
HCL Informix 14.10

HCL Informix Object Interface
for C++ Programmer’s Guide

ii

Contents
Chapter 1. Informix® Object Interface for C++ Guide.........1

Architecture of the object interface for C++.................. 1
Operation classes...1
Value interfaces and value objects......................... 4
Class hierarchy... 6
Implementation notes.. 7
Globalization... 8

Issue database queries and retrieve results.................. 9
Using operation classes...9
Create connections.. 11
Find system names and database names............11
Manage errors.. 12
Connection transaction states.............................. 13
Issue queries.. 15

Access data values..23
Access data values.. 23
Value object management.....................................24
The ITValue interface...25
The ITConversions interface................................. 26
The ITDatum interface... 26
The ITDateTime interface......................................27
The ITLargeObject interface..................................27
The ITErrorInfo interface....................................... 28
The ITRow interface...29
The ITSet interface...29
The ITContainer interface...................................... 30
The ITContainCvt interface....................................30

Create and extend value objects.................................. 31
The raw data object... 32
Build simple value objects.....................................33
Expose multiple interfaces.................................... 36
Value objects and connection events................... 41
Create row type value objects............................... 43
Object Containment and Delegation..................... 44
Dynamic loading...47

Operation class reference... 49
The ITConnection class... 49
The ITConnectionStamp class.............................. 50
The ITContainerIter class...................................... 51
The ITCursor class... 53
The ITDBInfo class...55
The ITDBNameList class....................................... 57
The ITErrorManager class..................................... 57
The ITFactoryList class..58
The ITInt8 class..60

The ITLargeObjectManager class......................... 62
The ITMVDesc class.. 67
The ITObject class... 67
The ITPosition class.. 68
The ITPreserveData class......................................68
The ITQuery class.. 69
The ITRoutineManager class.................................70
The ITStatement class...71
The ITString class.. 74
The ITSystemNameList class................................76
The ITTypeInfo class..76

Value interface reference.. 79
The ITContainCvt interface....................................79
The ITContainer interface...................................... 80
The ITConversions interface................................. 80
The ITDateTime interface......................................82
The ITDatum interface... 83
The ITErrorInfo interface....................................... 83
The ITEssential interface.......................................84
The ITLargeObject interface..................................85
The ITRow interface...86
The ITSet interface...87
The ITValue interface...87

Appendixes... 89
Supported data types...89
Example programs... 91
The ITLocale class... 92

Index...122

Chapter 1. Informix® Object Interface for C++ Guide
The Informix® Object Interface for C++ Programmer's Guide describes how to develop HCL Informix® client applications by

using the object-oriented C++ programming language.

The encapsulates HCL Informix® features into an easy-to-use class hierarchy and extensible object library.

The Object Interface for C++ is documented in these topics. The DataBlade® API is documented in the Informix®

DataBlade® API Programmer's Guide. The GLS API, from which the Object Interface for C++ ITLocale class is derived, is

documented in the Informix® GLS API Programmer's Guide.

These topic refer extensively to the example programs included with the Object Interface for C++.

These topics are written for two audiences:

• Developers that use C++ to create database client applications for HCL Informix® servers

• DataBlade® developers who use to create value objects that allow C++ client applications to support DataBlade®

module data types

To use these topics, you must know C++. Familiarity with the Microsoft™ Component Object Model (COM) is also helpful

when working with the Object Interface for C++.

All public names in the begin with IT.

For information about software compatibility, see the Informix® Client SDKrelease notes.

Architecture of the object interface for C++
The encapsulates HCL Informix® database server features into a class hierarchy.

Operation classes provide access to Informix® databases and methods for issuing queries and retrieving results. Operation

classes encapsulate database objects such as connections, cursors, and queries. Operation class methods encapsulate

tasks such as opening and closing connections, checking and handling errors, executing queries, defining and scrolling

cursors through result sets, and reading and writing large objects.

Value interfaces are abstract classes that provide specific application interaction behaviors for objects that represent HCL

Informix® database values (value objects). You can interact with your data by using extensible value objects. Built-in value

objects support ANSI SQL and C++ base types and complex types such as rows and collections. You can create C++ objects

that support complex and opaque data types.

Operation classes
applications create instances of public operation classes, which contain pointers to private implementation classes.

Although this interface/implementation approach adds an extra level of indirection, it provides important benefits:

1

HCL Informix Object Interface for C++ Programmer’s Guide

2

• Applications do not depend on the implementation of the underlying class because the implementation class is

inaccessible.

• Performance of copy operations is improved because applications copy only the implementation pointer of the object

and not the entire object.

• Applications can easily use automatic variables as opposed to heap-allocated variables. Automatic variables are

automatically deallocated when they pass out of scope, which helps avoid memory leaks. The implementation class

tracks references to objects, removing objects only when they are no longer referenced.

The following figure illustrates the relationship between the public interface classes and private implementation classes.

Figure 1. Public interface and private implementation of operation classes

The Object Interface for C++ defines the following operation classes.

Operation class Description See

ITConnection Manages a database connection. The ITConnection class on

page 49

ITConnectionStamp Maintains stamp information about a connection. The ITConnectionStamp

class on page 50

Chapter 1. Informix® Object Interface for C++ Guide

Operation class Description See

ITContainerIter Extracts C++ base-type values (such as int, long, or double)

from a container value object.

The ITContainerIter class

on page 51

ITCursor Defines cursors and manages results. The ITCursor class on

page 53

ITDBInfo Stores database information. The ITDBInfo class on

page 55

ITDBNameList Allows the user to obtain database names. The ITDBNameList class

on page 57

ITErrorManager Provides base class functionality for managing error

callbacks.

The ITErrorManager class

on page 57

ITFactoryList Adds mappings from HCL Informix® data types to functions

that build value objects to represent instances of these data

types.

The ITFactoryList class on

page 58

ITInt8 Provides an 8-byte integer class. The ITInt8 class on

page 60

ITLargeObjectManager Supports large objects. The

ITLargeObjectManager

class on page 62

ITLocale Provides GLS support. Online notes

ITMVDesc Not an operation class, but a descriptor that holds the

instance information necessary to create a value object.

The ITMVDesc class on

page 67

ITObject Provides the base class for public operation class interface

objects.

The ITObject class on

page 67

ITPreserveData Provides an interface for maintaining a reference to

database data received from the server, for use by the

implementer of a value object.

The ITPreserveData class

on page 68

ITQuery Issues SQL queries to the HCL Informix® database. The ITQuery class on

page 69

ITRoutineManager Provides fast path execution of DataBlade® API functions. The ITRoutineManager

class on page 70

ITStatement Provides support for the execution of prepared queries that

return no rows.

The ITStatement class on

page 71

ITString Provides a string class. The ITString class on

page 74

3

HCL Informix Object Interface for C++ Programmer’s Guide

4

Operation class Description See

ITSystemNameList Allows the user to obtain host system names. The ITSystemNameList

class on page 76

ITTypeInfo Stores information about database types. Operation classesdefinedObject Interface for C++operation classesThe ITTypeInfo class on

page 76

For detailed descriptions of these operation classes, see Operation class reference on page 49.

Value interfaces and value objects
The creates C++ objects that encapsulate data retrieved from a database. These value objects are created by the Object

Interface for C++ by using an extensible class factory that maps server data types to C++ objects.

DataBlade® developers can create value objects that represent new Informix® data types. Developers can use the Object

Interface for C++ to write client applications that operate with these new value objects. Object Interface for C++ client

applications do not depend on the representation of the object in the database; if the database representation changes,

the corresponding value object can be altered and the existing applications continue to run. Code for value objects can be

compiled into an application or dynamically loaded into an application from shared libraries.

The value object design is compatible with the Microsoft™ Common Object Model (COM) in the sense that it enables objects

to expose behaviors through interfaces. An interface is an abstract class that encapsulates the methods associated with a

specific behavior.

For example, to indicate that an object can behave as a container, the object exposes the ITContainer interface; to indicate

that an object can convert its value to a C++ base type (such as int or double), an object exposes the ITConversions

interface; and other interfaces.

Interfaces are extracted from an object by calling a QueryInterface() function provided in ITEssential, which is the base class

of all value interfaces. When the QueryInterface() function is called, the caller specifies the interface ID of the interface you

want. If the object exposes the requested interface, then QueryInterface() returns IT_QUERYINTERFACE_SUCCESS and sets its

second argument to the address of the interface you want.

The following figure illustrates the relationship of the application interface to the implementation.

Chapter 1. Informix® Object Interface for C++ Guide

Figure 2. Public interface and private implementation of value objects

The Object Interface for C++ defines the following value interfaces.

Interface Description See

ITContainCvt Decomposes an object into C++ base type instances. The ITContainCvt interface

on page 79

ITContainer Provides access to the container members. The ITContainer interface on

page 80

ITConversions Converts data to C++ base classes or strings. The ITConversions interface

on page 80

ITDateTime Allows access to the fields of a database date/time object. The ITDateTime interface on

page 82

ITDatum Supports the functionality of the basic value object, including

access to the underlying data.

The ITDatum interface on

page 83

5

HCL Informix Object Interface for C++ Programmer’s Guide

6

Interface Description See

ITErrorInfo Exposes error information about objects for which invalid

operations can cause server errors.

The ITErrorInfo interface on

page 83

ITEssential Serves as the base of the value interface classes. The ITEssential interface on

page 84

ITLargeObject Manipulates a large object returned by a query. The ITLargeObject interface

on page 85

ITRow Provides access to row values. The ITRow interface on

page 86

ITSet Provides access to collection results. The ITSet interface on

page 87

ITValue Supports the basic functionality of the value object. The ITValue interface on

page 87

Class hierarchy
The following diagram shows the inheritance hierarchy.

Chapter 1. Informix® Object Interface for C++ Guide

Figure 3. C++ inheritance hierarchy

Implementation notes
This section describes the programming restrictions and practices.

Restrictions
The is subject to the following restrictions:

7

HCL Informix Object Interface for C++ Programmer’s Guide

8

• The Object Interface for C++ does not support object persistence for application classes; it does not automatically

map instances of database tables to application classes or vice versa.

• You cannot directly update the database data by modifying the corresponding value objects; to modify the database

data that corresponds to the data returned to client programs in value objects, you must issue SQL queries, or the

methods ITCursor::UpdateCurrent() and ITCursor::DeleteCurrent().

• You cannot develop server functions by using the Object Interface for C++.

• Do not mix database access through the Object Interface for C++ and lower-level interfaces (like the DataBlade® API)

in the same application.

• The Object Interface for C++ is not thread-safe. Do not use Object Interface for C++ in multi-threaded applications or

environments.

Passing objects—compiler dependency
When you pass an object to a function by value, the C++ compiler creates a temporary copy of the object to pass to the

function. The compiler deletes the object after the function returns. The exact time at which temporary objects are deleted is

compiler-dependent. For this reason, your application must not rely on the automatic destruction of temporary objects.

For example, if you pass an ITConnection object to a function by value and start the AddCallback method on the connection

inside the function, the temporary connection object (on which you added the callback) might or might not exist immediately

after the function returns. Because both the original connection object and the copy refer to the same underlying server

connection, the new callback might or might not remain in effect on the underlying connection when your function returns.

To ensure consistent behavior, call DelCallback inside your function when the new callback is no longer required. Do not rely

on the automatic destruction of the connection object parameter by the compiler to remove the callback from the underlying

server connection. For details about DelCallback, see The ITErrorManager class on page 57.

Informix® database server compatibility
The can be used to create database client applications that run against HCL Informix® databases. However, classes and

methods that support version 9,x and 10.x extensibility features are not supported with version 7.x databases.

HCL Informix® version 7.x does not support the boolean, int8, blob, clob, or lvarchar data types or the Informix® extended

data types: opaque, distinct, row, and collection.

Some of the Object Interface for C++ examples work only with Informix® version 9.x and 10.x, since the version 7.x Dynamic

Server SQL parser does not support Informix® data type casting syntax (value::data_type) in SQL statements.

Object Interface for C++ dynamic loading and object delegation technique are only useful with Informix® databases.

Globalization
The provides functionality based on Informix® Global Language Support.

The ITLocale class, described in The ITLocale class on page 92, encapsulates the GLS API. It provides methods to

perform locale-sensitive conversions between the text and binary forms of the date, time, numeric, and money data types. It

also provides support for multibyte character strings and for quoted type names.

Chapter 1. Informix® Object Interface for C++ Guide

Call ITLocale::Current() to obtain a pointer to the current client locale and use ITLocale::ConvertCodeset() to convert data

between the two code sets.

The ITString class encapsulates a string in a client locale. When a string is retrieved from a server, it is converted to the client

locale. Locale-specific rules govern the following operations:

• Date/time, numeric, and money string formatting

• Error messages produced by the Object Interface for C++

• String operations such as Trim(), concatenation, and other operations

Client locale is established at the startup time of the application based on the value of the CLIENT_LOCALE environmental

variable.

For more information, see the Informix® GLS User's Guide.

ITFactory list and the type map
Type names for the ITFactoryList constructor or in the type map file can contain any characters in the current client locale,

except NULL.

Type names can contain multibyte characters. If a type name includes white space characters, enclose the type name in a

pair of double quotation marks in the type map file. If the type name contains a double quotation mark character, place a

double quotation mark character before it.

Type name searches in the current client locale are not case-sensitive.

Issue database queries and retrieve results
To interact with a database, your C++ client application uses the operation classes of the . These classes have methods for

opening database connections, submitting queries, and manipulating database cursors. This section describes how to use

these methods.

Using operation classes
The csql.cpp example is a small application that uses the ITQuery and ITConnection classes to provide a simple

command-line interface that accepts SQL commands from the standard input, transmits the commands to the database, and

the results are displayed.

The major steps of the program are as follows.

1. Open the connection.

Before any database interaction can take place, the connection with the database must be established. Opening

the connection without any arguments instructs the interface to use the default system, database, user name, and

password. For details about connection defaults, see The ITDBInfo class on page 55.

9

HCL Informix Object Interface for C++ Programmer’s Guide

10

ITConnection conn;
conn.Open();

2. Build an ITQuery object for the connection.

ITQuery query(conn);

A query object is used to issue database queries and to access result sets. An operation class is always created in

the context of a server connection.

3. Read lines of input from stdin by using the C++ iostream library methods.

while (cin.getline(qtext, sizeof(qtext)))
{
}

4. Execute the query read from stdin by using the ExecForIteration method of the query object.

if (!query.ExecForIteration(qtext))
{
}

5. Loop through the result rows of the query.

ITRow *comp;
int rowcount = 0;
while ((comp = query.NextRow()) != NULL)
{
}

A row is extracted from the result set of a query by using the NextRow method of the query object. The code shows

the declaration of a pointer to the row interface for an object that receives the result data, and the loop that reads the

result data into the row object.

This is an example of the use of a value object in the program: The NextRow method returns a pointer to an ITRow

interface. The pointer returned by NextRow is not a pointer to an actual object; it is a pointer to an interface that is

exposed by an object.

6. Print the row.

cout << comp->Printable() << endl;

Every value object exposing an ITValue or ITValue-derived interface supports the Printable method, which returns

the object as a printable string in a constant ITString object. This object can be put directly on the stdout stream. For

details about the ITString class, see The ITValue interface on page 87.

7. Release the row.

comp->Release();

The value interface returned to the application must be explicitly released by the application. A value object tracks the

number of outstanding references to it, and when the last reference is released, deletes itself.

8. Close the connection.

conn.Close();

Closing a connection deletes any saved data associated with the connection. Because a value object might hold a reference

to this saved data, it must track whether the underlying data has been deletes. For details, see Value object management on

page 24.

Chapter 1. Informix® Object Interface for C++ Guide

Create connections
To specify connection parameters (system, database, user name, and password) when creating a connection, your

application creates an instance of the ITDBInfo class. If the application uses the default connection parameters, you can

create a connection without the use an instance of the ITDBInfo class.

After an ITDBInfo variable is constructed, it can be used to establish multiple database connections. However, after a

connection has been established by using a given ITDBInfo, that instance of ITDBInfo cannot be changed, nor can any copy

of it be modified. The ITDBInfo instance is said to be frozen. To detect whether an ITDBInfo object has been frozen, use the

ITDBInfo::Frozen() method.

The default user name and password are those of the current user. The default database name is the name of the

current user. The default server name is specified in the UNIX™ $INFORMIXSERVER environment variable or in the

Windows™ registry. If the ITDBInfo instance is not frozen, you can modify these values with the ITDBInfo::SetDatabase(),

ITDBInfo::SetUser(), ITDBInfo::SetPassword(), and ITDBInfo::SetSystem() methods.

Find system names and database names
Many client applications determine what database to use at run time, sometimes allowing users to select from alternatives.

You can use the ITSystemNameList class and the ITDatabaseNameList class to retrieve lists of HCL Informix® servers and

databases.

The following topics describe how to use these classes.

Using ITSystemNameList
The following excerpts from sysname.cpp illustrate the use of ITSystemNameList.

1. The Create() method creates the system name list by looking into the sqlhosts file (on UNIX™) or from the registry

entry under the HKEY_LOCAL_MACHINE\Software\Informix\sqlhosts key (on Windows™).

ITSystemNameList list;
ITBool created = list.Create();

2. The system name list is displayed by the ITSystemNameList::NextSystemName() method.

while (ITString::Null != (current = list.NextSystemName()))
 {
 cout << current << "\tALWAYS_DIFFERENT" << endl;
 last = current;
 }

Using ITDBNameList
The following excerpts from dbname.cpp illustrate the use of ITDBNameList.

11

HCL Informix Object Interface for C++ Programmer’s Guide

12

1. ITDBNameList::Create() creates an instance of ITDBNameList that lists the databases from the servers contained in

the DBPATH and INFORMIXSERVER environment variables.

ITDBNameList dbnl;
ITBool created;
 created = dbnl.Create();

2. The database name list is displayed by the ITDBNameList::NextDBName() method.

void
DisplayITDBNameList(ITDBNameList &dbname)
{
 ITString str;

 cout << "Parsing the DBNameList by calling NextDBName()
 method "<< endl;

 while (ITString::Null != (str = dbname.NextDBName()))
 cout << str << "\tALWAYS_DIFFERENT" << endl ;
}

Manage errors
Most operations, such as issuing queries, fetching rows, and setting transaction states, return a result code that your

application checks. Operations that return pointers typically return NULL to indicate an error. Operations that return a Boolean

result typically return FALSE to indicate an error.

To specify a routine to be called whenever an error or warning is posted, your application can associate a callback function

with an instance of these classes. If an error occurs, the callback function is executed. See The ITErrorManager class on

page 57 for the callback function signature.

To check errors from operation objects, call the Error and ErrorText methods after an operation is performed, or include calls

to the Error and ErrorText methods in the body of an error callback function added to the object. Within an error callback

function, the only safe operations are calls to the Error, ErrorText, Warn, WarningText, and SqlState methods to examine the

ErrorManager object.

Your own data structures can be accessed with the user data parameter, which is untouched by the . Any operations in the

callback function that are performed by using the Object Interface for C++, such as calls to the operation class methods that

submit queries, have undefined results.

The ITErrorManager base class gives its derived classes the ability to manage errors returned by the server or generated

within the Object Interface for C++.

Callbacks added to an operation class derived from ITErrorManager are added to that interface object. If the interface object

is deleted, the callbacks registered on that interface are removed. If the interface object is deleted while the implementation

is still present and the callbacks were not removed, there is no valid interface object reference for the first parameter of

the callback when the implementation calls the callback, and a segmentation violation might occur. The destructor of

ITErrorManager removes such a callback.

Chapter 1. Informix® Object Interface for C++ Guide

To track all errors on a connection, set a callback function on the connection object. When processing errors from a

connection object, be sure to check the return status from the operation itself, and not from the Error method. To track all

errors for a specific object, set a callback function on the object itself.

Using the error handling feature
The csql2.cpp example consists of the csql.cpp SQL interpreter example enhanced with error-handling code. The

following steps describe the error-handling features used in the csql2.cpp example:

1. Add the error callback function:

ITCallbackResult
my_error_handler(const ITErrorManager &errorobject,
 void *userdata,
 long errorlevel)
{
 // Cast the user data into a stream
 ostream *stream = (ostream *) userdata;
 (*stream) << "my_error_handler: errorlevel="
 << errorlevel
 << " sqlstate="
 << errorobject.SqlState()
 << ' '
 << errorobject.ErrorText()
 << endl;
 return IT_NOTHANDLED;
}

The arguments to the callback function are the object on which the error appeared, a field (userdata) passed

to the callback function, and an indicator of the severity of the error (for details about levels of errors, see The

ITErrorManager class on page 57). In this example, the callback function casts the user data field into a C++

ostream object and prints the error text and SQL error code (the ISO standard SQLSTATE) on the output stream. The

user data in the example must be an ostream pointer.

2. Add the callback function to the error handler list maintained by the query object:

query.AddCallback(my_error_handler, (void *) &cerr);

The following dialog shows how the csql2.cpp program handles an erroneous SQL statement. At the prompt (>), the user

types error; (which is not valid SQL) and an error message is displayed by the error handler of the csql2.cpp program:

% csql2
Connection established
> error;
my_error_handler: errorlevel=2 sqlstate=42000
X42000:-201:Syntax error or access violation
Could not execute query: error;
0 rows received, Command:
>

13

HCL Informix Object Interface for C++ Programmer’s Guide

14

Connection transaction states
A connection to a database is said to be in one of a number of transaction states. Transaction states show how queries

submitted on the connection are committed. Some server operations can only take place within a transaction. For example,

updateable cursors can only be opened within a transaction.

The ITConnection class is used to manage connections and includes methods to set and inquire about the transaction state.

The following table lists the connection transaction states.

State Effect of setting this state Significance when retrieved from

ITConnection

None Not allowed to set Not connected to a server

Auto Not allowed to set In auto commit mode (each SQL

statement is a separate transaction)

Begin Start a transaction Entered or in a transaction

Commit Commit the transaction Last transaction was committed

Abort Abort the transaction Last transaction was aborted/rolled back

The csql3.cpp example adds transaction monitoring capabilities to the SQL interpreter example. The following steps point

out the transaction monitoring features:

1. If the session is within a transaction, print "TRANSACTION>" as the prompt. The following code shows the use of the

GetTransactionState method to check the transaction state:

if (conn.GetTransactionState() == ITConnection::Begin)
{
 cout << "TRANSACTION> ";
}
else
{
 cout << "> ";
}

2. If the session exits while it is within a transaction, stop the transaction. The data is returned to the state it was in

when the transaction started. The following code shows the use of the GetTransactionState method to check the

transaction state and SetTransactionState to set the state:

if (conn.GetTransactionState() == ITConnection::Begin)
{
 cerr << endl
 << "Exit within transaction, aborting transaction"
 << endl;
 conn.SetTransaction(ITConnection::Abort);
}

The output from the example is similar to the following, when the user exits after issuing a begin work statement:

% csql3
Connection established

Chapter 1. Informix® Object Interface for C++ Guide

> begin work;
0 rows received, Command:begin work
TRANSACTION> EOF
Exit within transaction, aborting transaction

Issue queries
There are a number of different ways to issue SQL queries in the , each suitable for different application requirements.

The following table summarizes the methods used for issuing queries.

Method Description

ITQuery::ExecForStatus Execute a query that does not return rows (such as CREATE, INSERT,

UPDATE, or DELETE). Return a result code that says whether the query

resulted in a server error.

ITQuery::ExecOneRow Execute a query that returns one row; flush any results other than the

first row. Useful for quickly submitting queries that only return a single

row, such as select count(*) from systables.

ITQuery::ExecToSet Execute a query and retrieve all the result rows into a saved row set

managed on the client.

ITQuery::ExecForIteration Execute a query and return one row to the application on every call to

ITQuery::NextRow.

ITCursor::Prepare/ITCursor::Open Define a cursor for a select statement and return rows to the client on

calls to ITCursor::Fetch.

ITStatement::Prepare/ITStatement::Exec() Prepare and execute a query that returns no rows.

When to use the different ITQuery methods
This section describes how to use the query methods appropriately.

The ExecForStatus method
Use the ExecForStatus method of the Query object for queries when the application does not need any data returned from

the query (for example, DDL statements such as CREATE TABLE, DROP TABLE, CREATE VIEW, or DML statements such as

UPDATE).

The ExecForStatus method returns FALSE if a server error occurred.

15

HCL Informix Object Interface for C++ Programmer’s Guide

16

The ExecOneRow method
Use the ExecOneRow method of the Query object for queries that return (or are expected to return) one row.

The ExecOneRow method returns an ITRow interface pointer that represents the result row, or NULL if there is an error or if no

row is returned. If the query returns more than one row, the first row is returned and the rest are discarded.

The ExecToSet method
Use the ExecToSet method of the Query object for queries that return more than one row.

The ExecToSet method runs the query to completion and stores the results in the memory of the client program. If the result

set is large, the memory of the client might be inadequate. The results returned by ExecToSet are accessible in arbitrary

order.

