:1,
 sizeStrategy:{estimate:200}})

compute

Compute the exact size of each database.

db.runCommand({listDatabases:1,
 sizeStrategy:"compute"})

none

List the databases but do not compute the size. The

database size is listed as 0.

db.runCommand({listDatabases:1,
 sizeStrategy:"none"})

perDatabaseSpace

Calculate the size of a database by adding the sizes

for all dbspaces, sbspaces, and blobspaces that are

assigned to the tenant database.

Important: The perDatabaseSpace option applies

only to tenant databases that are created by the

multi-tenancy feature.

db.runCommand({listDatabases:1 ,
 sizeStrategy:"perDatabaseSpace"})

ping Yes

serverStatus Yes

top No

whatsmyuri Yes

75

JSON compatibility

76

Instance administration commands

Table 11. Instance administration commands

Name JSON collections Relational tables Details

clone No No

cloneCollection No No

cloneCollectionAsCap

ped

No No

collMod No No

compact No No

convertToCapped No No

copydb No No

create Yes No
HCL OneDB™ does not support the

following flags:

• capped

• autoIndexID

• size

• max

createIndexes Yes Yes

drop Yes Yes
HCL OneDB™ does not lock the

database to block concurrent

activity.

dropDatabase Yes Yes

dropIndexes Yes No
The MongoDB deleteIndexes

command is equivalent.

filemd5 Yes Yes

fsync No No

getParameter No No

killCursors Yes Yes

listCollections Yes Yes The includeRelational and

includeSystem flags are supported

Chapter 1. JSON compatibility

Table 11. Instance administration commands (continued)

Name JSON collections Relational tables Details

to include or exclude relational or

system tables in the results.

Default is includeRelational=true

and includeSystem=false.

listIndexes Yes Yes

logRotate No No

reIndex No No

renameCollection No No

repairDatabase No No

setParameter No No

shutdown Yes Yes
The timeoutSecs flag is

supported. In the HCL OneDB™,

the timeoutSecs flag determines

the number of seconds that the

wire listener waits for a busy client

to stop working before forcibly

terminating the session.

The force flag is not supported.

touch No No

Replication commands

Table 12. Replication commands

Name Supported

isMaster Yes

replSetFreeze No

replSetGetStatus No

replSetInitiate No

replSetMaintenance No

replSetReconfig No

77

JSON compatibility

78

Table 12. Replication commands (continued)

Name Supported

replSetStepDown No

replSetSyncFrom No

Resync No

Sharding commands

Table 13. Replication commands

Name JSON

collections

Relational

tables

Details

addShard Yes Yes
The MongoDB maxSize and name options are not

supported.

In addition to the MongoDB command syntax for adding

a single shard server, you can use the HCL OneDB™

specific syntax to add multiple shard servers in one

command by sending the list of shard servers as an

array. For more information, see Creating a shard cluster

with MongoDB commands on page 50.

enableSharding Yes Yes
This action is not required for HCL OneDB™ and

therefore this command has no affect for HCL OneDB™.

flushRouterConfig No No

isdbgrid Yes Yes

listShards Yes Yes
The equivalent HCL OneDB™ command is cdr list server.

movePrimary No No

removeShard No No

shardCollection Yes Yes
The equivalent HCL OneDB™ command is cdr define

shardCollection.

The MongoDB unique and numInitialChunks options are

not supported.

shardingState No No

Chapter 1. JSON compatibility

Table 13. Replication commands (continued)

Name JSON

collections

Relational

tables

Details

split No No

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

HCL OneDB™ JSON commands
The HCL OneDB™ JSON commands are available in addition to the supported MongoDB commands. These commands

enable functionality that is supported by HCL OneDB™ and they are run by using the MongoDB API.

The syntax for using HCL OneDB™ commands in the MongoDB shell is:

db.runCommand({command_document})

The command_document contains the HCL OneDB™ command and any parameters.

• createTextIndex on page 79

• exportCollection on page 80

• importCollection on page 82

• lockAccounts on page 83

• runFunction on page 84

• runProcedure on page 84

• transaction on page 85

• unlockAccounts on page 86

createTextIndex

Create HCL OneDB™ Basic Text Search (BTS) indexes.

Important: If you create text indexes by using the HCL OneDB™ createTextIndex command, you must query them

by using the HCL OneDB™ $ifxtext query operator. If you create text indexes by using the MongoDB syntax for text

indexes, you must query them by using the MongoDB $text query operator.

createTextIndex : " collection_name " , name : " indexName " [, key : { " column " }] , options : { [<btx index

parameters> (explicit id)] }

createTextIndex

This required parameter specifies the name of the collection or relational table where the BTS index is created.

name

This required parameter specifies the name of the BTS index.

79

http://docs.mongodb.org/manual/reference/
btx%20index%20parameters
btx%20index%20parameters

JSON compatibility

80

options

This required parameter specifies the name-value pairs for the BTS parameters that are used when creating the

index. If no parameter values are required, you can specify an empty document.

Use BTS index parameters to customize the behavior of the index and how text is indexed. Include JSON

index parameters to control how JSON and BSON documents are indexed. For example, you can index the

documents as field name-value pairs instead of as unstructured text so that you can search for text by field.

The name and values of the BTS index parameters in the options parameter are the same as the syntax for

creating a BTS access method with the SQL CREATE INDEX statement. The following example creates an index

named articlesIdx on the articles collection by using the BTS parameter all_json_names="yes":

db.runCommand({
 createTextIndex:"articles",
 name:"articlesIdx",
 options:{all_json_names:"yes"}})

key

This parameter is required if you are indexing relational tables, but optional if you are indexing collections. This

parameter specifies which columns to index for relational tables.

The following example creates an index named myidx in the mytab relational table on the title and abstract

columns:

db.runCommand({
 createTextIndex:"mytab",
 name:"myidx",
 key:{"title":"text","abstract":"text"},
 options:{}})

exportCollection

Export JSON collections from the wire listener to a file.

exportCollection : " collection_name " , file : " filepath " , format : { { " json " | " jsonArray " } [, fields : { " filter " }] | " csv

" , fields : { " filter " } } [, query : { " query_document " }]

exportCollection

This required parameter specifies the collection name to export.

file

This required parameter specifies the output file path on the host machine where the wire listener is running.

For example:

• UNIX™ is file:"/tmp/export.out"

• Windows™ is file:"C:/temp/export.out"

format

This required parameter specifies the exported file format.

Chapter 1. JSON compatibility

json

Default. The .json file format. One JSON-serialized document per line is exported.

The following command exports all documents from the collection that is named c by using the

json format:

> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
 ,format:"json"})

The result of this command will look like this:

{
 "ok":1,
 "n":1000,
 "millis":NumberLong(119),
 "rate":8403.361344537816
}

Where "n" is the number of documents that are exported, "millis" is the number of milliseconds

it took to export, and "rate" is the number of documents per second that are exported.

jsonArray

The .jsonArray file format. This format exports an array of JSON-serialized documents with no

line breaks. The array format is JSON-standard.

The following command exports all documents from the collection c by using the jsonArray

format:

> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
 , format:"jsonArray"})
{
 "ok":1,
 "n":1000,
 "millis":NumberLong(81),
 "rate":12345.67901234568
}

Where "n" is the number of documents that are exported, "millis" is the number of milliseconds

it took to export, and "rate" is the number of documents per second that are exported.

csv

The .csv file format. Comma-separated values are exported. You must specify which fields to

export from each document. The first line of the .csv file contains the fields and all subsequent

lines contain the comma-separated document values.

fields

This parameter specifies which fields are included in the output file. This parameter is required for the csv

format, but optional for the json and jsonArray formats.

81

JSON compatibility

82

The following command exports all documents from the collection that is named c by using the csv format,

only output the "_id" and "name" fields:

> db.runCommand({exportCollection: "c" ,file:"/tmp/export.out",
 format: "csv", fields: {"_id": 1, "name": 1}})

query

This optional parameter specifies a query document that identifies which documents are exported. The

following example exports all documents from the collection that is named c that have a "qty" field that is less

than 100:

> db.runCommand({exportCollection: "c", file: "/tmp/export.out",
 format: "json", query: {"qty": {"$lt": 100}}})

importCollection

Import JSON collections from the wire listener to a file.

importCollection : " collection_name " , file : " filepath " , format : " { json | jsonArray | csv } "

importCollection

The required parameter specifies the collection name to import.

file

This required parameter specifies the input file path. For example, file: "/tmp/import.json".

Important: The input file must be on the same host machine where the wire listener is running.

format

This required parameter specifies the imported file format.

json

Default. The .json file format.

The following example imports documents from the collection that is named c by using the json

format:

> db.runCommand({importCollection: "c", file: "/tmp/import.out",
 format:"json"})

jsonArray

The .jsonArray file format.

The following example imports documents from the collection c by using the jsonArray format:

> db.runCommand({exportCollection: "c", file: "/tmp/import.out",
 format:"jsonArray"})

Chapter 1. JSON compatibility

csv

The .csv file format.

lockAccounts

Lock a database or user account.

Important:

• To run this command, you must be the instance administrator.

