
HCL Informix 14.10

Migrating and upgrading

ii

Contents
Chapter 1. Migrating and upgrading..................................1

Migrating Informix® database systems.........................1
Overview of migration.. 1
Migration to and reversion from 14.10................... 6
Migration of data between database servers....... 62
Data migration utilities...64

Index...133

Chapter 1. Migrating and upgrading
You can upgrade to the 14.10 release of HCL Informix® or migrate from other database servers to Informix®. Upgrading

is an in-place migration method that uses your existing hardware and operating system software. Some changes to the

Informix® database server can affect upgrading from a previous release.

Upgrade tasks

To upgrade to Informix® version 14.10:

1. Read about important migration information, known and fixed customer-reported defects, and platform-specific

actions that you must take to configure and use HCL Informix® products: Release, documentation, and machine

notes for HCL Informix®

2. Understand your migration path and plan your migration: Overview of Informix® migration

3. Prepare for migration, including reviewing changes to Informix® products since the release from which you are

migrating: Preparing for migration on page 7

4. Do the migration tasks that are appropriate to your system: Migrating to the new version of Informix® on page 40

5. Finish the migration process: Completing required post-migration tasks on page 46

If you for any reason you must revert to your previous version of Informix®, see Reverting from Informix® Version 14.10 on

page 51.

Migrating Informix® database systems
The Informix® Migration Guide describes how to move data manually between databases, servers, and computers.

These topics are intended for database server administrators or database administrators who are responsible for upgrading

the database server or migrating data. These topics assume that you have the following background:

• A working knowledge of your computer, your operating system, and the utilities that your operating system provides

• Some experience with database server administration, operating-system administration, or network administration

Overview of migration

Overview of moving data
If you are installing the new version of the database server on another computer or operating system (non-in-place

migration), you can use one of several tools and utilities to move data from your current database server.

For example, suppose you migrated to the current version of Informix® and created a few new databases, but decide to

revert to the previous version. Before you revert, you can use one of the data-migration tools to save the data you added.

After reverting, you can reload the data.

Before you move data, consider these issues:

1

Migrating and upgrading

2

• Changes in the configuration parameters and environment variables

• Amount of memory and dbspace space that is required

• Organization of the data

• Whether you want to change the database schema to accommodate more information, to provide for growth, or to

enhance performance

For information about how to move data between database servers on different operating systems, also see Migrating

database servers to a new operating system on page 62.

For information about how to move to a different GLS locale, see the Informix® GLS User's Guide.

Prerequisites before moving data
Before you use any data migration utility, you must set your PATH, INFORMIXDIR, and INFORMIXSERVER environment

variables.

For information about environment variables, see the Informix® Guide to SQL: Reference.

Data-migration tools
Informix® provides tools, utilities, and SQL statements that you can use to move data from one HCL Informix® database to

another or from one operating system to another.

You might want to use a data-migration tool when you have different page sizes or code pages. For example, UNIX™ or Linux

and Windows store data in different page sizes.

When your migration involves migrating between different operating systems, you must export data and its schema

information from one database server and import the exported data into the other database server.

Normally, if you are migrating on the same operating system, you do not need to load and unload data.

You can use the following tools to move data:

• The dbexport and dbimport utilities

• The dbload utility

• The onunload and onload utilities

• UNLOAD and LOAD statements

• Nonlogging raw tables

When you import data from non-Informix® sources, you can use the following tools:

• The dbimport and dbload utilities

• External tables that you create with the CREATE EXTERNAL TABLE statement

The best method for moving data depends on your operating system and whether you want to move an entire database,

selected tables, or selected columns from a table. The following table summarizes the characteristics of the methods for

Chapter 1. Migrating and upgrading

loading data and the advantages and disadvantages of each method. The table also shows the database servers on which

you can use the tools.

Note: dbimport cannot be used to move datablade data between Informix versions.

Table 1. Comparison of tools for moving data

Tool Description Advantages Disadvantages

dbexport and dbimport

utility

Imports or exports a

database to a text file

that is stored on disk or

tape

Can modify the database schema

and change the data format

Can move data between operating

systems

Optional logging

Can import data from

non-Informix® sources

Faster performance than

the dbload utility, but slower

performance than the onload

utility

Moves the entire database

dbload utility Transfers data from one

or more text files into

one or more existing

tables

Can modify database schema

Can move data between operating

systems

Optional logging

Moderately easy to use

Can import data from

non-Informix® sources

Slower performance than the

dbexport, dbimport, and onload

utilities

onunload and onload

utilities

Unloads data from a

database into a file on

tape or disk; loads data,

which was created with

the onunload command,

into the database server

Fast performance Optional logging Only moves data between

database servers of the same

version on the same operating

system

Cannot modify the database

schema

Logging must be turned off

Difficult to use

UNLOAD and LOAD

statements

Unloads and loads

specified rows

Can modify database schema

Can move data between operating

systems

Easy to use

Optional logging

Only accepts specified data

formats

3

Migrating and upgrading

4

Table 1. Comparison of tools for moving data (continued)

Tool Description Advantages Disadvantages

Nonlogging raw tables Loads certain kinds of

large tables

Can load very large data

warehousing tables quickly

Does not support primary

constraints, unique constraints,

and rollback

Requires SQL

Not recommended for use within

a transaction

External tables Enables you to read

and write from a source

that is external to

the database server,

providing an SQL

interface to data in text

files managed by the

operating system or to

data from a FIFO device.

Performs express (high-speed) and

deluxe (data-checking) transfers

Requires SQL

If you are choosing a tool for loading data, the questions shown in Figure 1: Choosing among dbimport, dbload, and LOAD on

page 4 will help you make a decision.

Figure 1. Choosing among dbimport, dbload, and LOAD

Chapter 1. Migrating and upgrading

In addition to the tools that move data, you can use the dbschema utility, which gets the schema of a database and redirects

the output to a file, so you can provide the file to DB-Access to re-create the database.

Related information

Migrating Informix (non-in-place migration)

Migration tools

The dbexport and dbimport utilities on page 65

The onunload and onload utilities on page 117

The dbload utility on page 82

The dbschema utility on page 98

The LOAD and UNLOAD statements on page 115

When TEXT and BYTE data is scanned, not compressed
The Informix® database server scans TEXT and BYTE data into an existing table when you load data by using the SQL LOAD

statement, the dbload utility, the Informix® ESQL/C program, or external tables.

Informix® database servers do not have any mechanisms for compressing TEXT and BYTE data after the data has been

scanned into a database.

Moving data between computers and dbspaces
You can move data between different computers, and you can import data from environments other than the Informix®

database server. Except when you use external tables, you must unload your data to ASCII files before you move the data to

another computer.

If you are moving data into the Informix® database server on another computer, you can use the dbimport and dbload

utilities to load the data that you exported.

If you are moving data to an application that is not based on Informix®, you might need to use the UNLOAD statement

because you can specify the delimiter that is used in the data files.

Importing data from a non-Informix® source
The dbimport and dbload utilities can import data from any ASCII file that is properly formatted.

Most applications that produce data can export the data into files that have a suitable format for dbimport. If the format of

the data is not suitable, use UNIX™, Linux™, or Windows™ utilities to reformat the data before you import it.

In addition to dbimport and dbload, HPL provides ways to access information from non-Informix® sources.

5

Migrating and upgrading

6

Moving data by using distributed SQL
If you want to move data with different binary pages and page sizes across platforms and you have expertise in using

distributed SQL, you can use INSERT and SELECT SQL statements to transfer the data.

Important: Do not use INSERT and SELECT statements to move data if the database contains BLOB data types.

Prerequisites: A network connection must exist between database server instances.

To move data using INSERT and SELECT statements with fully qualified table names:

1. Capture the complete database schema from the source database server.

2. Alter the extent sizing and, if necessary, the lock modes on tables from page to row.

3. Create and verify the schema on the target database server.

4. Disable logging on both source and target servers where necessary.

5. Create and run the following scripts:

a. Create and run separate scripts for:

• Disabling select triggers on the source server

• Disabling indexes, triggers and constraints for each table on the target database server.

b. Create and run one script per table for the fully-qualified INSERT and SELECT statements.

For example:

INSERT INTO dbname@target:owner.table SELECT *
FROM dbname@source:owner.table

You can run the scripts in parallel. In addition, for larger tables, you can create multiple scripts that can

partition the table to run in parallel.

c. Create and run separate scripts for enabling indexes, triggers and constraints for each table

6. Run UPDATE STATISTICS on system catalog tables and stored procedures and functions on the target database

server.

7. Adjust starting values for all tables that have serial columns on the target database server.

8. Turn on transaction logging on the source and target database servers.

9. Return the source and target database servers to multi-user mode.

10. Validate the data that was transferred to the target database server.

For information about INSERT and SELECT statements, refer to the Informix® Guide to SQL: Syntax. For information on

distributed transactions, refer to the Informix® Administrator's Guide and the Informix® Administrator's Reference.

Related information

Paths for migration to the new version

Migration to and reversion from 14.10

Chapter 1. Migrating and upgrading

Preparing for migration to Version 14.10
Before you install the new version of Informix®, you must prepare the database server environment for migration by

performing specified pre-migration tasks. If you are also migrating from 32-bit to 64-Bit database servers, you must perform

additional tasks.

Related information

Upgrading Informix (in-place migration)

Types of migration

Migrating Informix (non-in-place migration)

Preparing for migration
Preparing for migration includes gathering information about and backing up your data, so that you can reinstall the previous

version of the server and restore your data if you have a migration problem. Preparing for migration is crucial for successful

migration.

Before you begin

• Check the Support Portal for the latest patches that you must install before you migrate or upgrade Informix®

software.

• If you use Enterprise Replication, you must first prepare your replication environment for migration. For more

information, see Enterprise Replication and migration on page 17.

About this task

Review and complete all tasks that apply:

1. Reviewing changes in Informix product functionality on page 8.

2. Checking and configuring available space on page 8.

3. Configuring for recovery of restore point data in case an upgrade fails on page 10.

4. Renaming user-defined routines (UDRs) that have the following names: CHARINDEX() , LEFT(), RIGHT(), INSTR(),

DEGREES(), RADIANS(), REVERSE(), SUBSTRING_INDEX(), LEN(), and SPACE().

These names are reserved for built-in SQL string manipulation functions.

5. Adjusting settings:

a. If you use UNICODE, ensure that the GL_USEGLU environment variable on the source server is set to the same

value as the GL_USEGLU environment variable on the target server.

b. If the source version of the database server contains the IFX_EXTEND_ROLE configuration parameter, which

controls authorization to register DataBlade® modules or external UDRs, disable the parameter by setting it to

0 (off).

6. Saving copies of the current configuration files on page 11.

7. Preparing 12.10 BSON columns with DATE fields for upgrade on page 12.

7

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/Informix_Product_Family

Migrating and upgrading

8

8. Closing all transactions and shutting down the source database server on page 13.

9. Initiating fast recovery to verify that no open transactions exist on page 13.

10. Verifying the integrity of the data on page 14.

11. Verifying that the database server is in quiescent mode on page 14.

12. Making a final backup of the source database server on page 15.

Important: Complete the previous step in case you have to revert to the source database server.

13. Verifying that the source database server is offline on page 15.

What to do next

If you use high-availability clusters, you must complete additional preparations. See High-availability cluster migration on

page 21.

Related information

Pre-migration checklist of diagnostic information on page 15

Hardware and operating system requirements

Reviewing changes in Informix® product functionality
Changes to Informix® product functionality might affect your plans for migrating to the latest version of the product.

About this task

Changes in functionality in Informix® 14.10 can potentially impact your applications, scripts, maintenance processes, and

other aspects that are related to your database server environment.

Changes to functionality that was introduced before Informix® 14.10 can also affect your plans.

Checking and configuring available space
Before you migrate to the new version of Informix®, you must make sure that you have enough available space for the new

server, your data, and any other network and data tools that you use.

During migration, Informix® drops and then recreates the sysmaster database. Depending on which version of Informix®

you migrate from, the sysmaster database in the current version can be significantly larger.

When you migrate to Version 14.10, you need the following space for building sysmaster, sysutils, and sysadmin databases:

• 21892 KB of logical-log spaces (or 10946 pages) for 2 K page platforms

• 26468 KB of logical-log spaces (or 6617 pages) for 4 K page platforms

Chapter 1. Migrating and upgrading

During migration, a second database, the sysadmin database, is created in the root dbspace. As you work after migrating, the

sysadmin database, could grow dramatically. You can move the sysadmin database to a different dbspace.

You might need to increase the physical log size to accommodate new features, and you might consider adding a new chunk.

If your migration fails because there is insufficient space in the partition header page, you must unload your data before you

try to migrate again. Then you must manually load the data into the new version.

The root chunk should contain at least ten percent free space when converting to the new version of the server.

In some cases, even if the database server migration is successful, internal conversion of some databases might fail

because of insufficient space for system catalog tables. For more information, see the release notes for this version of

Informix®.

Add any additional free space to the system prior to the migration. If the dbspaces are nearly full, add space before you start

the migration procedure. When you start the new version of Informix® on the same root dbspace of the earlier database

server, Informix® automatically converts the sysmaster database and then each database individually.

For a successful conversion of each database, ensure that 2000 KB of free space per database is available in each dbspace

where a database resides.

To ensure enough free space is available:

1. Calculate the amount of free space that each dbspace requires.

In the following equation, n is the number of databases in the dbspace and X is the amount of free space they require:

X kilobytes free space = 2000 kilobytes * n

The minimum number of databases is 2 (for the sysmaster and sysadmin databases).

2. Check the amount of free space in each dbspace to determine whether you need to add more space.

You can run SQL statements to determine the free space that each dbspace requires and the free space available. These

statements return the free-space calculation in page-size units. The free_space_req column value is the free-space

requirement, and the free_space_avail column value is the free space available.

The following SQL statement shows how to determine the free space that each dbspace requires:

DATABASE sysmaster;
SELECT partdbsnum(partnum) dbspace_num,
 trunc(count(*) * 2000) free_space_req
 FROM sysdatabases
GROUP BY 1
ORDER BY 1;

The following SQL statement queries the syschunks table and displays the free space available for each dbspace:

SELECT dbsnum dbspace_num, sum(nfree) free_space_avail
 FROM syschunks
GROUP BY 1
ORDER BY 1;

9

Migrating and upgrading

10

Important: If less free space is available than the dbspace requires, either move a table from the dbspace to another

dbspace or add a chunk to the dbspace.

The dbspace estimates could be higher if you have an unusually large number of SPL routines or indexes in the database.

Related information

Check and configure available space for reversion on page 53

Configuring for recovery of restore point data in case an upgrade fails
By default, the CONVERSION_GUARD configuration parameter is enabled and a temporary directory is specified in the

RESTORE_POINT_DIR configuration parameter. These configuration parameters specify information that Informix® can use if

an upgrade fails. You can change the default values of these configuration parameters before beginning an upgrade.

Before you begin

Prerequisites: The directory specified in the RESTORE_POINT_DIR configuration parameter must be empty before the

upgrade begins, but not when recovering from a failed update.

Important:

After a failed upgrade, do not empty the RESTORE_POINT_DIR directory before you attempt to run the onrestorept

utility. The server must be offline after a failed upgrade.

About this task

You can change the value of the CONVERSION_GUARD configuration parameter or the directory for restore point files before

beginning an upgrade. The default value for the CONVERSION_GUARD configuration parameter in the ONCONFIG file is (2),

and the default directory where the server will store the restore point data is $INFORMIXDIR/tmp. You must change this

information before beginning an upgrade. You cannot change it during an upgrade.

To change information:

1. If necessary for your environment, change the value of the CONVERSION_GUARD configuration parameter.

When the CONVERSION_GUARD configuration parameter is set to 2 (the default value), the server will continue

the upgrade even if an error related to capturing restore point data occurs, for example, because the server has

insufficient space to store the restore point data.

However, if the CONVERSION_GUARD configuration parameter is set to 2 and the upgrade to the new version of the

server fails, you can use the onrestorept utility to restore your data.

However, if you set the CONVERSION_GUARD configuration parameter to 2, conversion guard operations fail (for

example, because the server has insufficient space to store restore point data), and the upgrade to the new version

fails, you cannot use the onrestorept utility to restore your data.

Chapter 1. Migrating and upgrading

2. In the RESTORE_POINT_DIR configuration parameter, specify the complete path name for a directory that will store

restore point files.

The server will store restore point files in a subdirectory of the specified directory, with the server number as the

subdirectory name.

What to do next

If the CONVERSION_GUARD configuration parameter is set to 1 and an upgrade fails, you can run the onrestorept utility to

restore the Informix® instance back to its original state just before the start of the upgrade.

If the CONVERSION_GUARD configuration parameter is set to 1 and conversion guard operations fail (for example, because

the server has insufficient space to store restore point data), the upgrade to the new version will also fail.

If any restore point files from a previous upgrade exist, you must remove them before you begin an upgrade.

Even if you enable the CONVERSION_GUARD configuration parameter, you should still make level 0 backup of your files in

case you need to revert after a successful upgrade or in case a catastrophic error occurs and you cannot revert.

Saving copies of the current configuration files
Save copies of the configuration files that exist for each instance of your source database server. Keep the copies available

in case you decide to use the files after migrating or you need to revert to the source database server.

Although you can use an old ONCONFIG configuration file with Informix® Version 14.10, you should use the new Version

14.10 ONCONFIG file, or at least examine the file for new parameters.

Configuration files that you might have are listed in Table 2: Configuration files to save from the source database server on

page 11.

Table 2. Configuration files to save from the source database server

UNIX™ or Linux™ Windows™

$INFORMIXDIR/etc/$ONCONFIG %INFORMIXDIR%\etc\%ONCONFIG%

$INFORMIXDIR/etc/onconfig.std %INFORMIXDIR%\etc\onconfig.std

$INFORMIXDIR/etc/oncfg* %INFORMIXDIR%\etc\oncfg*

$INFORMIXDIR/etc/sm_versions %INFORMIXDIR%\etc\sm_versions

$INFORMIXDIR/aaodir/adtcfg %INFORMIXDIR%\aaodir\adtcfg.*

$INFORMIXDIR/dbssodir/adtmasks %INFORMIXDIR%\dbssodir\adtmasks.*

$INFORMIXDIR/etc/sqlhosts or $INFORMIXSQLHOSTS %INFORMIXDIR%\etc\sqlhosts or $INFORMIXSQLHOSTS

$INFORMIXDIR/etc/tctermcap

$INFORMIXDIR/etc/termcap

11

Migrating and upgrading

12

If you use ON-Bar to back up your source database server and the logical logs, you must also save a copy of any important

storage manager files and the following file:

UNIX™ or Linux™:

$INFORMIXDIR/etc/ixbar.servernum

Windows™:

%INFORMIXDIR%\etc\ixbar.servernum

The Informix® Primary Storage Manager does not use the sm_versions file. If you plan to use the Informix® Primary

Storage Manager, you do not need the sm_versions file. However, if you use the Spectrum Protect or a third-party storage

manager, you do need the sm_versions file.

If you are using a different directory as INFORMIXDIR for the new database server, copy sm_versions to the new

$INFORMIXDIR/etc, or copy sm_versions.std to sm_versions in the new directory, and then edit the sm_versions file

with appropriate values before starting the migration.

Preparing 12.10 BSON columns with DATE fields for upgrade
Before you upgrade from Informix® 12.10 you must unload binary JSON (BSON) columns with DATE fields into JSON format

so that you can load them into Informix® 14.10

About this task

Perform the following steps on the 12.10 server.

1. Create an external table with a similar name as the original table and with JSON (instead of BSON) format for the

date.

For example, assume that the original table named datetab has a BSON column named i that has DATE fields in it.

Use the following statement to create an empty, external table named ext_datetab that has a JSON column with

DATE fields. The DATAFILES clause specifies the location and name of the delimited data file, which in this example

is disk:/tmp/dat.unl.

create external table ext_datetab (j int, i json) using
 (datafiles ("disk:/tmp/dat.unl"),
 format "delimited");

2. Unload the data from the original table into the external table.

For example:

insert into ext_datetab select j, i::json from datetab;

What to do next

Complete other pre-migration steps. After you upgrade to the new server, you must load the JSON columns with DATE fields

from the external table into a new table in BSON format.

Chapter 1. Migrating and upgrading

Related information

Finish preparing earlier versions of 12.10 databases for JSON compatibility on page 47

Closing all transactions and shutting down the source database server
Before migrating, terminate all database server processes and shut down your source database server. This lets users exit

and shuts down the database server gracefully. If you have long running sessions, you must also shut those down.

Inform client users that migration time is typically five to ten minutes. However, if migration fails, you must restore from a

level-0 backup, so ensure that you include this possibility when you estimate how long the server will be offline.

Before you migrate from the original source database server, make sure that no open transactions exist. Otherwise, fast

recovery will fail when rolling back open transactions during the migration.

To let users exit and shut down the database server gracefully

1. Run the onmode –sy command to put the database server in quiescent mode.

2. Wait for all users to exit.

3. Run the onmode –l command to move to the next logical log.

4. Run the onmode -c to force a checkpoint.

5. Make a level-0 backup of the database server.

6. Run the ontape -a command after the level-0 backup is complete.

7. Run the onmode –yuk command to shut down the system.

If you need to perform an immediate shutdown of the database server, run these commands:

onmode -l
onmode -c
onmode -ky

Initiating fast recovery to verify that no open transactions exist
A shutdown procedure does not guarantee a rollback of all open transactions. To guarantee that the source database server

has no open transactions, put the source database server in quiescent mode and initiate fast recovery.

Run the following command to enter quiescent mode and initiate a fast recovery:

oninit -s

UNIX/Linux Only

On UNIX™ or Linux™, the oninit -s command rolls forward all committed transactions and rolls back all

incomplete transactions since the last checkpoint and then leaves a new checkpoint record in the log with no

open transactions pending.

13

Migrating and upgrading

14

You must run the oninit -s command before you initialize the new version of Informix®. If any transactions remain when you

try to initialize the new database server, the following error message appears when you try to initialize the new database

server, and the server goes offline:

An open transaction was detected when the database server changed log versions.
Start the previous version of the database server in quiescent mode and then shut
down the server gracefully, before migrating to this version of the server.

For more information about fast recovery, see your Informix® Administrator's Guide.

After you put the database server in quiescent mode and initiate fast recovery, issue the onmode -yuk command to shut

down the database server. Then review the online.log file for any possible problems and fix them.

Only after proper shutdown can you bring the new database server (Informix® Version 14.10) through the migration path.

Any transaction that is open during the migration causes an execution failure in fast recovery.

Verifying the integrity of the data
After verifying that no open transactions exist, verify the integrity of your data by running the oncheck utility. You can also

verify the integrity of the reserve pages, extents, system catalog tables, data, and indexes. If you find any problems with the

data, fix the problems before you make a final backup of the source database server.

To obtain the database names, use the following statements with DB-Access:

DATABASE sysmaster;
SELECT name FROM sysdatabases;

Alternatively, to obtain the database names, run the oncheck -cc command without any arguments and filter the result to

remove unwanted lines, as shown in this example:

oncheck -cc | grep "ting database"

Table 3: Commands for verifying the data integrity on page 14 lists the oncheck commands that verify the data integrity.

Table 3. Commands for verifying the data integrity

Action oncheck Command

Check reserve pages oncheck utility-cr optiononcheck -cr

Check extents oncheck utility-ce optiononcheck -ce

Check system catalog tables oncheck utility-cc database_name optiononcheck -cc database_name

Check data oncheck utility-cD database_name optiononcheck -cD database_name

Check indexes oncheck utility-cI database_name optiononcheck -cI database_name

Verifying that the database server is in quiescent mode
Before you make a final backup, verify that your source database server is in quiescent mode.

Chapter 1. Migrating and upgrading

Run the onstat - command to verify that the database server is in quiescent mode.

The first line of the onstat output shows the status of your source database server. If the server is in quiescent mode, the

status line includes this information:

Quiescent -- Up

Making a final backup of the source database server
Use ON-Bar or ontape to make a level-0 backup of the source database server, including all storage spaces and all used logs.

After you make a level-0 backup, also perform a complete backup of the logical log, including the current logical-log file.

Be sure to retain and properly label the tape volume that contains the backup.

Important: You must also make a final backup of each source database server instance that you plan to convert.

For ON-Bar, remove the ixbar file, if any, from the $INFORMIXDIR%/etc or %INFORMIXDIR%\etc directory after the final

backup. Removing the ixbar file ensures that backups for the original source database server are not confused with

backups about to be done for the new database server. Follow the instructions regarding expiration in your storage manager

documentation.

For more information about making backups, see the Informix® Backup and Restore Guide.

Verifying that the source database server is offline
Before you install the new database server, verify that the source database server is offline. You must do this because the

new database server uses the same files.

You cannot install the new database server if any of the files that it uses are active.

You can also use the onstat utility to determine that shared memory was not initialized.

Pre-migration checklist of diagnostic information
Before you migrate to a newer version of Informix®, gather diagnostic information, especially if you have large, complex

applications. This information will be useful to verify database server behavior after migration. This information will also be

useful if you need help from HCL Software Support.

If you have problems, you or HCL Software Support can compare the information that you gather with information obtained

after migration.

The following table contains a list of the diagnostic information that you can gather. You can print the checklist. Then, after

you get the information specified in each row, check the second column of the row.

15

Migrating and upgrading

16

Table 4. Checklist of information to get before migrating

Information to Get Before Migrating Done

Get the SQL query plans for all regularly used queries, especially complex queries, by

using SET EXPLAIN ON.

Run the dbschema -d -hd command for all critical tables.

The output contains distribution information.

Get oncheck -pr output that dumps all of the root reserved pages.

Make a copy of the ONCONFIG configuration file.

A copy of the ONCONFIG file is essential if you need to revert to an earlier version of

the database server. In addition, a copy of this file is useful because oncheck -pr does

not dump all of the configuration parameters.

Prepare a list of all the environment variables that are set using the env command.

During times of peak usage:

• Obtain an online.log snippet, with some checkpoint durations in it

• Run onstat -aF, -g all, and -g stk all.

During times of peak usage, run the following onstat commands repeatedly with the -r

repeat option for a period of about three to five minutes:

• onstat -u, to see the total number of sqlexecs used

• onstat -p, for read and write cache rates, to detect deadlocks and the number

of sequential scans

• onstat -g nta, a consolidated output of -g ntu, ntt, ntm and ntd

• onstat -g nsc, -g nsd, and -g nss for the status of shared memory connections

• onstat -P, -g tpf, and -g ppf

• vmstat, iostat and sar, for cpu utilization

• timex of all queries that you regularly run

Related information

Preparing for migration on page 7

Migrating from 32-bit to 64-bit database servers
If you are migrating from a 32-bit version of Informix® to a 64-bit version of Informix® or reverting from a 64-bit version of

Informix®, you might need to follow additional steps to update certain internal tables.

These steps are documented in the platform-specific machine notes that are provided with your database server.

Chapter 1. Migrating and upgrading

For 32- to 64-bit migrations, change SHMBASE and STACKSIZE according to the onconfig.std configuration file for the

new version.

All UDRs and DataBlade® modules that were built in 32-bit mode must be recompiled in 64-bit mode because they will not

work with the 64-bit database server. If you have any UDRs that were developed in 32-bit mode, make sure that proper size

and alignment of the data structures are used to work correctly on a 64-bit computer after recompiling in 64-bit mode. For

more information, refer to the machine notes.

Migrating from 32-bit to 64-bit with collection types that use the SMALLINT data type

If you are moving your database from a 32-bit computer to a 64-bit computer and your database contains collection types

that use the SMALLINT data type, you must take extra steps to prevent memory corruption. Collection types are the ROW,

LIST, SET, and MULTISET data types. This restriction applies if you are upgrading from an older version of Informix® on 32-bit

to the current version of Informix® on 64-bit, or if you are moving from 32-bit to 64-bit on the current version of Informix®.

To migrate a database with SMALLINT collection types from 32-bit to 64-bit, use one of the following methods:

• Export and import the data.

1. Export the data from the 32-bit computer.

2. Import the data onto the 64-bit computer.

• Drop and recreate specific collection types and database objects.

1. Drop the collection types that use the SMALLINT data type and all other database objects that reference them

(such as tables, columns, SPL routines, triggers, indexes, and so on).

2. Recreate the collections types and all the other necessary database objects.

Enterprise Replication and migration
You must coordinate the migration of all servers that are involved in data replication.

These topics describe the additional tasks that you must perform when migrating to and reverting from Informix® Version

14.10 if you are running Enterprise Replication.

Related information

Upgrading Informix (in-place migration)

Types of migration

Migrating Informix (non-in-place migration)

Preparing to migrate with Enterprise Replication
If you use Enterprise Replication, you must do replication-related tasks to prepare for migration.

Before you begin

17

Migrating and upgrading

18

You must do all migration operations as user informix, unless otherwise noted.

Only a DBSA can run the cdr check queue command. With a non-root installation, the user who installs the server is the

equivalent of the DBSA, unless the user delegates DBSA privileges to a different user.

To prepare for migration with Enterprise Replication:

1. Stop applications that are performing replicable transactions.

2. Make sure that the replication queues are empty.

If you are migrating from Informix® 12.10.xC1 or later releases, run the following commands to check for queued

messages and transactions:

a. cdr check queue -q cntrlq targetserver

b. cdr check queue -q sendq targetserver

c. cdr check queue -q recvq targetserver

If you are migrating from an earlier version of Informix®, run the following commands:

a. Run onstat -g grp to ensure that the Enterprise Replication grouper does not have any pending transactions.

The grouper evaluates the log records, rebuilds the individual log records in to the original transaction,

packages the transaction, and queues the transaction for transmission.

b. Run onstat -g rqm to check for queued messages.

3. Shut down Enterprise Replication by running the cdr stop command.

Results

Now you can complete the steps in Preparing for migration on page 7 and, if necessary, in Migrating from 32-bit to 64-bit

database servers on page 16.

Migrating with Enterprise Replication
If you use Enterprise Replication, you must complete replication-related tasks when you migrate to a new version of

Informix®. If you are converting to Informix® 12.10.xC4 or later from an earlier fix pack in the same release, you also have to

complete these tasks.

About this task

Prerequisites:

• Complete the steps in Preparing for migration on page 7.

• Perform all migration operations as user informix.

• All servers in the Enterprise Replication domain must be available.

To migrate with Enterprise Replication:

Note:

Chapter 1. Migrating and upgrading

If you are migrating server from 12.10xC4 or a later version to 14.10xC6 or a later version, after upgrading server to

14.10FC6 or a later version, for the first time when you start ER, make sure to start ER using cdr cleanstart command

to force required schema changes to syscdr database. Rest of the steps can be skipped.

1. Perform the tasks that are described in Migrating to the new version of Informix on page 40, including starting the

new version of the server.

2. For each node involved in Enterprise Replication, back up the syscdr databases by using the dbexport -ss command

or the dbschema -ss command and the UNLOAD statement, or by a combination of these methods.