Using ExecToSet, the connection is checked in after the call is completed. For details about checking connections in or out,

see The ITConnection class on page 49.

The ExecForIteration method
Use the ExecForIteration method of the Query object for queries that return a large result set that must be processed a row

at a time.

After issuing the query with ExecForIteration, your application must call NextRow to access the individual rows in the result

set. While your application is processing the rows returned by ExecForIteration, the connection to the database server cannot

be used for another query. You can, however, free up the connection to the server by using the ITQuery::Finish method to

finish query processing without retrieving all rows.

This method is the query-executing mechanism most similar to executing a select statement by using the DataBlade® API

mi_exec() and mi_next_row calls. Also, this method does not enable nonsequential access to the rows.

Query method example
The queryex.cpp example demonstrates use of the ExecForStatus, ExecOneRow, and ExecToSet methods.

The following excerpts illustrate the use of the query methods in the queryex.cpp example:

1. Call ITQuery::ExecOneRow() to check if the table informixfans exists in the database. If the table does not exist, use

ITQuery::ExecForStatus() to create it.

// Does the table exist? If not, then create it.
ITRow *r1 = q.ExecOneRow(
 "select owner from systables where tabname = 'informixfans';");
if (!r1
 && (!q.ExecForStatus(
 "create table informixfans (name varchar(128));")))
 {
 cerr << "Could not create table 'informixfans'!" << endl;

Chapter 1. Informix® Object Interface for C++ Guide

 return 1;
 }

2. Call ITQuery::ExecToSet to fetch the results of a select statement:

// Show the contents of the table
cout << "These are the members of the Informix fan club, version ";
ITValue *rel = q.ExecOneRow
 ("select owner from systables where tabname = ' VERSION';");
cout << rel->Printable() << " ALWAYS_DIFFERENT" << endl;
rel->Release();

ITSet *set = q.ExecToSet
 ("select * from informixfans order by 1;");
if(!set)
{
 cout << "Query failed!" << endl;
 conn.SetTransaction(ITConnection::Abort);
 conn.Close();
 return -1;
}
ITValue *v;
while ((v = set->Fetch()) != NULL)
{
 cout << v->Printable() << endl;
 v->Release();
}
set->Release();

Using prepared statements
Prepared statements can be used to perform INSERT, UPDATE, and DELETE functions efficiently and to pass binary data as

parameters. The encapsulates prepared statement functionality in the ITStatement class.

The following excerpts illustrate the use of the loadtab.cpp example to load a table from a text file by using a prepared

statement.

1. To use a prepared statement, the application creates an instance of ITStatement on the opened connection.

ITStatement stmt(conn);

2. The application prepares the SQL statement, which creates the statement parameters.

if(!stmt.Prepare(sql))
 return -1;

Created parameters have the value NULL.

3. When the application must set a parameter value, it obtains the ITValue* of the parameter through the call to the

Param() function.

ITValue *param = stmt.Param(paramno);

The application can call the NumParams() function to obtain the number of parameters.

4. The application sets the parameter value by using ITValue::FromPrintable(), or it obtains the required interface by

calling the QueryInterface() function and uses its update routines.

17

HCL Informix Object Interface for C++ Programmer’s Guide

18

if (!param->FromPrintable(pdb))
 {
 cerr << "Could not set parameter "
 << paramno << " to '" << pdb << "'" << endl;
 return -1;

The application must release the ITValue interface of the parameter by calling param->Release().

5. After all parameter values are set, the application executes the prepared query.

if (!stmt.Exec())
{
 cerr << "Could not execute statement" << endl;
 return -1;

The application can use the RowCount() function to determine the number of rows affected by the last query executed. The

application can then reset the parameter values and re-execute the query. Any parameter values that have not been reset stay

the same.

After the application is completed work with the prepared statement, it drops the statement by using the Drop() function.

The same instance of ITStatement can be used to prepare another SQL statement by calling Prepare(), which calls Drop() for

any currently prepared statement.

Using cursors
Cursors can be used to efficiently perform SELECT statements with parameters and to pass binary data as parameters.

Cursors can also be used to update database tables. The encapsulates cursor functionality into the ITCursor class.

The following excerpts from the cursupd.cpp example illustrate the use of ITCursor.

1. To use a cursor, the application creates an instance of ITCursor on the opened connection.

ITCursor cursor(conn);

2. The cursor is opened in a transaction. The preparation of the SELECT statement creates statement parameters.

conn.SetTransaction(ITConnection::Begin);

if(!cursor.Prepare("select b from bar where b < ?::integer;"))
{

If the application does not specify a parameter type name list, default parameter types are used (see The

ITStatement class on page 71). Created parameters have NULL values.

3. When the application must set a parameter value, it obtains the ITValue * of the parameter through the call to the

Param() function.

ITValue *par = cursor.Param(0);
if(!par)

The application can call the NumParams() function to obtain the number of parameters.

4. The application sets the parameter value by using ITValue::FromPrintable().

if(!par->FromPrintable("3"))
{

Chapter 1. Informix® Object Interface for C++ Guide

Alternatively, the application can obtain the required interface by calling QueryInterface() and use the update

functions provided by the interface.

5. After all parameter values are set, the application opens the cursor with the flags representing the sum of

ITCursor::Flags values.

if(!cursor.Open(0, "bar"))
{

By default, the cursor is opened as updateable and nonscrollable. The cursor cannot be opened as updateable and

scrollable at the same time. If the application uses the UpdateCurrent() or DeleteCurrent() functions of the cursor, it

must provide the name of the table that the cursor is created on as a second argument of Open().

6. The application can use a fetch function to find the row from the cursor. The fetch function accepts a pointer to the

outer unknown interface for delegation (for more details about delegation, see Object Containment and Delegation on

page 44). The pointer is null by default.

The fetch function can perform the positional fetch. If the cursor was not opened as scrollable, positional fetch

fails. The application can call the IsScrollable() function to check whether the cursor is scrollable. The fetch function

returns the pointer to the ITValue interface of the retrieved row. The NextRow() function returns the pointer to the

ITRow interface of that row.

ITRow *row;
while(row = cursor.NextRow())
 {
 ITValue *col = row->Column(0);
 if(!col)
 {
 cerr << "Couldn't get the column from the cursor's row" << endl;
 return -1;
 }

 cout << "Column 0 was " << col->Printable() << endl;

The following excerpts from the curstst.cpp example program illustrate the use of a scrollable cursor.

a. Fetch rows from the beginning to the end of the result set.

cout << "FORWARDS" << endl;
while ((rowValue = cursor.Fetch()) != NULL)
{
 rowcount++;
 cout << rowValue->Printable() << endl;
 rowValue->Release();
}

b. Fetch rows from the end to the beginning of the result set.

cout << "BACKWARDS" << endl;
for (;;)
{
 if (!(row = cursor.NextRow(0, ITPositionPrior)))
 break;
 rowcount++;
 cout << row->Printable() << endl;
 row->Release();
}

c. Fetch every second row from the beginning to the end of the result set.

19

HCL Informix Object Interface for C++ Programmer’s Guide

20

cout << "EVERY SECOND" << endl;
for (;;)
{
 if (!(row = cursor.NextRow(0, ITPositionRelative, 2)))
 break;
 rowcount++;
 cout << row->Printable() << endl;
 row->Release();
}

d. Fetch the third row from the result set.

cout << "THIRD" << endl;
row = cursor.NextRow(0, ITPositionAbsolute, 3);
if (row != NULL)
{
 rowcount++;
 cout << row->Printable() << endl;
 row->Release();
}

e. Fetch the first row of the result set.

cout << "FIRST" << endl;
row = cursor.NextRow(0, ITPositionFirst);
if (row != NULL)
{
 rowcount++;
 cout << row->Printable() << endl;
 row->Release();
}

f. Fetch the last row of the result set.

cout << "LAST" << endl;
row = cursor.NextRow(0, ITPositionLast);
if (row != NULL)
{
 rowcount++;
 cout << row->Printable() << endl;
 row->Release();
}

g. Fetch the 500th row from the result set.

cout << "500th" << endl;
row = cursor.NextRow(0, ITPositionAbsolute, 500);
if (row != NULL)
{
 rowcount++;
 cout << row->Printable() << endl;
 row->Release();
}

The cursor model in the Object Interface for C++ adheres to the following rules:

• When the cursor is first opened, it is moved before the first row. When you retrieve a row, the cursor

advances to the row and then retrieves the data.

• When a cursor reaches the last row in a set it has scrolled through and a subsequent fetch returns

NULL, the cursor remains moved on the last row. If you reverse the direction of the subsequent fetch to

retrieve the previous row, then the second-to-last row is fetched.

Chapter 1. Informix® Object Interface for C++ Guide

• If you fetch from the last row up to the first row until there are no more rows, the cursor remains

moved on the first row.

• Cursors do not wrap around. For example, you cannot open a cursor and retrieve the previous row in

an attempt to wrap around to the last row. Similarly, you cannot wrap around from the last row to the

first row.

• When using ITPositionAbsolute to move the cursor, use 1 for the first row.

7. The application can modify the columns of the fetched row by using, for example, FromPrintable().

if(!colduprow->FromPrintable("2"))
 {
 cerr << "Couldn't set the column value" << endl;
 return -1;
 }
else
 {
 cout << "Column 0 is now " << colduprow->Printable() << endl;
 }

8. If the cursor was opened as updateable, the application can update the current row by using the UpdateCurrent()

function, or delete it using DeleteCurrent(). The application can use the IsUpdatable() function to check whether

the cursor can be updated. Calling UpdateCurrent() causes modifications that have been made to the current row

to be reflected in the database. The current row being the row that was most recently returned by the Fetch() or the

NextRow() function.

if(!cursor.UpdateCurrent())
{
 cerr << "Could not update the current row" << endl;
 return -1;
}

If the application fetches the row, holds its reference, and then fetches another row, the first row is no longer current, and

updates to it are not reflected in the database when the application calls UpdateCurrent().

The application can close the cursor, modify parameters, and reopen the cursor. Reopening a cursor closes the current one.

Parameter values that have not been reset stay the same.

After the application finishes with the cursor, it drops the cursor by using the Drop() function. The same instance of ITCursor

can be used to prepare another cursor by calling Prepare(), which calls Drop() for the current cursor.

Using the large object manager
The ITLargeObjectManager class performs simple operations on large objects such as creating, opening, reading, and

seeking.

The functionality of the ITLargeObjectManager class is only supported with HCL Informix® databases.

Generally, this class is not used directly, but is included as a member of some class that implements a database type

that has one or more large objects within it. For instance, a server sound data type might have a large object that

holds the digitized waveform. The C++ type implementation must know how to read that large object. By using an

21

HCL Informix Object Interface for C++ Programmer’s Guide

22

ITLargeObjectManager as a member, the implementor of the data type can use code from the ITLargeObjectManager class

implementation.

The application can use ITLargeObjectManager::CreateLO() to create a large object. It can then get the handle

of the newly created large object in either text or binary form by using ITLargeObjectManager::HandleText() or

ITLargeObjectManager::Handle() and insert it into a table. These operations must occur within the same transaction;

otherwise the large object falls prey to garbage collection.

You can perform operations on large objects within a fetched row even though the connection is still checked out (locked).

A connection is checked out after the ITQuery::ExecForIteration() method returns multiple rows in the result set. It remains

checked out until either the last row in the result set has been fetched with ITQuery::NextRow() or the query processing has

been terminated by calling ITQuery::Finish(). While a connection is checked out, no other query can be executed on that

connection.

The following excerpt from loadtab.cpp illustrates the use of the ITLargeObjectManager.

To use the ITLargeObjectManager, the application creates an instance of it on an opened connection object. The CreateLO()

method creates the large object and sets the handle of the ITLargeObjectManager to the new large object.

The Write() method writes the string pointed to by pdb into the large object from the current position (in this case from the

beginning of the string).

Finally, the statement parameter is set to the value of the large object handle, retrieved in text format by calling ITLargeObj.

ITLargeObjectManager lobMgr(conn);
 lobMgr.CreateLO();
 lobMgr.Write(pdb, strlen(pdb));

 if (!param->FromPrintable(lobMgr.HandleText()))
 {
 cerr
 << "Could not set LOB parameter "
 << paramno << " to ’" << pdb << "’" << endl;
 return -1;
 }
 }
else if(param->TypeOf().Name().Equal("byte"))
 {
 ITDatum *pdatum = 0;
 param->QueryInterface(ITDatumIID, (void **)&pdatum);
 if(!pdatum)
 {
 cerr << "BYTE type does not expose ITDatum???" << endl;
 return -1;
 }
 if(!pdatum->SetData(pdb, pdbpos, 0))
 {
 cerr << "SetData() for BYTE failed" << endl;
 return -1;
 }
 pdatum->Release();
 }
else if (null == TRUE)
 {
 if (!param->SetNull())

Chapter 1. Informix® Object Interface for C++ Guide

 {
 cerr << "Could not set parameter "
 << paramno << " to null" << endl;
 return -1;
 }
 }

Using ITRoutineManager
The ITRoutineManager class provides an alternative way to execute server routines. The functionality of the

ITRoutineManager class is only supported with HCL Informix® databases.

When using ITRoutineManager, a connection does not have to be checked out to get or execute a routine (and a value object,

therefore, can use it), and the execution of the routine commences faster since there is no SQL to parse.

The following excerpts from routine.cpp illustrate the use of ITRoutineManager.

1. To use ITRoutineManager, the application creates an instance of it on an open connection object.

ITRoutineManager routine(conn);

2. The GetRoutine() method retrieves the function descriptor for the function whose signature is passed as an

argument.

ITBool bret = routine.GetRoutine("function sum(int,int)");

3. The application sets parameter values by using ITValue::FromPrintable().

val = routine.Param(0);
val->FromPrintable("1");
val->Release();

It can also set parameter values by using ITRoutineManager::SetParam().

4. The routine is executed with ExecForValue(), which returns a pointer to ITValue corresponding to the return value of

the routine.

val2 = routine.ExecForValue();

5. A Release() call releases the ITValue instance.

val2->Release();
}

Access data values
This section describes the specific value interfaces in detail, and shows how to modify value objects and extract information

through the value interfaces into host variables in your application.

Access data values
A column value in a database can be an atomic SQL92 type (such as integer or varchar) or, in HCL Informix® databases, any

of the following extended data types:

23

HCL Informix Object Interface for C++ Programmer’s Guide

24

• An opaque data type, such as those supplied with HCL Informix® DataBlade® modules and extensions (for example

binaryvar for binary data)

• Row types, including types that use inheritance

• Collection types, such as Set, List, and Multiset

• Large object types

To enable applications to interact uniformly with value objects, all value objects present the ITValue interface. Value objects

can expose additional interfaces to present different behaviors to the application. For instance, a value object representing a

set can expose a container interface such as ITSet or ITContainer.

The following table lists the Informix® value object interfaces.

Interface Description

ITRow Row object interface (for example, a vector of named attributes, such as a row)

ITContainCvt Container object with members that can be converted to and from C++ types

ITContainer Container object with integer index-based access

ITConversions Object that can be converted to and from C++ base types

ITDateTime Date and time information

ITDatum Underlying data access

ITErrorInfo Error information

ITEssential Base interface. Supports reference counting and interface querying

ITLargeObject Large object. Supports file read/write semantics

ITSet Container object with random access

ITValue Basic value object interface

For a table showing how the server data types are supported in the , see Supported data types on page 89.

Value object management
All value object interfaces are derived from the base interface, ITEssential. This interface defines basic reference counting

methods (AddRef and Release) on objects. Reference counting enables applications to ensure that the references to objects

remain valid.

The ITEssential::QueryInterface method enables an application to determine whether an object supports a specified

interface, either one defined by the or a custom interface created by a DataBlade® developer. If the interface is supported,

ITEssential::QueryInterface provides a pointer to the interface and returns IT_QUERYINTERFACE_SUCCESS. If the interface

is not supported, ITEssential::QueryInterface returns IT_QUERYINTERFACE_FAILED. For a list of interface identifiers for the

interfaces provided by the Object Interface for C++, see The ITEssential interface on page 84.

Chapter 1. Informix® Object Interface for C++ Guide

Because all value object interfaces derive from ITEssential, your application can obtain a pointer to any interface supported

by the value object from any other interface supported by the object.

The tabcnt.cpp example reads an integer value (the number of tables in the database) from the server into a value object,

then converts it into a host variable by using the ITConversions interface. The following code excerpts illustrate the use of

the QueryInterface method in the tabcnt.cpp example:

1. Issue the query that returns the number of tables.

ITRow *row;
row = q.ExecOneRow("select unique count(*) from systables
where tabname in (’systables’, ’syscolumns’,
’sysviews’);");

2. Extract the value object from the first column of the result row.

ITValue *v = row->Column(0);

3. Extract an ITConversions interface from the object.

ITConversions *c;

// Extract an interface. The return code IT_QUERYINTERFACE_SUCCESS
// should be used for compatibility reasons.
if (v->QueryInterface(ITConversionsIID, (void **) &c)
 == IT_QUERYINTERFACE_SUCCESS)
{

4. Convert the value into a host variable, print the value, and release the conversions interface.

int numtabs;
if (c->ConvertTo(numtabs))
{
 cout << "Number of rows in the query was: " << numtabs << endl;
}

// Release the conversions interface
c->Release();

5. Release the ITValue and ITRow interfaces.

v->Release();
row->Release();

Objects are created with a reference count of 1 when they are returned to the application. When your application calls

ITEssential::QueryInterface and obtains a pointer to an interface, another reference to the object is returned to the

application, and the reference count is incremented. When the application no longer requires an interface, it must call the

Release method to release the interface.

The ITValue interface
The ITValue interface defines simple comparison and printing methods on a value object and provides access to the server

type information of an object.

All value objects must, at a minimum, expose an ITValue interface or an interface derived from ITValue. An object can

expose other interfaces accessible through the ITEssential::QueryInterface method.

25

HCL Informix Object Interface for C++ Programmer’s Guide

26

The ITValue::TypeOf method returns a reference to an ITTypeInfo object, from which your application can extract information

such as its server type, whether it is a simple or collection type, its size (fixed or variable), and other information. For more

details, see The ITTypeInfo class on page 76.

Other ITValue methods enable your application to perform comparisons to determine whether the object is equal to,

greater than, or less than another object. To determine whether objects are comparable, your application can call the

ITValue::CompatibleType method. The ITValue::CompatibleType method is defined by the implementor of a value object.

The ITValue::CompatibleType method more loosely defines comparisons than the ITValue::SameType method, enabling

applications to compare value objects of different types.

Two types are said to be compatible if they meet any of the following conditions:

• They are the same type.

• They are built in types that expose ITDateTime (date, datetime, interval).

• They both expose the ITConversions interface.

• They are DISTINCT from the same type.

• They are row types with the same column types.

• They are collection types with the same constructor and member types.

For instance, all value objects implemented by HCL Informix® that expose an ITDateTime interface are defined to be

compatible.

Value objects can be updated by using the FromPrintable() function or set to NULL using SetNull(). The application can

determine whether the object was updated by calling the IsUpdated() function.

The ITConversions interface
The ITConversions interface is exposed by objects that can be converted to and from C++ host variable type instances.

The conversion methods are of the form ITBool ITConversions::ConvertTo(base_type). The cnvex.cpp example attempts to

determine whether the value object that has exposed an ITConversions interface through an interface pointer is convertible

to int, double, and other types.

For details about converting the columns of a row to C++ built-in types, see The ITContainerIter class on page 51.

The application can use ITConversions::ConvertFrom(base_type) to set the value object to a C++ base type value.

The ITDatum interface
The ITDatum interface is derived from ITValue and provides additional methods to get and set the underlying binary data

and to obtain the connection object on which the value object was created. Value objects expose ITDatum to be able to

participate in complex object updates.

The ITDatum::Data() method returns the (constant) pointer to the binary data. The memory for this data is managed by the

object. An application does not attempt to modify the memory returned by Data(). For text data, Data() returns the pointer to

MI_LVARCHAR, for row data, the pointer to MI_ROW, and for collections, the pointer to MI_COLLECTION.

Chapter 1. Informix® Object Interface for C++ Guide

The ITDatum::DataLength() method returns the length of underlying data. For opaque structures (such as MI_ROW and

MI_COLLECTION), the value returned by DataLength() is not meaningful to the application.

The ITDatum::SetData() method sets the value object data to the data provided as the argument. The data must be in the

same form as returned by ITDatum::Data(). For opaque structures the data length is ignored.

The ITDatum::Connection() method returns (by reference) the connection object that was used in the instantiation of the

value object.

Generally, the C++ Interface uses ITDatum() members to update the row or collection of objects.

The ITDateTime interface
The ITDateTime interface can be exposed by value objects that represent a time-based value.

The following example shows how an application uses a pointer to an ITDateTime interface to extract time-based

information and print it.

ITDateTime *dt;

// Extract an interface. The return code IT_QUERYINTERFACE_SUCCESS
// should be used for compatibility reasons.
if (v->QueryInterface(ITDateTimeIID, (void **) &dt)
 == IT_QUERYINTERFACE_SUCCESS)
{
 cout << "The date value is: " << endl
 << "Year:" << dt->Year() << endl
 << "Month: " << dt->Month() << endl
 << "Day: " << dt->Day() << endl
 << "Hour: " << dt->Hour() << endl
 << "Minute: " << dt->Minute() << endl
 << "Second: " << dt->Second() << endl;

 // Release the Date/Time interface
 dt->Release();
}

The application can use the ITDateTime::FromDate and ITDateTime::FromTime methods to set the date and time portions of

a datetime object. If an object contains both date and time information and, for example, FromDate is called, the value of the

time portion of an object does not change.

The ITLargeObject interface
The ITLargeObject interface is exposed by value objects that must expose to their underlying data a functionality similar to

that of a file I/O interface. Typically, such objects represent server data types that are derived from or contain a server smart

large object type instance.

This functionality of this interface is supported only with HCL Informix® databases.

The following excerpt illustrates how the large object interface is extracted:

27

HCL Informix Object Interface for C++ Programmer’s Guide

28

ITLargeObject *loif;
if (v->QueryInterface(ITLargeObjectIID, (void **) &loif)
 == IT_QUERYINTERFACE_SUCCESS)

The following loop reads data from the large objects and writes it to cout:

while ((n = loif->Read(buf, sizeof(buf))) > 0)
{
 cout.write(buf, n);
}
cout.flush();

The ITErrorInfo interface
The ITErrorInfo interface includes methods that manage errors from the server or from the library. The ITErrorInfo interface

enables your application to set callback routines that are called when an error occurs.

For details, see The ITErrorManager class on page 57.

This functionality of this interface is only supported with Informix® databases.

Value objects such as large objects and set interface objects that have methods that cause interactions with the server

expose the ITErrorInfo interface. The following excerpts illustrate the correct use of the ITErrorInfo interface:

1. Extract the large object interface.

ITErrorInfo *errif;
if (v->QueryInterface(ITLargeObjectIID, (void **) &loif)
 == IT_QUERYINTERFACE_SUCCESS)
{
}

2. Extract the error management interface.

// Extract the errorinfo interface.
if (v->QueryInterface(ITErrorInfoIID, (void **) &errif)
 == IT_QUERYINTERFACE_SUCCESS)
{
}

3. Close the connection before reading the large object.

conn.Close();

This induces an error.

4. Check byte count. If 0 bytes were read, check to see if an error occurred.

if (size == 0)
{
 // No bytes were read. Was there an error?
 if (errif->Error())
 {
 cerr << "Zero bytes read. Server error was" << endl
 << errif->ErrorText() << endl;
 }
}

Chapter 1. Informix® Object Interface for C++ Guide

The ITRow interface
The ITRow interface is derived from ITValue and is the primary interface for interacting with objects that represent database

rows.

For details, see The ITRow interface on page 86.

The ITSet interface
The ITSet interface can be exposed by an object that contains other objects and can provide arbitrary or nonsequential

access to the underlying objects.

The ITQuery::ExecToSet method provides random access to the result of a select query by returning this object. For an

example of an object that exposes the ITSet interface, see the example file rowset.cpp.

Container objects that expose the ITSet interface are especially useful in GUI applications, because the random-access

capabilities of the ITSet interface can be used in association with a scroll bar to support scrolling through the result set.

The following code excerpts from the rowset.cpp example illustrate the basic object container features of the row set object

created by a call to ITQuery::ExecToSet:

1. Execute a select statement and return a value object that exposes an ITSet interface.

ITSet *set = q.ExecToSet(qtext);
if (set == NULL)
 {

2. Open the set.

if (!set->Open())
 {
 }

3. Fetch value objects from the set.

while ((value = set->Fetch()) != NULL)
 {

In a graphical user interface (GUI) program, the application might move to a location within the set that corresponds

to the setting of a scroll bar before fetching data.

