
HCL Detect v12.1.8 Admin Guide

ii

Contents
Chapter 1. Installing HCL Detect.......................................3

Dependencies... 3
Installing OS-managed packages................................... 4
Configuring MariaDB..5
Configuring Redis for use by HCL Detect.......................8
Installation Process... 9
Configuring HCL Detect's Runtime Environment..........14
Configuring web proxy...14

Chapter 2. Running HCL Detect...................................... 21
Chapter 3. Accessing the interface for the first time........26
Chapter 4. Adminstration Interface................................. 27

User & Role Management... 27
System Health..37
Applications, Aggregates & Enrichments..................... 40
Subscriber Segments.. 46

Chapter 1. Installing HCL Detect
HCL Detect is an on-premise next generation enterprise marketing automation product. Built for marketers, it enables

marketing teams to plan and manage the customer lifecycle end-to-end and to deliver personalized campaigns quickly

moving from micro segments to a segment of one.

It runs on RedHat 8 (or CentOS 8).

In the next sections, we will go over the software dependencies that must be satisfied prior to the installation of HCL Detect.

Dependencies
The server where HCL Detect is installed must be configured according to a few guidelines. The software also relies on a set

of external dependencies that must be installed prior to setting it up for use. In this section, we discuss both of these issues.

Operating System Configuration

The server (or servers) where Detect runs must be properly configured as far as certain OS and shell resource limits.

While these limits are going to be checked during installation, we will provide certain helpful guidelines in this section.

First, the number of file descriptors that can be used by a process must be equal to or greater than 640,000.

The soft and hard limits are defined as part of the OS configuration (defined in /etc/security/limits.conf) and used/

enforced by the (Bash) shell.

In the shell, the soft limits for each of these resources (including the maximum number of open files) can be inspected as

follows:

ulimit -Sa

And the hard limits as follows:

ulimit -Ha

Naturally neither limit can go beyond the OS limit that applies to the server.

If the current limit is too low for the current shell, but sufficient as far as the OS is concerned, you can update your local

.bashrc raising the limit as follows:

ulimit -n 640000

Nevertheless, in most cases, after a fresh OS install, it is necessary to update /etc/security/limits.conf to meet Detect's

needs.

We recommend that you consult your OS documentation, but usually the following settings can be added towards the end of

the file (assuming you want the limits applied to all users):

* soft nofile 640000
* hard nofile 640000

3

HCL Detect v12.1.8 Admin Guide

4

End of file

After applying this change, a new login must be made with the userid that will be used by Detect (no reboot is necessary).

External Dependencies

The external software dependencies are required by Detect are specific to the operating system version and architecture

where the software will run.

There are two types of external dependencies. The ones provided by the OS vendor and the ones from external vendors.

Starting with the dependencies provided by external vendors, requiring a manual installation, you will need to obtain:

• optional: IBM InfoSphere Streams, IBM SPSS, as well as Oracle WebLogic, if these are capabilities you have acquired

in your particular HCL Detect installation. These are commercial products and you should consult their respective

documentation to have them installed in your environment. Their integration with HCL Detect is described later in this

section, where the installer will request additional information regarding their location in the file system.

Installing OS-managed packages
When it comes to OS-managed dependencies, i.e., dependencies that can be installed using the operating system package

management, the installer will look for and warn you about missing dependencies.

The installation package comes with a utility, dependency_checker, that can be used to ensure that all dependencies are in

place ahead of the installation.

This utility inspects the environment for RedHat- or Ubuntu-provided software (referred to as OS-provided software in the rest

of this documentation) as well as for specific Python packages required by HCL Detect, which are provided as a virtualenv

environment, pre-configured to match the HCL Detect needs.

Operating System-software packages must be installed using the regular mechanism employed to download and install

them, usually yum on RedHat and apt-get on Ubuntu.

When using dependency_checker to extract the list of required dependencies, the output will be similar to (but not necessarily

the same as) the following:

$./drive/bin/dependency_checker -l
List of OS package dependencies:

advance-toolchain-at8.0-runtime: 8.0 (installed)
mariadb: 5.5 (not installed)
mariadb-libs: 5.5 (installed)
mariadb-server: 5.5 (installed)

List of Python package dependencies (available in the HCL Detect virtualenv):
...

In this example, one external dependency (mariadb) is not currently installed. In this case, assuming this host is running

RedHat Linux, yum must be used to install mariadb.

Chapter 1. Installing HCL Detect

Note:

Installing OS packages on a server without Internet connection

In many cases, the server (or cluster) where HCL Detect is going to be installed is not directly connected to the

Internet.

In such cases, the installation of additional OS-level packages can be accomplished by having access to the

Operating System installation CD/DVD or, simply, to an .iso image with the OS installation.

If your installation is RedHat-based, use one of the following alternatives:

• if a DVD is available, please follow the DVD-based yum repository directions outlined by RedHat to create a

locally available yum repository.

• if an .iso file is available, please follow these .iso file directions to create a locally available yum repository.

If your installation is Ubuntu-based, use one of the following alternatives:

• if a DVD is available, please follow the DVD-based apt repository directions outlined by Canonical to create a

locally available aptitude repository.

• if an .iso file is available, mount it first and then use the mounting point in the steps above as the location

when running apt-cdrom. To mount the .iso perform the following steps either sudo-ed or by logging in as root:

$ mkdir -p <mounting point location>
$ mount -o loop <file>.iso <mounting point> location

When installing external operating system-managed dependencies, as long as the major and minor version numbers match,

the dependency is considered satisfied.

Configuring MariaDB
HCL Detect requires a relational database to store configuration as well as runtime data used by the applications as it runs.

Currently, the only supported database is MariaDB.

Installing MariaDB

If you need to have it installed prior to installing HCL Detect, please refer to MariaDB's online installation instructions to

become acquainted with both the installation and configuration process. The actual installation is done via apt-get or yum,

depending on whether you are installing it on Ubuntu or RedHat.

MariaDB is executed as a service on both Ubuntu as well as on RedHat and its behavior is controlled by a configuration

file (usually located in /etc/my.cnf.d/server.cnf on RedHat or /etc/mysql/my.cnf on Ubuntu). In this file, specifically in the

mysqld section of the configuration, the following entry must be commented out or removed:

bind-address = 127.0.0.1

5

https://access.redhat.com/solutions/1355683
https://www.cyberciti.biz/tips/redhat-centos-fedora-linux-setup-repo.html
https://help.ubuntu.com/community/AptCdrom
http://mariadb.org
https://mariadb.com/kb/en/mariadb/getting-installing-and-upgrading-mariadb

HCL Detect v12.1.8 Admin Guide

6

This change will ensure that other hosts in the cluster can interact with the MariaDB server.

If the version for the MariaDB server is older than 10.3.1, the InnoDB engine must also be appropriately configured with the

following settings in the [mysqld] section:

innodb_file_format=Barracuda
innodb_file_per_table=ON
innodb_large_prefix=ON

The configuration modifications only become active after a server restart, which requires restarting the specific operating

system service as follows. On RedHat:

$ sudo systemctl restart mariadb

And on Ubuntu:

$ sudo systemctl restart mysql

Finally, ensure that the MariaDB server is automatically started at boot time by appropriately configuring init, systemd, cron

or whatever mechanism is in place for automating the startup of services.

Securing MariaDB

Once the installation is performed, it's also recommended that MariaDB's installation and configuration be hardened:

$ sudo mysql_secure_installation

The simplest way to make the MariaDB server (mysqld) available to HCL Detect is to install it on the same host where HCL

Detect is going to be placed. It is also necessary to ensure that the server is using its default port (3306):

$ netstat -lptn | grep 3306
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 11430/mysqld

Note that placing the MariaDB server on another host as well as using a different port number can be done, but both of these

options require additional configuration.

