
HCL Detect v12.1.8 Development Guide

ii

Contents
Chapter 1. Folder Structure...3
Chapter 2. Configurations... 5

Profile.. 5
Reference Datasets..6
Feed Data Model..7
Feed Applications Models...8
Campaigns..12

Chapter 3. Solution Source Code.................................... 25
Chapter 4. Detect Expression Language..........................27

Types...27
Literals.. 27
Arithmetic Operations..27
Comparison Operations...28
Logical Operations...28
Ternary Operation.. 29
List Operations...29
Precedence and Associativity of Operations............... 30
Attributes.. 30
Conversions..31
Aggregates... 31
Null Values... 33

Chapter 5. Detect Expression Language Builtin
Functions.. 35

Geohash Functions..35
List Functions...36
Math Functions.. 42
String Functions... 45
Time Functions.. 47
Generic Type Classes.. 80

Chapter 1. Folder Structure
A basic solution folder structure mainly consist of the following folders mentioned below. Taking goliath solution as an

example here. The structure is as follows:

$ tree -L 1 /home/user/stash/goliath/
/home/user/stash/goliath/
├── bld
├── dev_env_bootstrapper
├── drive -> /home/user/HCL/software/package_cache/rhel07/drive-2.3.0/drive
├── etc
├── infra -> /home/user/HCL/software/package_cache/rhel07/infra-3.5.3
├── Makefile -> dev_env_bootstrapper/Makefile
├── pom.xml
├── src
└── test

Let's go through each folder and understand the contents within it.

bld folder

The bld folder mainly contains the generated or compiled code. It also contains the installation files which one would find in

an installer tarball. The structure is as follows:

$ tree -L 1 /home/user/stash/goliath/bld/
/home/user/stash/goliath/bld/
├── current_arch -> /home/user/stash/goliath/bld/rhel07
├── external_dependencies -> /home/user/HCL/goliath/1.0.0/rhel07
└── rhel07

Based on your running operation system (rhel07 / rhel08) a folder would be created. Some of the important paths are:

“

• HCL_HOME = /home/user/stash/goliath/bld/rhel07/install/goliath/drive/

◦ This folder contains the compiled code, executables and configuration files for the

product Detect.

• HCL_INSTANCE_HOME = /home/user/stash/goliath/bld/rhel07/instance_home/goliath

◦ This folder contains the runtime generated files and logs. This also contains the flat

files where NameService, Kafka, PinPoint and FastPast store their data.

◦ Also, for feed applications which use files for input data, the default input file path

would be here.

”

dev_env_bootstrapper folder

3

HCL Detect v12.1.8 Development Guide

4

This folder contains the scripts which sets up your bash environment, Python environment, environment variables and other

environment settings required to build, develop and bring up the services.

This also contains a Makefile which is referred when any make command is executed.

drive folder

This folder contains the built product code which the solution would be referring to.

etc folder

This folder contains solution based configuration files. This will explained in more detail in

the :ref:configuration<solutionconfiguration> section.

infra folder

This folder contains the built infra code which the solution would be referring to. Infra contains some build related code,

helper classes and methods and commonly used utilities such as database conectors, logger methods, etc.

Makefile file

This is actually a symlink which points to a Makefile within the dev_env_bootstrapper folder.

pom.xml file

Parent pom file for the solution which is required as part of the Java build of the solution. This file would contain the Maven

dependencies that the solution imports and build plugins required.

src folder

Contains solution code for the feed applications and helper functions.

test folder

Contains test code for running automated test on the solution's feed applications.

Chapter 2. Configurations

Profile
An entity corresponds to a uniquely identifiable attribute in the data model. E.g. Mobile Number for a Telecom Subscriber,

Cell ID for a Cell Tower, customer Id for a banking customer etc. A collection of features related to the entity. Such collection

may include Static features (e.g. DOB) + Historic Features (e.g. Revenue last month) + Semi Historic Features (e.g. Dropped

calls let hour) + Last-Known Features (e.g. last known location, last topup amount, etc.). The Real-time Features come in the

form of Real-time events.

Profiles are technically a collection of tables in Redis, each table has a key and value is a hash map. This hash map further

has key value pair, representing the profile attribute name (like gender) as key and attribute value (like Female) as value.

Profile Configuration

Profile configurations are defined in etc/model/profiles directory. below is the example of a solution containing two profiles

definition:

$ tree etc/model/profiles/
etc/model/profiles/
├── customer
│ └── profile.json
└── tower
 └── profile.json

The name of profiles are Customer and Tower, the profile Customer represents telcom sunscribers and profile Tower

represents cell tower installed by telecom providers.

The profile.json file is structures as below:

{keyAttribute":
 "MSISDN","masterTable":"CUSTOMER_PROFILE","name":"Customer","tables":[{"name":"CUSTOMER_PROFILE","t
ype":"Dynamic"},{"name":"CUSTOMER_SEGMENT","type":"QuasiStatic"}]}

The above definition of Customer profile is configured that the keyAttribute is MSISDN (Mobile number), This profile

contains two tables i.e., CUSTOMER_PROFILE and CUSTOMER_SEGMENT. Among them the master profile is

CUSTOMER_PROFILE. The profile is of two types. Dynamic types is table that can be changed any time in realtime and

attribute values are very dynamic in nature like lastTransactionAmount. whereas a QuasiStatic table could changes slowly

like customerSegment. The clients which accesses the profile will invalidate the cache based on type of the profile table.

a Dynamic table will be accessed each time by discarding cache, whereas a QuasiStatic tables will keep the cache for 10

minutes.

Once the profile are defined in etc/model/profiles directory, we need to change the product's configuration to point to these

profiles. The profiles are configured in drive.profiles section of product configuration etc/drive.json:

...."drive":{"profiles":["Customer","Tower"],}...."masterProfile":"Customer",....

5

HCL Detect v12.1.8 Development Guide

6

Note:

• Directory structure and nameing of profile directory is very important as Detect will use this to navigate and

access a particular profile configuration. The profile Customer is kept under profiles/customer/profile.json , if

the profile name was Event Catelog then the directory stucture will be profiles/event_catelog/profile.json.

• We can have as many profiles as required by a solution but there will one profile which is called master

profile. This master profile is used as a central entity profile and used as default profile for audience and

trigger evaluation.

Reference Datasets
Reference datasets are configured to to populate the profile tables. This defines the data model and format of reference data

along with the destination profile and profile table. The reference data generally comes from dataware houses, operational

systems or given as a static files.

below is the example of a solution containing one reference datasets definition:

$ tree etc/model/reference_datasets/
etc/model/reference_datasets/
├── towers.json
└── towers.schema.json

The name of reference dataset is Towers, this reference dataset is used to periodically update profile Tower.

The towers.schema.json file is structures as below:

{"attributes":[{"name":"cellId","type":"String"},{"name":"city","skipped":true,"type":"String"},{"na
me":"cityCode","type":"String"},{"name":"date","type":"String","allowedToBeNull":true},{"name":"dist
rict","type":"String"},{"name":"equipment","type":"List(String)"},{"name":"lat","type":"Double"},{"n
ame":"lon","type":"Double"},{"name":"siteType","type":"String"},{"name":"towerType","type":"String"}
],"dataFileFormat":"JSON","dropTableBeforeInsertion":true,"keyAttribute":"cellId","name":"Towers","p
rofile":"Tower","refreshIntervalInMillis":6000000,"refreshable":true,"table":"TOWER"}

• attributes section defines the name, type, null constrains, skipped flag. by default all attributes are non-nullable. If an

attribute is marked as "skipped": true then that attribute will be skipped while loading the profile table. The order of

attributes in the attribute section defines the order of the attribute in the reference dataset's data file.

• dataFileFormat are of two types i.e., JSON or CSV.

• dropTableBeforeInsertion is flag to drop the table before loading a new file.

• keyAttribute is one of the attribute from the file to be used as key while loading data into profile table.

• name is the name of reference data set.

• profile is the name of profile to be loaded.

• refreshIntervalInMillis is the frequency of checking if the file is modified.

• refreshable is a flag to enable the refreshability of the reference dataset.

• table is the name of table among the tables list from the configured profile.

Chapter 2. Configurations

The structure of CSV file will have some additional parameters as below:

{...."dataFileFormat":"CSV","dropTableBeforeInsertion":false,"keyAttribute":"cardType","name":"Card
 Logo","parameters":[{"name":"delimiter","type":"String","value":"|"},{"name":"hasHeader","type":"Bo
ol","value":true}],....}

• delimiter is the delimiter in the CSV file.

• hasHeader is flag to know if the file has header or not.

Once the reference datasets are defined in etc/model/reference_datasets directory, we need to change the product's

configuration to point to these reference datasets. The reference datasets are configured in drive.referenceDatasets section

of product configuration etc/drive.json:

...."drive":{"profiles":["Customer","Tower"],"referenceDatasets":["Towers"]}...."masterProfile":"Cus
tomer",....

Note:

• File nameing of reference datasets directory is very important as Detect will use this to navigate and access

a particular reference dataset configuration. The reference dataset Towers is kept under reference_datasets/

towers.schema.json and since it is a JSON type, the Detect will expect towers.json in the same directory. If

the type was CSV, then Detect will expect towers.dat file.

• Detect maintains a hash of file in the database in order to track changes in the data file and will only refresh if

the file is modified.

Feed Data Model
Feed data models represents common classes of feed data sources in the system. E.g., Card Transaction feed data model

will have common attributes from both Debit Card Transactions and Credit Card Transactions realtime data feed. A feed

application can follow one or more of these feed data models. like Credit Card Transactions data feed could follow Card

Transaction and Location feed data model.

feed data models are configured in etc/models/feed_data_models/<model-name>/data_model.json.

below is the example of a solution containing four feed data model definition:

$tree etc/model/feed_data_models/
etc/model/feed_data_models/
├── identity
│ └── data_model.json
├── top_channels_prediction
│ └── data_model.json
├── topup
│ └── data_model.json
└── usage
 ├── data_model.json
 ├── enrichment_functions.json

7

HCL Detect v12.1.8 Development Guide

8

 └── enrichment_scorers.json

The name of feedDataModels are Identity, Top Channel Prediction, Topup and Usage.

Example Feed data model:

{"attributes":[{"name":"MSISDN","required":true,"type":"String"},{"name":"calledNumber","required":f
alse,"type":"String"},{"name":"callingNumber","required":false,"type":"String"},{"name":"lastMSISDN"
,"required":false,"type":"String"},{"name":"ts","required":true,"type":"Int64"}],"name":"Identity","
profiles":[{"keys":["MSISDN","calledNumber","callingNumber","lastMSISDN"],"name":"Customer"}]}

• attributes is a list of attributes of the model.

• name is the name of feed data model.

• profiles is a list of profile that can be realted to this feed model.

• profiles.name is the name of profile which can be related to this feed model for lookup or update purpose.

• profiles.keys is the list of attribute which can be used as keys to perform operation for the given profile. one of

these keys should be not nullable.

Once feed data models are configured in feed_data_models directory, we need to point to it in product configuration (etc/

drive.json)

The feed data models are configured in drive.feedDataModels section of product configuration etc/drive.json:

...."drive":{"feedDataModels":["Identity","Top Channels
 Prediction","Topup","Usage"],}...."masterProfile":"Customer",....

Note:

• Directory structure and nameing of feed data model directory is very important as Detect will use this to

navigate and access a particular feed data model's configuration. The feed data model Identity is kept under

feed_data_models/identity/data_model.json , if the feedDataModel name was Top Channels Predictionthen

the directory stucture will be feed_data_models/top_channels_prediction/data_model.json.

Feed Applications Models
Each feed application have to configure application model and can optionally configure some other feed application model

file as described below.

feed application models are configured in etc/models/applications/<feed-name>/.

below is the example of a solution containing a feed application definition:

$ tree etc/model/applications/ericsson_usage/
etc/model/applications/ericsson_usage/
├── aggregations.json
├── application.json
├── enrichment_functions.json
└── enrichments.json

Chapter 2. Configurations

The name of feed application is Ericsson Usage .

Below sub-sections will explain each of the above files.

Application Model

Application model defines the key attribute and feed data model that this feed implements.

application model is defined in application.json file.

Example application Model:

{"feedApplication":{"dataModels":["Identity","Usage"],"keyAttribute":"MSISDN","name":"Ericsson
 Usage"}}

• dataModels a list of feed data model that are implemented by this feed.

• keyAttribute an attribute from the feed that is a key attribute.

• name is name of feed application.

Aggregations

This model describes the aggregations that are computed on a feed and stored in FastPast. Aggregates are configured in

etc/model/applications/<application_name>/aggregation.json file.

Example Aggregation definition is as below:

{"aggregations":[{"name":"avgCallDuration","operation":{"aggregationKind":"Average","groupByAttribut
es":["callingNumber"],"valueAttribute":"duration"}},{"name":"numCallsByCell","operation":{"aggregati
onKind":"Sum","groupByAttributes":["cellId"],"value":1.0}},....]}

• aggregations List of aggregations.

• name A name (aggregations defined on different feeds can have the same name) that is in the form of an identifier

(aNameLikeThis).

• groupByAttributes A potentially empty list of group by attributes.

• aggregationKind An aggregation kind (Average, Maximum, Minimum, Sum, Variance).

• valueAttribute or value A value (such as "1" for counting) or value attribute (such as "callDuration").

• tupleFilter An optional tupleFilter, which is a Boolean UEL expression

Loaded once during Detect initialization, managed from the UI there on.

Enirchment Functions

Enrichment Function model file defines the meta data of an enrichment function. It defines the signature of a python function

to be used in an enricher.

Enrichment Function definition is configured in etc/model/applications/<application_name>/enrichment_functions.json file.