• If you specify the lockAccounts:1 command without specifying a db or user argument, all accounts in all

databases are locked.

lockAccounts : { 1 [{ , db : { " database_name " | [" database_name "] | { " $regex " : " json_document " } | { { | " include "

: { " database_name " | [" database_name "] | { " $regex " : " json_document " } } | " exclude " : { " database_name " | ["

database_name "] | { " $regex " : " json_document " } } } } } " | , user : { " user_name " | " json_document " } }] }

lockAccounts:1

This required parameter locks a database or user account.

db

This optional parameter specifies the database name of an account to lock. For example, to lock all accounts in

database that is named foo:

> db.runCommand({lockAccounts: 1 ,db: "foo"})

exclude

This optional parameter specifies the databases to exclude. For example, to lock all accounts on

the system except the accounts that are in the databases named alpha and beta:

> db.runCommand({lockAccounts: 1, db: {"exclude": ["alpha", "beta"]})

include

This optional parameter specifies the databases to include. For example, to lock all accounts in

the databases named delta and gamma:

> db.runCommand({lockAccounts: 1, db: {"include": ["delta", "gamma"]})

$regex

This optional MongoDB evaluation query operator selects values from a specified JSON

document. For example, to lock accounts for databases that begin with the character a. and end

in e:

> db.runCommand({lockAccounts: 1, db: {"$regex": "a.*e"})

83

JSON compatibility

84

user

This optional parameter specifies the user accounts to lock. For example, to lock the account of all users that

are not named alice:

> db.runCommand({lockAccounts: 1, user: {$ne: "alice"}});

runFunction

Run an SQL function through the wire listener. This command is equivalent to the SQL statement EXECUTE FUNCTION.

runFunction : " function_name " [, " arguments " : [argument]]

runFunction

This required parameter specifies the name of the SQL function to run. For example, a current function returns

the current date and time:

> db.runCommand({runFunction: "current"})
{"returnValue": 2016-04-05 12:09:00, "ok":1}

arguments

This parameter specifies an array of argument values to the function. You must provide as many arguments as

the function requires. For example, an add_values function requires two arguments to add together:

> db.runCommand({runFunction: "add_values", "arguments": [3,6]})
{"returnValue": 9, "ok": 1}

The following example returns multiple values from a func_return3 function:

> db.runCommand({runFunction: "func_return3", "arguments" :[101]})
{"returnValue": {"serial_num": 1103, "name": "Newton", "points": 100}, "ok": 1}

runProcedure

Run an SQL stored procedure through the wire listener. This command is equivalent to the SQL statement EXECUTE

PROCEDURE.

runProcedure : " procedure_name " [, " arguments " : [argument]]

runProcedure

This required parameter specifies the name of the SQL procedure to run. For example, a colors_list stored

procedure, which uses a WITH RESUME clause in its RETURN statement, returns multiple rows about colors:

> db.runCommand({runProcedure: "colors_list"})
{"returnValue": [
 {"color" : "Red","hex" : "FF0000"},
 {"color" : "Blue","hex" : "0000A0"},
 {"color" :"White","hex" : "FFFFFF"}
], "ok" : 1}

Chapter 1. JSON compatibility

arguments

This parameter specifies an array of argument values to the procedure. You must provide as many arguments

as the procedure requires. For example, an increase_price procedure requires two arguments to identify the

original price and the amount of increase:

> db.runCommand({runProcedure: "increase_price", "arguments": [101, 10]})
{"ok":1}

transaction

Enable or disable transaction support for a session, run a batch transaction, or, when transaction support is enabled, commit

or rollback transactions. This command binds or unbinds a connection to the current MongoDB session in a database. The

relationship between a MongoDB session and the HCL OneDB™ JDBC connection is not static.

Important: This command is not supported for queries that are run on shard servers.

transaction : { " enable " | " disable " | " commit " | " rollback " | " execute " , " commands " : [command_docs] [, " finally " :

[command_docs]] | " status " }

enable

This optional parameter enables transaction mode for the current session in the current database. The

following example shows how to enable transaction mode:

> db.runCommand({transaction: "enable"})
{"ok":1}

disable

This optional parameter disables transaction mode for the current session in the current database. The

following example shows how to disable for transaction mode:

> db.c.find()
{"_id":ObjectId("52a8f9c477a0364542887ed4"),"a":1}
> db.runCommand({transaction: "disable"})
{"ok":1}

commit

If transactions are enabled, this optional parameter commits the current transaction. If transactions are

disabled, an error is shown. The following example shows how to commit the current transaction:

> db.c.insert({"a": 1})
> db.runCommand({transaction: "commit"})
{"ok":1}

rollback

If transactions are enabled, this optional parameter rolls back the current transaction. If transactions are

disabled, an error is shown. The following example shows how to roll back the current transaction:

> db.c.insert({"a": 2})
> db.c.find()
{"_id":ObjectId("52a8f9c477a0364542887ed4"),"a":1}

85

JSON compatibility

86

{"_id":ObjectId("52a8f9e877a0364542887ed5"),"a":2}
> db.runCommand({transaction: "rollback"})
{"ok":1}

execute

This optional parameter runs a batch of commands as a single transaction. If transaction mode is not enabled

for the session, this parameter enables transaction mode for the duration of the transaction.

The list of command documents can include insert, update, delete, findAndModify, and find command

documents. In insert, update, and delete command documents, you cannot set the ordered property to false.

You can use a find command document to run queries, including SQL queries, but not commands. A find

command document can include the $orderby, limit, skip, and sort operators. The following example deletes a

document from the inventory collection and inserts documents into the archive collection:

> db.runCommand({"transaction" : "execute",
 "commands" : [
 {"delete": "inventory", "deletes" : [{ "q" : { "_id" : 432432 } }] },
 {"insert" : "archive",
 "documents" : [{ "_id": 432432, "name" : "apollo", "last_status" : 9}]
 }
]
})

Include the optional finally argument if you have a set of command documents to run at the end of the

transaction regardless of whether the transaction is successful. The following example runs a query with the .

The command document for the finally argument unsets the USE_DWA environment variable regardless of

whether the previous query succeeds.

> db.runCommand({"transaction" : "execute",
 "commands" : [
 {"find" : "system.sql", "filter" : {"$sql" :
 "SET ENVIRONMENT USE_DWA 'ACCELERATE ON'" } },
 {"find" : "system.sql", "filter" : {"$sql" :
 "SELECT SUM(s.amount) as sum FROM sales AS s
 WHERE s.prid = 100 GROUP BY s.zip" } }
],
"finally" : [{"find":"system.sql", "filter" : {"$sql" :
 "SET ENVIRONMENT USE_DWA 'ACCELERATE OFF'" } }]
})

status

This optional parameter prints status information to indicate whether transaction mode is enabled, and

if transactions are supported by the current database. The following example shows how to print status

information:

> db.runCommand({transaction: "status"})
{"enabled": true, "supports": true, "ok": 1}

unlockAccounts

Unlock a database or user account.

Chapter 1. JSON compatibility

Important:

• To run this command, you must be the instance administrator.

• If you specify the unlockAccounts:1 command without specifying a db or user argument, all accounts in all

databases are unlocked.

unlockAccounts : { { 1 [{ , db : { " database_name " | [" database_name "] | { " $regex " : " json_document " } | { { | " include

" : { " database_name " | [" database_name "] | { " $regex " : " json_document " } } | " exclude " : { " database_name " | ["

database_name "] | { " $regex " : " json_document " } } } } } " | , user : { " user_name " | " json_document " } }] } }

unlockAccounts:1

This required parameter unlocks a database or user account.

db

This optional parameter specifies the database name of an account to unlock. For example, to unlock all

accounts in database that is named foo:

> db.runCommand({unlockAccounts: 1, db: "foo"})

exclude

This optional parameter specifies the databases to exclude. For example, to unlock all accounts

on the system except the accounts that are in the databases named alpha and beta:

> db.runCommand({unlockAccounts: 1, db: {"exclude": ["alpha", "beta"]})

include

This optional parameter specifies the databases to include. For example, to unlock all accounts in

the databases named delta and gamma:

> db.runCommand({unlockAccounts: 1, db: {"include": ["delta", "gamma"]})

$regex

This optional MongoDB evaluation query operator selects values from a specified JSON

document. For example, to unlock accounts for databases that begin with the character a. and

end in e:

> db.runCommand({unlockAccounts:1, db:{"$regex":"a.*e"})

user

This optional parameter specifies the user accounts to unlock. For example, to unlock the account of all users

that are not named alice:

> db.runCommand({unlockAccounts: 1, user: {$ne: "alice"}});

87

JSON compatibility

88

Running HCL OneDB™ queries through the MongoDB API
You can use MongoDB API commands through the wire listener to query collections and relational tables, run SQL

commands, and run queries that join collections and relational tables.

Running SQL commands by using the MongoDB API
You can run SQL statements by using the MongoDB API and retrieve results back. The results of the SQL statements are

treated like they are documents in a JSON collection.

Before you begin

You must enable SQL operations by setting security.sql.passthrough=true in the wire listener properties file.

From the MongoDB shell command, use the abstract system collection system.sql as the collection name and $sql as the

query operator, followed by the SQL statement.

For example:

> db.getCollection("system.sql").find({ "$sql": "sql_statement" })

To use host variables, include question marks in the SQL statement, and include the $bindings operator with an array that

contains a value for each host variable in order of appearance. For example:

> db.getCollection("system.sql").find({ "$sql": "sql_statement",
 "$bindings": [values]})

Example

Examples

Create an SQL table

In this example, an SQL table is created by running the HCL OneDB™ CREATE TABLE command by using the

MongoDB API:

> db.getCollection("system.sql").find({ "$sql": "create table foo (c1 int)" })

Drop an SQL table

In this example, an SQL table is dropped by running the HCL OneDB™ DROP TABLE command by using the

MongoDB API:

> db.getCollection("system.sql").find({"$sql": "drop table foo" })

Delete SQL customer call records that are more than 5 years old

In this example, customer call records stored in SQL tables are deleted by running the HCL OneDB™ DELETE

command by using the MongoDB API:

> db.getCollection("system.sql").findOne({ "$sql":
 "delete from cust_calls where (call_dtime + interval(5) year to year) < current" })

Result: 7 rows were deleted.