Populating the MariaDB timezone tables

Several tables in the MariaDB system database exist to store time zone information.

The MariaDB installation procedure creates the time zone tables, but does not load them.

To do so manually, as root run the following command (MariaDB's root password will be requested):

$ mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root -p mysql -D mysql

There will be one or two warnings similar to:

Warning: Unable to load '/usr/share/zoneinfo/leap-seconds.list' as time zone. Skipping it.

which you can ignore.

Note:

https://mariadb.com/kb/en/mariadb/mysql_secure_installation/

Chapter 1. Installing HCL Detect

Loading the time zone information is not necessarily a one-time operation because the information changes

occasionally.

When such changes occur, applications that use the old rules become out of date and you may find it necessary to reload the

time zone tables (using the instructions above) to keep the information used by the MariaDB server current. Please refer to

the MariaDB documentation for more information.

Setting up a MariaDB user

Once MariaDB is properly installed, it must be configured with a user and password to be used by HCL Detect when

establishing connections with the database server. By default, both the user and password are set to drive.

To create a MariaDB user called drive with the password drive, start MariaDB's interactive shell using MariaDB's root user:

$ mysql -u root -p

And issue the following command:

MariaDB [(none)]> CREATE USER '<user>'@'%' IDENTIFIED BY '<password>';

Replacing <user> and <password>, with drive, specifically:

MariaDB [(none)]> CREATE USER 'drive'@'%' IDENTIFIED BY 'drive';

Once the user is created, it must be given privileges to create the HCL Drive databases:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON `drive_%` . * TO 'drive'@'%';
MariaDB [(none)]> FLUSH PRIVILEGES;

You can now close the MariaDB interactive shell by pressing CTRL-D (the Control and the D key, together) or by using the exit

command.

At this point you should be able to login to MariaDB using the user drive and authenticate using the initial, default, password

you just configured:

$ mysql -u drive -p

If the new user has been properly configured, you will once again be greeted by the MariaDB interactive shell:

$ mysql -u drive -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 39
...
MariaDB [(none)]>

Using a non-default MariaDB configuration

The use of MariaDB on a different host as well as the use of a different user name and/or password requires updating the

HCL Detect configuration file HCL/etc/drive.json.

This JSON file can be edited using a regular text editor.

7

https://mariadb.com/kb/en/library/mysql_tzinfo_to_sql/

HCL Detect v12.1.8 Admin Guide

8

To change the password used by the HCL Detect database server user, it's necessary to first encrypt the new password so it's

not stored in clear text in the configuration file. HCL Detect includes a tool that can be used to perform this operation:

$ $HCL_HOME/bin/password_encryptor -p <new_password>

Once you have the newly encrypted password, modify the drive|database|{userName,userPassword}, and, if necessary, the

solution|database|{userName,userPassword} entries in the configuration file with the new password as well as a new user

name.

As mentioned, some HCL Detect installations have optional features (i.e., a solution) that also make use of a relational

database.

Note that the configuration file is nested, so the notation used in the prior sentence means, e.g., the entry userName as well as

the entry userPassword are under the entry database, which is under the solution entry.

Note that if you are changing one or both of these settings, MariaDB itself must be updated with this new user/password

information.

To change the host and port the MariaDB server uses, locate and update one or more of the following entries: drive|

database|address and, if necessary, the solution|database|{userName,userPassword}. The address is a tuple with the

following format: hostname:port, e.g., foo.HCL.com:3306.

Configuring Redis for use by HCL Detect
HCL Detect uses Redis, an in-memory data structure store.

You might be required to address certain OS-level requirements to ensure that Redis runs efficiently. As the Installation

Process on page 9 is carried out, you might face warnings similar to the following:

Warning:

The operating system in this host is not optimally configured to run Redis, details:

• overcommit_memory is set to 0. Redis background save process may fail under low memory conditions.

To fix this issue add ‘vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the command

'sysctl vm.overcommit_memory=1' for this to take effect. For more details, please refer to http://redis.io/

topics/admin

• when Transparent Huge Pages (THP) support is enabled in the Linux kernel (as is the case now), it can

lead to high latency when Redis forks to persist data to disk. THP support can be disabled by executing the

command ‘echo never > /sys/kernel/mm/transparent_hugepage/enabled' as root, and adding it to your /etc/

rc.local in order to retain the setting after a reboot. When making it permanent, make sure that the rc.local

file has the execution permission for the owner (if this file is a symlink, ensure that the permission is set for

actual file being linked). For more details, please refer to http://redis.io/topics/admin

http://redis.io
http://redis.io/topics/admin
http://redis.io/topics/admin
http://redis.io/topics/admin

Chapter 1. Installing HCL Detect

• unable to enforce the TCP backlog settings of 511 yet-to-be-listened TCP connections in Redis. To fix this

issue add ‘net.core.somaxconn=511' to /etc/sysctl.conf and then reboot or run the command ‘sysctl -w

net.core.somaxconn=511' for this setting to take effect immediately, but only until the next reboot. For more

details, please refer to http://redis.io/topics/admin

Ensure that, if/when these errors are displayed, the changes suggested by the error messages are put in place.

Installation Process
Installation Package

The HCL Detect installation tarball includes:

• The HCL Detect software platform itself, comprising all of the necessary components to run HCL Detect-supported

applications.

• The pre-configured Python virtualenv environment, comprising all Python dependencies required by HCL Detect

applications to run.

• The external open source software required by HCL Detect, e.g., Apache Tomcat, Apache Kafka, among others.

Installation Process

The installation process must be carried out using the userid that will manage the HCL Detect software.

It is recommended that this user be named drive or, if using a hybrid HCL Detect/InfoSphere Streams environment, streams.

Prior to starting the actual installation, if HTTPS-secured web access to HCL Detect will be made available, a (optional) DNS

entry must be configured to provide a user-friendly URL to end users as well as a self-signed or commercial SSL certificate

must be on-hand as it will be required to complete the product installation.

It might be helpful to become familiar with the infrastructure used to provide HTTPS access to Detect by reading the steps

outlined in the section on web proxy configuration before attempting the installation steps.

The installation process begins by un-tarring the software tarball:

$ tar xvfz drive-2.2.0-rhel07.tar.gz

The suffixes 2.2.0 denote the version you are installing and rhel07 the specific operating system (rhel07 for RedHat 7).

Extract the software:

$ mkdir -p /opt/HCL/drive/rhel07
$ tar xzvf drive-2.2.0-rhel07.tar.gz -C /opt/HCL/drive/rhel07

Again, other locations are acceptable, but /opt/HCL/drive/rhel07 is the recommended path. Now, you are ready to perform

the configuration steps:

$cd /opt/HCL/drive/rhel07/HCL/bin
$./installer

9

http://redis.io/topics/admin

HCL Detect v12.1.8 Admin Guide

10

installer is an interactive program and will guide you through specific installation and configuration choices:

HCL Detect is a commercial product, subjected to End-User License Agreement terms. A paper-based or digital
copy of these terms must have been signed and agreed by someone authorized to do so in your organization, prior
 to
carrying out this configuration. A non-customer specific copy of these terms is included for your reference in
 this
installation package (HCL/license/eula.pdf). Do you confirm that you are authorized to proceed with the
configuration based on the terms specified in your organization's own license agreement with HCL Inc. (y/n)?

As a first configuration step, you will be asked about the directory that will be used to host the HCL Detect instance, i.e., the

location in the file system that HCL Detect will use to host its services their logs as well as the data that will be kept by the

HCL Detect data management services.