4. Perform tasks with the value objects, releasing any interfaces when finished.

if (value->QueryInterface(ITRowIID, (void **) &row)
 == IT_QUERYINTERFACE_FAILED)
 {
 cout << "Could not get row interface..." << endl;
 }
else
 {
 cout << row->Printable() << endl;
 row->Release();
 }

29

HCL Informix Object Interface for C++ Programmer’s Guide

30

rowcount++;
value->Release();

5. Close the set.

if (!set->Close())
 {
 }

6. Release the set.

set->Release();

The application can use the ITSet::Insert method to insert new members into the container objects and TSet::Delete() to

remove a member.

The ITContainer interface
The ITContainer interface is exposed by a value object that contains other objects and does not support a concept of current

position within the set. Instead, the ITContainer interface uses an index to extract the corresponding object.

The ITContainer object can be exposed to enable applications to use the ITContainerIter class to iterate over the result set

and extract values into C++ base type host variables.

The example program fsexamp1.cpp builds a temporary ITContainerIter object to iterate over the result row of a query

returned by ITQuery::ExecOneRow. The ITContainerIter object constructor implicitly extracts an ITContainer interface from

the object it is constructed against, or an ITContainCvt interface if possible. The approach illustrated by the fsexamp1.cpp

example is more efficient than that used by the tabcnt.cpp example (which performs similar processing).

The following code excerpts point out relevant passages from the fsexamp1.cpp example.

1. Build the query object.

ITQuery q(conn);

2. Issue the query.

ITRow *row =
 q.ExecOneRow("select unique count(*) from systables where tabname
 in (’systables’, ’syscolumns’, ’sysviews’);");

if (q.Error())
 {
 // some error processing row
 cerr << q.ErrorText() << endl;
 return 1;
 }

3. Build an ITContainerIter object on the result row, and extract a C++ int value.

int numtabs;
ITContainerIter(row) >> numtabs;

4. Release the underlying row.

row->Release();

Chapter 1. Informix® Object Interface for C++ Guide

The ITContainCvt interface
The ITContainCvt interface combines the features of the ITContainer and ITConversions interfaces.

The ITContainCvt interface can be exposed by objects that are containers of base type instances, such as data types that

include an array of values like a polygon or path. Unlike the ITContainer interface, the constituent values are converted by the

container object directly into C++ host types, instead of into other value objects.

The contain.cpp example uses a sample array value object, and extracts an ITContainCvt interface from the array object

to load values from the array into application variables. (The contain.cpp example uses a distinct data type, and so it is

only supported with Informix®.) The following excerpts point out use of the ITContainCvt interface:

1. Execute a query that returns an array.

ITRow *row =
 q.ExecOneRow("select * from bitarraytab;");

2. Extract the array value from the result row.

ITValue *arrayval = row->Column(0);

3. Extract an ITContainCvt interface from the object and release the interfaces that are no longer required.

ITContainCvt *arraycont;
arrayval->QueryInterface(ITContainCvtIID, (void **) &arraycont);
row->Release();
arrayval->Release();

4. Iterate over the ITContainCvt interface and extract the array values into application variables.

// The iterator class iterates over every member
// of an object
// exposing an ITContainer or ITContainerCvt interface.
ITContainerIter iter(arraycont);

// Add all the items to the stream
char buf[8192];
ostrstream cstream(buf, sizeof buf);

for (int i = 0; i < arraycont->NumItems(); i++)
{
 int value;
 iter >> value;
 cstream << ’[’ << i << ’]’ << " = " << value << endl;
}

5. Release the ITContainCvt interface.

arraycont->Release();

Create and extend value objects
When you retrieve values from the HCL Informix® database by using the , the values are returned as value objects. Value

objects are created by the Object Interface for C++ by using an extensible class factory that maps Informix® data types to C

++ objects.

31

HCL Informix Object Interface for C++ Programmer’s Guide

32

Important: Only Informix® supports extensible data types. Therefore, the information in this section applies only to

Object Interface for C++ applications that connect with Informix® databases.

The value object approach enables DataBlade® developers to create objects that represent new server data types

and ensures that client applications can operate with these new data types. Client applications that use the value

object approach do not depend on the representation of the object in the database and continue to run if the database

representation and the corresponding value object implementation changes. For details about library support for value

objects, see Dynamic loading on page 47.

The raw data object
If the class factory for a specific server type is not registered, the automatically creates an object that exposes both an

ITValue interface and an ITDatum interface. To obtain a pointer to the binary data of the object, use the ITDatum::Data

method. The resulting pointer can be used to access the data structure that corresponds to the object.

This approach violates the principle of information hiding. By accessing the structure through a pointer, the user of the object

creates a dependency on the particular implementation of an object. If that implementation changes, the applications that

use the object can cease to function. The interface approach to object encapsulation ensures that an application cannot

create a dependency on a particular implementation of an object.

The rawval.cpp example shows how an application can use the ITDatum interface to extract a data structure from the

value object returned from the Object Interface for C++ when no specific value object constructor is found for the server type.

This example application retrieves a pointer to a sequence of bytes from the server. The following code excerpts point out

use of the raw data interface.

1. Issue a query to return an array and extract the value from the row.

ITQuery q(conn);

ITRow *row =
 q.ExecOneRow("select byte_val from regresstab;");
// Extract the column
ITValue *v;
v = row->Column(0);

2. Extract the ITDatum interface from the object.

ITDatum *rv;
if (v->QueryInterface(ITDatumIID, (void **) &rv) ==
 IT_QUERYINTERFACE_SUCCESS)
 {

3. Extract the data pointer from the object into an application pointer.

char *pch = (char *)rv->Data();

4. Search the data types for a match.

char match[] = "Informix";

char *found = strstr(pch, match);

Chapter 1. Informix® Object Interface for C++ Guide

5. Release the ITDatum interface.

rv->Release();

Build simple value objects
Most DataBlade® developers want to create true value objects for new types. The simplest way to do so is to derive a C++

class directly from the ITDatum interface class. You must then add to the new class:

• Implementation for all the ITDatum methods, all of which are pure virtual.

• Any data members needed to hold the data of the object

• A few data members required to support the ITDatum methods; in particular, an ITTypeInfo object.

• A class constructor and destructor.

If your value object code is to be directly linked with your application, you must add:

• A static class factory function that calls the class constructor.

The class factory function must accept an instance of an ITMVDesc structure.

• A global ITFactoryList object that registers the class factory function under a server type name.

If you want to use dynamic loading feature, you must provide:

• A C-linkage factory function that calls the class constructor.

The function must accept an instance of an ITMVDesc structure.

• An entry in the map file for this class.

For details, see Dynamic loading on page 47.

The simpval.cpp example illustrates the use of the ITMVDesc descriptor and ITDatum interface. The simpval.cpp

example creates a true value object for the bitarray data type.

The following simpval.cpp code excerpts show how to create a true value object:

1. Define the data structures for holding the bit array objects.

typedef mi_integer bitarray_t;

2. Define the array of integers class from ITDatum, implementing methods for the ITDatum abstract methods.

class Bitarray : public ITDatum
{
public:

 // Overrides of ITEssential methods
 virtual ITOpErrorCode IT_STDCALL QueryInterface
 (const ITInterfaceID &ifiid,
 void **resultif);
 virtual unsigned long IT_STDCALL AddRef();
 virtual unsigned long IT_STDCALL Release();

33

HCL Informix Object Interface for C++ Programmer’s Guide

34

 // Overrides of ITValue methods
 virtual const ITString & IT_STDCALL Printable();
 virtual const ITTypeInfo & IT_STDCALL TypeOf();
 virtual ITBool IT_STDCALL IsNull();
 virtual ITBool IT_STDCALL SameType(ITValue *);
 virtual ITBool IT_STDCALL CompatibleType(ITValue *);
 virtual ITBool IT_STDCALL Equal(ITValue *);
 virtual ITBool IT_STDCALL LessThan(ITValue *);
 virtual ITBool IT_STDCALL IsUpdated();
 virtual ITBool IT_STDCALL FromPrintable(const ITString &);
 virtual ITBool IT_STDCALL SetNull();

 // Overrides of ITDatum methods
 virtual MI_DATUM IT_STDCALL Data();
 virtual long IT_STDCALL DataLength();
 virtual ITBool IT_STDCALL SetData(MI_DATUM, long, ITPreserveData *);
 virtual const ITConnection & IT_STDCALL Connection();

 // Class constructor, destructor
 Bitarray(ITMVDesc *);
 ~Bitarray();

 // Factory Constructor -- this is the entry point for objects to
 // be created. It uses the class constructor to build an object
 // and returns in to the caller. It is called automatically by the
 // Interface when an object of the "bitarray" type is returned by
 // the server to the interface
 static ITValue *MakeValue(ITMVDesc *);

 // Data members to implement ITEssential functionality
 long refcount;

 // Data members to implement ITValue functionality
 ITTypeInfo typeinfo;
 ITBool isnull, isupdated;
 ITString printable_value;

 // Data members to implement bitarray storage
 bitarray_t value;

 ITConnection conn;
};

3. Construct the object, initializing its reference count and data and type information.

Bitarray::Bitarray(ITMVDesc *mv)
 : refcount(1),
 typeinfo(*mv->vf_origtypeinfo),
 isupdated(FALSE),
 conn(*mv->vf_connection)
{
 // NULL?
 isnull = mv->vf_libmivaluetype == MI_NULL_VALUE;
 if(!isnull)
 value = *(bitarray_t *)mv->vf_data;
}

4. Define the factory entry point for the object.

Chapter 1. Informix® Object Interface for C++ Guide

ITFactoryList BitarrayFactory("bitarray",
 Bitarray::MakeValue);

When this object file is linked into the application, the linker forces the construction of the BitarrayFactory variable to

take place before the application begins to execute. The ITFactoryList constructor puts the mapping from server type

to Bitarray::MakeValue into the global type mapping list.

5. Implement the factory entry point, which must be a static member function instead of a method, because at the time

the factory entry point is called there is no object on which to call a method.

ITValue *
Bitarray::MakeValue(ITMVDesc *mv)
{
 return new Bitarray(mv);
}

This function builds a new Bitarray object and returns it. Because the object derives from the ITDatum interface, it

is valid to return the object itself instead of calling ITEssential::QueryInterface on the object to extract the correct

interface.

6. Define the ITEssential::QueryInterface function and the reference count methods.

ITOpErrorCode
Bitarray::QueryInterface(const ITInterfaceID &iid,
 void **ifptr)
{
 int result = IT_QUERYINTERFACE_SUCCESS;

 switch (ITIIDtoSID(iid))
 {
 case ITEssentialSID:
 case ITValueSID:
 case ITDatumSID:
 *ifptr = this;
 break;

 default:
 result = IT_QUERYINTERFACE_FAILED;
 *ifptr = NULL;
 break;
 }
 if (result == IT_QUERYINTERFACE_SUCCESS)
 AddRef();

 return result;
}

7. Implement the ITDatum methods appropriate for the object.

const ITString &
Bitarray::Printable()
{
 if(IsNull())
 return printable_value = "null";

 char buf[32];
 ostrstream cstream(buf, sizeof buf);
 cstream << value << ends;

35

HCL Informix Object Interface for C++ Programmer’s Guide

36

 return printable_value = cstream.str();
}

Expose multiple interfaces
If an object must expose multiple behaviors, the object must be able to return multiple interfaces. To enable an object to

return multiple interfaces, you can derive the object from the various interfaces by using multiple inheritance, or derive the

object from a separate implementation hierarchy and derive nested classes from the appropriate interfaces.

The nested class solution, which is used by the , has the following benefits:

• It allows the COM-compliant exposure of multiple interfaces.

• It allows delegation, the ability of a container class to expose an interface belonging to a class it contains. For more

details, see Object Containment and Delegation on page 44.

• It creates multiple implementations of reference counting code for each interface, making it easier to track the

reference counts for each interface. By tracking references to individual interfaces, your application can optimize

object storage by allocating or deallocating part of an object based on whether a specific interface has an

outstanding reference count. For example, if an object exposes ITLargeObject and it uses ITLargeObjectManager to

implement its functions, it can call ITLargeObjectManager::Close() when the ITLargeObject interface reference count

drops to 0 so that the number of open smart large objects is minimized.

For a demonstration of the nested-class model, see the ifval.cpp example. The ifval.cpp example is driven by the

contain.cpp example application.

The following code excerpts from ifval.cpp illustrate the implementation of an array of integers value object that exposes

both ITDatum and ITContainCvt interfaces:

1. Define the private data structures.

typedef mi_integer bitarray_t;

This structure is not exposed to the application.

2. Define the object class. Instead of using inheritance on the parent object, use nested classes to define the individual

interfaces.

class Bitarray
{
public:
 // ITDatum-derived nested class. This just passes work through
 // the parent pointer into the parent object
 class XITDatum : public ITDatum
 {
 public:
 // ...
 } datum_interface;

 // ITContainCvt-derived nested class
 // This just passes work through the parent
 // pointer into the parent object

Chapter 1. Informix® Object Interface for C++ Guide

 class XITContainCvt : public ITContainCvt
 {
 public:
 // ...
 } containcvt_interface;
 // ...
};

3. Build the object.

// Implementation
Bitarray::Bitarray(ITMVDesc *mv)
 : refcount(1),
 typeinfo(*mv->vf_origtypeinfo),
 conn(*mv->vf_connection),
 isupdated(FALSE)
{
 // NULL?
 isnull = mv->vf_libmivaluetype == MI_NULL_VALUE;

 // set up interfaces
 datum_interface.parent = this;
 containcvt_interface.parent = this;

 if(!isnull)
 value = *(bitarray_t *)mv->vf_data;
}

4. Define the class factory mapping and entry point.

ITFactoryList BitarrayFactory("bitarray",
 Bitarray::MakeValue);

// Create the Bitarray object, and return pointer to
// it's ITValue implementation
ITValue *
Bitarray::MakeValue(ITMVDesc *mv)
{
 Bitarray *impl = new Bitarray(mv);
 return (ITValue *)&impl->datum_interface;
}

5. Define the base class methods for objects and return the address of the nested interfaces when requested by the

application.

ITOpErrorCode
Bitarray::QueryInterface(const ITInterfaceID &iid,
 void **ifptr)
{
 int result = IT_QUERYINTERFACE_SUCCESS;

 // Return different interfaces as appropriate by referencing
 // nested class members.
 switch (ITIIDtoSID(iid))
 {
 case ITEssentialSID:
 case ITValueSID:
 case ITDatumSID:
 *ifptr = (void *) &datum_interface;
 break;

37

HCL Informix Object Interface for C++ Programmer’s Guide

38

 case ITContainCvtSID:
 *ifptr = (void *) &containcvt_interface;
 break;

 default:
 result = IT_QUERYINTERFACE_FAILED;
 *ifptr = NULL;
 break;
 }
 if (result == IT_QUERYINTERFACE_SUCCESS)
 AddRef();

 return result;
}

This object does not support delegation, so there is only one real QueryInterface implementation on the object.

6. Define the reference counting code.

unsigned long
Bitarray::AddRef()
{
 return ++refcount;
}

unsigned long
Bitarray::Release()
{
 if (--refcount <= 0)
 {
 delete this;
 return 0;
 }
 else
 {
 return refcount;
 }
}

7. Implement the ITDatum interface methods.

const ITString &
Bitarray::Printable()
{
 if(IsNull())
 return printable_value = "null";
 char buf[32];
 ostrstream cstream(buf, sizeof buf);
 cstream << value << ends;
 return printable_value = cstream.str();
}

8. Implement the ITContainCvt interface.

ITBool
Bitarray::ConvertTo(long item, int &dbvalue)
{
 if (IsNull() || item >= NumItems())
 return false;
 dbvalue = !!(value & (1 << (NBITS - 1 - item)));

Chapter 1. Informix® Object Interface for C++ Guide

 return true;
}

This interface converts the member value from the object into a host variable.

9. Declare pass-through methods for the nested interfaces. The methods call the corresponding method in the parent

class.

ITOpErrorCode
Bitarray::XITDatum::QueryInterface(const ITInterfaceID &ifiid,
 void **resultif)
{
 return parent->QueryInterface(ifiid, resultif);
}

unsigned long
Bitarray::XITDatum::AddRef()
{
 return parent->AddRef();
}

unsigned long
Bitarray::XITDatum::Release()
{
 return parent->Release();
}

const ITString &
Bitarray::XITDatum::Printable()
{
 return parent->Printable();
}

const ITTypeInfo &
Bitarray::XITDatum::TypeOf()
{
 return parent->TypeOf();
}

ITBool
Bitarray::XITDatum::IsNull()
{
 return parent->IsNull();
}

ITBool
Bitarray::XITDatum::SameType(ITValue *v)
{
 return parent->SameType(v);
}

ITBool
Bitarray::XITDatum::CompatibleType(ITValue *v)
{
 return parent->CompatibleType(v);
}

ITBool

39

HCL Informix Object Interface for C++ Programmer’s Guide

40

Bitarray::XITDatum::Equal(ITValue *v)
{
 return parent->Equal(v);
}

ITBool
Bitarray::XITDatum::LessThan(ITValue *v)
{
 return parent->LessThan(v);
}

ITBool
Bitarray::XITDatum::IsUpdated()
{
 return parent->IsUpdated();
}

ITBool
Bitarray::XITDatum::FromPrintable(const ITString &v)
{
 return parent->FromPrintable(v);
}

ITBool
Bitarray::XITDatum::SetNull()
{
 return parent->SetNull();
}

ITOpErrorCode
Bitarray::XITContainCvt::QueryInterface(const ITInterfaceID &ifiid,
 void **resultif)
{
 return parent->QueryInterface(ifiid, resultif);
}

unsigned long
Bitarray::XITContainCvt::AddRef()
{
 return parent->AddRef();
}

unsigned long
Bitarray::XITContainCvt::Release()
{
 return parent->Release();
}

ITBool
Bitarray::XITContainCvt::ConvertTo(long item, int &value)
{
 return parent->ConvertTo(item, value);
}

long
Bitarray::XITContainCvt::NumItems()
{

Chapter 1. Informix® Object Interface for C++ Guide

 return parent->NumItems();
}

ITBool
Bitarray::XITContainCvt::ConvertFrom(long item, int value)
{
 return parent->ConvertFrom(item, value);
}

Value objects and connection events
Value objects are created in the following circumstances:

• Query objects create instances of the top-level rows.

• Complex objects (rows and collections) create instances of their members.

• Prepared query objects create instances of their parameters.

If the value object encapsulates a small, fixed-size datum, it can keep a local copy of that datum. If the datum is large, of

variable size, or represents a complex type, the value object keeps a pointer to it. To ensure that this pointer continues to be

valid even after all the references to the object that owns the datum memory are released, ITMVDesc contains a pointer to

the ITPreserveData interface of that object (ITMVDesc.vf_preservedata). The value object keeps this pointer and use it to

call the AddRef() function when it is created. When the value object is deleted, it calls the Release() function by using the

ITPreserveData pointer.

If the value object that keeps a local copy of a datum is updated, it modifies that local copy. If the value object keeps a

pointer to the datum, it cannot modify that datum—it must create an instance of that datum and call the Release() function

on the ITPreserveData pointer passed to it in ITMVDesc. The value object ensures that the IsUpdated() function of its

ITValue interface returns TRUE if it is modified. The instance of a datum allocated on update is removed when the value

object is removed. The rowref.cpp example illustrates this "allocate-on-update" technique.

To monitor connection events, a value object that keeps a pointer to row data can maintain a connection stamp.

This connection stamp, of type ITConnectionStamp, is checked before the row data pointer is dereferenced. The

ITConnectionStamp::EqualConnInstance method of the ITConnectionStamp class can be used to tell if the connection is the

same instance as that called by another connection stamp.

Use of the connection stamp and ITPreserveData interface is demonstrated in the rowref.cpp example source file, which

is included in the contain2.cpp example application. The following code excerpts illustrate how the rowref.cpp example

preserves a reference on its underlying data instead of copying the data:

1. Add a member variable to hold the ITPreserveData interface pointer and connection stamp.

class Bitarray
{
 ITPreserveData *preservedata; // reference counter on datum
 ITConnectionStamp stamp; // connection stamp
};

41

HCL Informix Object Interface for C++ Programmer’s Guide

42

2. Initialize the preservedata member with the value from the descriptor, add a reference to it, and make a copy of the

connection stamp.

Bitarray::Bitarray(ITMVDesc *mv)
 : refcount(1),
 typeinfo(*mv->vf_origtypeinfo),
 conn(*mv->vf_connection),
 stamp(mv->vf_connection->GetStamp()),
 preservedata(mv->vf_preservedata),
 isupdated(FALSE),
 pvalue(0)
{
 // NULL?
 isnull = mv->vf_libmivaluetype == MI_NULL_VALUE;

 // set up interfaces
 datum_interface.parent = this;
 containcvt_interface.parent = this;

 if(!isnull)
 {
 pvalue = (bitarray_t *)mv->vf_data;
 // We are holding an outstanding reference to datum, so
 // increment its owner’s reference count.
 // Note that preservedata can be null for null objects.
 preservedata->AddRef();
}

3. When the object is being deleted, release the preservedata interface.

Bitarray::~Bitarray()
{
 if(isupdated)
 delete pvalue;
 else if(preservedata)
 preservedata->Release();
}

4. Before any attempt to de-reference the value member pointer, first check the connection stamp to ensure that the

underlying data is still valid.

const ITString &
Bitarray::Printable()
{
 // If the underlying data has changed its not safe to proceed.
 if (!stamp.EqualConnInstance(conn.GetStamp()))
 return ITString::Null;

 if(IsNull())
 return printable_value = "null";

 char buf[32];
 ostrstream cstream(buf, sizeof buf);
 cstream << *pvalue << ends;
 return printable_value = cstream.str();
}

Chapter 1. Informix® Object Interface for C++ Guide

Create row type value objects
Object Interface for C++, Version 2.70 and later allows row or collection type value objects to be created by using the

following methods.

Create row type value objects without an open connection
The process consists of two steps:

1. Create the ITTypeInfo object for the row type.

2. Instantiate the row type value object by using the ITFactoryList::DatumToValue() method and pass to it an ITMVDesc

structure whose members are populated appropriately.

The row type object returned this way is a null row, which can be modified by using ITRow::FromPrintable(). Because the

row type object has been created without an open connection, the underlying data of the row type value object cannot be

modified with ITDatum::SetData() or retrieved with ITDatum::Data() (where ITDatum is an interface exposed by a row type

value object). However, the remaining ITRow methods are not affected.

The following example illustrates how to create a row type value object without an open connection:

#include <iostream.h>
#include <it.h>
int
main()
{
 ITConnection conn;
 ITMVDesc desc;
 ITTypeInfo colType(conn,"integer", 4,-1,-1,-1,1);
 ITTypeInfo *ptrcolType = &colType;
 ITString colName = "int_val";
 ITTypeInfo newti(conn,"row(int_val integer)", 1,
 &ptrcolType, &colName, NULL);
 desc.vf_origtypeinfo = (ITTypeInfo *) &newti;
 desc.vf_connection = &conn;
 desc.vf_typedesc = NULL;
 desc.vf_preservedata = NULL;
 desc.vf_outerunknown = NULL;
 desc.vf_datalength = newti.Size();
 desc.vf_libmivaluetype = MI_NULL_VALUE;
 desc.vf_data = NULL;
 ITValue *val = ITFactoryList::DatumToValue (desc);
 val->FromPrintable("row(1)");
 cout << val->Printable() << endl;
 val->Release();
}

Create collection type value objects without an open connection
You can create collection type value objects without an open connection by using a process similar to creating row types. As

with row types, ITDatum::Data() and ITDatum::SetData() cannot be used to retrieve or modify values from a collection type

created without an open connection.

The following example illustrates how to create a collection type value object without an open connection:

43

HCL Informix Object Interface for C++ Programmer’s Guide

44

 #include <iostream.h>
 #include <it.h>
 int
 main()
 {
 ITConnection conn;
 ITMVDesc desc;
 ITTypeInfo memberType(conn,"integer", 4,-1,-1,-1,1);
 ITTypeInfo newti(conn, "set(integer not null)",
 "set", memberType, NULL);
 desc.vf_origtypeinfo = (ITTypeInfo *) &newti;
 desc.vf_connection = &conn;
 desc.vf_typedesc = NULL;
 desc.vf_preservedata = NULL;
 desc.vf_outerunknown = NULL;
 desc.vf_datalength = newti.Size();
 desc.vf_libmivaluetype = MI_NULL_VALUE;
 desc.vf_data = NULL;
 ITValue *val = ITFactoryList::DatumToValue (desc);
 val->FromPrintable("set{1}");
 cout << val->Printable() << endl;
 val->Release();
 }

Object Containment and Delegation
Objects that contain other objects are called container objects. There are two fundamental types of container objects:

Base type containers

Value objects that contain C++ base type instances (and do not contain other objects). For an example of base

type containers, see Value objects and connection events on page 41.

Object containers

Value objects that contain other value objects. Object containers are created by using a technique called object

delegation, in which the container object uses a predefined constituent object to define its subobjects.