{ "n" : 7 }

Chapter 1. JSON compatibility

Join JSON collections

In this example, a query counts the number of orders customers placed by using an outer join to include the

customers who did not place orders.

> db.getCollection("system.sql").find({ "$sql": "select
 c.customer_num,o.customer_num as order_cust,count(order_num) as
 order_count from customer c left outer join orders o on
 c.customer_num = o.customer_num group by 1, 2 order by 2" })

Result:

{ "customer_num" : 113, "order_cust" : null, "order_count" : 0 }
{ "customer_num" : 114, "order_cust" : null, "order_count" : 0 }
{ "customer_num" : 101, "order_cust" : 101, "order_count" : 1 }
{ "customer_num" : 104, "order_cust" : 104, "order_count" : 4 }
{ "customer_num" : 106, "order_cust" : 106, "order_count" : 2 }

Delete rows based on a host variable

In this example, the statement includes a host variable that specifies to delete the rows that have the name

"john".

> db.getCollection("system.sql").find({"$sql": "delete from mytab
 where name = ?", "$bindings" : ["john"] })

Run a user-defined function with host variables

In this example, the statement runs a user-defined routine with two host variables to raise prices.

> db.getCollection("system.sql").find({
 "$sql": "execute function raise_price(?, ?)",
 "$bindings" : [101, 0.10] })

Running MongoDB operations on relational tables
You can run MongoDB operations on HCL OneDB™ relational tables by using the MongoDB API.

About this task

Use the MongoDB database methods to run read and write operations on a relational table as if the table were a JSON

collection. The wire listener examines the database and if the accessed entity is a relational table, it converts the basic

operations on that table to SQL and converts the returned values into a JSON document. At the first access to an entity, the

wire listener caches the name and type of that entity. The first access results in an extra call to the HCL OneDB™ server, but

subsequent operations do not.

From the MongoDB API, enter the relational table name as the collection name in the MongoDB collection method.

For example:

>db.getCollection("tablename");

Example

89

JSON compatibility

90

Examples

The following examples use the customer table in the stores_demo sample database. All of the tables in the stores_demo

database are relational tables, but you can use the same MongoDB collection methods to access and modify the tables, as if

they were collections.

Get the customer count

In this example, the number of customers is returned.

> db.customer.count()
28

Query for a particular customer

In this example, a specific customer record is retrieved.

> db.customer.find({customer_num:101})
{ "customer_num" : 101, "fname" : "Ludwig", "lname" : "Pauli", "company" :
 "All Sports Supplies", "address1" : "213 Erstwild Court", "address2" :
 null, "city" : "Sunnyvale", "state" : "CA", "zipcode" : "94086",
 "phone" : "408-555-8075" }

Update a customer phone number

In this example, the customer phone number is updated.

> db.customer.update({"customer_id":101}, {"$set":{"phone":"408-555-1234"}})

Running join queries by using the wire listener
You can use the wire listener to run join queries on JSON and relational data. The syntax supports collection-to-collection

joins, relational-to-relational joins, and collection-to-relational joins. Join queries are supported in sharded environments

when parallel sharded queries are enabled.

About this task

Join queries in the wire listener are done by submitting a join query document to the system.join pseudo table.

• Wire listener join queries support the sort, limit, skip, and explain options that you can set on a MongoDB cursor.

• Fields that are specified in the sort clause must also be included in the projection clause.

• The $hint operator is not supported.

1. Create a join query document.

Example

The join query document has the following syntax:

{"$collections ": { "table_or_collection_name" :{"$project ":{specifications } [,"$where ":{filter}] } , "$condition":

{ { "tabName1.column" :"tabName2.column" | "tabName1.column" :["tabName2.column"] } } }

$collections

This required HCL OneDB™ JSON operator defines the two or more collections or relational tables that

are included in the join.

Chapter 1. JSON compatibility

$project

This required MongoDB JSON operator applies a projection clause to the table_or_collection_name that

is specified.

$where

This optional MongoDB JSON operator applies a query filter to the table or relational table. You can

use any of the supported query operators that are listed here: Query and projection operators on

page 92.

$condition

This required HCL OneDB™ JSON operator defines how the specified collections or tables are joined.

You can specify a condition by mapping a single table column to another single table column, or a

single table column to multiple other table columns.

2. Run a find query against a pseudo table that is named system.join with the join query document specified.

Example

For example, in the MongoDB shell:

> db.system.join.find({join_query_document})

Results

The query results are returned.

Example

Examples of join query document syntax

This example retrieves customer orders that total more than $100. The join query document joins the customer and

orders tables, on the customer_num field where the order total is greater than 100. The same query document works if the

customers and orders tables are collections, relational tables, or a combination of the two.

{"$collections":
 {
 "customers":
 {"$project":{customer_num:1,name:1,phone:1}},
 "orders":
 {"$project":{order_num:1,nitems:1,total:1,_id:0},
 "$where":{total:{"$gt":100}}}
 },
 "$condition":
 {"customers.customer_num":"orders.customer_num"}
}

This example retrieves the order, shipping, and payment information for order number 1093. The array syntax is used in the

$condition syntax of the join query document.

{"$collections":
 {
 "orders":
 {"$project":{order_num: 1,nitems: 1,total: 1,_id:0},
 "$where":{order_num:1093}},

91

JSON compatibility

92

 "shipments":
 {"$project":{shipment_date:1,arrival_date:1}},
 "payments":
 {"$project":{payment_method:1,payment_date:1}}
 },
 "$condition":
 {"orders.order_num":["shipments.order_num","payments.order_num"]}
}

This example retrieves the order and customer information for orders that total more than $1000 and that are shipped to the

postal code 10112.

{"$collections":
 {
 "orders":
 {"$project":{order_num:1,nitems:1,total:1,_id:0},
 "$where":{total:{$gt:1000}}},
 "shipments":
 {"$project":{shipment_date:1,arrival_date:1,_id:0},
 "$where":{address.zipcode:10112},
 "customer":
 {"$project":{customer_num:1,name:1,company:1,_id:0}}
 },
 "$condition":
 {
 "orders.order_num":"shipments.order_num",
 "orders.customer_num":"customer.customer_num",
 }
}

Operators
The MongoDB operators that are supported by HCL OneDB™ are sorted into logical areas.

MongoDB operators are supported on both JSON collections and relational tables, unless explicitly stated otherwise.

If the wire listener determines the accessed entity is a relational table, it converts the basic MongoDB operators on that

table to SQL, and then converts the returned values back into a JSON document. The initial access to an entity results in an

extra call to the HCL OneDB™ server. However, the wire listener caches the name and type of an entity so that subsequent

operations do not require an extra call.

Query and projection operators
HCL OneDB™ supports a subset of the MongoDB query and projection operators.

You can refine your queries with the MongoDB query and projection operators. For example, in the mongo shell, to find

members of the cartype collection with an age greater than 10, you can use the $gt operator: db.cartype.find({"age":

{"$gt":10.0}}).

The JSON wire listener supports the skip, limit, and sort query options. You can set these options by using the mongo shell

or MongoDB drivers.

Chapter 1. JSON compatibility

• Query selectors on page 93

• Projection operators on page 95

Query selectors
Use query selectors to select specific data from queries.

Array query operators

Table 14. Array query operators

MongoDB command JSON

collections

Relational

tables

Details

$elemMatch Yes No

$size Yes No

Comparison query operators

Table 15. Comparison query operators

MongoDB command JSON

collections

Relational

tables

Details

$all Yes Yes Supported for primitive values and simple queries

only. The operator is only supported when it is the only

condition in the query document.

$eq Yes Yes

$gt Yes Yes

$gte Yes Yes

$in Yes Yes

$lt Yes Yes

$lte Yes Yes

$ne Yes Yes

$nin Yes Yes

$query Yes Yes

93

JSON compatibility

94

Element query operators

Table 16. Element query operators

MongoDB command JSON

collections

Relational

tables

Details

$exists Yes No

$type Yes No

Evaluation

Table 17. Evaluation query operators

MongoDB command JSON

collections

Relational

tables

Details

$mod Yes Yes

$regex Yes Yes The only supported value for the $options flag is i, which

specifies a case-insensitive search.

$text Yes Yes
The $text query operator support is based on MongoDB

version 2.6.

You can customize your text index and take advantage

of additional text query options by creating a basic text

search index with the createTextIndex command. For

more information, see HCL OneDB JSON commands on

page 79.

$where No No

Geospatial query operators

Geospatial queries are supported by using the GeoJSON format. The legacy coordinate pairs are not

supported.

Table 18. Geospatial query operators

MongoDB command JSON

collections

Relational

tables

Details

$geoWithin Yes No

$geoIntersects Yes No

$near Yes No

$nearSphere Yes No

Chapter 1. JSON compatibility

JavaScript™ query operators

The JavaScript™ query operators are not supported.

Logical query operators

Table 19. Logical query operators

MongoDB command JSON

collections

Relational

tables

Details

$and Yes Yes

$or Yes Yes

$not Yes Yes

$nor Yes Yes

Projection operators
Use projection operators to select specific data from a document.

Projection operators

Table 20. Projection operators

MongoDB command JSON

collections

Relational

tables

Details

$ No No

$elemMatch Yes No

$meta Yes Yes

$slice No No

Query modifiers

Table 21. Query modifiers

MongoDB command JSON

collections

Relational

tables

Details

$comment No No

$explain Yes Yes

$hint Yes No

$orderby Yes Yes

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

95

http://docs.mongodb.org/manual/reference/

JSON compatibility

96

Update operators
HCL OneDB™ supports a subset the MongoDB update operators.