Example Enrichment Function:

9

HCL Detect v12.1.8 Development Guide

10

{"functions":[{"module":"acme.application_helpers.ericsson_usage.enrichment_helpers","name":"device_
change","parameters":[{"name":"deviceName","required":false,"type":"String"},{"name":"isSmartphone",
"required":false,"type":"Bool"}],"type":"Bool","usedAttributes":[{"name":"IMEI","required":true,"typ
e":"String"},{"name":"lastIMEI","required":true,"type":"String"}]},....]}

signature of python funciton is as below:

defdevice_change_(tuple_,deviceName=None,isSmartphone=None):"""Returns the last time the subscriber
 has changed their device"""imei=tuple_.IMEIlastIMEI=tuple_.lastIMEI....returnxyz

• functions list of functions defined.

• module a python module path.

• name name of enrichment function.

• type return type of the function.

• parameters list of additional parameters to enrichment function, tuple is a default and first parameter to function. we

need to only mention any additional parameters/

• usedAttributes the list of attributes used from tuple. This is required for Detect to know if a particular function can be

applied on a feed or not.

Enrichments

This model describes the enrichments that are performed on a feed, whose results may be stored in PinPoint. Enrichments

are configured in etc/model/applications/<application_name>/enrichments.json. It has list of enrichments, where each

enrichment has: * A name (enrichments defined on different feeds can have the same name)

• A list of transformed attributes

• A list of lookup attributes

• A list of aggregated attributes

• A list of derived attributes

There are two kinds of enrichments: Pre-aggregation are list of enrichments that are applied before aggregation takes place.

Post-aggregation are list of enrichments that are applied after aggregation takes place.

This file is loaded once during Drive initialization, managed from the UI there on.

Enrichment structure is as below:

{"preAggregationEnrichments":[{"name":"IMEIChangeEnrichmentPre","operation":{"derivedAttributes":[..
..],"aggregatedAttribute":[....],"lookupAttribute":[....],"transformedAttributes":[....]}},{..}],"po
stAggregationEnrichments":[{"name":"IMEIChangeEnrichmentPost","operation":{"derivedAttributes":[....
],"aggregatedAttribute":[....],"lookupAttribute":[....],"transformedAttributes":[....]}},{..}]}

Transformed Attributes

Its an UEL expression to derive a value for a new attribute.

Example:

{"expression":"\"FOO\"","name":"identity","retained":false,"type":"String"}

Chapter 2. Configurations

• expression UEL expression for to derive value.

• name name of enriched attribute.

• retained flag to retain this new attribute in the tuple for next operator in the flow.

• type is the data type of this attribute.

Lookup Attributes

This is used to lookup from a profile.

Example:

{"name":"licenseId","retained":false,"tableAttribute":{"keyAttribute":"identity","name":"licenseId",
"table":"CUSTOMER"},"type":"String"}

• tableAttribute is to define the table and attribute to lookup.

• tableAttribute.keyAttribute is key attribute in the tuple which will be used to perform lookup from table.

• tableAttribute.name is the name attribute from table to be looked up.

• tableAttribute.table is the table name form pinpoint to be looked up.

• type is the data type of the enrichmented attribute.

Aggregated Attributes

This enrichment attribute gets value by fetching a aggregate from FastPast.

Example:

{"aggregate":"sumOfTransactionAmountByCustomerAndTransactionType","groupByAttributes":["customerId",
"transactionType"],"name":"transactionAmountInLast7Days","period":"Last","retained":true,"type":"Dou
ble","windowLength":7,"windowLengthUnit":"Day"}

• aggregate is the name of aggregate in the FastPast.

• groupByAttributes is a list of attributes to be used for passing for groupby attributes.

• name is the name of enriched attribute.

• period is the period for FastPast query. e.g. Current, Last or AllTime.

• windowLength is length of window for a given unit.

• windowLengthUnit is the unit for which query to be made. e.g., Day, Month, Year, Minute, Hour

Derived Attributes

The derived attributes enrichment enables the execution of an external Python function. One such a function takes in a tuple

(as well as any other required additional parameters, if any), performs a user-defined computation, and produces a result.

This function invocation's return value can then be retained and forwarded as part of an outgoing tuple.

Example:

{"function":{"module":"acme.application_helpers.ericsson_usage.enrichment_helpers","name":"device_ch
ange"},"name":"deviceChanged","retained":true,"type":"Bool"},{"function":{"module":"acme.application
_helpers.ericsson_usage.enrichment_helpers","name":"device_change_time"},"name":"deviceChangeTime","

11

HCL Detect v12.1.8 Development Guide

12

retained":true,"storeBackAttribute":{"keyAttribute":"callingNumber","name":"lastIMEIModificationTime
","table":"CUSTOMER_PROFILE"},"type":"Int64"},

• function This refers to enrichment function model discussed in previous sub section.

• storeBackAttribute the derived attribute can optionally stored back to profile in pinpoint.

Campaigns
Campaigns or Events are rules and associated actions configured on data streams to detect in realtime. This consist

of selecting an audience of an event, configurating the certain transaction or activity to be performed by users and

configurating the actions to be performed upon event detection. This section will explain how to preconfigure different

templates for audience, triggers, offer actions and e2e campaign templates so that campaign creation by marketing user will

be performed easily from UI.

below are the concepts used in the campaign or event configuration process.

Enums Type Definitions

Enums are custom types, used for enabling dropdowns in audience, triggers and action offers templates. Enum types are of

two types i.e., Enum and TreeEnums. Enums are configured in file etc/model/campaigns/enum_type_definitions.json.

Enum

This Enum Types are simple one item selection type Enums.

Lets take example of an enum and how its configuration looks like:

"enums":[......{"enumName":"SubscriberCategoryType","placeholder":"Select subscriber
 category","possibleValues":[{"displayOrder":0,"displayValue":"Regular","intEnumValue":0},{"displayO
rder":1,"displayValue":"Silver","intEnumValue":1},{"displayOrder":2,"displayValue":"Gold","intEnumVa
lue":2}],"uelType":"Int32"},......]}

Above Enum is a configuration of Subscriber Category, there are 4 possible values for this Enum i.e., Regular, Silver and Gold.

In the streaming data/Real data these different values are represented as ID field and value 0 denotes Regular, 1 denotes

Silver and 2 denotes Gold. But on UI users will descriptive values like Gold, Regular.

• enums is the type of enum being configured.

• enumName is not name of enum to be used in various condition templates.

• placeholder is the text to be show inplace where selection is required on UI.

• possibleValues are list of possible values for this enum.

• displayOrder is order of this value in the dropdown.

• displayValue is value to be show in the drop-down item.

• intEnumValue or stringEnumValue or booleanEnumValue are the actual data value being selected.

• uelType is the type of values.

When we use this enum type in a template condition then UI will look like below:

Chapter 2. Configurations

Enum used in a template.

TreeEnums

TreeEnums are hierarchical enums and allows multi select in the drop-down. Once we select from a TreeEnum a list of values

are selected. If you select a leaf node of the tree then only single value will be selected, but if you select any other node

except leaf node, then all leaf node under that will be selected.

lets take example of DeviceType Enum as configured below:

....{"enumName":"Devices","placeholder":"Select
 device","possibleValues":[{"children":[{"children":[{"displayOrder":0,"displayValue":"Samsung
 Galaxy S5","enumValue":"GALAXY_S5"},{"displayOrder":1,"displayValue":"Samsung
 Galaxy S6","enumValue":"GALAXY_S6"},{"displayOrder":2,"displayValue":"Samsung
 Galaxy S7","enumValue":"GALAXY_S7"}],"displayOrder":0,"displayValue":"Samsung
 Galaxy","enumValue":"ALL_GALAXY_S"}],"displayOrder":0,"displayValue":"Samsung","enumValue":"ALL_SAM
SUNG"},{"children":[{"children":[{"displayOrder":0,"displayValue":"iPhone
 4","enumValue":"IPHONE4"},{"displayOrder":1,"displayValue":"iPhone
 5","enumValue":"IPHONE5"},{"displayOrder":2,"displayValue":"iPhone
 6","enumValue":"IPHONE6"}],"displayOrder":0,"displayValue":"iPhone","enumValue":"ALL_APPLE_IPHONE"}
],"displayOrder":1,"displayValue":"Apple","enumValue":"ALL_APPLE"},{"displayOrder":2,"displayValue":
"Google","enumValue":"ALL_GOOGLE"}]}....

When we use this enum type in a template condition then UI will look like below:

13

HCL Detect v12.1.8 Development Guide

14

TreeEnum used in a template.

Note: Enum type definitions are loaded in-memory every-time we restart the tomcat backend.

Audience Condition Templates

Audience Condition Templates are template condition for filtering the master profile of Detect. This selects a list of users

which satisfies an audience condition.

audience conditions are configured in etc/model/campaigns/audience_condition_categories.json file.

Audience templates are grouped into named categories based on their business logics as shown below:

{"categories":[{"icon":"fa-sliders","name":"Demographic","templates":[{...},{...}]},{"icon":"fa-user
","name":"Transaction Based","templates":[{...},{...}]}}

categories are shown below:

Chapter 2. Configurations

Audience categories.

Once we select an audience category, all audience templetes under that audience category will shown as below:

List of Audience templates.

Elements inside the templates are differnt audience template condition, we will try learn how to configure audience condition

templates by examples.

Simple Audience Templates

Below is an example audience template, which filters users who have not changes device since some configurable datetime:

15

HCL Detect v12.1.8 Development Guide

16

{"analyticsBased":false,"caption":"Subscribers who have not changed their device since
 ${deviceChangeDateTime}","conditionTemplateId":"deviceChangeDateTime","domainMapping":{"expressionT
emplate":"profile.deviceChangeTime < ${deviceChangeDateTime}"},"name":"Device change
 time","profile":"Customer","segments":[{"segmentId":"deviceChangeDateTime","segmentKind":"Complex",
"segmentType":"DateTime","segmentValue":{"dateTimeValue":"2000-11-11T12:00:00"}}]},

Lets look how it looks in the UI if we select this audience template in the use case:

Simple Audience condition.

• caption is the caption text which will appear in the UI. It can optionally cantain one or more segmentIds inorder to

make caption customizable. In this example deviceChangeDateTime is a segmentId and definition of this segmentId

is done in the segments section. Segments are used to get inputs from users while they are configuring an audience

condition.

• conditionTemplateId is an unique id given to used by Detect.

• domainMapping.expressionTemplate is the UEL expression that always evalues to either true or false. A Subscriber

will be part of this audience only if this UEL expression evaluates to true based on their profile attributes. In order to

access a profile attribute, profile. is suffixed in the name of attribute. In this example profile.deviceChangeTime will

access deviceChangeTime attribute of master profile of any given subscriber.

• name is the name of the audience condition under a given audience category.

• profile should alway be master profile name.

• segments the list of segment definitions used in the caption.

• segmentId is id of segment used in the caption.

• segmentKind is the data type of segment. This can be Primitive type like String, Integer, Double or Boolean. or Complex

type like Time, POIs, Geofences, Duration, DateTime, AggregationDuration, MonetaryValue. or Enum or TreeEnum.

• segmentValue is the value which will be shown as default value in the UI which user can update while configuring the

audience.

Audience Template With Modifiers

An audience template can have one or more optional additional condition along with primary domainMapping condition

expression. These are called modifiers.

Let look at below example:

Chapter 2. Configurations

{"analyticsBased":false,"caption":"Subscribers whose monthly average amount in the
 last ${recentObservationWindowLength}months has ${increasedDecreasedIndicator}by
 ${changePercentage}% compared to the average recharge value in the last
 ${historicalObservationWindowLength}months","conditionTemplateId":"averageRechargeAmount","domainMa
pping":{......}},"modifiers":[{"caption":"${hasRoaming}roaming
 enabled","domainMapping":{"expressionTemplate":"profile.roamingEnabled ==
 ${hasRoaming}"},"modifierId":"roamingEnabled","name":"Roaming...","segments":[{"captions":["Does
 not
 have","Has"],"segmentId":"hasRoaming","segmentKind":"Enum","segmentType":"Boolean","segmentValue":{
"booleanValue":false}}]},{"caption":"Main balance is greater than
 ${mainBalanceAmount}","domainMapping":{"expressionTemplate":"profile.mainBalanceAmount
 >= ${mainBalanceAmount}"},......}],"name":"Average recharge
 amount","profile":"Customer","segments":[..]}

In above example we have 2 additional modifiers condition along with primary domainMapping condition. If selected a

modifier in the UI, modifier's domainMapping is added as an and condition logic to primary domainMapping condition.

Lets look how the list of modifiers looks in the UI :

Modifiers list in the Audience condition.

If we select a modifer the UI refect it by expanding the caption and allowing users to exit default segment values.

Modifiers selected in the Audience condition.

17

HCL Detect v12.1.8 Development Guide

18

Modifier follows the same structure as explained in simple audience template, expect it has unique modifierId insead offer

conditionTemplateId

• hasRoaming is a segment of type Enum. Its Enum type is Boolean and selected segment value is false

below is an example of a condition using TreeEnum:

{"analyticsBased":false,"caption":"Subscribers who have installed appllications from categories
 ${appCategories}","conditionTemplateId":"treeSelectAppCategories","domainMapping":{"expressionTempl
ate":"profile.installedAppCategories in ${appCategories}"},"name":"App
 categories","profile":"Customer","segments":[{"segmentId":"appCategories","segmentKind":"TreeEnum",
"segmentType":"AppCategories","segmentValue":{"stringListValue":{"values":["BOOKS_AND_REFERENCE","GA
ME_ACTION"]}}}]}

TreeEnum selection retruns are list, that is why the segmentValue is stringListValue type.