Object delegation allows objects to be reused, as in C++ object inheritance, but protects against base-class fragility-the

tendency for base classes to evolve beneath derived classes. Instead of deriving one class from another, the capabilities of

one object are combined with the capabilities of another, through a process called interface delegation.

In interface delegation, a parent object exposes the interfaces of a contained object as if they were its own. The contained

object is supplied with the controlling ITEssential pointer (in COM, a controlling unknown pointer) when it is constructed; this

controlling ITEssential is the ITEssential interface of the parent object.

When any of the ITEssential methods of the delegated interface of the subobject are called (for example, QueryInterface,

AddRef, and Release), they are delegated to the controlling ITEssential interface. For example, if the QueryInterface method

of a delegated interface is called, the QueryInterface method of the parent object is called. Reference counting is also

performed on the parent object rather than the subobject.

Chapter 1. Informix® Object Interface for C++ Guide

To ensure that the parent can extract interfaces from the subobject and delete it, the parent object must have a pointer to

one interface that is not delegated. This interface is the ITEssential interface of the subobject, which must never be exposed

outside of the parent object.

The following figure illustrates object delegation.

Figure 4. Object delegation

Object delegation is demonstrated by the delegate.cpp example, which is in turn driven by the deldrv.cpp example file.

This example requires a bit array server data type and table defined by the following SQL statements:

create distinct type bitarray as integer;
create table bitarraytab (bitarraycol bitarray);
insert into bitarraytab values ('1');

The bit array value object implemented in the delegate.cpp example is created by aggregating the integer value object.

Of the interfaces exposed by this subobject, only a few methods of the ITContainCvt interface of the container object and

the ITValue interface of the integer value object are exposed outside of the bit array object. The interface of the integer value

object is exposed through delegation.

A bit array is retrieved by the following query, which is issued in the deldrv.cpp example file:

select bitarraycol from bitarraytab;

The following excerpts from the delegate.cpp example show how to use object delegation to delegate the responsibility

for creating objects to an ITValue-interface-exposing subobject within the Bitarray class:

45

HCL Informix Object Interface for C++ Programmer’s Guide

46

1. Define the various ITEssential methods.

class Bitarray : public ITContainCvt
{
public:
 // Overrides of ITEssential methods
 virtual ITOpErrorCode IT_STDCALL QueryInterface(const ITInterfaceID &ifiid,
 void **resultif);
 virtual unsigned long IT_STDCALL AddRef();
 virtual unsigned long IT_STDCALL Release();

2. Define the ITContainCvt methods. Because not all of the methods of the ITContainCvt interface of the nested object

are used, the parent object cannot delegate the ITContainCvt interface to the subobject, as it does for the ITValue

interface.

// Overrides of ITContainCvt methods
virtual long IT_STDCALL NumItems();

3. Define a pointer for the ITEssential interface of the subobject. The object must retain the ITEssential interface of the

integer object, so it can release the subobject when the parent object is deleted. This interface is never passed back

outside of a Bitarray object.

ITEssential *int_essential;

4. Define a pointer to hold an intermediate integer value object.

ITValue *int_value;

5. Make the ITEssential interface of Bitarray as the outer controlling unknown pointer.

desc.vf_outerunknown = this;

6. To create an integer subobject for delegation, the Bitarray constructor uses a local instance of ITMVDesc. This

instance is identical to the ITMVDesc instance of Bitarray, except for the use of the integer ITTypeInfo that the

Bitarray constructor retrieves by using ITTypeInfo::Source().

ITMVDesc desc = *mv;
desc.vf_origtypeinfo = (ITTypeInfo *)mv->vf_origtypeinfo->Source();

The ITMVDesc instance is passed to ITFactoryList::DatumToValue() to instantiate the integer object and return a

pointer to its ITValue. Bitarray retains this pointer for delegation.

7. Copy the ITEssential interface into a class member.

int_essential = desc.vf_outerunknown;

The object constructor overwrites the ITEssential instance named int_essential.

8. When the object is deleted, release the interface of the integer subobject.

int_essential->Release();

9. If the application requests an interface that is not supported by this object, ask the integer subobject if it supports the

interface.

ITOpErrorCode
Bitarray::QueryInterface(const ITInterfaceID &iid,
 void **ifptr)
{
 switch (ITIIDtoSID(iid))
 {
 case ITEssentialSID: case ITContainCvtSID:
 *ifptr = this;

Chapter 1. Informix® Object Interface for C++ Guide

 AddRef();
 return IT_QUERYINTERFACE_SUCCESS;

 default:
 // This object does not support the interface. Try the
 // delegated subobject...if the subobject supports the
 // interface, it will increment the reference counter on the
 // controlling unknown, so we don't need to increment it
 // here (except if you ask the subobject for its ITEssential
 // interface, in which case it will increment its own
 // reference count).
 return int_essential->QueryInterface(iid, ifptr);
 }
}

10. Implement the ITContainCvt methods.

// ContainCvt implementation
ITBool
Bitarray::ConvertTo(long item, int &dbvalue)
{
 if (int_value->IsNull() || item >= NumItems())
 return FALSE;
 const char *valasstr = int_value->Printable();
 int val = atoi(valasstr);
 dbvalue = !!(val & (1 << (NBITS - 1 - item)));
 return TRUE;
}

ITBool
Bitarray::ConvertFrom(long item, int val)
{
 if(NumItems() <= item)
 return FALSE;
 int value = val ? value | (1 << (NBITS - 1 - item))
 : value & ~(1 << (NBITS - 1 - item));
 char valasstr[32];
 sprintf(valasstr, "%d", value);
 return int_value->FromPrintable(valasstr);
}

long
Bitarray::NumItems()
{
 return NBITS;
}

Because of the way the ITValue interface is delegated, this forwarding is not necessary for the ITValue interface methods.

Dynamic loading
Dynamic loading is the feature that enables you to use shared object libraries to support value objects.

Using dynamic loading, if a client application receives from Informix® an object of a type for which it does not have a

registered factory, the Object Interface for C++ factory system scans mapping files to determine whether there is a shared

47

HCL Informix Object Interface for C++ Programmer’s Guide

48

object library that supports the type. If found, the library is loaded and the factory entry point is called to construct an object

of the specified type for the client application.

Map files
The map file is a text file.

The format of the map file is:

[server.database.]type_name lib_name entry_point [c++if_major.c++if_minor]

Each line in the map file consists of:

1. The server type, optionally prefixed with the server and database name.

2. The name of the shared library. It can be qualified with a specific path. Otherwise the library is located from the

environment variable LD_LIBRARY_PATH on Solaris or PATH on Windows™.

3. The entry point in that library for the factory routine for the object.

4. Optionally, the version of the C++ library for which an object was built, given in the format major.minor.

Within the lines, entries must be separated by tabs or spaces. For example:

myserver1.mydatabase.Polygon3D /home/myhome/lib3d.so _makePoly3D
Polygon3D lib3d.so _makePoly3D

The library does not attempt to instantiate an object if the major version of the library is different or if the minor version

of the C++ library that an object was created for is higher than the minor version of the installed C++ library. Value object

authors can use the IT_VERSION macro (defined in itcppop.h) to determine the version of the library an object is being

built for. The server and database name can be used to specify the type name.

In the preceding example, the Object Interface for C++ library instantiates an object for Polygon3D by using the library from /

home/myhome if the connection is made to myserver.mydatabase; otherwise it uses the second library.

The map file can have any valid file name. On UNIX™, the default map file is $INFORMIXDIR/etc/c++map. On Windows™,

the default map file is %INFORMIXDIR%\etc\c++map. In addition, you can manually set the INFORMIXCPPMAP

environment variable to the fully qualified path of the map file, including the name of the map file itself.

Type names that contain white space characters (or multibyte character strings) must appear in double quotation marks in

the type map file. Double quotation marks inside the type names in the type map file must be duplicated.

The entry point is the C function that is called to create a type. Enter qualified type names before unqualified type names. The

INFORMIXCPPMAP environment variable can have several map files separated by colons (:) on UNIX™ or semicolons (;) on

Windows™. The .so extension on Solaris and .dll on Windows™ are optional for the library name, and you can omit the file

extension so that the same map file can be used in multiple environments.

Guidelines
When building Object Interface for C++ applications, observe the following guidelines:

Chapter 1. Informix® Object Interface for C++ Guide

• Linkage: the shared object library factory routine must have C linkage, not C++ linkage. For example:

extern "C" ITValue *makePoly3D(ITMVDesc *mv);

• Mapping changes: if the map file changes after a client application has loaded a shared object library, the application

must flush its in-core map and reload (by calling the ReloadMapFiles method of the ITFactory class).

Operation class reference
This section is an alphabetized reference that lists and describes the operation classes. Each class has an assignment

operator and a copy constructor, which are not listed in the tables of methods.

The ITConnection class

Base class: ITErrorManager

Manages a connection to a database and the errors that can occur. The ITConnection class is used to open a connection to

the database server and to manage error objects and transaction states.

Only one result set can be outstanding on a DataBlade® API connection. The encapsulates DataBlade® API connection

serialization through check-out (with ITConnection::CheckOutConn()) and check-in (with ITConnection::CheckInConn()).

The ITQuery, ITStatement, and ITCursor methods that perform server access (for example, ITQuery::ExecToSet()

and ITCursor::Prepare()) check out the connection, perform the operation, and then check the connection in.

ITQuery::ExecForIteration() checks out the connection for the duration of the results retrieval. Some operations (for example,

large object operations and server routine execution) might require server access but do not affect the results set. These

operations use ITConnection::GetConn() to get the DataBlade® API connection without checking it out.

Applications generally do not need to use the DataBlade® API connection directly. Value objects do not attempt to perform

the operations that would require checking the connection out (it is likely to be checked out by the query object). Value

objects can use the DataBlade® API connection obtained by calling ITConnection::GetConn() to perform the operations that

do not require connection checkout. Value objects gracefully handle the possibility of ITConnection::GetConn() returning NULL

(when the connection is not open).

The following table lists the methods provided by this class.

Method Description

ITConnection() Creates an unconnected connection object with the default

DBInfo.

ITConnection(MI_CONNECTION *, enum

ITTransactionState tstate)

Constructs a connection object for an existing connection

and sets the transaction state with the provided argument.

ITBool SetDBInfo(const ITDBInfo &) Sets the DBInfo of the connection without opening the

connection. Returns TRUE if successful; FALSE if the

connection is currently open.

49

HCL Informix Object Interface for C++ Programmer’s Guide

50

Method Description

ITBool Open(const ITDBinfo &db) Opens the connection with the specified DBInfo.

ITBOOL Open() Opens the connection with the default DBInfo.

ITBool Close() Closes the database connection.

ITBool IsOpen() const Returns TRUE if the connection is open, FALSE if it is not.

MI_CONNECTION *GetConn() Returns DataBlade® API connection encapsulated by

ITConnection object, NULL if ITConnection is not open.

ITBool SetTransaction(enum ITTransactionState,

ITCallBackFuncPtr func=NULL, void *userdata=NULL)

Sets the transaction state. The transaction state can be set

to Begin to begin the transaction, or Commit or Abort to

finish it. See Connection transaction states on page 13

for more information. The CallBackFuncPtr and user data

arguments are reserved for future use. The transaction

states are:

ITTransactionState::NONE

ITTransactionState::AUTO

ITTransactionState::BEGIN

ITTransactionState::COMMIT

ITTransactionState::ABORT

enum ITTransactionState GetTransactionState() Returns the transaction state.

MI_CONNECTION *CheckOutConn() Checks out the DataBlade® API connection handle in

order to bypass this C++ interface. Returns NULL if the

connection is already checked out or the ITConnection is

not connected to a database.

Restriction: This interface is for compatibility with

DataBlade® API. Direct use of the DataBlade® API

is discouraged.

ITBool CheckInConn() Returns a checked-out DataBlade® API connection to

the ITConnection. Returns TRUE if the connection was

previously checked out, FALSE otherwise.

const ITConnectionStamp &GetStamp() Gets the current connection stamp object. (For details, see

The ITConnectionStamp class on page 50.)

const ITDBInfo &GetDBInfo() Retrieves the DBInfo object information with which the

connection was initialized.

Chapter 1. Informix® Object Interface for C++ Guide

The ITConnectionStamp class

Base class: ITObject

Connection events can invalidate value objects to which the application maintains references. A connection stamp can

be extracted from a connection and compared to a previously extracted connection stamp to determine whether the

connection object calls the same server connection and transaction. This object is intended primarily for the development of

DataBlade® value objects. For more details, see Value objects and connection events on page 41.

Typically, a user object gets a connection stamp when it establishes a connection. Whenever the value object must verify

that this transaction or connection is current, it gets another connection stamp and compares them using one of the

comparison methods listed in the following table.

This class provides the following methods.

Method Description

ITBool Equal(const ITConnectionStamp &) const Indicates whether these stamps refer to the same

connection and transaction.

ITBool EqualConnInstance(const ITConnectionStamp &)

const

Indicates whether these stamps refer to the same

connection instance.

ITBool EqualTransactionInstance(const

ITConnectionStamp &) const

Indicates whether these stamps refer to the same

transaction.

The ITContainerIter class

Base class: ITObject

Provides a simple, syntactically compact interface for extracting C++ base-type values (such as int, long, or double) from an

object. Value objects passed to an ITContainerIter object must expose either an ITContainer or ITContainCvt interface.

This class provides the following methods.

Method Description

ITContainerIter(ITContainer *), ITContainerIter(ITEssential

*), ITContainerIter(ITContainCvt *)

Binds an ITContainer or ITContainCvt interface into the

newly constructed iterator. The values in the object can

later be extracted by using the >> operator.

ITContainerIter &operator >> (ITValue *&) Extracts a pointer to the value interface of the next

column. If there are no more values left, sets the ITValue

pointer to NULL. This method can be used to extract the

individual columns into interface pointer variables. The

ITValue interface must be released by the application.

51

HCL Informix Object Interface for C++ Programmer’s Guide

52

Method Description

ITContainerIter &operator >> (modifiable_ lvalue &) Copies the value into the specified variable. This operation

raises an exception if the column and variable type are not

compatible or convertible. Valid types for the modifiable_

lvalue parameter are as follows:

short

int

double

long

float

long double

const char *

ITString

ITInt8

bool (if the C++ compiler supports bool)

ITContainerIter &ITContainerIter::operator<< (<type>) Sets the value of a contained item from the value of the

C++ type given as <type>, where <type> can be any of the

following type specifiers:

short

int

double

long

float

long double

const char *

ITString &

const ITString &

ITInt8

bool (if the C++ compiler supports bool)

ITContainerIter has a state that can be either

StateOK, StateOutOfBounds, StateUninitialized, or

StateConversionFailed. If ITContainerIter state is not

StateOK, the use any of the operators does not perform

any conversions and does not change the state or

position in the container.

void Reset() Resets the state to StateUninitialized or StateOK,

depending on whether the container iterator was

initialized.

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

StateCode State() Retrieves the state of the container iterator. State might

be one of the following: StateUninitialized, StateOK,

StateOutOfBounds, or StateConversionFailed.

The initial state of the ITContainerIter is StateUninitialized

if the value object that ITContainerIter was created on

does not expose ITContainCvt or ITContainer; otherwise

the initial state is StateOK. Calling ITContainerIter::Reset()

resets a state to this initial state. StateOutOfBounds

is set by the shift operators (<< >>) when the item

position exceeds the number of items in the container.

StateConversionFailed is set by the operator if the

container does not expose ITContainCvt and the item

does not expose ITConversions, or if the conversion

function fails.

int Index() Retrieves the current container iterator index.

The ITCursor class

Base class: ITErrorManager

Manages database cursors.

This class provides the following methods.

Method Description

ITCursor(const ITConnection &) Creates a cursor object for a connection.

ITBool Prepare(const ITString &, int nargs = 0, const

ITString *typeNames = 0, ITEssential **outerunkns = 0);

Prepare() prepares the SQL statement and creates a list of

null-valued parameters. Prepare() takes as an argument

an ITString object, which must be a single valid SQL

statement. See The ITStatement class on page 71.

ITBool Drop() Drops the prepared statement and removes the parameter

list.

int NumParams() const Returns the number of parameters in a prepared

statement. It returns -1 if the statement has not been

successfully prepared.

ITValue *Param(int) Allows the application to return the ITValue of a

parameter . The argument is a zero-based parameter

53

HCL Informix Object Interface for C++ Programmer’s Guide

54

Method Description

number. Param() returns NULL if there are no parameters

or if the parameter number is out of bounds.

ITBool SetParam(int parmno, ITDatum *) Sets the cursor parameter with the number equal to

parmno to be the value object passed as the second

argument. Returns TRUE if successful, FALSE if it fails.

Supports binding parameters in both binary and text

mode. For more information, see the example in Usage on

page 73.

const ITString &QueryText() const Returns the query text. Returns ITString::Null if the

statement has not been successfully prepared.

ITBool IsReadOnly() const Returns TRUE if the cursor is read only, otherwise returns

FALSE.

ITBool Open(int flags = 0, const ITString &tableName =

ITString::Null)

Opens a cursor with the flags taken from the sum of the

Open() flag values. Flag values can be the sum of:

ITCursor::Sensitive

ITCursor::ReadOnly

ITCursor::Scrollable

ITCursor::Reopt

ITCursor::Hold

Calling Open() without arguments opens a nonscrollable

cursor. Open() returns TRUE on success, FALSE otherwise.

It is an error for a cursor to be both scrollable and can be

updated. If updates are performed by using the cursor,

tableName must be passed as the second argument.

ITBool Close() Closes the cursor. After calling Close(), the application can

modify parameters and open a new cursor.

const ITString &Command() const Returns the command verb.

const ITString &Name() const Returns the name of the cursor. Returns ITString::Null if

the cursor has not been opened successfully.

ITRow *NextRow(ITEssential **outerunkn = NULL, enum

ITPosition pos = ITPositionNext, long jump = 0)

Fetches the next row and returns the pointer to the ITRow

interface of the row object. Returns NULL if the row cannot

be fetched. Until the cursor row is modified or deleted,

a new instance of that row can be fetched again by

specifying fetch position ITPositionCurrent even if the

cursor is not scrollable.

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

ITBool UpdateCurrent() Executes the SQL statement UPDATE WHERE CURRENT

OF using the values of the updated columns in the current

row. Returns TRUE if the update was successful and

FALSE if it was not. It is an error for the application to call

UpdateCurrent() if NextRow() or a fetch function fails.

ITBool DeleteCurrent() Executes the SQL statement DELETE WHERE CURRENT

OF. Returns TRUE if the deletion was successful and

FALSE if it was not. It is an error for the application to call

DeleteCurrent() if NextRow() or a fetch function fails.

ITValue *Fetch(ITEssential **outerunkn = NULL, enum

ITPosition pos = ITPositionNext, long jump = 0)

Fetches a row from the cursor and returns the pointer to

its ITValue interface.

const ITTypeInfo *RowType() const Returns server type information about the row to be

fetched. Can be called after Prepare() to get row type

information before opening the cursor.

ITBool IsScrollable() const Returns TRUE if the cursor is opened as scrollable,

otherwise returns FALSE.

Usage

ITCursor can pass binary data as parameters in prepared SQL SELECT statements. In addition, ITStatement can pass binary

data as parameters in prepared SQL DML statements DELETE, INSERT, UPDATE, and SELECT. For an example showing how

can be used to set a parameter to binary data in a prepared INSERT statement, see Usage on page 73

The ITDBInfo class

Base class: ITErrorManager

Sets or returns information about connections to HCL Informix® databases (such as the user, database, system, and

password). When an ITDBInfo is used to open a connection, the ITDBInfo becomes frozen and cannot be modified by using

the Set calls.

This class provides the following methods.

Method Description

ITDBInfo() Constructs an ITDBInfo object for the system environment

of the user.

ITDBInfo(const ITDBInfo &) Copy constructor. The ITDBInfo copy constructor makes

a deep copy rather than a shallow copy. The new ITDBInfo

55

HCL Informix Object Interface for C++ Programmer’s Guide

56

Method Description

object is thawed and can be modified by using the Set

calls.

ITDBInfo(const ITString &db, const ITString &user =

ITString(), const ITString &system = ITString(), const

ITString &passwd = ITString());

Constructs ITDBInfo and sets system database and user

information. This method has these parameters:

db is the database name.

user is the user name.

system is the system name.

passwd is the password.

ITBool operator==(const ITDBInfo &) const; Compares the instances of the ITDBInfo objects.

ITBool Frozen() const Returns TRUE if the information of this database object is

frozen, or FALSE if the information is not frozen.

ITBool Freeze() Freezes the database information of the object.

ITBool CreateDatabase (int flags = ITDBInfo::Default, const

ITString &dbspace = ITString::Null)

Creates the database; returns TRUE if the database was

successfully created, FALSE if it was not. The database

name and server name are taken from ITDBInfo.

The following values are valid for type:

ITDBInfo::Default

ITDBInfo::Log

ITDBInfo::BufferedLog

ITDBInfo::ANSIModeLog

dbspace is the name of dbspace; default dbspace

if omitted.

ITBool DropDatabase() Drops the database; returns TRUE if the database was

successfully dropped, FALSE if it was not.

ITBool SetUser(const ITString &) Sets the user name.

ITBool SetDatabase(const ITString &) Sets the database name.

ITBool SetSystem(const ITString &) Sets the system name.

ITBool SetPassword(const ITString &) Sets the password.

const ITString &GetUser() const Returns the user name.

const ITString &GetDBLocaleName() const Returns the database locale name.

const ITString &GetSystem() const Returns the system name.

const ITString &GetDatabase() const Returns the database name.

Chapter 1. Informix® Object Interface for C++ Guide

The ITDBNameList class

Base class: ITErrorManager

Encapsulates the list of database names. Obtain the list by calling the Create() function. After the list is created, applications

can use NextDBName() and PreviousDBName() to traverse it.

This class provides the following methods.

Method Description

ITDBNameList() Creates an instance of ITDBNameList.

ITBool Create() Creates a list of all databases for all systems in DBPATH

and INFORMIXSERVER.

ITBool Create(const ITString &) Creates a list of all databases for a system with the

specified name.

ITBool Create (ITConnection &) Creates a list of all databases corresponding to the

connection.

ITBool IsDBName(const ITString &) Returns TRUE if the name supplied as an argument appears

in the database name list; FALSE if it does not.

const ITString &NextDBName() Returns the reference to the next database name; returns

ITString::Null if there is no next database name.

const ITString &PreviousDBName() Returns the reference to the previous database name;

returns ITString::Null if there is no previous database

name.

void Reset() Resets the database list name to the state it was in

immediately after the list was created.

The ITErrorManager class

Base class: ITObject

Manages error callbacks from the server or from the client library. Multiple callbacks can be set on an ITErrorManager

instance. ITErrorManager defines functionality used by a number of subclasses for managing and dispatching errors for

different operations, such as issuing queries and retrieving results. Using the ITErrorManager class, applications can set

callback functions to be triggered by exceptional conditions generated during database access.

Events that might trigger the call to callback functions are:

57

HCL Informix Object Interface for C++ Programmer’s Guide

58

• Server exceptions-SQL errors, transaction state changes, warnings, and other exceptions.

• DataBlade® API library exceptions.

• C++ library events.

Callback functions must have the following signature:

typedef void (*ITCallBackFuncPtr)
 (const ITErrorManager &errorobject,
 void *userdata,
 long errorlevel);

The userdata parameter is for data passed to the callback function. The error-level parameter corresponds to the

DataBlade® API error level, and indicates whether the error is a message, an exception, or an unrecoverable error.

This class provides the following methods.

Method Description

ITBool Error() const Returns TRUE if either a server or client error occurs.

const ITString &SqlState() const Returns the SQLSTATE code of an error. For details about

SQLSTATE, see the Informix® Guide to SQL: Syntax.

const ITString &ErrorText() const Returns error message text.

ITBool AddCallback(ITCallbackFuncPtr userfunc, void

*userdata)

Adds a callback. For details, see Implementation notes on

page 7.

ITBool DelCallback(ITCallbackFuncPtr userfunc, void

*userdata)

Deletes a user-defined callback registered through

AddCallback().

ITBool DispatchErrorText(const ITString &message) Dispatches an error message with the specified message

text.

ITBool Warn() const Returns TRUE if a warning occurred.

const ITString & WarningText() const Returns warning message text.

The ITFactoryList class

Base class: none

This functionality provided by this class is only supported with Informix® databases.

Adds mappings from Informix® data types to functions that build value objects to represent instances of these data types.

For more details, see Build simple value objects on page 33.

Developers of value objects can either use this class and compile the value object code into applications or, for greater

reusability, use dynamic loading as described in Dynamic loading on page 47.

Chapter 1. Informix® Object Interface for C++ Guide

This class provides the following methods.

Method Description

ITFactoryList(const char *name, ITFactoryFuncPtr func, ITBool flushable

= false);

Declares a mapping from the specified server

type (the name parameter) to the specific

factory function pointer (func).

static void ReloadMapFiles(ITErrorManager *errobj); Forces a reload of the factory object map files.