You can use update operators to modify or add data in your database. For example, in the mongo shell, to change

the username to atlas in the document with the _id of 101 in the users collection, you can use the $set operator:

db.users.update({"_id":101},{"$set":{"username":"atlas"}}).

Array update operators

Table 22. Array update operators

MongoDB command JSON

collections

Relational

tables

Details

$ No No

$addToSet Yes No Supported for primitive values only. The operator is not

supported on arrays and objects.

$pop Yes No

$pullAll Yes No Supported for primitive values only. The operator is not

supported on arrays and objects.

$pull Yes No Supported for primitive values only. The operator is not

supported on arrays and objects.

$pushAll Yes No

$push Yes No

Array update operators modifiers

Table 23. Array update modifiers

MongoDB command JSON

collections

Relational

tables

Details

$each Yes No

$slice Yes No

$sort Yes No

$position Yes No

Chapter 1. JSON compatibility

Bitwise update operators

Table 24. Bitwise update operators

MongoDB command JSON

collections

Relational

tables

Details

$bit Yes No

Field update operators

Table 25. Field update operators

MongoDB command JSON

collections

Relational

tables

Details

$currentDate Yes Yes

$inc Yes Yes

$max Yes Yes

$min Yes Yes

$mul Yes Yes

$rename Yes No

$setOnInsert Yes No

$set Yes Yes

$unset Yes Yes

Isolation update operators

The isolation update operators are not supported.

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

HCL OneDB™ query operators
The HCL OneDB™ query operators are extensions to the MongoDB API.

Query operators
You can use the HCL OneDB™ query operators in all MongoDB functions that accept query operators, for example find() or

findOne().

$onedbText

The $onedbText query operator is similar to the MongoDB $text operator, except that it passes the search

string as-is to the bts_contains() function.

97

http://docs.mongodb.org/manual/reference/

JSON compatibility

98

When using relational tables, the MongoDB $text and HCL OneDB™ $onedbText query operators both require a

column name, specified by $key, in addition to the $search string.

The search string can be a word or a phrase as well as optional query term modifiers, operators, and

stopwords. You can include field names to search in specific fields. The syntax of the search string in the

$ifxtext query operator is the same as the syntax of the search criteria in the bts_contains() function that you

include in an SQL query.

In the following example, a single-character wildcard search is run for the strings text or test:

db.collection.find({ "$ifxtext" : { "$search" : "te?t" } })

$like

The $like query operator tests for matching character strings and maps to the SQL LIKE query operator. For

more information about the SQL LIKE query operator, see LIKE Operator on page .

In the following example, a wildcard search is run for strings that contain machine:

db.collection.find({ "$like" : "%machine%")

Aggregation framework operators
The MongoDB aggregation framework operators that are supported by HCL OneDB™ are sorted into logical areas.

You can use aggregation framework operators to aggregate and manipulate documents as they move through the

aggregation pipeline stages. You can use some operators to aggregate or slice time series data.

• Pipeline operators on page 98

• Expression operators on page 99

Pipeline operators

Table 26. Pipeline operators

MongoDB command JSON

collections

Relational

tables

Details

$geoNear Yes No
• Supported by using the GeoJSON format. The MongoDB

legacy coordinate pairs are not supported.

• You cannot use dot notation for the distanceField and

includeLocs parameters.

$group Yes Yes
For the syntax to aggregate time series data, see Aggregate or

slice time series data on page 111.

$limit Yes Yes

../sqs/ids_sqs_1388.html#ids_sqs_1388
../sqs/ids_sqs_1388.html#ids_sqs_1388
../sqs/ids_sqs_1388.html#ids_sqs_1388
../sqs/ids_sqs_1388.html#ids_sqs_1388

Chapter 1. JSON compatibility

Table 26. Pipeline operators (continued)

MongoDB command JSON

collections

Relational

tables

Details

$match Yes Yes

$out Yes Yes

$project Partial Partial
• You can use $project to include fields from the original

document, for example { $project : { title : 1 ,

author : 1 }}.

• You cannot use $project to insert computed fields,

rename fields, or create and populate fields that hold

subdocuments.

• Projection operators are not supported.

• You can use the $slice operator to return part of a time

series. For the syntax to slice time series data, see

Aggregate or slice time series data on page 111.

$redact No No

$skip Yes Yes

$sort Yes Yes

$unwind Yes No

Expression operators

$group operators

Table 27. $group operators

Command JSON

collections

Relational tables Time series

tables

Details

$addToSet Yes No No

$avg Yes Yes Yes

$first Yes Yes Yes

$last Yes Yes Yes

$max Yes Yes Yes

$median No No Yes An HCL OneDB™ JSON operator for

aggregating time series data. For the

syntax to aggregate time series data, see

99

JSON compatibility

100

Table 27. $group operators (continued)

Command JSON

collections

Relational tables Time series

tables

Details

Aggregate or slice time series data on

page 111.

$min Yes Yes Yes

$nth No No Yes An HCL OneDB™ JSON operator for

aggregating time series data. For the

syntax to aggregate time series data, see

Aggregate or slice time series data on

page 111.

$push Yes No No

$sum Yes Yes Yes

For more information about the MongoDB features, see http://docs.mongodb.org/manual/reference/.

Change Streams
You can use the MongoDB change steams API to watch for real time changes to your tables and collections.

The HCL OneDB™ wire listener supports the MongoDB change streams API which allows MongoDB clients to subscribe to

all data changes in a collection or relational table on the HCL OneDB™ database server. This support is based on the JDBC

Smart Trigger support for the database's push data feature.

With the wire listener, you must open a change stream on each individual table or collection that you want to subscribe to.

The wire listener does not support watching an entire database or the entire system from a single change stream.

HCL OneDB™ generates the following change stream events:

• insert

• update

• delete

For update change stream events, unlike MongoDB, the wire listener always returns the full document as part of the update

event. Replace change stream events are not generated by HCL OneDB™. Any replace operation run against HCL OneDB™

through a MongoDB client will result in a change stream event of type update.

HCL OneDB™ also does not generate drop, rename, or dropDatabase change stream events. You cannot drop or rename a table

that is being watched by a smart trigger, nor can you drop the database that contains it.

The wire listener allows you to filter which change stream events you are subscribed to. You can filter by the change stream

operation type ("insert, "update", and/or "delete") or by matching against one or more fields in the full document. Filters are

set by providing a pipeline when calling the MongoDB API's watch function. The wire listener only supports $match stages

http://docs.mongodb.org/manual/reference/

Chapter 1. JSON compatibility

in the pipeline. You can provide a $match stage to filter on the operationType field of the change stream event. You an also

provide a $match stage to filter on one or more fields in the fullDocument field of the change stream event.

The wire listener does not support resuming a change stream. Resume tokens are included in change stream events to

indicate the log id and position associated with the change stream event. But the tokens cannot be used to resume a change

stream from a particular event.

Manage time series through the wire listener
You can create and manage time series through the wire listener. You interact with time series data through a virtual table.

You can create, load, and query time series through the MongoDB API. Because you act on a virtual table, the TimeSeries row

type does not need to contain a BSON column.

The following restrictions apply when you create a time series through the wire listener:

• You cannot define hertz or compressed time series.

• You cannot define rolling window containers.

• You cannot load time series data through a loader program. You must load time series data through a virtual table.

• You cannot run time series SQL routines or methods from the time series Java™ class library. You operate on the data

through a virtual table.

Creating a time series through the wire listener
You can create time series with the MongoDB API through the wire listener. You create time series objects by adding

definitions to time series collections.

Before you begin

You must understand time series concepts, the properties of your data, and how much storage space your data requires. For

an overview of time series concepts and guidance on how to design your time series solution, see HCL OneDB™ TimeSeries

solution on page .

Perform the following prerequisite tasks:

• Connect to a database in which to create the time series table. You run all methods in the database.

• Configure and start the wire listener for the MongoDB API. For more information, see Configuring the wire listener for

the first time on page 9.

• Configure storage spaces for your time series data.

To create a time series through the wire listener:

1. Choose a predefined calendar from the system.timeseries.calendar collection or create a calendar by adding a

document to the system.timeseries.calendar collection.

2. Create a TimeSeries row type by adding a document to the system.timeseries.rowType collection.

The row type must include one BSON column for the JSON data.

101

../tms/ids_tms_010.html
../tms/ids_tms_010.html
../tms/ids_tms_010.html
../tms/ids_tms_010.html
../tms/ids_tms_010.html
../tms/ids_tms_010.html
../tms/ids_tms_010.html

JSON compatibility

102

3. Create a container by adding a document to the system.timeseries.container collection.

4. Create a time series table with the time series table format syntax.

5. Instantiate the time series by creating a virtual table with the time series virtual table format syntax.

6. Use the MongoDB API to load time series data through a through a virtual table.

What to do next

After you create and load a time series, you query the data though the virtual table with MongoDB clients.

Time series collections and table formats
You can add, view, and remove documents from the time series collections with MongoDB API methods to create and

manage your time series. You must use a specific format to create time series tables and virtual tables that are based on

time series tables.

For the MongoDB API, use the query, create, or remove methods to view, insert, or delete data in the time series collections.

The time series collections are virtual collections that are used to manage the objects that are required to store time series

data in a database.

• system.timeseries.calendar collection on page 102

• system.timeseries.rowType collection on page 103

• system.timeseries.container collection on page 104

• Time series table format on page 104

• Virtual table format on page 105

system.timeseries.calendar collection

The system.timeseries.calendar collection stores the definitions of predefined and user-defined calendars. A calendar

controls the times at which time series data can be stored. The calendar definition embeds the calendar pattern definition.

For details and restrictions about calendars, see Calendar data type on page . For a list of predefined calendars, see

Predefined calendars on page .