The -ss option prevents backup tables from using default extent sizes and row-level locking, which is not an

appropriate lock mode with Enterprise Replication.

3. Make sure that no replicable transactions occur before Enterprise Replication starts.

4. If you are upgrading to a new release, run the conversion script, named concdr.sh, in the $INFORMIXDIR/etc/

conv directory on UNIX™, or concdr.bat, in the %INFORMIXDIR%\etc\conv directory on Windows™. Do not run

the script when you migrate between fix packs of the same release except where noted.

To convert to 12.10.xC4 or later:

UNIX™: % sh concdr.sh from_version 12.10.xC4

Windows™: concdr.bat from_version 12.10.xC4

The valid from_version values are: 12.10.xC3, 12.10.xC2, 12.10.xC1, 11.70, 11.50, 11.10, and 10.00.

Because version 12.10.xC4 is the latest fix pack with conversion, specify 12.10.xC4 even if you are upgrading to later

a fix pack version, such as 12.10.xC6.

To convert to earlier fix packs of 12.10:

UNIX™: % sh concdr.sh from_version 12.10

Windows™: concdr.bat from_version 12.10

The valid from_version values are: 11.70, 11.50, 11.10, and 10.00.

5. Ensure conversion completed successfully.

The script prints messages and conversion details to standard output, and stores the information in the following file:

• UNIX™: $INFORMIXDIR/etc/concdr.out

• Windows™: %INFORMIXDIR%\etc\concdr.out

Important: If you receive the following message, you must resolve the problems reported in the concdr.out

file, restore the syscdr database from backup, and then start from step 1.

'syscdr' conversion failed.

When you receive the following message, conversion is complete and you can go to the next step.

'syscdr' conversion completed successfully.

6. After successful conversion, if you are upgrading server to 14.10xC6 or later version, start Enterprise Replication by

running the cdr cleanstart command, otherwise run cdr start command.

19

Migrating and upgrading

20

7. If you upgraded the servers in a grid from version 11.70 to version 12.10 and you want to copy external files to the

servers in the grid, you must enable the ability to copy external files. To enable the copying of external files, run this

command:

cdr modify grid grid_name --enablegridcopy server_groupname

Results

Important: After you convert to the new version of Informix® with Enterprise Replication, do not drop the syscdr

database. If syscdr is dropped, you cannot revert to the older database server with Enterprise Replication because

the data required to carry out the reversion is stored in the syscdr database.

Reverting with Enterprise Replication
If you use Enterprise Replication, you must complete replication-related tasks when you revert from the new version of

Informix®. If you are reverting from Informix® 12.10.xC4 or later to a fix pack earlier than 12.10.xC4 in the same release, you

also have to complete these tasks.

Before you begin

Prerequisites:

• Perform all reversion operations as user informix.

• Enterprise Replication must be running, or you must delete the replication server before you revert.

• All servers in the Enterprise Replication domain must be available.

• Replication queues must be nearly empty.

About this task

If you want to revert to a version earlier than when Enterprise Replication was defined on this server, you must remove

Enterprise Replication from this server before reverting. After you remove Enterprise Replication, you can revert your server

using the instructions at Reverting from Informix Version 14.10 on page 51.

To revert from Version 14.10 with Enterprise Replication:

1. Release or remove any grid statements that are deferred from propagation by running the ifx_grid_release() or

ifx_grid_remove() function.

2. Stop applications that are doing replicable transactions.

3. Remove Enterprise Replication features from the current release that cannot be reverted. For more information, see

Reversion requirements and limitations on page 52.

4. Run the onstat -g cat repls command to check whether if Enterprise Replication is in alter mode. If so, run the cdr

alter --off command.

5. Delete shadow replicates.

6. Back up the syscdr databases with dbschema or UNLOAD.

Chapter 1. Migrating and upgrading

7. Run the reversion script, named revcdr.sh, in the $INFORMIXDIR/etc/conv directory on UNIX™, or revcdr.bat,

in the %INFORMIXDIR%\etc\conv directory on Windows™:

To revert from 12.10.xC4 or later to an earlier version:

UNIX™: % sh revcdr.sh 12.10.xC4 to_version

Windows™: revcdr.bat 12.10.xC4 to_version

Because version 12.10.xC4 is the latest fix pack with conversion, specify 12.10.xC4 even if you are reverting from a

later fix pack version, such as 12.10.xC6.

Valid to_version values are 12.10.xC3, 12.10.xC2, 12.10.xC1, 11.70, 11.50, 11.10, and 10.00. You do not have to specify

a fix pack level except where noted.

To revert from earlier 12.10 fix packs:

UNIX™: % sh revcdr.sh 12.10 to_version

Windows™: revcdr.bat 12.10 to_version

Valid to_version values are 11.70, 11.50, 11.10, and 10.00.

This script runs a reversion test followed by the actual Enterprise Replication reversion.

Result

Important: If the reversion test or actual reversion fails, check the file $INFORMIXDIR/etc/

revtestcdr.out or revcdr.out. Resolve any problems before going to the next step.

8. Perform database server reversion tasks, as described in Reverting from Informix Version 14.10 on page 57.

9. Run onmode -l and onmode -c to prevent the database server from failing when you start Enterprise Replication.

10. Start Enterprise Replication by running the cdr start command.

Related information

Preparing to revert on page 51

High-availability cluster migration
You must coordinate the migration and reversion of all servers that are involved in high-availability clusters. You can use a

rolling upgrade in some cases to update servers while the cluster is online, with minimal interruption to client applications.

Otherwise, you must schedule cluster downtime to upgrade the servers. A cluster must be offline to reverse an upgrade or

revert to an earlier release.

A rolling upgrade can minimize downtime, but the tradeoff is that you must spend time to prepare for a rolling upgrade. The

effort to prepare your servers for a rolling upgrade depends on how closely your current configuration matches the procedure

requirements. In some cases, you might find it easier to plan for downtime during a period of low activity instead of setting

up your environment for a rolling upgrade. The downtime that is required depends on your system, but smaller clusters

usually require less downtime.

21

Migrating and upgrading

22

Use the following table to help you determine which upgrade procedure to use. Also, review the requirements and limitations

that are documented in each procedure.

Table 5. Comparison of upgrade procedures for high-availability clusters

Upg

rade

to

Proce

dure Use Procedure overview

Next

con

secu

tive

fix

pac

k or

PID

of

the

sam

e

maj

or

versi

on

Rollin

g

upgra

de of

an

online

cluste

r to

the

next

fix

pack

or PID

(UNIX,

Linux)

on

pag

e 25

As of Informix® 12.10.xC5, you can apply

the next consecutive fix pack or interim fix

(PID) of the same major version to all the

servers while the cluster remains online.

You must stop and restart each server in the cluster,

including the primary. Specifically, you upgrade each

secondary server, and then you stop the primary server

and promote an upgraded secondary server to primary.

Next, you upgrade the original primary server, bring it online

as a secondary server, and promote it back to primary, if

necessary. Interruption to client applications is minimized

because transactions are redirected to active servers by

Connection Manager or through the client applications. The

new database server capabilities can be used in the cluster

after all servers are upgraded.

Any

later

fix

pac

k or

PID

of

the

sam

e

maj

or

versi

on

Upgra

ding

an

offline

cluste

r to

a fix

pack

or PID

on

pag

e 28

You can use this procedure within a major

version to apply a fix pack or PID in offline

clusters in the following situations:

• Your cluster does not meet the

requirements for a rolling upgrade.

• The limitations that are imposed by

a rolling upgrade are impractical for

your environment.

• You prefer or need to bring the

servers in the cluster offline before

you upgrade them.

You stop all servers in the cluster during a period when

downtime is acceptable. While the cluster if offline, you

upgrade all the servers. You then start the primary followed

by the secondary servers. You don't have to rebuild the

cluster or clone the servers.

Chapter 1. Migrating and upgrading

Table 5. Comparison of upgrade procedures for high-availability clusters

(continued)

Upg

rade

to

Proce

dure Use Procedure overview

New

maj

or

versi

on

A fix

pac

k or

PID

that

requ

ires

conv

ersi

on

Migra

ting

an

offline

cluste

r to a

new

major

versio

n on

pag

e 29

You can use this procedure to migrate

the servers in your offline cluster to a

new major version. For example, you can

migrate from Informix® 12.10 to Informix®

14.10.

Also, you can use this procedure to apply

a fix pack or PID that requires standard

conversion procedures. Usually conversion

is not required for a fix pack or PID. The

machine notes indicate whether conversion

is required.

You stop the servers in a specific order during a period

when planned downtime is acceptable. Then, if you are

migrating from Informix 12.10 or later version, You stop

all servers in the cluster during a period when downtime

is acceptable. While the cluster if offline, you upgrade all

the servers. You then start the primary followed by the

secondary servers. You don't have to rebuild the cluster or

clone the servers.

If you are migrating from Informix® 11.50 or older version,

you migrate only the primary server. During migration, the

database server automatically removes secondary servers.

After you migrate the primary server, you must rebuild the

cluster by recreating all secondary servers. You can use the

ifxclone utility to recreate secondary servers.

Any

sup

port

ed

rele

ase

Rollin

g

upgra

de of

an

online

cluste

r with

Enter

prise

Replic

ation

on

pag

e 31

This alternative rolling upgrade procedure

requires a working knowledge of Enterprise

Replication. You can use this procedure to

upgrade online clusters to any supported

product release. You can use this

procedure to upgrade to a new major

version or to apply any fix pack or PID (not

just the next consecutive one) within a

release. This procedure is more flexible

than the other rolling upgrade procedure;

however, it is more complex to set up.

You temporarily convert the primary and secondary servers

to stand-alone Enterprise Replication servers. The upgrade

occurs without incurring any downtime because Enterprise

Replication supports replication between different versions

of the server software.

23

Migrating and upgrading

24

Related information

Upgrading Informix (in-place migration)

Types of migration

Migrating Informix (non-in-place migration)

Preparing to migrate, upgrade, or revert clusters
If you use high-availability clusters, you must coordinate the migration of all of the servers that are involved in a high-

availability cluster, and you must perform additional steps when preparing to migrate.

About this task

Prerequisites:

• Perform all migration operations as user informix.

• Download the product package from at , or download recommended fixes for server products.

• If you are migrating to a new version of the server, complete all steps in Preparing for migration on page 7.

To prepare for migration or reversion of a cluster:

1. Prepare each server in the cluster:

a. Install the target server software in a different location from where the source database server software is

installed. Do not install the target server software over the source server.

Tip: Install the new version of Informix® Client Software Development Kit (Client SDK), which contains

the Connection Manager that you must use with the new version of the server. If you want to use only

the Connection Manager from the new version of Client SDK, install Client SDK in a new location and

use the Connection Manager from that location.

b. Copy the onconfig and sqlhosts configuration files to the target installation directory (for example,

$INFORMIXDIR/etc).

c. Install on the target server any user-defined objects or DataBlade® modules that are used on the source

server.

2. Back up your primary server. You can perform this step in the following ways:

Choose from:

• Use ON-Bar or ontape to make a level-0 backup on the primary source server.

• If you have a high-availability cluster with a High-availability Data Replication (HDR) secondary server, you

can use the HDR secondary server as a standby server for any contingencies that occur while you upgrade

the primary server. However, if it is necessary to use an HDR secondary server as a standby server for

contingencies, do not perform updates on the standby server while migration or reversion is in progress,

http://www-01.ibm.com/support/docview.wss?uid=swg27014361

Chapter 1. Migrating and upgrading

because the updates cannot be replicated and will be lost. Additionally, nonlogged objects on the primary

server will not exist on the secondary server.

Attention: Do not use RS secondary servers as backup servers, because transactions could be lost.

Rolling upgrade of an online cluster to the next fix pack or PID (UNIX, Linux)
As of Informix® 12.10.xC5, you can apply the next consecutive fix pack or interim fix (PID) to your current version of the

database server. During the rolling upgrade, the cluster remains online even though the servers in the cluster run different

levels of the software. The new capabilities can be used in the cluster after all the servers in the cluster are upgraded.

About this procedure

This rolling upgrade procedure works only on UNIX and Linux platforms. Use this procedure to apply the next consecutive fix

pack or PID in the current major version. For example, you can do a rolling upgrade from 12.10.xC4 to 12.10.xC5. Otherwise,

you must use a different procedure that is documented at High-availability cluster migration on page 21.

Do not use this procedure in the following situations:

• To apply a fix pack or PID that requires conversion.

• To upgrade to 12.10.xC5 from 12.10.xC3, 12.10.xC2, or 12.10.xC1.

• To upgrade an earlier major version of the server to a later major version of the database server, for example, to

upgrade from version 11.70 to 12.10.

• To upgrade from a patch release or special build, unless advised to do so by Software Support.

You must stop and restart each server in the cluster, including the primary, as part of this procedure. Specifically, you upgrade

each secondary server, and then you stop the primary server and promote an upgraded secondary server to primary. Next,

you upgrade the original primary server, bring it online as a secondary server, and promote it back to primary, if necessary.

You must have the following permission on all the servers in the cluster: user root or user informix.

This procedure consists of these steps:

• Prepare for a rolling upgrade on page 25

• Upgrade the servers on page 26

• Return the cluster to its original configuration on page 27

Prepare for a rolling upgrade

Use the following steps to plan for and prepare the servers for rolling upgrade:

25

Migrating and upgrading

26

1. Complete the steps in Preparing to migrate, upgrade, or revert clusters on page 24, which include installing the

new software on all the servers in the cluster, copying the appropriate configuration files, and backing up the primary

server.

2. If you are migrating from a server version prior to 14.10.xC8, or from a Client SDK version prior to 4.50.xC8, you must

upgrade all Connection Managers before upgrading any server in your cluster. Upgrade them one at a time to avoid

a service interruption that would affect your applications. All Connection Managers should be running with version

4.50.xC8 or later before continuing to the next step.

3. Configure client redirection to minimize interruption of service.

Set up redirection and connectivity for clients by using the method that works best for your environment.

If Connection Manager controls the connection redirection in the cluster: Ensure that every service level agreement

(SLA) definition in the Connection Manager configuration file can redirect to at least one server other than the one

you are about to update. For example, assume that you have an SLA with only one secondary. Before you upgrade the

secondary server in that SLA, update the SLA to include the cluster primary (PRI).

4. Ensure that the primary server has an appropriate amount of disk space for the logical log records that are created

during the entire upgrade process. The space that is required depends on your environment.

Attention: If a log wrap occurs during the rolling upgrade procedure, you must apply the fix pack or PID while

the cluster is offline.

Tip: Examine the online log to get an estimate of your data activity during normal operations. You might want

to ensure that you have enough space for data activity for a day. Also, you might find it convenient to plan the

rolling upgrade for a period of low traffic.

5. Prepare the secondary server that will become the primary when you upgrade the original primary server. You must

use an SD secondary or a fully synchronous HDR secondary server that has transactional consistency with the

original primary server.

a. If the cluster contains an SD secondary server, you don't need to do any additional preparation to that server.

b. If the cluster contains an HDR secondary server, make sure that it runs in fully synchronous (SYNC) mode.

c. If the cluster contains only RS secondary servers in addition to the primary server, you must change one of the

RS secondary servers to an HDR secondary server in SYNC mode.

Upgrade the servers
Follow the steps in this section to upgrade the cluster servers in the following order:

1. Remote standalone (RS) secondary server

2. HDR secondary server

3. Shared disk (SD) secondary server

4. Primary server

Chapter 1. Migrating and upgrading

Important: Upgrade the primary server only after all the secondary servers are upgraded and tested. After you

upgrade the primary server, if you want to revert to your original environment you must take the cluster offline.

1. Run the onmode -c command to force a checkpoint for each server.

2. If a wire listener is running on the server that you want to upgrade, stop that wire listener.

3. Stop the server that you want to upgrade. If you can wait for all connections to exit gracefully before stopping the

server, use the onmode -kuy command. Otherwise, use the onmode -ky command to stop the server.

• When you stop a secondary server: If redirection is configured on page 26 for the cluster, the client

application automatically connects to another active server in the cluster.

• When you stop the primary server: If failover is configured for the cluster, a secondary server is promoted

automatically to primary. Otherwise, you can run the onmode -d make primary command to promote a

prepared secondary server to primary.

Tip: If the primary is offline before the failover, you must use the onmode -d make primary force

command.

4. Set your environment to use the fix pack or PID that you installed on the server.

a. Set the INFORMIXDIR environment variable to the full path name for the target installation.

b. Update all environment variables that depend on the INFORMIXDIR environment variable. At a minimum,

update these environment variables: PATH, DBLANG, INFORMIXSQLHOSTS, and any platform-specific library

path environment variables, such as LD_LIBRARY_PATH.

5. Start the upgraded server.

To start an upgraded secondary server: Use the oninit command.

To start an upgraded original primary server: Start the original primary server as a secondary server. For

convenience, start it as the server type that was promoted to primary during the rolling upgrade. For example, if you

promoted an HDR server to primary for the rolling upgrade, start the original primary as an HDR secondary server.

• To start the upgraded server as an SD secondary server, run the oninit -SDS command.

• To start the upgraded server as an HDR secondary server, run the oninit -PHY command, and then run the

following command: onmode -d secondary primary_server secondary_server

After the server starts, it runs the new version of the software and automatically reconnects to the cluster.

6. To verify that the upgraded secondary server is active in the cluster, run the onstat -g cluster command on both the

server you upgraded and on the primary server.

7. If you stopped the wire listener to upgrade this server, restart the wire listener.

After you upgrade all the servers and restart them, the original primary server is running as a secondary server.

Return the cluster to its original configuration

Use the following steps if you want the cluster to operate as it did before you prepared it for a rolling upgrade.

27

Migrating and upgrading

28

1. Manually promote the secondary server that was the original primary to be the primary server again.

a. Run the onmode -c command to force a checkpoint.

b. Run the onmode -d make primary command to promote the secondary server to primary.

2. Undo any changes that you made when you prepared the servers for a rolling upgrade. Some of these optional steps

might not apply to you.

• Adjust the amount of disk space that is allocated for logical log records.

• Convert the HDR secondary server back to an RS secondary server.

• Change the HDR secondary server back to ASYNC mode from SYNC mode.

• Change the Connection Manager SLA definitions.

Related information

Upgrading an offline cluster to a fix pack or PID on page 28

Upgrading an offline cluster to a fix pack or PID
You can bring a high-availability cluster offline to apply any PID or fix pack of the same version of the database server. For

example, you must bring the clusters offline to upgrade the servers to the current fix pack if earlier fix packs were not applied

to the server. This procedure is an alternative to the rolling upgrade procedure.

Before you begin

Prerequisites:

• Verify that you are upgrading to a PID or fix pack in which standard conversion procedures are not necessary. If the

PID or fix pack requires you to complete standard conversion procedures, or if you want to upgrade to a new major

release, go to Migrating an offline cluster to a new major version on page 29 instead of following the procedures

in this topic.

• Complete the steps in Preparing to migrate, upgrade, or revert clusters on page 24.

• Perform all migration operations as user informix.

To upgrade offline clusters to a new PID or fix pack:

1. Stop the Connection Manager by issuing the oncmsm -k connection_manager_name command.

2. If you are using a High-availability Data Replication (HDR) secondary server as a backup server in case of

contingencies:

a. Quiesce the primary server by issuing an onmode -sy command to prevent user connections to the server.

b. Force a checkpoint by issuing an onmode -c command on the primary server.

3. Stop secondary servers in the cluster in the following order:

Chapter 1. Migrating and upgrading

a. If you have remote standalone (RS) servers, stop them by issuing the onmode -ky command.

b. If you have shared disk (SD) servers, stop them by issuing the onmode -ky command.

c. If you have an HDR secondary server, stop it issuing the onmode -ky command.

4. Stop the primary server by issuing the onmode -ky command.

5. On each server, set the INFORMIXDIR environment variable to the full path name for the target installation.

6. Ensure that all of the necessary configuration files are available in the target installation.

7. Start the servers in the cluster and perform additional tasks in the following order:

a. Start the primary server by running an oninit command.

b. Wait for primary server to be in online (multi-user) mode.

c. Start the Connection Manager by running an oncmsm command.

d. Start the HDR secondary server by running an oninit command.

e. Start SD servers by running an oninit command.

f. Start RS servers by running an oninit command.

Related information

Rolling upgrade of an online cluster to the next fix pack or PID (UNIX, Linux) on page 25

Migrating an offline cluster to a new major version
If you are migrating from Informix 11.70 or later version to 14.10xC4 or later version, you stop all servers in the cluster during

a period when downtime is acceptable. While the cluster if offline, you upgrade all the servers. You then start the primary

followed by the secondary servers. You need not rebuild the cluster or clone the servers.

Before you begin

If you are migrating from Informix 11.50 or older version or migrating to 14.10xC3 or older version, you migrate only the

primary server. During migration, the database server automatically removes secondary servers. After you migrate the

primary server, you must rebuild the cluster by recreating all secondary servers. You can use the ifxclone utility to recreate

secondary servers. This procedure also applies if you want to upgrade a cluster to a new PID or fix pack that requires

standard conversion procedures.

Prerequisites:

• Complete the steps in Preparing for migration on page 7.

• Complete the steps in Preparing to migrate, upgrade, or revert clusters on page 24.

• Perform all migration operations as user informix.

About this task

Be sure to stop and start the servers in the cluster in the order shown in the following procedure.

To migrate to a new version with high-availability clusters:

29

Migrating and upgrading

30

1. Stop the Connection Manager by issuing the oncmsm -k connection_manager_name command.

2. If you are using a High-availability Data Replication (HDR) secondary server as a backup server in case of

contingencies:

a. Quiesce the primary server by issuing an onmode -sy command to prevent user connections to the server.

b. Force a checkpoint by issuing an onmode -c command on the primary server.

3. Stop the secondary servers in the cluster in the following order:

a. If you have remote standalone (RS) secondary servers, stop them by issuing the onmode -ky command.

b. If you have shared disk (SD) servers, stop them by issuing the onmode -ky command.

c. If you have an HDR secondary server, stop it by issuing the onmode -ky command.

4. Stop the primary server by issuing the onmode -ky command.

5. On each server, set the INFORMIXDIR environment variable to the full path name for the target installation.

6. Ensure that all of the necessary configuration files are available in the target installation.

7. Optional: Enable quick reversion to a consistent restore point if the migration fails. Do this by setting the

CONVERSION_GUARD and RESTORE_POINT_DIR configuration parameters. (For more information, see Configuring

for recovery of restore point data in case an upgrade fails on page 10.)

8. Start the primary server by issuing an oninit command.

9. Ensure that the conversion to the target server was successful and that the server is in multi-user mode.

10. If you are migrating from Informix 11.70 or later version to 14.10xC4 or later version, for HDR and RSS servers,

a. Enable quick reversion to a consistent restore point if the migration fails. Do this by setting the

CONVERSION_GUARD and RESTORE_POINT_DIR configuration parameters. (For more information, see

Configuring for recovery of restore point data in case an upgrade fails on page 10.)

b. Start secondary server by issuing an oninit command.

c. Check ‘onstat -g cluster’ output at primary server, and once HDR/RSS secondary server connected to primary

server, force a checkpoint at primary server using ‘onmode -c’ command and make sure checkpoint is

replayed at HDR/RSS secondary server.

11. Start the Connection Manager by issuing an oncmsm command.

12. If you are migrating from pre-11.10 versions of Informix® and need SD secondary servers on the primary server in a

shared-disk cluster, set the primary server by issuing the onmode -d set SDS primary primary_server_name command.

13. Start SD secondary servers by issuing oninit commands.

14. Start the servers in the cluster and perform additional tasks in the following order:

15. If you are migrating from Informix 11.50 or older version or migrating to 14.10xC3 or older version, for HDR ad RSS

servers,

a. Back up all logs. Then use ON-Bar or ontape to make a level-0 backup on the primary server to use to

reestablish the RS and HDR secondary servers if necessary.

b. If you have RS secondary servers:

Chapter 1. Migrating and upgrading

i. Add RS entries on the primary server by issuing onmode –d add RSS rss_server_name commands.

ii. Start RS secondary servers with level-0 restore operations from the level 0 backup that was made on

the primary server after migration.

iii. On RS secondary servers, run the onmode -d RSS primary_server_name command, and wait for the

"RSS secondary server operational" message to appear after each command.

c. If you have an HDR secondary server:

i. Reestablish the pair on the primary server by issuing an onmode -d primary

hdr_secondary_server_name command.

ii. Start the HDR secondary server with level-0 restore operations from the level 0 backup that was made

on the primary server after migration.

iii. On the HDR secondary server, run the onmode -d secondary primary_server_name command, and wait

for the "HDR secondary server operational" message to appear after each command.

16. Perform any additional standard migration tasks described in Migrating to the new version of Informix on page 40

and in Completing required post-migration tasks on page 46.

17. If you have Connection Manager configuration files that you created with a version of Informix® Client Software

Development Kit (Client SDK) that is prior to version 3.70.xC3, you must convert the files. You must convert them

because the older files are incompatible with the current version of the Connection Manager. For more information,

see Converting older formats of the Connection Manager configuration file to the current format on page .

Results

The migration of all servers in the cluster is now complete.

Note: Reversion is not supported for HDR and RSS secondary servers. You need to revert primary server, and you

must rebuild the cluster by recreating all secondary servers. You can use the ifxclone utility to recreate secondary

servers.

Rolling upgrade of an online cluster with Enterprise Replication
You can perform a rolling upgrade in a high-availability cluster by temporarily converting the primary and secondary servers

to stand-alone Enterprise Replication servers. The upgrade occurs without incurring any downtime because Enterprise

Replication supports replication between different versions of the server software. You can use this approach to upgrade to a

new major version, or to apply fix packs or interim fixes (PIDs).

Before you begin

During this procedure, you convert the primary server and the secondary servers to standalone Enterprise Replication

servers. You then upgrade the software on the secondary server, stop Enterprise Replication, and then clone the server using

the ifxclone command.

See the following link for additional information about upgrading clusters: http://www.ibm.com/developerworks/data/library/

techarticle/dm-1012rollingupgrade/index.dital.

31

../admin%20/ids_admin_1187.html#ids_admin_1187
../admin%20/ids_admin_1187.html#ids_admin_1187
../admin%20/ids_admin_1187.html#ids_admin_1187
../admin%20/ids_admin_1187.html#ids_admin_1187
http://www.ibm.com/developerworks/data/library/techarticle/dm-1012rollingupgrade/index.dital
http://www.ibm.com/developerworks/data/library/techarticle/dm-1012rollingupgrade/index.dital

Migrating and upgrading

32

The following prerequisites apply when upgrading software on a cluster:

• Non-logged databases are not supported.

• Raw or unlogged tables are not supported.

• Typed tables are not supported unless the typed table contains a primary key.

• UDTs that do not support Enterprise Replication are not supported.

• The CDR_QDATA_SBSPACE configuration parameter must be set on both the primary and secondary servers.

• The sqlhosts file must define a server group.

• The primary and secondary servers must belong to different groups.

• For versions of Informix® software earlier than 11.50.xC7, converting a primary and secondary server pair to

Enterprise Replication is not supported if a table does not have a primary key.

• For versions of Informix® software earlier than 11.10, the sec2er command is not supported.

If you are upgrading Informix® software version 11.50.xC7 or later, the sec2er command adds a primary key to any table that

does not already have one defined. For large tables, adding the primary key can take a long time, during which you will not

see any server activity. In addition, the sec2er command requires exclusive access to the table while adding the primary key

and user transactions will be blocked from accessing the table. You might want to manually create primary keys on any large

table before running the sec2er command. If you have tables that were created with the DELIMIDENT environment variable

set, and the tables do not have primary keys, then you must manually create the primary keys for those tables before running

the sec2er command.

About this task

There are different steps involved in the upgrade process depending on whether you are using the Connection Manager:

• For high-availability clusters that use the Connection Manager to redirect user connections:

There are two options you can choose based on your requirements. You can:

◦ Add a new Connection Manager instance to manage user connections while the cluster is upgraded. This

involves configuring a new 3.70 Connection Manager instance that supports Enterprise Replication and has

corresponding changes to the sqlhosts file or other connection mechanisms for user applications. If users

already have a Connection Manager group support infrastructure to manage their user connections, they can

easily add the new Connection Manager for Enterprise Replication to their existing Connection Manager group

to ensure that no user connection downtime occurs during the upgrade process.

◦ Use your existing cluster Connection Manager or Connection Manager groups throughout the upgrade

process, without making any changes to the Connection Manager configuration, applications, or application

connection mechanisms. This option has a 10-second down time for user connections, but if that is

acceptable, you can avoid the overhead of adding a new Connection Manager instance and the configuration

changes that go with it.

• For clusters not using the Connection Manager to redirect user connections:

Users must take steps to move user connections to the appropriate servers during the upgrade process.

Performing a server upgrade when the Connection Manager is not in use

In this example, the terms server1 and server2 refer to server names rather than machine names.

Chapter 1. Migrating and upgrading

Some additional steps are required to upgrade Informix® software:

1. On the primary server (server1), perform a check to see whether the servers can be split into Enterprise Replication

servers by running the following command:

cdr check sec2er -c server1 --print server2

The command examines the primary and secondary servers and determines if it is possible to convert them to

Enterprise Replication. The command displays warnings and errors that explain conditions that may prevent the

servers from converting to Enterprise Replication. The -print option prints the commands that will be run when the cdr

start command runs. You should fix any warnings or errors and then run the command again before performing the

next step.

2. Run the following command from an Informix® 11.70 or later server:

cdr start sec2er -c server1 server2

The sec2er command converts the primary and secondary servers into standalone servers and configures and starts

Enterprise Replication. Enterprise Replication keeps the data on the servers synchronized; however, any table created

after the sec2er command is run will not be replicated.

3. On the former secondary server (server2), upgrade the Informix® software. The steps to upgrade the server are as

follows:

a. Stop replication by running the following command:

cdr stop

b. Back up the logical logs:

ontape -a

c. Stop the server that contains the older version of the Informix® software:

onmode -kuy

d. Log on to the server with the newly installed Informix® software.

e. Start the server and let the conversion complete successfully :

oninit

f. Run the concdr.sh script to convert the syscdr database from the old software version to the new version:

concdr.sh old_version new_version

g. Start replication on the former secondary server (server 2) after it has been upgraded:

cdr start

Because Enterprise Replication supports replication between dissimilar versions of the server software, the upgraded

secondary server (server2) replicates data with the former primary server (server1), so that data updates are

replicated on both servers.

4. Move client application connections from the former primary server (server1) to the upgraded server (server2).

5. On the primary server (server1) use the onmode -k command to take the database server to offline mode.

onmode -k

6. On the former secondary server (server2) run the following command to stop Enterprise Replication:

cdr stop

33

Migrating and upgrading

34

7. You can now clone the upgraded server to set up the other secondary servers in your cluster. Clone the newly

upgraded server (server2) by running the ifxclone utility on server1. Use the -d (disposition) parameter to create a

standalone, RSS, or HDR secondary server. In the following examples, assume that the TCP/IP address for server1 is

192.168.0.1 on port 123, and the address for server2 is 192.168.0.2 on port 456.