Next, you will be asked which network interface to use for external TCP/IP traffic. You should choose the interface that

provides connectivity to other hosts in the cluster (if any) and/or external services the HCL Detect application will interface

with:

Please select the network interface to use for external TCP/IP traffic
(default: 'eth0'):

[0] lo: 127.0.0.1
[1] eth0 10.0.0.123
[2] tun0: 10.8.0.45

Selecting the number corresponding to the interface you want (default: '1' for interface 'eth0'): 1

The 'eth0' network interface will be used for all external TCP/IP traffic.

Once a network interface is selected, the installer will proceed to ask which transport protocol should be used between HCL

Detect's web-based frontend and its backend services:

Do you want to use HTTPS-based interactions between the HCL Detect browser-based interface and its backend
([n]o: HTTP will be used (in production, a proxy such as nginx must be used to secure the client/server
communication via HTTPS); / [y]es: HTTPS will be used with a self-signed SSL certificate (recommended only for
short-term testing) (default: HTTP) (y/n)?

Warning:

HCL Detect has access to and handles potentially sensitive information:

• Authentication information: the use of HCL Detect requires a user account. HCL Detect has its own directory

of users or can, alternatively, defer to an enterprise-wide LDAP server. In either case, user passwords

are employed to ensure that a user is both authenticated and authorized to use the system. While HCL

Detect never stores user passwords in the clear, certain interactions require the transfering of passwords

between the front end, web-based interface to the backend. Hence, encryption (through the use of HTTPS) is

STRONGLY recommended.

• Metadata and structural information about subscriber and corporate data feeds: HCL Detect carries out

analytics employing data that is often private and sensitive. Once, again, interactions between its web-based

interface and its backend require manipulating such data and encryption, in the form of HTTPS interactions,

is STRONGLY recommended to preserve end-to-end confidentiality.

Chapter 1. Installing HCL Detect

While HCL Detect is generally hosted in an internal network, never facing non-corporate users, it does integrate with

other segments of the enterprise computing environment. HCL recommends that administrators take every possible

precaution to protect the integrity and confidentiality of the data consumed and produced by this platform.

There are multiple possible configurations to choose from and each one has certain advantages and risks:

• HTTP (without a proxy such as nginx securing the client/server interactions), available network-wide (STRONGLY

DISCOURAGED): this is the simplest form of installing HCL Detect. Nevertheless, it is insecure as potentially sensitive

information is transmitted in the clear over the network, flowing from the user's browser to the server without any

encryption, including passwords (potentially, even the ones used for authenticating via enterprise-wide repositories

such as a corporate LDAP server, if such an integration is eventually enabled).

Note:

SSL certificates

An SSL certificates is a data file that digitally binds a cryptographic key to an organization's identity. For

instance, when installed on a web server, it activates the padlock used by the browser to indicate a _secure_

connection and, hence, the HTTPS protocol in interactions between the brower and a server.

In general, an SSL certificate is obtained from a Certificate Authority (CA) and it attests the ownership of a

public key by the named subject of the certificate, providing an assurance that an interaction is occurring

between a client and a properly identified server. A CA acts as a third party, trusted both by the subject

(owner) of the certificate and by the party relying upon the certificate.

The HCL Detect web service can make use of an SSL certificate to ensure that interactions between the web-

based client and server are properly authenticated (i.e., to provide an assurance to the browser-based client

that it is indeed speaking to an actual server) as well as encrypted, such that no sensitive information flows

over between a client and server in clear text form.

SSL certificates can be purchased from several vendors or obtained for free from organizations such as Let's

Encrypt. Commercial SSL certificates are typically verified and accepted by mainstream web browsers such

as Google Chrome and Mozilla Firefox.

SSL certificates can also be provided by any entity hosting a Public Key Infrastructure (PKI). For instance,

an organization's IT department might host its own internal PKI and issue self-signed certificates. These

certificates work just like commercial certificates, but they will typically produce a warning or an outright

rejection from web browsers, which will not recognized the PKI's CA. In such cases, upon being directed by

the organization's IT department, the certificate may be added to the browser and accepted as legitimate,

thus quieting down the warnings that would, otherwise, be raised every time a web server presenting it is

accessed.

11

http://letsencrypt.org
http://letsencrypt.org

HCL Detect v12.1.8 Admin Guide

12

HCL Detect can be configured with either type of certificate, but HCL strongly recommends that a certificate

be obtained from an officially recognized commercial or non-profit CA.

• HTTPS, available network-wide (RECOMMENDED for testing only): this configuration is deemed safe, as it minimizes

the chances of a sensitive data breach. In such a configuration, the interactions between the browser-based user

interface and HCL Detect's backend is carried out via HTTPS interactions (encrypted). In this case, the HCL Detect

backend service (hosted by Apache Tomcat) is the direct destination of calls performed by a user's browser to the

server servicing the REST APIs.

The disadvantages of this approach are two-fold. First, it employs a self-signed certificate generated by HCL and not

a commercial certificate issued by a proper Certification Authority. Second, the URL to access HCL Detect will be in

the form https://drive.company.com:<port>/drive. In other words, the port where the service runs will be part of the

URL. Typically, HTTPS servers bind and run on the privileged port 443 and such a port number can be omitted from

the URL. While the Apache Tomcat-based Detect backend can be configured to use port 443, this configuration is not

recommended since it requires running the web server as root, which opens up the possibility of a complete takeover

of the host where the web server runs should an unknown (but possible) security vulnerability be exploited.

Alternatively, it is also possible to fiddle with the Operating System settings to allow non-root-owned applications

to use a privileged port. Nevertheless, such a configuration is both non-standard and complex from a system

administration standpoint.

If this configuration is chosen, the installer will ask for a non-privileged port to be used by the web server and will

automatically create a certificate authority, will issue a CA certificate, and install a self-signed SSL certificate to be

used by the web server as part of the installation process.

• HTTP, available only in the localhost interface, proxied by an HTTPS web proxy (STRONGLY RECOMMENDED):

this configuration is deemed the safest, as it minimizes the chances of a sensitive data breach. As with the prior

configuration, the interactions between the browser-based user interface and the web proxy in front of HCL Detect's

backend are HTTPS-encrypted.

The web proxy (both Apache httpd and nginx are supported) employs a regular local HTTP connection to the HCL

Detect backend and a client will interact with the proxy via HTTPS, which will in turn relay the requests to the web

server.

While interception of end-user communication with the web server is possible, this can only occur when the host

where the web server is installed is compromised and root access is available to the malicious party.

The benefit of this approach is that the web proxy (which is specifically hardened for this task), not HCL Detect's

backend, runs as root. Furthermore, the web proxy's internal design is optimized for these types of interactions, the

use of commercially-issued or locally-issued SSL certificates, specific SSL ciphers, as well as many other SSL-related

configurations much easier to put in place.

In this configuration, the installation of an SSL certificate as well as the configuration of the HTTPS endpoint is done

by installing and configuring the web proxy, a step described in the web proxy configuration section.

Chapter 1. Installing HCL Detect

Finally, an HCL Detect installation can be optionally configured with additional integration points to external software

packages including IBM SPSS Modeler Solution Publisher, IBM InfoSphere Streams, as well as Oracle WebLogic Server. Each

of these integration points requires a prior licensed installation for each of these software packages. When installing an HCL

Detect version enabled with one or more of these integration points, additional installation steps will take place. These steps,

applicable only to the specific integration points enabled in the installation, will be carried out by the installer program to

ensure that it can find the proper version for each of the external packages needed by them. For instance:

Please enter the path to an existing IBM SPSS Modeler Solution Publisher
installation to use: /opt/x86_64/ibm/spss/ModelerSolutionPublisher/17.1

Please enter the path to an existing IBM InfoSphere Streams
installation to use: /opt/rhel07/ibm/streams/4.0.1.0

ERROR: failed to validate IBM InfoSphere Streams
installation at '/opt/rhel07/ibm/streams/4.0.1.0'
Product information file '/opt/rhel07/ibm/streams/4.0.1.0/.product' does not exist
Please provide a valid path to an existing IBM InfoSphere Streams installation

Please enter the path to an existing IBM InfoSphere Streams
installation to use: /opt/rhel07/ibm/streams/4.0.1.0

Please enter the path to an existing Oracle WebLogic Server
installation to use: /opt/HCL/drive/noarch/weblogic-10.3.6.0

If everything is correctly configured, a success status message will be printed out:

HCL Detect environment was successfully installed...