Use the following format to add a calendar to the system.timeseries.calendar collection.

calendar
{ name : " calendar_name " , calendarStart : " start_date " , patternStart : " pattern_date " , pattern : { type : " interval " ,

intervals : [{ duration : " num_intervals " , on : { true | false } }] } }

name

The name of the calendar.

calendarStart

The start date of the calendar.

../tms/ids_tms_059.html
../tms/ids_tms_059.html
../tms/ids_tms_059.html
../tms/ids_tms_059.html
../tms/ids_tms_365.html
../tms/ids_tms_365.html
../tms/ids_tms_365.html
../tms/ids_tms_365.html

Chapter 1. JSON compatibility

patternStart

The start date of the calendar pattern.

pattern

The calendar pattern definition.

type

The time interval. Valid values for interval are: second, minute, hour, day, week, month, year.

intervals

The description of when to record data.

duration

The number of intervals, as a positive integer.

on

Whether to record data during the interval:

true = Recording is on.

false = Recording is off.

system.timeseries.rowType collection

The system.timeseries.rowType collection stores TimeSeries row type definitions. The TimeSeries row type defines the

structure for the time series data within a single column in the database. For details and restrictions on TimeSeries row

types, see TimeSeries data type on page .

Use the following format to add a TimeSeries row type to the system.timeseries.rowType collection.

{ name : " rowtype_name " , fields : [{ name : " field_name " , type : " data_type " }] }

name

The rowtype_name is the name of the TimeSeries row type.

fields

name

The name of the field in the row data type. The field_name must be unique for the row data type.

The number of fields in a row type is not restricted.

type

Must be datetime year to fraction(5) for the first field, which contains the time stamp.

The data type of the field. Most data types are valid for fields after the time stamp field.

103

../tms/ids_tms_060.html
../tms/ids_tms_060.html
../tms/ids_tms_060.html
../tms/ids_tms_060.html

JSON compatibility

104

system.timeseries.container collection

The system.timeseries.container collection stores container definitions. Time series data is stored in containers. For details

and restrictions on containers, see TSContainerCreate procedure on page . Rolling window container syntax is not

supported.

Use the following format to add a container to the system.timeseries.container collection.

{ name : " container_name " , dbspaceName : " dbspace_name " , rowTypeName : " rowtype_name " , firstExtent : extent_size ,

nextExtent : next_extent_size }

name

The container_name is the name of the container. The container name must be unique.

dbspaceName

The dbspace_name is the name of the dbspace for the container.

rowTypeName

The rowtype_name is the name of an existing TimeSeries row type in the system.timeseries.rowType collection.

firstExtent

The extent_size is a number that represents the first extent size for the container, in KB.

nextExtent

The next_extent_size is a number that represents the increments by which the container grows, in KB. The value

must be equivalent to at least 4 pages.

Time series table format

A time series table must have a primary key column that does not allow null values. The last column in the time series

table must be the TimeSeries column. For details and restrictions on time series tables, see Create the database table on

page .

The following format describes the simplest structure of a time series table. You can include other options and columns in a

time series table.

{ collection : " table_name " , options : { columns : [{ name : " col_name " , type : " data_type " , primaryKey : true , notNull

: true } , { name : " col_name " , type : " timeseries (rowtype_name) " }] } }

collection

The table_name is the name of the time series table.

options

The collection definition.

columns

The column definitions.

../tms/ids_tms_222.html
../tms/ids_tms_222.html
../tms/ids_tms_222.html
../tms/ids_tms_222.html
../tms/ids_tms_078.html
../tms/ids_tms_078.html
../tms/ids_tms_078.html
../tms/ids_tms_078.html
../tms/ids_tms_078.html
../tms/ids_tms_078.html

Chapter 1. JSON compatibility

name

The col_name is the name of the column.

type

The data_type is the data type of the column.

For the TimeSeries column, the rowtype_name is the name of an existing

TimeSeries row type in the system.timeseries.rowType collection.

primaryKey

true = The column is the primary key.

notNull

true = The column does not allow null values.

Virtual table format

You use a virtual table that is based on the time series table to insert and query time series data.

{ collection : " virtualtable_name " , options : { timeseriesVirtualTable : { baseTableName : " table_name " , newTimeSeries :

" calendar (calendar_name) , origin (origin) , container (container_name) [{ , irregular | , regular }] , virtualTableMode

: mode , timeseriesColumnName : " col_name " } } }

collection

The virtualtable_name is the name of the virtual table.

options

timeseriesVirtualTable

The definition of the virtual table.

baseTableName

The table_name is the name of the time series table.

newTimeseries

The time series definition.

calendar

The calendar_name is the name of a calendar in the

system.timeseries.calendar collection.

origin

The origin is the first time stamp in the time series. The

data type is DATETIME YEAR TO FRACTION(5).

105

JSON compatibility

106

container

The container_name is the name of a container in the

system.timeseries.container collection.

regular

Default. The time series is regular.

irregular

The time series is irregular.

virtualTableMode

The mode is the integer value of the TSVTMode

parameter that controls the behavior and display of the

virtual table for time series data. For the settings of the

TSVTMode parameter, see The TSVTMode parameter on

page .

timeseriesColumnName

The col_name is the name of the TimeSeries column.

Example: Create a time series through the wire listener
This example shows how to create, load, and query a time series with the MongoDB API through the wire listener.

Before you begin

Before you start this example, ensure these tasks are complete:

• Connect to a database in which to create the time series table. You run all methods in the database.

• Configure the wire listener for the MongoDB API. For more information, see Configuring the wire listener for the first

time on page 9.

• Define a dbspace that is named dbspace1. For more information, see Dbspaces on page .

About this task

In this example, you create a time series that contains sensor readings about the temperature and humidity in a house.

Readings are taken every 10 minutes. The following table lists the time series properties that are used in this example.

Table 28. Time series properties used in this example

Time series property Definition

Timepoint size 10 minutes

When timepoints are

valid

Every 10 minutes

Data in the time series The following data:

../tms/ids_tms_108.html
../tms/ids_tms_108.html
../tms/ids_tms_108.html
../tms/ids_tms_108.html
../tms/ids_tms_108.html
../tms/ids_tms_108.html
../admin/ids_admin_0486.html
../admin/ids_admin_0486.html
../admin/ids_admin_0486.html
../admin/ids_admin_0486.html

Chapter 1. JSON compatibility

Table 28. Time series properties used in this example (continued)

Time series property Definition

• Timestamp

• A float value that represents

temperature

• A float value that represents humidity

Time series table The following columns:

• A meter ID column of type INTEGER

• A TimeSeries data type column

Origin 2014-01-01 00:00:00.00000

Regularity Regular

Where to store the data In a container that you create

How to load the data Through a virtual table

How to access the data Through a virtual table

To create a time series with the MongoDB API mongo shell:

1. Create a time series calendar. The time series calendar is named ts_10min, with a calendar and pattern start date of

2014-01-01 00:00:00, a calendar pattern that is defined with intervals of minutes, and data is recorded in 10 minute

increments after the origin.

MongoDB API

Add to the predefined system.timeseries.calendar collection.

db.system.timeseries.calendar.insert({"name":"ts_10min",
 "calendarStart":"2014-01-01 00:00:00",
 "patternStart":"2014-01-01 00:00:00",
 "pattern":{"type":"minute",
 "intervals":[{"duration":"1","on":"true"},
 {"duration":"9","on":"false"}]}})

2. Create a TimeSeries row type. The row type is named reading and includes fields for timestamp, temperature, and

humidity.

Example

MongoDB API

Add to the predefined system.timeseries.rowType collection.

db.system.timeseries.rowType.insert({"name":"reading",
"fields":[{"name":"tstamp","type":"datetime year to fraction(5)"},
 {"name":"temp","type":"float"},
 {"name":"hum","type":"float"}]})

107

JSON compatibility

108

3. Create a container. The container is named c_0 and is created in the dbspace1 dbspace, in the reading time series

row, with a first extent size of 1000, and with growth increments of 500.

Example

MongoDB API

Add to the predefined system.timeseries.container collection.

db.system.timeseries.container.insert({"name":"c_0",
 "dbspaceName":"dbspace1",
 "rowTypeName":"reading",
 "firstExtent":1000,
 "nextExtent":500})

4. Create a time series table. The time series table is named ts_data1 and includes id and ts columns.

Example

MongoDB API

Create the ts_data1 time series table:

db.runCommand({"create":"ts_data1",
 "columns":[{"name":"id","type":"int","primaryKey":"true","notNull":"true"},
 {"name":"ts","type":"timeseries(reading)"}]})

5. Create a virtual table. The virtual table is named ts_data1_v and is based on the time series table that is named

ts_data1 and its timeseries column ts, using the ts_10min calendar, starting on 2014-01-01 00:00:00.00000, in the

time series container c_0, with the virtualTableMode parameter set to 0 (default).

Example

Important: This example contains line breaks for page formatting, however, JSON does not allow line breaks

within strings.

MongoDB API

Create the ts_data1_v virtual table:

db.runCommand({"create":"ts_data1_v",
 "timeseriesVirtualTable":
 {"baseTableName":"ts_data1",
 "newTimeseries":"calendar(ts_10min),origin(2014-01-01
 00:00:00.00000),container(c_0)",
 "virtualTableMode":0,
 "timeseriesColumnName":"ts"}})

6. Load records into the time series by inserting documents into the ts_data1_v virtual table.

Because this time series is regular, you are not required to include the time stamp. The first record is inserted

for the origin of the time series, 2014-01-01 00:00:00.00000. The second record has the time stamp 2014-01-01

00:10:00.00000, and the third record has the time stamp 2014-01-01 00:20:00.00000.