• To create a standalone server:

ifxclone -T -S server2 -I 192.168.0.2 -P 456 -t server1
 -i 192.168.0.1 -p 123

• To create an RS secondary server, specify the disposition by using the -d RSS option:

ifxclone -T -S server2 -I 192.168.0.2 -P 456 -t server1
 -i 192.168.0.1 -p 123 -d RSS

• To create an HDR secondary server, specify the disposition by using the -d HDR option:

ifxclone -T -S server2 -I 192.168.0.2 -P 456 -t server1
 -i 192.168.0.1 -p 123 -d HDR

At this point, the cluster is running on the upgraded server. Clients can move applications from server2 if necessary.

Performing a server upgrade when the Connection Manager is in use

Refer to the following steps when clients are using the Connection Manager without a Connection Manager group defined in

the existing setup.

For this example, assume that the following Connection Manager configuration file is defined:

NAME cm1
LOG 1
LOGFILE /tmp/cm1.log

CLUSTER cluster1
{
 INFORMIXSERVER ids1,ids2
 SLA oltp DBSERVERS=primary
 SLA webapp DBSERVERS=HDR
 SLA report DBSERVERS=(primary,HDR)
 FOC ORDER=ENABLED PRIORITY=1
}

1. On the primary server (server1), perform a check to see whether the servers can be split into Enterprise Replication

servers by running the following command:

cdr check sec2er -c server1 --print server2

When the above command is run, the primary and secondary servers are examined to determines whether it

is possible to convert them to Enterprise Replication. The command displays warnings and errors that explain

conditions that might prevent the servers from converting to Enterprise Replication. The -print option prints the

commands that will be run when the cdr start sec2er command runs. You should fix any warnings or errors and then

run the command again before performing the next step.

2. Reload the Connection Manager so that it directs all client connections to the primary server. Here is the revised

Connection Manager configuration file:

NAME cm1
LOG 1

Chapter 1. Migrating and upgrading

LOGFILE /tmp/cm1.log

CLUSTER cluster1
{
 INFORMIXSERVER ids1,ids2
 SLA oltp DBSERVERS=primary
 SLA webapp DBSERVERS=primary,HDR
 SLA report DBSERVERS=primary,HDR
 FOC ORDER=ENABLED PRIORITY=1
}

3. Run the following command from an Informix® 11.70 or later server:

cdr start sec2er -c server1 server2

The sec2er command converts the primary and secondary servers into standalone servers and configures and starts

Enterprise Replication. Enterprise Replication keeps the data on the servers synchronized; however, any table created

after the sec2er command is run will not be replicated.

4. On the former secondary server (server2), upgrade the Informix® software.

Because Enterprise Replication supports replication between dissimilar versions of the server software, the upgraded

secondary server (server2) replicates data with the former primary server (server1), so that data updates are

replicated to both servers.

5. Move client application connections from the former primary server (server1) to the upgraded server (server2).

a. Create a new Connection Manager configuration file for Enterprise Replication. The following shows a sample

Enterprise Replication Connection Manager configuration file. The SLA names are same as for cm1:

NAME cm2
LOG 1
LOGFILE /tmp/cm2.log
MACRO list=g_server2,g_server1

REPLSET replset_1
{
 INFORMIXSERVER g_server1,g_server2
 SLA oltp DBSERVERS=${list}
 SLA webapp DBSERVERS=${list}
 SLA report DBSERVERS=${list}
}

The Enterprise Replication Connection Manager must define a replicate set that includes all replicates that are

generated by the sec2er command. You can see the list of replicates by running the following command:

cdr list repl

You create a replicate set by running the following command:

cdr def replset replset_name repl1 repl2 ...

In the above example, repl1 and repl2 are replicates created by the sec2er command.

b. Halt the cm1 Connection Manager instance and load the cm2 instance.

Performing the above step ensures that client connections are redirected to group_2 (because server2

belongs to group_2).

Here is a sample sqlhosts file:

35

Migrating and upgrading

36

#dbservername nettype hostname servicename options
g_server1 group - - i=10
ids1 onsoctcp host1 port1 g=g_server1
g_server2 group - - i=20
ids2 onsoctcp host2 port2 g=g_server2

oltp onsoctcp host1 port3
webapp onsoctcp host1 port4
report onsoctcp host1 port5

6. On the primary server (server1) use the onmode -k command to take the database server to offline mode.

onmode -k

7. You can now clone the upgraded server to the other secondary servers in your cluster.

At this point in the upgrade process, the high-availability cluster is running on the upgraded server.

8. Shut down the cm2 Connection Manager instance and start the cm1 instance.

9. On the former secondary server (server2) run the following command to stop Enterprise Replication:

cdr stop

Errors and warnings generated by the sec2er command

The sec2er command checks several conditions before converting a primary and secondary server pair to an ER system. The

following conditions are checked by the sec2er command; ER conversion will take place only if the following conditions are

met:

• The group definition must use the i= option.

• The CDRID option must be the same on both the primary and secondary servers (The CDRID is the unique identifier

for the database server in the Options field of the sqlhosts file).

• The sqlhosts files on the primary server must match the sqlhosts file on the secondary server. The sec2er

command checks only the lines in the sqlhosts files that must to match to support ER.

• The database must not contain a typed table without a primary key.

• User-defined types (UDT) must have ER support.

• Tables must not be protected with label-based access control (LBAC).

• A secondary server must be defined.

• An sbspace for a stable queue must exist.

• You must be running Informix® version 11.00 or later.

The following warnings might occur. Warnings do not always indicate a problem but should be addressed. A warning is

generated if any of the following are true:

• The CDR_SERIAL configuration parameter is not set.

• The values for the CDR_SERIAL configuration parameter are the same on both the primary and secondary servers.

Identical values can cause conflicts.

Chapter 1. Migrating and upgrading

• The database has sequence generators. Because sequence generators are not replicated, if you replicate tables

using sequence objects for update, insert, or delete operations, the same sequence values might be generated on

different servers at the same time, leading to conflicts.

• The database is not logged.

• A table is not logged.

• The DBSPACE is more than 70-percent full.

If the cdr start sec2er command fails or is interrupted, you might see a message that is similar to this message:

ERROR: Command cannot be run on pre-11.70 instance if ER is already running

If you receive this error, and you do not have the Connection Manager running, remove replication by running the cdr delete

server command on both servers and then run the cdr start sec2er command again. If you have the Connection Manager

running, then perform the following steps:

1. Shut down the Connection Manager.

2. Shut down ER using one of the following commands:

• cdr delete server group

• cdr delete server server

3. Start the Connection Manager.

4. Restart the sec2er command:

cdr start sec2er

Reverting clusters
If you have a high-availability cluster, you must complete additional tasks when you revert from the new version of Informix®.

You must revert only the primary database server.

About this task

The server automatically removes secondary servers during reversion. After reversion on the primary server is complete, you

must recreate all HDR, RS, and SD secondary servers in a high-availability cluster.

Prerequisites:

• Determine if you can revert. See information in Review the database schema prior to reversion on page 52.

• Complete the steps in Preparing to migrate, upgrade, or revert clusters on page 24.

• Perform all reversion operations as user informix.

When you revert clusters, be sure to stop and start the servers in the cluster in the order shown in the following procedure.

To revert high-availability clusters:

37

Migrating and upgrading

38

1. Stop the Connection Manager by issuing the oncmsm -k connection_manager_name command.

2. If you are using a High-availability Data Replication (HDR) secondary server as a backup server in case of

contingencies:

a. Quiesce the primary server by issuing an onmode -sy command to prevent user connections to the server.

b. Force a checkpoint by issuing an onmode -c command on the primary server.

3. Stop the servers in the cluster and perform the following tasks in the following order:

a. If you have remote standalone (RS) servers, stop them by issuing the onmode -ky command.

b. If you have shared disk (SD) servers, stop them by issuing the onmode -ky command.

c. If you have a High-availability Data Replication (HDR) secondary server, stop it by issuing the onmode -ky

command.

d. Revert the standard server by issuing an onmode -b target_IDS_version command.

e. Verify that reversion was successful and the server was stopped. If the reversion was not successful, check

the message log for error messages, take appropriate action, and restart reversion.

4. On each server, set the INFORMIXDIR environment variable to the full path name for the target installation.

5. Ensure that all of the necessary configuration files are available in the target installation.

6. Perform any additional database server reversion tasks, as described in Reverting from Informix Version 14.10 on

page 57.

7. Start the primary server by issuing an oninit command.

8. Start the Connection Manager by issuing an oncmsm command

9. Start SD secondary servers by issuing oninit commands.

10. Back up all logs. Then use ON-Bar or ontape to make a level-0 backup on the primary server to use to reestablish the

RS and HDR servers if necessary.

11. If you have RS secondary servers:

a. Add RS entries on the primary server by issuing onmode -d add RSS rss_server_name commands.

b. Start the RS secondary servers with level-0 restore operations from the level 0 backup that was made on the

primary server after reversion.

c. On the RS secondary servers, run the onmode -d RSS primary_server_name command, and wait for the "RSS

secondary server operational" message to appear after each command.

12. If you have an HDR secondary server:

a. Reestablish the HDR pair on the primary server by issuing an onmode -d primary hdr_secondary_server_name

command.

b. Start the HDR secondary server with level-0 restore operations from the level 0 backup that was made on the

primary server after reversion.

c. On the HDR secondary server, run the onmode -d secondary primary_server_name command, and wait for the

"HDR secondary server operational" message to appear after each command.

Results

The reversion of all servers in the cluster is now complete.

Chapter 1. Migrating and upgrading

Related information

Preparing to revert on page 51

Restoring clusters to a consistent point
You can restore the primary server in a high-availability cluster to a consistent point after a failed upgrade.

Before you begin

Prerequisites:

• Before you began the upgrade, you must have enabled quick reversion, according to information in Configuring for

recovery of restore point data in case an upgrade fails on page 10.

• The server must be offline.

About this task

To restore the primary server in a cluster to a consistent point after a failed upgrade:

Run the onrestorept utility. For more information, see Restoring to a previous consistent state after a failed upgrade on

page 45.

What to do next

Alternatively, if you backed up your primary server or you prepared for using the High-availability Data Replication (HDR)

secondary server as a backup server before you upgraded and the upgrade fails, you can take other steps to restore the

cluster. See Restoring a cluster from a backup archive on page 39 or Restoring a cluster from the HDR secondary server

on page 40.

Restoring a cluster from a backup archive
If you backed up the primary server before you migrated or reverted the cluster, you can restore the primary server from the

backup archive if migration or reversion fails. After you restore the primary server, you must recreate the other servers in the

high-availability cluster.

Before you begin

Prerequisite: You made a level-0 backup archive of the primary server before migration or reversion.

About this task

To restore a cluster from a level-0 backup archive:

39

Migrating and upgrading

40

1. Point your INFORMIXDIR, PATH, and any other relevant environment variables to the directory in which the original

version of Informix® was installed before you migrated or reverted.

2. Using the level-0 backup archive, perform a full restore of your primary server.

3. Recreate the rest of your high-availability cluster.

Restoring a cluster from the HDR secondary server
You can restore the primary server from the High-availability Data Replication (HDR) secondary server that you prepared to

use as a backup server before you migrated or reverted the cluster. After you restore the primary server, you must recreate

the other servers in the high-availability cluster.

Before you begin

Prerequisite: You prepared the HDR secondary server to use as a contingency backup server, according to information in

Preparing to migrate, upgrade, or revert clusters on page 24.

To restore a cluster from the HDR secondary server:

1. Start the HDR secondary server by running an oninit command.

2. Change the secondary server to the primary server by running the onmode -d make primary hdr_server_name

command.

3. If the server is in quiescent mode, change it to multi-user mode by running an onmode -m command.

4. Make a level-0 backup using the ON-Bar or ontape utility.

5. Recreate the rest of the high-availability cluster.

Migrating to Informix® 14.10
When you migrate to a new version of Informix®, you must complete required migration and post-migration tasks.

Migrating to the new version of Informix®
After you prepare your databases for migration, you can migrate to the new version of Informix®.

Before you begin

• Read the release notes and the machine notes for any new information.

• Complete the steps in Preparing for migration on page 7.

About this task

To upgrade a Informix® non-root installation, you must run the installation program as the same user who installed the

product being upgraded.

Chapter 1. Migrating and upgrading

If you are migrating the database server from a version that does not support label-based access control, users who held the

DBA privilege are automatically granted the SETSESSIONAUTH access privilege for PUBLIC during the migration process.

For more information about SETSESSIONAUTH, see the Informix® Guide to SQL: Syntax. For information about label-based

access control, see the Informix® Security Guide.

Important: Do not connect applications to a database server instance until migration has successfully completed.

Review and complete all tasks that apply:

1. Installing the new version of Informix on page 41.

2. Setting environment variables on page 42.

3. Customizing configuration files on page 42.

4. Adding Communications Support Modules on page 44.

5. Installing or upgrading any DataBlade modules on page 44.

6. Starting the new version of Informix on page 44.

Results

When the migration starts, the online.log displays the message Conversion from version <version number> Started.. The

log continues to display start and end messages for all components. When the migration of all components is complete, the

message Conversion Completed Successfully appears. For more information about this log, see Migration status messages

on page 42.

What to do next

After migration, see Completing required post-migration tasks on page 46 for information about preparing the new server

for use.

If the log indicates that migration failed, you can either:

• Install the old database server and restore your database from a level-0 backup.

• Run the onrestorept utility to back out of the upgrade and restore files to a consistent state without having to

restore from a backup. You can run this utility only if you set the configuration parameters that enable the utility. See

Restoring to a previous consistent state after a failed upgrade on page 45.

Installing the new version of Informix®
Install and configure the new version of Informix®.

If possible, migrate on a database server dedicated to testing your migration before you migrate on your production database

server.

Decide whether to upgrade on the same computer, known as an in-place migration, or an a different computer, known as a

non-in-place migration and follow the appropriate process.

41

Migrating and upgrading

42

Important: Monitor the database server message log, online.log, for any error messages. If you see an error

message, solve the problem before you continue the migration procedure.

Related information

Upgrading Informix (in-place migration)

Migrating Informix (non-in-place migration)

Migration status messages
When the migration starts, the online.log displays the message "Conversion from version <version number> Started." The log

continues to display start and end messages for all components.

When conversions of all components are complete, the message "Conversion Completed Successfully" displays. This

message indicates that the migration process completed successfully, but it does not guarantee that each individual

database was converted successfully. The message log might contain more information about the success or failure of the

migration of each individual database. If migration of a particular database fails, then try to connect to the database to find

out the exact cause of the failure.

At the end of the migration of each individual database, Informix® runs a script to update some system catalog table entries.

The message log includes messages that are related to this script. The success or failure of the script does not prevent the

usage of a database.

For information about any messages in the message log, see the Informix® Administrator's Guide.

Setting environment variables
After you install the current version of Informix®, verify that the INFORMIXDIR, INFORMIXSERVER, ONCONFIG, PATH, and

INFORMIXSQLHOSTS (if used) environment variables are set to the correct values.

The client application looks for the sqlhosts file in the etc directory in the INFORMIXDIR directory. However, you can use the

INFORMIXSQLHOSTS environment variable to change the location or name of the sqlhosts file.

The setting of the GL_USEGLU environment variable must match between the source and target server during migration.

For information about environment variables, see the Informix® Guide to SQL: Reference.

Customizing configuration files
When you initialize the new version of Informix®, which contains a new onconfig.std file, use the same configuration

that the old database server used. After you observe the performance of new version, you can examine the new file for

Chapter 1. Migrating and upgrading

new configuration parameters that you might want to use and can you start to use the new and changed configuration

parameters.

Set the ALARMPROGRAM configuration parameter to either nothing or no_log.sh to prevent the generation of errors if the

logical log fills during the migration. For more details, see Starting the new version of Informix on page 44. After the

migration, change the value of ALARMPROGRAM to log_full.sh.

If the ALARMPROGRAM configuration parameter is set to the script alarmprogram.sh, set the value of BACKUPLOGS in

alarmprogram.sh to N.

Important: To facilitate migration (and reversion), use the same values for your new database server for

ROOTOFFSET , ROOTSIZE, and ROOTPATH that you used for the old database server. Also, keep the same size for

physical logs and logical logs, including the same number of logical logs, and the same sqlhosts file.

For information about how to configure Informix®, see your Informix® Administrator's Guide. For information about how to

tune the configuration parameters, see the Informix® Performance Guide.

Using SSL/TLS database connections

If you are upgrading database clients that uses SSL/TLS connections to Client SDK 4.50.xC4W1 or newer, you may need to

migrate their client keystores. For more information, see Configuring a client for SSL connections on page .

To perform keystore migration:

1. If your database client installation is co-located with the database server installation, the database client continues to

use GSKit asencryption library. In this case, keystore migration is not necessary.

2. If your database client uses a stand-alone installation of Client SDK 4.50.xC4W1 or newer, then it will now use

OpenSSL as encryption library,rather than GSKit.In this case:

a. Ensure to have an appropriate version of OpenSSL installed before you install Client SDK 4.50.xC4W1 or

newer.

b. If your client keystore has the GSKit-proprietary format "CMS" (file extension "*.kdb"), then this keystore needs

to be converted to a PKCS#12 keystore. As the CMS format is GSKit-specific, you need the GSKit command

"gsk8capicmd" (or "gsk7capicmd") in order to convert the keystore.

Use a command like:

gsk8capicmd -keydb –convert –db KEYSTOREFILE.kdb -pw PASSWORD
-old_format cms -new_db KEYSTOREFILE.p12 -new_pw PASSWORD
-new_format pkcs12

c. Create a stash file with the keystore password to use with OpenSSL. Use the new utility "onkstash" contained

with Client SDK 4.50.xC4W1 (or newer) to stash the keystore password:

43

../sec/ids_ssl_003.html
../sec/ids_ssl_003.html
../sec/ids_ssl_003.html
../sec/ids_ssl_003.html

Migrating and upgrading

44

onkstash KEYSTOREFILE.p12 PASSWORD

Note: This step is also needed in case your keystore already had the PKCS#12 format.

Adding Communications Support Modules
For communications with clients, you can optionally use a Communications Support Module (CSM) with the current version

of Informix®. After you install the CSM components, create entries in the concsm.cfg file and in the options field of the

sqlhosts file to configure the CSM.

Existing client applications do not need to be recompiled or relinked if your database server does not use CSMs. If your

database server uses a CSM, client applications must relink with new Informix® libraries. The client applications must install

and configure the CSM.

For information about how to set up the CSM, see the Informix® Administrator's Guide.

Note: Support for Communication Support Module (CSM) is removed starting Informix Server 14.10.xC9 . You should

use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) instead.

Installing or upgrading any DataBlade® modules
After you install the new version of Informix®, you might need to install or upgrade any DataBlade® modules that you want

to add to the database server.

Register the DataBlade® modules after you initialize the database server.

When you install Informix®, the built-in extensions, such as TimeSeries, are installed and registered automatically. You do

not need to perform any actions to upgrade these DataBlade® modules, nor do you need to unload and load any data during

migration.

Important: If the sysadmin database does not exist or the Scheduler is turned off, automatic registration does not

occur. You must register each extension that you want to use by running the SYSBldPrepare() function.

Starting the new version of Informix®
After installing the new database server, start the server. Do not perform disk-space initialization, which overwrites whatever

is on the disk space.

Prerequisite: If you installed Informix® as user root, you must switch to user informix before starting the server.

Chapter 1. Migrating and upgrading

Important: Informix® writes to the logical logs with the transactions that result from creating the sysmaster

database. If you run out of log space before the creation of the sysmaster database is complete, Informix® stops

and indicates that you must back up the logical logs. After you back up the logical logs, the database server can

finish building the sysmaster database. You cannot use ON-Bar to back up the logical logs because the database has

not been converted yet. If you have ALARMPROGRAM set to log_full.sh in the ONCONFIG configuration file, errors are

generated as each log file fills during the migration. Set the value of ALARMPROGRAM to either nothing or no_log.sh

so that these errors are not generated. If your logical log does fill up during the migration, you must back it up with

ontape, the only backup tool you can use at this point. Issue the ontape -a command.

Start the new version of Informix® for the first time by running oninit command on UNIX™ or by using the Service control

application on Windows™.

As Informix® starts for the first time, it modifies certain disk structures. This operation should extend the initialization

process by only a minute or two. If your disks cannot accommodate the growth in disk structures, you will find a message in

the message-log file that instructs you to run an oncheck command on a table. The oncheck utility will tell you that you need

to rebuild an index. You must rebuild the index as instructed.

Restoring to a previous consistent state after a failed upgrade
If the CONVERSION_GUARD configuration parameter is enabled and an upgrade fails, you can run the onrestorept command

to undo the changes that are made during the upgrade and restore Informix® to a consistent state.

Before you begin

The following prerequisites must be met:

• The directory that is specified by the RESTORE_POINT_DIR configuration parameter contains the files that were

stored during the failed upgrade attempt.

• The server must be offline before you run the onrestorept -y command.

About this task

To restore the server to a previous consistent state after a failed upgrade:

Run the onrestorept -y command, which displays prompts while the command runs. If you do not specify -y, you must

respond to every prompt that appears.

Important: Do not start the server until the onrestorept utility finishes running. Starting the server before the

onrestorept utility finishes running can damage the server, requiring the server to be restored from a backup copy.

What to do next

After you restore the server to a consistent state, you can resume work in the source version of the server or find and fix the

problem that caused the upgrade to fail.

45

Migrating and upgrading

46

Important: To start Enterprise Replication after the onrestorept utility restores the database server to a consistent

state, you must use the cdr cleanstart command.

Before you attempt another upgrade, run the onrestorept -c command to remove the files in the directory that is specified in

the RESTORE_POINT_DIR configuration parameter. After a successful upgrade, the server automatically deletes restore point

files from that directory.

Related information

The onrestorept utility on page 131

Preparing for migration on page 7

Completing required post-migration tasks
After you migrate, you must complete a series of post-migration tasks to prepare the new version of the server for use.

To complete post-migration tasks:

1. If you do not use Informix® Primary Storage Manager: For ON-Bar, copy the sm_versions file on page 47.

2. Finish preparing earlier versions of 12.10 databases for JSON compatibility on page 47

3. Optionally update statistics on your tables after migrating on page 48.

4. Review client applications and registry keys on page 48.

5. Verify the integrity of migrated data on page 49.

6. Back up Informix after migrating to the new version on page 50.

7. Tune the new version for performance and adjust queries on page 50.

8. If you use specific features, you might have to perform additional post-migration tasks:

• Migrating with Enterprise Replication on page 18

• High-availability cluster migration on page 21

• Register DataBlade modules on page 50

What to do next

Repeat the migration and post-migration procedures for each instance of Informix® Version 14.10 that you plan to run on the

computer.

Important: Do not connect applications to a database server instance until the migration has completed

successfully. If a serious error occurs during the migration, you might need to revert to the previous version of the

server, restore from a level-0 backup, and then correct the problem before restarting the migration tasks.

Related information

Reverting from Informix Version 14.10 on page 51

Chapter 1. Migrating and upgrading

For ON-Bar, copy the sm_versions file
After migration, if you plan to use a storage manager other than the Informix® Primary Storage Manager, copy your previous

sm_versions file to use with ON-Bar. Informix® Primary Storage Manager does not use the sm_versions file.

If you are using other storage managers, copy your previous sm_versions file from the old $INFORMIXDIR/etc directory

to the new $INFORMIXDIR/etc directory.

Finish preparing earlier versions of 12.10 databases for JSON compatibility
To make databases that were created with earlier versions of Informix® 12.10 JSON compatible, you must complete some

post-migration steps.

1. Prepare any databases that were created in 12.10.xC1 for JSON compatibility.

If you upgraded to 12.10.xC4 or later fixpacks, skip this step because all databases are made JSON compatible

during conversion.

If you upgraded to 12.10.xC3 or 12.10.xC2, complete these steps:

a. Run the appropriate script on the upgraded server as user informix or as a user with DBA privileges.

• Informix® 12.10.xC3: convTovNoSQL1210.sql

• Informix® 12.10.xC2: convTovNoSQL1210X2.sql

Example

For example, in Informix® 12.10.xC3, to make the db_name database JSON compatible, you would run the

following command as user informix or as a user with DBA privileges:

UNIX™

dbaccess -e db_name $INFORMIXDIR/etc/convTovNoSQL1210.sql

Windows™

dbaccess -e db_name %INFORMIXDIR%\etc\convTovNoSQL1210.sql

b. Configure and start the wire listener.

2. If you used the wire listener in 12.10.xC2 or 12.10.xC3, after you upgrade to 12.10.xC4 or later fixpacks you must drop

and recreate any indexes that you created on your collections. You do not need to drop and recreate the index that is

automatically created on the _id field of a collection.

3. If you had binary JSON (BSON) DATE fields in your documents in 12.10.xC2, you must load the data from the external

table that you created before you upgraded to a later 12.10 fix pack.

On the upgraded server:

a. Rename the table that contains the BSON column with DATE fields.

For example, use the ALTER table statement to rename the table from datetab to datetab_original.

b. Create a new table that has the original table name.

47

Migrating and upgrading

48

For example:

create table datetab(j int, i bson);

c. Load data into the new table from the external table that you created in your 12.10.xC2 server. During the load,

convert the data from JSON format to BSON format.

For example:

insert into datetab select j, i::json::bson from ext_datetab;

d. Verify that the data loaded successfully.

e. Drop the original, renamed table (for example, datetab_original) after you are certain that the data loaded

successfully into the new table (for example, datetab).

4. If you used the wire listener in 12.10.xC2 with a database that has any uppercase letters in its name, after you

upgrade to a later fix pack you must update your applications to use only lowercase letters in the database name.

Related information

Preparing 12.10 BSON columns with DATE fields for upgrade on page 12

Optionally update statistics on your tables after migrating
Optionally run UPDATE STATISTICS on your tables and on UDRs that perform queries, if you have performance problems

after migrating to the new version of Informix®.

An unqualified UPDATE STATISTICS statement includes no additional clauses:

UPDATE STATISTICS;

By default, an unqualified UPDATE STATISTICS statement updates the statistics in LOW mode for every permanent table in

the database, including the system catalog tables.

You can run an UPDATE STATISTICS statement that includes only a FOR ROUTINE clause that specifies no routine name:

UPDATE STATISTICS FOR ROUTINE;

Running this statement reoptimizes the DML statement execution plans for every SPL routine in the database that operates

on local tables.

Similarly, you can substitute the keyword FUNCTION for ROUTINE in the previous example to reoptimize execution plans only

for SPL routines that return at least one value, or you can substitute the keyword FUNCTION for PROCEDURE to reoptimize

execution plans only for SPL routines that return no value. In these cases, the database server does not update the statistics

in the system catalog tables.

You do not need to run UPDATE STATISTICS statements on C or Java™ UDRs.

Chapter 1. Migrating and upgrading

Review client applications and registry keys
After you migrate a database server on the same operating system or move the database server to another compatible

computer, review the client applications and sqlhosts file or registry-key connections. If necessary, recompile or modify

client applications.

Verify that the client-application version you use is compatible with your database server version. If necessary, update the

sqlhosts file or registry key for the client applications with the new database server information.

If you have a 64-bit ODBC application that was compiled and linked with a version of HCL Informix® Client Software

Development Kit (Client SDK) that is prior to version 4.10, you must recompile the application after migrating. The SQLLEN

and SQLULEN data types were changed to match the Microsoft™ 64-bit ODBC specification. Be sure to analyze any functions

that take either of these data types to ensure that the correct type passes to the function. This step is crucial if the type is

a pointer. Also note that in the ODBC specification, some parameters that were previously SQLINTEGER and SQLUINTEGER

were changed to SQLLEN or SQLULEN.

For more information about interactions between client applications and different database servers, refer to a client manual.

Verify the integrity of migrated data
Open each database with DB-Access and use oncheck to verify that data was not corrupted during the migration process.

You can also verify the integrity of the reserve pages, extents, system catalog tables, data, indexes, and smart large objects,

as Table 6: Commands for verifying the data integrity on page 49 shows.

Table 6. Commands for verifying the data integrity

Action oncheck Command

Check reserve pages oncheck -cr

Check extents oncheck -ce

Check system catalog tables oncheck -cc database_name

Check data oncheck -cD database_name

Check indexes oncheck -cI database_name

Check smart large objects oncheck -cs sbspace_name

Check smart large objects plus extents oncheck -cS sbspace_name

If the oncheck utility finds any problems, the utility prompts you to respond to corrective action that it can perform. If you

respond Yes to the suggested corrective action, run the oncheck command again to make sure the problem has been fixed.

The oncheck utility cannot fix data that has become corrupt. If the oncheck utility is unable to fix a corruption problem, you

might need to contact Software Support before your proceed.

49

Migrating and upgrading

50

Important: If the value of the MAX_FILL_PAGES configuration parameter is 1, you must run oncheck -cD for all tables

that include variable length data types (VARCHAR, NVARCHAR, and LVARCHAR), and take the suggested corrective

action to avoid warnings about resetting the bitmap mode.

Back up Informix® after migrating to the new version
Use a backup and restore tool (ON-Bar or ontape) to make a level-0 backup of the new database server. Do not overwrite the

tapes that contain the final backup of the old database server.

For more information, see the Informix® Backup and Restore Guide.

Important: Do not restore the backed up logical-log files from your old database server for your new database server.

Tune the new version for performance and adjust queries
After backing up the new server, you can tune the database server to maximize performance. If your queries are slower after

the upgrade, there are steps you can take to adjust your configuration and queries.

If your queries are slower after an upgrade, find out what changed that affects your configuration and adjust your

configuration and queries as necessary:

• Compare the default values in the new onconfig.std file to values in your previous installation, and make any

necessary adjustments.

• If you created sample queries for comparison, use them to analyze the performance differences between the old

and new database servers and to determine if you need to adjust any configuration parameters or the layout of

databases, tables, and chunks.

• If you changed your applications, check to see if the changes led to slower performance.

• If you changed your hardware, operating system, or network settings, determine if you need to adjust any related

settings or environment variables.

• Make sure that you ran necessary update statistics after upgrading:

◦ Drop data distributions if necessary when upgrading on page

◦ Optionally update statistics on your tables after migrating on page 48

◦

Register DataBlade® modules
You must register any DataBlade® modules that you installed.

../prf/ids_prf_633.html#ids_prf_633
../prf/ids_prf_633.html#ids_prf_633
../prf/ids_prf_633.html#ids_prf_633
../prf/ids_prf_633.html#ids_prf_633

Chapter 1. Migrating and upgrading

Registration is the process that makes the DataBlade® module code available to use in a particular database. For more

information on how to use DataBlade® modules, see the Informix® DataBlade® Module Installation and Registration Guide.