Now that the configuration is complete, a test can be executed. To run any HCL Detect application, the shell where

the application is going to run must be configured by invoking the environment_setter script (<drive-install-

location>/HCL/bin/environment_setter):

$./environment_setter

Once the script is source'd, several environment variables are configured and the Python virtualenv environment is activated,

indicating that we are ready to start an HCL Detect application:

[drive]|$ env | sort | grep HCL
HCL_ARCH=x86_64
HCL_HOME=/opt/HCL/drive/rhel07/HCL
HCL_JAVA_PATH=/usr/lib/jvm/java
HCL_OS=rhel07
HCL_PACKAGE_VERSION=2.2.0
HCL_PYTHON_PATH=/opt/HCL/drive/307/pyenv
HCL_READLINK=readlink
HCL_TOMCAT_PATH=/opt/HCL/drive/noarch/apache-tomcat-9.0.20

The preparation of the shell must be made for every shell and session where an HCL Detect application will run. Now, we can

run a test application (<drive-install-location>/HCL/bin):

[drive]|$ cd HCL/bin
[drive]|$./installation_tester -c -sns
INFO: this application is using '/tmp/<user>/HCL' to output and store its
code-generated assets...

13

HCL Detect v12.1.8 Admin Guide

14

.

.

Note:

We are invoking the test application installation_tester using the -c flag to indicate that the application should

be re-built (just in case, it has been executed before), thus ensuring that a fresh version, based on the current

installation, is executed. Normally, HCL Detect applications are only rebuilt when needed and taking such a

precaution is normally not necessary.

Configuring HCL Detect's Runtime Environment
The HCL Detect runtime environment can be configured based on the specific performance and reliability requirements

of a customer deployment. These runtime environment settings are specified in the following file: $HCL_HOME/etc/

runtime_environment.json.

An important runtime configuration is the persistence behavior of PinPoint, which is the Redis-based distributed in-memory

store used by Detect to maintain subscriber profiles. As a primary mechanism, PinPoint relies on append-only logging to

persist its data. As an additional mechanism, it also periodically checkpoints its data to disk.

The checkpointing can be configured using the pinPoint|server|checkpointConfiguration|schedules setting inside the

runtime_environment.json file. The default checkpoint configuration is given as follows:

"schedules":
[
 {
 "operationCount": 1,
 "timeInSeconds": 86400
 },
 {
 "operationCount": 1000000,
 "timeInSeconds": 3600
 }
]

This configuration indicates that the state is checkpointed every hour if at least 1 million profiles are updated since the

last checkpoint, and every day if at least one profile is updated since the last checkpoint. More schedules can be added or

the existing schedules can be updated, as needed. Since the append-only logging already provides persistence, specifying

frequent checkpointing is unnecessary and can adversely affect the CPU usage of the PinPoint servers.

Configuring web proxy
HCL Detect consists of a set of backend services, accessible via a web-based user interface.

Once installed, an instance of HCL Detect can be started. The communication between the web-based user interface and the

backend employs REST APIs over HTTP or HTTPS.

Chapter 1. Installing HCL Detect

HCL strongly recommends that HTTPS be used to ensure that the sensitive information that transits over the network is

encrypted.

As seen in the Installation Process on page 9 section, HCL Detect offers the choice of web transport protocols during

its installation process and recommends HTTPS with the use of a web proxy as the means to access its private backend

services.

This option requires installing HCL Detect with HTTP support, where the backend is bound only to the local lo network

interface, allowing HTTP access only within the host where the HCL Detect web server runs.

Either of two commonly used web proxies, packaged an available in the Linux distributions supported by HCL Detect, can

be configured to provide the HTTPS-based access to the users interacting with HCL Detect via their web browsers: Apache

httpd and nginx.

In either case, two steps must be carried out prior to the web proxy installation and configuration. These steps and the

specific configuration of a web proxy are outlined next.

Configuring a DNS CNAME entry to point to HCL Detect (optional)

Ideally, the URL used to access HCL Detect will be in the form https://HCL.acme.com/drive, where HCL designates this locator

as an HCL product installation at acme.com (the customer's Internet domain) and the context path, drive, indicates the name

of the product.

Usually, the friendlier HCL name will map to an internal server hosting the HCL Detect installation, whose name will follow

an (often less friendlier) internal IT convention (e.g., drive-cluster003-node001.acme.com). Thus, we recommend that a DNS

alias (specifically a CNAME entry) be obtained and registered prior to the HCL Detect installation.

Procedures to update the corporate DNS servers vary. We recommend that the system administrator installing Detect

contacts a local IT specialist to understand the process and to carry out the actual DNS registration.

As an example, an organization using TinyDNS will need to add the following entry to its configuration:

CHCL.acme.com:drive-cluster003-node001.acme.com:120

And invoke the utility (tinydns-data) to activate this entry.

Obtaining an SSL certificate

SSL certificates come in different forms. A certificate can be obtained for a single host name, for multiple host names, or as

a wildcard, accepting any name under a particular domain. While all of them ought to work with HCL Detect, a single-host

certificate is sufficient and this option, if procuring a commercial certificate, is often the most economical.

Procedures to obtain a certificate vary both for commercial as well as for self-signed internal certificates.

Please consult a local IT specialist to understand which alternative is the most adequate in your environment.

In the rest of this document, it is assumed that a commercial certificate is on hand and available to be used during the

configuration of the web proxy.

15

https://httpd.apache.org
https://httpd.apache.org
https://www.nginx.com

HCL Detect v12.1.8 Admin Guide

16

Regardless of how a certificate is obtained, in the end, a set of files related to the certificate must be available. In the

example below, we are assuming that the certificates are being kept in a directory called HCL.acme.com:

• HCL.acme.com/fullchain.pem: this is the actual certificate plus the intermediate certificates (if any). See the

documentation the Apache httpd SSLCertificateFile configuration key and the the nginx ssl_certificate configuration

key for more information.

• HCL.acme.com/privkey.pem: this is the certificate private key for the server. See the documentation the Apache httpd

SSLCertificateKeyFile configuration key and the the nginx ssl_certificate_key configuration key for more information.

Once the certificate has been obtained and these files are available either the Apache httpd or nginx must be installed and

configured.

In the following sections, we will describe these steps assuming that the installation is being made on a RedHat server,

where the HCL Detect web backend will eventually run.

Since the installation and configuration require updating system-owned resources, either sudo or root access is required.