Audience template With Segment Switch

If we want to have different expressions to be used in a domainMapping based on the value of user selected segmentId, then

we could use segmentSwitch in the domainMapping

example as below:

{"analyticsBased":false,"caption":"Subscribers who ${belong}to the ${staticSegment}static
 segment","conditionTemplateId":"staticSegment","domainMapping":{"segmentSwitch":{"cases":[{"express
ionTemplate":"${staticSegment}not in
 profile.segments","segmentValue":"false"},{"expressionTemplate":"${staticSegment}in
 profile.segments","segmentValue":"true"}],"segmentId":"belong"}},"name":"Static
 Segment","profile":"Customer","segments":[{"captions":["do not
 belong","belong"],"segmentId":"belong","segmentKind":"Enum","segmentType":"Boolean","segmentValu
e":{"booleanValue":true}},{"segmentId":"staticSegment","segmentKind":"DynamicEnum","segmentType":"St
aticSegment"}]}

• In above example we can see that we have a segmentIdbelong whose value will decide which expressionTemplate

will be used in the domain mapping.

• We can also override the display value of a Enum by addition captions in the segment definition.

• DynamicEnum is a builtin enum for StaticSegment selection.

Audience template with Aggregate condition

Audience condition can make use of aggregates being maintain by Detect. The condition can combine any combination of

profile attribute based condition and aggregate based condition.

details of aggregates based UEL expression can be found in Miscellaneous - UEL section.

An example of aggregate based profile condition is as below:

{"analyticsBased":false,"caption":"Subscribers who calls back after
 ${callBackDuration}","conditionTemplateId":"callBack","domainMapping":{"expressionTemplate":"aggreg
ate(numOutgoingCallsBySubscriber[profile.MSISDN], Last, ${callBackDuration.amount},
 #{callBackDuration.windowLengthUnit}) == 5"},"name":"Call back

Chapter 2. Configurations

 duration","profile":"Customer","segments":[{"segmentId":"callBackDuration","segmentKind":"Complex",
"segmentOption":{"aggregationDurationOption":{"durationStepSizeInMinutes":10}},"segmentType":"Aggreg
ationDuration","segmentValue":{"aggregationDurationValue":{"amount":1,"unit":"Months"}}}]},

Below is the UI for the same:

Aggregate based Audience condition.

• The segment callBackDuration is of kind Complex, of type AggregationDuration.

• callBackDuration.amount will give Window Unit Length for the aggregate query.

• callBackDuration.windowLengthUnit will give aggregate window unit i.e., Month, Year, Hour, Minute, or Day.

• aggregate(numOutgoingCallsBySubscriber[profile.MSISDN], Last, ${callBackDuration.amount},

#{callBackDuration.windowLengthUnit}), here numOutgoingCallsBySubscriber is name of aggregate, profile.MSISDN

is group by attribute, Last is the period.

Metrics

To better breakdown and understand the audience of an event, charts based on different metrics can be added. These chart

show histograms on various metrics and these metrices are configured in the metric_categories.json file.

Trigger templates are grouped into named categories based on their business logics as shown below:

{"categories":[{"icon":"fa-phone","name":"Voice call
 metrics","metrics":[{...},{...}]},{"icon":"fa-money","name":"Recharge
 metrics","metrics":[{...},{...}]}}

Elements inside the metrics are differnt metric , we will try learn how to configure metrices by examples.

metrices categories are configured in etc/model/campaigns/metric_categories.json file.

Profile Attributes Sourced Metric

The Metric charts prepared from Profile Attributes Sourced metrics gets data from profiles and histograms are produced

from profile values of each subscriber.

Example Configuration:

19

HCL Detect v12.1.8 Development Guide

20

{"dataType":"String","metricId":"gender","minimumBucketSize":50,"name":"Gender","profileAttributeSou
rce":{"name":"gender"}}

• profileAttributeSource selects a profile attribute on which histograms needs to be produced.

• name is name of metric.

• dataType is data type of X-Axis.

• metricId is unique name of metric.

• minimumBucketSize is the minimumBucketSize of histograms.

Aggregate Sourced Metrics

The Metric charts prepared from Aggregate Sourced metrics gets data from aggregate and histograms are produced from

aggregate values buckets of each subscriber.

Example Configuration:

{"icon":"fa-money","metrics":[{"aggregateSource":{"groupByAttributes":[{"name":"MSISDN"}],"name":"to
pupAmountBySubscriber"},"dataType":"Currency","metricId":"topupAmount","minimumBucketSize":300,"name
":"Topup Amount"}],"name":"Recharge metrics"},

• aggregateSource as this metric get data from an aggregate.

• aggregateSource.groupByAttributes the group by attribute to be passed.

• aggregateSource.name is the name of aggregate.

Trigger Event Categories

Campaign trigger profile categories is a list of categories used for defining the templates used to create trigger conditions.

Each category has a name and list of templates, each template has defines a list of segments. A segment is a customizable

part of the audience condition like segments in audience templates which can be used when forming the template's caption.

Each trigger template also defines a domain mapping, the domain mapping may contains a switch/case statement on the

segment values, and translates the condition into a UEL expression using profile attributes and aggregates, very similar

to audience selection profile categories discussed earlier The former can reference profile attributes, where the latter can

reference both the profile attributes and the feed attributes aka tuple's attributes.

Trigger templates are grouped into named categories based on their business logics as shown below:

{"categories":[{"icon":"fa-user","name":"Usage-Based Trigger
 Conditions","templates":[{...},{...}]},{"icon":"fa-crosshairs","name":"Usage threshold
 Based","templates":[{...},{...}]}}

categories are shown below:

Chapter 2. Configurations

Trigger categories.

Once we select an trigger category, all trigger templetes under that trigger category will shown as below:

List of Trigger templates.

21

HCL Detect v12.1.8 Development Guide

22

Elements inside the templates are differnt trigger template condition, we will try learn how to configure trigger condition

templates by examples.

trigger conditions are configured in etc/model/campaigns/trigger_event_categories.json file.

As trigger templates are very similar to audience template, below section will only discuss about the difference between

them.

Simple Trigger Templates

Example:

{"analyticsBased":false,"caption":"When the subscriber's current call duration is greater than
 ${callDuration}","conditionTemplateId":"callDuration","domainMapping":{"expressionTemplate":"durat
ion > ${callDuration}"},"feedsSelector":{"byNames":["Ericsson Usage"]},"name":"Call
 duration","segments":[{"segmentId":"callDuration","segmentKind":"Primitive","segmentType":"Double",
"segmentValue":{"doubleValue":1.0}}]},

• Here domainMapping.expressionTemplate uses attribute duration, this is an attribute in the realtime feed Ericsson

Usage.

• feedsSelector select a feed on which domainMapping expression will be evaluated. Feeds can be selected by byNames

i.e., a list of feed application names or by byModelNames i.e. a list of feed data models.

Trigger Templates With Aggregate

Example:

{"analyticsBased":false,"caption":"When the subscriber's current call duration is
 greater than ${averageCallDurationPercent}% to his average call duration in the last
 ${windowLength}hours","conditionTemplateId":"averageCallDuration","domainMapping":{"expressionTempl
ate":"((duration / aggregate(avgCallDuration[MSISDN], Last, ${windowLength}, Day)) * 100) >
 ${averageCallDurationPercent}"},"feedsSelector":{"byNames":["Ericsson Usage"]},"name":"Average call
 duration","segments":[{"segmentId":"averageCallDurationPercent","segmentKind":"Primitive","segmentT
ype":"Double","segmentValue":{"doubleValue":2.0}},{"segmentId":"windowLength","segmentKind":"Primiti
ve","segmentType":"Integer","segmentValue":{"integerValue":1}}]},

Trigger Templates With Modifiers

Example:

{"analyticsBased":false,"caption":"When a voice transaction using the ${walletName}wallet takes
 place for a
 subscriber","conditionTemplateId":"transactionUsingAWallet","domainMapping":{"expressionTemplate":"
currentWalletName ==
 ${walletName}"},"feedsSelector":{"byNames":["Voice"]},"modifiers":[{"caption":"and wallet is
 expiring within
 ${daysToExpire}day(s)","domainMapping":{"expressionTemplate":"currentWalletDaysToExpire ==
 ${daysToExpire}"},"modifierId":"daysUntilExpirationForWallet","name":"Days until expiration for
 wallet","segments":[{"segmentId":"daysToExpire","segmentKind":"Primitive","segmentType":"Integer","
segmentValue":{"integerValue":2}}]}],"name":"Transaction using the
 wallet","segments":[{"segmentId":"walletName","segmentKind":"Primitive","segmentType":"String","seg
mentValue":{"stringValue":"Data200"}}]}

Chapter 2. Configurations

Offer Action Categories

Offer action categories are configured to enable action based offers. These actions are of two types.

offer action categories are configured in etc/model/campaigns/offer_action_categories.json file.

Offer Action templates are grouped into named categories based on their business logics as shown below:

{"categories":[{"icon":"fa-sliders","name":"Recharge-Based Actions","templates":[{...},{...}]},}

Action offers are shown below:

Offer actions.

Non-Cummulative Actions

Non-Cummulative Actions are a single action to be performed by subscriber on a real time feed. Detect will track this event in

realtime.

Example:

{"analyticsBased":false,"caption":"Perform a one-time recharge greater than the target recharge
 amount","conditionTemplateId":"subscriberRechargeAmount","feedsSelector":{"byNames":["Topup
 Demo"]},"name":"One-time
 recharge","targetMetricSegment":{"actionType":"NonCumulative","domainMapping":{"expressionTemplate"
:"sellAmount"},"name":"Recharge
 Amount","type":"Double","unit":"#{currencySymbol}","value":{"doubleValue":100}}},

23

HCL Detect v12.1.8 Development Guide

24

• caption is description text to be appreared in the dowpdown list.

• conditionTemplateId is a unique name for a offer action template.

• feedsSelector select feeds where this action is expected.

• name is the name of offer action as it will appear in the dropdown list.

• targetMetricSegment contains the action definition.

• targetMetricSegment.actionType is type of action, this is an example for NonCumulative action hence only single

action needed.

• targetMetricSegment.domainMapping is expression for the attribute or a formula, this will be compared with configured

threshold value.

• targetMetricSegment.name is the of the attribute for UI.

• targetMetricSegment.type is the data type of attribute value.

• targetMetricSegment.value is the threshold value.

Cummulative Actions

This allows actions to be tracked over multiple transactions done by users, the values are accumulated and thresholds are

compared with this cummulative value.

Example:

{"analyticsBased":false,"caption":"Perform a cumulative recharge greater than the target recharge
 amount","conditionTemplateId":"cumulativeSubscriberRechargeAmount","feedsSelector":{"byNames":["To
pup Demo"]},"modifiers":[{"caption":"${hasRoaming}roaming
 enabled","domainMapping":{"expressionTemplate":"profile.roamingEnabled ==
 ${hasRoaming}"},"modifierId":"roamingEnabled","name":"Roaming...","segments":[{"captions":["Does
 not
 have","Has"],"segmentId":"hasRoaming","segmentKind":"Enum","segmentType":"Boolean","segmentValue":{
"booleanValue":false}}]}],"name":"Cumulative
 recharge","targetMetricSegment":{"actionType":"Cumulative","domainMapping":{"expressionTemplate":"s
ellAmount"},"name":"Recharge
 Amount","type":"Double","unit":"#{currencySymbol}","value":{"doubleValue":100}}}

• targetMetricSegment.actionType is Cumulative.

• We can optionally have modifier to filter transaction that should be be accumulated.

Chapter 3. Solution Source Code
A solution is a domain-specific configuration of Drive that is customized for a particular customer in that domain. Different

solutions can be in different domains E.g., Telco, banking, retail, healthcare. They can also be tailored towards different

customers in that domain E.g., different data sources, communication, and fulfillment services, etc.

To build custom solutions based on the requirement, the source code for it would reside here. All feed applications, its

parsers and event consumers development would happen here. The enrichment helpers logic are written here after they are

declared in the enrichment_functions.json file. Let's dive into each topic.

Feed Applications

A feed application consist of a flow with a defined set of operators in a certain structure. Operators are individual

components designed to perform a certain set of tasks.

A typical feed application has the following components:

• A Source: receives the input data from an external data source

• A Parser: parses the input data into tuple format

• An Enricher: enriches the tuple data with profile information stored in PinPoint, and the aggregate data stored in

FastPast

• An Aggregator: updates the aggregate data stored in FastPast

• A Trigger Evaluator: Detects trigger conditions of interest

• One or more Sinks: Sends trigger results to the campaign executor via a Kafka queue

A feed application is typically configured via parameters specified in drive.json. A typical entry would look something like

this:

{"drive":{..."feedApplications":[{"logLevel":"INFO","name":"CC Usage"}]...}}

The source data for a feed application commonly come from files or Kafka queues. Custom source operators can be written

for connecting to different sources.

An example of a simple feed application which would scan a directory for csv every 10 secs and ingest data would look like

the code below:

classCCUsageFeedApplication(FeedApplication):"""Implements the Goliath
 feed application"""defcreate_flow(self):"""Creates the Credit Card Usage
 flow"""scan_schema=Schema({"filename":String,"modTime":Int64},name="scan_schema")parser_schema=Sche
ma({drive_constants.CA_EPOCH_ATTRIBUTE:Int64,drive_constants.CA_TIMESTAMP_ATTRIBUTE:Int64,"departmen
tName":String,"description":String,"cardHolderName":String,"customerID":String,"merchant":String,"ca
tegory":String,"mcc":String,"transactionAmount":Double,"transactionType":String},name="parser_schema
")scanner=self.instantiate_directory_scanner(file_name_filter=PatternBasedFileNameFilter(r".*\.csv")
,output_schema=scan_schema,period_in_seconds=10)parser=self.instantiate_operator(class_=CCUsageReade
r,input_schema=scan_schema,move_path=self.feed_data_move_dir(),name=drive_constants.DRIVE_APPLICATIO
N_PARSER_OPERATOR_NAME,output_schema=parser_schema)returnself.compose_flow(ingress_flow=scanner>>par
ser)

25

HCL Detect v12.1.8 Development Guide

26

• The class CCUsageFeedApplication is inherited from FeedApplication base class.