The map files map server types to dynamically

loadable libraries that contain functions for

building value objects. If the map changes, an

application can call this procedure to reload the

maps.

static ITBool FlushDynamicFactories(ITErrorManager *errobj); Unloads all the dynamically loaded libraries and

clears dynamic entries from the list of factories

To retain the ability to scan the map files after

dumping, applications call ReloadMapFiles()

instead of FlushDynamicFactories.

static void Init() Initializes the built-in factory list in case the

compiler does not perform this initialization

automatically.

static ITValue *DatumToValue (ITMVDesc &) Creates the instance of the value object by

using the provided ITMVDesc. Returns the

pointer to the ITValue interface of the created

object. Returns NULL if it fails.

In the absence of the factory for the

constructed type, DatumToValue() uses the

factory of the constructor. For example, it would

use the built-in set factory for the type set

(integer not null).

GetInitState() Verifies that the library loaded into memory

is properly initialized. For more information

and an example, see Successful initialization

verification on page 59.

Successful initialization verification

Under some circumstances, the library might be loaded into memory but not properly initialized. For example, if the

environment variable CLIENT_LOCALE is set to an invalid locale, the GLS library does not properly initialize, and thus the

Object Interface for C++ library also does not properly initialize.

59

HCL Informix Object Interface for C++ Programmer’s Guide

60

To allow Object Interface for C++ application programs to verify that initialization succeeded, several new members have

been added to the ITFactoryList class (defined in the public header file $INFORMIXDIR/incl/c++/itcppop.h):

class IT_EXPORTCLASS ITFactoryList
 {
 ...

 public:

 // These are the built-in factory list initialization state values
 enum InitState { NOTINIT, INITING, INITED };
 // This function can be used to determine if the built-in factory
 // list initialized properly. It returns
 ITFactoryList::NOTINIT
 // if initialization failed.
 static InitState GetInitState();

 ...

 };

The user application calls GetInitState() before using any Object Interface for C++ classes or interfaces to determine if

Object Interface for C++ initialized properly, as follows:

 main(int, char *)
 {
 // check that Object Interface for C++ DLL initialized ok
 if (ITFactoryList::GetInitState() == ITFactoryList::NOTINIT)
 {
 cout << "Error: Object Interface for C++ DLL not
 initialized" <<
 endl;
 cout << "Error: exiting program" << endl;
 return -1;
 }
 ...

The ITInt8 class

Base class: none

Encapsulates 8-byte integer value. This class can be used in any client application, although only HCL Informix® supports

the int8 data type.

This class provides the following methods.

Method Description

ITInt8() Creates uninitialized instance of ITInt8.

ITInt8 &operator=(<<type>) Sets ITInt8 to the value of <type>, where <type> is one of

the following:

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

int

long

float

double

mi_int8

IT_LONG_LONG

where IT_LONG_LONG is a compiler-provided 8-byte

integer (if any). The result of the conversion might not fit

into the type specified by <type>.

IsNull() Returns TRUE if an object does not represent a valid 8-byte

integer.

Conversion operators ITInt8 provides conversions to the value of one of the

following types:

int

long

float

double

mi_int8

ITString

IT_LONG_LONG

Other operators ITInt8 provides assignment comparison, and arithmetic

operators. The results of arithmetic operations on ITInt8

objects might not fit into 8 bytes, in which case, the result

would not be a valid ITInt8 object.

In Version 2.70, you can use new constructors to create objects by using each of the built-in numeric types as initialization

arguments. This eliminates the need to explicitly assign a numeric type that is not an int8 (for example, int) to an ITInt8

object before comparing it with an ITInt8 object.

The new constructors are:

 ITInt8(const int);
 ITInt8(const long);
 ITInt8(const float);
 ITInt8(const double);
 ITInt8(const mi_int8);
 ITInt8(const ITString &);
 #ifdef IT_COMPILER_HAS_LONG_LONG
 ITInt8(const IT_LONG_LONG);
 #endif

61

HCL Informix Object Interface for C++ Programmer’s Guide

62

Before version 2.70, to initialize an ITInt8 object, the application must assign a value to an ITInt8 object by using the

assignment operator (=), as follows:

int i = 100;
 ITInt8 i8;
 i8 = i;
 if (i8 == (ITInt8)i)

With Version 2.70 and later, the assignment can be replaced by an ITInt8 constructor call:

int i = 100;
 ITInt8 i8(i); // or ITInt8 i8(100);
 if (i8 == (ITInt8)i)

The ITLargeObjectManager class

Base class: ITErrorManager

This functionality provided by this class is only supported with HCL Informix® databases.

Manipulates large objects. Large object operations are similar to normal file management operations (read, write, seek, and

other operations). Client value objects based on large objects in the server typically expose an ITLargeObject interface. For

details, see Object Containment and Delegation on page 44. See the Informix® Guide to SQL: Reference for details about

large objects.

This class provides the following methods.

Method Description

ITLargeObjectManager(const ITConnection &) Creates a large object manager for the specified

connection.

ITBool SetHandleText(const ITString &handleText, int

flags = MI_LO_RDWR)

Sets a manager to handle a large object, where const

ITString is the large object handle in text format.

const ITString &HandleText() Returns the handle of the currently managed large object

in a text format.

ITBool SetHandle(const MI_LO_HANDLE *handle, int flags

= MI_LO_RDWR)

Sets a manager to handle a large object, where const

MI_LO_HANDLE is a pointer to the large object handle.

const MI_LO_HANDLE *Handle() Returns the handle of the currently managed large object

in the binary format through the constant MI_LO_HANDLE.

int Read(char *buf, int cnt) Reads bytes from the large object at the current position.

int Write(const char *buf, int cnt) Writes bytes to the large object at the current position.

ITInt8 Seek(ITInt8 off, int cntl = 0) Sets the current position of the large object; cntl is a

position like UNIX™ lseek (0 is absolute position, 1 is

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

relative to current position, and 2 is relative to end of the

large object).

ITInt8 Size() Returns the total size of the large object.

ITBool SetSize(ITInt8) Sets the total size of the large object.

ITBool CreateLO(int flags = IT_LO_WRONLY |

IT_LO_APPEND)

Creates a large object. Sets the handle of the manager to

the new large object. The handle is then inserted into a

table column (for example, by using a prepared SQL insert

statement).

ITBool CreateLO(MI_LO_SPEC*, int flags = IT_LO_WRONLY

| IT_LO_APPEND)

Creates a large object with the specifications provided.

ITBool Close() Closes the smart large object managed by this

ITLargeObjectManager instance. Returns TRUE if the smart

large object was not open or was closed successfully.

Returns FALSE on failure.

Accessing smart large objects in nondefault sbspaces

One way to access smart large objects in nondefault spaces is to call the client-side DataBlade® API functions that create,

initialize, and set the column-level characteristics of a large object specification structure and then pass a pointer to this

structure (MI_LO_SPEC *LO_spec) to the overloaded function.

ITBool CreateLO(MI_LO_SPEC *LO_spec,
 int flags=IT_LO_WRONLY | IT_LO_APPEND) ;

A better way is to introduce a new C++ class to encapsulate a large object specification structure and possibly modify the

existing ITLargeObjectManager class to support passing the column-level storage characteristics of smart large objects as

encapsulated C++ objects for use by ITLargeObjectManager::CreateLO.

Here is a description of the short-term solution. Before calling CreateLO, the following DataBlade® API call sets the fields of

LO_spec to the column-level storage characteristics of column dolmdolm1.testdata, which is the CLOB column:

res = mi_lo_colinfo_by_name(miconn,
 (const char *)"dolmdolm1.testdata",
 LO_spec);

Among the attributes for column testdata is the sbspace location specified by the PUT clause when table dolmdolm1 is

created. The smart large object location attribute is used by CreateLO (which calls DataBlade® API function mi_lo_create())

when it creates the smart large object.

Here is the complete, modified test case with the new solution:

>>>>>>>>>>>> Begin modified test case with new solution >>>>>>>>>>>>
#include <stdlib.h>
#include <iostream.h>

63

HCL Informix Object Interface for C++ Programmer’s Guide

64

#include <it.h>
int
main(int argc, const char *argv[])
{
 ITDBInfo dbinfo;
 ITConnection conn;
 char buf[1024];
 int i;
 ITString types[2];
 ITString sqlcmd;
 types[0] = "VARCHAR";
 types[1] = "VARCHAR";
 cout << " INFORMIXSERVER : ";
 cin.getline(buf, sizeof(buf));
 if (!dbinfo.SetSystem(buf)){
 cout << "Could not set system " << endl;
 return (1);
 }
 cout << " DATABASE : ";
 cin.getline(buf, sizeof(buf));
 if (!dbinfo.SetDatabase(buf)){
 cout << "Could not set database " << endl;
 return (1);
 }
 cout << " USER : ";
 cin.getline(buf, sizeof(buf));
 if (!dbinfo.SetUser(buf)){
 cout << "Could not set user " << endl;
 return (1);
 }
 cout << " PASSWORD : ";
 cin.getline(buf, sizeof(buf));
 if (!dbinfo.SetPassword(buf)){
 cout << "Could not set password " << endl;
 return (1);
 }
 if (!conn.Open(dbinfo) || conn.Error()) {
 if (!conn.Open() || conn.Error()) {
 cout << "Could not open database " << endl;
 return (1);
 }
 cout << "Start Transaction ..." << endl;
 if (!conn.SetTransaction(ITConnection::Begin)) {
 cout << "Could not start transaction " << endl;
 return (1);
 }

 ITStatement stmt(conn);
 cout << " SBLOBSPACE : ";
 cin.getline(buf, sizeof(buf));
 sqlcmd = "create table dolmdolm1 (";
 sqlcmd.Append("uid integer primary key,");
 sqlcmd.Append("testdata CLOB)");
 sqlcmd.Append(" PUT testdata in (");
 sqlcmd.Append(buf);
 sqlcmd.Append(") lock mode row;");
 cout << sqlcmd << endl;
 if (stmt.Error()) {

Chapter 1. Informix® Object Interface for C++ Guide

 cout << "Could not create statement " << endl;
 return (1);
 }
 if (!stmt.Prepare(sqlcmd)) {
 cout << "Could not prepare create statement " << endl;
 return (1);
 }
 if (!stmt.Exec()) {
 cout << "Could not execute create statement " << endl;
 return (1);
 }
 if (!stmt.Drop()) {
 cout << "Could not drop create statement " << endl;
 return (1);
 }
 cout << "Please monitor your sblobspaces, [return to continue]";
 cin.getline(buf, sizeof(buf));
 /************* begin new solution code **************************/
 MI_LO_SPEC *LO_spec = NULL;
 MI_CONNECTION *miconn = NULL;
 mi_integer res;
 ITLargeObjectManager lo(conn);

 miconn = conn.GetConn();
 if (miconn != NULL)
 {
 res = mi_lo_spec_init(miconn, &LO_spec);
 if (res == MI_ERROR)
 {
 cout << "stmt_test: mi_lo_spec_init failed!" << endl;
 return (1);
 }
 res = mi_lo_colinfo_by_name(miconn,
 (const char *)"dolmdolm1.testdata",
 LO_spec);
 if (res != MI_ERROR)
 {
 cout << endl << "Create a large object. Please wait ..." <<
 endl;

 ITBool status = false;
 status = lo.CreateLO(LO_spec, IT_LO_WRONLY | IT_LO_APPEND);
 if (status = true)
 {
 for (i = 0; i < 1000; i++)
 lo.Write("1234567890123456789012345678901234567890123456789
 012345678901234567890123456789012345678901234567890",100);
 }
 else
 {
 cout << "stmt_test: CreateLO w/non-default sbspace
 failed!" <<
 endl;
 return (1);
 }
 }
 else
 {

65

HCL Informix Object Interface for C++ Programmer’s Guide

66

 cout << "stmt_test: mi_lo_colinfo_by_name failed!" << endl;
 return (1);
 }
 }
 else
 {
 cout << "stmt_test: conn.GetConn returned NULL!" << endl;
 return (1);
 }
 /************* end new solution code **************************/
 cout << "The default sblobspace has changed" << endl;
 cout << "Please monitor your sblobspaces, [return to continue]";
 cin.getline(buf, sizeof(buf));

 cout << endl << "inserting row into dolmdolm1" << endl;
 if (!stmt.Prepare("insert into dolmdolm1 values (?,?);",2,types))
 {
 cout << "Could not prepare insert cursor " << endl;
 return (1);
 }
 ITValue *param;
 param = stmt.Param(0);
 param->FromPrintable("0");
 param->Release();
 param = stmt.Param(1);
 param->FromPrintable(lo.HandleText());
 param->Release();
 if (!stmt.Exec()) {
 cout << "Could not execute insert statement " << endl;
 return (1);
 }
 if (!stmt.Drop()) {
 cout << "Could not drop insert statement " << endl;
 return (1);
 }
 cout << endl;
 cout << "Please monitor your sblobspaces." << endl;
 cout << "The large object is still stored within the default
 sblobspace." << endl;
 cout << "[return to continue]";
 cin.getline(buf, sizeof(buf));
 /*
 cout << "Rollback Transaction ..." << endl;
 if (!conn.SetTransaction(ITConnection::Abort)) {
 cout << "Could not rollback transaction " << endl;
 return (1);
 }
 */
 cout << "Commit Transaction ..." << endl;
 if (!conn.SetTransaction(ITConnection::Commit)) {
 cout << "Could not commit transaction " << endl;
 return (1);
 }
 conn.Close();
 cout << endl;
 return 0;
}
>>>>>>>>>>>> End modified test case with new solution >>>>>>>>>>>>>>

Chapter 1. Informix® Object Interface for C++ Guide

The ITMVDesc class

The ITMVDesc structure is not an operation class, but a descriptor that holds the instance information necessary to create a

value object. The ITMVDesc structure is passed to the factory constructor function when an object of a given server type is

retrieved from the server and loaded into the application.

This structure contains the following individual members.

Member Description

long vf_datalength Data length in bytes, pointed to by the member data pointer

vf_data.

ITConnection *vf_connection Pointer to the connection object.

int vf_libmivaluetype Return value of the call to a DataBlade® API function call

[mi_value(...)]; see the Informix® DataBlade® API Programmer's

Guide for complete documentation of DataBlade® API function

calls.

char *vf_data Points to the datum underlying the value object. For example,

for the server type lvarchar, vf_data points to the MI_LVARCHAR

structure.

ITypeInfo *vf_origtypeinfo Points to the ITTypeInfo object for the value object.

ITEssential *vf_outerunknown Points to the IUnknown interface of the object that is the

controlling unknown for the object delegation/aggregation

process.

Value is NULL if there is no controlling unknown.

The vf_outerunknown member is assigned the value of the inner

unknown of the object when ITMVDesc * is passed to the entry

point function MakeValue(ITMVDesc *), which is implemented by

the value object developer.

ITPreserveData *vf_preservedata Can point to the ITPreserveData interface of an object that

manages the datum memory.

For a detailed description of the vf_preservedata member and its

use, see Value objects and connection events on page 41.

The ITObject class

Base class: none

67

HCL Informix Object Interface for C++ Programmer’s Guide

68

A common base class that serves solely as an abstraction of an object. Instances of operation interface classes (except for

the ITString class) are all derived from the ITObject class.

This class provides the following methods; all operation classes override these methods to perform reference counting for

copy operations and assignment.

Method Description

virtual ~ITObject() Virtual destructor.

ITObject &operator=(const ITObject &) Assignment operator.

The ITPosition class

ITPostion is an enumerated type.

Functions that might perform positioning (for example, ITCursor::NextRow() and ITSet::Fetch()) accept an instance of

ITPosition as one of their arguments.

Field Description

ITPositionCurrent Specifies the current position in the sequence.

ITPositionNext Specifies the next position in the sequence.

ITPositionPrior Specifies the previous position in the sequence.

ITPositionFirst Specifies the first position in the sequence.

ITPositionLast Specifies the last position in the sequence.

ITPositionAbsolute Specifies that the corresponding (always positive) offset is from the beginning of

the sequence; for example:

value = set.Fetch(0, ITPositionAbsolute, 10)

ITPositionRelative Specifies that corresponding offset is from the current position; for example:

value = list.Fetch(0, ITPositionRelative, -1)

The ITPreserveData class

Base class: none

Provides an interface for maintaining a reference to database data received from the server, for use by the implementor of a

value object. For details, see Value objects and connection events on page 41.

This class provides the following methods.

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

virtual unsigned long AddRef() Increment reference count.

virtual unsigned long Release() Decrement reference count.

The ITQuery class

Base class: ITErrorManager

Manages query processing, including errors that occur as a result of queries. ITQuery is derived from ITErrorManager.

Results are returned as binary data encapsulated by value objects. To obtain a text version of the results, you must use

conversion methods such as ITValue::Printable.

For details about using the different query methods, see When to use the different ITQuery methods on page 15.

For the ExecOneRow, ExecToSet, and NextRow methods, the unknwn argument is the address of a pointer to an ITEssential

interface of an object that will be the parent of any subobjects that might be created by the method. The newly created

subobject returns its own ITEssential interface pointer in the same argument (which is an argument of type in/out) if the

object delegation was successful. The subobject reference count is 1 after the call. The default argument is NULL to indicate

that no object delegation is to be performed.

An ITQuery is always created in the context of the server connection.

The ITQuery::ExecOneRow method returns NULL if an error occurred, but also returns NULL if the query returns no rows but is

not in error. To check if there was a DBMS error, use the Error method.

This class provides the following methods.

Method Description

ITQuery(const ITConnection &) Constructor.

ITBool ExecForStatus(const ITString &) Issues a query for which the caller is only interested in result

status such as whether the query succeeded, the number of rows

affected, and results. No result rows are returned. Specify the

query in the ITString parameter. ExecForStatus() takes as an

argument an ITString object, which must be a single valid SQL

statement.

ITRow *ExecOneRow(const ITString &, ITEssential

**unknwn = NULL)

Issues a query for which a single result row is expected and

returned. Returns a null pointer if an error occurs. If the query

returns more than one row, the additional rows are discarded and

no error is returned. Specify the query in the ITString parameter.

ExecForStatus() takes as an argument an ITString object, which

must be a single valid SQL statement.

69

HCL Informix Object Interface for C++ Programmer’s Guide

70

Method Description

ITSet *ExecToSet(const ITString &, ITEssential

**unknwn = NULL)

Issues a query and returns results by using a rowset object that

has an ITSet interface. Returns a null pointer if an error occurs.

Specify the query in the ITString parameter. ExecForStatus()

takes as an argument an ITString object, which must be a single

valid SQL statement.

ITBool ExecForIteration(const ITString &) Issues a query. Returns TRUE if the query was accepted, FALSE

if an immediate problem (such as a syntax error) was found. If

the query is accepted, this call returns TRUE, and the user must

call NextRow to fetch the results in order. NextRow must be

called repeatedly until it returns NULL (meaning all rows are read)

before your application can issue another query or perform other

database operations on the connection. Specify the query in the

ITString parameter. ExecForStatus() takes as an argument an

ITString object, which must be a single valid SQL statement.

long RowCount() Returns the number of rows affected by the last query issued on

the ITQuery.

const ITString &Command() Returns the type of SQL statement (select, create, update, and

other statements).

ITRow *NextRow(ITEssential **unknwn = NULL) Returns the next result row, if any. Used with ExecForIteration

to process results. Returns NULL when the last result row has

been returned. If a query was issued with ExecForIteration, the

RowCount and Command methods are not valid until NextRow

returns NULL. The result row value must be released when done.

The underlying connection remains checked out until the last row

is received.

const ITTypeInfo *RowType() Returns server type information about the row that will be

fetched. Used with ExecForIteration to get the type of results

before actually getting the first row.

const ITString &QueryText() Returns the text of an SQL query.

ITBool Finish() Finishes processing the query results without retrieving all rows.

Use this method with ExecForIteration to terminate a query

without retrieving all the resulting rows.

The ITRoutineManager class

Base class: ITErrorManager

Chapter 1. Informix® Object Interface for C++ Guide

This functionality provided by this class is only supported with HCL Informix® databases.

The ITRoutineManager class provides an alternative way to execute server routines. When using ITRoutineManager, a

connection does not have to be checked out to get or execute a routine (and a value object, therefore, can use it), and the

execution of the routine commences faster (since there is no SQL to parse). See The ITConnection class on page 49 for

information about connection checkout.

This class provides the following methods.

Method Description

ITRoutineManager(ITConnection &) Creates a Routine Manager for the specified connection.

ITBool GetRoutine(const ITString & signature) Gets the descriptor for the registered routine from the server so

the routine can be executed later by ExecForValue(). Returns TRUE

if it gets the routine descriptor, FALSE otherwise.

const ITTypeInfo *ResultType() const Returns a pointer to an ITTypeInfo instance that encapsulates the

type of the return value of the routine. It returns NULL if did not get

the routine.

int NumParams() const Returns the number of parameters the routine accepts, -1 if did

not get the routine.

const ITTypeInfo *ParamType(int paramno) const Returns a pointer to an ITTypeInfo instance that encapsulates the

type of the specified parameter. It returns NULL if did not get the

routine or if the argument is out of bounds.

ITValue *Param(int paramno) const Returns a pointer to the parameter value object, NULL if did not get

the routine or if the argument is out of bounds.

ITBool SetParam(int paramno, ITDatum *pdatum) Sets the parameter value object for a specified parameter index

to the pdatum. Returns TRUE on success, FALSE if did not get the

routine or if the parameter is out of bounds, or the ITDatum is not

of the same type as the corresponding routine parameter type.

ITValue *ExecForValue(ITEssential **outerunkn =

NULL)

Executes the routine with the set parameters. Returns a pointer

to the ITValue interface of the value object, instantiated for the

return value. Returns NULL if did not get the routine or if execution

failed.

The ITStatement class

Base class: ITErrorManager

71

HCL Informix Object Interface for C++ Programmer’s Guide

72

The ITStatement class provides support for the execution of prepared queries that return no rows. For information about the

use of prepared statements, see Using prepared statements on page 17.

This class provides the following methods.

Method Description

ITStatement (const ITConnection &) Creates an ITStatement object for the specified connection.

ITBool Prepare(const ITString &, int nargs = 0,

const ITString *typeNames = NULL, ITEssential

**outerunkns = 0)

Prepare() prepares the statement and creates a list of null-valued

parameters. Prepare() takes as an argument an ITString object,

which must be a single valid SQL statement. The names of

the server types of the parameters that will be created can be

supplied as an array of ITStrings. If an application does not

provide parameter type names, this method uses parameter

types communicated by the server. In the cases when the server

does not communicate parameter types (as with UPDATE and

DELETE queries) and they are not provided by the application, all

parameters are created of the server type varchar(256).

The application can provide an array of outer unknown pointers

for delegation. After the call to Prepare(), elements of the outer

unknowns array (if it was provided) are set to the inner unknowns.

If the application provides either type names or outer unknowns, it

must set the nargs parameter to their number.

ITBool SetParam(int parmno, ITValue *) Sets the statement parameter with the number equal to parmno

to be the value object passed as the second argument. Returns

TRUE if successful, FALSE if it fails. The previous parameter object

is released. Supports binding parameters in both binary and

text mode. For more information, see the example in Usage on

page 73.

int NumParams() const Returns the number of parameters in a prepared statement. It

returns -1 if the statement has not been successfully prepared.

ITValue *Param(int) Allows the application to return a ITValue of a parameter. The

argument is a zero-based parameter number. Parm() returns NULL

if there are no parameters or if the parameter number is out of

bounds.

const ITString &Command() const Returns an SQL command verb. Returns ITString::Null if the

statement has not been successfully prepared.

const ITString &QueryText() const Returns the query text. Returns ITString::Null if the statement has

not been successfully prepared.

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

ITBool Exec() Executes a prepared statement with the current parameter

values. Returns TRUE if the execution was successful, FALSE if it

was not. If the query returns rows, Exec() discards them.

long RowCount() const Returns the number of rows affected by the last execution.

Returns -1 if the statement has not been executed.

ITBool Drop() Drops the prepared statement and removes the parameter list.

Usage

ITStatement can pass binary data as parameters in prepared SQL DML statements DELETE, INSERT, UPDATE, and SELECT. In

addition, SQL SELECT statements with parameters can be executed by using class ITCursor.