Configuring Apache httpd

The installation requires downloading and installing the necessary OS packages:

$ yum install -y httpd mod_ssl

To ensure that the Apache httpd server is started on boot, the service must be enabled:

$ systemctl enable httpd

Once installed, the configuration enabling the proxying must be added to httpd's main configuration file /etc/httpd/conf/

httpd.conf. The following excerpt demonstrates how this is done, by creating a new virtual host entry:

...
<VirtualHost *:443>
 ServerName HCL.acme.com
 ## HCL Detect will accessible at https://HCL.acme.com/drive
 ProxyPass /drive http://[::1]:8081/drive
 ## HCL Detect must be configured with HTTP access restricted to localhost binding to port 8081
 ## Note that the IPv6 address being used, [::1], is the IP address corresponding to the loopback interface.
 ## HCL Detect's Tomcat instance by ## default will use the IPv6 protocol stack
 ProxyPassReverse /drive http://[::1]:8081/drive
 ProxyPreserveHost on
 ProxyRequests off
 Header always set Strict-Transport-Security "max-age=31536000; includeSubdomains; preload"
 SSLCertificateFile /etc/httpd/stash/HCL.acme.com/fullchain.pem
 SSLCertificateKeyFile /etc/httpd/stash/HCL.acme.com/privkey.pem
 SSLEngine on
 SSLProtocol TLSv1.2
 SSLProxyEngine on
</VirtualHost>
...

Note:

https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatefile
http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_certificate
http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_certificate
https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatekeyfile
https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatekeyfile
http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_certificate_key

Chapter 1. Installing HCL Detect

In our configuration, we chose to install the certificate-related files under /etc/httpd/stash. This is not necessary, but

is convenient as far as applying the correct SE Linux context to these files, which is carried out as follows:

$ restorecon -vr /etc/httpd/stash

Once this is done, httpd can be started (or restarted):

$ systemctl start httpd

If all is well, you should be able to start HCL Detect, open a browser and point it to https://HCL.acme.com/drive.

To start HCL Detect, see the Starting and stopping HCL Detect on page 21 section. If a failure has happened when

starting httpd, see the Testing and troubleshooting the web proxy installation on page 18 section for additional help with

troubleshooting.

Configuring nginx

The installation requires downloading and installing the necessary OS packages:

$ yum install -y nginx

To ensure that the nginx server is started on boot, the service must be enabled:

$ systemctl enable nginx

Once installed, the configuration enabling the proxying must be added to nginx's main configuration file /etc/nginx/

nginx.conf. The following excerpt demonstrates how this is done, by creating a new server entry:

http {
...
 server {

 listen 443;
 server_name HCL.acme.com;

 add_header Strict-Transport-Security "max-age=31536000; includeSubDomains; preload";

 ssl on;
 ssl_certificate /etc/nginx/stash/HCL.acme.com/fullchain.pem;
 ssl_certificate_key /etc/nginx/stash/HCL.acme.com/privkey.pem;
 ssl_session_timeout 5m;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;
 ssl_prefer_server_ciphers on;

 ssl_session_cache shared:SSL:10m;
 ## HCL Detect will accessible at https://HCL.acme.com/drive
 location /drive {

 ## HCL Detect must be configured with HTTP access restricted to localhost binding to port 8081
 proxy_pass http://[::1]:8081/drive;
 ## Note that the IPv6 address being used, [::1], is the IP address corresponding to the loopback
 ## interface. HCL Detect's Tomcat instance by default will use the IPv6 protocol stack
 proxy_set_header X-Forwarded-Host $host;
 proxy_set_header X-Forwarded-Server $host;

17

HCL Detect v12.1.8 Admin Guide

18

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_redirect off;
 }
 }
}

Note:

In our configuration, we chose to install the certificate-related files under /etc/httpd/stash. This is not necessary, but

is convenient as far as applying the correct SE Linux context to these files, which is carried out as follows:

$ restorecon -vr /etc/nginx/stash

Once this is done, nginx can be started (or restarted):

$ systemctl start nginx

If all is well, you should be able to start HCL Detect, open a browser, and point it to https://HCL.acme.com/drive.

troubleshooting.

To start HCL Detect, see the Starting and stopping HCL Detect on page 21 section. If a failure has happened when

starting httpd, see the Testing and troubleshooting the web proxy installation on page 18 section for additional help with

troubleshooting.

Testing and troubleshooting the web proxy installation

Once the web proxy is configured and HCL Detect has been started, using the web interface is as simple as entering the

access URL in the browser window.

There are typically two problems that might occur in a new installation, where either RedHat Linux or CentOS is being used:

• the firewall configuration: if the server running the proxy has firewalld installed, HTTPS access is typically

blocked by default. While we provide some helpful directions below, we strongly recommend reading the firewalld

documentation so the impact of these commands is fully understood.

To check on current status of firewalld, the following command can be executed:

$ firewall-cmd --list-all
public (active)
target: default
icmp-block-inversion: no
interfaces: enp0s3
sources:
services: dhcpv6-client https ssh
protocols:
masquerade: no
forward-ports:
sourceports:
icmp-blocks:
rich rules:

Chapter 1. Installing HCL Detect

If https does not appear in the list of services (as it does above), it must be added, either temporarily:

$ firewall-cmd --zone=public --add-service=https
$ firewall-cmd --reload

Or permanently:

$ firewall-cmd --zone=public --permanent --add-service=https

At this point, re-running the status command will reveal whether HTTPS access to the server is now enabled.

• the SE Linux configuration SELinux is a set of kernel modifications and tools that have been added to RedHat and

CentOS, providing support for access control security policies. It may affect the web proxy in the sense.

Often, if the SELinux access control is not properly configured for the web proxy, there will be two symptoms. First, an access

from the browser will be rejected, often, with a "bad gateway" error message. Second, the SELinux log file (ll/var/log/

audit/audit.log, root access is required both for search the logs as well as for reconfiguring SELinux policies) will include

a rejection of an operation attempted by the web proxy (in the example below, nginx, but very similar for httpd as well),

possibly, similar to the following:

$ grep nginx /var/log/audit/audit.log
type=AVC msg=audit(1490570804.119:555): avc: denied { name_connect } for pid=5725 comm="nginx" dest=8080
scontext=system_u:system_r:httpd_t:s0 tcontext=system_u:object_r:http_cache_port_t:s0 tclass=tcp_socket

Fiddling with SELinux will have a direct impact on the security of a host as well as on the overall network where that host is

located. HCL strongly recommends that changes being done on SELinux policies are undertaken by someone familiar with

its configuration. The procedures we indicate below are not to be taken without understanding their potential repercussions.

This audit entry can be better understood by running the following command, which also prescribes the possible fixes:

$ ausearch -c nginx | audit2allow -m nginx

module nginx 1.0;

require {
 type httpd_t;
 type http_cache_port_t;
 class tcp_socket name_connect;
}

#============= httpd_t ==============

#!!!! This avc can be allowed using one of the these booleans:
httpd_can_network_connect, httpd_can_network_relay
allow httpd_t http_cache_port_t:tcp_socket name_connect;

You can check the current state of these Booleans settings as follows, which at this point, is most likely off:

$ getsebool -a | grep httpd

Finally, the problem can be resolved by allowing network connections from the web proxy to the actual server (i.e., so it can

act as a relay):

$ setsebool -P httpd_can_network_relay on

19

HCL Detect v12.1.8 Admin Guide

20

Alternatively, a new SELinux non-base policy can be put in place:

$cd /tmp
$ ausearch -c nginx | audit2allow -M nginx
$ semodule -i nginx.pp
$ rm nginx.pp

Chapter 2. Running HCL Detect
Starting and stopping HCL Detect

Starting HCL Detect requires two steps.

First, we must ensure that the environment of the current shell is properly configured. This is accomplished by invoking the

script that performs this task:

$./<installation-location>/drive/bin/environment_setter

Note:

Modifying the PATH environment variable in the user's .bashrc file

The environment_setter script loads the user's .bashrc file (if it exists) and, subsequently, validates that the execution

environment is not modified inadvertently with respect to the needs of HCL Detect.

Specifically, the environment_setter validates that the executables for the Java Virtual Machine (java) and the Python

interpreter (python) are consistent with the ones needed by HCL Detect.