• create_flow is an abstract method of FeedApplication class which is implemented here. This method is used to

define the flow of the operators for the feed application.

• Every operator by default requires a 3 parameters: name, input schema and output schema.

• Schema defines the name and data type of the attributes that the operator would be receiving or sending.

• Input Schema defines the schema that would be entering the operator.

• Output Schema defines the schema that would be sent ahead from the operator.

• scan_schema and parser_schema are two such schemas defined in the example above. scan_schema contains the

attributes would be sent by the directory scanner operator which would be file name and the last modified timestamp

of the file. parser_schema would contain the attributes that would be populated after reading the input file from the

source directory.

• CCUsageReader operator class will parse the contents of the file, raise errors if any, populate the output tuple and then

emit it to the next operator.

• compose_flow adds on the standard pre defined operators like aggregator, enricher and kafka sink after the ingress

flow.

Parsers

Parser operators are used for parsing data from input source and setting it into tuple format. Here the data read from source

is converted to a format which would be easier for the feed application to consume and process. A sample of a parser class

operator would look like the snippet below:

classCCUsageReader(CSVParser):"""A sample operator that generates cc_usage related
 data"""CURRENCY_SIGN="$"@oxygen_operator()def__init__(self,batch_size=None,delimiter=",",move_path=
None):super(CCUsageReader,self).__init__(batch_size=batch_size,date_format=None,delimiter=delimiter,
epoch_attribute=CA_EPOCH_ATTRIBUTE,move_path=move_path,row_processor=self._parse_row)defset_up(self)
:super(CCUsageReader,self).set_up()def_parse_row(self,fields,out_tuple):"""Parses the fields in a
 row"""out_tuple.departmentName=fields[3].upper()out_tuple.cardHolderName=fields[4].upper()out_tuple
.customerID=fields[2]out_tuple.description=""out_tuple.merchant=fields[5].upper()out_tuple.category=
category=fields[6].upper()setattr(out_tuple,CA_TIMESTAMP_ATTRIBUTE,int(self._datetime_parser.utime(f
ields[7])))out_tuple.transactionAmount=float(fields[8].split(CCUsageReader.CURRENCY_SIGN)[1])out_tup
le.transactionType=fields[9]

• The class CCUsageReader is inherited from CSVParser base class.

• The delimiter passed to the constructor will split each line in the file and then send the list to the _parse_row method.

• The method _parse_row is passed on as row_processor to the constructor of the CSVParser class.

• The method will have 2 parameters passed to it - fields is the list of the raw data of a single line read from a file,

the list is created based on the split set by the delimiter. out_tuple is the output tuple for the operator based on the

output schema set in the feed application class.

Chapter 4. Detect Expression Language
Introduction

The HCL Detect Expression Language is a simple expression language used to specify filter conditions and basic arithmetic

manipulations. It can be used as part of configuring triggers. In particular, a trigger's WHEN condition can have a free-form

expression specified as part of a predicate's right hand-side. Similarly, a trigger's THEN action can have an expression

specified as an assignment for an output attribute. These expressions are specified in HCL Detect Expression Language.

Types
An expression in HCL Detect Expression Language can have one of the following primitive types: String (a string), Bool (a

Boolean), Int16 (a 16-bit integer), Int32 (a 32-bit integer), Int64 (a 64-bit integer), or Double (a double precision floating point

number). It can also have a list type, where the element type of the list is one of the primitive types: List(String), List(Bool),

List(Int16), List(Int32), List(Int64), List(Double).

Literals
Bool, Double, Int32, Int64, and String literals can be present in an expression.

• A Bool literal can be either true or false.

• A Double literal is a decimal number that either contains the decimal separator (e.g., 3.5, .5, 3.) or is given in the

scientific notation (e.g., 1e-4, 1.5e3). A Double literal must be between (2 - 2 ^ -52) * 2 ^ 1023 (~ 1.79 * 10 ^ 308)

and -(2 - 2 ^ -52) * 2 ^ 1023 (~ -1.79 * 10 ^ 308). Moreover, the magnitude of a literal cannot be less than 2 ^

-1074 (~ 4.94 * 10 ^ -324). Furthermore,

◦ a NaN (not a number) value can be specified through the Double("nan") expression,

◦ an Inf (positive infinity) value can be specified through the Double("inf") expression,

◦ and a -Inf (negative infinity) value can be specified through the Double("-Inf") expression.

• Integer literals without a suffix are of the Int32 type (e.g., 14). An Int32 literal must be between 2 ^ 31 - 1 (=

2147483647) and -2 ^ 31 (= -2147483648).

• The L suffix is used to create Int64 literals (e.g., 14L). An Int64 literal must be between 2 ^ 63 - 1 (=

9223372036854775807L) and -2 ^ 63 (= -9223372036854775808L).

• A String literal appears within double quotes, as in "I'm a string literal". The escape character \ can be used to

represent new line (\n), tab (\t), double quote (\") characters, as well as the escape character itself (\\).

Arithmetic Operations
An expression in HCL DetectExpression Language can contain the basic arithmetic operations: addition (+), subtraction

(-), multiplication (*), division (/), and modulo (%) with the usual semantics. These are binary operations that expect sub-

expressions on each side. An expression in HCL Detect Expression Language can also contain the unary minus (-) operation

that expects a sub-expression on the right. Finally, parentheses (()) are used for adjusting precedence, as usual.

27

HCL Detect v12.1.8 Development Guide

28

Addition operation corresponds to concatenation for the String type and is the only available operation on this type. Bool

type does not support arithmetic operations. Division applies integer division on integer types and floating point division on

Double types.

The modulo operation yields the remainder from the division of the first operand by the second. It always yields a result

with the same sign as its second operand. The absolute value of the result is strictly smaller than the absolute value of the

second operand.

Examples:

• A simple arithmetic expression: (3+4*5.0)/2

• A simple expression involving a String literal: "area code\tcountry"

• A unary minus expression: -(3+5.0)

Comparison Operations
An expression in HCL Detect Expression Language can contain the basic comparison operations: greater than (>), greater

than or equal (>=), less than (<), less than or equal (<=), equals (==), and not equals (!=) with the usual semantics. These are

binary operations. With the exception of equals and not equals, they expect sub-expressions of numerical types or strings on

each side. For strings, the comparison is based on lexicographic order. For equals and not equals, the left and the right sub-

expressions must be of compatible types with respect to HCL Detect Expression Language coercion rules. The result of the

comparison is always of type Bool.

Examples:

• An expression using comparisons: 3>5

• An expression using String comparisons: "abc"<"def"

• An expression using inequality comparison: "abc"!="def"

• An expression comparing a Double literal with a NaN (not a number) value: 10.5 != Double("nan") (Note that in this

case, the math.isNaN built-in function can also be used.)

• An expression comparing a Double literal with an Inf (positive infinity) value: 10.5 != Double("inf") (Note that in this

case, the math.isPositiveInfinity built-in function can also be used.)

• An expression comparing a Double literal with a -Inf (negative infinity) value: 10.5 != Double("-inf") (Note that in

this case, the math.isNegativeInfinity built-in function can also be used.)

Logical Operations
An expression in HCL Detect Expression Language can contain the basic logical operations: logical and (&&) and logical

or (||) with the usual semantics. These are binary operations that expect sub-expressions of type Bool on each side.

Shortcutting is used to evaluate the logical operations. For logical and, if the sub-expression on the left evaluates to false,

then the sub-expression on the right is not evaluated and the result is false. For logical or, if the sub-expression on the left

evaluates to true, then the sub-expression on the right is not evaluated and the result is true. An expression in HCL Detect

Expression Language can also contain the not (!) operator, which is a unary operator that expects a sub-expression of type

Bool on the right.

Chapter 4. Detect Expression Language

Examples:

• A simple logical expression: 3>5||2<4

• A logical expression that uses not: !(3>5)

Ternary Operation
An expression in HCL Detect Expression Language can make use of the the ternary operation: condition? choice1:choice2.

The condition of the ternary operation is expected to be of type Bool and the two choices are expected to be sub-expressions

with compatible types. The ternary operation is lazily evaluated. If the condition evaluates to true, then the result is the first

choice, without the sub- expression for the second choice being evaluated. If the condition evaluates to false, then the result

is the second choice, without the sub-expression for the first choice being evaluated.

Examples:

• A simple ternary operation: 3<10?"smallerThan10":"notSmallerThan10"

List Operations
A list is constructed by specifying a sequence of comma (,) separated values of the element type, surrounded by brackets

([]) . For instance, an example literal for List(Double) is [3.5, 6.7, 8.3] and an example for List(String) is ["HCL",

"Detect"]. An empty list requires casting to define its type. As an example, an empty List(String) can be specified as

List(String)([]).

An expression in HCL Detect Expression Language can contain a few basic list operations: containment (in), non-

containment (not in), indexing ([i]), slicing ([i:j]), concatenation (+), and size inquiring (size()).

Containment yields a Boolean answer, identifying whether an element is contained within a list. For instance, 3in[2,5,3]

yields true, whereas 8 in [2, 5, 3] yields false. Non-containment is the negated version of the containment. For instance, 3

not in [2, 5, 3] yields false, whereas 8 not in [2, 5, 3] yields true.

Indexing yields the element at the specified index within the list. 0-based indexing is used and indices are of type Int32. For

instance, [2, 5, 3][1] yields 5, and [2, 5, 3][-3] yields 2. The index should be between -size and size-1, inclusive. An

index that is out of these bounds will result in an evaluation error at runtime.

Slicing yields a sub-list. The start index is inclusive, whereas the end index is exclusive. If the range is out of bounds, then an

empty list is returned. For instance, [2,5,3,7][1:2] yields [5], [2, 5, 3, 7][1:3] yields [5, 3], [2, 5, 3, 7][1:1] yields [],

[2, 5, 3, 7][3:5] yields [7], [2, 3, 4][-2:-1] yields [3], [2, 3, 4][-5:-1] yields [2, 3], [2, 3, 4][1, 6] yields [3, 4], and

[2, 5, 3, 7][4:6] yields [].

Concatenation results in a list that contains the elements from the first list followed by the elements from the second list. For

instance, [1,2]+[3] yields [1, 2, 3].

The size of a list can be retrieved via the builtin function list.size().

29

HCL Detect v12.1.8 Development Guide

30

Precedence and Associativity of Operations
Opera

tions
Associativity

()

[]

unary -, !

*, /, % left

+, - left

>, >=, <, <= left

==, != left

in

&& left

|| left

?:

Attributes
Expressions in HCL Detect Expression Language can also contain attributes. Attributes are identifiers that correspond to the

attributes available in a tuple or in the master profile. Each attribute has a type and can appear in anywhere a sub-expression

of that type is expected.

If an attribute comes from the master profile, it can be referenced by prefixing it with profile.. Otherwise, only the attribute

name is used.

Examples:

• A string formed by concatenating a String literal and an attribute named code from the current tuple: "AREA_" + code

• A string formed by concatenating a String literal and a profile attribute named name: "My name is " + profile.name

• An arithmetic expression involving an attribute and Int32 literals: numSeconds / (24 * 60 * 60)

• An arithmetic expression involving a profile attribute and Int32 literals: profile.ageInSeconds / (24 * 60 * 60)

• A floating-point arithmetic expression, where the floating point literal is of type Double: cost / 1000.0

• Another expression involving a profile attribute, where the floating point literal is of type Double: profile.revenue /

1000.0

• A Boolean expression checking if a String literal is found in an attribute named places of type List(String):

"airport" in places

• A Boolean expression checking if a String literal is found in a profile attribute named favoritePlaces of type

List(String): "airport" in profile.favoritePlaces

Chapter 4. Detect Expression Language

Conversions
HCL Detect Expression Language supports explicit conversions via casts using a function call syntax. The name of the

function is the name of the type we want to cast to.

Examples:

• Casting an Int32 to a String: String(14) yields "14"

• Casting a String to a Double: Double("4.5") yields 4.5

• Casting a String to a Double: Double("nan") yields NaN (not a number)

HCL Detect Expression Language supports implicit conversions (aka coercions) as well. When two integers of different types

are involved in an operation, the one that has the smaller number of bits is coerced into the wider type. When an integer is

involved in an operation with a Double it is coerced into a Double. Also note that, in such operations, Int64 values that cannot

be represented exactly will be rounded to the closest Double value.

Examples:

• Coercion with integers of different bit-lengths: count/2 has type Int64, assuming count is of type Int64 (this has the

same semantics as the expression count / Int64(2))

• Coercion involving an Int32 and a Double: timestamp / 1000 has type Double, assuming timestamp is of type Double

(this has the same semantics as the expression timestamp / Double(1000))

Aggregates
Expressions in HCL Detect Expression Language can also contain aggregates. Aggregates are summary statistics

maintained at different temporal granularities. They are specified using their names, zero or more group by attributes

(coming from the tuple being processed), period and the window unit.

The available periods are Current, Last, and AllTime. When the period is Current, the available window units are: Day, Hour,

Month and Year. If the period is Last, the Minute can also be used as the window unit. The computed aggregates are always of

type Double.

The following examples illustrate the use of aggregates as part of expressions:

• This aggregate, named numCallsMade, returns the number of calls made for a given number within the last hour, where

callingNumber is an attribute available from the current tuple: aggregate(numCallsMade[callingNumber], Last, 1,

Hour).