The following example shows how can be used to set a parameter to binary data in a prepared INSERT statement. The

example uses the table CUSTOMER in the demonstration database STORES7:

#include <it.h>
#include <iostream.h>

int main()
{
 ITDBInfo db("stores7");
 ITConnection conn(db);

 conn.Open();

 if(conn.Error())
 {
 cout << "Couldn't open connection" << endl;
 return -1;
 }
 ITQuery query(conn);
 ITRow *row;
 // Create the value object encapsulating the datum of SQL type CHAR(15)
 // by fetching a row from the database and calling ITRow::Column()
 if(!(row = query.ExecOneRow("select lname from customer;")))
 {
 cout << "Couldn't select from table customer" << endl;
 return -1;
 }
 ITValue *col = row->Column(0);
 if(!col)
 {
 cout << "couldn't instantiate lname column value" << endl;
 return -1;
 }
 row->Release();
 ITDatum *datum;
 col->QueryInterface(ITDatumIID, (void **)&datum);
 if(!datum)
 {
 cout << "couldn't get lname column datum" << endl;
 return -1;

73

HCL Informix Object Interface for C++ Programmer’s Guide

74

 }
 col->Release();
 // Prepare SQL INSERT statement, set the parameter to the value object that
 // encapsulates lname column value and execute INSERT
 ITStatement stmt(conn);
 if(!stmt.Prepare("insert into customer (lname) values (?);"))
 {
 cout << "Could not prepare insert into table customer" << endl;
 return -1;
 }
 if(!stmt.SetParam(0, datum))
 {
 cout << "Could not set statement parameter" << endl;
 return -1;
 }
 if(!stmt.Exec())
 {
 cout << "Could not execute the statement" << endl;
 return -1;
 }
 return 0;
}

The ITString class

Base class: none

The ITString class is a minimal C++ string class that meets the needs of the . An ITString object created without any

parameters is, by default, null-valued. All null-valued ITString objects are equal.

This class provides the following methods.

Method Description

ITString() Constructs a null string.

ITString(const char *str) Constructs a string from null-terminated characters. This

method assumes that the contents of the str buffer are in

the client code set.

ITString(const char *str, ITBool in_server_codeset) Constructs a string from null-terminated characters. The

in_server_codeset parameter specifies whether the buffer

is in the server code set.

operator const char *() const const char *Data() const Returns a pointer to null-terminated characters of the

value of the string or NULL. Do not delete this returned

value.

int Length() const Returns the number of multibyte characters in a string,

excluding termination characters.

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

int Size() const Returns the number of bytes in a string.

ITString &Trim(const char *pmc) Trims the single, rightmost occurrence of the character

(not string) starting at c within the string encapsulated by

an ITString object.

Trim() encapsulates searching for the rightmost character

(which can be a multibyte byte character in a given

locale) of the encapsulated string and truncation of

that character. The search is performed by calling

ITLocale::MRScan, which in turn encapsulates calling the

GLS API function ifx_gl_mbsrchr().

ITString &TrimWhite() Removes trailing white space.

ITBool Equal(const ITString &) const

ITBool Equal(const char *) const

Compares this string with another. White space is

significant.

ITBool EqualNoCase(const ITString &) const

ITBool EqualNoCase(const char *) const

Compares one string with another. Case is not significant.

ITBool LessThan(const ITString &) const Compares this string with another. White space is

significant.

long Hash() const Returns a long integer value suitable for determining a

hash bucket by using modulo operations.

ITString &Append(const ITString &) Appends a copy of another string to this string.

ITString &Append(const char *) Appends a copy of the character string to this string.

ITString GetToken(int &) const Gets the token from the string beginning with the position

specified by the integer argument. Token is a quoted

string, number, sequence of non-blank alphanumeric

characters, or any other character. Argument is set to the

position after the token.

ITBool IsQuoted() const Returns TRUE if the string is in single or double quotation

marks, FALSE otherwise.

ITBool Unquote() If the string is quoted, removes the outer quotations and

returns TRUE, otherwise returns FALSE.

const char *Scan(const char *) const Returns a pointer to the first occurrence in the string

buffer of the specified multibyte character.

static const ITString Null Represents null string.

75

HCL Informix Object Interface for C++ Programmer’s Guide

76

Method Description

inline ITBool IsNull() const Returns TRUE if string is null.

int operator<opname>(const ITString &, const ITString &) Compares the two strings. The operators you can use for

opname are: ==, !=, <, <=, >, >=.

The ITSystemNameList class

Base class: ITErrorManager

This class creates the system name list from the UNIX™ sqlhosts file or from the Windows™ registry entry under the

HKEY_LOCAL_MACHINE\Software \Informix\SqlHosts key. After you create the system name list, you can traverse it

with the NextSystemName() and PreviousSystemName() methods.

This class provides the following methods.

Method Description

ITSystemNameList() Constructs an ITSystemNameList object.

ITBool Create() Creates the system name list from the sqlhosts

file (on UNIX™) or from the registry entry under the

HKEY_LOCAL_MACHINE\Software\Informix\s

qlhosts key (on Windows™).

ITBool IsSystemName(const ITString &) Returns TRUE if the name supplied as an argument

appears in the system name list; FALSE if it does not.

const ITString &NextSystemName() Returns the reference to the next system name;

returns ITString::Null if there is no next system

name.

const ITString &PreviousSystemName() Returns the reference to the previous system name;

returns ITString::Null if there is no previous system

name.

void Reset() Resets the system name list to the state analogous

to the one it was in immediately after the list was

created.

The ITTypeInfo class

Base class: ITObject

Chapter 1. Informix® Object Interface for C++ Guide

Contains information about the type of a value object as it exists in the database. ITTypeInfo identifies the types in the

database that correspond to the C++ types that represent the values in the application. The ITTypeInfo class is also used to

retrieve type information for values in a result set, and is essential for implementing user-defined value objects.

The ITTypeInfo class can be used to obtain a type name (unless the type is transient) and indicates whether the value is

simple, row, or collection. A transient data type is a type that only lasts for the duration of an SQL statement. For example, in

the following query:

create table foo (a int, b int, c int);
select * from (select a, b from foo);

The subquery (select a, b from foo) is a transient type that is a set of type row with two columns, a and b. This type is not

persistent because it is devised by HCL Informix® to return the results of the SQL statement.

Simple types (types that are not row or collection) have a Size method, which returns the size of the type, and a Variable

method, which indicates whether the instances of the type can be of variable size.

A row type might be transient. Row types have an array of ITTypeInfo references and strings that contain column type

information and names. To obtain information from the columns in a row type, use the ColumnId(...) and ColumnType(...)

methods.

Collection types expose the collection and the data type from which it is constructed. Collection types might have an upper

limit on the number of elements. Collection types support the Size, Source, and Quality methods.

This class provides the following methods.

Method Description

ITTypeInfo(const ITConnection &conn, const ITString &type_name,

long size, long precision, long scale, long qualifier, ITBool byvalue,

const MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for an opaque

data type.

ITTypeInfo(const ITConnection &conn, const ITString &type_name,

const ITString &quality, const ITTypeInfo &memberType, const

MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for a collection

data type.

ITTypeInfo(const ITConnection &conn, const ITString &type_name,

const ITTypeInfo &source, const MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for a distinct

data type.

ITTypeInfo(const ITConnection &conn, const ITString &type_name,

long ncols, ITTypeInfo **colps, const ITString *colnames, const

MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for a row data

type.

ITTypeInfo(const ITConnection &conn, const ITString &type_name,

const ITTypeInfo &consType, const ITTypeInfo &memberType,

const MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for a constructed

data type.

ITTypeInfo(ITConnection &, const ITString &, long precision = -1,

long scale = -1, long qualifier = -1)

Constructs an ITTypeInfo object with type

information directly from the server. Other

77

HCL Informix Object Interface for C++ Programmer’s Guide

78

Method Description

constructors get their type information about the

client side without directly accessing the server.

ITTypeInfo *ConstructorType() const Returns a pointer to an ITTypeInfo object that

contains type information for the constructor

object.

ITTypeInfo *MemberType() const Returns a pointer to an ITTypeInfo object that

contains type information for the member object

of a collection or constructed type.

const ITString &Name() const Returns the name of the database type.

ITBool IsSimple() const Returns TRUE if this type is not a row type or a

collection type.

ITBool IsRow() const Returns TRUE if this type is a row type.

ITBool ByValue() const Returns TRUE if the database type is passed by

value, FALSE if it is passed by reference.

ITBool IsCollection() const Returns TRUE if this type is a collection type.

ITBool IsConstructed() const Returns TRUE if this type is a constructed type.

ITBool CompatibleType(const ITTypeInfo &) const Returns TRUE if the argument is ITTypeInfo for

the same type, a distinct type, a row type with the

same column types, or a collection type with the

same constructor and member type.

long Precision() const Returns the precision (the number of significant

digits) of a database type, if applicable.

long Qualifier() const Returns the qualifier of the datetime or interval

data type.

ITBool SameType(const ITTypeInfo &) const Returns TRUE if the specified object is the same

type as this object.

long Scale() const Returns the scale of a database type, if applicable.

long Size() const Returns -1 if this is a variable-size type, or the size

if the type is of fixed size.

long Bound() const If the type is a variable-size type with a

specified limit, this method returns the limit.

For constructed types, the limit specifies the

maximum number of items. Returns -1 if no

bound is in effect.

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

long Parameter() const Returns the parameter of the type. For SQL

numeric-derived types, returns the precision. For

other numeric-derived types, returns the scale. For

varchar-derived types, returns the maximum size.

ITBool Variable() const Returns TRUE if the size is variable, or FALSE if the

size is fixed.

ITBool IsDistinct() const Returns TRUE if the type is distinct.

long ColumnCount() const Returns the number of columns in this row type.

const ITString &ColumnName(long) const Returns the name of the specified column.

long ColumnId(const ITString &) const Returns the index of the given column name.

Returns -1 if the column name cannot be found.

const ITTypeInfo *ColumnType(long) const Returns the type information of a column. Returns

NULL if the column number is invalid.

const ITTypeInfo *ColumnType(const ITString &) const Returns the type information of a column. Returns

NULL if the column name cannot be found.

const ITTypeInfo *Source() const Returns the type from which the current type was

created as distinct. Returns NULL if the type does

not have a source.

const ITString &Quality() const Returns the collection type, such as 'SET' or

'LIST'.

Value interface reference
This section lists and describes the value interfaces. The ITFactoryList and ITPreserveData classes provide support for value

interfaces.

The ITContainCvt interface

Base class: ITEssential

Decomposes an object into C++ base type instances. ITContainCvt is used by the ITContainerIter class to extract values

from an object. ITContainCvt is to be used for objects that are naturally represented by base type arrays, such as a point list.

This interface provides the following methods.

79

HCL Informix Object Interface for C++ Programmer’s Guide

80

Method Description

ITBool ConvertTo(long item, output_type &) Converts item to the output type. The output_type parameter

must be one of the following types:

short

int

long

float

double

long double

const char *

ITString

bool (if supported by compiler)

ITInt8

long NumItems() Returns the number of items in this object.

ITBool ConvertFrom (long item, const type) Sets the value of the contained item from the value of the C++

type given as type.

The ITContainer interface

Base class: ITEssential

Returns one value from a set of values. ITContainer is used by the ITContainerIter class to iterate over the values contained

in an object.

The unknwn argument of the GetItem method is the address of a pointer to an ITEssential interface of an object that will be

the parent of any subobjects that might be created by the method. The newly created subobject returns its own ITEssential

interface pointer in the argument if the object delegation was successful. The subobject reference count is 1 after the

call, even if the ITEssential interface is passed back to the caller. The default argument is NULL to indicate that no object

delegation is to be performed.

This interface provides the following methods.

Method Description

long NumItems() Returns the number of items in this object.

ITValue *GetItem(long position, ITEssential * *unknwn =

NULL)

Returns the value interface pointer for a contained item.

Returns NULL if the position is invalid.

Chapter 1. Informix® Object Interface for C++ Guide

The ITConversions interface

Base class: ITEssential

Interface to convert value objects to C++ base classes, strings, or value objects.

This interface provides the following methods.

Method Description

ITBool ConvertTo(base_type &) Converts to the variable of the specified type. Valid types

for the base_type parameter are as follows:

short

int

double

long

float

long double

const char *

bool (if the C++ compiler supports it)

ITString

ITInt8

ITBool ConvertFrom(const type) Sets the object from the value of the C++ type given as

type.

C++ compiler interpretation of long doubles

HCL Informix® Object Interface for C++ provides data type conversion functions in the value interface ITConversions to

enable conversion of C++ type long double. The intent is to permit fetching floating point values into C++ long double

variables. However, the HCL Informix® Client Software Development Kit does not allow for conversion of long double values

into HCL Informix® decimal or float types. Thus, Object Interface for C++ applications should always ensure that any floating

literal passed to ITConversions::ConvertFrom(long double val) is within the double range. Otherwise, ConvertFrom(long

double val) will return FALSE for value objects that contain SQL MONEY, FLOAT, and SMALLFLOAT values.

Object Interface for C++ is written with the assumption that a floating literal without the ANSI C++ specified suffixes l or

L (example: 12.988 instead of 12.988L) assigned to a long double variable will be treated by the C++ compiler as a long

double. This assumption agrees with the ANSI C++ Draft Standard (Doc No: X3J16/94-0027, WG21/N0414, 25 January

1994), which states that the type of a floating literal is double unless explicitly specified by a suffix. The suffixes f and F

specify float; the suffixes l and L specify long double. Thus, the suffix l or L must be applied to a floating literal in order for it

to be interpreted by the C++ compiler as a long double value.

Different versions of the Sun C++ compiler applied the ANSI C++ standard as it existed at the time of the compiler

development and release. For example, Sun C++ 4.1 conforms to the ANSI standard described above, whereas pre-4.1 Sun

C++ compilers always treated all floating literals, with or without the l and L suffixes, as long double values if they were

81

HCL Informix Object Interface for C++ Programmer’s Guide

82

assigned to a long double variable. The following C++ code example demonstrates assignment of a floating literal to a long

double variable, casting to a double, and comparison between the double and long double:

long double d = 12.988;
double dasd = (double) d;
if(dasd == d)
return 0;
else return 1;

The following table compares support for the ANSI C++ draft standard referenced above among several versions of Sun C

++ compilers. The table shows how the different compiler versions evaluated the expression (dasd == d). If the expression

evaluates to FALSE, the values are not equal.

This interface provides the following methods.

Sun C++ compiler versions Evaluation of (dasd == d)

4.0 (Dec 1993) FALSE (values are not equal)

4.0.1 (Jul 1994) FALSE (values are not equal)

4.1 (Oct 1995) TRUE (values are equal)

5.0 (Oct 1999) TRUE (values are equal)

6.01 (2001) TRUE (values are equal)

The ITDateTime interface

Base class: ITValue

Allows access to the fields of a database time object (such as date, time, or interval).

This interface provides the following methods.

Method Description

int Year() Returns the year or years.

int Month() Returns the month or months.

int Day() Returns the day or days of the month.

int Hour() Returns the hour or hours.

int Minute() Returns the minute or minutes.

float Second() Returns the second or seconds.

ITBool FromDate(int year, int month, int day) Sets the date portions of the object exposing ITDateTime.

ITBool FromTime(int hour, int minute, float second) Sets the time portions of the object exposing ITDateTime.

Chapter 1. Informix® Object Interface for C++ Guide

The ITDatum interface

Base class: ITValue

Provides access to the underlying data of a database class. It allows you to retrieve or set underlying data and determine

their lengths. In addition, you can access the connection of the value object to the server.

All database classes that want to provide access to their underlying data expose this interface.

For some kinds of data (for example, row, collection, smartblob handle, character data) MI_DATUM is a pointer to the

descriptor (MI_ROW *, MI_COLLECTION *, MI_LO_HANDLE *, MI_LVARCHAR *) rather than to the memory containing the data

values. For these kinds of data ITDatum::Data returns a pointer to the descriptor. Pass a descriptor of the appropriate kind to

SetData(). In addition, some of these descriptors are opaque (for example, MI_ROW). In these cases, the DataLength() return

value is not usable and the data length SetData() argument is ignored.

This class provides the following methods.

Method Description

MI_DATUM Data() Returns an MI_DATUM encapsulated by the value object.

Datum passing (by reference/value) obeys the same

rules as mi_value() (see the Informix® DataBlade® API

Programmer's Guide for information about mi_value()).

If the datum is returned by reference, its memory is

managed by the object. The application cannot modify

the datum returned by reference.

long DataLength() Returns the length of the datum encapsulated by the

value object.

ITBool SetData (MI_DATUM data, long dataLen,

ITPreserveData *preservedata = NULL)

Sets the value of a datum encapsulated by the value

object to the parameter value. It returns TRUE if the

operation was successful, FALSE otherwise.

const ITConnection & Connection() Returns the connection of the value object.

The ITErrorInfo interface

Base class: ITEssential

The functionality provided by this class is only supported with HCL Informix® databases.

83

HCL Informix Object Interface for C++ Programmer’s Guide

84

Extracts information about an error from an object. Some value objects, such as sets and large objects, can produce SQL

errors, because SQL operations might be used to get the actual data values. If a value object can produce an SQL error, the

value object supports the ITErrorInfo interface to enable the application to access the SQL error.

This interface provides the following methods.

Method Description

ITBool Error() Returns TRUE if an error occurred.

const ITString & SqlState() Returns the ISO-standard SQL error code.

const ITString & ErrorText() Returns the error message.

For an example of the use of this value object, see the loex2.cpp example application.

The ITEssential interface

ITEssential is the base class of the value interface classes. The ITEssential class is equivalent to the COM IUnknown

interface of Microsoft™ and is abstract.

This interface provides the following methods.

Method Description

ITOpErrorCode QueryInterface(const ITInterfaceIID &ifiid,

void **resultif)

Fills the parameter resultif with the address (or location)

of the requested interface class. If the requested interface

is not supported then the parameter is set to NULL.One of

the following values is returned in ITOpErrorCode:

IT_QUERYINTERFACE_FAILED-if the requested

interface is not supported.

IT_QUERYINTERFACE_SUCCESS-if the requested

interface is successfully obtained.

When the interface is no longer needed, it must be

released by calling the Release() member function of

ITEssential.

unsigned long AddRef() Increments the reference count on this value object.

unsigned long Release() Decrements the reference count on this value object.

When the count reaches 0, the object might be freed,

depending on the implementation of the value object.

The following definitions apply to the arguments and return values of the ITEssential interface and its descendants.

Chapter 1. Informix® Object Interface for C++ Guide

• ITInterfaceID is an index that identifies a particular value interface.

• ITOpErrorCode is a code returned from an interface method such as ITEssential::QueryInterface

• ITOpErrorCode indicates success or failure of a method. It is defined to be of the type long and can be assigned

either the value IT_QUERYINTERFACE_SUCCESS or IT_QUERYINTERFACE_FAILED. The inline function ITIIDtoSID maps

ITInterfaceIDs to integral representations suitable for use in a switch statement.

By using the macros provided in the manner shown in the examples, value object implementors and application developers

are protected from incompatibility with future versions of the interface.

Every interface defined by HCL Informix® has been given a unique interface identifier. These interface identifiers have an IID

suffix, for example, ITEssentialIID.

The identifiers defined by the value interfaces are:

• ITContainCvtIID

• ITContainerIID

• ITConversionsIID

• ITDateTimeIID

• ITDatumIID

• ITErrorInfoIID

• ITEssentialIID

• ITLargeObjectIID

• ITRowIID

• ITSetIID

• ITValueIID

For details about the semantics of ITEssential when an object is delegated, see Object Containment and Delegation on

page 44.

The ITLargeObject interface

Base class: ITEssential

Manipulates a large object returned by a query. Client value objects that are, in the server, based on large objects, expose

an ITLargeObject interface; users creating such client value objects can use the ITLargeObjectManager class, which

implements much of the functionality for accessing large objects.

This interface provides the following methods.

Method Description

const MI_LO_HANDLE *Handle() Returns the handle of the currently managed large object.

int Read(char *buf, int cnt) Reads bytes from the large object at the current position.

85

HCL Informix Object Interface for C++ Programmer’s Guide

86

Method Description

int Write(const char *buf, int cnt) Writes bytes to the large object at the current position.

ITInt8 Seek(ITInt8 off, int cntl = 0) Sets the current position of the large object; cntl is a

position like UNIX™ lseek (0 is absolute position, 1 is

relative to current position, and 2 is relative to end of the

large object).

ITBool SetHandle(const MI_LO_HANDLE *handle, int

flags=MI_LO_RDWR)

Sets the specified DataBlade® API large object handle

to this large object. The flags parameter is a bit mask

argument with the following values:

MI_LO_RDONLY
MI_LO_WRONLY
MI_LO_RDWR
MI_LO_TRUNC
MI_LO_APPEND
MI_LO_RANDOM
MI_LO_SEQUENTIAL
MI_LO_BUFFER
MI_LO_NOBUFFER

ITInt8 Size() Returns the total size of the large object.

ITBool SetSize(ITInt8) Sets the total size of the large object.

The ITRow interface

Base class: ITValue

Provides access to row values. A row value can extract references to the number of columns it contains and the value of a

specific column.

The unknwn argument of the Column method is the address of a pointer to an ITEssential interface of an object that will

be the parent of any subobjects created by the method. The newly created subobject returns its own ITEssential interface

pointer in the argument if the object delegation was successful. The subobject reference count is 1 after the call, even if the

ITEssential interface is passed back to the caller. The default argument is NULL to indicate that no object delegation is to be

performed.

This interface provides the following methods.

Method Description

long NumColumns() Returns the number of columns in this row value.

ITValue *Column(long, ITEssential **unknwn =

NULL)

Returns a pointer to the value interface of a column.

Chapter 1. Informix® Object Interface for C++ Guide

Method Description

ITValue *Column(const ITString &, ITEssential

**unknwn = NULL)

Returns a pointer to the value interface of a column by name. Returns

NULL if you specify an invalid column name.

The ITSet interface

Base class: ITValue

The ITSet class provides random access to rowset or collection members.

This interface provides the following methods.

Method Description

ITBool IsScrollable() Returns TRUE if this set is scrollable.

ITBool IsReadOnly() Returns TRUE if this set cannot be updated.

ITBool Open() Opens or reopens the set.

ITBool Close() Closes the set. Close does not release the interface.

ITBool Delete(enum ITPosition pos = ITPositionCurrent,

long jump = 0) = 0

Deletes the specified member from the set. Returns TRUE if

successful, FALSE otherwise.

ITBool Insert(ITDatum *item, enum ITPosition pos =

ITPositionCurrent, long jump = 0) = 0

Inserts the specified item immediately after the current

item. Returns TRUE if successful, FALSE otherwise.

ITValue *MakeItem(ITEssential **outerunkn = NULL) Returns a pointer to an ITValue interface of a new object

of the same type as the objects in the collection. The

value of the object can then be set (for example, with

FromPrintable()) and the object can be inserted into the

collection object.

ITValue *Fetch(ITEssential **outerunkn = NULL, enum

ITPosition pos = ITPositionNext, long jump = 0)

Fetches the collection member and returns the pointer to

its ITValue interface.

The ITValue interface

Base class: ITEssential

An interface class that provides basic value object support. All objects representing values from the database must support,

at a minimum, the ITValue interface.

This interface provides the following methods.

87

HCL Informix Object Interface for C++ Programmer’s Guide

88

Method Description

const ITString &Printable() Returns a printable form of the value in a constant string.

const ITTypeInfo &TypeOf() Returns the database type information for this value.

ITBool IsNull() Returns TRUE if this is a null value.

ITBool SameType(ITValue *) Returns TRUE if this value is the same database type as the

specified value.

ITBool Equal(ITValue *) Returns TRUE if the specified values are equal. False values

are not equal to each other or to any other value.

ITBool LessThan(ITValue *) Returns TRUE if and only if the object is less than the

argument and the objects are comparable. ("Less than" is

defined as appropriate for the data type.)

ITBool CompatibleType(ITValue *) Returns TRUE for all built-in objects if the objects are

compatible.

ITBool IsUpdated() Returns TRUE if the object was updated, FALSE if it did

not change since it was first created. Value objects of

complex types (rows, collections) are considered updated

when any of their members are updated.

ITBool FromPrintable(const ITString &printable) Sets the object value from the printable representation.

FromPrintable() accepts the printable representation of

the object equivalent to the input function of the object.

Printable() provides the character representation of the

object equivalent to the output function of the object. For

additional usage, see Use of ITValue::Printable with null

value objects on page 88.

ITBool SetNull() Sets the object value to NULL.

Use of ITValue::Printable with null value objects
value objects can encapsulate a datum fetched from a database or a datum that is to be inserted into a database. A value

object exists only in the client application, and the datum encapsulated by it can be written to the database by using prepared

statements encapsulated by ITStatement objects or, if a cursor that can be updated is used, by ITCursor::UpdateCurrent.

After it fetches a row from a database in which there are columns containing SQL NULL entries (that is, with no data),

ITValue::Printable called on a value object matching a NULL column will return the string "null." The string "null" is

informational only.

Likewise, after ITValue::SetNull is called to set a value object to null (where the term "null" means SQL NULL: That is, no data),

calls to ITValue::Printable return the string "null" for that value object to indicate that the value object contains no data.