MongoDB API

Add documents to the ts_data1_v virtual table:

Chapter 1. JSON compatibility

db.ts_data1_v.insert([{"id":1,"temp":15.0,"hum":20.0},
 {"id":1,"temp":16.2,hum:19.0},{id:1,temp:16.5,hum:22.0}])

7. Query the time series data by using the ts_data1_v virtual table.

MongoDB API

Query the ts_data1_v virtual table:

db.ts_data1_v.find()

Results:
> db.ts_data1_v.find()
{"id":1,"tstamp":ISODate("2014-01-01T06:00:00Z"),"temp":15,"hum":20}
{"id":1,"tstamp":ISODate("2014-01-01T06:10:00Z"),"temp":16.2,"hum":19}
{"id":1,"tstamp":ISODate("2014-01-01T06:20:00Z"),"temp":16.5,"hum":22}

Example queries of time series data by using the wire listener
These examples show how to query time series data by using the MongoDB API.

Before using these examples, you must configure the wire listener for the MongoDB. For more information, see Configuring

the wire listener for the first time on page 9. These examples are run against the stores_demo database. For more

information, see dbaccessdemo command: Create demonstration databases on page . These examples query the

ts_data_v virtual table that stores the device ID in the loc_esi_id column.

• List all device IDs on page 109

• List device IDs that have a value greater than 10 on page 109

• Find the data for a specific device ID on page 110

• Find and sort data with multiple qualifications on page 110

• Find all data for a device in a specific date range on page 110

• Find the latest data point for a specific device on page 111

• Find the 100th data point for a specific device on page 111

For examples of aggregating or slicing time series data, see Aggregate or slice time series data on page 111.

List all device IDs

This query returns all unique device IDs.

MongoDB API

Run a distinct command on the ts_data_v virtual table:

db.ts_data_v.distinct("loc_esi_id")

Results:
["4727354321000111","4727354321046021","4727354321090954",...]

List device IDs that have a value greater than 10

This query returns the list of device IDs that have at least one measured value in the time series that is greater than 10.

109

../dba/ids_dba_015.html
../dba/ids_dba_015.html
../dba/ids_dba_015.html
../dba/ids_dba_015.html

JSON compatibility

110

MongoDB API

Run a distinct command on the ts_data_v table, with $gt value comparison operator specified:

db.ts_data_v.distinct("loc_esi_id",{"value":{"$gt":10}})

Results:
["4727354321046021","4727354321132574","4727354321289322",...]

Find the data for a specific device ID

This query returns the data for the device with the ID of 4727354321046021.

MongoDB API

Run a find command on the ts_data_v virtual table with the loc_esi_id value specified:

db.ts_data_v.find({"loc_esi_id":4727354321046021})

Results:
 {"loc_esi_id":"4727354321046021","measure_unit":"KWH",
 "direction":"P","tstamp":ISODate("2010-11-10T06:00:00Z"),
 "value":0.041}
 {"loc_esi_id":"4727354321046021","measure_unit":"KWH",
 "direction":"P","tstamp":ISODate("2010-11-10T06:15:00Z"),
 "value":0.041}
 {"loc_esi_id":"4727354321046021","measure_unit":"KWH",
 "direction":"P","tstamp":ISODate("2010-11-10T06:30:00Z"),
 "value":0.04}
...]

Find and sort data with multiple qualifications

This query finds all data for the device with the ID of 4727354321046021 with a value greater than 10.0 and a direction of P.

The query returns the tstamp and value fields, and sorts the results in descending order by the value field.

MongoDB API

Run a find command on the ts_data_v table, with the $and boolean logical operator specified:

db.ts_data_v.find({"$and":[{"loc_esi_id":4727354321046021},
{"value":{"$gt":10.0}},{"direction":"P"}]},
{"tstamp":1,"value":1}).sort({"value":-1})

Results:
 {"tstamp":ISODate("2011-01-25T16:15:00Z"),"value":14.58}
 {"tstamp":ISODate("2011-01-26T00:45:00Z"),"value":12.948}
 {"tstamp":ISODate("2011-01-26T02:30:00Z"),"value":12.768}
 ...

Find all data for a device in a specific date range

To query for specific dates, convert the dates to milliseconds since the epoch. For example:

• 2011-01-01 00:00:00 = 1293861600000

• 2011-01-02 00:00:00 = 1293948000000

Chapter 1. JSON compatibility

This query returns the data from midnight January 1, 2011 to January 2, 2011 for device ID 4727354321000111. The date

that is queried is greater than 1293861600000 and less than 1293948000000. The query returns the tstamp and value fields.

MongoDB API

Run a find command on the ts_data_v table, with values specified for the $and boolean logical query operator:

db.ts_data_v.find({"$and":[{"loc_esi_id":"4727354321000111"},
{"tstamp":{"$gte":ISODate("2011-01-01 00:00:00")}},
{"tstamp":{"$lt":ISODate("2011-01-02 00:00:00")}}]},
{"tstamp":"1","value":"1"})

Results:
 {"tstamp":ISODate("2011-01-01T00:00:00Z"),"value":0.343 }
 {"tstamp":ISODate("2011-01-01T00:15:00Z"),"value":0.349 }
 {"tstamp":ISODate("2011-01-01T00:30:00Z"),"value":1.472 }
...]

Find the latest data point for a specific device

This query sets the sort parameter to order the tstamp field in descending order and sets the limit parameter to 1 to return

only the latest value. The device ID is 4727354321000111 and the query returns the tstamp and value fields.

MongoDB API

Run a find command on the ts_data_v table, with sort and limit values specified:

db.ts_data_v.find({"loc_esi_id":"4727354321000111"},
{"tstamp":"1","value":"1"}).sort({"tstamp":-1}).limit(1)

Results:
 {"tstamp":ISODate("2011-02-08T05:45:00Z"),"value":1.412 }

Find the 100th data point for a specific device

This query sets the sort parameter to order the tstamp field in ascending order and sets the skip parameter to 100 to return

the 100th value. The device ID is 4727354321000111 and the query returns the tstamp and value field.

MongoDB API

Run the find command on the ts_data_v table, with values specified for sort, limit and skip:

db.ts_data_v.find({"loc_esi_id":4727354321000111},
{"tstamp":1,"value":1}).sort({"tstamp":1}).limit(1).skip(100)

Results:
 {"tstamp":ISODate("2010-11-11T07:00:00Z"),"value":0.013}

Aggregate or slice time series data
You can use the MongoDB aggregation pipeline commands to aggregate time series values or return a slice of a time series.

When you run an aggregation query on a time series table, internally the time series Transpose function converts the

aggregated or sliced data to tabular format and then the genBSON function converts the results to BSON format. Therefore,

111

JSON compatibility

112

the output of the $group or $project stage in the aggregation pipeline is collection-style JSON data. Any subsequent stages

of the aggregation pipeline can process the data as JSON documents.

The aggregate and slice operations return JSON documents that include the primary key columns of the time series table.

You can remove the primary key columns with the $project operator in the next stage of the aggregation pipeline.

To run the examples of aggregating and slicing time series data, create a JSON time series by following the instructions for

loading hybrid data: Example for JSON data: Create and load a time series with JSON documents on page .

• Aggregate: The $group operator syntax on page 112

• Slice: The $slice operator syntax on page 115

Aggregate: The $group operator syntax

To aggregate time series values, you use the $group operator and include a $calendar object to define the aggregation

period, and include one or more aggregation operator expressions to define the type of operation and the data to aggregate.

The data to aggregate must be numeric and able to be cast to float values. The $group operator produces the same results

as running the time series AggregateBy function. If you have multiple TimeSeries columns in a table, you can aggregate

values with the $group operator for only the first TimeSeries column.

{ $group : { $calendar : { { <Calendar definition> | name : " calendar_name " } } , <Aggregation operator expression> } }

Calendar definition

“ interval : number , ”

“ timeunit : " unit " , ”

“ start : " start_time " ”

“ [, end : " end_time "] ”

“ [, discrete : { true | false }] ”

“ } ”

Aggregation operator expression

“ field_name : { ”

“ { operator : { " $ column . field " | " $ column " } | $nth : [{ " $ column . field " | " $ column " } , position

] } ”

“ } ”

../tms/ids_tms_444.html
../tms/ids_tms_444.html
../tms/ids_tms_444.html
../tms/ids_tms_444.html

Chapter 1. JSON compatibility

$calendar

The calendar that defines the aggregation period. You can specify the name of an existing calendar with the

following document: {name: "calendar_name"}. The calendar must exist in the CalendarTable table.

You can define a calendar for the aggregation operation with a document that contains the following fields:

interval

The number is a positive integer that represents number of time units in the aggregation period.

For example, if the interval is 1 and the time unit is DAY, then the values are aggregated for each

day.

timeunit

The unit is the size of the time interval for the aggregation period. Can be SECOND, MINUTE,

HOUR, DAY, WEEK, MONTH, or YEAR.

start

The start_date is the start date of the aggregation operation in DATETIME YEAR TO FRACTION(3)

format.

end

Optional. The end_date is the end date of the aggregation operation in DATETIME YEAR TO

FRACTION(3) format. If you omit the end date, the aggregation operation continues through the

latest time series element.

discrete

Optional. Controls whether the data remains as discrete values or is smoothed to be continuous.

true = Default. The data remains discrete.

false = The data is smoothed. You might want to smooth your data if you want to treat your data

as continuous, for example, temperature data. Smoothing data can accurately compensate for

missing data. You can only use the $avg, $min, and $max aggregation operators on smoothed

data. You cannot use the $sum, $median, $first, $last, or $nth aggregation operators on smoothed

data.