• Aggregates can be involved in arithmetic operations as usual:

aggregate(numCallsMade[callingNumber],Last,1,Hour)+aggregate(numCallsMade[calledNumber], Last, 1, Hour)

• Some aggregates may have no group by attributes: aggregate(totalCalls,Current,Month)

• Some aggregates may have multiple group by attributes:

aggregate(numCallsMade[callingNumber,callingCellTower],Last,1,Hour)

31

HCL Detect v12.1.8 Development Guide

32

Aggregates can also specify the number of most recent time units to be used for the aggregation. By default an hourly

aggregate is computed from 6 10-minute aggregates, a daily aggregate is computed from 24 hourly aggregates, a monthly

aggregate is computed from daily aggregates within a month, and a yearly aggregate is computed from 12 monthly

aggregates. One can specify a second argument as part of the aggregate's temporal access function, which represents the

number of time units to be used for the aggregation. The time units used are always the most recent ones. For instance:

• The following aggregate gets the number of calls made during the last week (7 days):

aggregate(numCallsMade[callingNumber],Last,7,Day)

The aggregates with the Current and AllTime periods provide exact results:

• aggregate(<aggregate>,Current,Hour): an exact aggregate value over all the activities within the current hour. E.g.: If

the current time is 14:20pm, then the activities within the last 20 minutes are included.

• aggregate(<aggregate>,Current,Day): an exact aggregate value over all the activities within the current day. E.g.: If the

current time is 14:20pm, then the activities since midnight are included.

• aggregate(<aggregate>,Current,Month): an exact aggregate value over all the activities with the current month. E.g.:

If the current time is 14 May 14:20pm, then the activities since the beginning of May up to 14:20pm on May 14th are

included.

• aggregate(<aggregate>,Current,Year): an exact aggregate value over all the activities with the current year. E.g.: If the

current time is 14 May 2017 14:20pm, then the activities since the beginning of 2017 up to 14:20pm on May 14th are

included.

• aggregate(<aggregate>,AllTime): an exact aggregate value over all the activities, irrespective of time.

There are 4 possible ways of computing aggregates with the Last period:

• Aggregate over the last hour: an approximate aggregate value over the activities within the last 60 minutes, that is

the last six 10-minute periods. It is an approximate value in the sense that if the current 10-minute interval is at least

half past, then the aggregate is over the activities within the current 10-minute interval plus the last five 10-minute

intervals. If the current 10 minute interval is less than half past, then the aggregate is over the activities within the

current 10-minute interval plus the last six 10-minute intervals. E.g.: If the current time is 14:29pm, then the activities

within the interval [13:30pm - 14:29pm] are included. If the current time is 14:21pm, then the activities within the

interval [13:20pm - 14:21pm] are included.

• Aggregate over the last day: an approximate aggregate value over the activities within the last 24 hours. It is an

approximate value in the sense that if the current hour is at least half past, then the aggregate is over the activities

within the current hour plus the last 23 calendar hours. If the current hour is less than half past, then the aggregate

is over the activities within the current hour plus the last 24 calendar hours. E.g.: If the current time is Tuesday

14:50pm, then the activities within the interval [Monday 15:00pm - Tuesday 14:50pm] are included. If the current time

is Tuesday 14:10pm, then the activities within the interval [Monday 14:00pm - Tuesday 14:10pm] are included.

• Aggregate over the last month: an approximate aggregate value over the activities within the last 30 days. It is an

approximate value in the sense that if the current day is at least half past, then the aggregate is over the activities

within the current day plus the last 29 calendar days. If the current day is less than half past, then the aggregate is

over the activities within the current day plus the last 30 calendar days. E.g.: If the current time is 14 May 22:00pm,

Chapter 4. Detect Expression Language

then the activities within the interval [15 April 00:00am - 14 May 22:00pm] are included. If the current time is 14 May

02:00am, then the activities within the interval [14 April 00:00am - 14 May 02:00am] are included.

• Aggregate over the last year: an approximate aggregate value over the activities within the last 12 months. It is an

approximate value in the sense that if the current month is at least half past, then the aggregate is over the activities

within the current month plus the last 11 calendar months. If the current month is less than half past, then the

aggregate is over the activities within the current month plus the last 12 calendar months. E.g.: If the current time is

28 May 2017 14:00pm, then the activities within the interval [1 June 00:00am - 28 May 14:00pm] are included. If the

current time is 2 May 14:00pm, then the activities within the interval [1 May 00:00am - 2 May 14:00pm] are included.

The same kind of approximation applies if the number of most recent time units are specified while accessing an aggregate.

For instance, if the last 4 days are requested from the last month, then the current day plus the last 3 or 4 calendar days are

included in the result, depending on whether the current day is at least half past or not, respectively.

These computations are done by using the following aggregate expressions:

• aggregate(<aggregate>,Last,<windowLength>,Minute): this computes the aggregation by using windowLength

minutes from the last hour.

• aggregate(<aggregate>,Last,<windowLength>,Hour): if windowLength is greater than 1, this computes the aggregation

over the last windowLength hours from the last day. Otherwise it computes the aggregation using the last hour.

• aggregate(<aggregate>,Last,<windowLength>,Day): if windowLength is greater than 1, this computes the aggregation

over the last windowLength days from the last month. Otherwise it computes the aggregation over the last day.

• aggregate(<aggregate>,Last,<windowLength>,Month): if windowLength is greater than 1, this computes the

aggregation over the last windowLength months from the last year. Otherwise it computes the aggregation over the

last month.

• aggregate(<aggregate>,Last,<windowLength>,Year): this computes the aggregation over the last year and the

windowLength must be equal to 1.

Null Values
Attributes in HCL Detect Expression Language are nullable, that is, attributes can take null values. To denote a null value, the

null keyword is used.

Only the following actions are legal on the expressions with null values:

• Built-in function calls: A nullable function parameter can take a null value. E.g.: the second parameter in the

list.indicesOf([1, 2, null, 4, 5, null], null) call

• Ternary operations: The values returned from choices can be null. E.g.: string.startsWith(profile.areaCode,

"AREA_") ? profile.areaCode : null where areaCode is a profile attribute of the String type

• List items: Null values can be list items. E.g.: [null, 3, 5, 6, null]

• List containment check operations: Null values can be used on the left hand side. E.g.: null not in [null, 3, 5, 6,

null]

33

HCL Detect v12.1.8 Development Guide

34

• Equality check operations: Null values can be compared for equality and non-equality. E.g.: MSISDN == null where

MSISDN is a tuple attribute (Note: For comparisons with null values, the isNull operator can also be used. Examples:

isNull(null) yields trueisNull(profile.x) yields false if the x profile attribute is not null)

• Type conversions: The type conversion rules are similar to the ones for non-null expressions. Some examples

that are legal: List(Int32)(null), Int32(null), String(Int32(null)), some examples that are illegal: List(Int32)

(List(Int64)(null)), Int64(List(Int32)(null)), Bool(Int32(null)), List(Int16)(Double(null))

Chapter 5. Detect Expression Language Builtin Functions

Geohash Functions
geohash.covers

Bool geohash.covers(String geohash1, String geohash2)

Checks whether the first geohash covers the second one, where the two geohashes being equal is also considered a positive

result.

Parameters:

• geohash1 - the first geohash (non-nullable).

• geohash2 - the second geohash (non-nullable).

Returns:

true if the first geohash covers the second one.

geohash.encode

String geohash.encode(Double latitude, Double longitude, Int32 level)

Encodes a geohash from latitude and longitude information.

Parameters:

• latitude - the latitude (non-nullable).

• longitude - the longitude (non-nullable).

• level - the level (non-nullable).

Returns:

the encoded geohash.

geohash.intersects

Bool geohash.intersects(String geohash1, String geohash2)

Checks whether the two geohashes intersect.

Parameters:

• geohash1 - the first geohash (non-nullable).

• geohash2 - the second geohash (non-nullable).

35

HCL Detect v12.1.8 Development Guide

36

Returns:

true if the two geohashes intersect, false otherwise.

geohash.intersectsAny

Bool geohash.intersectsAny(List(String) geohashes1, List(String) geohashes2)

Checks whether any pair of geohashes from the two lists intersect.

Parameters:

• geohashes1 - the first geohash list (non-nullable, null elements not allowed).

• geohashes2 - the second geohash list (non-nullable, null elements not allowed).

Returns:

true if any pair of geohashes from the two lists intersect, false otherwise.

List Functions
list.average

<Numeric T> Double list.average(List(T) values)

Returns the average of the input values. If the list of values is empty, the operation yields a runtime error.

Parameters:

• values - the input values (non-nullable, null elements not allowed).

Returns:

the average value.

list.containsAll

<Primitive T> Bool list.containsAll(List(T) list, List(T) values)

Checks whether all of the values are in the input list.

Parameters:

• list - the input list (non-nullable, null elements allowed).

• values - the list of values to check (non-nullable, null elements allowed).

Returns:

true if all of the values are in the input list, false otherwise.

Chapter 5. Detect Expression Language Builtin Functions

list.containsAny

<Primitive T> Bool list.containsAny(List(T) list, List(T) values)

Checks whether any one of the values are in the input list.

Parameters:

• list - the input list (non-nullable, null elements allowed).

• values - the list of values to check (non-nullable, null elements allowed).

Returns:

true if any one of the values are in the input list, false otherwise.

list.difference

<Primitive T> List(T) list.difference(List(T) list1, List(T) list2)

Returns the difference of the first input list from the second input list by preserving the insertion order of values in the first

list and removing duplicates.

Parameters:

• list1 - the first list (non-nullable, null elements allowed).

• list2 - the second list (non-nullable, null elements allowed).

Returns:

the difference of the first list from the second one where the order of values in the first list is preserved and duplicates are

removed.

list.disjoint

<Primitive T> Bool list.disjoint(List(T) list1, List(T) list2)

Checks whether the two input lists are disjoint.

Parameters:

• list1 - the first list (non-nullable, null elements allowed).

• list2 - the second list (non-nullable, null elements allowed).

Returns:

true if the input lists are disjoint, false otherwise.

37

HCL Detect v12.1.8 Development Guide

38

list.indicesOf

<Primitive T> List(Int32) list.indicesOf(List(T) list, T value)

Finds the indices at which the value is present in the input list.

Parameters:

• list - the input list (non-nullable, null elements allowed).

• value - the value (nullable).

Returns:

the list of the indices at which the value is present in the input list.

list.intersection

<Primitive T> List(T) list.intersection(List(T) list1, List(T) list2)

Returns the intersection of the two lists by preserving the order of values in the first input list and removing duplicates.

Parameters:

• list1 - the first list (non-nullable, null elements allowed).

• list2 - the second list (non-nullable, null elements allowed).

Returns:

the intersection of the two lists where the order of values in the first list is preserved and duplicates are removed.

list.lookup

<Primitive T, Primitive R> R list.lookup(T key, List(T) key_list, List(R) value_list)

Performs a dictionary lookup of the given key in the key list then returns the matching value from the value list, produces a

runtime error if the key is not found.

Parameters:

• key - the key (non-nullable).

• key_list - the key list (non-nullable, null elements not allowed).

• value_list - the value list (non-nullable, null elements allowed).

Returns:

the result of the dictionary lookup.

Chapter 5. Detect Expression Language Builtin Functions

list.max

<Primitive T> T list.max(List(T) values)

Finds the maximum element of the input list, results in a runtime error if the list is empty.

Parameters:

• values - the input list (non-nullable, null elements not allowed).

Returns:

the maximum element of the input list.

list.min

<Primitive T> T list.min(List(T) values)

Finds the minimum element of the input list, results in a runtime error if the list is empty.

Parameters:

• values - the input list (non-nullable, null elements not allowed).

Returns:

the minimum element of the input list.

list.populationVariance

<Numeric T> Double list.populationVariance(List(T) values)

Returns the population variance of the input values. If the list of values is empty, the operation yields a runtime error.

Parameters:

• values - the input list (non-nullable, null elements not allowed).

Returns:

the population variance of the elements of the input list.

list.reverse

<Primitive T> List(T) list.reverse(List(T) list)

Returns the reverse of the input list.

Parameters:

39

HCL Detect v12.1.8 Development Guide

40

• list - the input list (non-nullable, null elements allowed).

Returns:

the reversed list.

list.sampleVariance

<Numeric T> Double list.sampleVariance(List(T) values)

Returns the sample variance of the input values. If the length of the list of values is less than or equal to 1, the operation

yields a runtime error.

Parameters:

• values - the input list (non-nullable, null elements not allowed).

Returns:

the sample variance of the elements of the input list.

list.size

<Primitive T> Int32 list.size(List(T) list)

Returns the size of the input list.

Parameters:

• list - the input list (non-nullable, null elements allowed).

Returns:

the size of the input list.

list.sort

<Primitive T> List(T) list.sort(List(T) list)

Returns the sorted version of the input list in ascending order.

Parameters:

• list - the input list (non-nullable, null elements not allowed).

Returns:

the sorted list.

Chapter 5. Detect Expression Language Builtin Functions

list.subList

<Primitive T> List(T) list.subList(List(T) list, Int32 startPosition, Int32 endPosition)

Returns a slice of the input list. Gives a runtime error if the start or the end position is outside of its valid range.

Parameters:

• list - the input list (non-nullable, null elements allowed).

• startPosition - the start position of the slice (inclusive, in the range [-size,size]). A negative value indicates a position

relative to the end of the list (non-nullable).

• endPosition - the end index of the slice (exclusive, in the range [-size,size]). A negative value indicates a position

relative to the end of the list (non-nullable).

Returns:

a list representing the specified slice of the input.

list.sum

<Numeric T> Double list.sum(List(T) values)

Returns the sum of the input values. If the list of values is empty, the operation yields a runtime error.

Parameters:

• values - the input list (non-nullable, null elements not allowed).

Returns:

the sum of the input values.

list.union

<Primitive T> List(T) list.union(List(T) list1, List(T) list2)

Returns the union of the two lists by preserving the order of values in the first list and removing duplicates.

Parameters:

• list1 - the first list (non-nullable, null elements allowed).