In case an inconsistency is flagged due to a modification of the user's PATH environment variable in .bashrc, an error

message will be emitted and two corrective alternatives are possible.

If it happens to be an irrelevant/unintended misconfiguration, you can simply eliminate it from your .bashrc file.

If the original behavior needs to be preserved, this can be accomplished by conditionally making the following

modification to the PATH environment variable:

if [[-z ${HCL_PRODUCT:-}]]; then
 export PATH=<path_to_custom_python>:<path_to_custom_jdk>:$PATH
fi

HCL_PRODUCT is an environment variable defined by HCL Detect in the new instance of the Bash shell the

environment_setter starts.

By checking for this environment variable and conditionally updating the PATH variable only when it is not defined, the

conflicting settings will not affect HCL Detect's runtime environment. Yet, when a regular shell is instantiated, those

PATH settings will still remain active.

Next, we start all of the HCL Detect services:

$ <installation-location>/drive/bin/services_manager start

At this point, it is possible to open a browser on any computer with access to the server where HCL Detect is installed and

access its web user interface by pointing the browser to the appropriate URL: https://HCL.acme.com/drive.

If everything has worked correctly, you will be presented with the initial setup workflow, whereby an administration password

will be configured as well as other initialization steps.

21

HCL Detect v12.1.8 Admin Guide

22

If you cannot access the HCL Detect UI, the Testing and troubleshooting the web proxy installation on page 3 section

provides a few troubleshooting instructions that will help you ensure that your configuration is correct.

Finally, we can stop the HCL Detect services:

$ <installation-location>/drive/bin/services_manager stop

Advanced options when starting and stopping Detect

HCL Detect can be started using the services_manager script located at $HCL_HOME/bin.

This script can be used to configure various parameters associated with the execution of the HCL Detect platform. A list of

available parameters can be obtained as follows:

$ cd $HCL_HOME
$./bin/services_manager --help

 usage: services_manager [-h] [-a] [-c path] [-i id] [-k] [-o [app [app ...]]]
 [-r] [-p] [-s] [-t] [-u uri]
 operation

 The 'services_manager' application is part of HCL Detect 1.2.0 (build id:
 HCLadmin@ubdev.HCL.com - commit id:
 465f0374ffc53c20139e54ed9575ef81505c8ca3)

 positional arguments:
 operation specifies the operation to be performed, one of:
 'start_applications', 'start', 'stop', 'check',
 'stop_applications'

 optional arguments:
 -h, --help show this help message and exit
 -a, --disable-fastpast
 indicates that FastPast should not be checked (when
 checking the status of Detect services), started (when
 starting the Detect services), or stopped (when
 stopping the Detect services) (default: False)
 -c path, --drive-config-file path
 specifies the path of the HCL Detect
 configuration file (default: None)
 -i id, --instance-id id
 specifies the instance identifier to use (default:
 None)
 -k, --disable-kafka
 indicates that Kafka should not be checked (when
 checking the status of the services), started (when
 starting the services), or stopped (when stopping the
 services) (default: False)
 -o [app [app ...]], --applications-to-run [app [app ...]]
 specifies the list of Detect applications to use (by
 default, all of them are used)
 -r, --disable-pinpoint
 indicates that PinPoint should not be checked (when
 checking the status of the services), started (when
 starting the services), or stopped (when stopping the
 services) (default: False)

Chapter 2. Running HCL Detect

 -p, --disable-campaign-actuator
 indicates that Campaign Acturator should not be checked
 (when checking the status of the services), started
 (when starting the services), or stopped (when
 stopping the services) (default: True)
 -s, --disable-segment-updater
 indicates that Segment Updater should not be checked
 (when checking the status of the services), started
 (when starting the services), or stopped (when
 stopping the services) (default: False)
 -t, --disable-tomcat indicates that Tomcat should not be checked (when
 checking the status of the services), started (when
 starting the services), or stopped (when stopping the
 services) (default: False)
 -u uri, --instance-uri uri
 specifies the instance URI to use (default: None,
 indicating that a self-managed Name Service will be
 started and used)

The user responsible for managing HCL Detect (typically HCLadmin) can start HCL Detect using the following command:

$./bin/services_manager start
Starting Name Service
--- running as process id 27981
--- instance URI is 'redis://10.0.2.15:34549/HCLadmin'
Starting Kafka
--- running Kafka as process id 27991
--- running Zookeeper as process id 27983
Starting FastPast
--- running as process id 27994
--- waiting for FastPast to initialize (done)
Starting PinPoint
--- running as process id 27995
--- waiting for PinPoint to initialize (done)
Starting Tomcat
--- running as process id 28051
--- waiting for HCL Drive to initialize.................. (done)
Starting application 'Segment Updater'
--- running as process id 28181
Starting feed applications: 'Topup Demo', 'Mobile Usage'
Starting application 'Topup Demo'
--- running as process id 28193
Starting application 'Mobile Usage'
--- running as process id 28209

After its execution, the HCL Detect web-based user interface is accessible by opening the http://<hostname>:8080/Detect

URL in a browser.

HCL Detect can be stopped by invoking the following command:

$./bin/services_manager stop
Stopping feed applications: 'Topup Demo', 'Mobile Usage'
Stopping application 'Topup Demo'
--- waiting for application 'Topup Demo' to terminate.
--- stopped process id 28193
Stopping application 'Mobile Usage'
--- waiting for application 'Mobile Usage' to terminate.
--- stopped process id 28209

23

HCL Detect v12.1.8 Admin Guide

24

Stopping application 'Segment Updater'
--- waiting for application 'Segment Updater' to terminate.
--- stopped process id 28181
Stopping Tomcat
--- waiting for Tomcat to terminate.
--- stopped process id 28051
Stopping PinPoint
--- waiting for PinPoint to shutdown its servers.
--- waiting for PinPoint to terminate.
--- stopped process id 27995
Stopping FastPast
--- waiting for FastPast to shutdown its servers.
--- waiting for FastPast to terminate.
--- stopped process id 27994
Stopping Kafka
--- waiting for Kafka to terminate.
--- stopped process id 27991
--- waiting for Zookeeper to terminate.
--- stopped process id 27983
Stopping the Name Service
--- stopped process id 27981

Once the stop sequence is complete, the web-based user interface is not available anymore.

The sample services_manager invocation we used earlier starts up all applications available as part of your installation. The

HCL Detect administrator user can, of course, make use of the other parameters associated with the script. For instance,

in order to start the services only with a single application named Topup Demo (assuming it is available as part of your

installation), the following command can be used:

$./bin/services_manager start -o 'Topup Demo'
Starting Name Service
--- running as process id 28730
--- instance URI is 'redis://10.0.2.15:57173/HCLadmin'
Starting Kafka
--- running Kafka as process id 28741
--- running Zookeeper as process id 28735
Starting FastPast
--- running as process id 28743
--- waiting for FastPast to initialize (done)
Starting PinPoint
--- running as process id 28744
--- waiting for PinPoint to initialize (done)
Starting Tomcat
--- running as process id 28798
--- waiting for HCL Drive to initialize.................. (done)
Starting application 'Segment Updater'
--- running as process id 28896
Starting feed applications: 'Topup Demo'
Starting application 'Topup Demo'
--- running as process id 28903

While the detailed status of the HCL Detect services can be examined via the web-based user interface, the services_manager

script can also be used to get a brief status of all services. An example invocation is as follows:

$./bin/services_manager check
Kafka is UP
Zookeeper is UP

Chapter 2. Running HCL Detect

FastPast is UP
PinPoint is UP
Tomcat is UP
application 'Segment Updater' is UP
application 'Topup Demo' is UP
application 'Mobile Usage' is DOWN

While the services are up, the services_manager script can be used start and stop individual applications. For instance, the

following command can be used to start the ‘Mobile Usage' application:

$./bin/services_manager start_applications -o 'Mobile Usage'
Starting feed applications: 'Mobile Usage'
Starting application 'Mobile Usage'
--- running as process id 29058

A running application can be stopped in a similar way. For instance, the following command can be used to stop the ‘Mobile

Usage' application:

$./bin/services_manager stop_applications -o 'Mobile Usage'
Stopping feed applications: 'Mobile Usage'
Stopping application 'Mobile Usage'
--- waiting for application 'Mobile Usage' to terminate.
--- stopped process id 29058

25

26

Chapter 3. Accessing the interface for the first time
The preferred browser for accessing the user interface is Google's Chrome.