For example, the following calendar definition produces an aggregate value per day for a month:

{ $calendar: { interval: 1,
 timeunit: "DAY",
 start: "2015-07-03 15:40:03.000",
 end: "2015-08-03 15:40:03.000",
 discrete: true }

Aggregation operator expression

The field_name is a descriptive name for the results of the aggregation operation.

113

JSON compatibility

114

The operator can be $sum, $avg, $min, $max, $median, $first, $last, or $nth. The $nth operator requires a

position value.

The column is the name of the column to aggregate in the TimeSeries row type. If the column contains

BSON data, include a dot followed by the field name to aggregate within the BSON documents. For

example, if the column name is sensor_data and the field name is value, the column name is specified as

"$sensor_data.value".

The position is an integer that follows the $nth operator to represent the position of the value to return within

the aggregation period. Positive integers begin at the first value. A position of 1 is the same as using the $first

operator. Negative integers begin at the latest value. A position of -1 is the same as using the $last operator.

Example: Daily average value

The following example returns the daily average of a value over the period of three days for the v1 field in the sensor_data

column in the tstable_j table for the sensor 1:

db.tstable_j.aggregate(
 {$match: {id: 1 } },
 {$group: { $calendar: { interval: 1,
 timeunit: "DAY",
 start: "2014-03-01 00:00:00.000",
 end: "2014-03-03 23:59:59.000",
 discrete: true },
 val_AVG: {$avg: "$sensor_data.v1"} } }
)

{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-01T00:00:00Z"),
 "val_avg" : 1.416666666666667
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-02T00:00:00Z"),
 "val_avg" : 1.4437500000000003
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-03T00:00:00Z"),
 "val_avg" : 1.4447916666666671
 }
],
 "ok" : 1
}

Example: Get the maximum value for each month

The following example returns the maximum value for each month over a six-month period for the v2 field in the sensor_data

column in the tstable_j table for the sensor 1:

Chapter 1. JSON compatibility

db.tstable_j.aggregate(
 {$match: {id: 1 } },
 {$group: { $calendar: { interval: 1,
 timeunit: "MONTH",
 start: "2014-01-01 00:00:00.000",
 end: "2014-6-30 23:59:59.000",
 discrete: true },
 maximum: {$max: "$sensor_data.v2"} } }
)
{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-01-01T00:00:00Z"),
 "maximum" : 22.9
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-02-01T00:00:00Z"),
 "maximum" : 23.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-01T00:00:00Z"),
 "maximum" : 23.1
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-04-01T00:00:00Z"),
 "maximum" : 22.9
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-05-01T00:00:00Z"),
 "maximum" : 24.0
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-06-01T00:00:00Z"),
 "maximum" : 24.8
 }
],
 "ok" : 1
}

Slice: The $slice operator syntax

To slice a time series, you use the $project operator to identify the time series and include a document with a $slice operator

to specify the time range of the time series elements to return. The $slice operator produces the same results as running the

time series Clip or ClipCount functions.

{ $project : { time_series : { $slice : { N | [N , flag] | [tstamp , N [, flag]] | [begin_tstamp , end_tstamp [, flag]] } } } }

$project

The time_series is the name of the time series column.

115

JSON compatibility

116

$slice

The N is an integer that represents the number of elements to return. Positive values return elements from the

beginning of the time series or starting at the specified time stamp. Negative values return elements from the

end of the time series or ending with the specified time stamp.

The tstamp is a DATETIME value that represents the start or end time stamp of the elements to return.

The begin_tstamp is the beginning time stamp of the elements to return.

The end_tstamp is the ending time stamp of the elements to return.

The flag controls the configuration of the resulting time series. For values, see the Clip function on page .

Example: Get the next five elements

The following example returns the first five elements, beginning at March 14, 2014, at 9:30 AM, from the tstable_j table for

the sensor with the ID of 1:

db.tstable_j.aggregate(
 { $match: { id: 1}},
 { $project: { sensor_data: { $slice: ["2014-03-14 09:30:00.000", 5] }
} }
)

{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:30:00Z"),
 "v1" : 1.7,
 "v2" : 20.9
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:45:00Z"),
 "v1" : 1.6,
 "v2" : 17.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:00:00Z"),
 "v1" : 1.6,
 "v2" : 20.3
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:15:00Z"),
 "v1" : 1.8,
 "v2" : 20.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:30:00Z"),
 "v1" : 1.3,

../tms/ids_tms_153.html
../tms/ids_tms_153.html
../tms/ids_tms_153.html
../tms/ids_tms_153.html

Chapter 1. JSON compatibility

 "v2" : 17.1
 }
],
 "ok" : 1
}

Example: Get the previous three elements

The following example returns the previous three elements, ending at March 14, 2014, at 9:30 AM, from the tstable_j table for

the sensor with the ID of 1:

db.tstable_j.aggregate(
 { $match: { id: 1}},
 { $project: { sensor_data: { $slice: ["2014-03-14 09:30:00.000", -3] }
} }
)
{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:00:00Z"),
 "v1" : 1,
 "v2" : 22.8
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:15:00Z"),
 "v1" : 1.8,
 "v2" : 21.6
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:30:00Z"),
 "v1" : 1.7,
 "v2" : 20.9
 }
],
 "ok" : 1
}

Example: Get elements in a range

The following example returns the elements between March 14, 2014, at 9:30 AM and March 14, 2014, at 10:30 AM, from the

tstable_j table for the sensor with ID 1:

db.tstable_j.aggregate(
 { $match: { id: 1 }},
 { $project: { sensor_data: { $slice: ["2014-03-14 09:30:00.000",
 "2014-03-14 10:30:00.000"] } } }
)

{
 "result" : [
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:30:00Z"),
 "v1" : 1.7,

117

JSON compatibility

118

 "v2" : 20.9
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T09:45:00Z"),
 "v1" : 1.6,
 "v2" : 17.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:00:00Z"),
 "v1" : 1.6,
 "v2" : 20.3
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:15:00Z"),
 "v1" : 1.8,
 "v2" : 20.4
 },
 {
 "id" : "1",
 "tstamp" : ISODate("2014-03-14T10:30:00Z"),
 "v1" : 1.3,
 "v2" : 17.1
 }
],
 "ok" : 1
}

Troubleshooting HCL OneDB™ JSON compatibility
Several troubleshooting techniques, tools, and resources are available for resolving problems that you encounter with HCL

OneDB™ JSON compatibility.

Problem Solution

How do I start the wire listener? See Starting the wire listener on page 41.

How can I debug wire listener

problems?
When staring the wire listener, add -loglevel level to the java command use to start

the listener process, where level is the logging level. Log level options are:

• error

• warn

• info

• debug

• trace

For more information, see Wire listener command line options on page 39.

Chapter 1. JSON compatibility

Problem Solution

How can I view all of the current

properties for the wire listener

properties file?

An example properties file is available in the HCL OneDB™ APIs package which provides

descriptions of all of the wire listener’s configuration properties. For more information,

see The wire listener configuration file on page 10.

How do I access the wire listener

help?
You can view a list of available command line options by running the -help command.

119

Index
Special Characters

$group
operators 98

A
addShard command 50, 51
admin() functions

cdr add trustedhost argument 49
Aggregating time series data 111
aggregation framework operators

$group 98
pipeline 98
supported 98

authentication
authentication.enable 45
MongoDB 45
user access 45

Authentication
MongoDB
 44
PAM 44, 45

authentication.enable
properties file 10

authentication.localhost.bypass.enable
properties file 10

B
bts

$ifxtext 97
$text 97
query 97

C
cdr add trustedhost argument 49
Change streams 100
changeShardCollection command 51, 56
collection methods

collection 66
db.collection 66
supported 66
unsupported 66

Collections for configuring time series 102
command line

arguments 39
command.listDatabases.sizeStrategy

properties file 10
commands

buildinformation 39
command line 39
config 39
database 70
port 39
projection 92
query 92
start 39
stop 39
update 96
version 39
wait 39

communication
encrypted 47, 48

compatible.maxBsonObjectSize.enable
properties file 10

Concepts
MongoDB
and
HCL OneDB
 64

configuration file
authorized user 9
configuring 9
creating 9
DBSERVERALIASES 9
dynamic host IPv6 9
ifxjson 9
installing 9
MongoDB 9
sample 9
sharding 9
template 9

copy
properties file 10

cursor.idle.timeout
properties file 10

D
database commands

aggregation 70
diagnostic 70
instance administration 70
query and write operation 70
replication 70
sharding 70
supported 70
unsupported 70

database.buffer.enable
properties file 10

database.cache.enable
properties file 10

database.create.enable
properties file 10

database.dbspace
properties file 10

database.locale.default
properties file 10

database.log.enable
properties file 10

dbspace.strategy
properties file 10

deleteInsert
properties file 10

documentIdAlgorithm
properties file 10

E
encryption

wire listener 47, 47, 48
ensureIndex command 51, 53, 56

F
failover.retry.delay

properties file 10
failover.retry.enable

properties file 10
failover.retry.errorCodes

properties file 10
failover.retry.maxRetries

properties file 10
Files

.properties 49
fragment.count

properties file 10
Functions, SQL administration API

cdr add trustedhost argument 49

H
HCL OneDB

configuration parameters
REMOTE_SERVER_CFG 49

HCL OneDB
wire listener

creating time series 106
high availability

JSON 48
wire listener 48

Horizontal partitioning 49, 49, 50, 51, 53, 55,
56, 58

I
IFMXMONGOAUTH environment variable 45
ifxjson

configuration file 9
properties file 9
replication 9
sharding 9
user permissions 9