• list2 - the second list (non-nullable, null elements allowed).

Returns:

the union of the two lists where the order of values in the first list is preserved and duplicates are removed.

41

HCL Detect v12.1.8 Development Guide

42

Math Functions
math.ceil

Double math.ceil(Double value)

Returns the ceiling of the input value, i.e., the value of the smallest integer greater than or equal to the value.

Parameters:

• value - the input value (non-nullable).

Returns:

the ceiling of the input value.

math.floor

Double math.floor(Double value)

Returns the floor of the input value, i.e., the value of the largest integer greater than or equal to the value.

Parameters:

• value - the input value (non-nullable).

Returns:

the floor of the input value.

math.isInfinity

<Numeric T> Bool math.isInfinity(T value)

Checks whether the input value is infinity.

Parameters:

• value - the input value (non-nullable).

Returns:

true if the input value is infinity, false otherwise.

math.isNaN

<Numeric T> Bool math.isNaN(T value)

Checks whether the input value is NaN (not a number).

Chapter 5. Detect Expression Language Builtin Functions

Parameters:

• value - the input value (non-nullable).

Returns:

true if the input value is NaN (not a number), false otherwise.

math.isNegativeInfinity

<Numeric T> Bool math.isNegativeInfinity(T value)

Checks whether the input value is negative infinity.

Parameters:

• value - the input value (non-nullable).

Returns:

true if the input value is negative infinity, false otherwise.

math.isPositiveInfinity

<Numeric T> Bool math.isPositiveInfinity(T value)

Checks whether the input value is positive infinity.

Parameters:

• value - the input value (non-nullable).

Returns:

true if the input value is positive infinity, false otherwise.

math.log

Double math.log(Double value)

Returns the natural logarithm of the input value.

Parameters:

• value - the input value (non-nullable).

Returns:

the natural logarithm of the input value.

43

HCL Detect v12.1.8 Development Guide

44

math.max

<Primitive T> T math.max(T a, T b)

Finds the maximum of the two values.

Parameters:

• a - the first value (non-nullable).

• b - the second value (non-nullable).

Returns:

the maximum of the values.

math.min

<Primitive T> T math.min(T a, T b)

Finds the minimum of the two values.

Parameters:

• a - the first value (non-nullable).

• b - the second value (non-nullable).

Returns:

the minimum of the values.

math.pow

Double math.pow(Double base, Double exponent)

Returns the base value raised to the exponent.

Parameters:

• base - the base (non-nullable).

• exponent - the exponent (non-nullable).

Returns:

the base value raised to the exponent.

Chapter 5. Detect Expression Language Builtin Functions

String Functions
string.indexOf

Int32 string.indexOf(String string, String substring, Int32 fromPosition)

Finds the index of the first occurrence of the substring within the input string, starting the search at a given start index. Gives

a runtime error if the start or the end position is outside of its valid range.

Parameters:

• string - the input string (non-nullable).

• substring - the substring to be searched (non-nullable).

• fromPosition - the start position of the search (inclusive, in the range [-size,size]). A negative value indicates a

position relative to the end of the string (non-nullable).

Returns:

the index of the substring, or -1 if not found.

string.join

<Primitive T> String string.join(List(T) values, String delimiter)

Returns a string that is the result of joining the string representations of the input list elements with the specified delimiter.

Parameters:

• values - the input list (non-nullable, null elements not allowed).

• delimiter - the string to be used as a delimiter (non-nullable).

Returns:

the joined string.

string.length

Int32 string.length(String string)

Returns the length of the input string.

Parameters:

• string - the input string (non-nullable).

Returns:

the length of the input string.

45

HCL Detect v12.1.8 Development Guide

46

string.regexMatch

List(String) string.regexMatch(String string, String regex)

Finds all non-overlapping substrings of the input string that match the regular expression (regex).

Parameters:

• string - the input string (non-nullable).

• regex - the regex to be searched (non-nullable).

Returns:

the list of matching substrings.

string.split

List(String) string.split(String string, String separator)

Splits the list of substrings of the input string resulting from splitting it via the separator.

Parameters:

• string - the input string (non-nullable).

• separator - the separator string (non-nullable).

Returns:

the substrings.

string.startsWith

Bool string.startsWith(String input, String prefix)

Checks whether a string starts with a specified prefix.

Parameters:

• input - the string to check (non-nullable).

• prefix - the prefix (non-nullable).

Returns:

true if the string starts with the specified prefix, false otherwise.

string.substring

String string.substring(String string, Int32 startPosition, Int32 endPosition)

Creates a substring from the input string. Gives a runtime error if the start or the end position is outside of its valid range.

Chapter 5. Detect Expression Language Builtin Functions

Parameters:

• string - the input string (non-nullable).

• startPosition - the start position of the substring (inclusive, in the range [-size,size]). A negative value indicates a

position relative to the end of the string (non-nullable).

• endPosition - the end position of the substring (exclusive, in the range [-size,size]). A negative value indicates a

position relative to the end of the string (non-nullable).

Returns:

the substring.

string.toLowerCase

String string.toLowerCase(String string)

Returns the lowercase representation of the string.

Parameters:

• string - the input string (non-nullable).

Returns:

the input string converted to lowercase.

string.toUpperCase

String string.toUpperCase(String string)

Returns the uppercase representation of the string.

Parameters:

• string - the input string (non-nullable).

Returns:

the input string converted to uppercase.

Time Functions
time.currentTimeInSeconds

Double time.currentTimeInSeconds()

Returns the current fractional seconds since the Epoch.

Parameters:

47

HCL Detect v12.1.8 Development Guide

48

Returns:

the time since the Epoch.

time.daysToHours

<Integral T> Int64 time.daysToHours(T days)

Converts the time duration given in days to hours (as integer).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of hours (days x hours in a day = days x 24).

time.daysToMicros

<Integral T> Int64 time.daysToMicros(T days)

Converts the time duration given in days to microseconds (as integer).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of microseconds (days x (micros in a day) = days x (24 x 60 x 60 x 1000 x 1000)).

time.daysToMillis

<Integral T> Int64 time.daysToMillis(T days)

Converts the time duration given in days to milliseconds (as integer).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (days x (millis in a day) = days x (24 x 60 x 60 x 1000)).

time.daysToMinutes

<Integral T> Int64 time.daysToMinutes(T days)

Chapter 5. Detect Expression Language Builtin Functions

Converts the time duration given in days to minutes (as integer).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of minutes (days x (minutes in a day) = days x (24 x 60)).

time.daysToNanos

<Integral T> Int64 time.daysToNanos(T days)

Converts the time duration given in days to nanoseconds (as integer).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (days x (nanos in a day) = days x (24 x 60 x 60 x 1000 x 1000 x 1000)).

time.daysToSeconds

<Integral T> Int64 time.daysToSeconds(T days)

Converts the time duration given in days to seconds (as integer).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of seconds (days x (seconds in a day) = days x (24 x 60 x 60)).

time.formatDateTime

String time.formatDateTime(String formatString, List(Int32) timeComponents)

Returns a formatted string including the given date.

Parameters:

• formatString - format string where the following specifiers are allowed:

%A : Full name of the day of the week (e.g., Tuesday)

49

HCL Detect v12.1.8 Development Guide

50

%B : Full name of the month of the year (e.g., March)

%H : Two-digit 24-hour clock (in the range [00:23])

%I : Two-digit 12-hour clock (in the range [00:11])

%M : Minute within the hour (two-digits, in the range [00:59])

%S : Second within the minute (two-digits, in the range [00:59])

%Y : Year in four digits (in the range [1:9999])

%a : Short name of the day of the week (e.g., Tue)

%b : Short name of the month of the year (e.g., Mar)

%d : Day of the month (two-digits, in the range [01:31])

%j : Day of the year (three-digits, in the range [001:366])

%m : Month of the year (two-digits, in the range [01:12])

%p : Morning/afternoon marker (AM or PM)

%yLast two digits of the year (in the range [00:99])

(non-nullable).

• timeComponents - the date-time components of the form: [year, month, mday, hour, minute, second, wday, yday, isdst]

year: Year as a decimal number

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

minute: Minutes, in the range [0:59]

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

isdst: 1 if daylight saving time is in effect, 0 otherwise (non-nullable, null elements not allowed).

Returns:

a formatted time string.

Chapter 5. Detect Expression Language Builtin Functions

time.fractionalDaysToHours

<Numeric T> Double time.fractionalDaysToHours(T days)

Converts the time duration given in days to hours (in fractional form).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of hours (days x hours in a day = days x 24).

time.fractionalDaysToMicros

<Numeric T> Double time.fractionalDaysToMicros(T days)

Converts the time duration given in days to microseconds (in fractional form).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of microseconds (days x (micros in a day) = days x (24 x 60 x 60 x 1000 x 1000)).

time.fractionalDaysToMillis

<Numeric T> Double time.fractionalDaysToMillis(T days)

Converts the time duration given in days to milliseconds (in fractional form).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (days x (millis in a day) = days x (24 x 60 x 60 x 1000)).

time.fractionalDaysToMinutes

<Numeric T> Double time.fractionalDaysToMinutes(T days)

Converts the time duration given in days to minutes (in fractional form).

Parameters:

51

HCL Detect v12.1.8 Development Guide

52

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of minutes (days x (minutes in a day) = days x (24 x 60)).

time.fractionalDaysToNanos

<Numeric T> Double time.fractionalDaysToNanos(T days)

Converts the time duration given in days to nanoseconds (in fractional form).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (days x (nanos in a day) = days x (24 x 60 x 60 x 1000 x 1000 x 1000)).

time.fractionalDaysToSeconds

<Numeric T> Double time.fractionalDaysToSeconds(T days)

Converts the time duration given in days to seconds (in fractional form).

Parameters:

• days - the time duration given in days (non-nullable).

Returns:

the time duration expressed in terms of seconds (days x (seconds in a day) = days x (24 x 60 x 60)).

time.fractionalHoursToDays

<Numeric T> Double time.fractionalHoursToDays(T hours)

Converts the time duration given in hours to days (in fractional form).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of days (one 24th of hours).

Chapter 5. Detect Expression Language Builtin Functions

time.fractionalHoursToMicros

<Numeric T> Double time.fractionalHoursToMicros(T hours)

Converts the time duration given in hours to microseconds (in fractional form).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of microseconds (hours x (micros in an hour) = hours x (60 x 60 x 1000 x 1000)).

time.fractionalHoursToMillis

<Numeric T> Double time.fractionalHoursToMillis(T hours)

Converts the time duration given in hours to milliseconds (in fractional form).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (hours x millis in an hour = hours x (60 x 60 x 1000)).

time.fractionalHoursToMinutes

<Numeric T> Double time.fractionalHoursToMinutes(T hours)

Converts the time duration given in hours to minutes (in fractional form).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of minutes (hours x minutes in an hour = hours x 60).

time.fractionalHoursToNanos

<Numeric T> Double time.fractionalHoursToNanos(T hours)

Converts the time duration given in hours to nanoseconds (in fractional form).

Parameters:

53

HCL Detect v12.1.8 Development Guide

54

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (hours x (nanos in an hour) = hours x (60 x 60 x 1000 x 1000 x 1000)).

time.fractionalHoursToSeconds

<Numeric T> Double time.fractionalHoursToSeconds(T hours)

Converts the time duration given in hours to seconds (in fractional form).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of seconds (hours x (seconds in an hour) = hours x (60 x 60)).

time.fractionalMicrosToDays

<Numeric T> Double time.fractionalMicrosToDays(T micros)

Converts the time duration given in microseconds to days (in fractional form).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of days (micros / (micros in a day) = micros / (24 x 60 x 60 x 1000 x 1000)).

time.fractionalMicrosToHours

<Numeric T> Double time.fractionalMicrosToHours(T micros)

Converts the time duration given in microseconds to hours (in fractional form).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of hours (micros / (micros in an hour) = micros / (60 x 60 x 1000 x 1000)).

Chapter 5. Detect Expression Language Builtin Functions

time.fractionalMicrosToMillis

<Numeric T> Double time.fractionalMicrosToMillis(T micros)

Converts the time duration given in microseconds to milliseconds (in fractional form).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (micros / micros in a millisecond = micros / 1000).

time.fractionalMicrosToMinutes

<Numeric T> Double time.fractionalMicrosToMinutes(T micros)

Converts the time duration given in microseconds to minutes (in fractional form).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of minutes (micros / (micros in a minute) = micros / (60 x 1000 x 1000)).

time.fractionalMicrosToNanos

<Numeric T> Double time.fractionalMicrosToNanos(T micros)

Converts the time duration given in microseconds to nanoseconds (in fractional form).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (micros x nanos in a microsecond = micros x 1000).

time.fractionalMicrosToSeconds

<Numeric T> Double time.fractionalMicrosToSeconds(T micros)

Converts the time duration given in microseconds to seconds (in fractional form).

Parameters:

55

HCL Detect v12.1.8 Development Guide

56

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of seconds (micros / (micros in a second) = micros / (1000 x 1000)).

time.fractionalMillisToDays

<Numeric T> Double time.fractionalMillisToDays(T millis)

Converts the time duration given in milliseconds to days (in fractional form).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of days (millis / (millis in a day) = millis / (24 x 60 x 60 x 1000)).

time.fractionalMillisToHours

<Numeric T> Double time.fractionalMillisToHours(T millis)

Converts the time duration given in milliseconds to hours (in fractional form).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of hours (millis / (millis in an hour) = millis / (60 x 60 x 1000)).

time.fractionalMillisToMicros

<Numeric T> Double time.fractionalMillisToMicros(T millis)

Converts the time duration given in milliseconds to microseconds (in fractional form).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of microseconds (millis x micros in a millisecond = millis x 1000).