Chapter 1. Informix® Object Interface for C++ Guide

In the special case where the Object Interface for C++ application program inserted the valid data string "null" into a

value object (for example, by calling ITValue::FromPrintable("null") or by fetching it from a database), the application

can still distinguish between a null value object and a value object containing the valid data "null" by calling the function

ITValue::IsNull on the value object. ITValue::IsNull returns true if the value object is null and false if the value object contains

the valid data "null." Calling ITValue::IsNull is the preferred way to determine if a value object contains no data and is to be

used instead of ITValue::Printable.

Appendixes
This section contains additional reference information.

Supported data types
This section lists the server data types and the interfaces supported for them.

Tip: Objects that are BLOB and CLOB objects implemented as part of the library return the textual value of the smart

large object handle through the ITValue::Printable method and set it through ITValue::FromPrintable.

Simple large objects (TEXT and BYTE types) are represented on the client as data in RAM. Use the offset operator []

in queries to limit the amount of data retrieved by the client. To update a simple large object in the server, pass the

value object that encapsulates the simple large object data as a prepared statement parameter.

Table 1. Data types and supported interfaces

This table shows server base types and constructed data types. The table also shows the interfaces supported for each data type.

Data type ITEssential

interface

ITValue

interface

ITRow

interface

ITConversions

interface

ITLargeObject

interface
ITSet interface

blob* X X X

boolean* X X X

byte X X

char X X X

character X X X

char1 X X X

cXob* X X X

date X X

datetime X X

decimal X X X

89

HCL Informix Object Interface for C++ Programmer’s Guide

90

Table 1. Data types and supported interfaces

This table shows server base types and constructed data types. The table also shows the interfaces supported for each data type.

(continued)

Data type ITEssential

interface

ITValue

interface

ITRow

interface

ITConversions

interface

ITLargeObject

interface
ITSet interface

double precision X X X

int8* X X X

integer X X X

interval day to second X X

interval year to month X X

money X X X

numeric X X X

real X X X

smallint X X X

text X X

collection* ** X X X

row* ** X X X

ITQuery::ExecToSet

result set **

X X X

* Supported only by HCL Informix®

** Constructed type

Table 2. More supported interfaces

This table shows additional interfaces that are supported for each data type.

Server base type ITDateTime ITContainer ITErrorInfo ITContainCvt ITDatum

blob* X X

boolean* X

byte X

char X

character X

Chapter 1. Informix® Object Interface for C++ Guide

Table 2. More supported interfaces

This table shows additional interfaces that are supported for each data type.

(continued)

Server base type ITDateTime ITContainer ITErrorInfo ITContainCvt ITDatum

char1 X

cXob* X X

date X X

datetime X X

decimal X

double precision X

int8* X

integer X

interval day to second X X

interval year to month X X

money X

numeric X

real X

smallint X

text X

collection* ** X

row* ** X X

ITQuery::ExecToSet

result set **

* Supported only by HCL Informix®

** Constructed type

Example programs

For the path and name of the directory containing the example files, consult the latest release notes. The examples directory

also contains a makefile to build the examples.

The following is a list of the example programs with a brief description of each:

91

HCL Informix Object Interface for C++ Programmer’s Guide

92

• cnvex.cpp uses the ITConversions interface to convert an integer to other types.

• contain.cpp shows how containers are used with the ITContainer interface (only).

• csql.cpp is a simple query example.

• csql2.cpp is a simple query example that uses error callbacks.

• csql3.cpp is a simple query example monitoring the transaction state of the connection.

• curstst.cpp opens a cursor and scrolls through the result set in various ways.

• cursupd.cpp illustrates the use of a cursor with parameter markers to update the database.

• delegate.cpp is an example of object delegation.

• dtex.cpp is a date/time interface example.

• fsexamp1.cpp illustrates iteration through a container.

• ifval.cpp is an example of a value object supporting multiple interfaces.

• loadtab.cpp loads a table from a text file by using a prepared statement with ITStatement (HCL Informix® only).

• loex1.cpp illustrates access to a large object through the ITLargeObject interface (HCL Informix® only).

• loex2.cpp is a large object and error information example. (HCL Informix® only).

• queryex.cpp illustrates the use of transaction control within a query.

• rawval.cpp illustrates access to the ITDatum interface of a large object.

• rowref.cpp is an example of a value object with multiple interfaces and copy-on-update.

• rowset.cpp retrieves rows into a set.

• simpval.cpp is an example of a value object derived from ITDatum.

• tabcnt.cpp is a simple example issuing a query and uses value interfaces.

• testtype.cpp is an example of a dynamically loaded value object.

The ITLocale class
This section describes the ITLocale class, which encapsulates the GLS API.

ITLocale methods perform:

• Locale-sensitive conversions between the text and binary forms of the date, time, numeric, and money data types

• General string and character manipulation, such as comparison and classification, for multibyte and wide character

strings and characters

Multibyte character string termination

Some APIs that use ITLocale assume that character strings are terminated with a null character, while others assume that

a string consists of a pointer and length indicating the number of bytes in the string. ITLocale methods can be used in both

cases.

Multibyte character strings are passed to ITLocale methods in two arguments:

Chapter 1. Informix® Object Interface for C++ Guide

• const char *s specifies a multibyte string.

• int nbytes specifies the length of the string.

The actual argument names might vary.

If nbytes is the value ITLocale::ScanToNul, the method treats s as a null-terminated string. Otherwise, the method assumes s

contains nbytes bytes.

The terminator of a null-terminated string is a single byte whose value is 0. Multibyte character strings that are not null-

terminated might contain null characters, but these characters do not indicate the end of the string.

Multibyte character termination

A multibyte character passed to an ITLocale method is represented with two arguments:

• const char *mchar specifies a multibyte character.

• int nmcharbytes specifies the number of bytes that represent the multibyte character.

The actual argument names might vary.

If nmcharbytes is ITLocale::ScanNoLimit, the method reads bytes at mchar until a complete character is formed. Otherwise it

reads no more than nmcharbytes bytes at mchar to form a character.

Memory allocation

The GLS API performs no memory allocation or deallocation. Therefore, you must allocate an appropriately sized buffer for

any ITLocale method that returns a string. You must also deallocate the memory for the buffer when the method is through

with it.

Access the ITLocale object

An application has a single ITLocale object. The ITLocale::Current() method returns a pointer to the object. The constructor

that creates the ITLocale object is protected and cannot be called directly.

Error return method
This method returns a GLS error number.

int GetError() const

Some ITLocale methods indicate whether an error has occurred in their return values (-1, 0, or NULL). For other methods, you

must call ITLocale::GetError() to determine if there was an error. You can, as a standard practice, call ITLocale::GetError()

after every call to an ITLocale method.

93

HCL Informix Object Interface for C++ Programmer’s Guide

94

See the description of the corresponding function in the Informix® GLS User's Guide to see the errors that a particular

ITLocale method can return.

String comparison methods
This section describes the ITLocale methods for comparing strings.

The MCollate method
This method compares multibyte character string s1 to multibyte character string s2 for sort order according to the rules of

the current locale.

int MCollate(const char *s1, const char *s2,
 int nbytes1 = ITLocale::ScanToNul,
 int nbytes2 = ITLocale::ScanToNul) const

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of bytes in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify that

the corresponding string is null-terminated.

This method returns an integer that is:

• Greater than 0 if s1 is greater than (after) s2 in sort order

• Less than 0 if s1 is less than (before) s2 in sort order

• 0 if s1 is equal to s2 in sort order

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WCollate method
This method compares wide character string s1 to wide character string s2 for sort order according to the rules of the

current locale.

int WCollate(const ITWChar *s1, const ITWChar *s2,
 int nwchars1 = ITLocale::ScanToNul,
 int nwchars2 = ITLocale::ScanToNul) const

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of characters in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify

that the corresponding string is null-terminated.

This method returns an integer that is:

Chapter 1. Informix® Object Interface for C++ Guide

• Greater than 0 if s1 is greater than (after) s2 in sort order

• Less than 0 if s1 is less than (before) s2 in sort order

• 0 if s1 is equal to s2 in sort order

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

String processing methods
This section describes the ITLocale methods for processing strings.

The MConcatenate method
This method appends multibyte character string s2 to the end of multibyte character string s1. If the two strings overlap, the

results are undefined.

int MConcatenate(char *s1, const char *s2,
 int nbytes1 = ITLocale::ScanToNul,
 int nbytes2 = ITLocale::ScanToNul) const

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of bytes in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify that

the corresponding string is null-terminated.

This method returns the length in bytes of the resulting concatenated string, not including the null terminator if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MScan method
This method searches for the first occurrence of the multibyte character mchar in the multibyte character string s.

char *MScan(const char *s, const char *mchar,
 int nstrbytes = ITLocale::ScanToNul,
 int nmcharbytes = ITLocale::ScanNoLimit) const

The nstrbytes parameter specifies the length of the corresponding string s. You can provide an integer to specify the number

of bytes in s. Or you can use the constant ITLocale::ScanToNul (the default) to specify that s is a null-terminated string.

The nmcharbytes parameter specifies the length of the corresponding multibyte character mchar. You can provide an integer

to specify the number of bytes in mchar, in which case this method reads up to this many bytes from mchar when trying to

95

HCL Informix Object Interface for C++ Programmer’s Guide

96

form a complete character. Or you can set nmcharbytes to ITLocale::ScanNoLimit (the default), in which case this method

reads as many bytes as necessary to form a complete character.

This method returns a pointer to the first occurrence of the multibyte character mchar in the string s. If mchar is not found in

s, this method returns NULL. If you call ITLocale::GetError(), it returns 0.

Related reference

Error return method on page 93

The MCopy method
This method copies the multibyte character string from to the location pointed to by to. If from and to overlap, the results of

the method are undefined.

int MCopy(char *to, const char *from,
 int nfrombytes = ITLocale::ScanToNul) const

The nfrombytes parameter specifies the length of the corresponding string from. You can provide an integer to specify

the number of bytes in from. Or you can use the constant ITLocale::ScanToNul (the default) to specify that from is a null-

terminated string.

This method returns the number of bytes in the resulting string, not including the null terminator, if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MComplSpanSize method
This method returns the number of characters in the longest initial substring of multibyte character string s1 that consists

entirely of multibyte characters not in the string s2.

int MComplSpanSize(const char *s1, const char *s2,
 int nbytes1 = ITLocale::ScanToNul,
 int nbytes2 = ITLocale::ScanToNul) const

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of bytes in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify that

the corresponding string is null-terminated.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

Chapter 1. Informix® Object Interface for C++ Guide

The MLength method
This method returns the number of characters (not bytes) in the multibyte character string s, not including the null terminator,

if there is one.

int MLength(const char *s, int nbytes =
 ITLocale::ScanToNul) const

The nstrbytes parameter specifies the length in bytes of the corresponding string s. You can provide an integer to specify

the number of bytes in s. Or you can use the constant ITLocale::ScanToNul (the default) to specify that s is a null-terminated

string.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MFindSubstr method
This method searches for the first occurrence of the multibyte string s2 in the multibyte string s1.

char *MFindSubstr(const char *s1, const char *s2,
 int nbytes1 = ITLocale::ScanToNul,
 int nbytes2 = ITLocale::ScanToNul) const

The nbytes1 and nbytes2 parameters specify the length in bytes of the s1 and s2 strings. You can provide an integer to

specify the number of bytes in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to

specify that the corresponding string is null-terminated.

This method returns a pointer to the first occurrence of the multibyte string s2 in s1.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MNConcatenate method
This method appends one or more multibyte characters in the from multibyte string to the end of the multibyte string to. If

from and to overlap, the results of this method are undefined.

int MNConcatenate(char *to, const char *from, int limit,
 int ntobytes = ITLocale::ScanToNul,
 int nfrombytes = ITLocale::ScanToNul) const

97

HCL Informix Object Interface for C++ Programmer’s Guide

98

Use limit to specify the maximum number of characters to read from the from string.

The ntobytes and nfrombytes parameters specify the length of the to and from strings. You can provide an integer to specify

the number of bytes in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify

that the corresponding string is null-terminated.

This method returns the number of bytes in the resulting string.

If there is an error, the method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MNCopy method
This method copies the specified number of multibyte characters in from to the location pointed to by to.

int MNCopy(char *to, const char *from, int limit,
 int nfrombytes = ITLocale::ScanToNul) const

Use limit to specify the maximum number of characters to read from the from string.

The nfrombytes argument specifies the length of the corresponding string from. You can provide an integer to specify

the number of bytes in from. Or you can use the constant ITLocale::ScanToNul (the default) to specify that from is a null-

terminated string.

This method returns the length in bytes of the resulting copied string, not including the null terminator if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MNTSBytes method
This method returns the number of bytes in the multibyte character string s, not including any trailing space characters. The

characters not included in the count are the ASCII space character and any multibyte characters equivalent to the ASCII

space character.

int MNTSBytes(const char *s, int nbytes = ITLocale::ScanToNul) const

Space characters embedded in the string before the series of spaces at the end of the string are included in the count.

The nbytes parameter specifies the length of the corresponding string s. You can provide an integer to specify the number of

bytes in s. Or you can use the constant ITLocale::ScanToNul (the default) to specify that s is a null-terminated string.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Chapter 1. Informix® Object Interface for C++ Guide

Related reference

Error return method on page 93

The MNTSLength method
This method returns the number of characters in the multibyte character string s, not including any trailing space characters.

int MNTSLength(const char *s, int nbytes = ITLocale::ScanToNul) const

The characters not included in the count are the ASCII space character and any multibyte characters equivalent to the ASCII

space character. Space characters embedded in the string before the series of spaces at the end of the string are included in

the count.

The nbytes parameter specifies the length of the corresponding string s. You can provide an integer to specify the number of

bytes in s. Or you can use the constant ITLocale::ScanToNul (the default) to specify that s is a null-terminated string.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MSpan method
This method searches for the first occurrence in the multibyte character string s1 of any character from the multibyte

character string s2.

char *MSpan(const char *s1, const char *s2,
 int nbytes1 = ITLocale::ScanToNul,
 int nbytes2 = ITLocale::ScanToNul) const

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of bytes in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify that

the corresponding string is null-terminated.

This method returns a pointer to the first occurrence in s1 of any character from s2. If no character from s2 is found in s1 the

method returns NULL and ITLocale::GetError() returns 0.

If an error occurs, the method returns NULL and ITLocale::GetError() returns a specific error message.

Related reference

Error return method on page 93

99

HCL Informix Object Interface for C++ Programmer’s Guide

100

The MRScan method
This method locates the last occurrence of multibyte character c in the multibyte character string s.

char *MRScan(const char *s, const char *c,
 int nsbytes = ITLocale::ScanToNul,
 int ncbytes = ITLocale::ScanNoLimit) const

The nsbytes parameter specifies the length of the corresponding string s. You can provide an integer to specify the number

of bytes in s. Or you can use the constant ITLocale::ScanToNul (the default) to specify that s is a null-terminated string.

The ncbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set ncbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns a pointer to the last occurrence of the multibyte character c in the string s. If this method does not find c

in s, it returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MSpanSize method
This method returns the number of characters in the longest initial substring of multibyte character string s1 that consists

entirely of multibyte characters in the string s2.

int MSpanSize(const char *s1, const char *s2,
 int nbytes1 = ITLocale::ScanToNul,
 int nbytes2 = ITLocale::ScanToNul) const

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of bytes in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify that

the corresponding string is null-terminated.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WConcatenate method
This method appends a copy of the wide character string from to the end of the wide character string to. If from and to

overlap, the results of this method are undefined.

Chapter 1. Informix® Object Interface for C++ Guide

int WConcatenate(ITWChar *to, const ITWChar *from,
 int nfromwchars = ITLocale::ScanToNul,
 int ntowchars = ITLocale::ScanToNul) const

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WScan method
This method locates the first occurrence of wide character c in the wide character string s.

ITWChar *WScan(const ITWChar *s, ITWChar c,
 int nswchars = ITLocale::ScanToNul) const

The nswchars parameter specifies the length of the corresponding wide character string s. You can provide an integer to

specify the number of characters in s. Or you can use the constant ITLocale::ScanToNul (the default) to specify that s is a

null-terminated string.

This method returns a pointer to the first occurrence of c in s. If this method does not find c in s, it returns NULL and

ITLocale::GetError() returns 0.

If there is an error, this method returns NULL and ITLocale::GetError() returns a specific error number.

Related reference

Error return method on page 93

The WCopy method
This method copies the wide character string from to the location pointed to by to. If the strings overlap, the result is

undefined.

int WCopy(ITWChar *to, const ITWChar *from,
 int nfromwchars = ITLocale::ScanToNul) const

The nfromchars parameter specifies the length in characters of the corresponding wide character string from. You can

provide an integer to specify the number of characters in from. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that s is a null-terminated string.

This method returns the number of characters in the resulting string, not including the null terminator, if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

101

HCL Informix Object Interface for C++ Programmer’s Guide

102

Related reference

Error return method on page 93

The WComplSpanSize method

int WComplSpanSize(const ITWChar *s1, const ITWChar *s2,
 int nwchars1 = ITLocale::ScanToNul,
 int nwchars2 = ITLocale::ScanToNul) const

This method returns the number of wide characters in the maximum initial substring of the wide character string s1 that

consists entirely of wide characters not in the wide character string s2.

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of characters in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify

that the corresponding string is null-terminated.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WLength method
This method returns the number of wide characters in the wide character string s, not including the null terminator, if there is

one. No errors are defined for this method.

Example

int WLength(const ITWChar *s) const

The WNConcatenate method
This method appends wide character string from to the end of wide character string to. If from and to overlap, the results of

this method are undefined.

int WNConcatenate(ITWChar *to, const ITWChar *from,
 int limit,
 int nfromwchars = ITLocale::ScanToNul,
 int ntowchars = ITLocale::ScanToNul) const

Use limit to specify the maximum number of characters to read from the from string and append to the to string.

Chapter 1. Informix® Object Interface for C++ Guide

The ntowchars and nfromwchars parameters specify the length of the to and from strings. You can provide an integer to

specify the number of characters in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default)

to specify that the corresponding string is null-terminated.

This method returns the number of wide characters in the resulting concatenated string, not including the null terminator, if

there is one.

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WNCopy method
This method copies wide character string from to the location pointed to by to. If from and to overlap, the results of this

method are undefined.

int WNCopy(ITWChar *to, const ITWChar *from, int limit,
 int nfromwchars = ITLocale::ScanToNul) const

Use limit to specify the maximum number of characters to read from the from string and append to the to string.

The nfromwchars parameter specifies the length of the corresponding wide character string from. You can provide an integer

to specify the number of characters in from. Or you can use the constant ITLocale::ScanToNul (the default) to specify that

from is a null-terminated string.

This method returns the number of wide characters copied.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WNTSLength method
This method returns the number of characters in the wide character string s, not including any trailing space characters.

int WNTSLength(const ITWChar *s, int nwchars = ITLocale::ScanToNul) const

The characters not included in the count are the ASCII space character and any wide characters equivalent to the ASCII

space character.

The nwchars parameter specifies the length of the corresponding wide character string s. You can provide an integer to

specify the number of characters in s. Or you can use the constant ITLocale::ScanToNul (the default) to specify that s is a

null-terminated string.

103

HCL Informix Object Interface for C++ Programmer’s Guide

104

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WSpan method
This method searches for the first occurrence in the wide character string s1 of any wide character from the string s2.

ITWChar *WSpan(const ITWChar *s1, const ITWChar *s2,
 int nwchars1 = ITLocale::ScanToNul,
 int nwchars2 = ITLocale::ScanToNul) const

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of characters in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify

that the corresponding string is null-terminated.

This method returns a pointer to the first occurrence of the wide character string s1 in the string s2. If this method does not

find s1 in s2, it returns NULL. If you call ITLocale::GetError(), it returns 0.

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WRScan method
This method locates the last occurrence of wide character c in the wide character string s.

ITWChar *WRScan(const ITWChar *s, ITWChar c,
 int nswchars = ITLocale::ScanToNul) const

The nswchars parameter specifies the length of the corresponding wide character string s. You can provide an integer to

specify the number of characters in s. Or you can use the constant ITLocale::ScanToNul (the default) to specify that s is a

null-terminated string.

This method returns a pointer to the last occurrence of wide character c in wide character string s. If this method does not

find c in s, it returns NULL. If you call ITLocale::GetError(), it returns 0.

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

Chapter 1. Informix® Object Interface for C++ Guide

The WSpanSize method
This method returns the number of characters in the longest initial substring of the wide character string s1 that consists

entirely of characters from the wide character string s2.

int WSpanSize(const ITWChar *s1, const ITWChar *s2,
 int nwchars1 = ITLocale::ScanToNul,
 int nwchars2 = ITLocale::ScanToNul) const

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of characters in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify

that the corresponding string is null-terminated.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The WFindSubstr method
This method searches for the first occurrence of the wide character string s2 in the wide character string s1.

ITWChar *WFindSubstr(const ITWChar *s1, const ITWChar *s2,
 int nwchars1 = ITLocale::ScanToNul,
 int nwchars2 = ITLocale::ScanToNul) const

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings. You can provide an integer to specify the

number of characters in the corresponding string. Or you can use the constant ITLocale::ScanToNul (the default) to specify

that the corresponding string is null-terminated.

This method returns a pointer to the first occurrence of the wide character string s1 in wide character string s2. If this

method does not find s1 in s2, it returns NULL. If you call ITLocale::GetError(), it returns 0.

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

Environment method
This topic describes the ITLocale method for determining the client locale.

const char *LocaleName() const

This method returns the value of the GLS environment variable CLIENT_LOCALE.

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

105

HCL Informix Object Interface for C++ Programmer’s Guide

106

Related reference

Error return method on page 93

Code set conversion methods
This section describes the ITLocale methods for converting code sets.

The ConvertCodeset method
This method converts the string of multibyte characters in from to another code set and copies the result to the location

pointed to by to.

Important: This method assumes that from points to a null-terminated string.

int ConvertCodeset(char *to, const char *from,
 const char *toLocaleName,
 const char *fromLocaleName) const

Use the fromLocalName parameter to identify the locale from which you are converting. Use the toLocalName parameter

to specify the locale to which you are converting. There is a single code set associated with each locale. By identifying the

locale, you also specify the code set.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

However, there are significant differences between the parameters of the GLS API function ifx_gl_cv_mconv() and the

ITLocale method. For example, the GLS API function has specific code set parameters, whereas ITLocale::ConvertCodeset

has locale name parameters that imply the code set name. Also, the GLS API function has additional parameters for copying

fragments of strings that are unavailable to ConvertCodeset.

Related reference

Error return method on page 93

The NeedToConvertCodeset method
This method determines if conversion is necessary from the code set associated with the fromLocaleName locale to the

code set associated with the toLocalename locale.

int NeedToConvertCodeset(const char *toLocaleName,
 const char *fromLocaleName) const

This method returns 1 if conversion is needed and 0 if not.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Chapter 1. Informix® Object Interface for C++ Guide

Related reference

Error return method on page 93

The SizeForCodesetConversion method
This method calculates the number of bytes needed to convert the multibyte characters in nfrombytes from the code set

associated with the fromLocaleName locale to the code set associated with the toLocaleName locale.

int SizeForCodesetConversion(const char *toLocaleName,
 const char *fromLocaleName,
 int nfrombytes) const

This method returns the number of bytes to convert. If this value equals the number of bytes in nfrombytes, then conversion

is done in place. Otherwise, you must allocate another buffer for the conversion.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

Character classification methods
This section describes the ITLocale methods for classifying characters.

The IsAlnum method
This method determines whether a multibyte character c or a wide character c is an alphanumeric character according to the

rules of the current locale.

ITBool IsAlnum(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsAlnum(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is an alphanumeric character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

107

HCL Informix Object Interface for C++ Programmer’s Guide

108

The IsAlpha method
This method determines whether multibyte character c or wide character c is an alphabetic character according to the rules

of the current locale.

ITBool IsAlpha(const char *c, int nbytes = ITLocale::ScanNoLimitl) const

ITBool IsAlpha(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is an alphabetic character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The IsBlank method
This method determines whether multibyte character c or wide character c is a blank character (space or tab, single or

multibyte), according to the rules of the current locale. Blank characters include the single-byte space and tab characters and

any multibyte version of these characters.

ITBool IsBlank(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsBlank(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a blank or tab; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

Chapter 1. Informix® Object Interface for C++ Guide

The IsCntrl method
This method determines whether multibyte character c or wide character c is a control character according to the rules of the

current locale.

ITBool IsCntrl(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsCntrl(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a control character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

For more information, see the ifx_gl_ismcntrl function in the Informix® GLS User's Guide.

Related reference

Error return method on page 93

The IsDigit method
This method determines whether multibyte character c or wide character c is a digit character according to the rules of the

current locale.

ITBool IsDigit(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsDigit(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a digit character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

109

HCL Informix Object Interface for C++ Programmer’s Guide

110

The IsGraph method
This method determines whether multibyte character c or wide character c is a graphical character according to the rules of

the current locale.

ITBool IsGraph(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsGraph(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a graphical character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The IsLower method
This method determines whether multibyte character c or wide character c is a lowercase character according to the rules of

the current locale.