When accessing the user interface for the first time after the software installation, the user will be presented with a screen to

setup the admin password as seen below:

Setting up the admin password.

This should only be done by the user responsible for managing HCL Detect.

The admin login provides unrestricted administrative access to HCL Detect and, among other tasks, can be used to add

additional users.

https://www.google.com/chrome

Chapter 4. Adminstration Interface

User & Role Management
The only user that comes pre-configured with HCL Detect is the admin user.

The admin user can add additional users, including other administrators, as well as perform other user management tasks by

accessing the

User And Role Management

link located under the Administration category in the top navigation bar.

The user management screen is shown below:

The UserAndRoleManagement page.

In the Users tab, the various roles that are configured in the system and the users that exist for each such role are depicted.

To add a new user, the administrator must first decide the role for such a user, for example, the MarketingAnalyst role can be

selected by picking the corresponding tab in the User Management page and by clicking on the Add New User link:

27

HCL Detect v12.1.8 Admin Guide

28

Adding a new user.

Subsequently, the Username, Email, First Name, Last name, Display name and Password attributes should be filled out. Finally,

the Save button can be pressed to store this data.

Once completed, the newly added user should be visible in the user interface:

Chapter 4. Adminstration Interface

A newly added user.

The data for an existing user can be modified and the user itself can be removed by another user with user management

entitlement.

The deletion and editing are perfomed using Delete and Edit button under Actions head of the table:

29

HCL Detect v12.1.8 Admin Guide

30

Removing or updating a user's data.

The Roles page can be accessed by accessing the Roles tab in the navigation bar:

Chapter 4. Adminstration Interface

The Roles tab.

The HCL Detect, by default, comes with three default roles: the Administrator, the Team Manager and the Marketing Analyst:

• The Administrator has unrestricted permissions in HCL Detect.

• The TeamManager does not have the permissions associated with user and role management, but has all the other

permissions.

• The MarketingAnalyst has permissions that are a notch below a Team Manager, excluding, for instance, the ability to

edit the feeds.

Roles can be renamed and removed.

The removal of a role can only be accomplished if no user(s) with that role exists. The user interface shows an appropriate

error when an attempt is made to delete a role that has user(s) assigned to it:

Renaming and deletion options for a role.

A new role can be created by clicking on the AddNewRole button located at the top-right corner.

The resulting popup asks the user to enter the name of the new role and, upon clicking on the Create button, the

corresponding new role is created.

31

HCL Detect v12.1.8 Admin Guide

32

Adding a new role.

A new role is created without any permissions. Permissions can then be added to the newly created role by clicking on the

corresponding checkboxes:

Chapter 4. Adminstration Interface

A newly created role (Event Manager) with View events permissions only.

HCL Detect can be optionally configured to do LDAP based authentication. The LDAPConfiguration page can be used to

configure the LDAP Configuration tab in the navigation bar:

33

HCL Detect v12.1.8 Admin Guide

34

The LDAPConfiguration tab.

To enable LDAP based authentication, we need to click on ConfigureAndEnableLDAP button:

Configuring the LDAPConfiguration tab.

Subsequently, the ServerType, Hostname, Port, Base DN, User DN, Group DN, Search User Name and Search User Password

attributes should be filled out. Current two type are servers are supported, i.e., Free IPA and Active Directory. Finally, the

Test And Save button can be pressed to test the server setting:

Chapter 4. Adminstration Interface

Testing the ServerSettings.

Press Next Button to start configuring the User Schema Settings tab. Now user Object Class, User Object Filter, Username

Attrbute, User Name RDN Attribute, User First Name Attribute, User Lastname Attribute, User Display Name Attribute,

User Email Attribute and User Distinguished Name Attribute attribute needs to be filled based on your organization's LDAP

configurations:

35

HCL Detect v12.1.8 Admin Guide

36

Configuring the UserSchemaSettings.

Now Click on TestAndSave button to test the configuration. Test it by filling Username and Password for any existing LDAP user

and clicking `Test And Save on the popup display.

Chapter 4. Adminstration Interface

Testing the UserSchemaSettings.

System Health
The SystemHealth dashboard can be accessed by clicking on the System Health link in the top navigation bar.

The dashboard shows the status of the AnalyticsApplications, Feed Applications, System Applications and Other

Components.

FeedApplications are used for ingesting the incoming streaming data, Analytics Applications are used for stream or Batch

based analytics jobs, System Applications are built-in applications used for different important functions of application

like detecting events or managing batch segment updates. Other Components are the HCL Detect supporting components,

including the FastPast, the PinPoint, the Kafka and the Zookeeper:

37

HCL Detect v12.1.8 Admin Guide

38

The SystemHealth dashboard.

FeedApplications can also be used to see the last few data rows/tuples beign processed by clicking View Tuples button:

Chapter 4. Adminstration Interface

Viewtuples from feed applications.

FeedApplications also shows the resource utilization of a feeds and parallel processing flow of each feeds.

partitions and statistics of a feed application.

39

HCL Detect v12.1.8 Admin Guide

40

Applications, Aggregates & Enrichments
All of the feed applications configured in HCL Detect can be seen by clicking on the Administration link in the top navigation

bar and then by clicking the Settings menu item. We have to use Feed Management tab to see feed applications.

The applications configured in HCL Detect.

This dashboard shows the applications and their associated data model, e.g., ‘Topup', ‘Usage', etc.

Users with the appropriate permissions can use this page to view, edit, add and/or delete the aggregates and enrichments

associated with a given feed application.

The existing aggregates configured for a feed application can be seen by clicking on the ShowAll button in the Aggregations

row for that application.

The dialog showing the aggregates associated with the TopupDemo application is below:

Chapter 4. Adminstration Interface

The aggregates associated with the TopupDemo feed.

The aggregates associated with a feed can be edited and removed.

To explain the aggregates a bit further, let us consider the aggregate called topupAmountBySubscriber. The dialog that opens

up upon clicking on the edit button is shown below:

41

HCL Detect v12.1.8 Admin Guide

42

Editing an aggregate.

This aggregate is designed to count the number of calls by subscriber over various time windows (e.g., currentDay, lastDay,

etc.).

topupAmountBySubscriber, i.e. the aggregate Name, is the name that is used to refer to the aggregate when using it in a trigger.

The Aggregationtype, in this case Sum, is used to accumulate the topup amounts, and the group-by attribute, in this case,

MSISDN, is used to produce per-user tallies, since it identifies individual subscribers.

Additional group-by attributes can be added in a manner similar to the group-by clause used in traditional relational database

management system (RDBMS) query languages.

A filter condition can also be used when only a subset of tuples is to be considered for an aggregation.

For instance, if the incoming tuples in the feed contain a Boolean isDroppedCall, indicating a dropped call, then one can

calculate droppedCallsBySubscriber by using isDroppedCall equals to True as a filter condition with the MSISDN as the group-

by attribute and Count as the aggregation type.