import
collections 65
data 65

index
create 67
createIndex

supported options 67
ensureIndex

supported options 67
supported options 67

index.cache.enable
properties file 10

index.cache.update.interval
properties file 10

insert.batch.enable
properties file 10

insert.batch.queue.enable
properties file 10

insert.batch.queue.flush.interval
properties file 10

insert.preparedStatement.cache.enable
properties file 10

IPv4
configuration 9

IPv6
configuration 9

J
Java 5
Java requirement 8
JSON

dots in field names 6
SQL access 88

JSON compatibility
about 3
MongoDB
 3

jsonListener.log
location 118

K
killCursors 97

L
listener.connectionPool.closeDelay.time

properties file 10
listener.connectionPool.closeDelay.timeunit

properties file 10
listener.idle.timeout

properties file 10

120

listener.idle.timeout.minimum
properties file 10

listener.input.buffer.size
properties file 10

listener.onException
properties file 10

listener.output.buffer.size
properties file 10

listener.pool.keepAliveTime
properties file 10

listener.pool.queue.size
properties file 10

listener.pool.size.core
properties file 10

listener.pool.size.maximum
properties file 10

listener.port
properties file 10

listShards command 58
log file

about 42
jsonListener.log 118
location 42
logging level 39
settings 39, 42

Log4j 42
logging 42

M
methods

collection 66
mongo shell 66

mongo.api.version
properties file 10

MongoDB
dependencies 5
getting started 61
supported version 5

MongoDB API
creating time series 106
querying time series 109
relational tables 89
SQL 89

MongoDB
API wire listener

start 41
MongoDB
authentication
 44
MongoDB commands

addShard 50, 51
changeShardCollection 51, 56
ensureIndex 51, 53, 56
listShards 58
shardCollection 51, 53

MongoDB
concepts
 64
MongoDB
language drivers
 65
MongoDB
shell

version 65
MongoDB
utilities

mongodump 65
mongoexport 65
mongoimport 65
mongorestore 65

N

non-root install
considerations 118

O
onstat -g shard 55
operators

aggregation framework
$group 98
pipeline 98

HCL OneDB
support
 92
MongoDB
 92
projection 92
query 92
supported 92
unsupported 92
update 96

P
PAM authentication 44, 45
pipeline

operators 98
Pluggable authentication module 45
pool.connections.maximum

properties file 10
pool.idle.timeout

properties file 10
pool.idle.timeunit

properties file 10
pool.semaphore.timeout

properties file 10
pool.semaphore.timeunit

properties file 10
pool.service.interval

properties file 10
pool.service.timeunit

properties file 10
pool.size.initial

properties file 10
pool.size.maximum

properties file 10
pool.size.minimum

properties file 10
pool.type

properties file 10
pool.typeMap.strategy

properties file 10
preparedStatement.cache.enable

properties file 10
preparedStatement.cache.size

properties file 10
projection operators

supported 92
unsupported 92

properties file 49
configuring 9
creating 9
DBSERVERALIASES 9
dynamic host IPv6 9
MongoDB 9
optional 10
parameters 10
required

url 10
sample 9
sharding 9, 10
template 9
view all properties 118

properties file parameters
properties file parameters

sharding.parallel.query.enable 49
url 49

sharding.enable 49
url 49

push data 100

Q
query operators

supported 92
unsupported 92

R
relational database

$sql 88
run commands using MongoDB 88
run MongoDB operations 89
system.sql 88

REMOTE_SERVER_CFG configuration
parameter 49
response.documents.count.maximum

properties file 10
response.documents.size.maximum

properties file 10

S
SCRAM-SHA-256 authentication 44
search

bts 97
text 97

security.sql.passthrough
properties file 10

Shard cluster
viewing participants 58

shard clusters 49
Shard clusters 49, 50
shard servers

adding 55
deleting 55
listing 55

Shard servers 49
Shard-cluster definition

changing 51, 56
creating 50, 51, 51, 53

shardCollection command 51, 53
sharding

authorized user 9
enable 49
ifxjson 9
JSON 49, 49, 50, 51, 51, 53, 55, 56, 58
properties file 9
Relational data 51, 53, 56
shard-cluster creation 50
shard-cluster defining 51, 51, 53, 56
shard-cluster viewing 58
update.client.strategy 10
wire listener 49

sharding.enable
properties file 10

sharding.enable configuration parameter 49
sharding.parallel.query.enable configuration
parameter 49
smart trigger 100
software requirement 5
SQL

$sql 88
JSON access 88
system.sql 88
using MongoDB API 88

SQL administration API functions
cdr add trustedhost argument 49

SSL
client applications 48

121

database server 47
wire listener 47, 48

start
MongoDB
API wire listener

command line 41
listener.type 41

stop wire listener
command line 42

T
task() functions

cdr add trustedhost argument 49
Time series

aggregate 111
collections 102
creating 101
creating with
MongoDB
API
 106
example for wire listener 106
MongoDB API 101
query example for
MongoDB
API listener
 109
query with
MongoDB
API
 109
slice 111
wire listener 101

U
updatableCursor

properties file 10
update operators

supported 96
unsupported 96

update.client.strategy
properties file 10

update.mode
properties file 10

update.one.enable
properties file 10

url configuration parameter 49
url.jdbc.afterNewConnectionCreation

properties file 10
user permission

grant access 9
required access 9
sharding 9

V
version

wire listener 39

W
Watch collection 100
wire listener

build information 39
debug 118
getting started 61
help 118
log file 118
stop 42
version 39

Wire listener
creating time series 106
Java version 8
MongoDB

 8
using 8

wire listener parameters 10
Wire listener parameters

sharding.enable 49
sharding.parallel.query.enable 49
url 49, 49

122

	JSON compatibility
	Contents
	Chapter 1. JSON compatibility
	About the HCL OneDB™ JSON compatibility
	Requirements for JSON compatibility
	Java requirements
	MongoDB version
	Database server requirements

	Support for dots in field names
	Manipulate BSON data with SQL statements
	Example: Using SQL to query a collection

	Wire listener
	Configuring the wire listener for the first time
	The wire listener configuration file
	Wire listener configuration properties
	Required parameter
	Setup and configuration
	High Availability
	Command and operation configuration
	Database resource management
	MongoDB compatibility
	Performance
	Security
	Wire listener resource management

	Wire listener command line options
	Syntax
	Examples
	Starting the wire listener
	Example

	Stopping the wire listener
	Wire listener logging

	User authentication with the wire listener
	MongoDB clients
	Configuring MongoDB authentication
	Adding MongoDB users

	Configuring database server authentication with PAM (UNIX™, Linux™)

	Encryption for wire listener communications
	Configuring SSL connections between the wire listener and the database server
	Configuring SSL connections between the wire listener and client applications

	High availability support in the wire listener

	JSON data sharding
	Preparing shard servers
	Creating a shard cluster with MongoDB commands
	Examples

	Shard-cluster definitions for distributing data
	Defining a sharding schema with a hash algorithm
	Example

	Defining a sharding schema with an expression
	Examples

	Shard cluster management
	Add a shard server
	Remove a shard server
	Change the sharding definition
	Changing the definition for a shard cluster
	Example

	Viewing shard-cluster participants
	Example

	MongoDB API
	Getting Started with HCL OneDB™'s MongoDB Solution
	How does HCL OneDB™ support the MongoDB API?
	What are the components of the HCL OneDB™ MongoDB solution?
	How are JSON collections different from relational tables?
	How do MongoDB commands map to SQL features?
	Commonly customizable wire listener properties
	Starting the wire listener from the command line
	MongoDB Create, read, update, and delete (CRUD) operations on collections and tables
	Implicit operations for JSON collections and databases
	Creating and listing indexes
	Accessing multiple databases per connection
	Moving data to and from collections and tables
	Viewing usage statistics

	MongoDB to HCL OneDB™ term mapping
	Language drivers
	Command utilities and tools
	Collection methods
	Index creation
	Index creation by using the MongoDB syntax
	Index creation for a specific data type by using the HCL OneDB™ extended syntax
	Index creation for arrays using the Informix extended syntax
	Index creation for text, geospatial, and hashed

	Database commands
	User commands
	Database operations

	HCL OneDB™ JSON commands
	createTextIndex
	exportCollection
	importCollection
	lockAccounts
	runFunction
	runProcedure
	transaction
	unlockAccounts

	Running HCL OneDB™ queries through the MongoDB API
	Running SQL commands by using the MongoDB API
	Examples

	Running MongoDB operations on relational tables
	Examples

	Running join queries by using the wire listener
	Examples of join query document syntax

	Operators
	Query and projection operators
	Query selectors
	Projection operators

	Update operators
	HCL OneDB™ query operators
	Query operators

	Aggregation framework operators
	Pipeline operators
	Expression operators

	Change Streams

	Manage time series through the wire listener
	Creating a time series through the wire listener
	Time series collections and table formats
	system.timeseries.calendar collection

	calendar
	system.timeseries.rowType collection
	system.timeseries.container collection
	Time series table format
	Virtual table format
	Example: Create a time series through the wire listener

	Example queries of time series data by using the wire listener
	List all device IDs
	List device IDs that have a value greater than 10
	Find the data for a specific device ID
	Find and sort data with multiple qualifications
	Find all data for a device in a specific date range
	Find the latest data point for a specific device
	Find the 100th data point for a specific device

	Aggregate or slice time series data
	Aggregate: The $group operator syntax
	Calendar definition
	Aggregation operator expression
	Example: Daily average value
	Example: Get the maximum value for each month
	Slice: The $slice operator syntax
	Example: Get the next five elements
	Example: Get the previous three elements
	Example: Get elements in a range

	Troubleshooting HCL OneDB™ JSON compatibility

	Index