ITBool IsLower(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsLower(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a lowercase character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The IsPrint method
This method determines whether multibyte character c or wide character c is a printable character according to the rules of

the current locale. Printable characters include all characters except control characters.

Chapter 1. Informix® Object Interface for C++ Guide

ITBool IsPrint(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsPrint(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a printable character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The IsPunct method
This method determines whether multibyte character c or wide character c is a punctuation character according to the

rules of the current locale. Punctuation characters include any single-byte ASCII punctuation characters and any non-ASCII

punctuation characters.

ITBool IsPunct(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsPunct(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a printable character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The IsSpace method
This method determines whether multibyte character c or wide character c is a space character according to the rules of

the current locale. Space characters include the blank characters (blank and tab) as well as the single-byte and multibyte

versions of the newline, vertical tab, form-feed, and carriage return characters.

111

HCL Informix Object Interface for C++ Programmer’s Guide

112

ITBool IsSpace(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsSpace(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a space character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The IsUpper method
This method determines whether multibyte character c or wide character c is an uppercase character according to the rules

of the current locale.

ITBool IsUpper(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsUpper(ITWChar c) const

The nbytes parameter specifies the length of the corresponding multibyte character c. You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is an uppercase character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The IsXDigit method
This method determines whether multibyte character c or wide character c is a hexadecimal number character according to

the rules of the current locale.

ITBool IsXDigit(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsXDigit(ITWChar c) const

Chapter 1. Informix® Object Interface for C++ Guide

Only the ten ASCII digit characters are in the hexadecimal class. Multibyte versions of these digits or alternative

representations of these digits (for example, Hindi or Kanji digits) are not in this class, but instead are in the alpha class.

The nbytes parameter specifies the length of the corresponding multibyte character c You can provide an integer to specify

the number of bytes in c, in which case this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

This method returns TRUE if c is a hexadecimal number character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

Character case conversion methods
This section describes the ITLocale methods for converting the case of characters.

The ToUpper—Wide Character method
This method converts the wide character c to uppercase. If the wide character has no uppercase equivalent, it is copied

unchanged.

ITWChar ToUpper(ITWChar c) const

This method returns the uppercase character equivalent, if there is one, or the input character if there is no uppercase

equivalent. If there is an error, this method returns 0. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The ToUpper—Multibyte Character method
This method converts the multibyte characters in from to uppercase. If the characters in from have no uppercase equivalent,

they are copied unchanged.

unsigned short ToUpper(char *to,
 const char *from,
 unsigned short &nfrombytes,
 int nbytes = ITLocale::ScanNoLimit)const

This method returns in the nfrombytes parameter the number of bytes read from the location pointed to by from. You must

pass the address of an unsigned short for this parameter.

113

HCL Informix Object Interface for C++ Programmer’s Guide

114

The nbytes parameter specifies the length of the multibyte characters in from. You can provide an integer to specify the

number of bytes, in which case this method reads up to this many bytes from from when trying to form a complete character.

Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as necessary to

form a complete character.

This method returns the number of bytes actually copied to the buffer pointed to by to.

If there is an error, this method returns 0. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The ToLower—Wide Character method
This method converts the wide character c to lowercase.

ITWChar ToLower(ITWChar c) const

This method returns the lowercase equivalent of the input character. If there is no lowercase equivalent, the method returns

the input character. If there is an error, this method returns 0. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The ToLower—Multibyte Character method
This method converts the multibyte characters in from to lowercase.

unsigned short ToLower(char *to, const char *from,
 unsigned short &nfrombytes,
 int nbytes = ITLocale::ScanNoLimitl) const

The nfrombytes parameter specifies the number of bytes to copy.

The nbytes parameter specifies the length of the multibyte characters in from. You can provide an integer to specify the

number of bytes, in which case this method reads up to this many bytes from from when trying to form a complete character.

Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as necessary to

form a complete character.

If there is an error, this method returns 0. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

Chapter 1. Informix® Object Interface for C++ Guide

Built-in data type conversion methods
This section describes the ITLocale methods for converting built-in data types to an internal representation.

The ConvertDate method
This method converts the date pointed to by str into an internal representation.

mi_date ConvertDate(const ITString &str,
 const ITString &format = ITString::Null) const

Use the format parameter to specify the format of the internal representation. If you set format to NULL (the default), the

format is determined by the environment.

If you do not specify NULL for the format, you must pass a string to format defining the format of the internal representation.

This method returns the internal representation of the date.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The FormatDate method
This method creates a date string from the mi_date structure pointed to by d.

ITString FormatDate(const mi_date *d,
 const ITString &format = ITString::Null) const

Use the format parameter to specify the format of the date string. If you set format to NULL (the default), the format is

determined by the environment.

If you do not specify NULL for the format, you must pass a string to format defining the format of the internal representation.

This method returns a date string.

If there is an error, this method returns an empty ITString object. Call ITLocale::GetError() to retrieve a specific error

message.

Related reference

Error return method on page 93

115

HCL Informix Object Interface for C++ Programmer’s Guide

116

The ConvertDatetime method
This method converts the date-time string pointed to by str into an internal representation.

mi_datetime ConvertDatetime(const ITString &str,
 const ITString &format = ITString::Null) const

Use the format parameter to specify the format of the internal representation. If you set format to NULL (the default), the

format is determined by the environment.

If you do not specify NULL for the format, you must pass a string to format defining the format of the internal representation.

This method returns the internal representation of the date.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The FormatDatetime method
This method creates a date-time string from the mi_datetime structure pointed to by dt.

ITString FormatDatetime(const mi_datetime *dt,
 const ITString &format = ITString::Null) const

Use the format parameter to specify the format of the date string. If you set format to NULL (the default), the format is

determined by the environment.

If you do not specify NULL for the format, you must pass a string to format defining the format of the internal representation.

This method returns a date-time string.

If there is an error, this method returns an empty ITString object. Call ITLocale::GetError() to retrieve a specific error

message.

Related reference

Error return method on page 93

The ConvertNumber method
This method converts the number string pointed to by str into an internal representation.

mi_decimal ConvertNumber(const ITString &str,
 const ITString &format = ITString::Null) const

Use the format parameter to specify the format of the internal representation. If you set format to NULL (the default), the

format is determined by the environment.

Chapter 1. Informix® Object Interface for C++ Guide

If you do not specify NULL for the format, you must pass a string to format defining the format of the internal representation.

This method returns the internal representation of the number.

If there is an error, this method returns a null mi_decimal value. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The FormatNumber method
This method creates a number string from the mi_decimal structure pointed to by dec.

ITString FormatNumber(const mi_decimal *dec,
 const ITString &format = ITString::Null) const

Use the format parameter to specify the format of the date string. If you set format to NULL (the default), the format is

determined by the environment.

If you do not specify NULL for the format, you must pass a string to format defining the format of the internal representation.

This method returns a number string.

If there is an error, this method returns an empty ITString object. Call ITLocale::GetError() to retrieve a specific error

message.

Related reference

Error return method on page 93

The ConvertMoney method
This method converts the money string pointed to by str into an internal representation.

mi_money ConvertMoney(const ITString &str,
 const ITString &format = ITString::Null) const

Use the format parameter to specify the format of the internal representation. If you set format to NULL (the default), the

format is determined by the environment.

If you do not specify NULL for the format, you must pass a string to format defining the format of the internal representation..

This method returns the internal representation of the money string in an mi_money structure.

If there is an error, this method returns a null mi_money value. Call ITLocale::GetError() to retrieve a specific error message.

117

HCL Informix Object Interface for C++ Programmer’s Guide

118

Related reference

Error return method on page 93

The FormatMoney method
This method creates a money string from the mi_money structure pointed to by m.

ITString FormatMoney(const mi_money *m,
 const ITString
 &format = ITString::Null) const

Use the format parameter to specify the format of the date string. If you set format to NULL (the default), the format is

determined by the environment.

If you do not specify NULL for the format, you must pass a string to format defining the format of the internal representation.

This method returns a number string.

If there is an error, this method returns an empty ITString object. Call ITLocale::GetError() to retrieve a specific error

message.

Related reference

Error return method on page 93

Multibyte and wide character conversion methods
This section describes the ITLocale methods for converting characters and character strings between their multibyte and

wide character representations.

The MToWString method
This method converts the multibyte character string from to its wide character representation and stores the result in to.

int MToWString(ITWChar *to, const char *from, int limit,
 int nfrombytes = ITLocale::ScanToNul) const

Use limit to specify the maximum number of bytes to read from the from string and write to to.

The nfrombytes parameter specifies the length of the corresponding multibyte string from. You can provide an integer to

specify the number of bytes in from. Or you can use the constant ITLocale::ScanToNul (the default) to specify that from is a

null-terminated string.

This method returns number of characters read from from and written to to, not counting the null terminator, if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Chapter 1. Informix® Object Interface for C++ Guide

Related reference

Error return method on page 93

The MToWChar method
This method converts the multibyte character from into its wide character representation.

ITWChar MToWChar(const char *from, int nfrombytes = ITLocale::ScanNoLimit) const

The nfrombytes parameter specifies the length of the corresponding multibyte character from. You can provide an integer to

specify the number of bytes in from in which case this method reads up to this many bytes from from when trying to form a

complete character. Or you can set nfrombytes to ITLocale::ScanNoLimit (the default), in which case this method reads as

many bytes as necessary to form a complete character.

This method returns the wide character representation of multibyte character from.

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

The GLS API function ifx_gl_mbtowc() has different parameters from MToChar. The GLS API function returns the wide

character in the parameter list and returns the number of bytes read in the function return value.

Related reference

Error return method on page 93

The WToMString method
This method converts the wide character string from to its multibyte representation and stores it in the location pointed to by

to.

int WToMString(char *to, const ITWChar *from, int limit,
 int nfromsize =
 ITLocale::ScanToNul) const

Use limit to specify the maximum number of bytes to read from the from string and write to to. If a character to be written

to to would cause more than the specified limit of bytes to be written, no part of that character is written. In this case the

method writes less than the specified limit of bytes.

The nfromsize parameter specifies the length of the corresponding string from. You can provide an integer to specify

the number of bytes in from. Or you can use the constant ITLocale::ScanToNul (the default) to specify that from is a null-

terminated string.

This method returns the number of bytes it writes to multibyte string to.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

119

HCL Informix Object Interface for C++ Programmer’s Guide

120

Related reference

Error return method on page 93

The WToMChar method
This method converts the wide character from to its multibyte representation and stores it in consecutive bytes starting at

the location pointed to by to.

int WToMChar(char *to, const ITWChar from) const

This method returns the number of bytes it writes to to.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

Multibyte string traversal and indexing methods
This section describes the following ITLocale methods for converting built-in data types to an internal representation.

The MCharBytes method
This method returns the maximum number of bytes that any multibyte character can occupy.

Example

int MCharBytes() const

The MCharLen method
This method returns the number of bytes in the multibyte character s.

int MCharLen(const char *s, int nbytes = ITLocale::ScanToNul) const

The nbytes parameter specifies the length of the corresponding multibyte character s. You can provide an integer to specify

the number of bytes in s, in which case this method reads up to this many bytes from s when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a specific error message.

Chapter 1. Informix® Object Interface for C++ Guide

Related reference

Error return method on page 93

The MNextChar method
This method returns a pointer to the next multibyte character after the multibyte character s.

char *MNextChar(const char *s, int nbytes = ITLocale::ScanNoLimit) const

The nbytes parameter specifies the length of the corresponding multibyte character s. You can provide an integer to specify

the number of bytes in s, in which case this method reads up to this many bytes from s when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this method reads as many bytes as

necessary to form a complete character.

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

The MPrevChar method
This method returns a pointer to the first byte of the multibyte character before the multibyte character c, where s is a pointer

to the beginning of the multibyte string that contains c.

char *MPrevChar(const char *s, const char *c) const

If there is an error, this method returns NULL. Call ITLocale::GetError() to retrieve a specific error message.

Related reference

Error return method on page 93

121

Index
A

Access to objects
arbitrary 29
nonsequential 29
random 87

Array value objects
contain.cpp example 30
converting 30
ITContainCvt interface 30, 79

Automatic variables 1

B
Base types, ITContainCvt interface 79
Basic value object support 87
Building ITValue objects 33
Built-in data types, converting locale 115

C
C++ base types

ITContainCvt interface 79, 83
ITContainerIter class 51

Callback functions
arguments 12
ITErrorInfo interface 28
managing errors 12
triggering events 57

Class constructor 33
Class destructor 33
Class factory 4, 31, 33
Class hierarchy 6
CLIENT_LOCALE environment variable 105
Code set conversion 106
COM 4, 36, 44, 84
Command line interface 9
Comparing objects 25
Compatibility of data types 25
Connection stamp

ITConnection class 49, 50
rowref.cpp example 41

Connections
creating 11
csql3.cpp example 13
defaults 9
ITConnection class 13, 49
ITDBInfo class 55
transaction states 13

contain.cpp example 30
Container data type 23
Container objects 1

base type 44
contain.cpp example 30
converting arrays 30
defined 44
fsexamp1.cpp example 30
indexing 30
ITContainer interface 30, 80

Controlling unknown pointer 44
Converting value objects

arrays 30
ITContainCvt interface 30
ITConversions interface 26, 80

Creating
connections 11
new data types 33

csql.cpp example 9
csql2.cpp example 12
csql3.cpp example 13
Cursors

ITCursor class 18, 53
using 18

cursupd.cpp example 18

D
Data types

abstract 23
compatibility 25
container 23
creating new 33
ITTypeInfo class 76
large object 23
row 23, 32
supported 23, 89
supported value interfaces 89
transient 76

Database name 55
Dates

converting localized dates to internal
format 115
creating localized data strings 115
ITDateTime interface 27
ITDateTimje Interface 82

Datetime data
converting from a localized string 115
formatting a localized string 116

delegate.cpp example 44
Delegation

creating object containers 44, 44
delegate.cpp example 44
interface 44
nested classes 36

Dynamic loading 47

E
Errors

callback functions 12
csql2.cpp example 12
ITErrorInfo interface 28, 83
ITErrorManager class 12
ITLocale methods 93
managing 12

Examples
contain.cpp 30
csql.cpp 9
csql2.cpp 12
csql3.cpp 13
delegate.cpp 44
ifval.cpp 36
queryex.cpp 16
rawval.cpp 32
rowref.cpp 41
rowset.cpp 29
simpval.cpp 33
tabcnt.cpp 24

ExecForIteration 16
ExecForStatus 15
ExecOneRow 15
ExecToSet 16

F
Factory functions 58

I
Identifiers 84
ifval.cpp example 36
Implementation classes 1
INFORMIXCPPMAP environment variable 48
Interface delegation 44

Issuing database queries 9
IT_VERSION macro 48
ITConnection 9, 13
ITConnectionStamp 41, 50
ITContainCvt

value interface 30, 79, 79
ITContainer

value interface 4, 30, 80
ITContainerIter

operation class 51
ITConversions

value interface 26, 80
ITCursor

operation class 18, 53
ITDateTime

value interface 27, 82
ITDatum

value interface 32, 83
ITDBInfo

operation class 11, 55
ITDBNameList

operation class 57
Iterating values 80
ITErrorInfo

value interface 28, 83
ITErrorManager

operation class 12, 57
ITEssential

value interface 44, 84
ITFactoryList

operation class 9, 58, 58
ITInt8

operation class 60
ITLargeObject

value interface 27, 85
ITLargeObjectManager

operation class 21, 62
ITLocale class 92
ITMVDesc structure 33, 67
ITObject

operation class 67
ITPosition

operation class 68
ITPreserveData

operation class 68
ITQuery

operation class 9, 15, 69
ITRoutineManager

operation class 70
ITRow

value interface 9, 29, 86, 86
ITSet

value interface 29, 87
ITStatement

operation class 71
ITString

operation class 74
ITSystemNameList

operation class 76
ITTypeInfo

operation class 76
ITValue

value interface 25, 33, 87

L
Large objects 1

data type 23
ITLargeObject interface 27, 85

122

ITLargeObjectManager class 21, 62
Linking applications 48
loadtab.cpp example 17
Localization

money data 117
numerical data 116

M
Memory allocation for GLS strings 93
Microsoft Common Object Model 4, 36, 44, 84
Money data

converting from a localized string 117
creating a localized money string 118

Multibyte character methods
IsAlnum 107
IsAlpha 108
IsBlank 108
IsCntrl 108
IsDigit 109
IsGraph 109
IsLower 110
IsPrint 110
IsPunct 111
IsSpace 111
IsUpper 112
IsXDigit 112
ToLower 114
ToUpper 113

Multibyte character representation 93
Multibyte character string

allocating memory 93
comparing with another 94
concatenating characters 97
converting codeset 106
converting to wide character string 118
copying 96
finding length in bytes 98
finding length in characters 97, 99
finding length of an initial substring 100
representing 92, 92
searching

first occurrence of a character 95, 99
first occurrence of a substring 97
last occurrence of a character 99

traversing 121
Multibyte characters

converting to wide character 119
copying 98
maximum width 120
size in bytes 120

Multiple behaviors 36

N
Nested classes 36
Null-terminated string 92
Numeric data

converting from localized string 116
creating a localized string 117

O
Object delegation 44
Object Interface for C++

connections 13
dynamic loading 47
inheritance hierarchy 6
issuing and retrieving queries 9
linking guidelines 48
managing errors 12, 12, 28
nested classes 36
operation classes 1, 4
restrictions 7
supported data types 89

value interfaces and value objects 4
Objects. 1
Operation classes

defined 1, 4
hierarchy 6
ITConnection 9, 13, 49
ITConnectionStamp 50
ITContainerIter 51
ITCursor 53
ITDBInfo 11, 55
ITDBNameList 57
ITErrorManager 12, 57
ITFactoryList 58
ITLargeObjectManager 21, 62
ITObject 67
ITPreserveData 68
ITQuery 9, 15, 69
ITRoutineManager 70
ITStatement 71
ITString 74
ITSystemNameList 76
ITTypeInfo 76
list 1

Optimizing object storage 36

P
Parent objects 44
Passing objects 8
Passwords 55
Prepared statements 17, 17

Q
Queries

cursors 18
issuing 15
ITQuery class 15, 69
retrieving results 9

Query methods
ExecForIteration 16
ExecForStatus 15
ExecOneRow 15
ExecToSet 16
queryex.cpp example 16

queryex.cpp example 16
QueryInterface() function 4

R
Random access

ITSet interface 29, 87
rowset.cpp example 29
set results 29

Raw data
extracting data structures 32, 32
ITDatum interface 32
rawval.cpp example 32

rawval.cpp example 32
Reference counting

ITEssential interface 24, 84
nested classes 36
parent and sub-objects 44
tabcnt.cpp example 24

References
connection stamp 41
ITConnectionStamp class 41
ITPreserveData class 41, 68
rowref.cpp example 41

Restrictions 7
Retrieving query results 9
Row data types 23, 32
Row values 86
rowref.cpp example 41
rowset.cpp example 29

S
Server

managing errors 28
Set results

random access 29
Setting names 55
Shared object libraries 47
simpval.cpp example 33
SQL statements

CREATE TABLE 15
CREATE VIEW 15
DROP TABLE 15
UPDATE 15

Storage of objects, optimizing 36
String classes, ITString 74
Subobjects 44
System name 55

T
tabcnt.cpp example 24
Times 27, 82
Transaction states 13, 49
Transient data types 76
Type map file 9, 48

U
User name 55

V
Value interfaces

class hierarchy 6
defined 1, 4, 4
exposing multiple 36
identifiers 84
ITContainCvt 30, 79, 79, 83
ITContainer 30, 80
ITConversions 26, 80
ITDateTime 27, 82
ITDatum 32
ITErrorInfo 28, 83
ITEssential 44, 84
ITLargeObject 27, 85
ITRow 9, 29, 86, 86
ITSet 29, 87
ITValue 25, 33, 87
lists 4
supported data types 89

Value objects 1
allocation on updating 41
array 30
base type containers 44
building simple 33
class factory 33
comparison methods 25
converting 80
creating 41
creating true 33
defined 4, 4
delegation 44
dynamic loading 47
interfaces 4
local copy vs. pointer 41
management 24
Microsoft Common Object Model 4
multiple interfaces 36
object containers 44
printing methods 25
simpval.cpp example 33

Variables, automatic 1
Virtual destructor 67

123

W
Wide character

converting to lowercase 114
converting to multibyte character 120
converting to uppercase 113

Wide character string
concatenating 100, 102
converting to multibyte character string 119
copying 101, 103
finding length in characters 102, 103
finding length of an initial substring 102,
104
searching

first occurrence of a character 101, 104
first occurrence of a substring 105
last occurrence of a character 104

124

	HCL Informix Object Interface for C++ Programmer’s Guide
	Contents
	Chapter 1. Informix® Object Interface for C++ Guide
	Architecture of the object interface for C++
	Operation classes
	Value interfaces and value objects
	Class hierarchy
	Implementation notes
	Restrictions
	Passing objects—compiler dependency
	Informix® database server compatibility

	Globalization
	ITFactory list and the type map

	Issue database queries and retrieve results
	Using operation classes
	Create connections
	Find system names and database names
	Using ITSystemNameList
	Using ITDBNameList

	Manage errors
	Using the error handling feature

	Connection transaction states
	Issue queries
	When to use the different ITQuery methods
	Query method example
	Using prepared statements
	Using cursors
	Using the large object manager
	Using ITRoutineManager

	Access data values
	Access data values
	Value object management
	The ITValue interface
	The ITConversions interface
	The ITDatum interface
	The ITDateTime interface
	The ITLargeObject interface
	The ITErrorInfo interface
	The ITRow interface
	The ITSet interface
	The ITContainer interface
	The ITContainCvt interface

	Create and extend value objects
	The raw data object
	Build simple value objects
	Expose multiple interfaces
	Value objects and connection events
	Create row type value objects
	Create row type value objects without an open connection
	Create collection type value objects without an open connection

	Object Containment and Delegation
	Dynamic loading
	Map files
	Guidelines

	Operation class reference
	The ITConnection class
	The ITConnectionStamp class
	The ITContainerIter class
	The ITCursor class
	Usage

	The ITDBInfo class
	The ITDBNameList class
	The ITErrorManager class
	The ITFactoryList class
	Successful initialization verification

	The ITInt8 class
	The ITLargeObjectManager class
	Accessing smart large objects in nondefault sbspaces

	The ITMVDesc class
	The ITObject class
	The ITPosition class
	The ITPreserveData class
	The ITQuery class
	The ITRoutineManager class
	The ITStatement class
	Usage

	The ITString class
	The ITSystemNameList class
	The ITTypeInfo class

	Value interface reference
	The ITContainCvt interface
	The ITContainer interface
	The ITConversions interface
	C++ compiler interpretation of long doubles

	The ITDateTime interface
	The ITDatum interface
	The ITErrorInfo interface
	The ITEssential interface
	The ITLargeObject interface
	The ITRow interface
	The ITSet interface
	The ITValue interface
	Use of ITValue::Printable with null value objects

	Appendixes
	Supported data types
	Example programs
	The ITLocale class
	Multibyte character string termination
	Multibyte character termination
	Memory allocation
	Access the ITLocale object
	Error return method
	String comparison methods
	The MCollate method
	The WCollate method

	String processing methods
	The MConcatenate method
	The MScan method
	The MCopy method
	The MComplSpanSize method
	The MLength method
	The MFindSubstr method
	The MNConcatenate method
	The MNCopy method
	The MNTSBytes method
	The MNTSLength method
	The MSpan method
	The MRScan method
	The MSpanSize method
	The WConcatenate method
	The WScan method
	The WCopy method
	The WComplSpanSize method
	The WLength method
	The WNConcatenate method
	The WNCopy method
	The WNTSLength method
	The WSpan method
	The WRScan method
	The WSpanSize method
	The WFindSubstr method

	Environment method
	Code set conversion methods
	The ConvertCodeset method
	The NeedToConvertCodeset method
	The SizeForCodesetConversion method

	Character classification methods
	The IsAlnum method
	The IsAlpha method
	The IsBlank method
	The IsCntrl method
	The IsDigit method
	The IsGraph method
	The IsLower method
	The IsPrint method
	The IsPunct method
	The IsSpace method
	The IsUpper method
	The IsXDigit method

	Character case conversion methods
	The ToUpper—Wide Character method
	The ToUpper—Multibyte Character method
	The ToLower—Wide Character method
	The ToLower—Multibyte Character method

	Built-in data type conversion methods
	The ConvertDate method
	The FormatDate method
	The ConvertDatetime method
	The FormatDatetime method
	The ConvertNumber method
	The FormatNumber method
	The ConvertMoney method
	The FormatMoney method

	Multibyte and wide character conversion methods
	The MToWString method
	The MToWChar method
	The WToMString method
	The WToMChar method

	Multibyte string traversal and indexing methods
	The MCharBytes method
	The MCharLen method
	The MNextChar method
	The MPrevChar method

	Index