Reverting from Informix® Version 14.10
You can revert to the version of the database server from which you migrated. When you run the reversion utility, you specify

the target server for reversion and then Informix® checks your database. If necessary, Informix® might tell you to drop new

objects, before automatically converting your data into the target server.

If Informix® cannot revert a database, Informix® prevents reversion.

Normally, reversion takes only a few minutes.

If you used the new features of Version 14.10, reversion time is longer, because you must prepare your database and data

for reversion, and you must remove the features that are not supported in the earlier version of the server. The more work

you complete in the new version, the more time consuming the reversion. See Preparing to revert on page 51 before you

revert.

If you did not use any of the new features of Version 14.10 and you did not complete much work using the new server, you

can run the reversion utility and modify the values of the configuration parameters. See Reverting from Informix Version

14.10 on page 57.

Related information

Completing required post-migration tasks on page 46

Preparing to revert
If you used Version 14.10, you must prepare your system for reversion to the pre-migration version of the database server.

Review and complete all tasks that apply:

1. Review the database schema prior to reversion on page 52.

2. Check and configure available space for reversion on page 53.

3. Save copies of the current configuration files on page 54.

4. Save system catalog information on page 54.

5. Verify the integrity of the Version 14.10 data on page 54.

6. Back up Informix Version 14.10 on page 55.

7. Export or save your data.

8. To prevent reversion issues:

a. Resolve outstanding in-place alter operations on page 55.

b. If you have empty tables with no extents, drop those tables.

c. Defragment partitions by using the SQL administration API.

51

Migrating and upgrading

52

9. Remove unsupported features on page 57.

10. Remove new BladeManager extensions on page 57.

Results

What to do next

If you use high-availability clusters or Enterprise Replication, you must complete extra tasks before you can revert to the pre-

migration version of Informix®.

Related information

Reverting clusters on page 37

Reverting with Enterprise Replication on page 20

Reverting from Informix Version 14.10 on page 57

Review the database schema prior to reversion
You must review your database schema to determine if reversion is possible. You can revert from Informix® Version 14.10

to the database server from which you migrated, if you have not added any extensions to the Version 14.10 database server

and you are not reverting from a newly created instance.

To review the database schema to determine if reversion is possible:

1. Run the dbschema utility command.

For example, run the following command to display information about the database db1:

dbschema -d db1 -ss

2. Determine if the schema file contains SQL statements that the earlier database server does not support.

3. Determine if the database contains features, such as long identifiers, that the earlier database server does not

support.

4. Determine if any new SPL routines have been created in Informix® Version 14.10 or if any routines were imported

using dbimport.

5. Determine if tables or indexes using expression fragmentation had expressions changed or new fragments added.

6. Identify any new triggers, procedures, or check constraints.

See Reversion requirements and limitations on page 52 for limitations on reversion to previous databases and

prerequisite steps you must take before you revert.

Chapter 1. Migrating and upgrading

Reversion requirements and limitations
If you used the new database server, you must review a list of reversion requirements and limitations, and then complete any

prerequisite tasks before you revert. If the reversion restrictions indicate that you must drop objects from the database, you

can unload your data and then reload it in the prior database server.

Reversion requirements and limitations are described in the following tables:

• Table 7: Requirements and limitations when reverting to any version of the server on page 53 Requirements and

limitations when reverting to any version of the server

Table 7. Requirements and limitations when reverting to any version of the server

Each row in this table lists an item that you cannot revert or that requires action before you can revert to any prior version of the server.

Reversion requirement or limitation

Revert only to the version from which you migrated: If you need to revert, you must revert to the Informix® version that was

your source version before you migrated to Version 14.10.

New databases created in the new version of the server: If you created a new database in the new version of the server,

you cannot revert the database back to an earlier version of the server. If the data is required, you can unload the data and

reload it in the prior version of the server.

New procedures, expression-based fragmented tables, expression-based fragmented indexes, check constraints,

and triggers: These cannot be reverted. You must remove any new procedures, fragmented tables, expression-based

fragmented indexes, check constraints, and triggers.

Note: Expression-based fragmentation includes fragment by expression, fragment by interval, and fragment by list.

New built-in routines: These cannot be reverted.

New configuration parameters or configuration parameters with new options: These cannot be reverted.

New or outstanding in-place alters: In-place ALTER TABLE statements performed in the new version of the server must not

be outstanding against any table.

Ensure that all in-place ALTER operations are complete. If the reversion process does not complete successfully because

of in-place ALTER operations, the reversion process lists all the tables that have outstanding in-place alter operations.

You must resolve outstanding in-place alter operations on each of the tables in the list before you can revert to the older

database server. For more information, see Resolve outstanding in-place alter operations on page 55.

Important: Any in-place alter operation that was completed in a version that is before the current version will

successfully revert.

53

Migrating and upgrading

54

Check and configure available space for reversion
You must be sure you have enough space for reversion to the source database server.

The tblspace tblspace pages can be allocated in non-root chunks. If the root chunk is full and tblspace tblspace pages were

allocated in non-root chunks, make sure you have enough space in the root chunk of the target database server.

To determine how many pages were allocated and where they were allocated, run oncheck -pe and look for the word

TBLSpace. This space must be available on the device where the root chunk will be located.

For information about space requirements for Informix® Version 14.10, see Checking and configuring available space on

page 8.

Related information

Checking and configuring available space on page 8

Save copies of the current configuration files
Save copies of the ONCONFIG and concsm.cfg files for when you migrate to Informix® Version 14.10 again.

Informix® uses the concsm.cfg file to configure CSMs.

Save system catalog information
If your current database server instance uses secure-auditing masks or external spaces, and you want to preserve the

associated catalog information, you must unload these system catalog tables before you revert.

Run the following command to unload the system catalog tables:

$INFORMIXDIR/etc/smi_unld

When the smi_unld utility finishes unloading the information, the utility displays instructions for reloading the information.

Save these instructions. After you complete the reversion and bring up your database server, you can reload the data that

you preserved. Follow the instructions given with the smi_unld utility for reloading the information. Typically, you run the

following command:

$INFORMIXDIR/etc/smi_load $INFORMIXDIR/etc/

Verify the integrity of the Version 14.10 data
Verify the integrity of your Version 14.10 data, if you did not do this after you migrated.

To verify the integrity of your data, run the following commands:

oncheck -cI database_name

oncheck -cD database_name

oncheck -cr
oncheck -cc database_name

Chapter 1. Migrating and upgrading

If the oncheck utility finds any problems, the utility prompts you to respond to corrective action that it can perform. If you

respond Yes to the suggested corrective action, run the oncheck command again to make sure the problem has been fixed.

The oncheck utility cannot fix data that has become corrupt. If the oncheck utility is unable to fix a corruption problem, you

might need to contact Technical Support before your proceed.

You will also need to verify the integrity of your data after you revert.

Back up Informix® Version 14.10
Before you begin the reversion, make a complete level-0 backup of Informix® Version 14.10.

For more information, see the Informix® Backup and Restore Guide.

Resolve outstanding in-place alter operations
Resolving outstanding in-place alter operations is not a requirement before converting to a higher database server version.

However, if it becomes necessary to revert to a previous version you must resolve new outstanding in-place alter operations

first.

An in-place alter operation is outstanding when data pages still exist with the prior definition, a state that can be detected

with the oncheck -pT command. An in-place alter operation is new if the ALTER statement is executed in the higher database

version. Carryovers—outstanding in-place alter operations that existed prior to a conversion—need not be resolved before a

subsequent reversion to the earlier server version.

If the reversion process detects new outstanding in-place alter operations, reversion fails and the message log will contain a

list of all tables whose in-place alter operations must be resolved before the reversion will succeed.

If you are reverting from version 12.10.xC4 or later, you can remove in-place alter operations by running the admin() or task()

SQL administration command with the table update_ipa or fragment update_ipa argument. You can include the parallel

option to run the operation in parallel. For example, the following statement removes in-place alter operations in parallel from

a table that is named auto:

EXECUTE FUNCTION task('table update_ipa parallel','auto');

If you are reverting from an earlier version of 12.10, you can resolve outstanding in-place alter operations by running sample

UPDATE statements. Sample UPDATE statements force any outstanding in-place alter operations to complete by updating

the rows in the affected tables. To generate a sample UPDATE statement, create an UPDATE statement in which a column

in the table is set to its own value. This forces the row to be updated to the latest schema without changing column values.

Because the database server always alters rows to the latest schema, a single pass through the table that updates all rows

completes all outstanding in-place alter operations.

The sample UPDATE statement differs from a standard UPDATE statement because it does not change the data. A standard

UPDATE statement usually changes the value of the affected row.

For example, to create a sample update, specify:

UPDATE tab1 SET col1=col1 WHERE 1=1 ;

55

Migrating and upgrading

56

You must ensure that the column selected is a numeric data type (for example, INTEGER of SMALLINT) and not a character

data type.

If a table is large, a single update of the whole table can cause a long transaction. To avoid a long transaction, update the

table in pieces, by ranges of some column, with this statement:

 ... WHERE {id_column} BETWEEN {low_value} AND {step_value}

For example, specify:

UPDATE tab1 SET col1=col1 WHERE col1 BETWEEN 1 AND 100;
UPDATE tab1 SET col1=col1 WHERE col1 BETWEEN 101 AND 200;

Ensure that the UPDATE statements include the entire data set.

If the table is replicated with Enterprise Replication, the database server replicates all updated rows unnecessarily. To avoid

replication, update the table as follows:

BEGIN WORK WITHOUT REPLICATION;
 ...
 COMMIT WORK;

When all the pending in-place alter operations are resolved, run the oncheck -pT command again for each table. In the output

of the command, check information in the Versionsection. The number of data pages should match with current version.

Also, all other table versions should have count=0 for the number of data pages that the version is accessing.

For example, if you run the oncheck -pT testdb:tab1 command after outstanding in-place alter operations are resolved, you

might see information similar to the information in this segment of sample output:

TBLspace Report for testdb:root.tab1

 Physical Address 1:860
 Creation date 06/23/2011 14:23:08
 TBLspace Flags 800801 Page Locking
 TBLspace use 4 bit bit-maps
 Maximum row size 29
 Number of special columns 0
 Number of keys 0
 Number of extents 1
 Current serial value 1
 Current SERIAL8 value 1
 Current BIGSERIAL value 1
 Current REFID value 1
 Pagesize (k) 2
 First extent size 8
 Next extent size 8
 Number of pages allocated 8
 Number of pages used 4
 Number of data pages 3
 << Number of data pages used is 3 >>
 Number of rows 6
 Partition partnum 1048981
 Partition lockid 1048981

 Extents
 Logical Page Physical Page Size Physical Pages
 0 1:1895 8 8
TBLspace Usage Report for testdb:root.tab1

Chapter 1. Migrating and upgrading

 Type Pages Empty Semi-Full Full Very-Full
 ---------------- ---------- ---------- ---------- ---------- ----------
 Free 4
 Bit-Map 1
 Index 0
 Data (Home) 3

 Total Pages 8

 Unused Space Summary

 Unused data slots 177

 Home Data Page Version Summary

 Version Count

 3 (oldest) 0
 << Other version should show data page count=0>>
 4 0
 << Other version should show data page count=0>>
 5 (current) 3
 << Current should always match the number of data pages>>

Remove unsupported features
Before you revert, remove all features that your older database server does not support.

Important: Do not remove objects that you did not create, such as the boot scripts (boot90.sql and

boot901.sql) in the system catalog because the reversion utility uses them.

For a list of features that you must remove before reversion, see Review the database schema prior to reversion on

page 52.

Remove new BladeManager extensions
When BladeManager or SQL Registration are used to register an extension in a database, the ifxmngr Client SDK module,

which manages extensions, is registered first. If you need to revert from Version 14.10, and you ran BladeManager against a

database, you must remove all BladeManager extensions.

To remove the BladeManager extensions, you must use BladeManager to unregister all Client SDK modules and then run the

following BladeManager command:

unprep database_name

57

Migrating and upgrading

58

Reverting from Informix® Version 14.10
After preparing to revert, run the reversion utility and prepare to use the original database server.

Before you begin

Prerequisite: Complete the steps in Preparing to revert on page 51. Preparation includes determining if reversion is

possible and preparing your database for reversion.

About this task

Review and complete all tasks that apply:

1. Run the reversion utility on page 58.

2. Restore original configuration parameters on page 59.

3. Restore original environment variables on page 59.

4. Remove any Communications Support Module settings on page 59.

5. Recompile Java user-defined routines on page 60.

6. Reinstall and start the earlier database server on page 60.

7. Optionally update statistics on your tables after reverting on page 61.

8. Verify the integrity of the reverted data on page 61.

9. Back up the database server after reversion on page 61.

10. Return the database server to online mode on page 62.

11. If you use high-availability clusters, perform additional tasks that are described in Reverting clusters on page 37.

Results

After reversion to Informix® Version 12 or earlier, the database server automatically drops the sysadmin database.

Attention: When you revert to a previous version of the database server, do not reinitialize the database server by

using the -i command-line parameter. Using the -i parameter for reversion would reinitialize the root dbspace, which

would destroy your databases.

Related information

Preparing to revert on page 51

Run the reversion utility
After preparing to revert, run the reversion utility by using an onmode -b command.

Chapter 1. Migrating and upgrading

Important: You must revert to the version of Informix® that was your source database before you migrated. If you

revert to a different version of the server, you will corrupt data.

Informix® Version 14.10 must be running when you run the reversion utility. If the reversion utility detects and lists any

remaining features that are specific to Informix® Version 14.10, you must remove those features before reversion can

complete.

To see a list of all of the versions to which you can revert using an onmode -b command, type onmode -b.

To run the reversion utility, type

onmode -b verson_number

For examples of the onmode -b command, see Syntax of the onmode -b command on page 130.

When you revert to the older version, Informix® displays messages that tell you when reversion begins and ends.

When the reversion is complete, Informix® is offline. The reversion utility drops the Informix® Version 14.10 system catalog

tables and restores compatibility so that you can access the data with the earlier version of the database server. The

reversion utility does not revert changes made to the layout of the data that do not affect compatibility.

Related information

Syntax of the onmode -b command on page 130

Preparation for using the onmode -b command on page 130

What the onmode -b command does on page 129

Restore original configuration parameters
Replace the Informix® Version 14.10 ONCONFIG configuration file with the ONCONFIG file that you saved before you

migrated. Alternatively, you can remove configuration parameters that the earlier database server does not support.

You might also need to adjust the values of existing configuration parameters.

Restore original environment variables
Reset the environment variables to values that are appropriate for the earlier database server.

Remove any Communications Support Module settings
If your Informix® Version 14.10 instance used CSMs, edit the sqlhosts file to remove any csm option settings that are not

supported in the older database server.

If you do not do this, the older database server will return an invalid sqlhosts options error.

You must also delete the concsm.cfg file if the older database server does not support CSMs.

59

Migrating and upgrading

60

Note: Support for Communication Support Module (CSM) is removed starting Informix Server 14.10.xC9 . You should

use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) instead.

Recompile Java™ user-defined routines
After you revert and before you start the earlier server, recompile Java™ user-defined routines (UDRs) that were compiled

with a Java™ development kit version that is earlier than or equal to the version included with the previous server.

What you do depends on whether your application uses external JAR and class files or JAR files installed on the server:

• If your application uses external JAR and class files (for example, JAR and class files that are listed in

JVPCLASSPATH), recompile the files.

• If your application uses JAR files installed in the server (for example, through the install_jar() support function), you

must remove the old JAR file (by using the remove_jar() support function) and reinstall the recompiled JAR file in the

database.

Reinstall and start the earlier database server
Reinstall and configure the earlier version of the database server.

Refer to the instructions in your Informix® Installation Guide and your Informix® Administrator's Guide.

Before you start the server: If you have time series data and you reverted to Informix® 12.10.xC1, you must install

the patch patch-idsdb00493404.tar on Informix® 12.10.xC1. You can obtain the patch from the Support Portal.

Run the oninit -s command to start the earlier database server in quiescent mode.

Important: Do not use the oninit -i command.

Add JSON compatibility to databases that were created in 12.10.xC1
Databases that were created in Informix® 12.10.xC1 are not JSON compatible. In 12.10.xC2 or 12.10.xC3 you can run a

script to make those databases JSON compatible. You do not have to run the script after you upgrade to 12.10.xC4 or later

fixpacks because all databases are made JSON compatible during conversion.

Before you begin

This procedure requires Informix® 12.10.xC2 or 12.10.xC3.

You must run the script as user informix or as a user with DBA privileges.

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/Informix_Product_Family

Chapter 1. Migrating and upgrading

Run the appropriate script against a database that was created in Informix® 12.10.xC1 to make the database JSON

compatible.

Choose from:

• Informix® 12.10.xC3: convTovNoSQL1210.sql

• Informix® 12.10.xC2: convTovNoSQL1210X2.sql

Example

For example, to make the db_name database JSON compatible in Informix® 12.10.xC3, you would run the following

command as user informix or as a user with DBA privileges:

UNIX™

dbaccess -e db_name $INFORMIXDIR/etc/convTovNoSQL1210.sql

Windows™

dbaccess -e db_name %INFORMIXDIR%\etc\convTovNoSQL1210.sql

Optionally update statistics on your tables after reverting
Optionally run UPDATE STATISTICS on your tables and on UDRs that perform queries, if you have performance problems

after reverting to the previous version of the database server or to a database server on a different operating system.

An unqualified UPDATE STATISTICS statement includes no additional clauses:

UPDATE STATISTICS;

By default, an unqualified UPDATE STATISTICS statement updates the statistics in LOW mode for every permanent table in

the database, including the system catalog tables.

You can run an UPDATE STATISTICS statement that includes only a FOR ROUTINE clause that specifies no routine name:

UPDATE STATISTICS FOR ROUTINE;

Running this statement reoptimizes the DML statement execution plans for every SPL routine in the database that operates

on local tables.

Similarly, you can substitute the keyword FUNCTION for ROUTINE in the previous example to reoptimize execution plans only

for SPL routines that return at least one value, or you can substitute the keyword FUNCTION for PROCEDURE to reoptimize

execution plans only for SPL routines that return no value. In these cases, the database server does not update the statistics

in the system catalog tables.

You do not need to run UPDATE STATISTICS statements on C or Java™ UDRs.

Verify the integrity of the reverted data
Before you allow users to access the databases, check the integrity of the reverted data.

Follow the steps in Verifying the integrity of the data on page 14.

61

Migrating and upgrading

62

Back up the database server after reversion
After you complete the reversion, use ON-Bar or ontape to make a level-0 backup of the database server to which you

reverted.

For more information about making backups, see your Informix® Backup and Restore Guide.

Important: Do not overwrite the tapes that you used to back up your source database server.

Return the database server to online mode
To bring the old database server online, run the onmode -m command.

Then users can access the data.

Register DataBlade® modules
You must register any DataBlade® modules that your databases require. Built-in database extensions automatically revert to

the version included in the database server to which you reverted.

If you are reverting to version 11.70.xC1 or later, you do not need to register built-in database extensions because they are

registered automatically.

For information on registering DataBlade® modules, see the Informix® DataBlade® Module Installation and Registration

Guide.

Migration of data between database servers

Migrating database servers to a new operating system
When you migrate to a new operating system, you must choose a tool for migrating your data, you might need to make

some adjustments to your tables, and you must review environment-dependent configuration parameters and environment

variables.

Related information

Paths for migration to the new version

Choosing a tool for moving data before migrating between operating systems
If you are migrating between different operating systems, you must choose a method for exporting and importing data. The

tool that you choose for exporting and importing data depends on how much data you plan to move.

Chapter 1. Migrating and upgrading

All these methods deliver similar performance and enable you to modify the schema of the database. The tools that you can

use include:

• The dbexport and dbimport utilities, which you can use to move an entire database

• The UNLOAD and LOAD statements, which move selected columns or tables (The LOAD statement does not change

the data format.)

• The dbload utility, which you can use to change the data format

• The onunload utility, which unloads data in page-sized chunks, and the onload utility, which moves data to an

identical database server on a computer of the same type

• Enterprise Replication, which you can use to transfer data between Informix® on one operating system and

Informix® on a second operating system.

For an overview of all of these data-migration tools, a comparison of tools, and information about which versions of the

database server do not support all of the tools, see Data-migration tools on page 2.

Related information

The dbexport and dbimport utilities on page 65

The onunload and onload utilities on page 117

The dbload utility on page 82

The dbschema utility on page 98

The LOAD and UNLOAD statements on page 115

Adjusting database tables for file-system variations
File system limitations vary between NFS and non-NFS file systems. You might need to break up large tables when you

migrate to a new operating system.

For example, if you have a 3 GB table, but your operating system allows only 2 GB files, break up your table into separate files

before you migrate. For more information, see your Informix® Administrator's Guide.

The Informix® storage space can reside on an NFS-mounted file system using regular operating-system files. For

information about the NFS products you can use to NFS mount a storage space for the Informix® database server, check

product compatibility information.

Moving data to a database server on a different operating system
You can move data between Informix® database servers on UNIX™ or Linux™ and Windows™.

About this task

To move data to a database server on a different operating system:

63

Migrating and upgrading

64

1. Save a copy of the current configuration files.

2. Use ON-Bar or ontape to make a final level-0 backup.

For more information, refer to your Informix® Backup and Restore Guide.

3. Choose one of the following sets of migration utilities to unload the databases:

• dbexport and dbimport

• UNLOAD, dbschema, and LOAD

• UNLOAD, dbschema, and dbload

4. Bring the source database server offline.

5. Install and configure the target database server. If you are migrating to Windows™, also install the administration

tools.

6. Bring the target database server online.

7. Use dbimport, LOAD, or dbload, or external tables to load the databases into the target database server, depending on

which utility you used to export the databases.

8. Make an initial level-0 backup of the target database server.

9. Run UPDATE STATISTICS to update the information that the target database server uses to plan efficient queries.

Results

Adapting your programs for a different operating system
When you change to a different operating system, you must review and, if necessary, adjust your environment-dependent

configuration parameters and environment variables.

Certain database server configuration parameters and environment variables are environment-dependent.

For details, see the information about configuration parameters in the Informix® Administrator's Guide and the Informix®

Administrator's Reference and the information about environment variables in the Informix® Administrator's Guide and the

Informix® Guide to SQL: Reference.

Ensuring the successful creation of system databases
The first time the database server is brought online, the sysmaster, sysutils, sysuser, and sysadmin databases are built.

After moving to a database server on a different operating system, check the message log to ensure that the sysmaster and

sysutils databases have been created successfully before you allow users to access the database server.

After you ensure that client users can access data on the database server, the migration process is complete.

Next you might want to seek ways to obtain maximum performance. For details on topics related to performance, see your

Informix® Performance Guide.

Data migration utilities

Chapter 1. Migrating and upgrading

External tables
External tables are a fast and versatile method for moving data between database servers. External tables are the fastest

method for loading data into a RAW table with no indexes.

You run the CREATE EXTERNAL TABLE statement to define an external table that is not part of your database to unload data

from your database. You run INSERT ... SELECT statements to load data from the external table into your database.

You can unload and load data in the internal Informix® representation. All Informix® data types are supported. You can

define a value to be interpreted as a NULL when you load or unload data from an external table. You can specify the date and

currency format and replace missing values with column defaults.

You define a named pipe to copy data from one Informix® instance to another without writing the data to an intermediate

file. You can monitor the I/O queues to determine whether you have enough FIFO virtual processors. If necessary, you can

add more FIFO virtual processors to improve performance. You can specify to run high-speed transfers in parallel.

Rows that have conversion errors during a load are written to a reject file on the server that performs the conversion.

The dbexport and dbimport utilities
The dbexport and dbimport utilities import and export a database and its schema to disk or tape.

The dbexport utility unloads an entire database into text files and creates a schema file. You can unload the database and its

schema file either to disk or tape. If you prefer, you can unload the schema file to disk and unload the data to tape. You can

use the schema file with the dbimport utility to re-create the database schema in another HCL Informix® environment, and

you can edit the schema file to modify the database that dbimport creates.

The dbimport utility creates a database and loads it with data from text files on tape or disk. The input files consist of a

schema file that is used to re-create the database and data files that contain the database data. Normally, you generate the

input files with the dbexport utility, but you can use any properly formatted input files.

Attention:

When you import a database, use the same environment variable settings and configuration parameter settings that

were used when the database was created.

• If any environment variables or configuration parameters that affect fragmentation, constraints, triggers, or

user-defined routines are set differently than they were when these database objects were created originally,

the database that is created by the dbimport utility might not be an accurate reproduction of the original.

• Incompatible settings are likely to occur if you move data from an earlier version of the database server

to a newer version. Over time, some configuration parameters or environment variables are deprecated, or

their default values are changed. For example, assume that attached indexes were created by default in the

original database. In the current version of the database server, detached indexes are created by default.

If you want to maintain the original behavior, you can set the DEFAULT_ATTACH environment variable to 1

before you run the dbimport utility.

65

Migrating and upgrading

66

Also, the dbimport operation might fail when you attempt to import from a higher server version to a lower server

version if the database schema changed between versions. For example, the am_expr_pushdown column was added

to the sysams system catalog table in Informix® 11.70. The dbimport operation will fail if you attempt to import a

database from Informix® 12.10 that contains the am_expr_pushdown column into a database from Informix® 11.50

that is missing that column. In that case, you must review the messages in the dbimport.out file, which is in your

current directory. After you address the issues that caused the dbimport operation to fail, run the dbimport command

again.

Requirements or limitations apply in the following cases:

Compressed data

The dbexport utility uncompresses compressed data. You must recompress the data after you use the

dbimport utility to import the data.

Date values

Use four-digit years for date values. The date context for an object includes the date that the object was

created, the values of the DBCENTURY and GL_DATE environment variables, and some other environment

variables. If the date context during import is not the same as when these objects were created, you might get

explicit errors, you might not be able to find your data, or a check constraint might not work as expected. Some

of these problems do not generate errors.

Tip: By default, the dbexport utility exports dates in four-digit years unless environment variables are

set to values that would override that format.

High-availability clusters

You cannot use the dbexport utility on HDR secondary servers or shared disk (SD) secondary servers.

The dbexport utility is supported on a remote standalone (RS) secondary server only if the server is set to stop

applying log files. Use the STOP_APPLY configuration parameter to stop application of log files.

The dbimport utility is supported on all updatable secondary servers.

Label-based access control (LBAC)

When you export data that is LBAC-protected, the data that is exported is limited to the data that your LBAC

credentials allow you to read. If your LBAC credentials do not allow you to read a row, that row is not exported,

but no error is returned. To export all the rows, you must be able to see all the rows.

NLSCASE mode

Whether the NLSCASE mode of your source database is SENSITIVE or INSENSITIVE, you can reduce the risk

of case-sensitivity issues by always migrating to a target database that has the same NLSCASE mode as the

source database. For tables that include columns with case-variant NCHAR and NVARCHAR data values (for

example, 'IBM', 'ibm', 'Ibm'), you might encounter the following differences after migration:

Chapter 1. Migrating and upgrading

• ORDER BY and sorting operations can produce a different ordering of qualifying rows in query results,

compared to the result of the same query before migration.

• Unique indexes and referential constraints with which the data were compliant before the migration

might have integrity violations in the new database, if any index or constraint key column contains case-

variant forms of the same character string.

• Queries with predicates that apply conditional operators to NCHAR or NVARCHAR values might return

different results from the same data after migration.

Nondefault database locales

If the database uses a nondefault locale and the GL_DATETIME environment variable has a nondefault setting,

you must set the USE_DTENV environment variable to the value of 1 so that localized DATETIME values are

processed correctly by the dbexport and dbimport utilities.

SELECT triggers on tables

You must disable SELECT triggers before you export a database with the dbexport utility. The dbexport utility

runs SELECT statements during export. The SELECT statement triggers might modify the database content.

Virtual tables for the Informix® MQ extension

The MQCreateVtiRead(), MQCreateVtiReceive(), and MCQCreateVtiWrite() functions create virtual tables, and

map them to the appropriate WebSphere® MQ message queue. When the dbexport utility unloads data, it

removes the messages from WebSphere® MQ queues. Before you use the dbexport utility, drop any MQ virtual

tables. After you load the database with the dbimport utility, you can create the tables in the target database by

using the appropriate functions.

Related information

Paths for migration to the new version

Data-migration tools on page 2

Choosing a tool for moving data before migrating between operating systems on page 62

Syntax of the dbexport command
The dbexport command unloads a database into text files that you can later import into another database. The command

also creates a schema file.

67

Migrating and upgrading

68

dbexport

-c -d

-no-data-tablestablenames

-no-data-tables-accessmethodsaccessmethods

-nw-q

Destination Options1

-ss-si-X

database

-V

-version

Element Purpose Key Considerations

-c Makes dbexport complete exporting unless

a fatal error occurs

References: For details on this option, see dbexport errors

on page 70.

-d Makes dbexport export simple-large-object

descriptors only, not simple-large-object

data

-q Suppresses the display of error

messages, warnings, and generated SQL

data-definition statements

None.

-ss Generates database server-specific

information for all tables in the specified

database

References: For details on this option, see dbexport

server-specific information on page 70.

-si Excludes the generation of index storage

clauses for non-fragmented tables

The -si option is available only with the -ss

option.

References: For details on this option, see dbexport

server-specific information on page 70.

-X Recognizes HEX binary data in character

fields

None.

-no-data-tables Prevents data from being exported for the

specified tables. Only the definitions of the

specified tables are exported.

Accepts a comma-separated list of names of tables for

which data will not be exported.

Default behavior: Only the definition of the

tsinstanceTable table is exported, not the data.

1. See dbexport destination options on page 71

Chapter 1. Migrating and upgrading

Element Purpose Key Considerations

The data and definitions of all other tables are

exported.

-

no-data-tables-ac

cessmethods

Prevents data from being unloaded using

the specified access methods.

Accepts a comma-separated list of names of access

methods. Tables using those access methods are not

unloaded.

Default value:

ts_rts_vtam, ts_vtam

Tables using ts_rts_vtam and ts_vtam

access methods are not unloaded.

-nw Generates the SQL for creating a database

without the specification of an owner

None.

-V Displays the software version number and

the serial number

None.

-version Extends the -V option to display additional

information about the build operating

system, build number, and build date

None.

database Specifies the name of the database that

you want to export

Additional information: If your locale is set to use

multibyte characters, you can use multibyte characters for

the database name.

References: If you want to use more than the simple name

of the database, see Database Name on page .

You must have DBA privileges or log in as user informix to export a database.

Global Language Support: When the environment variables are set correctly, as described in the Informix® GLS

User's Guide, dbexport can handle foreign characters in data and export the data from GLS databases. For more

information, refer to Database renaming on page 80.

You can set the IFX_UNLOAD_EILSEQ_MODE environment variable to enable dbexport to use character data that is

invalid for the locale specified in the environment.