Chapter 5. Detect Expression Language Builtin Functions

time.fractionalMillisToMinutes

<Numeric T> Double time.fractionalMillisToMinutes(T millis)

Converts the time duration given in milliseconds to minutes (in fractional form).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of minutes (millis / (millis in a minute) = millis / (60 x 1000)).

time.fractionalMillisToNanos

<Numeric T> Double time.fractionalMillisToNanos(T millis)

Converts the time duration given in milliseconds to nanoseconds (in fractional form).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (millis x (nanos in a millisecond) = millis x (1000 x 1000)).

time.fractionalMillisToSeconds

<Numeric T> Double time.fractionalMillisToSeconds(T millis)

Converts the time duration given in milliseconds to seconds (in fractional form).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of seconds (millis / millis in a second = millis / 1000).

time.fractionalMinutesToDays

<Numeric T> Double time.fractionalMinutesToDays(T minutes)

Converts the time duration given in minutes to days (in fractional form).

Parameters:

57

HCL Detect v12.1.8 Development Guide

58

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of days (minutes / (minutes in a day) = minutes / (24 x 60)).

time.fractionalMinutesToHours

<Numeric T> Double time.fractionalMinutesToHours(T minutes)

Converts the time duration given in minutes to hours (in fractional form).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of hours (minutes / minutes in an hour = minutes / 60).

time.fractionalMinutesToMicros

<Numeric T> Double time.fractionalMinutesToMicros(T minutes)

Converts the time duration given in minutes to microseconds (in fractional form).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of microseconds (minutes x (micros in a minute) = minutes x (60 x 1000 x 1000)).

time.fractionalMinutesToMillis

<Numeric T> Double time.fractionalMinutesToMillis(T minutes)

Converts the time duration given in minutes to milliseconds (in fractional form).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (minutes x (millis in a minute) = minutes x (60 x 1000)).

Chapter 5. Detect Expression Language Builtin Functions

time.fractionalMinutesToNanos

<Numeric T> Double time.fractionalMinutesToNanos(T minutes)

Converts the time duration given in minutes to nanoseconds (in fractional form).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (minutes x (nanos in a minute) = minutes x (60 x 1000 x 1000 x 1000)).

time.fractionalMinutesToSeconds

<Numeric T> Double time.fractionalMinutesToSeconds(T minutes)

Converts the time duration given in minutes to seconds (in fractional form).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of seconds (minutes x seconds in a minute = minutes x 60).

time.fractionalNanosToDays

<Numeric T> Double time.fractionalNanosToDays(T nanos)

Converts the time duration given in nanoseconds to days (in fractional form).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of days (nanos / (nanos in a day) = nanos / (24 x 60 x 60 x 1000 x 1000 x 1000)).

time.fractionalNanosToHours

<Numeric T> Double time.fractionalNanosToHours(T nanos)

Converts the time duration given in nanoseconds to hours (in fractional form).

Parameters:

59

HCL Detect v12.1.8 Development Guide

60

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of hours (nanos / (nanos in an hour) = nanos / (60 x 60 x 1000 x 1000 x 1000)).

time.fractionalNanosToMicros

<Numeric T> Double time.fractionalNanosToMicros(T nanos)

Converts the time duration given in nanoseconds to microseconds (in fractional form).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of microseconds (nanos / nanos in a microsecond = nanos / 1000).

time.fractionalNanosToMillis

<Numeric T> Double time.fractionalNanosToMillis(T nanos)

Converts the time duration given in nanoseconds to milliseconds (in fractional form).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (nanos / (nanos in an millisecond) = nanos / (1000 x 1000)).

time.fractionalNanosToMinutes

<Numeric T> Double time.fractionalNanosToMinutes(T nanos)

Converts the time duration given in nanoseconds to minutes (in fractional form).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of minutes (nanos / (nanos in a minute) = nanos / (60 x 1000 x 1000 x 1000)).

Chapter 5. Detect Expression Language Builtin Functions

time.fractionalNanosToSeconds

<Numeric T> Double time.fractionalNanosToSeconds(T nanos)

Converts the time duration given in nanoseconds to seconds (in fractional form).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of seconds (nanos / (nanos in a second) = nanos / (1000 x 1000 x 1000)).

time.fractionalSecondsToDays

<Numeric T> Double time.fractionalSecondsToDays(T seconds)

Converts the time duration given in seconds to days (in fractional form).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of days (seconds / (seconds in a day) = seconds / (24 x 60 x 60)).

time.fractionalSecondsToHours

<Numeric T> Double time.fractionalSecondsToHours(T seconds)

Converts the time duration given in seconds to hours (in fractional form).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of hours (seconds / (seconds in an hour) = seconds / (60 x 60)).

time.fractionalSecondsToMicros

<Numeric T> Double time.fractionalSecondsToMicros(T seconds)

Converts the time duration given in seconds to microseconds (in fractional form).

Parameters:

61

HCL Detect v12.1.8 Development Guide

62

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of microseconds (seconds x (micros in a second) = seconds x (1000 x 1000)).

time.fractionalSecondsToMillis

<Numeric T> Double time.fractionalSecondsToMillis(T seconds)

Converts the time duration given in seconds to milliseconds (in fractional form).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (seconds x millis in a second = seconds x 1000).

time.fractionalSecondsToMinutes

<Numeric T> Double time.fractionalSecondsToMinutes(T seconds)

Converts the time duration given in seconds to minutes (in fractional form).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of minutes (seconds / seconds in a minute = seconds / 60).

time.fractionalSecondsToNanos

<Numeric T> Double time.fractionalSecondsToNanos(T seconds)

Converts the time duration given in seconds to nanoseconds (in fractional form).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (seconds x (nanos in a second) = seconds x (1000 x 1000 x 1000)).

Chapter 5. Detect Expression Language Builtin Functions

time.hoursToDays

<Integral T> Int64 time.hoursToDays(T hours)

Converts the time duration given in hours to days (as integer).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of days (one 24th of hours - integer division).

time.hoursToMicros

<Integral T> Int64 time.hoursToMicros(T hours)

Converts the time duration given in hours to microseconds (as integer).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of microseconds (hours x (micros in an hour) = hours x (60 x 60 x 1000 x 1000)).

time.hoursToMillis

<Integral T> Int64 time.hoursToMillis(T hours)

Converts the time duration given in hours to milliseconds (as integer).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (hours x millis in an hour = hours x (60 x 60 x 1000)).

time.hoursToMinutes

<Integral T> Int64 time.hoursToMinutes(T hours)

Converts the time duration given in hours to minutes (as integer).

Parameters:

63

HCL Detect v12.1.8 Development Guide

64

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of minutes (hours x minutes in an hour = hours x 60).

time.hoursToNanos

<Integral T> Int64 time.hoursToNanos(T hours)

Converts the time duration given in hours to nanoseconds (as integer).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (hours x (nanos in an hour) = hours x (60 x 60 x 1000 x 1000 x 1000)).

time.hoursToSeconds

<Integral T> Int64 time.hoursToSeconds(T hours)

Converts the time duration given in hours to seconds (as integer).

Parameters:

• hours - the time duration given in hours (non-nullable).

Returns:

the time duration expressed in terms of seconds (hours x (seconds in an hour) = hours x (60 x 60)).

time.localDateTimeFromDate

List(Int32) time.localDateTimeFromDate(Int32 year, Int32 month, Int32 day)

Produces the local date-time components ([year, month, mday, hour, minute, second, wday, yday, isdst]) according to the

given date information (year, month and day)

year: Year as a decimal number

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

minute: Minutes, in the range [0:59]

Chapter 5. Detect Expression Language Builtin Functions

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

isdst: 1 if daylight saving time is in effect, 0 otherwise.

Parameters:

• year - year (in the range [1:9999]) (non-nullable).

• month - month (in the range [1:12]) (non-nullable).

• day - the day of the month (in the range [1:31]) (non-nullable).

Returns:

the local date-time components in the format: [year, month, mday, hour, minute, second, wday, yday, isdst].

time.localDateTimeFromDateTime

List(Int32) time.localDateTimeFromDateTime(Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second)

Produces the local date-time components ([year, month, mday, hour, minute, second, wday, yday, isdst]) according to the

given date and time information (year, month, day, hour, minute and second)

year: Year as a decimal number

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

minute: Minutes, in the range [0:59]

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

isdst: 1 if daylight saving time is in effect, 0 otherwise.

Parameters:

• year - the year (in the range [1:9999]) (non-nullable).

• month - the month within the year (in the range [1:12]) (non-nullable).

• day - the day within the month (in the range [1:31]) (non-nullable).

• hour - the hour within the day (in the range [0:23]) (non-nullable).

65

HCL Detect v12.1.8 Development Guide

66

• minute - the minute within the hour (in the range [0:59]) (non-nullable).

• second - the second within the minute (in the range [0:59]) (non-nullable).

Returns:

the local date-time components in the format: [year, month, mday, hour, minute, second, wday, yday, isdst].

time.localTime

List(Int32) time.localTime(Double value)

Converts the time in seconds since the Epoch to the local date-time components in the format: [year, month, mday, hour,

minute, second, wday, yday, isdst]

year: Year as a decimal

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

minute: Minutes, in the range [0:59]

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

isdst: 1 if daylight saving time is in effect, 0 otherwise.

Parameters:

• value - the time (fractional seconds since the Epoch) (non-nullable).

Returns:

the local date-time components in the format: [year, month, mday, hour, minute, second, wday, yday, isdst].

time.microsToDays

<Integral T> Int64 time.microsToDays(T micros)

Converts the time duration given in microseconds to days (as integer).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Chapter 5. Detect Expression Language Builtin Functions

Returns:

the time duration expressed in terms of days (micros / (micros in a day) = micros / (24 x 60 x 60 x 1000 x 1000) - integer

division).

time.microsToHours

<Integral T> Int64 time.microsToHours(T micros)

Converts the time duration given in microseconds to hours (as integer).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of hours (micros / (micros in an hour) = micros / (60 x 60 x 1000 x 1000) - integer

division).

time.microsToMillis

<Integral T> Int64 time.microsToMillis(T micros)

Converts the time duration given in microseconds to milliseconds (as integer).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (micros / micros in a millisecond = micros / 1000 - integer division).

time.microsToMinutes

<Integral T> Int64 time.microsToMinutes(T micros)

Converts the time duration given in microseconds to minutes (as integer).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of minutes (micros / (micros in a minute) = micros / (60 x 1000 x 1000) - integer

division).

67

HCL Detect v12.1.8 Development Guide

68

time.microsToNanos

<Integral T> Int64 time.microsToNanos(T micros)

Converts the time duration given in microseconds to nanoseconds (as integer).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (micros x nanos in a microsecond = micros x 1000).

time.microsToSeconds

<Integral T> Int64 time.microsToSeconds(T micros)

Converts the time duration given in microseconds to seconds (as integer).

Parameters:

• micros - the time duration given in microseconds (non-nullable).

Returns:

the time duration expressed in terms of seconds (micros / (micros in a second) = micros / (1000 x 1000) - integer division).

time.millisToDays

<Integral T> Int64 time.millisToDays(T millis)

Converts the time duration given in milliseconds to days (as integer).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of days (millis / (millis in a day) = millis / (24 x 60 x 60 x 1000) - integer division).

time.millisToHours

<Integral T> Int64 time.millisToHours(T millis)

Converts the time duration given in milliseconds to hours (as integer).

Parameters:

Chapter 5. Detect Expression Language Builtin Functions

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of hours (millis / (millis in an hour) = millis / (60 x 60 x 1000) - integer division).

time.millisToMicros

<Integral T> Int64 time.millisToMicros(T millis)

Converts the time duration given in milliseconds to microseconds (as integer).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of microseconds (millis x micros in a millisecond = millis x 1000).

time.millisToMinutes

<Integral T> Int64 time.millisToMinutes(T millis)

Converts the time duration given in milliseconds to minutes (as integer).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of minutes (millis / (millis in a minute) = millis / (60 x 1000) - integer division).

time.millisToNanos

<Integral T> Int64 time.millisToNanos(T millis)

Converts the time duration given in milliseconds to nanoseconds (as integer).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (millis x (nanos in a millisecond) = millis x (1000 x 1000)).

69

HCL Detect v12.1.8 Development Guide

70

time.millisToSeconds

<Integral T> Int64 time.millisToSeconds(T millis)

Converts the time duration given in milliseconds to seconds (as integer).

Parameters:

• millis - the time duration given in milliseconds (non-nullable).

Returns:

the time duration expressed in terms of seconds (millis / millis in a second = millis / 1000 - integer division).

time.minutesToDays

<Integral T> Int64 time.minutesToDays(T minutes)

Converts the time duration given in minutes to days (as integer).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of days (minutes / (minutes in a day) = minutes / (24 x 60) - integer division).

time.minutesToHours

<Integral T> Int64 time.minutesToHours(T minutes)

Converts the time duration given in minutes to hours (as integer).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of hours (minutes / minutes in an hour = minutes / 60 - integer division).

time.minutesToMicros

<Integral T> Int64 time.minutesToMicros(T minutes)

Converts the time duration given in minutes to microseconds (as integer).

Parameters:

Chapter 5. Detect Expression Language Builtin Functions

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of microseconds (minutes x (micros in a minute) = minutes x (60 x 1000 x 1000)).

time.minutesToMillis

<Integral T> Int64 time.minutesToMillis(T minutes)

Converts the time duration given in minutes to milliseconds (as integer).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (minutes x (millis in a minute) = minutes x (60 x 1000)).

time.minutesToNanos

<Integral T> Int64 time.minutesToNanos(T minutes)

Converts the time duration given in minutes to nanoseconds (as integer).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (minutes x (nanos in a minute) = minutes x (60 x 1000 x 1000 x 1000)).

time.minutesToSeconds

<Integral T> Int64 time.minutesToSeconds(T minutes)

Converts the time duration given in minutes to seconds (as integer).