To add a new aggregate, we need to click on Add button for that feed application. A dialog with form needs to be filled by

filling Aggregate Name, Aggregation Type, Attribute to Aggregate, Group by Attribute and Aggregation Filter:

Adding new aggregate to a feed.

The list of enrichments associated with a feed can be seen by clicking on the Show button in the Enrichments row. The

enrichments associated with the Topup Demo feed can be seen below:

Chapter 4. Adminstration Interface

The enrichments associated with the TopupDemo feed.

HCL Detect supports 4 kinds of enrichments:

• The transformed attributes enrichment enables one to add attributes to the tuple that have either a constant value

or a value that can easily be derived from an UEL expression. Such transformed attribute may be needed by other

enrichments or retained as an attribute in the enriched tuple. Note that retaining and forwarding the constant

attributes as part of the output tuple from the enrichment step is optional.

• The lookup-based enrichment, which retrieves attributes from the profile store and possibly add them to the outgoing

tuple. Note that retaining and forwarding the looked up attributes as part of the output tuple from the enrichment step

is optional. We have to first select a key attribute present in the tuple, the associate Pinpoint table will be listed in

Lookup Table drop-down, finally we have to select the attribute from the lookup table to be looked up.

• The aggregate-based enrichment, which fetches data from FastPast and possibly adds such attributes to the

outgoing tuple. As part of configuring an aggregated attribute, it is necessary to (1) select an aggregate from the

list of available aggregates for the feed, (2) select the window length unit, which can be Minute, Hour, Day, Month or

Year, (3) select the period which can be one of Current or Last and (4) optionally select Window length, which can

be used to indicate that only a subset of an aggregate is to be used. For instance, when the Day window length unit

and the Last period with Window Length set to 7 is chosen, the aggregated value for the last 7 days can be computed.

Note that when using the Minute window length unit, Window Length needs to be multiple of 10-minute i.e., backend

configured sub-hour buckets length. Similarly to lookup-based enrichment, aggregate-based enrichment attributes

may or may not be retained and forwarded as part of the output tuple.

• The derived attributes enrichment, which enables the execution of an external Python function. One such a function

takes in a tuple (as well as any other required additional parameters, if any), performs a user-defined computation,

and produces a result. This function invocation's return value can then be retained and forwarded as part of an

43

HCL Detect v12.1.8 Admin Guide

44

outgoing tuple. This capability can be used, for instance, to invoke a scoring function on an incoming tuple, which

computes a score (e.g., based on previously mined data) that can then be added as an attribute to the corresponding

outgoing tuple. The derived attributes enrichment are basically of three types, i.e., enrichment function based,

expression based and scorer function based. expression based takes an UEL expression explained in Miscellaneous

» UEL section.

The interface for editing enrichments is shown below:

Interface for editing enrichments.

The interface for editing derived attribute type enrichments is shown below:

Chapter 4. Adminstration Interface

Interface for editing derived attribute type enrichments.

Enrichment operations can be configured to before aggregations are performed or after aggregations are performed.

The value of a enriched aggreate-based attribute may change based on whether it configured to run before or after the

aggregation operation. We can choose this while creating an enrichment by checking the Post-Aggregation Enrichment

check-bit as shown in the below image:

45

HCL Detect v12.1.8 Admin Guide

46

Interface for creating a new enrichment.

Subscriber Segments
Segments are groups of customers with some similarities, setup segments based on preset conditions (Live), or through

user selection list (Static). Grouping customers into Segments helps target them more appropriately or continuously across

events with Detect. Detect supports 2 types of segments, Live & Static HCL Detect can make use of subscriber segments.

Such segments can be used to include or exclude a group of subscribers from being considered as subjects for a trigger.

Static Segments

The set of StaticSegments can be inspected by clicking on Settings from the Administration menu and then selecting the tab

titled Static Segments.

The example below shows a view of the page with 2 segments: the DataUsers and the High Value users.

Chapter 4. Adminstration Interface

Uploading a segment file.

To add, edit or delete a segment, a text file with its contents specified in a particular format can be uploaded to HCL Detect

using the UploadSegmentFile button.

Two formats are supported. The first is a plain-text file with a simple linear organization as shown below:

[Data Users]: add
911323232323
918787879988
918787989021
919898990906
[High Value]: add
912323989899
912367367676
912398982337
919828738787
[High Value]: remove
912388728787
[Low Value]: remove_all

Alternatively, the file can also be specified in JSON format, in which case it must have a .json extension. An example is given

below (note that the order of the fields is important):

{
 "segmentUploads": [
 {
 "operation": "Add",
 "segment": "Data Users",
 "users": [
 "911323232323",
 "918787879988",

47

HCL Detect v12.1.8 Admin Guide

48

 "918787989021",
 "919898990906"
]
 },
 {
 "operation": "Add",
 "segment": "High Value",
 "users": [
 "912323989899",
 "912367367676",
 "912398982337",
 "919828738787"
]
 },
 {
 "operation": "Remove",
 "segment": "High Value",
 "users": [
 "912388728787"
]
 },
 {
 "operation": "RemoveAll",
 "segment": "Low Value"
 }
]
}

Once uploaded, one can also add a description for the segments:

Segments and their descriptions.

Chapter 4. Adminstration Interface

Live Segments

Detect allows the user to enter a set of audience conditions and saves customers who meet those criteria in a Live Segment.

Detect checks all customers against the defined conditions and maintains the segment over time. This means that Detect

adds or removes customers from the segment as they fulfill or stop fulfilling the defined criteria. For example: if you'd like to

frequently target customers who have the main balance atleast $100 & who have installed a Mobile App i.e., Facebook, this

can be saved as a Live Segment.

Detect will check all customers against the defined Main balance check & app installation status and sort the appropriate

customers to the segment. Conditions can be setup as shown below:

Creating an audience condition.

To save above audience condition as reusable live segement, we need to click on SaveasLiveSegment button. A dialog will

open to get the name of the live segment:

49

HCL Detect v12.1.8 Admin Guide

50

Saving a live segment.

Once the live segment is saved, the condition will be wrapped as a live segments. This live segment can be replaced and

edited by clicking three dots on the live segment shown:

Chapter 4. Adminstration Interface

Using a live segment and editing it.

The set of LiveSegments can be inspected by clicking on Settings from the Administration menu and then selecting the tab

titled Live Segments.

51

HCL Detect v12.1.8 Admin Guide

52

List of live segment.

Customers belonging to Live or Static Segments can be used as audience criteria by any user, in any event. Segments can be

used along with other audience conditions as well, and can be added as shown below:

Chapter 4. Adminstration Interface

Audience condition using live segment and other audience conditions.

53

	HCL Detect v12.1.8 Admin Guide
	Contents
	Chapter 1. Installing HCL Detect
	Dependencies
	Operating System Configuration
	External Dependencies

	Installing OS-managed packages
	Configuring MariaDB
	Installing MariaDB
	Securing MariaDB
	Populating the MariaDB timezone tables
	Setting up a MariaDB user
	Using a non-default MariaDB configuration

	Configuring Redis for use by HCL Detect
	Installation Process
	Installation Package
	Installation Process

	Configuring HCL Detect's Runtime Environment
	Configuring web proxy
	Configuring a DNS CNAME entry to point to HCL Detect (optional)
	Obtaining an SSL certificate
	Configuring Apache httpd
	Configuring nginx
	Testing and troubleshooting the web proxy installation

	Chapter 2. Running HCL Detect
	Starting and stopping HCL Detect
	Advanced options when starting and stopping Detect

	Chapter 3. Accessing the interface for the first time
	Chapter 4. Adminstration Interface
	User & Role Management
	System Health
	Applications, Aggregates & Enrichments
	Subscriber Segments
	Static Segments
	Live Segments