You can use delimited identifiers with the dbexport utility. The utility detects database objects that are keywords, mixed case,

or have special characters, and the utility places double quotes around them.

In addition to the data files and the schema file, dbexport creates a file of messages named dbexport.out in the current

directory. This file contains error messages, warnings, and a display of the SQL data definition statements that it generates.

The same material is also written to standard output unless you specify the -q option.

69

../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645

Migrating and upgrading

70

During export, the database is locked in exclusive mode. If dbexport cannot obtain an exclusive lock, it displays a diagnostic

message and exits.

Tip: The dbexport utility can create files larger than 2 GB. To support such large files, make sure your operating

system file-size limits are set sufficiently high. For example, on UNIX™, set ulimit to unlimited.

Example

Example

The following command exports the table definitions but no data for all the tables in the customer database.

dbexport -no-data-tables -no-data-tables-accessmethods customer

Example

Example

The following command generates the schema and data for the customer database without the specification of an owner:

dbexport customer -nw

Termination of the dbexport utility
You can stop the dbexport utility at any time.

To cancel dbexport, press your Interrupt key.

The dbexport utility asks for confirmation before it terminates.

dbexport errors
The dbexport -c option tells dbexport to complete exporting unless a fatal error occurs.

Even if you use the -c option, dbexport interrupts processing if one of the following fatal errors occurs:

• dbexport is unable to open the specified tape.

• dbexport finds bad writes to the tape or disk.

• Invalid command parameters were used.

• dbexport cannot open the database or there is no system permission for doing so.

• A subdirectory with the name specified during invocation already exists

Chapter 1. Migrating and upgrading

dbexport server-specific information
The dbexport -ss option generates server-specific information. This option specifies initial- and next-extent sizes,

fragmentation information if the table is fragmented, the locking mode, the dbspace for a table, the blobspace for any simple

large objects, and the dbspace for any smart large objects.

The dbexport -si option, which is available only with the -ss option, does not generate index storage clauses for non-

fragmented tables.

dbexport destination options
The dbexport utility supports disk and tape destination options.

Destination options

-odirectory

-tdevice-bblocksize -stapesize

-fpathname

Element Purpose Key Considerations

-b blocksize Specifies, in kilobytes, the block size of the tape

device.

None.

-f pathname Specifies the name of the path where you want the

schema file stored, if you are storing the data files on

tape.

The path name can be a complete path name or

a file name. If only a file name is given, the file is

stored in the current directory.

If you do not use the -f option, the SQL source

code is written to the tape.

-o directory Specifies the directory on disk in which dbexport

creates the database.exp directory.

This directory holds the data files and the schema

file that dbexport creates for the database.

The specified directory must exist.

-s tapesize Specifies, in kilobytes, the amount of data that you

can store on the tape.

To write to the end of the tape, set the value to 0.

If you do not specify 0, the maximum size is 2 097

151 KB.

-t device Specifies the path name of the tape device where

you want the text files and, possibly, the schema file

stored.

You cannot specify a remote tape device.

When you write to disk, dbexport creates a subdirectory, database.exp, in the directory that the -o option specifies. The

dbexport utility creates a file with the .unl extension for each table in the database. The schema file is written to the file

database.sql. The .unl and .sql files are in the database.exp directory.

71

Migrating and upgrading

72

If you do not specify a destination for the data and schema files, the subdirectory database.exp is placed in the current

working directory.

When you write the data files to tape, you can use the -f option to store the schema file to disk. You are not required to name

the schema file database.sql. You can give it any name.

UNIX/Linux Only

For database servers on UNIX™ or Linux™, the command is:

dbexport //finland/reports

The following command exports the database stores_demo to tape with a block size of 16 KB and a tape

capacity of 24 000 KB. The command also writes the schema file to /tmp/stores_demo.imp.

dbexport -t /dev/rmt0 -b 16 -s 24000 -f /tmp/stores_demo.imp
 stores_demo

The following command exports the same stores_demo database to the directory named /work/exports/

stores_demo.exp. The resulting schema file is /work/exports/stores_demo.exp/stores_demo.sql.

dbexport -o /work/exports stores_demo

Windows™ Only

For Windows™, the following command exports the database stores_demo to tape with a block size of 16 KB

and a tape capacity of 24 000 KB. The schema file is written to C:\temp\stores_demo.imp.

dbexport -t \\.\TAPE2 -b 16 -s 24000 -f
 C:\temp\stores_demo.imp stores_demo

The following command exports the same stores_demo database to the directory named D:\work

\exports\stores_demo.exp. The resulting schema file is D:\work\exports\stores_demo.exp

\stores_demo.sql.

dbexport -o D:\work\exports stores_demo

Exporting time series data in rolling window containers
The dbexport utility exports time series data except any data that is in the dormant window of rolling window containers.

About this task

The active window in rolling window containers is re-created after the time series data is loaded into a container.

The dormant window is not exported. To export the data from the dormant window, you must move the data into the active

window.

To export time series data in the dormant window of a rolling window container:

Chapter 1. Migrating and upgrading

1. If necessary, increase the size of the active window by running the TSContainerManage function. The size of the

active window must be large enough to fit all the intervals in the dormant window can fit into the active window.

2. Move the intervals in the dormant window into the active window by running the TSContainerManage function.

3. Export the data by running the dbexport utility.

Related information

Contents of the schema file that dbexport creates on page 73

Contents of the schema file that dbexport creates
The dbexport utility creates a schema file. This file contains the SQL statements that you need to re-create the exported

database.

You can edit the schema file to modify the schema of the database.

If you use the -ss option, the schema file contains server-specific information, such as initial- and next-extent sizes,

fragmentation information, lock mode, the dbspace where each table resides, the blobspace where each simple-large-object

column resides, and the dbspace for smart large objects. The following information is not retained:

• Logging mode of the database

For information about logging modes, see the Informix® Guide to SQL: Reference.

• The starting values of SERIAL columns

• The dormant window interval values for time series rolling window containers

The statements in the schema file that create tables, views, indexes, partition-fragmented tables and indexes, roles, and

grant privileges do so with the name of the user who originally created the database. In this way, the original owner retains

DBA privileges for the database and is the owner of all the tables, indexes, and views. In addition, the person who runs the

dbimport command also has DBA privileges for the database.

The schema file that dbexport creates contains comments, which are enclosed in braces, with information about the number

of rows, columns, and indexes in tables, and information about the unload files. The dbimport utility uses the information in

these comments to load the database.

The number of rows must match in the unload file and the corresponding unload comment in the schema file. If you change

the number of rows in the unload file but not the number of rows in the schema file, a mismatch occurs.

Attention: Do not delete any comments in the schema file, and do not change any existing comments or add any new

comments. If you change or add comments, the dbimport utility might stop or produce unpredictable results.

If you delete rows from an unload file, update the comment in the schema file with the correct number of rows in the unload

file. Then dbimport is successful.

73

Migrating and upgrading

74

Related information

Exporting time series data in rolling window containers on page 72

Syntax of the dbimport command
The dbimport command imports previously exported data into another database.

dbimport

-c -D -nv -q -X

Input-File Location 2

Create Options 3

-V

-version

database

Element Purpose Key Considerations

-c Completes importing data even when certain

nonfatal errors occur

For more information, see dbimport errors and warnings on

page 76.

-D Specifies a default extent size of 16 KB for the

first and subsequent extents during the import

operation, if the extent sizes are not specified

in the CREATE TABLE statement.

This option is ignored if the extent sizes are specified in the

CREATE TABLE statement.

Default values help to ensure that enough space is available

in the dbspace that is designated for the import operation.

This option prevents the automatic calculation of extent

sizes during the import operation, and is useful especially in

the following situations:

• When importing tables that contain columns with

large maximum row sizes, such as LVARCHAR

columns.

• When importing data after the dbexport command

was run without the -ss option. The -ss option

specifies server-specific information about extent

sizes.

-nv While the dbimport -nv command is running,

tables with foreign-key constraints that

ALTER TABLE ADD CONSTRAINT creates in

enabled or filtering mode are not checked

By bypassing the checking of referential constraints, this

option can reduce migration time for very large tables

that already conform to their foreign-key constraints. The

2. See dbimport input-file location options on page 76

3. See dbimport create options on page 78

Chapter 1. Migrating and upgrading

Element Purpose Key Considerations

for violations, as if you had also specified

NOVALIDATE

NOVALIDATE mode does not persist after the ALTER TABLE

ADD CONSTRAINT statement has completed.

-q Suppresses the display of error messages,

warnings, and generated SQL data-definition

statements

None.

-V Displays the software version number and the

serial number

None.

-version Extends the -V option to display additional

information about the build operating system,

build number, and build date

None.

-X Recognizes HEX binary data in character fields None.

database Declares the name of the database to create If you want to use more than the simple name of the

database, see Database Name on page .

The dbimport utility can use files from the following location options:

• All input files are on disk.

• All input files are on tape.

• The schema file is on disk, and the data files are on tape.

Important: Do not put comments into your input file. Comments might cause unpredictable results when the

dbimport utility reads them.

The dbimport utility supports the following tasks for an imported Informix® database server:

• Specify the dbspace where the database will reside

• Create an ANSI-compliant database with unbuffered logging

• Create a database that supports explicit transactions (with buffered or unbuffered logging)

• Create an unlogged database

• Create a database with the NLS case-insensitive property for NCHAR and NVARCHAR strings.

• Process all ALTER TABLE ADD CONSTRAINT and SET CONSTRAINTS statements in the .sql file of the exported

database that define enabled or filtering referential constraints so that any foreign-key constraints that are not

specified as DISABLED are in ENABLED NOVALIDATE or in FILTERING NOVALIDATE mode.

Note: If you specify the -nv option, the .sql file of the exported database is not modified, but any foreign-key

constraints that ALTER TABLE ADD CONSTRAINT or SET CONSTRAINTS statements enable are processed without

checking each row of the table for violations. The ENABLED, or FILTERING WITH ERROR, or FILTERING WITHOUT ERROR

constraint mode specifications are implemented instead as the ENABLED NOVALIDATE, or FILTERING WITH ERROR

75

../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645

Migrating and upgrading

76

NOVALIDATE or FILTERING WITHOUT ERROR NOVALIDATE modes. After the foreign-key constraints have been enabled

without checking for violations, their modes automatically revert to whatever the .sql file specified so that

subsequent DML operations on the tables enforce referential integrity.

The user who runs the dbimport utility is granted the DBA privilege on the newly created database. The dbimport process

locks each table as it is being loaded and unlocks the table when the loading is complete.

Global Language Support: When the GLS environment variables are set correctly, as the Informix® GLS User's Guide

describes, dbimport can import data into database server versions that support GLS.

Termination of the dbimport utility
You can stop the dbimport utility at any time.

To cancel the dbimport utility, press your Interrupt key .

The dbimport utility asks for confirmation before it terminates.

dbimport errors and warnings
The dbimport -c option tells the dbimport utility to complete exporting unless a fatal error occurs.

If you include the -c option in a dbimport command, dbimport ignores the following errors:

• A data row that contains too many columns

• Inability to put a lock on a table

• Inability to release a lock

Even if you use the -c option, dbimport interrupts processing if one of the following fatal errors occurs:

• Unable to open the tape device specified

• Bad writes to the tape or disk

• Invalid command parameters

• Cannot open database or no system permission

• Cannot convert the data

The dbimport utility creates a file of messages called dbimport.out in the current directory. This file contains any error

messages and warnings that are related to dbimport processing. The same information is also written to the standard output

unless you specify the -q option.

Chapter 1. Migrating and upgrading

dbimport input-file location options
The input-file location specifies the location of the database.exp directory, which contains the files that the dbimport utility

imports.

If you do not specify an input-file location, dbimport searches for data files in the directory database.exp under the current

directory and for the schema file in database.exp/database.sql.

dbimport input-file location

-idirectory

-tdevice

-bblocksize-s tapesize

-fpathname

Element Purpose Key Considerations

-b blocksize Specifies, in kilobytes, the block size of the

tape device

If you are importing from tape, you must use the same block

size that you used to export the database.

If you do not use the -b option, the default block size is 1.

-f pathname Specifies where dbimport can find the

schema file to use as input to create the

database when the data files are read from

tape

If you use the -f option to export a database, you typically

use the same path name that you specified in the dbexport

command. If you specify only a file name, dbimport looks for

the file in the .exp subdirectory of your current directory.

If you do not use the -f option, the SQL source code is written

to the tape.

-i directory Specifies the complete path name on disk of

the database.exp directory, which holds

the input data files and schema file that

dbimport uses to create and load the new

database. The directory name must be the

same as the database name.

This directory must be the same directory that you specified

with the dbexport -o option. If you change the directory

name, you also rename your database.

-s tapesize Specifies, in kilobytes, the amount of data

that you can store on the tape

To read to the end of the tape, specify a tape size of 0.

If you are importing from tape, you must use the same tape

size that you used to export the database. The maximum

size is 2 097 151 KB.

If you do not use the -s option, the default value is 0 (read to

the end of the tape).

-t device Specifies the path name of the tape device

that holds the input files

You cannot specify a remote tape device.

77

Migrating and upgrading

78

Examples showing input file location on UNIX™ or Linux™

To import the stores_demo database from a tape with a block size of 16 KB and a capacity of 24 000 KB, issue this

command:

dbimport -c -t /dev/rmt0 -b 16 -s 24000 -f
 /tmp/stores_demo.imp stores_demo

The schema file is read from /tmp/stores_demo.imp.

To import the stores_demo database from the stores_demo.exp directory under the /work/exports directory, issue

this command:

dbimport -c -i /work/exports stores_demo

The schema file is assumed to be /work/exports/stores_demo.exp/stores_demo.sql.

Examples showing input file location on Windows™

To import the stores_demo database from a tape with a block size of 16 KB and a capacity of 24 000 KB, issue this

command:

dbimport -c -t \\.\TAPEDRIVE -b 16 -s 24000 -f
 C:\temp\stores_demo.imp stores_demo

The schema file is read from C:\temp\stores_demo.imp.

To import the stores_demo database from the stores_demo.exp directory under the D:\work\exports directory, issue

this command:

dbimport -c -i D:\work\exports stores_demo

The schema file is assumed to be D:\work\exports\stores_demo.exp\stores_demo.sql.

dbimport create options
The dbimport utility supports options for creating a database, specifying a dbspace for that database, defining logging

options, and optionally specifying ANSI/ISO-compliance or NLS case-insensitivity (or both) as properties of the database.

Create options

-ddbspace

-l

buffered

-ansi

-ci

Element Purpose Key Considerations

-ansi Creates an ANSI/ISO-compliant database

in which the ANSI/ISO rules for transaction

logging are enabled. Otherwise, the

If you omit the -ansi option, the database uses explicit

transactions.

Chapter 1. Migrating and upgrading

Element Purpose Key Considerations

database uses explicit transactions by

default.

Additional Information: For more information about

ANSI/ISO-compliant databases, see the Informix® Guide to

SQL: Reference.

-ci Specifies the NLS case-insensitive property.

Otherwise, the database is case-sensitive by

default.

Additional Information: See the Informix® Guide to SQL:

Syntax and Informix® Guide to SQL: Reference descriptions

of the NLS case-insensitive property.

-d dbspace Specifies the dbspace where the database

is created. .

If this is omitted, the default location is the root dbspace

-l Establishes unbuffered transaction logging

for the imported database. If the -l flag is

omitted, the database is unlogged,

References: For more information, see Database-logging

mode on page 80.

-l buffered Establishes buffered transaction logging

for the imported database. If -l is included

but buffered is omitted, the database uses

unbuffered logging.

References: For more information, see Database-logging

mode on page 80.

If you created a table or index fragment containing partitions in Informix® Version 10.00 or a later version of the Informix®

database server, you must use syntax containing the partition name when importing a database that contains multiple

partitions within a single dbspace. See the Informix® Guide to SQL: Syntax for syntax details.

Example showing dbimport create options (UNIX™ or Linux™)

To import the stores_demo database from the /usr/informix/port/stores_demo.exp directory, issue this command:

dbimport -c stores_demo -i /usr/informix/port -l -ansi

The new database is ANSI/ISO-compliant.

The next example similarly imports the stores_demo database from the /usr/informix/port/stores_demo.exp directory. The

imported database uses buffered transaction logging and explicit transactions. The -ci flag specifies case insensitivity in

queries and in other operations on columns and character strings of the NCHAR and NVARCHAR data types:

dbimport -c stores_demo -i /usr/informix/port -l buffered -ci

The -ansi and -ci options for database properties are not mutually exclusive. You can specify an ANSI/ISO-compliant

database that is also NLS case-insensitive, as in the following example of the dbimport command:

dbimport -c stores_demo -i /usr/informix/port -l -ansi -ci

Example showing dbimport create options (Windows™)

To import the stores_demo database from the C:\USER\informix\port\stores_demo.exp directory, issue this command:

dbimport -c stores_demo -i C:\USER\informix\port -l -ansi

The imported database is ANSI/ISO-compliant and is case-sensitive for all built-in character data types.

79

Migrating and upgrading

80

Database-logging mode
Because the logging mode is not retained in the schema file, you can specify logging information when you use the dbimport

utility to import a database.

You can specify any of the following logging options when you use dbimport:

• ANSI-compliant database with unbuffered logging

• Unbuffered logging

• Buffered logging

• No logging

For more information, see dbimport create options on page 78.

The -l options are equivalent to the logging clauses of the CREATE DATABASE statement, as follows:

• Omitting any of the -l options is equivalent to omitting the WITH LOG clause.

• The -l option is equivalent to the WITH LOG clause.

• The -l buffered option is equivalent to the WITH BUFFERED LOG.

• The -l -ansi option is equivalent to the WITH LOG MODE ANSI clause, and implies unbuffered logging.

Database renaming
The dbimport utility gives the new database the same name as the database that you exported. If you export a database to

tape, you cannot change its name when you import it with dbimport. If you export a database to disk, you can change the

database name.

You can use the RENAME DATABASE statement to change the database name.

Alternative ways to change the database name

The following examples show alternative ways to change the database name. In this example, assume that dbexport

unloaded the database stores_demo into the directory /work/exports/stores_demo.exp. Thus, the data files (the .unl files)

are stored in /work/exports/stores_demo.exp, and the schema file is /work/exports/stores_demo.exp/stores_demo.sql.

To change the database name to a new name on UNIX™ or Linux™:

1. Change the name of the .exp directory. That is, change /work/exports/stores_demo.exp to /work/

exports/newname.exp.

2. Change the name of the schema file. That is, change /work/exports/stores_demo.exp/stores_demo.sql to /work/

exports/stores_demo.exp/newname.sql. Do not change the names of the .unl files.

3. Import the database with the following command:

dbimport -i /work/exports newname

Chapter 1. Migrating and upgrading

To change the database name to a new name on Windows™:

In the following example, assume that dbexport unloaded the database stores_demo into the directory D:\work\exports

\stores_demo.exp. Thus, the data files (the .unl files) are stored in D:\work\exports\stores_demo.exp, and the schema file is

D:\work\exports\stores_demo.exp\stores_demo.sql.

1. Change the name of the .exp directory. That is, change D:\work\exports\stores_demo.exp to D:\work\exports

\newname.exp.

2. Change the name of the schema file. That is, change D:\work\exports\stores_demo.exp\stores_demo.sql to D:\work

\exports\stores_demo.exp\newname.sql. Do not change the names of the .unl files.

3. Import the database with the following command:

dbimport -i D:\work\exports

Changing the database locale with dbimport
You can use the dbimport utility to change the locale of a database.

To change the locale of a database:

1. Set the DB_LOCALE environment variable to the name of the current database locale.

2. Run dbexport on the database.

3. Use the DROP DATABASE statement to drop the database that has the current locale name.

4. Set the DB_LOCALE environment variable to the desired database locale for the database.

5. Run dbimport to create a new database with the desired locale and import the data into this database.

Simple large objects
When the dbimport, dbexport, and DB-Access utilities process simple-large-object data, they create temporary files for that

data in a temporary directory.

Before you export or import data from tables that contain simple large objects, you must have one of the following items:

• A \tmp directory on your currently active drive

• The DBTEMP environment variable set to point to a directory that is available for temporary storage of the simple

large objects

Windows™ Only

Windows™ sets the TMP and TEMP environment variables in the command prompt sessions, by default.

However, if the TMP, TEMP, and DBTEMP environment variables are not set, dbimport places the temporary

files for the simple large objects in the \tmp directory.

81

Migrating and upgrading

82

Attention: If a table has a CLOB or BLOB in a column, you cannot use dbexport to export the table to a tape. If a

table has a user-defined type in a column, using dbexport to export the table to a tape might yield unpredictable

results, depending on the export function of the user-defined type. Exported CLOB sizes are stored in hex format in

the unload file.

The dbload utility
The dbload utility loads data into databases or tables that Informix® products created. It transfers data from one or more

text files into one or more existing tables.

Prerequisites: If the database contains label-based access control (LBAC) objects, the dbload utility can load only those

rows in which your security label dominates the column-security label or the row-security label. If the entire table is to be

loaded, you must have the necessary LBAC credentials for writing all of the labeled rows and columns. For more information

about LBAC objects, see the Informix® Security Guide and the Informix® Guide to SQL: Syntax.

You cannot use the dbload utility on secondary servers in high-availability clusters.

When you use the dbload utility, you can manipulate a data file that you are loading or access a database while it is loading.

When possible, use the LOAD statement, which is faster than dbload.

The dbload utility gives you a great deal of flexibility, but it is not as fast as the other methods, and you must prepare a

command file to control the input. You can use dbload with data in a variety of formats.

The dbload utility offers the following advantages over the LOAD statement:

• You can use dbload to load data from input files that were created with a variety of format arrangements. The dbload

command file can accommodate data from entirely different database management systems.

• You can specify a starting point in the load by directing dbload to read but ignore x number of rows.

• You can specify a batch size so that after every x number of rows are inserted, the insert is committed.

• You can limit the number of bad rows read, beyond which dbload ends.

The cost of dbload flexibility is the time and effort spent creating the dbload command file, which is required for dbload

operation. The input files are not specified as part of the dbload command line, and neither are the tables into which the data

is inserted. This information is contained in the command file.

Related information

Data-migration tools on page 2

Choosing a tool for moving data before migrating between operating systems on page 62

Syntax of the dbload command
The dbload command loads data into databases or tables.

Chapter 1. Migrating and upgrading

dbload

-ddatabase

-ccommand file

-lerror log file

-r-k

-eerrors-p

-iignore rows

-ncommit interval

-X

-s

-V

-version

Element Purpose Key Considerations

-c command file Specifies the file name or path name

of a dbload command file

References: For information about building the command

file, see Command file for the dbload utility on page 86.

-d database Specifies the name of the database

to receive the data

Additional Information: To use more than the simple name

of the database, see Database Name on page .

-e errors Specifies the number of bad rows

that dbload reads before terminating.

The default value for errors is 10.

References: For more information, see Bad-row limit during

a load operation on page 85.

-i ignore rows Specifies the number of rows to

ignore in the input file

References: For more information, see Rows to ignore

during a load operation on page 85.

-k Instructs dbload to lock the tables

listed in the command file in

exclusive mode during the load

operation

References: For more information, see Table locking during

a load operation on page 84.

You cannot use the -k option with the -r option because the

-r option specifies that no tables are locked during the load

operation.

-l error log file Specifies the file name or path name

of an error log file

If you specify an existing file, its contents are overwritten. If

you specify a file that does not exist, dbload creates the file.

Additional Information: The error log file stores diagnostic

information and any input file rows that dbload cannot

insert into the database.

-n commit interval Specifies the commit interval in

number of rows

The default interval is 100 rows.

Additional Information: If your database supports

transactions, dbload commits a transaction after the

specified number of new rows is read and inserted. A

message appears after each commit.

83

../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645

Migrating and upgrading

84

Element Purpose Key Considerations

References: For information about transactions, see the

Informix® Guide to SQL: Tutorial.

-p Prompts for instructions if the

number of bad rows exceeds the

limit

References: For more information, see Bad-row limit during

a load operation on page 85.

-r Prevents dbload from locking the

tables during a load, thus enabling

other users to update data in the

table during the load

Additional Information: For more information, see Table

locking during a load operation on page 84.

You cannot use the -r option with the -k option because the

-r option specifies that the tables are not locked during the

load operation while the -k option specifies that the tables

are locked in exclusive mode.

-s Checks the syntax of the statements

in the command file without inserting

data

Additional Information: The standard output displays the

command file with any errors marked where they are found.

-V Displays the software version

number and the serial number

None.

-version Extends the -V option to display

additional information about the

build operating system, build number,

and build date

None.

-X Recognizes HEX binary data in

character fields

None.

Tip: If you specify part (but not all) of the required information, dbload prompts you for additional specifications. The

database name, command file, and error log file are all required. If you are missing all three options, you receive an

error message.

Example

dbload command example
The following command loads data into the stores_demo database in the turku directory on a database server called finland:

dbload -d //finland/turku/stores_demo -c commands -l errlog

Chapter 1. Migrating and upgrading

Table locking during a load operation
The dbload -k option overrides the default table lock mode during the load operation. The -k option instructs dbload to lock

the tables in exclusive mode rather than shared mode.

If you do not specify the -k option, the tables specified in the command file are locked in shared mode. When tables are

locked in shared mode, the database server still must acquire exclusive row or page locks when it inserts rows into the table.

When you specify the -k option, the database server places an exclusive lock on the entire table. The -k option increases

performance for large loads because the database server does not need to acquire exclusive locks on rows or pages as it

inserts rows during the load operation.

If you do not specify the -r option, the tables specified in the command file are locked during loading so that other users

cannot update data in the table. Table locking reduces the number of locks needed during the load but reduces concurrency.

If you are planning to load a large number of rows, use table locking and load during nonpeak hours.

Rows to ignore during a load operation
The dbload -i option specifies the number of new-line characters in the input file that dbload ignores before dbload begins to

process data.

This option is useful if your most recent dbload session ended prematurely.

For example, if dbload ends after it inserts 240 lines of input, you can begin to load again at line 241 if you set number rows

ignore to 240.

The -i option is also useful if header information in the input file precedes the data records.

Bad-row limit during a load operation
The dbload -e option lets you specify how many bad rows to allow before dbload terminates.

If you set errors to a positive integer, dbload terminates when it reads (errors + 1) bad rows. If you set errors to zero, dbload

terminates when it reads the first bad row.

If dbload exceeds the bad-row limit and the -p option is specified, dbload prompts you for instructions before it terminates.

The prompt asks whether you want to roll back or to commit all rows that were inserted since the last transaction.

If dbload exceeds the bad-row limit and the -p option is not specified, dbload commits all rows that were inserted since the

last transaction.

Termination of the dbload utility
If you press your Interrupt key, dbload terminates and discards any new rows that were inserted but not yet committed to

the database (if the database has transactions).

85

Migrating and upgrading

86

Name and object guidelines for the dbload utility
You must follow guidelines for specifying network names and handling simple large objects, indexes, and delimited

identifiers when you use the dbload utility.

Table 8. Name and object guidelines for the dbload utility

Objects Guideline

Network

names

If you are on a network, include the database server name and directory path with the database name to

specify a database on another database server.

Simple

large

objects

You can load simple large objects with the dbload utility as long as the simple large objects are in text files.

Indexes The presence of indexes greatly affects the speed with which the dbload utility loads data. For best

performance, drop any indexes on the tables that receive the data before you run dbload. You can create new

indexes after dbload has finished.

Delimite

d

identifie

rs

You can use delimited identifiers with the dbload utility. The utility detects database objects that are

keywords, mixed case, or have special characters, and places double quotes around them.

If your most recent dbload session ended prematurely, specify the starting line number in the command-line

syntax to resume loading with the next record in the file.

Command file for the dbload utility
Before you use the dbload utility, you must create a command file that names the input data files and the tables that

receive the data. The command file maps fields from one or more input files into columns of one or more tables within your

database.

The command file contains only FILE and INSERT statements. Each FILE statement names an input data file. The FILE

statement also defines the data fields from the input file that are inserted into the table. Each INSERT statement names

a table to receive the data. The INSERT statement also defines how dbload places the data that is described in the FILE

statement into the table columns.

Within the command file, the FILE statement can appear in these forms:

• Delimiter form

• Character-position form

The FILE statement has a size limit of 4,096 bytes.

Use the delimiter form of the FILE statement when every field in the input data row uses the same delimiter and every row

ends with a new-line character. This format is typical of data rows with variable-length fields. You can also use the delimiter

form of the FILE statement with fixed-length fields as long as the data rows meet the delimiter and new line requirements.

The delimiter form of the FILE and INSERT statements is easier to use than the character-position form.

Chapter 1. Migrating and upgrading

Use the character-position form of the FILE statement when you cannot rely on delimiters and you must identify the input

data fields by character position within the input row. For example, use this form to indicate that the first input data field

begins at character position 1 and continues until character position 20. You can also use this form if you must translate a

character string into a null value. For example, if your input data file uses a sequence of blanks to indicate a null value, you

must use this form if you want to instruct dbload to substitute null at every occurrence of the blank-character string.

You can use both forms of the FILE statement in a single command file. For clarity, however, the two forms are described

separately in sections that follow.

Delimiter form of the FILE and INSERT statements
The FILE and INSERT statements that define information for the dbload utility can appear in a delimiter form.

The following example of a dbload command file illustrates a simple delimiter form of the FILE and INSERT statements.

The example is based on the stores_demo database. An UNLOAD statement created the three input data files, stock.unl,

customer.unl, and manufact.unl.

FILE stock.unl DELIMITER '|' 6;
INSERT INTO stock;
FILE customer.unl DELIMITER '|' 10;
INSERT INTO customer;
FILE manufact.unl DELIMITER '|' 3;
INSERT INTO manufact;

To see the .unl input data files, refer to the directory $INFORMIXDIR/demo/prod_name (UNIX™ or Linux™) or

%INFORMIXDIR%\demo\prod_name (Windows™).

Syntax for the delimiter form
The syntax for the delimiter form specifies the field delimiter, the input file, and the number of fields in each row of data.

The following diagram shows the syntax of the delimiter FILE statement.

FILEfilenameDELIMITER

' c '

nfields

Element Purpose Key Considerations

c Specifies the character as the field

delimiter for the specific input file

If the delimiter specified by c appears as a literal character anywhere in

the input file, the character must be preceded with a backslash (\) in the

input file. For example, if the value of c is specified as a square bracket

([) , you must place a backslash before any literal square bracket that

appears in the input file. Similarly, you must precede any backslash that

appears in the input file with an additional backslash.

You can specify any printable character, as defined by current locale, the

tab character TAB (CTRL-I), or a blank space (ASCII 32) as the delimiter

87

Migrating and upgrading

88

Element Purpose Key Considerations

symbol. You cannot specify non-printable character, a hexadecimal

character, or a backslash character.

filename Specifies the input file None.

nfields Indicates the number of fields in

each data row

None.