Parameters:

• minutes - the time duration given in minutes (non-nullable).

Returns:

the time duration expressed in terms of seconds (minutes x seconds in a minute = minutes x 60).

71

HCL Detect v12.1.8 Development Guide

72

time.nanosToDays

<Integral T> Int64 time.nanosToDays(T nanos)

Converts the time duration given in nanoseconds to days (as integer).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of days (nanos / (nanos in a day) = nanos / (24 x 60 x 60 x 1000 x 1000 x 1000) -

integer division).

time.nanosToHours

<Integral T> Int64 time.nanosToHours(T nanos)

Converts the time duration given in nanoseconds to hours (as integer).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of hours (nanos / (nanos in an hour) = nanos / (60 x 60 x 1000 x 1000 x 1000) - integer

division).

time.nanosToMicros

<Integral T> Int64 time.nanosToMicros(T nanos)

Converts the time duration given in nanoseconds to microseconds (as integer).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of microseconds (nanos / nanos in a microsecond = nanos / 1000 - integer division).

time.nanosToMillis

<Integral T> Int64 time.nanosToMillis(T nanos)

Converts the time duration given in nanoseconds to milliseconds (as integer).

Chapter 5. Detect Expression Language Builtin Functions

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (nanos / (nanos in an millisecond) = nanos / (1000 x 1000) - integer

division).

time.nanosToMinutes

<Integral T> Int64 time.nanosToMinutes(T nanos)

Converts the time duration given in nanoseconds to minutes (as integer).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of minutes (nanos / (nanos in a minute) = nanos / (60 x 1000 x 1000 x 1000) - integer

division).

time.nanosToSeconds

<Integral T> Int64 time.nanosToSeconds(T nanos)

Converts the time duration given in nanoseconds to seconds (as integer).

Parameters:

• nanos - the time duration given in nanoseconds (non-nullable).

Returns:

the time duration expressed in terms of seconds (nanos / (nanos in a second) = nanos / (1000 x 1000 x 1000) - integer

division).

time.parseLocalDateTime

List(Int32) time.parseLocalDateTime(String dateTimeString, String formatString)

Produces the date-time components of a local date-time string according to the given format.

Parameters:

• dateTimeString - a local date-time string (non-nullable).

• formatString - a format string where the following specifiers are allowed:

73

HCL Detect v12.1.8 Development Guide

74

%A : Full name of the day of the week (e.g., Tuesday)

%B : Full name of the month of the year (e.g., March)

%H : Two-digit 24-hour clock (in the range [00:23])

%I : Two-digit 12-hour clock (in the range [00:11])

%M : Minute within the hour (two-digits, in the range [00:59])

%S : Second within the minute (two-digits, in the range [00:59])

%Y : Year in four digits (in the range [1:9999])

%a : Short name of the day of the week (e.g., Tue)

%b : Short name of the month of the year (e.g., Mar)

%d : Day of the month (two-digits, in the range [01:31])

%j : Day of the year (three-digits, in the range [001:366])

%m : Month of the year (two-digits, in the range [01:12])

%p : Morning/afternoon marker (AM or PM)

%yLast two digits of the year (in the range [00:99])

(non-nullable).

Returns:

the date-time components in the format: [year, month, mday, hour, minute, second, wday, yday, isdst]

year: Year as a decimal

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

minute: Minutes, in the range [0:59]

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

isdst: 1 if daylight saving time is in effect, 0 otherwise.

Chapter 5. Detect Expression Language Builtin Functions

time.parseUtcDateTime

List(Int32) time.parseUtcDateTime(String dateTimeString, String formatString)

Produces the date-time components of a UTC date-time string according to the given format.

Parameters:

• dateTimeString - a UTC date-time string (non-nullable).

• formatString - a format string where the following specifiers are allowed:

%A : Full name of the day of the week (e.g., Tuesday)

%B : Full name of the month of the year (e.g., March)

%H : Two-digit 24-hour clock (in the range [00:23])

%I : Two-digit 12-hour clock (in the range [00:11])

%M : Minute within the hour (two-digits, in the range [00:59])

%S : Second within the minute (two-digits, in the range [00:59])

%Y : Year in four digits (in the range [1:9999])

%a : Short name of the day of the week (e.g., Tue)

%b : Short name of the month of the year (e.g., Mar)

%d : Day of the month (two-digits, in the range [01:31])

%j : Day of the year (three-digits, in the range [001:366])

%m : Month of the year (two-digits, in the range [01:12])

%p : Morning/afternoon marker (AM or PM)

%yLast two digits of the year (in the range [00:99])

(non-nullable).

Returns:

the date-time components in the format: [year, month, mday, hour, minute, second, wday, yday, isdst]

year: Year as a decimal

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

75

HCL Detect v12.1.8 Development Guide

76

minute: Minutes, in the range [0:59]

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

isdst: 1 if daylight saving time is in effect, 0 otherwise.

time.secondsToDays

<Integral T> Int64 time.secondsToDays(T seconds)

Converts the time duration given in seconds to days (as integer).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of days (seconds / (seconds in a day) = seconds / (24 x 60 x 60) - integer division).

time.secondsToHours

<Integral T> Int64 time.secondsToHours(T seconds)

Converts the time duration given in seconds to hours (as integer).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of hours (seconds / (seconds in an hour) = seconds / (60 x 60) - integer division).

time.secondsToMicros

<Integral T> Int64 time.secondsToMicros(T seconds)

Converts the time duration given in seconds to microseconds (as integer).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

Chapter 5. Detect Expression Language Builtin Functions

the time duration expressed in terms of microseconds (seconds x (micros in a second) = seconds x (1000 x 1000)).

time.secondsToMillis

<Integral T> Int64 time.secondsToMillis(T seconds)

Converts the time duration given in seconds to milliseconds (as integer).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of milliseconds (seconds x millis in a second = seconds x 1000).

time.secondsToMinutes

<Integral T> Int64 time.secondsToMinutes(T seconds)

Converts the time duration given in seconds to minutes (as integer).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of minutes (seconds / seconds in a minute = seconds / 60 - integer division).

time.secondsToNanos

<Integral T> Int64 time.secondsToNanos(T seconds)

Converts the time duration given in seconds to nanoseconds (as integer).

Parameters:

• seconds - the time duration given in seconds (non-nullable).

Returns:

the time duration expressed in terms of nanoseconds (seconds x (nanos in a second) = seconds x (1000 x 1000 x 1000)).

time.utcDateTimeFromDate

List(Int32) time.utcDateTimeFromDate(Int32 year, Int32 month, Int32 day)

Produces the UTC date-time components ([year, month, mday, hour, minute, second, wday, yday, isdst]) according to the given

date information (year, month and day)

77

HCL Detect v12.1.8 Development Guide

78

year: Year as a decimal number

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

minute: Minutes, in the range [0:59]

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

isdst: 1 if daylight saving time is in effect, 0 otherwise.

Parameters:

• year - year (in the range [1:9999]) (non-nullable).

• month - month (in the range [1:12]) (non-nullable).

• day - the day of the month (in the range [1:31]) (non-nullable).

Returns:

the UTC date-time components in the format: [year, month, mday, hour, minute, second, wday, yday, isdst].

time.utcDateTimeFromDateTime

List(Int32) time.utcDateTimeFromDateTime(Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second)

Produces the UTC date-time components ([year, month, mday, hour, minute, second, wday, yday, isdst]) according to the given

date and time information (year, month, day, hour, minute and second)

year: Year as a decimal number

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

minute: Minutes, in the range [0:59]

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

Chapter 5. Detect Expression Language Builtin Functions

isdst: 1 if daylight saving time is in effect, 0 otherwise.

Parameters:

• year - the year (in the range [1:9999]) (non-nullable).

• month - the month within the year (in the range [1:12]) (non-nullable).

• day - the day within the month (in the range [1:31]) (non-nullable).

• hour - the hour within the day (in the range [0:23]) (non-nullable).

• minute - the minute within the hour (in the range [0:59]) (non-nullable).

• second - the second within the minute (in the range [0:59]) (non-nullable).

Returns:

the UTC date-time components in the format: [year, month, mday, hour, minute, second, wday, yday, isdst].

time.utcTime

List(Int32) time.utcTime(Double value)

Converts the time in seconds since the Epoch to the UTC date-time components in the format: [year, month, mday, hour,

minute, second, wday, yday, isdst]

year: Year as a decimal number

month: Month, in the range [1:12]

mday: Day of the month, in the range [1:31]

hour: Hours, in the range [0:23]

minute: Minutes, in the range [0:59]

second: Seconds, in the range [0:59]

wday: Day of the week, in the range [0:6], Monday is 0

yday: Day of the year, in the range [1:366]

isdst: 1 if daylight saving time is in effect, 0 otherwise.

Parameters:

• value - the time (fractional seconds since the Epoch) (non-nullable).

Returns:

the UTC date-time components in the format: [year, month, mday, hour, minute, second, wday, yday, isdst].

79

HCL Detect v12.1.8 Development Guide

80

Generic Type Classes
Integral

• Int16

• Int32

• Int64

Numeric

• Double

• Int16

• Int32

• Int64

Primitive

• Bool

• Double

• Int16

• Int32

• Int64

• String

Temporal

• DateTime

	HCL Detect v12.1.8 Development Guide
	Contents
	Chapter 1. Folder Structure
	Chapter 2. Configurations
	Profile
	Profile Configuration

	Reference Datasets
	Feed Data Model
	Feed Applications Models
	Application Model
	Aggregations
	Enirchment Functions
	Enrichments

	Campaigns
	Enums Type Definitions

	Chapter 3. Solution Source Code
	Feed Applications

	Chapter 4. Detect Expression Language
	Introduction
	Types
	Literals
	Arithmetic Operations
	Comparison Operations
	Logical Operations
	Ternary Operation
	List Operations
	Precedence and Associativity of Operations
	Attributes
	Conversions
	Aggregates
	Null Values

	Chapter 5. Detect Expression Language Builtin Functions
	Geohash Functions
	geohash.covers
	geohash.encode
	geohash.intersects
	geohash.intersectsAny

	List Functions
	list.average
	list.containsAll
	list.containsAny
	list.difference
	list.disjoint
	list.indicesOf
	list.intersection
	list.lookup
	list.max
	list.min
	list.populationVariance
	list.reverse
	list.sampleVariance
	list.size
	list.sort
	list.subList
	list.sum
	list.union

	Math Functions
	math.ceil
	math.floor
	math.isInfinity
	math.isNaN
	math.isNegativeInfinity
	math.isPositiveInfinity
	math.log
	math.max
	math.min
	math.pow

	String Functions
	string.indexOf
	string.join
	string.length
	string.regexMatch
	string.split
	string.startsWith
	string.substring
	string.toLowerCase
	string.toUpperCase

	Time Functions
	time.currentTimeInSeconds
	time.daysToHours
	time.daysToMicros
	time.daysToMillis
	time.daysToMinutes
	time.daysToNanos
	time.daysToSeconds
	time.formatDateTime
	time.fractionalDaysToHours
	time.fractionalDaysToMicros
	time.fractionalDaysToMillis
	time.fractionalDaysToMinutes
	time.fractionalDaysToNanos
	time.fractionalDaysToSeconds
	time.fractionalHoursToDays
	time.fractionalHoursToMicros
	time.fractionalHoursToMillis
	time.fractionalHoursToMinutes
	time.fractionalHoursToNanos
	time.fractionalHoursToSeconds
	time.fractionalMicrosToDays
	time.fractionalMicrosToHours
	time.fractionalMicrosToMillis
	time.fractionalMicrosToMinutes
	time.fractionalMicrosToNanos
	time.fractionalMicrosToSeconds
	time.fractionalMillisToDays
	time.fractionalMillisToHours
	time.fractionalMillisToMicros
	time.fractionalMillisToMinutes
	time.fractionalMillisToNanos
	time.fractionalMillisToSeconds
	time.fractionalMinutesToDays
	time.fractionalMinutesToHours
	time.fractionalMinutesToMicros
	time.fractionalMinutesToMillis
	time.fractionalMinutesToNanos
	time.fractionalMinutesToSeconds
	time.fractionalNanosToDays
	time.fractionalNanosToHours
	time.fractionalNanosToMicros
	time.fractionalNanosToMillis
	time.fractionalNanosToMinutes
	time.fractionalNanosToSeconds
	time.fractionalSecondsToDays
	time.fractionalSecondsToHours
	time.fractionalSecondsToMicros
	time.fractionalSecondsToMillis
	time.fractionalSecondsToMinutes
	time.fractionalSecondsToNanos
	time.hoursToDays
	time.hoursToMicros
	time.hoursToMillis
	time.hoursToMinutes
	time.hoursToNanos
	time.hoursToSeconds
	time.localDateTimeFromDate
	time.localDateTimeFromDateTime
	time.localTime
	time.microsToDays
	time.microsToHours
	time.microsToMillis
	time.microsToMinutes
	time.microsToNanos
	time.microsToSeconds
	time.millisToDays
	time.millisToHours
	time.millisToMicros
	time.millisToMinutes
	time.millisToNanos
	time.millisToSeconds
	time.minutesToDays
	time.minutesToHours
	time.minutesToMicros
	time.minutesToMillis
	time.minutesToNanos
	time.minutesToSeconds
	time.nanosToDays
	time.nanosToHours
	time.nanosToMicros
	time.nanosToMillis
	time.nanosToMinutes
	time.nanosToSeconds
	time.parseLocalDateTime
	time.parseUtcDateTime
	time.secondsToDays
	time.secondsToHours
	time.secondsToMicros
	time.secondsToMillis
	time.secondsToMinutes
	time.secondsToNanos
	time.utcDateTimeFromDate
	time.utcDateTimeFromDateTime
	time.utcTime

	Generic Type Classes