The dbload utility assigns the sequential names f01, f02, f03, and so on to fields in the input file. You cannot see these

names, but if you refer to these fields to specify a value list in an associated INSERT statement, you must use the f01, f02,

f03 format. For details, refer to How to write a dbload command file in delimiter form on page 89.

Two consecutive delimiters define a null field. As a precaution, you can place a delimiter immediately before the new-line

character that marks the end of each data row. If the last field of a data row has data, you must use a delimiter. If you omit

this delimiter, an error results whenever the last field of a data row is not empty.

Inserted data types correspond to the explicit or default column list. If the data field width is different from its corresponding

character column width, the data is made to fit. That is, inserted values are padded with blanks if the data is not wide enough

for the column or truncated if the data is too wide for the column.

If the number of columns named is fewer than the number of columns in the table, dbload inserts the default value that

was specified when the table was created for the unnamed columns. If no default value is specified, dbload attempts to

insert a null value. If the attempt violates a not null restriction or a unique constraint, the insert fails, and an error message is

returned.

If the INSERT statement omits the column names, the default INSERT specification is every column in the named table. If the

INSERT statement omits the VALUES clause, the default INSERT specification is every field of the previous FILE statement.

An error results if the number of column names listed (or implied by default) does not match the number of values listed (or

implied by default).

The syntax of dbload INSERT statements resembles INSERT statements in SQL, except that in dbload, INSERT statements

cannot incorporate SELECT statements.

Do not use the CURRENT, TODAY, and USER keywords of the INSERT INTO statement in a dbload command file; they are not

supported in the dbload command file. These keywords are supported in SQL only.

For example, the following dbload command is not supported:

FILE "testtbl2.unl" DELIMITER '|' 1;
 INSERT INTO testtbl
 (testuser, testtime, testfield)
 VALUES
 ('kae', CURRENT, f01);

Load the existing data first and then write an SQL query to insert or update the data with the current time, date, or user login.

You could write the following SQL statement:

Chapter 1. Migrating and upgrading

INSERT INTO testtbl
 (testuser, testtime, testfield)
 VALUES
 ('kae', CURRENT, f01);

The CURRENT keyword returns the system date and time. The TODAY keyword returns the system date. The USER keyword

returns the user login name.

The following diagram shows the syntax of the dbload INSERT statement for delimiter form.

INSERT INTO

owner.

table

(

,column

)

VALUES clause 4

;

Element Purpose Key Considerations

column Specifies the column that receives the new data None.

owner. Specifies the user name of the table owner None.

table Specifies the table that receives the new data None.

Users who run dbload with this command file must have the Insert privilege on the named table.

How to write a dbload command file in delimiter form
Command files must contain required elements, including delimiters.

The FILE statement in the following example describes the stock.unl data rows as composed of six fields, each separated by

a vertical bar (|) as the delimiter.

FILE stock.unl DELIMITER '|' 6;
INSERT INTO stock;

Two consecutive delimiters define a null field. As a precaution, you can place a delimiter immediately before the new-line

character that marks the end of each data row. If the last field of a data row has data, you must use a delimiter. If you omit

this delimiter, an error results.

Compare the FILE statement with the data rows in the following example, which appear in the input file stock.unl. (Because

the last field is not followed by a delimiter, an error results if any data row ends with an empty field.)

1|SMT|baseball gloves|450.00|case|10 gloves/case
2|HRO|baseball|126.00|case|24/case
3|SHK|baseball bat|240.00|case|12/case

4. See VALUES Clause on page .

89

../sqs/ids_sqs_0132.html#ids_sqs_0132
../sqs/ids_sqs_0132.html#ids_sqs_0132
../sqs/ids_sqs_0132.html#ids_sqs_0132
../sqs/ids_sqs_0132.html#ids_sqs_0132

Migrating and upgrading

90

The example INSERT statement contains only the required elements. Because the column list is omitted, the INSERT

statement implies that values are to be inserted into every field in the stock table. Because the VALUES clause is omitted,

the INSERT statement implies that the input values for every field are defined in the most recent FILE statement. This INSERT

statement is valid because the stock table contains six fields, which correspond to the number of values that the FILE

statement defines.

The following example shows the first data row that is inserted into stock from this INSERT statement.

Field Column Value

f01 stock_num 1

f02 manu_code SMT

f03 description baseball gloves

f04 unit_price 450.00

f05 unit case

f06 unit_descr 10 gloves/case

The FILE and INSERT statement in the following example illustrates a more complex INSERT statement syntax:

FILE stock.unl DELIMITER '|' 6;
INSERT INTO new_stock (col1, col2, col3, col5, col6)
 VALUES (f01, f03, f02, f05, 'autographed');

In this example, the VALUES clause uses the field names that dbload assigns automatically. You must reference the

automatically assigned field names with the letter f followed by a number: f01, f02, f10, f100, f999, f1000, and so on. All

other formats are incorrect.

Tip: The first nine fields must include a zero: f01, f02, ..., f09.

The user changed the column names, the order of the data, and the meaning of col6 in the new stock table. Because the

fourth column in new_stock (col4) is not named in the column list, the new data row contains a null value in the col4 position

(assuming that the column permits null values). If no default is specified for col4, the inserted value is null.

The following table shows the first data row that is inserted into new_stock from this INSERT statement.

Column Value

col1 1

col2 baseball

gloves

col3 SMT

col4 null

col5 case

Chapter 1. Migrating and upgrading

Column Value

col6 autographed

Character-position form of the FILE and INSERT statements
The FILE and INSERT statements that define information for the dbload utility can appear in a character-position form.

The examples in this topic are based on an input data file, cust_loc_data, which contains the last four columns (city, state,

zipcode, and phone) of the customer table. Fields in the input file are padded with blanks to create data rows in which

the location of data fields and the number of characters are the same across all rows. The definitions for these fields are

CHAR(15), CHAR(2), CHAR(5), and CHAR(12), respectively. Figure 2: A Sample Data File on page 91 displays the character

positions and five example data rows from the cust_loc_data file.

Figure 2. A Sample Data File

The following example of a dbload command file illustrates the character-position form of the FILE and INSERT statements.

The example includes two new tables, cust_address and cust_sort, to receive the data. For the purpose of this example,

cust_address contains four columns, the second of which is omitted from the column list. The cust_sort table contains two

columns.

FILE cust_loc_data
 (city 1-15,
 state 16-17,
 area_cd 23-25 NULL = 'xxx',
 phone 23-34 NULL = 'xxx-xxx-xxxx',
 zip 18-22,
 state_area 16-17 : 23-25);
INSERT INTO cust_address (col1, col3, col4)
 VALUES (city, state, zip);
INSERT INTO cust_sort
 VALUES (area_cd, zip);

Syntax for the character-position form
The syntax for the character-position form specifies information that includes the character position within a data row that

starts a range of character positions and the character position that ends a range of character positions.

The following diagram shows the syntax of the character-position FILE statement.

91

Migrating and upgrading

92

FILEfilename(

,fieldn

:start-end

NULL=‘null string‘

)

Element Purpose Key Considerations

-end Indicates the character position within a data row that

ends a range of character positions

A hyphen must precede the end value.

fieldn Assigns a name to the data field that you are defining with

the range of character positions

None.

filename Specifies the name of the input file None.

null string Specifies the data value for which dbload must substitute

a null value

Must be a quoted string.

start Indicates the character position within a data row that

starts a range of character positions. If you specify start

without end, it represents a single character.

None.

You can repeat the same character position in a data-field definition or in different fields.

The null string scope of reference is the data field for which you define it. You can define an explicit null string for each field

that allows null entries.

Inserted data types correspond to the explicit or default column list. If the data-field width is different from its corresponding

character column, inserted values are padded with blanks if the column is wider, or inserted values are truncated if the field is

wider.

If the number of columns named is fewer than the number of columns in the table, dbload inserts the default value that is

specified for the unnamed columns. If no default value is specified, dbload attempts to insert a null value. If the attempt

violates a not-null restriction or a unique constraint, the insert fails, and an error message is returned.

If the INSERT statement omits the column names, the default INSERT specification is every column in the named table. If the

INSERT statement omits the VALUES clause, the default INSERT specification is every field of the previous FILE statement.

An error results if the number of column names listed (or implied by default) does not match the number of values listed (or

implied by default).

The syntax of dbload INSERT statements resembles INSERT statements in SQL, except that in dbload, INSERT statements

cannot incorporate SELECT statements. The following diagram shows the syntax of the dbload INSERT statement for

character-position form.

Chapter 1. Migrating and upgrading

INSERT INTO

owner.

table

(

,column

)

VALUES clause 5

;

Element Purpose Key Considerations

column Specifies the column that receives the new data None.

owner. Specifies the user name of the table owner None.

table Specifies the table that receives the new data None.

The syntax for character-position form is identical to the syntax for delimiter form.

The user who runs dbload with this command file must have the Insert privilege on the named table.

How to write a dbload command file in character-position form
Command files must define data fields and use character positions to define the length of each field.

The FILE statement in the following example defines six data fields from the cust_loc_data table data rows.

FILE cust_loc_data
 (city 1-15,
 state 16-17,
 area_cd 23-25 NULL = 'xxx',
 phone 23-34 NULL = 'xxx-xxx-xxxx',
 zip 18-22,
 state_area 16-17 : 23-25);
INSERT INTO cust_address (col1, col3, col4)
 VALUES (city, state, zip);

The statement names the fields and uses character positions to define the length of each field. Compare the FILE statement

in the preceding example with the data rows in the following figure.

Figure 3. A Sample Data File

The FILE statement defines the following data fields, which are derived from the data rows in the sample data file.

5. See VALUES Clause on page .

93

../sqs/ids_sqs_0132.html#ids_sqs_0132
../sqs/ids_sqs_0132.html#ids_sqs_0132
../sqs/ids_sqs_0132.html#ids_sqs_0132
../sqs/ids_sqs_0132.html#ids_sqs_0132

Migrating and upgrading

94

Column Values from Data Row 1 Values from Data Row 2

city Sunnyvale++++++ Tempe++++++++++

state CA AZ

area_cd 408 null

phone 408-789-8075 null

zip 94086 85253

state_area CA408 AZxxx

The null strings that are defined for the phone and area_cd fields generate the null values in those columns, but they do not

affect the values that are stored in the state_area column.

The INSERT statement uses the field names and values that are derived from the FILE statement as the value-list input.

Consider the following INSERT statement:

INSERT INTO cust_address (col1, col3, col4)
 VALUES (city, state, zip);

The INSERT statement uses the data in the sample data file and the FILE statement to put the following information into the

cust_address table.

Column Values from Data Row 1 Values from Data Row 2

col1 Sunnyvale++++++ Tempe++++++++++

col2 null null

col3 CA AZ

col4 94086 85253

Because the second column (col2) in cust_address is not named, the new data row contains a null (assuming that the

column permits nulls).

Consider the following INSERT statement:

INSERT INTO cust_sort
 VALUES (area_cd, zip);

This INSERT statement inserts the following data rows into the cust_sort table.

Column Values from Data Row 1 Values from Data Row 2

col1 408 null

col2 94086 85253

Because no column list is provided, dbload reads the names of all the columns in cust_sort from the system catalog. (You

cannot insert data into a temporary table because temporary tables are not entered into the system catalog.) Field names

Chapter 1. Migrating and upgrading

from the previous FILE statement specify the values to load into each column. You do not need one FILE statement for each

INSERT statement.

Command file to load complex data types
You can create dbload command files that load columns containing complex data types into tables.

You can use dbload with the following data types:

• A BLOB or CLOB

• A SET inside a ROW type

The dbload utility does not work with the following data types:

• A CLOB or BLOB inside a ROW type

• A ROW type inside a SET

Important: All the load utilities (dbexport, dbimport, dbload, onload, onunload, and onxfer) rely on an export and

import function. If you do not define this function when you write a user-defined data type, you cannot use these

utilities.

Loading a new data type inside another data type can cause problems if the representation of the data contains handles. If a

string represents the data, you must be able to load it.

You can use dbload with named row types, unnamed row types, sets, and lists.

Using the dbload utility with named row types
The procedure for using the dbload utility with named row types is somewhat different than the procedure for using dbload

with other complex data types, because named row types are actually user-defined data types.

Suppose you have a table named person that contains one column with a named row type. Also suppose that the person_t

named row type contains six fields: name, address, city, state, zip, and bdate.

The following syntax shows how to create the named row type and the table used in this example:

CREATE ROW TYPE person_t
 (
 name VARCHAR(30) NOT NULL,
 address VARCHAR(20),
 city VARCHAR(20),
 state CHAR(2),
 zip VARCHAR(9),
 bdate DATE
);
CREATE TABLE person of TYPE person_t;

To load data for a named row type (or for any user-defined data type)

95

Migrating and upgrading

96

1. Use the UNLOAD statement to unload the table to an input file. In this example, the input file sees the named row type

as six separate fields:

Brown, James|13 First St.|San Francisco|CA|94070|01/04/1940|
Karen Smith|1820 Elm Ave #100|Fremont|CA|94502|01/13/1983|

2. Use the dbschema utility to capture the schema of the table and the row type. You must use the dbschema -u option

to pick up the named row type.

dbschema -d stores_demo -u person_t > schema.sql
dbschema -d stores_demo -t person > schema.sql

3. Use DB-Access to re-create the person table in the new database.

For detailed steps, see Use dbschema output as DB-Access input on page 114.

4. Create the dbload command file. This dbload command file inserts two rows into the person table in the new

database.

FILE person.unl DELIMITER '|' 6;
INSERT INTO person;

This dbload example shows how to insert new data rows into the person table. The number of rows in the INSERT

statement and the dbload command file must match:

FILE person.unl DELIMITER '|' 6;
 INSERT INTO person
 VALUES ('Jones, Richard', '95 East Ave.',
 'Philadelphia', 'PA',
 '19115',
 '03/15/97');

5. Run the dbload command:

dbload -d newdb -c uds_command -l errlog

Tip: To find the number of fields in an unloaded table that contains a named row type, count the number of fields

between each vertical bar (|) delimiter.

Using the dbload utility with unnamed row types
You can use the dbload utility with unnamed row types, which are created with the ROW constructor and define the type of a

column or field.

In the following example, the devtest table contains two columns with unnamed row types, s_name and s_address. The

s_name column contains three fields: f_name, m_init, and l_name. The s_address column contains four fields: street, city,

state, and zip.

CREATE TABLE devtest
(
s_name ROW(f_name varchar(20), m_init char(1), l_name varchar(20)
not null),
s_address ROW(street varchar(20), city varchar(20), state char(20),
zip varchar(9)
);

Chapter 1. Migrating and upgrading

The data from the devtest table is unloaded into the devtest.unl file. Each data row contains two delimited fields, one for

each unnamed row type. The ROW constructor precedes each unnamed row type, as follows:

ROW('Jim','K','Johnson')|ROW('10 Grove St.','Eldorado','CA','94108')|
ROW('Maria','E','Martinez')|ROW('2387 West Wilton
Ave.','Hershey','PA','17033')|

This dbload example shows how to insert data that contains unnamed row types into the devtest table. Put double quotes

around each unnamed row type or the insert will not work.

FILE devtest.unl DELIMITER '|' 2;
 INSERT INTO devtest (s_name, s_address)
 VALUES ("row('Stephen', 'M', 'Wu')",
 "row('1200 Grand Ave.', 'Richmond', 'OR', '97200')");

Using the dbload utility with collection data types
You can use the dbload utility with collection data types such as SET, LIST, and MULTISET.

SET data type example
The SET data type is an unordered collection type that stores unique elements. The number of elements in a SET data type

can vary, but no nulls are allowed.

The following statement creates a table in which the children column is defined as a SET:

CREATE TABLE employee
 (
 name char(30),
 address char(40),
 children SET (varchar(30) NOT NULL)
);

The data from the employee table is unloaded into the employee.unl file. Each data row contains four delimited fields. The

first set contains three elements (Karen, Lauren, and Andrea), whereas the second set contains four elements. The SET

constructor precedes each SET data row.

Muriel|5555 SW Merry
Sailing Dr.|02/06/1926|SET{'Karen','Lauren','Andrea'}|
 Larry|1234 Indian Lane|07/31/1927|SET{'Martha',
 'Melissa','Craig','Larry'}|

This dbload example shows how to insert data that contains SET data types into the employee table in the new database.

Put double quotes around each SET data type or the insert does not work.

FILE employee.unl DELIMITER '|' 4;
INSERT INTO employee
VALUES ('Marvin', '10734 Pardee', '06/17/27',
 "SET{'Joe', 'Ann'}");

LIST data type example
The LIST data type is a collection type that stores ordered, non-unique elements; that is, it allows duplicate element values.

The following statement creates a table in which the month_sales column is defined as a LIST:

97

Migrating and upgrading

98

CREATE TABLE sales_person
 (
 name CHAR(30),
 month_sales LIST(MONEY NOT NULL)
);

The data from the sales_person table is unloaded into the sales.unl file. Each data row contains two delimited fields, as

follows:

Jane Doe|LIST{'4.00','20.45','000.99'}|
Big Earner|LIST{'0000.00','00000.00','999.99'}|

This dbload example shows how to insert data that contains LIST data types into the sales_person table in the new

database. Put double quotes around each LIST data type or the insert does not work.

FILE sales_person.unl DELIMITER '|' 2;
INSERT INTO sales_person
VALUES ('Jenny Chow', "{587900, 600000}");

You can load multisets in a similar manner.

The dbschema utility
The dbschema utility displays the SQL statements (the schema) that are necessary to replicate database objects.

You can also use the dbschema utility for the following purposes:

• To display the distributions that the UPDATE STATISTICS statement creates.

• To display the schema for the Information Schema views

• To display the schema for creating objects such as databases, tables, sequences, synonyms, storage spaces, chunks,

logs, roles, and privileges

• To display the distribution information that is stored for one or more tables in the database

• To display information about user-defined data types and row types

After you obtain the schema of a database, you can redirect the dbschema output to a file that you can use with DB-Access.

The dbschema utility is supported on all updatable secondary servers.

The dbschema utility is also supported on read-only secondary servers. However, the dbschema utility displays a warning

message when running on these servers.

Attention: Use of the dbschema utility can increment sequence objects in the database, creating gaps in the

generated numbers that might not be expected in applications that require serialized integers.

Related information

Data-migration tools on page 2

Choosing a tool for moving data before migrating between operating systems on page 62

Chapter 1. Migrating and upgrading

Object modes and violation detection in dbschema output
The output from the dbschema utility shows object modes and supports violation detection.

The dbschema output shows:

• The names of not-null constraints after the not-null specifications.

You can use the output of the utility as input to create another database. If the same names were not used for not-

null constraints in both databases, problems could result.

• The object mode of objects that are in the disabled state. These objects can be constraints, triggers, or indexes.

• The object mode of objects that are in the filtering state. These objects can be constraints or unique indexes.

• The violations and diagnostics tables that are associated with a base table (if violations and diagnostics tables were

started for the base table).

For more information about object modes and violation detection, see the SET, START VIOLATIONS TABLE, and STOP

VIOLATIONS TABLE statements in the Informix® Guide to SQL: Syntax.

Guidelines for using the dbschema utility
You can use delimited identifiers with the dbschema utility. The dbschema utility detects database objects that are keywords,

mixed case, or that have special characters, and the utility places double quotation marks around those keywords.

Global Language Support: You must disable SELECT triggers and correctly set GLS environment variables before

using the dbschema utility.

When the GLS environment variables are set correctly, as the Informix® GLS User's Guide describes, the dbschema

utility can handle foreign characters.

Syntax of the dbschema command
The dbschema command displays the SQL statements (the schema) that are necessary to replicate a specified database

object. The command also shows the distributions that the UPDATE STATISTICS statement creates.

99

Migrating and upgrading

100

dbschema

Table optionsDatabase options

UDT options

-V

-version

Storage, space, and log options

No owner option

UDT options
6

-u all

-ua -ui

udt_name

Table options

Tables, Views, or Procedures7

Synonyms8

Privileges9

-hd

all

Table Name10

-r

roleall
11

Database options

-ss

-seq

sequenceall

-ddatabase

-wpassword

Storage space and log options

-c

-ns

file_name12

No owner option

-nw

6. See User-defined and complex data types on page 104

7. See Table, view, or procedure creation on page 106

8. See Synonym creation on page 106

9. See Privileges on page 110

10. See Identifier on page .

11. See Role creation on page 109

12. See Storage space, chunk, and log creation on page 107

../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660

Chapter 1. Migrating and upgrading

Element Purpose Additional Information

all Directs dbschema to include all the tables

or sequence objects in the database, or all

the user-defined data types in the display of

distributions.

None.

-c file_name Generates commands to reproduce storage

spaces, chunks, physical logs, and logical

logs.

If you use the -c element without the -ns element, the

database server generates SQL administration API

commands.

If you use the -c element and also use the -ns element,

the database server generates onspaces or onparams

commands.

-d database Specifies the database to which the schema

applies. The database can be on a remote

database server.

To use more than the simple name of the database, see

Database Name on page .

filename Specifies the name of the file that contains

the dbschema output.

If you omit a file name, dbschema sends the output to the

screen. If you specify a file name, dbschema creates a file

named filename to contain the dbschema output.

-hd Displays the distribution as data values. If you specify the ALL keyword for the table name, the

distributions for all the tables in the database are displayed.

-it Sets the isolation type for dbschema while

dbschema queries catalog tables. Isolation

types are:

DR = Dirty Read

CR = Committed Read

CS = Cursor Stability

CRU = Committed Read with RETAIN

UPDATE LOCKS

CSU = Cursor Stability with RETAIN

UPDATE LOCKS

DRU = Dirty Read with RETAIN

UPDATE LOCKS

LC = Committed Read, Last

Committed

RR = Repeatable Read

-l Sets the lock mode to wait number of

seconds for dbschema while dbschema

queries catalog tables.

None.

101

../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645
../sqs/ids_sqs_1645.html#ids_sqs_1645

Migrating and upgrading

102

Element Purpose Additional Information

-ns Generates onspaces or onparams utility

commands to reproduce storage spaces,

chunks, physical logs, and logical logs.

The -c element must precede the -ns element in your

command.

-nw Generates the SQL for creating an object

without the specification of an owner.

The -nw element is also a dbexport command option.

-q Suppresses the database version from the

header.

This optional element precedes other elements.

-r Generates information about the creation of

roles.

For details, see Role creation on page 109.

-seq sequence Generates the DDL statement to define the

specified sequence object

None.

-ss Generates server-specific information This option is ignored if no table schema is generated.

-si Excludes the generation of index storage

clauses for non-fragmented tables

This option is available only with the -ss option.

-sl length Specifies the maximum length, in bytes, of

unformatted CREATE TABLE and ALTER

TABLE statements.

None.

-u all Prints the definitions of all user-defined

data types, including all functions and casts

defined over the types.

Specify -u all to include all the user-defined data types in

the list of distributions.

-ua udt_name Prints the definition of a user-defined data

type, including functions and casts defined

over an opaque or constructor type.

None.

-ui udt_name Prints the definition of a user-defined data

type, including type inheritance.

None.

-V Displays the software version number and

the serial number

None.

-version Extends the -V option to display additional

information about the build version, host,

operating system, build number and date,

and the GLS version.

None.

-w password Specifies the database password, if you

have one.

None.

You must be the DBA or have the Connect or Resource privilege for the database before you can run dbschema on it.

Chapter 1. Migrating and upgrading

Example

Example

The following command generates the schema with all the tables or sequence objects in the customer database, but without

the specification of an owner:

dbschema -d customer all -nw

Database schema creation
You can create the schema for an entire database or for a portion of the database.

Use the dbschema utility options to perform the following actions:

• Display CREATE SYNONYM statements by owner, for a specific table or for the entire database.

• Display the CREATE TABLE, CREATE VIEW, CREATE FUNCTION, or CREATE PROCEDURE statement for a specific table

or for the entire database.

• Display all GRANT privilege statements that affect a specified user or that affect all users for a database or a specific

table. The user can be either a user name or role name.

• Display user-defined and row data types with or without type inheritance.

• Display the CREATE SEQUENCE statement defining the specified sequence object, or defining all sequence objects in

the database.

When you use dbschema and specify only the database name, it is equivalent to using dbschema with all its options (except

for the -hd and -ss options). In addition, if Information Schema views were created for the database, this schema is shown.

For example, the following two commands are equivalent:

dbschema -d stores_demo
dbschema -s all -p all -t all -f all -d stores_demo

SERIAL fields included in CREATE TABLE statements that dbschema displays do not specify a starting value. New SERIAL

fields created with the schema file have a starting value of 1, regardless of their starting value in the original database. If this

value is not acceptable, you must modify the schema file.

Creating schemas for databases across a UNIX™ or Linux™ network
The dbschema -d option creates and displays the schema for databases on a UNIX™ or Linux™ network.

You can specify a database on any accessible database server.

The following command displays the schema for the stores_demo database on the finland database server on the UNIX™ or

Linux™ system console:

dbschema -d //finland/stores_demo

103

Migrating and upgrading

104

Changing the owner of an object
You can edit dbschema output to change the owner of a new object.

The dbschema utility uses the owner.object convention when it generates any CREATE TABLE, CREATE INDEX, CREATE

SYNONYM, CREATE VIEW, CREATE SEQUENCE, CREATE PROCEDURE, CREATE FUNCTION, or GRANT statement, and when

it reproduces any unique, referential, or check constraint. As a result, if you use the dbschema output to create a new object

(table, index, view, procedure, constraint, sequence, or synonym), the owner of the original object owns the new object. If you

want to change the owner of the new object, you must edit the dbschema output before you run it as an SQL script.

You can use the output of dbschema to create a new function if you also specify the path name to a file in which compile-

time warnings are stored. This path name is displayed in the dbschema output.

For more information about the CREATE TABLE, CREATE INDEX, CREATE SYNONYM, CREATE VIEW, CREATE SEQUENCE,

CREATE PROCEDURE, CREATE FUNCTION, and GRANT statements, see the Informix® Guide to SQL: Syntax.

dbschema server-specific information
The dbschema -ss option generates server-specific information. The -ss option always generates the lock mode, extent

sizes, and the dbspace name if the dbspace name is different from the database dbspace. In addition, if tables are

fragmented, the -ss option displays information about the fragmentation strategy.

When you specify the dbschema -ss option, the output also displays any GRANT FRAGMENT statements that are issued for

a particular user or in the entire schema.

The -si option, which is available only with the -ss option, excludes the generation of index storage clauses for non-

fragmented tables.

If the dbspace contains multiple partitions, dbspace partition names appear in the output.

For information about fragment-level authority, see the GRANT FRAGMENT and REVOKE FRAGMENT statements in the

Informix® Guide to SQL: Syntax.

User-defined and complex data types
The dbschema -u option displays the definitions of any user-defined and complex data types that the database contains. The

suboption i adds the type inheritance to the information that the dbschema -u option displays.

The following command displays all the user-defined and complex data types for the stork database:

dbschema -d stork -u all

Output from dbschema that ran with the specified option -u all might appear as the following example shows:

create row type 'informix'.person_t
 (
 name varchar(30, 10) not null,
 address varchar(20, 10),
 city varchar(20, 10),
 state char(2),
 zip integer,

Chapter 1. Migrating and upgrading

 bdate date
);
create row type 'informix'.employee_t
 (
 salary integer,
 manager varchar(30, 10)
) under person_t;

The following command displays the user-defined and complex data types, as well as their type inheritance for the person_t

table in the stork database:

dbschema -d stork -ui person_t

Output from dbschema that ran with the option -ui person_t might appear as the following example shows:

create row type 'informix'.person_t
 (
 name varchar(30, 10) not null,
 address varchar(20, 10),
 city varchar(20, 10),
 state char(2),
 zip integer,
 bdate date
);
create row type 'informix'.employee_t
 (
 salary integer,
 manager varchar(30, 10)
) under person_t;
create row type 'informix'.sales_rep_t
 (
 rep_num integer,
 region_num integer,
 commission decimal(16),
 home_office boolean
) under employee_t;

Sequence creation
The dbschema -seq sequence command generates information about sequence creation.

The following syntax diagram fragment shows sequence creation.

-seq

sequence all

Element Purpose Key Considerations

-seq sequence Displays the CREATE SEQUENCE statement defining sequence None.

-seq all Displays all CREATE SEQUENCE statements for the database None.

Running dbschema with option -seq sequitur might produce this output:

CREATE SEQUENCE sequitur INCREMENT 10 START 100 NOCACHE CYCLE

105

Migrating and upgrading

106

For more information about the CREATE SEQUENCE statement, see the Informix® Guide to SQL: Syntax.

Synonym creation
The dbschema -s command generates information about synonym creation.

The following syntax diagram fragment shows the creation of synonyms.

Synonyms

-s

ownername all

Element Purpose Key Considerations

-s ownername Displays the CREATE SYNONYM statements owned by ownername None.

-s all Displays all CREATE SYNONYM statements for the database, table, or view

specified

None.

Output from dbschema that ran with the specified option -s alice might appear as the following example shows:

CREATE SYNONYM 'alice'.cust FOR 'alice'.customer

For more information about the CREATE SYNONYM statement, see the Informix® Guide to SQL: Syntax.

Table, view, or procedure creation
Several dbschema options generate information that shows the creation of tables, views, and procedures.

The following syntax diagram shows the creation of tables, views, and procedures.

Tables, Views, or Procedures:

-t

table view all

-t

table view

p f

all

all

Element Purpose Key Considerations

-f all Limits the SQL statement output to those statements that replicate all functions

and procedures

None.

Chapter 1. Migrating and upgrading

Element Purpose Key Considerations

-f function Limits the SQL statement output to only those statements that replicate the

specified function

None.

-f procedure Limits the SQL statement output to only those statements that replicate the

specified procedure

None.

-ff all Limits the SQL statement output to those statements that replicate all functions None.

-fp all Limits the SQL statement output to those statements that replicate all procedures None.

-t table Limits the SQL statement output to only those statements that replicate the

specified table

None.

-t view Limits the SQL statement output to only those statements that replicate the

specified view

None.

-t all Includes in the SQL statement output all statements that replicate all tables and

views

None.

For more information about the CREATE PROCEDURE and CREATE FUNCTION statements, see the Informix® Guide to SQL:

Syntax.

Storage space, chunk, and log creation
The dbschema -c command generates SQL administration API commands for reproducing storage spaces, chunks, logical

logs, and physical logs. If you use the dbschema -c -ns command, the database server generates onspaces or onparams

utility commands for reproducing storage spaces, chunks, physical logs, and logical logs.

For example:

• Run the following command to generate a file named dbschema1.out that contains the commands for reproducing the

storage spaces, chunks, physical logs, and logical logs in SQL Admin API format:

dbschema -c dbschema1.out

• Run the following command to generate a file named dbschema2.out that contains the commands for reproducing the

storage spaces, chunks, physical logs, and logical logs in onspaces and onparams utility format:

dbschema -c -ns dbschema2.out

Optionally, specify -q before you specify -c or -c -ns to suppress the database version when you run the command. For

example, specify:

dbschema -q -c -ns dbschema3.out

107

Migrating and upgrading

108

Sample output for the creation of storage spaces, chunks, and logs
The output of the dbschema -c or dbschema -c -ns commands contain all of the SQL administration API or onspaces and

onparams utility commands that you can use to reproduce storage spaces, chunks, and logs.

Example of output in SQL administration API format
Dbspace 1 -- Chunk 1
EXECUTE FUNCTION TASK ('create dbspace', 'rootdbs',
 '/export/home/informix/data/rootdbs1150fc4', '200000',
 '0', '2', '500', '100')

Dbspace 2 -- Chunk 2
EXECUTE FUNCTION TASK ('create dbspace', 'datadbs1',
 '/export/home/informix/data/datadbs1150fc4', '5000000',
 '0', '2', '100', '100')

Dbspace 3 -- Chunk 3
EXECUTE FUNCTION TASK ('create dbspace', 'datadbs2',
 '/export/home/informix/data/datadbs2150fc4', '5000000',
 '0', '2', '100', '100')

Dbspace 4 -- Chunk 4
EXECUTE FUNCTION TASK ('create dbspace', 'datadbs3',
 '/export/home/informix/data/datadbs3_1150fc4', '80000',
 '16', '8', '400', '400')
EXECUTE FUNCTION TASK ('start mirror', 'datadbs3',
 '/export/home/informix/data/datadbs3_1150fc4', '80000',
 '16', '/export/home/informix/data/mdatadbs3_1150fc4', '16')

Dbspace 5 -- Chunk 5
EXECUTE FUNCTION TASK ('create tempdbspace', 'tempdbs',
 '/export/home/informix/data/tempdbs_1150fc4', '1000',
 '0', '2', '100', '100')

Dbspace 6 -- Chunk 6
EXECUTE FUNCTION TASK ('create sbspace', 'sbspace',
 '/export/home/informix/data/sbspace_1150fc4',
 '1000', '0')

Dbspace 6 -- Chunk 7
EXECUTE FUNCTION TASK ('add chunk', 'sbspace',
 '/export/home/informix/data/sbspace_1_1150fc4',
 '1000', '0')

Dbspace 7 -- Chunk 8
EXECUTE FUNCTION TASK ('create blobspace', 'blobdbs',
 '/export/home/informix/data/blobdbs_1150fc4',
 '1000', '0', '4')

External Space 1
EXECUTE FUNCTION TASK ('create extspace', 'extspace',
'/export/home/informix/data/extspac_1150fc4')

Physical Log
EXECUTE FUNCTION TASK ('alter plog', 'rootdbs', '60000')

Chapter 1. Migrating and upgrading

Logical Log 1
EXECUTE FUNCTION TASK ('add log', 'rootdbs', '10000')

Example of output in onspaces and onparams utility format
Dbspace 1 -- Chunk 1
onspaces -c -d rootdbs -k 2 -p
 /export/home/informix/data/rootdbs1150fc4
 -o 0 -s 200000 -en 500 -ef 100

Dbspace 2 -- Chunk 2
onspaces -c -d datadbs1 -k 2 -p
 /export/home/informix/data/datadbs1150fc4
 -o 0 -s 5000000 -en 100 -ef 100

Dbspace 3 -- Chunk 3
onspaces -c -d datadbs2 -k 2 -p
 /export/home/informix/data/datadbs2150fc4
 -o 0 -s 5000000 -en 100 -ef 100

 Dbspace 4 -- Chunk 4
onspaces -c -d datadbs3 -k 8
 -p /export/home/informix/data/datadbs3_1150fc4
 -o 16 -s 80000 -en 400 -ef 400
 -m /export/home/informix/data/mdatadbs3_1150fc4 16

Dbspace 5 -- Chunk 5
onspaces -c -d tempdbs -k 2 -t -p
 /export/home/informix/data/tempdbs_1150fc4 -o 0 -s 1000

Dbspace 6 -- Chunk 6
onspaces -c -S sbspace -p
 /export/home/informix/data/sbspace_1150fc4
 -o 0 -s 1000 -Ms 500

Dbspace 7 -- Chunk 7
onspaces -c -b blobdbs -g 4 -p
 /export/home/informix/data/blobdbs_1150fc4 -o 0 -s 1000

External Space 1
onspaces -c -x extspace -l
 /export/home/informix/data/extspac_1150fc4

Logical Log 1
onparams -a -d rootdbs -s 10000

Role creation
The dbschema -r command generates information on the creation of roles.

The following syntax diagram shows the creation of roles.

109

Migrating and upgrading

110

Roles

-r

role all

Element Purpose Key Considerations

-r role Displays the CREATE ROLE and GRANT

statements that are needed to replicate and

grant the specified role.

You cannot specify a list of users or roles with

the -r option. You can specify either one role or

all roles.

-r all Displays all CREATE ROLE and GRANT

statements that are needed to replicate and

grant all roles.

None

The following dbschema command and output show that the role calen was created and was granted to cathl, judith, and

sallyc:

sharky% dbschema -r calen -d stores_demo

DBSCHEMA Schema Utility
Software Serial Number RDS#N000000
create role calen;

grant calen to cathl with grant option;
grant calen to judith ;
grant calen to sallyc ;

Privileges
The dbschema -p command generates information on privileges.

The following syntax diagram fragment shows privileges information.

Privileges

-p

user all

Element Purpose Key Considerations

-p user Displays the GRANT statements that grant privileges

to user, where user is a user name or role name.

Specify only one user or role

You cannot specify a specific list of users with the -p

option. You can specify either one user or role, or all

users and roles.

-p all Displays the GRANT statements for all users for the

database, table, or view specified, or to all roles for

the table specified

None.

Chapter 1. Migrating and upgrading

The output also displays any GRANT FRAGMENT statements that are issued for a specified user or role or (with the all

option) for the entire schema.

Granting privileges
You can generate dbschema information about the grantor of a GRANT statement.

In the dbschema output, the AS keyword indicates the grantor of a GRANT statement. The following example output

indicates that norma issued the GRANT statement:

GRANT ALL ON 'tom'.customer TO 'claire' AS 'norma'

When the GRANT and AS keywords appear in the dbschema output, you might need to grant privileges before you run the

dbschema output as an SQL script. Referring to the previous example output line, the following conditions must be true

before you can run the statement as part of a script:

• User norma must have the Connect privilege to the database.

• User norma must have all privileges WITH GRANT OPTION for the table tom.customer.

For more information about the GRANT, GRANT FRAGMENT, and REVOKE FRAGMENT statements, see the Informix® Guide

to SQL: Syntax.

Displaying privilege information for a role
You can generate dbschema information about the privileges that were granted for a particular role.

A role is a classification with privileges on database objects granted to the role. The DBA can assign the privileges of

a related work task, such as an engineer, to a role and then grant that role to users, instead of granting the same set of

privileges to every user. After a role is created, the DBA can use the GRANT statement to grant the role to users or to other

roles.

For example, issue the following dbschema command and to display privileges that were granted for the calen role.

sharky% dbschema -p calen -d stores_demo

An example of information the dbschema utility displays is:

grant alter on table1 to 'calen'

Distribution information for tables in dbschema output
The dbschema -hd command with the name of the table retrieves the distribution information that is stored for a table in a

database. If you specify the ALL keyword for the table name, the distributions for all the tables in the database are displayed.

During the dbimport operation, distribution information is created automatically for leading indexes on non-opaque columns.

Run the UPDATE STATISTICS statement in MEDIUM or HIGH mode to create distribution information about tables that have

the following types of indexes:

111

Migrating and upgrading

112

• Virtual Index Interface (VII) or function indexes

• Indexes on columns of user-defined data types

• Indexes on columns of built-in opaque data types (such as BOOLEAN or LVARCHAR)

Output from the dbschema utility shows distribution information if you used the SAMPLING SIZE keywords when UPDATE

STATISTICS in MEDIUM or HIGH mode ran on the table.

For information about using the UPDATE STATISTICS statement, see the Informix® Guide to SQL: Syntax.

The output of dbschema for distributions is provided in the following parts:

• Distribution description

• Distribution information

• Overflow information

Each section of dbschema output is explained in the following sections. As an example, the discussion uses the following

distribution for the fictional table called invoices. This table contains 165 rows, including duplicates.

You can generate the output for this discussion with a call to dbschema that is similar to the following example:

dbschema -hd invoices -d pubs_stores_demo

Example of dbschema output showing distribution information
The dbschema output can show the data distributions that have been created for the specified table and the date when the

UPDATE STATISTICS statement that generated the distributions ran.

The follow example of dbschema output shows distribution information.

Distribution for cathl.invoices.invoice_num

High Mode, 10.000000 Resolution

--- DISTRIBUTION ---

 (5)
 1: (16, 7, 11)
 2: (16, 6, 17)
 3: (16, 8, 25)
 4: (16, 8, 38)
 5: (16, 7, 52)
 6: (16, 8, 73)
 7: (16, 12, 95)
 8: (16, 12, 139)
 9: (16, 11, 182)
 10: (10, 5, 200)

--- OVERFLOW ---

 1: (5, 56)
 2: (6, 63)
}

Chapter 1. Migrating and upgrading

Description of the distribution information in the example
The first part of the sample dbschema output describes which data distributions have been created for the specified table.

The name of the table is stated in the following example:

Distribution for cathl.invoices.invoice_num

The output is for the invoices table, which is owned by user cathl. This data distribution describes the column invoice_num.

If a table has distributions that are built on more than one column, dbschema lists the distributions for each column

separately.

The dbschema output also shows the date when the UPDATE STATISTICS statement that generated the distributions ran.

You can use this date to tell how outdated your distributions are.

The last line of the description portion of the output describes the mode (MEDIUM or HIGH) in which the distributions were

created, and the resolution. If you create the distributions with medium mode, the confidence of the sample is also listed.

For example, if the UPDATE STATISTICS statement runs in HIGH mode with a resolution of 10, the last line appears as the

following example shows:

High Mode, 10.000000 Resolution

Distribution information in dbschema output
The distribution information in dbschema output describes the bins that are created for the distribution, the range of values

in the table and in each bin, and the number of distinct values in each bin.

Consider the following example:

 (5)
 1: (16, 7, 11)
 2: (16, 6, 17)
 3: (16, 8, 25)
 4: (16, 8, 38)
 5: (16, 7, 52)
 6: (16, 8, 73)
 7: (16, 12, 95)
 8: (16, 12, 139)
 9: (16, 11, 182)
 10: (10, 5, 200)

The first value in the rightmost column is the smallest value in this column. In this example, it is 5.

The column on the left shows the bin number, in this case 1 through 10. The first number in parentheses shows how many

values are in the bin. For this table, 10 percent of the total number of rows (165) is rounded down to 16. The first number is

the same for all the bins except for the last. The last row might have a smaller value, indicating that it does not have as many

row values. In this example, all the bins contain 16 rows except the last one, which contains 10.

The middle column within the parentheses indicates how many distinct values are contained in this bin. Thus, if there are 11

distinct values for a 16-value bin, it implies that one or more of those values are duplicated at least once.

The right column within the parentheses is the highest value in the bin. The highest value in the last bin is also the highest

value in the table. For this example, the highest value in the last bin is 200.

113

Migrating and upgrading

114

Overflow information in dbschema output
The last portion of the dbschema output shows values that have many duplicates.

The number of duplicates of indicated values must be greater than a critical amount that is determined as approximately

25 percent of the resolution times the number of rows. If left in the general distribution data, the duplicates would skew the

distribution, so they are moved from the distribution to a separate list, as the following example shows:

--- OVERFLOW ---

 1: (5, 56)
 2: (6, 63)

For this example, the critical amount is 0.25 * 0.10 * 165, or 4.125. Therefore, any value that is duplicated five or more times

is listed in the overflow section. Two values in this distribution are duplicated five or more times in the table: the value 56 is

duplicated five times, and the value 63 is duplicated six times.

Use dbschema output as DB-Access input
You can use the dbschema utility to get the schema of a database and redirect the dbschema output to a file. Later, you can

import the file into DB-Access and use DB-Access to re-create the schema in a new database.

Inserting a table into a dbschema output file
You can insert CREATE TABLE statements into the dbschema output file and use this output as DB-Access input.

The following example copies the CREATE TABLE statements for the customer table into the dbschema output file, tab.sql:

dbschema -d db -t customer > tab.sql

Remove the header information about dbschema from the output file, tab.sql, and then use DB-Access to re-create the table

in another database, as follows:

dbaccess db1 tab.sql

Re-creating the schema of a database
You can use dbschema and DB-Access to save the schema from a database and then re-create the schema in another

database. A dbschema output file can contain the statements for creating an entire database.

About this task

To save a database schema and re-create the database:

1. Use dbschema to save the schema to an output file, such as db.sql:

dbschema -d db > db.sql

You can also use the -ss option to generate server-specific information:

Chapter 1. Migrating and upgrading

dbschema -d db -ss > db.sql

2. Remove the header information about dbschema, if any, from the output file.

3. Add a CREATE DATABASE statement at the beginning of the output file or use DB-Access to create a new database.

4. Use DB-Access to re-create the schema in a new database:

dbaccess - db.sql

When you use db.sql to create a database on a different database server, confirm that dbspaces exist.

Results

The databases db and testdb differ in name but have the same schema.

The LOAD and UNLOAD statements
You can use the SQL LOAD and UNLOAD statements to move data. The LOAD statement is moderately fast and easy to use,

but it only accepts specified data formats. You usually use the LOAD statement with data that is prepared with an UNLOAD

statement.

You can use the UNLOAD statement in DB-Access to unload selected rows from a table into a text file.

The UNLOAD statement lets you manipulate the data as you unload it, but it requires that you unload to files on disk instead

of to tape. If you unload to disk files, you might need to use UNIX™, Linux™, or Windows™ utilities to load those files onto tape.

To load tables, use LOAD or dbload. To manipulate a data file that you are loading or to access a database while it is

loading, use the dbload utility. The cost of the flexibility is the time you spend creating the dbload command file and slower

execution. When possible, use the LOAD statement, which is faster than dbload.

If the database contains label-based access control (LBAC) objects, you can load or unload only those rows in which your

security label dominates the column-security label or the row-security label. If entire table is to be loaded or unloaded, you

must have the necessary LBAC credentials for writing/reading all of the labeled rows and columns. For more information

about LBAC objects, see the Informix® Security Guide and the Informix® Guide to SQL: Syntax.

Related information

Data-migration tools on page 2

Choosing a tool for moving data before migrating between operating systems on page 62

Syntax of the UNLOAD statement
The UNLOAD statement in DB-Access unloads selected rows from a table into a text file.

115

Migrating and upgrading

116

UNLOAD TO

' filename '

DELIMITER ' delimiter '

SELECT Statement 13

Element Purpose Key Considerations

delimiter Character to use as delimiter Requirements: See Syntax for the delimiter form on page 87

filename Specifies the input file None.

This syntax diagram is only for quick reference. For details about the syntax and use of the UNLOAD statement, see UNLOAD

statement on page .

Syntax of the LOAD statement
The LOAD statement in DB-Access appends rows to an existing table of a database.

LOAD FROM

' filename '

DELIMITER ' delimiter '

INSERT INTO

Table Name 14

Synonym Name 14

View Name 14

(

column

)

Element Purpose Key Considerations

column The name of a column to receive

data from filename

Must be a column in the specified table or view.

delimiter Character to use as delimiter See Syntax for the delimiter form on page 87

filename Specifies the input file None.

This syntax diagram is only for quick reference. For details about the syntax and use of the LOAD statement, see LOAD

statement on page .

13. See SELECT statement on page .

14. See Identifier on page .

../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0981.html#ids_sqs_0981
../sqs/ids_sqs_0981.html#ids_sqs_0981
../sqs/ids_sqs_0981.html#ids_sqs_0981
../sqs/ids_sqs_0981.html#ids_sqs_0981
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660

Chapter 1. Migrating and upgrading

Load and unload statements for locales that support multibyte code sets
For locales that support multibyte code sets, be sure that the declared size (in bytes) of any column that receives character

data is large enough to store the entire data string.

For some locales, this can require up to 4 times the number of logical characters in the longest data string.

Load and unload operations for nondefault locales and GL_DATETIME or DBTIME
environment variables
In nondefault locales, operations that load or unload DATETIME or INTERVAL values can be sensitive to the settings of the

GL_DATETIME, DBTIME, and USE_DTENV environment variables.

If the database uses a nondefault locale and the GL_DATETIME or DBTIME environment variable has a nondefault setting,

you must set the USE_DTENV environment variable to the value of 1 before you can process localized DATETIME or

INTERVAL values correctly

• with the LOAD or UNLOAD statements of DB-Access,

• or with the dbimport or dbexport utilities,

• or in DML operations on objects that the CREATE EXTERNAL TABLE statement defined.

The onunload and onload utilities
The onunload and onload utilities provide the fastest way to move data between computers that use the same database

server on the same platform.

For example, your site purchases a more powerful UNIX™ computer to allow faster access for users. You need to transfer

existing databases to the new database server on the new computer. Use onunload to unload data from the first database

server and then use onload to load the data into the second database server. Both database servers must have the same

version number, or they must have compatible version numbers. You can move an entire database or selected tables only,

but you cannot modify the database schema.

The onunload utility can unload data more quickly than either dbexport or the UNLOAD statement because onunload copies

the data in binary format and in page-sized units. The onload utility takes a tape or a file that the onunload utility creates and

re-creates the database or the table.

The onunload and onload utilities are faster than dbimport, dbload, or LOAD but are much less flexible and do not let you

modify the database schema or move from one operating system or database server version to another.

Related information

Data-migration tools on page 2

Choosing a tool for moving data before migrating between operating systems on page 62

117

Migrating and upgrading

118

Guidelines for when to use the onunload and onload utilities
You can use onunload and onload only when certain conditions are met.

You can use only onunload and onload if your answer to each of the following questions is yes. If your answer is no, you

cannot use onunload and onload.

Use onunload and onload only if your answer to each question is yes My answer

Is the target database server on the same hardware platform?

Do you want to move to another database server of the same version?

Do you want to keep the existing database schema without modifying it?

Do you want to move an entire database or an entire table?

Are the page images compatible?

Are the numeric representations the same?

When you cannot use the onunload and onload utilities

Because the data is written in page-sized units, you cannot use onunload and onload to move data between UNIX™ or Linux™

and Windows™ because they use different page sizes. For example, the page size is 2 KB on some UNIX™ systems and 4 KB

on Windows™.

Additionally, you cannot use onunload and onload:

• To move data between GLS and non-GLS databases.

• To move compressed data from one database to another.

You must uncompress data in compressed tables and fragments before you use the onload and onunload utilities.

• To move external tables or databases that contain external tables.

You must drop all the external tables before you use the onunload utility.

• To move tables and databases that contain extended or smart-large-object data types

Requirements for using the onload and onunload utilities
The onload and onunload utilities have limitations. You can use these utilities only to move data between database servers

of the same version on the same operating system. You cannot modify the database schema, logging must be turned off,

and the utilities can be difficult to use.

The onload and onunload utilities have the following requirements:

• The original database and the target database must be from the same version of the database server. You cannot

use the onload and onunload utilities to move data from one version to another version.

• You cannot use onload and onunload to move data between different types of database servers.

Chapter 1. Migrating and upgrading

• The onload command must have the same scope as the corresponding onunload command that unloaded the same

table or tables that onload references. You cannot, for example, use onunload to unload an entire database, and then

use onload to load only a subset of the tables from that database.

• Do not use onload and onunload to move data if the database contains extended or smart-large-object data types.

• Because the tape that onload reads contains binary data that is stored in disk-page-sized units, the computers

where the original database resides (where you use onunload) and where the target database will reside (where you

use onload) must have the same page size, the same representation of numeric data, the same byte alignment for

structures and unions.

• You cannot use onload and onunload to move data between non-GLS and GLS locales.

• You cannot use onload and onunload on servers in high-availability clusters.

• You cannot use onload and onunload if you compressed tables or fragments.

You can use onunload and onload to move data between databases if the NLS and GLS locales are identical.

If the page sizes are different, onload fails. If the alignment or numeric data types on the two computers are different (for

example, with the most significant byte as last instead of first, or different float-type representations), the contents of the

data page could be misinterpreted.

How the onunload and onload utilities work
The onunload utility, which unloads data from a database, writes a database or table into a file on tape or disk. The onload

utility loads data that was created with the onunload command into the database server.

The onunload utility unloads the data in binary form in disk-page units, making this utility more efficient than dbexport.

You can use the onunload utility to move data between computers that have the same version of the database server.

Important: You cannot use the onload and onunload utilities to move data from one version of a database server

to another or between different types of database servers. In addition, the onload command must have the same

scope as the corresponding onunload command that unloaded the same table or tables that onload references. You

cannot, for example, use onunload to unload an entire database, and then use onload to load only a subset of the

tables from that database.

The onload utility creates a database or table in a specified dbspace. The onload utility then loads it with data from an input

tape or disk file that the onunload utility creates.

During the load, you can move simple large objects that are stored in a blobspace to another blobspace.

Syntax of the onunload command
The onunload command unloads data from a database and writes a database or table into a file on tape or disk.

119

Migrating and upgrading

120

onunload

-FILE option 15

Destination Parameters16

database

:

owner.

table

-V

-version

Element Purpose Key Considerations

database Specifies the name of a

database

Additional Information: The database name cannot be qualified by a

database server name (database@dbservername).

References: Syntax must conform to the Identifier segment; see Identifier

on page .

owner. Specifies the owner of the table Additional Information: The owner name must not include invalid

characters.

References: For path name syntax, see your operating-system

documentation.

table Specifies the name of the table Requirement: The table must exist.

References: Syntax must conform to the Identifier segment; see Identifier

on page .

If you do not specify any destination parameter options, onunload uses the device that TAPEDEV specifies. The block size

and tape size are the values specified as TAPEBLK and TAPESIZE, respectively. (For information about TAPEDEV, TAPEBLK,

and TAPESIZE, see your Informix® Administrator's Reference.)

The -V option displays the software version number and the serial number. The -version option extends the -V option to

display additional information about the build operating system, build number, and build date.

onunload destination parameters
The onunload utility supports tape or file destination options.

The following syntax diagram fragment shows onunload destination parameters

15. See The -FILE option on page .

16. See onunload destination parameters on page 120

../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../%20adr/ids_adr_1168.html#ids_adr_1168
../%20adr/ids_adr_1168.html#ids_adr_1168
../%20adr/ids_adr_1168.html#ids_adr_1168
../%20adr/ids_adr_1168.html#ids_adr_1168

Chapter 1. Migrating and upgrading

Destination parameters

-l

-bblocksize

-s tapesize

-tsource
17

Element Purpose Key Considerations

-b blocksize Specifies in kilobytes the block size of the

tape device

Requirement: The blocksize must be an integer.

Additional Information: This option overrides the default

value in TAPEBLK or LTAPEBLK.

-l Directs onunload to read the values for

tape device, block size, and tape size from

LTAPEDEV, LTAPEBLK, and LTAPESIZE,

respectively

None.

-s tapesize Specifies in kilobytes the amount of data

that can be stored on the tape

Requirement: The tapesize must be an integer. To write to

the end of the tape, specify a tape size of 0.

If you do not specify 0, then the maximum tapesize is 2 097

151 KB.

Additional Information: This option overrides the default

value in TAPESIZE or LTAPESIZE.

-t source Specifies the path name of the file on disk

or of the tape device where the input tape is

mounted

Additional Information: This option overrides the tape

device specified by TAPEDEV or LTAPEDEV. The path name

must be a valid path name.

Constraints that affect onunload
When you use the onunload utility, you must be aware of constraints that affect how you load the data on the onunload tape.

The following constraints apply to onunload:

• You must load the data on the onunload tape into a database or table that your database server manages.

• You cannot use onunload and onload if the databases contain extended data types.

• You must load the tape that onunload writes onto a computer with the same page size and the same representation

of numeric data as the original computer.

• You must read the file that onunload creates with the onload utility of the same version of your database server. You

cannot use onunload and onload to move data from one version to another.

17. Only one occurrence of each option allowed. More than one option can occur in a single invocation.

121

Migrating and upgrading

122

• When you unload a complete database, you cannot modify the ownership of database objects (such as tables,

indexes, and views) until after you finish reloading the database.

• When you unload and load a table, onunload does not preserve access privileges, synonyms, views, constraints,

triggers, or default values that were associated with the original tables. Before you run onunload, use the dbschema

utility to obtain a listing of the access privileges, synonyms, views, constraints, triggers, and default values. After you

finish loading the table, use dbschema to re-create the specific information for the table.

Privileges for database or table unloading
To unload a database, you must have DBA privileges for the database or be user informix. To unload a table, you must either

own the table, have DBA privileges for the database in which the table resides, or be user informix.

User root does not have special privileges with respect to onunload and onload.

Tables that are unloaded with a database
If you unload a database, all of the tables in the database, including the system catalog tables, are unloaded.

All triggers, SPL routines, defaults, constraints, and synonyms for all of the tables in the database are also unloaded.

Data that is unloaded with a table
If you unload a table, onunload unloads the table data and information from the systables, systables, syscolumns,

sysindexes, and sysblobs system catalog tables.

When you unload a table, onunload does not unload information about constraints, triggers, or default values that are

associated with a table. In addition, access privileges that are defined for the table and synonyms or views that are

associated with the table are not unloaded.

Locking during unload operation
During the unload operation, the database or table is locked in shared mode. An error is returned if onunload cannot obtain a

shared lock.

The onload utility creates a database or table in a specified dbspace. The onload utility then loads it with data from an input

tape or disk file that the onunload utility creates.

Logging mode
The onunload utility does not preserve the logging mode of a database. After you load the database with onload, you can

make a database ANSI compliant or add logging.

Chapter 1. Migrating and upgrading

For information about logging modes, refer to the Informix® Guide to SQL: Syntax.

During the load, you can move simple large objects that are stored in a blobspace to another blobspace.

If you do not specify any source-parameter options, onload uses the device that is specified as TAPEDEV. The block size and

tape size are the values that are specified as TAPEBLK and TAPESIZE, respectively. (For more information about TAPEDEV,

TAPEBLK, and TAPESIZE, refer to your Informix® Administrator's Guide.)

If you do not specify creation options, onload stores the database or table in the root dbspace.

Syntax of the onload command
The onload command loads data that was created with the onunload command into the database server.

onload

-FILE option 18

Source Parameters19

-ddbspacedatabase

:

owner.

table

Create Options20

-V

-version

Element Purpose Key Considerations

-d dbspace UtilitiesonloadLoads a database or table into

the specified dbspace

The tape being loaded must contain the specified database or table.

database Specifies the name of the

database

The database name cannot include a database server name, such as

database@dbservername.

References: Syntax must conform to the Identifier segment; see Identifier on

page .

owner. Specifies the owner of the

table

The owner name must not include invalid characters.

References: For path name syntax, refer to your operating-system

documentation.

table Specifies the name of the

table

The table must exist.

References: Syntax must conform to the Identifier segment; see Identifier on

page .

18. See The -FILE option on page .

19. See onload source parameters on page 124

20. See onload create options on page 124

123

../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../%20adr/ids_adr_1168.html#ids_adr_1168
../%20adr/ids_adr_1168.html#ids_adr_1168
../%20adr/ids_adr_1168.html#ids_adr_1168
../%20adr/ids_adr_1168.html#ids_adr_1168

Migrating and upgrading

124

The -V option displays the software version number and the serial number. The -version option extends the -V option to

display additional information about the build operating system, build number, and build date.

onload source parameters
The onload command includes options for specifying information about the tape or file source.

The following syntax diagram fragment shows onload source parameters.

Source parameters

-l

-bblocksize

-s tapesize

-tsource
21

Element Purpose Key Considerations

-b blocksize Specifies in kilobytes the block size of the

tape device

Requirements: Unsigned integer. Must specify the block

size of the tape device.

Additional Information: This option overrides the default

value in TAPEBLK or LTAPEBLK.

-l Directs onload to read the values for tape

device, block size, and tape size from the

configuration parameters LTAPEDEV,

LTAPEBLK, and LTAPESIZE, respectively

Additional Information: If you specify -l, and then -b, -s,

or -t, the value that you specify overrides the value in the

configuration file.

-s tapesize Specifies in kilobytes the amount of data

that the database server can store on the

tape

Requirements: Unsigned integer. To write to the end of the

tape, specify a tape size of 0.

If you do not specify 0, then the maximum tapesize is 2 097

151 KB.

Additional Information: This option overrides the default

value in TAPESIZE or LTAPESIZE.

-t source Specifies the path name of the file on disk

or of the tape device where the input tape is

mounted

Must be a legitimate path name.

Additional Information: This option overrides the tape

device that TAPEDEV or LTAPEDEV specifies.

References: For path name syntax, see your

operating-system documentation.

21. Only one occurrence of each option allowed. More than one option can occur in a single invocation.

Chapter 1. Migrating and upgrading

onload create options
The onload command includes information that is used to recreate the database.

The following syntax diagram fragment shows onload create options.

Create options

-coldcnstrntnewcnstrnt

-ioldindexnewindex

-fdoldbspnewdbsp

-fiindexnameolddbspnewdbsp

database

:

owner.

table

Element Purpose Key Considerations

-c oldcnstrnt

newcnstrnt

Directs onload to rename

the specified constraint.

None.

-i oldindex

newindex

Directs onload to rename

the table index when it

stores the index on disk.

Additional Information: Use the -i option to rename indexes during the load

to avoid conflict with existing index names.

References: Syntax must conform to the Identifier segment; see Identifier on

page .

-fd olddbsp

newdbsp

Moves a data fragment

from one dbspace to

another.

The new dbspace must exist and must not already contain another data

fragment for the table.

Additional Information: This option is used with parallel data query (PDQ)

and table fragmentation.

-fi indexname

olddbs

newdbsp

Moves index fragments

from one dbspace to

another.

The new dbspace must exist and must not already contain another index

fragment for the table.

Additional Information: This option is used with PDQ and table

fragmentation.

database Specifies the name of the

database

Requirement: The database name cannot include a database server name,

such as database@dbservername.

References: Syntax must conform to the Identifier segment; see Identifier on

page .

owner. Specifies the owner of the

table

Requirement: The owner name must not include invalid characters.

References: For path name syntax, refer to your operating-system

documentation.

125

../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660

Migrating and upgrading

126

Element Purpose Key Considerations

table Specifies the name of the

table

Requirement: The table must not exist.

References: Syntax must conform to the Identifier segment; see Identifier on

page .

If you do not specify any create options for non-fragmented tables, the onload utility stores the database or table in the root

dbspace.

For fragmented tables, onunload preserves the fragmentation expression for later use by onload. Thus an imported table is

fragmented in the same way as the original table.

You can use the -c, -i, -fd, and -fi options in any order and as often as necessary as long as you use unique pairs.

Constraints that affect onload
The onload utility performs faster than the dbimport, dbload, or LOAD methods. In exchange for this higher performance,

onload has certain constraints.

The onload utility has the following constraints:

• The onload utility only creates a new database or table; you must drop or rename an existing database or table of the

same name before you run onload. During execution, the onload utility's prompt will ask you if you want to rename

blobspaces.

• The onload utility places a shared lock on each of the tables in the database during the load. Although you cannot

update a table row with the lock in place, the database is available for queries.

• When you load a complete database, the user who runs onload becomes the owner of the database.

• The onload utility creates a database without logging; you must initiate logging after onload loads the database.

• When you use onload to load a table into a logged database, you must turn off logging for the database during the

operation.

• For fragmented tables, the dbspace assignment is preserved, unless you override it using the -fn option.

• For non-fragmented tables, the onload utility attempts to store the table in root dbspace if a target dbspace is not

specified with the -d option. If storing the table in root dbspace or in the dbspace specified with the -d option is

not possible due to difference in page sizes, the onload utility tries to use a dbspace that has the same dbspace

number as the dbspace number of the originally unloaded table. If this dbspace still has a different page size, the

load operation will fail.

Logging during loading
When you use the onload utility to create tables from an onunload input tape, onload can load information only into a

database without logging. Thus, before you load a table into an existing, logged database, you must end logging for the

database.

../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660
../sqs/ids_sqs_1660.html#ids_sqs_1660

Chapter 1. Migrating and upgrading

You also might want to consider loading during off-peak hours. Otherwise, you might fill the logical-log files or consume

excessive shared-memory resources. After you load the table, create a level-0 dbspace backup before you resume database

logging.

When you use onload to create databases from an onunload input tape, the databases that result are not ANSI-compliant

and do not use transaction logging. You can make a database ANSI compliant or add logging after you load the database.

The onload utility performs all its loading within a transaction. This feature allows the changes to be rolled back if an error

occurs.

Movement of simple large objects to a blobspace
If you load a table that contains simple large objects stored in a blobspace, the onload utility asks you if you want to move

them to another blobspace.

If you respond yes, onload displays the blobspace name where the simple large objects were stored when the tape was

created. It then asks you to enter the name of the blobspace where you want the simple large objects stored.

If you enter a valid blobspace name, onload moves all simple-large-object columns in the table to the new blobspace.

Otherwise, onload prompts you again for a valid blobspace name.

Ownership and privileges
When you load a new database, the user who runs the onload utility becomes the owner. Ownership within the database

(tables, views, and indexes) remains the same as when the database was unloaded to tape with onunload.

To load a table, you must have the Resource privilege on the database. When onload loads a new table, the user who runs

onload becomes the owner unless you specify an owner in the table name. (You need the DBA privilege for the database to

specify an owner in the table name.)

The onunload utility does not preserve synonyms or access privileges. To obtain a listing of defined synonyms or access

privileges, use the dbschema utility, which The dbschema utility on page 98 describes, before you run onunload.

Exclusive locking during a load operation
During a load operation, the onload utility places an exclusive lock on the new database or table.

Loading proceeds as a single transaction, and onload drops the new database or table if an error or system failure occurs.

Moving a database between computers with the onunload and onload utilities
You can use the onunload and onload utilities to move a complete database from one computer to another.

To move a database from one computer to another:

127

Migrating and upgrading

128

1. Make sure that the page size, numeric representations, and byte alignment on structures and unions are the same on

both computers.

The page size is 2 KB on certain UNIX™ systems and 4 KB on Windows™. For information about page size, see your

Informix® Administrator's Guide. The numeric representation and the byte alignment are characteristics of your

operating system. For information about numeric representation and byte alignment, refer to the manuals for your

operating systems.

2. Decide where to store the unloaded data:

• On disk. Create an empty file for onunload to hold the data. Make sure that you have write permission for the

file.

• On tape. Use the tape device and characteristics specified in the ONCONFIG configuration file by either the

TAPEDEV or LTAPEDEV configuration parameter, or specify another tape device. Make sure that the tape

device that you specify is available for onunload. However, if you set the TAPEDEV configuration parameter to

STDIO, the onunload utility will not be able to unload data.

3. Run the oncheck utility to make sure that your database is consistent.

For information about oncheck, see your Informix® Administrator's Reference.

4. Run the onunload utility to unload the data from the database.

For details on the syntax of the onunload command, see Syntax of the onunload command on page 119.

5. If necessary, transfer the storage medium (tape or disk) to the new computer.

If the two computers are on the same network, you can read or write the data remotely.

6. Run the onload utility to load the data into the new database.

For details on the syntax of the onload command, see Syntax of the onload command on page 123.

7. Set the logging status for the new database.

For information about logging status, see your Informix® Administrator's Guide.

8. If necessary, change the DBA privileges of the database.

9. Create a level-0 backup of the new database.

Moving a table between computers with the onunload and onload utilities
You can use the onunload and onload utilities to move a table from one computer to another.

To move a table from one computer to another:

1. Make sure that the page size, numeric representations, and byte alignment on structures and unions are the same on

both computers. (The page size is 2 KB on certain UNIX™ systems and 4 KB on Windows™.)

2. Decide where to store the unloaded data.

3. Run the oncheck utility to make sure that your database is consistent.

4. If you want to save the triggers, access privileges, SPL routines, defaults, constraints, and synonyms for the table, run

the dbschema utility.

5. Run the onunload utility.

For details on the syntax of the onunload command, see Syntax of the onunload command on page 119.

Chapter 1. Migrating and upgrading

6. If necessary, transfer the storage medium to the new computer.

7. If the table includes simple large objects that are stored in blobspaces, decide where to store the simple large

objects. If necessary, create new blobspaces.

8. Turn off logging.

When you are loading a table, logging on the target database must be turned off. (When you are creating and loading

an entire database, the logging status does not matter.)

9. Run the onload utility.

For details on the syntax of the onload command, see Syntax of the onload command on page 123.

10. Create a level-0 backup of the modified database.

11. Turn logging back on, if you want logging.

12. If you want to restore the triggers, access privileges, SPL routines, defaults, constraints that are not preserved, and

synonyms for the table, run the dbschema utility or recreate these objects manually.

Constraints such as primary keys or default values are preserved, even for a single table. Foreign keys, access

privileges, SPL routines and synonyms are not preserved.

Moving a table between dbspaces with the onunload and onload utilities
You can use the onunload and onload utilities to move a table from one dbspace to another dbspace on the same computer.

To move a table from one dbspace to another dbspace on the same computer:

1. Run the onunload utility to unload the table.

For details on the syntax of the onunload command, see Syntax of the onunload command on page 119.

2. Turn off logging.

When you are loading a table, logging on the target database must be turned off.

3. Run the onload utility.

Specify a new table name and new dbspace name in the onload command.

For details on the syntax of the onload command, see Syntax of the onload command on page 123.

4. If the data loads successfully, delete the old table in the old dbspace and rename the new table to the old table name.

5. Create a level-0 backup of the modified database.

6. Turn logging back on, if you want logging.

The onmode utility reversion option
You use the -b option of the onmode utility to revert to the older database server from which you converted.

129

Migrating and upgrading

130

What the onmode -b command does
When you convert a database server, several modifications make the format of the databases incompatible with the older

version. The onmode -b command modifies data so that the earlier version of the database server can access it.

When you convert a database server, several modifications make the format of the databases incompatible with the older

version. The onmode -b command modifies data so that the earlier version of the database server can access it. In some

cases the format of the databases is compatible between versions and the onmode -b command is not needed. Type

onmode -b to see the usage message for options that are available for your database server.

The utility does not revert changes made to the layout of the data that do not affect compatibility.

You must revert the databases before users can access the data with the earlier database server version.

For information about other onmode options, see The onmode utility on page in your Informix® Administrator's

Reference.

Related information

Run the reversion utility on page 58

Preparation for using the onmode -b command
Before you use the onmode -b command, notify users that you are going to bring the database server offline. The reversion

utility forcibly removes all users and shuts down the database server.

The onmode -b command includes an implicit -yuk command.

Make sure that the INFORMIXSERVER environment variable is set to the correct database server.

UNIX/Linux Only

You must be user root or user informix to run onmode.

Windows™ Only

You must be a member of the Informix-Admin group to run onmode.

Related information

Run the reversion utility on page 58

Syntax of the onmode -b command
The onmode -b command restores your databases to the version of Informix® from which you converted. You cannot use

this command to revert to any other version of the server.

../%20adr/ids_adr_0407.html#ids_adr_0407
../%20adr/ids_adr_0407.html#ids_adr_0407
../%20adr/ids_adr_0407.html#ids_adr_0407
../%20adr/ids_adr_0407.html#ids_adr_0407

Chapter 1. Migrating and upgrading

When you convert a database server, several modifications make the format of the databases incompatible with the older

version. The onmode -b command modifies data so that the earlier version of the database server can access it. In some

cases the format of the databases is compatible between versions and the onmode -b command is not needed.

Tip: To see a list of all of the versions to which you can revert, run this command:

onmode -b

When you see the options that are available, choose the option that is closest to the version that you want.

Figure 4. Syntax

onmode

-b version_number

Element Purpose

-b version_number Reverts the database to the specified version.

Related information

Run the reversion utility on page 58

The onrestorept utility
You can use the onrestorept utility to restore the database server back to the state that it was in just before the start of the

failed upgrade.

The utility depends on these configuration parameters being set correctly before you attempt to upgrade the database

server:

• The CONVERSION_GUARD configuration parameter must be set to 1 or 2 (the default value) for data to be stored

during an upgrade. If the conversion guard operations fail (for example, because the server has insufficient space to

store the data that is captured during the upgrade), you cannot use the onrestorept utility.

• The RESTORE_POINT_DIR configuration parameter must specify a directory where the conversion guard utility can

store data files during the upgrade. Those files are needed to restore the database server to a consistent state after a

failed upgrade. This directory must be empty before the upgrade starts. After a successful upgrade, the contents of

the directory are automatically removed.

Important: Informix® must be offline when you run the onrestorept utility. Do not start the server until the utility

finishes running. Executing the onrestorept utility when the server is online, or starting the server before the utility

finishes running, can damage the database and requires you to restore the database server from a backup copy.

To start Enterprise Replication after the onrestorept utility restores the database server to a consistent state, you must use

the cdr cleanstart command.

131

Migrating and upgrading

132

Related information

Restoring to a previous consistent state after a failed upgrade on page 45

Preparing for migration on page 7

Syntax of the onrestorept command
The onrestorept command undoes changes made during a failed upgrade, restoring files to the state they were in when you

shut down the server.

onrestorept

-V

-c

-y

Element Purpose Key Considerations

-V Display the version of the current

server and the software serial

number.

-c After a failed upgrade, delete the

files in the directory specified in the

RESTORE_POINT_DIR configuration

parameter.

Before you begin another upgrade, you must delete these

restore point files. Do this before you make another

migration attempt, but not before your run the onrestorept

utility to recover the files (if possible).

If the upgrade was successful, restore point files are

automatically deleted and there is no need to run

onrestorept -c.

-y Automatically accept every prompt

while the onrestorept command runs.

If you do not specify -y, you must respond to every prompt.

Example

Examples

The following command restores Informix® files after a failed upgrade:

onrestorept

The following command removes restore point files after a failed upgrade:

onrestorept -c

Index
A

Abbreviated years 65
ALARMPROGRAM configuration
parameter 42, 44
ANSI joins 52

B
Backups

after upgrading 50
before reverting 55
before upgrading to a new version 15
logical logs 44
ON-Bar utility 15, 61
ontape utility 15, 61
source database 15

Binary files, loading 117, 118
BladeManager

installing and registering DataBlade
modules 50, 62
removing new extensions before
reversion 57

Blobspaces
moving, with onunload and onload 127, 128

BSON date fields 12, 47, 60
migrating 12

C
Character-position form of FILE and INSERT
statements 91
Checking available space

before migration 8
Chunks

reverting reserve pages 53
client applications 48
client compatibility 48
Clusters

Apply fix pack or PID 25
migrating to new release 24
migrating to new version 29
restoring from a backup archive 39
restoring from the HDR secondary
server 40
reverting 24, 37
upgrading 31
upgrading to a new fix pack 28
upgrading to a new PID 28
upgrading with conversion 29

Command file
dbload 86

Communications Support Module
configuring after migration 44
removing if reverting 59
saving before reverting 54

concsm.cfg file
creating entries after migration 44
removing if reverting 59
saving before reverting 54

Configuration file
customizing after migration 42
replacing after reversion 59
saving before migration 11
saving before reverting 54

Configuration parameters
ALARMPROGRAM 42, 44
CONVERSION_GUARD 45, 131
HPL_DYNAMIC_LIB_PATH 42
RESTORE_POINT_DIR 45, 131
ROOTOFFSET 42

ROOTPATH 42
ROOTSIZE 42
STOP_APPLY 65
UPDATABLE_SECONDARY 65
USELASTCOMMITTED 65

CONVERSION_GUARD configuration
parameter 45, 131
convTovNoSQL1210.sql script 47, 60

D
Data integrity 49
data migration

external tables 64
Data migration

constraints 2
issues to consider 1
overview 1
prerequisites 2
tools 2

data types
SQLINTEGER 48
SQLLEN 48
SQLUINTEGER 48
SQLULEN 48

Database server
initializing after upgrading 44
new version

performance tuning 50
reverting 51
reverting from current version 57
starting after upgrading 44

Database servers
migrating 40, 40, 46
preparing for migration 6
upgrading 40, 40, 46

Databases
ownership, set by onload 127

DataBlade modules
installing after upgrading 44
registering 50, 62

DB-Access
input from the dbschema utility 114, 114

dbexport
SELECT triggers, disabling 65

dbexport utility 65
-c option 67, 70
-d option 67
-nw option 67
-q option 67
-si option 67, 70
-ss option 67, 70
-V option 67
-version option 67
-X option 67
destination options 71, 71
Interrupt key 70
schema output 73
syntax 67

dbimport utility 65
-c option 74, 76
-D option 74
-l option 80
-nv option 74
-q option 74
-V option 74
-version option 74
-X option 74
create options 78

database logging mode 80
importing from another computer 5
input file location options 76, 76
Interrupt key 76
locale, changing 81
renaming a database 80
syntax 74
using with GLS 74
using with NLS 81

dbload utility
-c command file option 82
-d database option 82
-e errors option 82
-e option 85
-i ignore rows option 82
-i option 85
-k option 82
-l error log file option 82
-p option 82
-r option 82, 84
-s option 82
-V option 82
-version option 82
-X option 82
compared to LOAD 82
creating a command file 86
dbload utility

-n commit interval option 82
FILE statement 86
guidelines for handling objects 85
ignoring rows 85
importing from another computer 5
INSERT statements 86

compared to SQL INSERT statement 91
using 87

Interrupt key 85
number errors to allow 85
overview 82
speed, increasing 85
syntax 82
table locking 84
writing a command file

in character-position form 93
in delimiter form 89

dbschema utility
-ss option 104
-u option 104
chunk schema 107, 107
create schema across a network 103
create schema for a database 103
distribution information 111
example of file for DB-Access 114
guidelines 99
log schema 107, 107
output example 112
overview 98
owner conventions 103
privileges information 110, 111
privileges information for a role 111
re-creating the schema 114
sequence schema 105
specifying a table, view, or procedure 106
storage space schema 107, 107
synonym schema 106
syntax 99
syntax for role schema 109

DBSECADM role 65
dbspaces

133

moving tables to another dbspace 129
Delimiter form of FILE and INSERT
statements 87, 87, 89
Diagnostic information to gather 15
Directories

installation 41
Distributed queries

with ANSI joins 52

E
Environment variables

DB_LOCALE 81
DBCENTURY 65
DBTEMP 81
GL_DATE 65
GL_DATETIME 117
GL_USEGLU 42
INFORMIXSERVER 42
INFORMIXSQLHOSTS 42
ONCONFIG 42
PATH 42
resetting after reversion 59
TEMP 81
TMP 81
USE_DTENV 117

Exporting
time series data 72

external tables 64
Extracting schema information 62

F
Fast recovery

initiating 13
Features

reviewing 8
FILE statement

character-position form 91
delimiter form 87, 87, 89
syntax for

character-position form 91
delimiter form 87

with dbload 86
FIRST clause 52
Fix packs

Apply to clusters 25

G
GL_DATETIME environment variable 65, 117
GL_USEGLU environment variable 42
Global Language Support (GLS)

dbimport utility 74
using onload and onunload 118

GRANT statement
role privileges 111

H
HEX binary data 74
HPL_DYNAMIC_LIB_PATH configuration
parameter 42

I
id_column 55
Importing

non-
Informix
data
 5

in dbschema output 111, 111
In-place alters

oncheck -pT command 55
Sample updates 55

Index

rebuilding 44
Informix

installing 41
INFORMIXDIR directory 41
INFORMIXSERVER environment variable 42
INFORMIXSQLHOSTS environment variable 42
Initializing

after upgrading 44
INSERT statements

character-position form 91
delimiter form 87
syntax for character-position form 91
with dbload 86

Installation directory 41
Installing
Informix
 41

J
Java UDRs 60
JSON compatibility 47, 60

L
Label-based access control (LBAC) 65
LATERAL keyword 52
Level-0 backup 15, 50, 61

after moving data 127
LIMIT keyword 52
LOAD SQL statement

for locales that support multibyte code
sets 116
overview 115
syntax 116

LOAD statement
for non-default GL_DATETIME environment
variable settings 117
for non-default locales 117

Loading
ASCII files 5
binary data 117, 118
data 2, 5

Locking
set by onload 127

Logical log
backup 44
out of space 44
space required for migration 8

LTAPEDEV configuration parameter
onunload/onload 127

M
Migrating

between 32-bit and 64-bit database
servers 16

Migrating a database
constraints 2
issues to consider 1
overview 1
planning for 2
prerequisites 2
to a new operating system 62, 62
tools 2

Migrating with Enterprise Replication 17, 18
Migration

before you begin 6
checklist 15
diagnostic information that you need
before upgrading 15
monitoring status with online.log 42
onload utility 119
onunload utility 119
planning 7

preparing for 7
prerequisites 7
space requirements 8
with
Enterprise Replication
 17
with HDR, RS, and SD servers 21, 24
with high-availability clusters 21, 24, 28, 29,
31
with secondary servers 29

Mode
checking 14

modifying
client applications 48

Monitoring migration status 42
Moving data

blobspaces 128
constraints 2
overview 1
using dbexport and dbimport 65
using dbload 82
using distributed SQL 5
using onload and onunload 117, 117
using onunload and onload 127, 128, 129
when changing operating systems 62, 62,
63, 64

Multi-node Active Clusters for High Availability
(MACH)

Clusters
Migrating to new release 21

N
Native Language Support (NLS)

populating with dbimport 81
Non-
Informix
data, importing
 5
NOVALIDATE constraint mode 74

O
ON-Bar utility 47

backing up
after upgrading 50

backing up before upgrading 15
oncheck utility

-cc database_name option 14
-cD database_name option 14
-ce option 14
-cI database_name option 14
-cr option 14
rebuilding table indexes 44
verifying database integrity 14, 49

ONCONFIG environment variable 42
ONCONFIG file

customizing after migration 42
oninit utility

-s option 13
online.log 42
onload and onunload utilities 127, 128, 129
onload utility

constraints 126
constraints on use 118
create options 124
handling large objects in a blobspace 127
how it works 119
logging status 126
moving a database 127
moving a table 128, 129, 129
moving locales 118
moving to another dbspace 129
ownership and privileges 127

134

specifying source parameters 124
syntax 123
using between computers 117, 117

onmode -b command 129, 129
onmode utility

-b option 58
-ky option 13
-sy option 13
reverting from the current version 58
shutting down 13
shutting down the server 13

onmode-b command 130
syntax 130

onrestorept utility
Clusters

restoring primary server to a consistent
point 39

overview 131
syntax 132
undoing failed upgrade changes 39, 45

onstat utility 14
ontape utility

-a option 44
backing up

after upgrading 50
before upgrading 15

onunload utility
constraints on use 118, 121
destination parameters 120
how it works 119
locking 122
logging mode 122
moving a database 127
moving a table 128, 129, 129
moving locales 118
moving to another dbspace 129
ownership and privileges 122
syntax 119
unloading tables 122
using between computers 117, 117
what is included with a

database 122
table 122

Operating system
adjusting tables after changing operating
systems 63
moving data to another one 62, 62, 63, 64

ORDER BY clause 52

P
PATH environment variable 42
Performance tuning

adjusting queries after upgrading 50
after upgrading 50

PID
Apply to clusters 25

Planning
before moving data 2
data migration 1
for exporting and importing data 62
for migration 7
for upgrading your server 7

Platforms, moving data between
compatible computers 5

post-migration steps 47, 60
Privileges 111, 111

required for onunload 121

Q
Queries

adjusting after upgrading 50
Quiescent mode 14

R
recompiling

client applications 48
Recompiling Java UDRs 60
Registering DataBlade modules 50, 62
restore points 131
RESTORE_POINT_DIR configuration
parameter 45, 131
Reverse migration 51
Reversion utility 58
Revert to original version 51
Reverting

backing up before you start 55
before using the onmode -b command 130
chunk reserve pages 53
database schema 52
from the new version 51
from
Version 14.10
 57
limitations 52
remove features 57
restrictions for 52
restrictions for reverting to prior
versions 52
using the onmode -b command 129, 129
with Enterprise Replication 20
with HDR, RS, and SD servers 24, 37
with high-availability clusters 24, 37

Rolling upgrade
with temporary Enterprise Replication 31

Rolling upgrades 25
ROOTOFFSET configuration parameter 42
ROOTPATH configuration parameter 42
ROOTSIZE configuration parameter 42
Running the reversion utility 58

S
Sample updates 55
Schema

create across a network 103
create for a database 103
display with dbschema 98

scripts
convTovNoSQL1210.sql 47, 60

Scripts
concdr.bat 18
concdr.sh 18

SELECT triggers, disabling with dbexport 65
Simple large objects

moving with onload 127, 127, 128, 128
SKIP keyword 52
Slow queries

adjusting after upgrading 50
sm_versions file 47
smi_unld utility 54
Space

checking availability before migration 8
for sysmaster database 8

SQL statements
UPDATE STATISTICS

data distributions 111
sqlhosts file

save a copy when migrating 11
sqlhosts file, UNIX

changing name or path 42
csm option 44

Starting
after upgrading 44
server after reversion 60

STOP_APPLY configuration parameter 65

sysmaster database
and logical logs 44
space required for migration 8

T
TAPEDEV configuration parameter, with
onunload and onload 127
Time series data

exporting 72
Transactions

checking for open ones 13
Truncate keyword 52

U
UNLOAD SQL statement

for locales that support multibyte code
sets 116
overview 115
syntax 115

UNLOAD statement
for non-default GL_DATETIME environment
variable settings 117
for non-default locales 117

UPDATABLE_SECONDARY configuration
parameter 65
UPDATE statements

sample 55
UPDATE STATISTICS statement 48

data distributions 111
using after reversion 61

Upgrading your server
overview of tasks 40
planning 7
preparing for 7
preparing to undo changes 10
prerequisites 7
restoring files after a failure 45, 131

USE_DTENV environment variable 65, 117
USELASTCOMMITTED configuration
parameter 65
USELASTCOMMITTED session environment
variable 65
Using SSL/TLS database connections 43
Utilities

dbexport 62, 65, 65
dbexport syntax 67
dbimport 62, 65
dbimport syntax 74
dbload 82
dbschema 98
onload 62, 123
onload and onunload 117, 127, 128, 129
onunload 62, 119

V
Verifying data integrity 49

135

	Migrating and upgrading
	Contents
	Chapter 1. Migrating and upgrading
	Upgrade tasks
	Migrating Informix® database systems
	Overview of migration
	Overview of moving data
	Prerequisites before moving data
	Data-migration tools
	When TEXT and BYTE data is scanned, not compressed

	Moving data between computers and dbspaces
	Importing data from a non-Informix® source

	Moving data by using distributed SQL

	Migration to and reversion from 14.10
	Preparing for migration to Version 14.10
	Preparing for migration
	Reviewing changes in Informix® product functionality
	Checking and configuring available space
	Configuring for recovery of restore point data in case an upgrade fails
	Saving copies of the current configuration files
	Preparing 12.10 BSON columns with DATE fields for upgrade
	Closing all transactions and shutting down the source database server
	Initiating fast recovery to verify that no open transactions exist
	Verifying the integrity of the data
	Verifying that the database server is in quiescent mode
	Making a final backup of the source database server
	Verifying that the source database server is offline

	Pre-migration checklist of diagnostic information
	Migrating from 32-bit to 64-bit database servers
	Migrating from 32-bit to 64-bit with collection types that use the SMALLINT data type

	Enterprise Replication and migration
	Preparing to migrate with Enterprise Replication
	Migrating with Enterprise Replication
	Reverting with Enterprise Replication

	High-availability cluster migration
	Preparing to migrate, upgrade, or revert clusters
	Rolling upgrade of an online cluster to the next fix pack or PID (UNIX, Linux)
	About this procedure
	Prepare for a rolling upgrade
	Upgrade the servers
	Return the cluster to its original configuration

	Upgrading an offline cluster to a fix pack or PID
	Migrating an offline cluster to a new major version
	Rolling upgrade of an online cluster with Enterprise Replication
	Errors and warnings generated by the sec2er command

	Reverting clusters
	Restoring clusters to a consistent point
	Restoring a cluster from a backup archive
	Restoring a cluster from the HDR secondary server

	Migrating to Informix® 14.10
	Migrating to the new version of Informix®
	Installing the new version of Informix®
	Migration status messages

	Setting environment variables
	Customizing configuration files
	Using SSL/TLS database connections
	Adding Communications Support Modules
	Installing or upgrading any DataBlade® modules
	Starting the new version of Informix®
	Restoring to a previous consistent state after a failed upgrade

	Completing required post-migration tasks
	For ON-Bar, copy the sm_versions file
	Finish preparing earlier versions of 12.10 databases for JSON compatibility
	Optionally update statistics on your tables after migrating
	Review client applications and registry keys
	Verify the integrity of migrated data
	Back up Informix® after migrating to the new version
	Tune the new version for performance and adjust queries
	Register DataBlade® modules

	Reverting from Informix® Version 14.10
	Preparing to revert
	Review the database schema prior to reversion
	Reversion requirements and limitations
	Check and configure available space for reversion
	Save copies of the current configuration files
	Save system catalog information
	Verify the integrity of the Version 14.10 data
	Back up Informix® Version 14.10
	Resolve outstanding in-place alter operations
	Remove unsupported features
	Remove new BladeManager extensions

	Reverting from Informix® Version 14.10
	Run the reversion utility
	Restore original configuration parameters
	Restore original environment variables
	Remove Any Communications Support Module Settings
	Recompile Java™ user-defined routines
	Reinstall and start the earlier database server
	Add JSON compatibility to databases that were created in 12.10.xC1
	Optionally update statistics on your tables after reverting
	Verify the integrity of the reverted data
	Back up the database server after reversion
	Return the database server to online mode
	Register DataBlade® modules

	Migration of data between database servers
	Migrating database servers to a new operating system
	Choosing a tool for moving data before migrating between operating systems
	Adjusting database tables for file-system variations
	Moving data to a database server on a different operating system
	Adapting your programs for a different operating system
	Ensuring the successful creation of system databases

	Data migration utilities
	External tables
	The dbexport and dbimport utilities
	Syntax of the dbexport Command
	Example
	Example
	Termination of the dbexport utility
	dbexport errors
	dbexport server-specific information
	dbexport destination options
	Exporting time series data in rolling window containers

	Contents of the schema file that dbexport creates
	Syntax of the dbimport command
	Termination of the dbimport utility
	dbimport errors and warnings
	dbimport input-file location options
	Examples showing input file location on UNIX™ or Linux™
	Examples showing input file location on Windows™

	dbimport create options
	Example showing dbimport create options (UNIX™ or Linux™)
	Example showing dbimport create options (Windows™)

	Database-logging mode
	Database renaming
	Alternative ways to change the database name

	Changing the database locale with dbimport
	Simple large objects

	The dbload utility
	Syntax of the dbload command
	dbload command example
	Table locking during a load operation
	Rows to ignore during a load operation
	Bad-row limit during a load operation
	Termination of the dbload utility
	Name and object guidelines for the dbload utility

	Command file for the dbload utility
	Delimiter form of the FILE and INSERT statements
	Syntax for the delimiter form
	How to write a dbload command file in delimiter form

	Character-position form of the FILE and INSERT statements
	Syntax for the character-position form
	How to write a dbload command file in character-position form

	Command file to load complex data types
	Using the dbload utility with named row types
	Using the dbload utility with unnamed row types
	Using the dbload utility with collection data types
	SET data type example
	LIST data type example

	The dbschema utility
	Object modes and violation detection in dbschema output
	Guidelines for using the dbschema utility
	Syntax of the dbschema command
	Example
	Database schema creation
	Creating schemas for databases across a UNIX or Linux network
	Changing the owner of an object

	dbschema server-specific information
	User-defined and complex data types
	Sequence creation
	Synonym creation
	Table, view, or procedure creation
	Storage space, chunk, and log creation
	Sample output for the creation of storage spaces, chunks, and logs
	Example of output in SQL administration API format
	Example of output in onspaces and onparams utility format

	Role creation
	Privileges
	Granting privileges
	Displaying privilege information for a role

	Distribution information for tables in dbschema output
	Example of dbschema output showing distribution information
	Description of the distribution information in the example
	Distribution information in dbschema output
	Overflow information in dbschema output

	Use dbschema output as DB-Access input
	Inserting a table into a dbschema output file
	Re-creating the schema of a database

	The LOAD and UNLOAD statements
	Syntax of the UNLOAD statement
	Syntax of the LOAD statement
	Load and unload statements for locales that support multibyte code sets
	Load and unload statements for nondefault locales and the GL_DATETIME and USE_DTENV environment variables

	The onunload and onload utilities
	Guidelines for when to use the onunload and onload utilities
	When you cannot use the onunload and onload utilities

	Requirements for using the onload and onunload utilities
	How the onunload and onload utilities work
	Syntax of the onunload command
	onunload destination parameters
	Constraints that affect onunload
	Privileges for database or table unloading
	Tables that are unloaded with a database
	Data that is unloaded with a table
	Locking during unload operation

	Logging mode
	Syntax of the onload command
	onload source parameters
	onload create options
	Constraints that affect onload
	Logging during loading
	Movement of simple large objects to a blobspace
	Ownership and privileges
	Exclusive locking during a load operation

	Moving a database between computers with the onunload and onload utilities
	Moving a table between computers with the onunload and onload utilities
	Moving a table between dbspaces with the onunload and onload utilities

	The onmode utility reversion option
	What the onmode -b command does
	Preparation for using the onmode -b command
	Syntax of the onmode -b command

	The onrestorept utility
	Syntax of the onrestorept command
	Examples

	Index

